SPECIFICATIONS *

LINE TERMINATING IMPEDANCE
600 ohms
LINE LOOP IMPEDANCE
AUDIO LINE OUTPUT
FREQUENCY RESPONSE
DISTORTION
TEMPERATURE RANGE
11,000 ohms (8000 Line and 3000 Matching) Maximum
-20 dBm to +11 dBm
$\pm 3 \mathrm{~dB}$ from 300 to 3000 HZ
Less than 3\%
$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
$\left(-22^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$

tABLE OF CONTENTS

DESCRIPTION 1
DC CONTROL FUNCTIONS 1
TELEPHONE LINE CHARACTERISTICS 1
ADJUSTMENTS 2
CIRCUIT ANALYSIS 4
Remote Control Board 19D423480Gl 4
Remote Control Board 19D423480G2 4
Remote Control Boards 19D423480G3-G5 5
Channel Guard Monitor 5
Two-Frequency Receive 6
DC REMOTE CONTROL BOARD VOLTAGE READINGS 7-8
DC REMOTE CONTROL SYSTEM DIAGRAM 9
OUTLINE DIAGRAM
DC Remote Control Board 19D423480 10
SCHEMATIC DIAGRAMS
DC Remote Control Board 19D423480G1 11
DC Remote Control Board 19D423480G2 14-15
DC Remote Control Boards 19D423480G3 \& G4 18-19
DC Remote Control Board 19D423480G5 22-23
PARTS LIST \& PRODUCTION CHANGES
DC Remote Control Board 19D423480G1 12
DC Remote Control Board 19D423480G2 13
DC Remote Control Board 19D423480G3 \& G4 17
DC Remote Control Board 19D423480G5 21
SERVICE SHEET
Telephone Line Surge Protection (Option 9905) 24

No one should be permitted to handle any portion of the equipment that is supplied with high voltage; or to connect any external apparatus to the units while the units are supplied with power. KEEP AWAY FROM LIVE CIRCUITS.

DESCRIPTION

The General Electric MASTR Executive II Desk Top and Wall Mount stations use DC Remote Control boards to interface with a remote control console in remote and local/ remote station combinations. The boards provide up to five remotely controlled functions by the application of different current levels and polarities to select each function. The Desk Top Local/Remote station utilizes the 19D423480G1 or 19D423480G5 DC Remote Control Board for remote transmit and Channel Guard monitor functions. DC Remote Control Boards 19D423480G1-G5 may all be used with the Wall Mount Remote Control station.

Three negative current levels and two positive current levels may be applied to the telephone line at the remote control console: $\pm 6 \mathrm{~mA} ; \pm 11 \mathrm{~mA} ;-2.5 \mathrm{~mA}$.

DC CONTROL FUNCTIONS

These control currents are provided by the General Electric MASTR Controller and Deskon II. For functions provided by the TCC or Deskon units (6 mA for Channel Guard Monitor and 15 mA for transmit control) Option 9924 should be used. This option deletes the 19D423480G5 board and substitutes the 19D423480G3 board with modifications. Refer to the Schematic Diagram for modification instructions.

TELEPHONE LINE CHARACTERISTICS

The key link in a remote control installation is the telephone pair between the Controller and the base station. To obtain the most satisfactory servire over this link, some general knowledse of the capabilities of such lines is required.

A telephone pair is simply a pair of wires, normally ranging from AWG \#19 to AWG \#26 in size. These wires, furnished by the local telephone company, pass through overhead cables, underground cables, through junction points, and switchboards. To the user, however, they may be considered a simple pair of wires. Equipment that is designed to operate with such a pair should have nominal impedance of 600 ohms. A telephone pair will normally have a maximum length of about 12 miles before amplification is added by the telephone company to make up for line losses. There is an inherent loss in any telephone line installation due to the series inductance and resistance and the shunt capacitance of the wires.

This loss is a direct function of the length of the line, and varies with the wire size used. As an example, with AWG \#19 wire, a distance of six miles may be covered before one-half the input voltage of a $1,000 \mathrm{~Hz}$ tone is lost. With AWG \#26 wire, only two and one-quarter miles may be covered before one-half the input voltage is lost. Line losses as high as 30 dB can be tolerated in operating a transmitter from the Remote but such high losses should be avoided whenever possible. Although the telephone pair is fairly well balanced, some noise will be induced into the line, especially if an unshielded run has to be made in a flourescentlighted building.

