ATAFILE SIGNAL STRENGTH

FORM 10003-3

	Base Station A	Base Station B
Transmitter Frequency	Mc	Mc
Location (coordinates)		
Distance between Stations	miles	miles
Effective Antenna Height	feet	feet
Average Noise Level	dbw	dbw
Desired Reliability	% of time	% of time

	braw profile of	signal path from	A to B on $4/3$ Earth	Curvature Profile Paper	
U	(ECM-94). Use G	Graph 5C to check	for 0.6 fresnel zone	Curvature Profile Paper e clearance.	
	Door woth house) C f	3	Yes No	ı
	boes path have t	o.6 fresner zone d	learance?	Yes No	J

Use one of the appropriate methods below to determine transmission losses. (See Table I or Figure 3.) One of the other methods can be used as a check.

Free-Space Los	s Method
Graph 1A or B	db
Graph 3B	db
Total	db
Empirical M	ethod
Graph 5B (F)	db
Graph 5B (D_3)	db
Graph 5B (D_{\bullet})	db
Total	db

		oncon.
Smooth-Earth & Plan	e-Earth Loss Method	s (2)
	Graph 1D Graph 2A Graph 3B	db db db
$\begin{array}{c c} Graph & 2B & (D_3) & db \\ Graph & 3B & db \\ \hline & Total & db \\ \end{array}$	Total	db
Scatter Method		
Graph 1Cdb	j	

Determine the total system losses and gains in both directions.

	A CO D		D to A	
	Losses Gains	5	Losses	Gains
Transmission Losses (from Step 2)	db		db	
Transmission Line Losses (xmtr & rcvr)	db		db	
Transmitter Power (db above 1 watt)	d	b		db
Receiver Sensitivity at Av. Noise Level				
(db below 1 watt)	d			db
Transmitting Antenna (use appropriate blank)	_ db or d	b_	db	or db
Receiving Antenna (use appropriate blank)	db or d		db	
Probability Gain or Loss (from Graph 3A)	db or d	b	db	or db
Total Gains and Losses	db d	b,	db	db

If the Total Gain exceeds the Total Loss, the system operation will exceed the Desired Reliability listed above. If the Total Loss is greater, the Desired Reliability will not be achieved.

BASE STATION TO MOBILE

The following procedure can be used to determine the mobile coverage which a Base Station will provide. To determine the transmitter power required to cover a certain area, reverse this procedure.

	Base Station	Mobile Station
Transmitter Frequency	Mc	Mc
Effective Antenna Height	feet	feet
Average Noise Level	dbw	dbw
Desired Reliability	% of time	% of time

1 Determine the total system losses and gains in both directions.

	ſ	Base to	Mobile	Mobile	to Base
	Ì		Gains	Losses	
Transmission Line Losses (xmtr & rcvr)		db		db	
Transmitter Power (db above 1 watt)			db		db
Receiver Sensitivity at Average Noise I					
(db below 1 watt)			db		db
Transmitting Antenna (use appropriate)		db	or db	db	or db
Receiving Antenna (use appropriate blan	nk) [db	or db	db	or db
Probability Gain or Loss		3 3 100 3 100 100			
(terrain factors from Graph 3A)		db	or db	db	or db
Total Gains as	nd Losses [db	db	db	db
	_				
		i			₩
Determine Net Gain by	Total Gai	in (db	l	db
subtracting Total Losses	Total Los	ss 🔾	- db	\	- db
from Total Gains.	Net Gai	ln	db		db

Select a distance in miles which would be required between the base station and the mobile station to produce a total attenuation (sum of attenuations determined from Graphs 1D and 2A) equal to the Net Gain found in Step 2. This is the distance which the base station will cover with the reliability indicated above.

	Base to Mol	oile	Mobile	to Base
Distance Selected	mi	les		miles
Plane Earth Attenuation (Graph 1D)	f———	db	f-	đh
Diffraction Loss (Graph 2A)		db	+	db
Total Attenuation (should equal Net Gain				
found in Step 2)		db		db

Progress Is Our Most Important Product

COMMUNICATION PRODUCTS DEPARTMENT LYNCHBURG, VIRGINIA
(In Canada, Canadian General Electric Company, Ltd., 100 Wingold Ave., Toronto 19, Ontario)

END OF DOCUMENT