MASTR ${ }^{\circledR}$ II 138 - 174 MHz RECEIVER (WITH NOISE BLANKER)

TABLE OF CONTENTS

DESCRIPTION Page 1
MA INTENANCE Page 2
Disassembly Page 2
Alignment Procedure Page 5
Test Procedures Page 6
Noise Blanker Troubleshooting Page 7
Receiver Troubleshooting Page 8
HIGH SIDE INJECTION MODIFICATION INSTRUCTIONS Page 9
ILLUSTRATIONS
Figure 1-Block Diagram Page 2
Figure 2 - Disassembly Procedure (Top View) Page 3
Figure 4 - Receiver Module Location Diagram Page 3
Figure 5 - Test Set-up Page 5
Figure 6 - Frequency Characteristics Vs. Temperature Page 5

DESCRIPTION

MASTR II, 138 to 174 megahertz receivers are single conversion, superheterdyne FM receivers designed for one- through eight-frequency operation. The solid state receiver utilizes integrated circuits (ICs), monolithic crystal filters and discrete components with each of the crystal filters located between gain stages to provide 100 dB selectivity and maximum protection from de-sensitization and intermodulation.

The receiver consists of the following modules:

- RF Assembly
- Mixer/IF/Noise Blanker (MIF/NB)
- Oscillator/Multiplier (Osc/Mult)
- IF/AUDIO and Squelch (IFAS)

Audio, supply voltages and control functions are connected to the system board through P903 on the Osc/Mult board, and P904 on the IFAS board. The regulated +10 Volts is used for all receiver stages except the audio PA stage which operates from the A+ system supply.

Centralized metering jack J601 on the IFAS board is provided for use with GE test Set 4EX3A1l or Test Kit 4EX8K12. The test set meters the oscillator, multiplier, noise blanker, IF Detector and IF amplifier stages. Speaker high and low are metered on the system board metering jack.

A block diagram of the complete receiver is shown in Figure 1.

Refer to the appropriate Maintenance Manual for complete details on each receiver module listed in the Table of Contents.

Figure 1 - Receiver Block Diagram

MAINTENANCE

DISASSEMBLY

To service the Receiver from the top (see Mechanical Parts Breakdown):

1. Pull the locking handle down, then pry up the top cover at the front notch and lift off the cover.

To service the Receiver from the bottom:

1. Pull the locking handle down and pull the radio out of the mounting frame.
2. Remove the top cover, then loosen the two bottom cover retaining screws and remove the bottom cover (see Figure 2).

To remove the $M I F / N B$ board from the radio:

1. Remove Connectors (H), (J), (K), and (L).
2. Remove the seven screws (E) holding the MIF bottom cover (see Figure 3).
3. Remove the four screws (F) holding the MIF top cover.
4. Remove the four screws (G) and carefully push down on the top of the board to avoid damaging the feedthrough capacitors.
-NOTE
Refer to Figure 4 for receiver module location.

To remove the Osc/Mult board from the radio:

1. Remove the six screws (A) holding the receiver bottom cover.
2. Remove the seven screws (E) holding the MIF/NB bottom cover.
3. Remove the four screws (B) holding the board.
4. Press straight down on the plug-in Osc/Mult board from the top to avoid bending the pins when unplugging the board from the system board jack.

Figure $2-\underset{\text { (Top View) }}{\text { (Tosassembly Prodedure }}$

To remove the IFAS board from the radio:

1. Remove Connector (J) from J552 on MIF/ NB board.
2. Remove the six screws (A) holding the bottom cover, and the one screw (C) holding the board.

Figure 3 - $\underset{\text { (Bottom View) }}{\text { Disassembly Procedure }}$
3. Remove the two screws (D) holding the audio PA heatsink to the right side rail.
4. Press straight down on the plug-in IFAS board from the top to avoid bending the pins when unplugging the board from the system board jack.