The DC resistance of any telephone pair w111 affect the control circuits between the Controller and the base station. Current regulators incorporated in the Remote Control minimize these variations after initial adjustment. The Remote operates with a total control line loop resistance as great as 11, 000 ohms. There is a possibility, however, that stray currents, due to leakage, noise, faults, earth currents, etc., may cause faulty operation.

DC CONTROL BOARD	FUNCTION	CONTROL CURRENT IN MILLIAMPERES					
		-11	-6	-2.5	0	+6	+11
$19 \mathrm{D423480G1}$	1 Freq. Transmit 1 Freq. Receive				Receive	Transmit	
19D423480G2	1 or 2 Freq. Transmit 2 Freq. Receive		$\begin{gathered} \text { Receive } \\ \text { F2 } \end{gathered}$		$\begin{gathered} \text { Receive } \\ \text { Fl } \end{gathered}$	$\underset{F 1}{\text { Transmit }}$	$\underset{F 2}{T r a n s m i t}$
19D423480G3	1 or 2 Freq. Transmit 1 Freq. Receive/CG Monitor			$\begin{gathered} \text { CG } \\ \text { Disable } \end{gathered}$	Receive with CG	$\underset{F 1}{\text { Transmit }}$	$\underset{F 2}{\text { Transmit }}$
19D423480G4	```l or 2 Freq. Transmit 2 Freq. Receive/CG Monitor```	$\begin{gathered} \text { Receive } \\ \text { F2 } \\ \text { CG } \\ \text { Disable } \end{gathered}$	$\begin{gathered} \text { Receive } \\ \text { F2 } \\ \text { with } \\ \text { CG } \end{gathered}$	$\begin{gathered} \text { Receive } \\ \text { F1 } \\ \text { CG } \\ \text { Disable } \end{gathered}$	```Receive Fl with CG```	$\begin{gathered} \text { Transmit } \\ \text { Fl } \end{gathered}$	$\underset{\text { F2 }}{\text { Transmit }}$
19D423480G5	```1 Freq. Transmit 1 Freq. Receive/CG Monitor```			$\begin{aligned} & \text { Receive } \\ & \text { CG } \\ & \text { Disable } \end{aligned}$	Receive with CG	Transmit	

Three types of telephone line connections are commonly used. Before choosing one of these types, consider the cost and performance of each, as one type may be available at a much lower rate. Also, some telephone companies offer no choice. The following chart contains information to assist in selecting the control method and type of telephone line to be used in DC control applications. Refer to Figure 1.

METHOD	DESCRIPTION	ADVANTAGES OR DISADVANTAGES
1	One metallic pair: for both audio and control voltages with control voltage connected from line to line.	Economical; dependable where earth currents may be large; slight keying clicks will be heard in paralleled Remote Control Units. In most applications, preferred over Method No. 2.
2	One metallic pair: for both audio and control voltages with control voltages connected from line to ground.	Economical; earth ground currents may result in interference with control functions; keying click minimized. Good earth to ground required at station and all control points.
3	Two telephone pairs; one for audio voltage and one for control voltage (metallic pair).	Provides best performance; keying clicks will not be heard. Requires 2 pair.

TELEPHONE LINE CONNECTIONS

The station is normally shipped with jumpers connected on the Remote Control Board as described in Method 1. If Method 2 or 3 is to be used, connect the jumpers as shown in the following chart.

CONTROL METHOD	TELEPHONE LINE CONNECTIONS	JUMPER CONNECTIONS
1	Connect telephone lines to TB1-1 and -2.	Jumper H32 to H33 and H34 to H35.
2	Connect telephone lines to TB1-1 and -2. Connect good earth ground to TB1-4.	Move jumper from H34- H35 to H33-H35.
3	Connect audio telephone lines to TB1-1 and -2 and control lines to TBl-3 and -4.	Remove jumpers from H32 to H33 and H34 to H35.

Proper Grounding Practices (Method 2)

The telephone company specifies that : heir customer's equipment signal ground should be made using the proper connection to a ground electrode such as a metallic cold water pipe. The ground connection should be made with a single No. 14 AWG or larger copper conductor. The conductor should be short, straight and a continuous piece of wire. Attention should be given to providing the lowest possible resistance at the connection at each end of the ground wire.

