SQ-1000 Super Squelch

SQ-1000 - Super Squelch

When supplied with discriminator audio the SQ-1000 will perform the operation of a Squelch Circuit, COR/CAS Generator, or a Repeater Maker. As quieting occurs, the SQ-1000 will turn on its audio switch and output the audio to a controller or transmitter. The audio path through the SQ-1000 has a gain of three. The SQ-1000 also produces a DC logic voltage change to be used by the controller as a CAS or COR input. A dipswitch selects whether the logic level is active high or low. The SQ-1000 automatically adjusts closure time with loss of signal. With a strong signal the switch will close in 20 milliseconds. Closure time automatically increases as the signal becomes noisier. A red LED lights whenever a signal is received and the squelch opens. The SQ-1000 connects directly to the audio delay header on most of the CAT controllers. A second header connector on the SQ-1000 is provided for the DL-1000C Audio Delay.

COR/CAS Generator

Figure 1 describes how the SQ-1000 is used as a COR/CAS generator. In this configuration the SQ-1000 is connected to the transceiver port audio delay header of a CAT-200B. Discriminator noise is sampled by the SQ-1000. When quieting occurs the SQ-1000 produces a DC voltage change that represents a COR input to the controller. Note: On the SQ-1000 dipswitch \#2 must be ON.

Figure 1

Figure 2 describes how the SQ-1000 is connected to the transceiver port audio delay header of a CAT-1000B. Note: On the SQ-1000 dipswitch \#2 must be ON.

Figure 2
The SQ-1000 will support the DL-1000C Audio Delay. Connect the DL-1000C to the 32 connector of the SQ-1000. Set dipswitch \#2 OFF to force the audio output through the delay board.

Repeater Maker

Figure 3 describes how the SQ-1000 is used as a Repeater Maker. Connect two transceivers to the SQ-1000. In this configuration the SQ-1000 monitors the discriminator output of the receiver. When quieting occurs the SQ-1000 COR/CAS logic output is used as a push-to-talk signal to key the transmitter. Set dipswitch \#3 to ON for an active low output and dipswitch \#4 to OFF to disconnect the pull up resistor and dipswitch \#2 ON to pass the receive audio to the transmitter's modulation input.

Figure 3

Dip Switch

A four-position dipswitch configures various functions of the SQ-1000.
Switch 1 This switch determines if the audio output is de-emphasized. Switch \#1 should be ON to de-emphasize the audio output.

Switch 2 This switch controls the audio output path. When this switch is ON the audio output is directed to the controller at J1 pin 2 . When this switch is OFF the audio output is directed to the J2 connector and the DL-1000C Audio Delay board.

Switch 3 This switch determines CAS/COR output logic. This switch should be ON to set the CAS/COR output active low and OFF to set the CAS/COR output active high.

Switch 4 When this switch is turned ON a 2200-ohm resistor pulls up the COR/CAS output. This resistor is usually required when the COR/CAS output is set for active low.

Audio Level Adjustment

The SQ-1000 requires discriminator audio for proper operation. Speaker audio or deemphasized audio does not have the high frequency noise component required for proper operation. A minimum of 50 mV of noise is required. Set the Squelch Adjust [R1] to the full counter clockwise position. Verify that the red LED on the SQ-1000 is ON. Turn the Squelch Adjust clockwise until the red LED just goes OFF. Provide a signal to the input of the receiver and check that the red LED turns ON, CAS/COR output on J1 pin 5 is present and audio output is present on pin \#2.

Figure 3
SQ-1000 Part List

2	Capacitor	.001uF 50V	C2, C5
2	Capacitor	.0015uF 16V	C6,C7
1	Capacitor	.0047uF (SM)	C16
1	Capacitor	.01uF 50V	C8
5	Capacitor	0.14 F 50 V	C1,C11,C12,C14,C15
2	Capacitor	1.0 uF 16 V	C10,C13
1	Capacitor	10uF 16V	C9
2	Capacitor	120pF	C3,C4
2	Connector	1X5	J1,J2
1	Diode	BAT43	CR1
1	I.C.	MC4053	U2
1	I.C.	NJM78L05UA	U4
1	I.C.	P87LPC767	U6
1	I.C.	TC7662	U5
1	I.C.	TLC2272	U3
11	I.C.	TLC2274	U1
1	LED	RED SM	DS1
1	Resistor	1K SM	R10
1	Resistor	1.2K SM	R5
1	Resistor	2.2K SM	R15
1	Resistor	3.3K SM	R4
6	Resistor	10K SM	R2,R7,R8,R13,R16,R17
1	Resistor	33K SM	R18
6	Resistor	100K SM	R3,R9,R11,R12,R19,R20
1	Resistor	330K SM	R6
1	Resistor	470 SM	R14
1	Resistor	100K Variable	R1
1	Switch	4 Position	SW1
1	Transistor	2N7000	Q1