Figure 4-Receiver Module Location
(Page 4 is blank)
icom frequency adjustment

aramern pexemim				
		mane	縎品m	moxame
		came	\％	边
${ }_{\text {mima }}$	${ }^{\text {nima }}$		simm	
				$\mathfrak{y y y}$
（mix	${ }^{\text {nn }}$		mamm	

－Mu： 5

 $=5=5=5=5=5$ amex mow ＂…

$x^{2}=\mathbf{m}=$ Equavavavavawauquaw
untan
and
 DEGREES FAARENHEIT

complete receiver alignment

These Test procedures are designed
help you to service a receiver that is
operating-t. operating---but not properly. The problems
encountered could be low power, poor sensi-
 sequence of test steps. starting wing the step
the defect can be quickly localized. Once

TEST EQUIPINENT REQUIRED

- Distortion Analyzer
- Signal Generator
- $\quad \begin{aligned} & \text { 6-dB attenuation pad, and } 8.0-\mathrm{ohm} \text {, } \\ & 15-\mathrm{Watt} \text { resistor }\end{aligned}$

STEP
UUDIO POWER OUTPUT AND DISTORTION

Audio Power Output as follows

B. $\quad \begin{aligned} & \text { With } 15 \text {-Watt Speaker (Mobile) } \\ & 5 \text {-watt (Station) }\end{aligned}$ Disconnect speaker lead pin from Systems
Plug P701-11 (on rear of Control Unit).
 P701-17 (SPEAKER HI) on the System Plug.
Connect the Distortion Analyzer input Connect the Distortion Analyza
across the resistor as shown.

C. Adjust the Volume control for 12 -Watt (MMobie) or 6.3 VRMS (Station) using
Distortion Analyzer as a voltmeter.
D. Make distortion measurements according
 sensitivity is to be measured, leave
controls and equipment as they are.

SERVICE CHECK

E. Battery and regulator voltage---low volt-
F. Audio Gain (Refer to Receiver Trouble-
G. FM Detector Alignment (Refer to $\quad \begin{aligned} & \text { Rece } \\ & \text { Receiver Alignment on reverse side of }\end{aligned}$

STEP 2

USABLE SENSITIVIT

(12-dB SINAD)

If STEP 1 checks out properly, measure
the receiver sensitivity as follows:

B. Place the RANGE switch on the Distortion Analyzer in the 200 to 2000 -Hz distortio
rane position (1000-Hz filter in the
circuit) circuit). Tune the filter for minimum
reading or null on the lowest possible reading or null on the lowest possible
Scale (100%, 30%, etc.)
C. Place the RANGE switch to the SET LEVEL position (filter out of the circuit) and
adjust the input LEVEL contro, for a
dB reading on a mid range (30%).
D. While reducing the signal generator output, swit th the RANGE control from SEE
ILEVEL to the distortion range unti1 a
2-dB dif EEVEL to the distortion range unti1 a
12 -dB differenece +2 dB do 10 dB) is
obtained between the SET LEVEL and obtained between the SET LEEEL and
distortion range positions (filter out
and filter ing).
. The $12-\mathrm{dB}$ difference (Signal plus Noise and Distortion to noise plus distortion
ratio) is the "usable" sensitivity level
The
 12 dB SINAD specifications with an audio
output of at least 6.0 Watts 6.9 volts
RMS across the 8.0 .oom receiver
Hoad usin RMS across the 8. 0 -ohm receiver load usin
the Distortion Analyzer as a vvvM). Leave all controls as they are and all
equipment connected if the Modulation
Acceptance Bandwidth test is to be perAcceptance
formed.

SERVICE CHECK

dure, and make the gain measureme on the Troubleshooting Procedure

MODULATION ACCEPTANC

 BANDWIDTH (IF BANDWIDTH)If STEPS 1 and 2 check out properly,
measure the bandwidth as follows:
A. Set the Signal Generator output for twice the microvolt reading of
$12-\mathrm{dB}$ SINAD measurement
B. Set the RANGE control on the Distortion Hz filter out of the circuit), and adjus Hz filiter out of the circuit), and adjust
the input LEVEL control for a +2 dB read
ing on the 30% range.
C. While increasing the deviation of the trol from SET LEVEL to distortion range until a 12 -dB difference is obtained
between the SET LEVEL and distortion range
readings (from +2 dB to -10 dB)

The deviation control reading for the $12-\mathrm{dB}$ difference is the Modulation
Acceptance Bandwidth of the receiver.
It should be more than $\pm 7 \mathrm{kHz}$.