When option line surge protection devices are provided in the customer equipment, it is imperative that the good earth ground be used. If the telephone company also provides protective devices, the customer provided device earth ground connections should be located close to the telephone company earth ground connections but should not use the same ground clamp that
the telephone company uses.
If a good earth ground as described above cannot be obtained, Method 2 should not be used. Also, the addition of surge protective devices are of little value without the proper earth ground.

REMOTE CONTROL ADJUSTMENTS

 When the station is equipped with aDC Remote Control board, REMOTE TX MOD LEVEL and REC LINE LEVEL controls must be adjusted before placing the station in operation.

A. REMOTE TX MOD LEVEL

1. Feed a 1000 Hertz tone at the required level into a microphone jack on the remote control console. Adjust the remote control console line output control for 2.7 Volts

METHOD I-SINGLE TELEPHONE PAIR WITH CONTROL LINE TO LINE

METHOD 2- SINGLE TELEPHONE PAIR WITH CONTROL

METHOD 3-SEPARATE CONTROL AND AUDIO PAIRS

Figure 1 - Telephone Line Connections

RMS as measured across the audio pair at the remote control console.
2. Key the station transmitter from the remote control console and adjust the REMOTE TX MOD LEVEL Control R27 on the DC Remote Control Board for 4.5 kHz system deviation as measured at the station transmitter.

B. REC IIINE LEVEL

1. Connect a signal generator to the station receiver. Adjust the generator to the receiver frequency, modulated at 3 kHz deviation by a 1000 Hertz tone. Disable Channel Guard if present.
2. Adjust the REC LINE LEVEL control R16 on the DC Remote Control Board for a reading of 2.7 Volts RMS as measured at the station audio pairs (TB1-1 and -2 when using separate control and audio pairs; TB1-3 and -4 when using common control and audio pairs).

CIRCUIT ANALYSIS

Remote Control Board 19D423480G1

Remote Control Board 19D423480G1 provides single frequency transmit and single frequency receive DC control functions. The board consists of an optocoupler (U5) used for current control and line isolation. The couplew contains a Light Emitting Diode (LED) serving as a light source and a lightsensitive phototransistor serving as a light detector. The light source and detector are both housed in a single package, sealed from outside light. When a DC current of the correct polarity to forward bias the LED is applied to the input of the optocoupler, the LED conducts and emits light. This light is detected by the phototransistor, turning it on and coupling the input signal to he output of the optocoupler.

When zero current is present on the control pair (TB1-3 and -4), the LED in U5 is turned off. The phototransistor in U5 is therefore not conducting, holding Q4 off. This is the receive mode of the control circuit. Applying +6 mA to the control pair will result in the voltage at the base of Q1 being clamped to 6 VDC. The voltage at the emitter of Q1 rises to 0.6 VDC above the base and the transistor is turned off, allowing the LED in U5 to conduct. The phototransistor detects the light and operates. The high at the emitter of the phototransistor turns on Q4. Conduction of Q4 turns on emitterfollower Q5 which, in turn, operates Q6. Conduction of Q6 applies ground to the REMOTE PTT terminal P901-4 to key the station transmitter.

Audio circuits provided on the 19D423480G1 Remote Control Board include a high-pass filter, audio-amplifier, a de-emphasis network and a line driver for feeding the receive audio to the telephone lines. A modulation amplifier and level control are provided for controlling the line audio fed to the transmitter modulator. Audio and RUS switches are included for switching the transmit and receive audio paths.
Audio from the station receiver discriminat-
or is coupled to audio amplifier AR1 and de-
emphasis network Clo and R13. The de-emphasis
network provides a 6 dB/octave rolloff. The
signal is then amplified by Qlis. The REC
LINE LEVEL control R16 is connected in the
emitter circuit of Q15 and allows feeding the
audio to the line amplifier at the proper
level.
The audio is coupled to the line amplifier
by means of C12. Q19 and Q20 amplify the
signal. Q17 and Q18 serve as audio switches
controiled by the Receiver Unsquelched Sensor
(RUS) circuit. As long as the RUS switch
(Q14) is turned off (receiver squeliched),
CR21 and CR2o are forward biased, allowing
Ql7 and Q18 to conduct. Conduction of Q17
and Ql8 grounds the audio path, preventing
the received audio from passing to the line.
When the receiver unsquelches, the RUS lead
goes high. This turns Ql4 on, turning off
Q17 and Qi8. The audio is now allowed to
pass to the line amplifier and line trans-
former Tl. CR22, CR19 and VR4 are provided
for line surge protection.

