MAINTENANCE MANUAL 406-420 \& 450-5 12 MHz POWER AMPLIFIER BOARD 19D423445G 1, G2, G4

TABLE OF CONTENTS

DESCR IPTION	page
CIRCUIT ANALYSIS	page
OUTLINE DIAGRAM	page
SCHEMATIC DIAGRAM	page
PARTS LIST AND PRODUCTION CHANGES	page

DESCRIPTION

The PA assembly for MASTR Executive II uses four RF power transistors to provide a power output of 40 Watts . The output power is adjustable using power control R213 and is type accepted with the FCC to operate over a range of 10 to 40 Watts (Mobile) or 1 to 40 Watts (Station). A single transistor is used in the power control circuit.

Supply voltage for the PA is connected through power leads from the system-audiosquelch board (SAS) to feed through capacitors C297 and C298 on the side of the PA assembly. C297, C298, and C299 prevent RF from getting on the power leads. Diode CR295 will cause the main fuse assembly to blow if the polarity of the power leads is reversed, providing reverse voltage protection for the radio.

The PA assembly is insulated from vehicle ground to permit operation in positive or negative ground vehicles.

NOTE

In positive ground vehicles, $A-$ is "hot" with respect to vehicle ground. Shorting the transmitter PA printed wiring board ground pattern to the radio case may cause one of the in-line fuses to blow.

The hinged PA heatsink assembly pivots 90° to provide access to the power amplifier board, low pass filter and centralized metering jack J205.

Centralized metering jack J205 is provided for use with GE Test Set Model 4EX3All or Test Kit 4EX8K12. The Test Set meters the Ampl-1 drive (exciter output), power control voltage, driver current, and PA current.

CIRCUIT ANALYSIS

RF POWER AMPLIFIERS

The exciter output is coupled through RF cable W216 to PA input jack J201. The 50 ohm RF input is coupled through a matching network comprised of C206, C207, C208 and W202 to the base of power amplifier Q201.

Part of the RF input is rectified by CR201 and metered at J205-4 through resistor R201.

Collector voltage for Q201 is applied direct from the DC power input through collector stabilizing network R205 and L202 and collector feed network L203 and C210.

The output of Q201 is coupled to the base of a second power amplifier Q202 through a matching network consisting of T201, C215 and C216.

Collector voltage to Q202 is controlled by power control circuit, $Q 215$, and is applied through a collector stabilizing network L206 and R206 and collector feed network L205 and C218.

The output of Q202 is coupled to the base of driver Q203 through C219 and a matching network of T202, L222, C252, C224 C225, and L207. The collector voltage to Q203 is coupled through collector stabilizing network L209 and R214 and collector feed network L208 and C228.

Collector current for Q203 is metered across tapped manganin resistor R12. The reading is taken in position F on the 1 -Volt scale with the High Sensitivity button pressed, and read as 0-15 amperes full scale.

The output of driver Q203 is coupled through an impedance matching network
(C229, C230, C233 and T203) that matches the output impedance of Q203 to the input impedance of power amplifier Q204 through a 50 ohm micro strip (W204) and input impedance matching network T204, C234, C235 and C236.

Collector current for Q204 is metered across tapped manganin resistor R210. The reading taken in position G on the l-Volt scale with the High Sensitivity button pressed and read as $0-15$ amperes full scale.

Following power amplifier Q204 is a matching network C237, C238, and T205) that matches the output of Q204 to the 50-ohm input of low pass filter, through 50 ohm micro strip W205 and a 50 ohm cable W214. Cl on the low pass filter board provides DC isolation between the transmitter and the antenna.

The PA output is coupled through the low-pass filter to the antenna through antenna transfer relay K1901.

Capacitors C244, C245, C249, C255, and c256 provide ground isolation for positive or negative ground operation.

WARN ING
The RF Power Transistors used in the transmitter contain Beryllium Oxide, a TOXIC substance. If the ceramic, or other encapsulation is opened, crushed, broken or abraded, the dust may be hazardous if inhaled. Use care in replacing transistors of this type.

POWER CONTROL CIRCUIT

The power control circuit consists of R213 and Q215. R213 controls the base voltage, and conduction of Q215. Q215 is connected in series with the collector feed network for Q202 thereby controlling the drive to driver Q203 and the output power. R213 is adjusted to provide the desired output power. The control voltage on Q202 is measured on position C on 1 volt scale and read as $0-15$ volts full scale.