SERVICE CHECK
If the Modulation Acceptance Bandwidth
does not indicate the proper width, make in measurements as shown on the Receiver

STEP 1-PERFORMANCE CHECK

$\frac{\text { Enuippont Reaurred: }}{}$

1. RP signal Generator coupled through a 6 ab pad.

2. r -Connect or
3.

ac vevi or
5. Oscill 1 scsope
procedure:
$\xlongequal[\text { Noise }]{\text { Procedure: }}$

Heasure the 20 dB quieting sensitivity as in step 2 of Threstold sensitivity

STEP 2-QUICK CHECK

Kauipmont Required:

sxuprous	Procemons
кo Blanking	Check voltage ratios (stre 3)
$\underbrace{\text { no }}_{\substack{\text { partial or } \\ \text { Branking }}}$	a. Check IF attenuation of Noise Blanker Gates as follows Connect signal generator to antenna jack (J55l). Adjust the signal generator for 20 dB quieting sensitivity (Level A). Connect level for 20 . In- +10 VDC directly to the gates of Q502 and Q503. In +lo VDC directly to the gates of Q50 and Q503. In- crease the RF output level to achieve 20 dB quieting (Level B). The difference between "Level A" and "Level $B^{\prime \prime}$ must be 60 dB or greater
Intermodulation Interference (AGC action)	

TROUBLESHOOTING PROCEDURE 138-174 MHz MASTR II RECEIVER
NOISE BLANKER
CIRCUIT

Issue
 , vasuavavisw $=5=4$ $5=$

SYMPTOM CHECKS

STEP 3-AUDIO \& SQUELCH WAVEFORMS

PARTIAL VIEW
OSC/MULT BD. PLI9D423241

R.F. CKT PLI9D4 I6693

VIEN AT "A"
(PARTIAL)
(TYP THO PLACES)

MODIFICATION INSTRUCTIONS FOR HIGH BAND HIGH SIDE INJECTION APPLYING 19AI30045GI OR G2 KIT

1. ON OSC/MULT BD'S $19042324 I G I \& G 3$ (LOW SPLIT) REMOVE C4I2 \& C4I7, REPLACE C4O7 WITH C231I (12 pf , NPO), REPLACE C4I8 WITH C2312 (3pf, NPO), AND REPLACE C42I WITH C23I3 (5pf, NPO). DISCARD C2301 THRU C2306(GI) AND C2314(G1, G2).
ON OSC/MULT BD'S $190423241 G 2 \&$ G4 (HIGH SPLIT) REMOVE C407, C412, AND C4IT, REPLACE C418 WITH C2312 (3pf, NPO), AND REPLACE C421 (SPACE) NITH C2314 (4pf, NPO). DISCARD C2301 THRU C2306(Gi) AND C2311, C23I3(GI,G2).
SOLDER ALL ELECTRICAL CONNECTIONS. C2301 THRU C23I4 ARE PART OF MOD KIT 19A130045GI, C2311 THRU C2314 ONLY-G2.
2. MODIFY RF. CKT ASM PLI90416693 BY ADOING |9A130028PI SPACER, 19A130029PI WASHER, AND 19A130028P2 SPACER AS SHOWN TO L306 \& L307 (LOW SPLIT) OR L316, \& L317 (HIGH SPLIT). SLIDE SPACERS, \& WASHER ON CERAMIC POST FROM TOP IN ORDER SHOWN. THESE ITEMS ARE PART OF MOO KIT PLI9A130045GI AND G2.
3. IN APPLICATION OF THIS KIT THE CRYSTAL OSCILLATOR FREQUENCY MUST BE CHANGED PER THE FOLLOWING FORMULA:

$$
F_{x}=\frac{F_{0}+11.2}{9}
$$

4. MARK ALL OSC/MULT. BD'S (190423241) WITH A BLUE COLOR DOT IN THE AREA OF THE PL DRAWING NO. PER 19A115740PI.
mark all receiver castings with a blue color dot in the area of the pl drawing no. per I9A115740PI.
5. APPLY LABEL (I9AI3O206PI) TO DISCRIMINATOR CUVER ON IFAS BD.
6. TEST ANO ALIGN PER NORMAL PROCEDURE WITH THE FOLLOWING EXCEPTION: PRE-ADJUST C4II AND C4IG TO MINIMUM CAPACITY, THEN TUNE IN SLOWLY.
(19C320883, Sh. 2, Rev. 2)

MODIFICATION INSTRUCTIONS FOR HIGH BAND HIGH SIDE INJECTION APPLYING 19A130045GI OR G2 KIT.

1. FOR RECEIVERS OPERATING BETWEEN 138 . TO 155.0 MHz OSC/MULT BOARDS $190423241 G 1$ AND G3 (LOW SPLIT).
A. IF RECEIVER HAS LESS THAN 8 ICOM'S, REMOVE C4O7, C4I2 AND C4I7. REPLACE C407 WITH C23II (I2PF NPO). REPLACE C418 WITH C2312 (3PF NPO). REPLACE C421 WITH C2313 (5PF NPO).
B. IF THE RECEIVER HAS MORE THAN 8 ICOM'S, REMOVE C4O7, C412 AND C417. REPLACE C407 WITH C2318 (IOPF NPO). REPLACE C4I8 WITH C23I2 (3PF NPO). REPLACE C42I WITH C23I3 (5PF NPO).
FOR RECEIVERS OPERATING BETWEEN 150.8 TO 174 MHz OSC/MULT BOARDS I9D42324IG2 AND G4 (HIGH SPLIT).
A. IF THE RECEIVER HAS LESS THAN 8 ICOM'S, REMOVE C4I2 AND C417. REPLACE C4I8 WITH C23I2 (3PF NPO).

REPLACE C42I WITH C23I4 (4PF NPO)
B. IF THE RECEIVER HAS MORE THAN 8 ICOM'S, REMOVE C407, C412 AND C4I7.

REPLACE C4I8. WITH C2312 (3PF NPO). REPLACE C42I WITH C2314 (4PF NPO).
SOLDER ALL ELECTRICAL CONNECTIONS. DISCARD UNUSED PARTS.
2. MODIFY RF CKT ASM PLI9D416693 BY ACDING 19A130028PI SPACER, 19A130029PI WASHER, AND $19 A 130028 P 2$ SPACER AS SHOWN TO L305 \& L307 (LOW SPLIT) OR L316, \& L3I7 (HIGH SPLIT). SLIDE SPACERS, \& WASHER ON CÉRAMIC POST FROM TOP IN ORDER SHOWN. THESE ITEMS ARE PART OF MOD KIT PLIgAI30045GI \& G2.
3. IN APPLICATION OF THIS KIT THE CRYSTAL OSCILLATOR FREQUENCY MUST BE CHANGED PER THE FOLLOWING FORMULA:

$$
F_{x}=\frac{F_{0}+11.2}{9}
$$

4. MARK ALL OSC/MULT BDS (I9D423241) WITH A BLUE COLOR DOT IN THE AREA OF THE PL DRAWING NO. PER 19AII5740PI. MARK ALL RECEIVER CASTINGS WITH A BLUE COLOR DOT IN THE AREA OF THE PL DRAWING NO. PER I9AII574OPI.
5. APPLY LABEL (I9AI30206PI) TO SIDE OF PLASTIC FRAME.
6. TEST AND ALIGN PER NORMAL PROCEDURE WITH THE FOLLOWING EXCEPTION: PRE-ADJUST C4II AND C4I6 TO MINIMUM CAPACITY, THEN TUNE IN SLOWLY.

HIGH SIDE INJECTION
 (LATER MODELS)