Audio from the Remote Control unit applied to the telephone pair is coupled to the input of the transmitter audio amplifier (Q21 and Q26). The proper audio level for the transmitter modulator is adjusted by REMOTE TX MOD LEVEL control R27.

Transistor Q26 is controlled by the transmit PTT circuit. If Q5 is conducting (the control circuit in the transmit mode), the base of Q26 is high, allowing the transmit audio to pass to P901-1 (TX AUDIO H1). When Q5 is turned off (receive mode), Q26 is held off and prevents the transmit audio from passing to the transmitter modulator.

Remote Control Board 19D423480G2

Remote Control Board 19D423480G2 is used for 1- or 2- frequency transmit and 2frequency receive. Three optocouplers are utilized on this board to derive the control functions. If zero current is present on the control pair, all of the LED's in the optocouplers (U3, U4, U5) are turned off. Thus all three of the phototransistors are turned off.

The NAND gates (U1A. U1B, etc.) require two low inputs to provide a high output. All other conditions provide a low output. The high at the collector of the U3 phototransistor is connected to NAND date U2A,
pin 1. The high at the collector of the U5 phototransistor is connected to U2A-2. The resultant low at U2A-3 holds Q10 and Q16 off. The high at the collector of Q10 prevents selection of the RECEIVE F2 oscillator. The high at the collector of Q16 operates Q9, applying ground to select the RECEIVE FI oscillator.

In this board a diode bridge is connected across the control pair, providing line transient protection. One leg of the bridge contains the polarity detector optocoupler U4. With no current applied to the line, the phototransistor in $U 4$ is turned off. The high at its collector is connected to U2C-9. U2C-8 is also high. The resultant low at U2C-10 holds Q7 off, preventing selection of the TRANSMIT FI oscillator.

The POSITIVE DETECT lead from U4 is also connected to pin 6 of U1B. The high from the collector of the U5 phototransistor is connected to UlA-1. The high from U3 is crsinected to UlC-9. The low at UIC-10 is connected to UlA-2. The low at UlA-3 is connected to U10-12. The low at the emitter of Q16 is connected to U10-13. The resultant high is connected to UIB-5. The low output of U1B holds Q13 off, preventing selection of the TRANSMIT F2 oscillator. CR13 and CR14 are both reverse biased under these conditions, preventing Q4 and Q5 from conducting. This holds Q6 off, preventing transmitter keying.

When a DC control current is first applied to the control pair, the diode bridge directs the current to the current detectc. S. Optocouplers U4 operates if the line current is positive. When the positive current is first applied to the line, CR9 is reverse biased, keeping Q3 turned off. The LED in U3 is turned on, operating the phototransistor. CR8 is forward biased, turning Q1 on. Optocoupler US is thus shorted out. As more line current is applied, the voltage at the ase of Q1 will rise and be clamped at 5.4 VDC. When the voltage at the emitter if Q1 rises to within 0.6 VDC of the base, the transistor will turn off and let current flow through the LED in U 5 , turning on the phototransistor.

Applying +6 mA (TRANSMIT F1) to the control pair results in the conditions just described. The low from the collector of the phototransistor in U5 is applied to U2A-2. The low from the collector of the U3 phototransistor is applied to U2A-1. The resultant high at U2A-3 operates Q16. The low at the collector of Q16 holds Q9 off, preventing selection of the RECEIVE Fl oscillator. The low at the collector of U4 is connected to UlB-6. The low from U5 is connected to U1A-1. UlA-2 is high. The resultant low at U1A-3 is connected to U1D-12. U1D-13, connected to the emitter of Q16, is always low. The high at UlD-11 is connected to U1B-5. The low at UIB-4 holds Q13 off, preventing selection of the TRANSMIT F2 oscillator.

The low from the collector of the POSITIVE DETECT phototransistor (U4) is connected to U2C-9. The low at the collector of Q16 is connected to U2C-8. The resultant high at U2C-10 operates Q7, selecting the TRANSMIT F1 oscillator. CR13 is forward biased, turning on Q4 and Q5. Conduction of Q5 operates Q6, keying the station transmitter.