END VIEW

PA ASSEMBLY

OUTLINE DIAGRAM

$406-420$ \& $450-512 \mathrm{MHz}$, 40 WATT POWER AMPLIFIER'
$4 \quad$ Issue 1

SCHEMATIC DIAGRAM
$406-420 \& 450-512 \mathrm{MHz}$

－30061			smmba	6f pari no．	Descrapiow	smmen	ge part no．	огsçprion	sumen	${ }_{\text {efe par }}$ No．	oscspeprow			DScsaprow			0．sserfion
		cos														19B201074P305 N44P9006C6	
smmal	GE Parf no．	osscaprion	$\begin{aligned} & \mathrm{C} 217 \mathrm{LL} \\ & \mathrm{C} 217 \mathrm{~L} \end{aligned}$	$\begin{array}{\|l} \\ \text { 19A116679P18D } \\ \text { 19A116679P16D } \end{array}$				$\begin{aligned} & \text { Silver mica: } 33 \mathrm{pff} \pm 2 \%, 250 \text { vDCW; sim to } \\ & \text { Underwood Type J1HF. } \end{aligned}$									Washer， 375－20．： $\begin{aligned} & \text { Spring tension：} \\ & \text {（Secures Q202）．}\end{aligned}$ sim to Wallace Barnes
${ }^{n o n}$		\％ata	${ }_{\text {cont }}^{\substack{\text { cara } \\ \text { case }}}$		Mica： $13 \mathrm{pf} \pm .5 \mathrm{pf}, 250 \mathrm{vDCW}$. Silver mica： 18 pf Electro Motive Type DM－15． In							${ }_{\substack{\text { cuu } \\ \text { cuut }}}$					Spacer．（Used with Q202）． Screw，machine：No．4－40 $\times 5 / 8 . \quad$（Secures Q215） Plate．（Used with Q215）．
			${ }^{\text {casa }}$			ceam	1 ，momosmas					coius					为
\％		为	${ }_{\text {cose }}$	，manemens			${ }^{\text {anden}}$		1207	${ }^{23}$	边			Nom nexpexam		，	
${ }_{\text {cos }}^{\substack{\text { cos } \\ \text { cos }}}$		\％oseme	cramu			$c^{\text {csim }}$	Ismosesms		cisem		${ }_{\substack{\text { con } \\ \text { con }}}$			meme			为
cos	2ank		cos	Soman		${ }_{\text {crasa }}$	Sance		cieem		${ }_{\text {coin }}^{\text {con }}$	${ }^{4}$	2mazesen	sumer			
cas	2ommessm		${ }^{223}$	2manasaso		cesme			L210LL		Choke RF： $15.0{ }^{\mu \mathrm{h}} \pm 10 \%, 1.20$ ohms DC res max； sim to Jeffers $4421-9$ ．			4osivemumumu			
coruи $^{\text {cos }}$	zenlesesmo	为	cosuch	，min		20s	usent		tan	${ }^{\text {nemempas }}$							
comin			coma			${ }_{\text {czasu }}$			$\underbrace{}_{\substack{\text { and } \\ \text { tan }}}$		sim to Coil． Coil．	$\mathfrak{c}_{\substack{\text { ain } \\ \text { com } \\ \text { com }}}$					
cous	Lemesesmeso		crasu	Somber		coute						am	Reniesano				
cos	Sonces	\％	${ }_{\text {cosas }}$			${ }^{\text {cha }}$	1201sessem		${ }_{80}$	manasar		${ }^{302}$	somesem				
cosm	Smasame		${ }_{\text {coser }}$	，		${ }^{\text {c2est }}$				zasmos	，						
come	$\underbrace{2}$		${ }_{\text {cosem }}$	samesamas	$\begin{array}{\|l} \text { Underwood Type J1HF. } \\ \text { Silver mica: 43 pf } \pm 2 \%, 250 \text { vDCW; sim t } \\ \text { Underwood Type J1HF. } \end{array}$	，		\％			comer	${ }^{\text {un }}$	${ }^{2}$ zesmosaa	smor．			
case	reneas		cosam		\％		2anceserea	\％				${ }_{\text {ma }}^{\text {ma }}$					
2004	\％ens		cean	，somesesers			sangesen				边						
cor can	${ }^{\text {anden }}$		${ }_{\text {ceam }}$	Lomesesms		coss	samesesenso	$8121-\mathrm{MO} 50-\mathrm{W} 5 \mathrm{R}-103 \mathrm{M}$ ． Ceramic disc： 4 pf $\pm 0.5 \mathrm{pf}, 500 \mathrm{VDCW}$ ，temp coef 0 PPM．			come	come					
c21u	smamesamas		cres	边	Ceramic disc： 1000 pf $\pm 10 \%, 1000$ VDCW； Sim to RMC Type JF Discap． Ceramic disc： 33 pf $\pm 5 \%, 500$ VDCW，temp coef	${ }^{238}$			，		为	em					
C211L	${ }_{\text {and }}^{120}$		cosas	Somasesmasa	\％					з\％mo			，pencoseraz	suraem an			
${ }^{\text {c212 }}$		\％	cticam	${ }^{\text {a }}$		${ }_{\substack{\text { cersa } \\ \text { ces }}}$			（10x	2anseat	meteme	mom		Nemer			
cis	20．		coser	zomesasesuo	边				鹳								
cornt	1 maneseseras		cosam		5imex	$\operatorname{sen}^{\text {cen }}$			cois	，oeaz							
can	1		${ }_{\substack{\text { cens } \\ \text { casau } \\ \\ \hline}}$				${ }^{\text {manasasas }}$						${ }^{\text {Sanmasama }}$				
case	1.		come				masea						$\begin{aligned} & 19 \mathrm{B226906Gl} \\ & 19 \mathrm{C} 321441 \mathrm{Pl} \end{aligned}$	mam			
	eszas	隹															