When +llmA (TRANSMIT F2) is applied to the control pair, the voltage on the emitter of Q3 will be higher than the 10.7 volts present on the base. Q3 will thus conduct. Below llmA, the voltage at the cathrode of VR3 will be higher than the emitter of Q3, preventing the transistor from conducting. When Q3 conducts, the LED in U3 is shorted out. U4 and U5 are operating.

A high is connected to U2A-1 from U3. A low is connected to U2A-2 from U5. The resulting low holds Q10 and Q16 off, preventing selection of the RECEIVE F2 oscillator. The high from U3 is also applied to U1C-9. The low at U1C-10 is connected to UlA-2. The low from U5 is connected to UlA-1. The resulting high at UlA-3 is connected to U10-12. The low from the emitter of Q16 is connected to U10-13. The resulting low at U10-11 connects to U1B-5. U1B-6 is low. U1B-4 is thus high, operating Q13 and selecting the TRANSMIT F2 oscillator. U2C-9 is low; U2C-8 is high. This results in a low at U2C-10, preventing $Q 7$ from conducting and selecting the TRANSMIT Fl oscillator. CR14 is forward biased, operating Q4, Q5 and Q6 to key the transmitter.

The audio amplifier circuits on this board operate in the same manner as described for the 19D423480Gl board. When PTT is selected, conduction of Q5 operates Q27. Conduction of Q27 operates Q28, applying +10 VDC to the base of Q26 to allow the transmit audio to pass to P901-1 (TX AUDIO H1).

DC Remote Control Boards 19D423480G3-G5

DC Remote Control Board 19D423480G3 provides up to two-frequency transmit and single-frequency receive with Channel Guard Monitor. The 19D423480G4 Board provides up to two-frequency transmit and twofrequency receive with Channel Guard Monitor. The 19D423480G5 Board provides single-frequency transmit and receive with Channel Guard Monitor.

Channel-Guard Monitor

The 19D423480G3-G5 boards function in the same manner as described for the 19D423480Gl and G2 boards when selecting the transmit and receive oscillators. When the Channel Guard disable control current of -25 mA is applied to the control pair, Q1 is allowed to conduct but Q2 is turned off. Thus optocoupler U3 is operated and
optocouplers U4 and U5 are turned off. The high at the collector of the U5 phototransistor is connected to U2A-2 and U2D-12. Pin 13 of U2D is low. The low at U2D-11 is applied to U2B-5. The low at the collector of the U3 phototransistor is connected to U2B-6. The resultant high at U2B-4 operates Q12, applying ground to the CG MONITOR lead P901-11. With Channel Guard disabled, the station receiver now operates only on noise squelch so that all transmissions on the receiver frequency will be heard.

Two-Frequency Receive

The 19D423480G3 Board permits twofrequency receive selection with Channel Guard Monitor. With -2.5 mA applied to the control pair, the low from the collector of the U3 phototransistor is connected to U2A-1, U1C-9 and U2B-6. The high from the collector of the U5 phototransistor is connected to U2A-2, U1A-1 and U2D-12. The low output of U2A holds Q10 and Q16 off. The low output of U1A keeps Q8 and Q11 from conducting. The high at the collector of Q16 operates Q9, selecting the RECEIVE Fl oscillator. The high at U2B-4 operates Q12, disabling Channel Guard.

When -6 mA (RECEIVE F2) is applied to the control pair, U3 and U5 are operated but U4 is turned off. This results in conduction of Q16, holding Q9 off and preventing selection of the RECEIVE Fl oscillator. The high at U2A-3 operates Q10, selecting the RECEIVE F2 oscillator. The output of U2B (pin 4) is low, preventing Q12 from operating. Thus Channel Guard is functioning.

When -11mA (RECEIVE F2, CG MONITOR) is applied to the control pair, Q1 and Q2 are turned off and Q3 is turned on. Thus U5 is operating and U3 and U4 are turned off. The low at the collector of the phototransistor in U5 is applied to U2A-2, U1A-1 and U2D-12. The high at the collector of the phototransistor in U3 is connected to U2A-1, U1C-9 and U2B-6. The low at U2A-3 holds Q10 and Q16 off. The high at U1A-3 operates Q8 and Q11. Conduction of Q8 prevents Q9 from conducting and thus prevents selection of RECEIVE F1. Conduction of Q1l selects RECEIVE F2.

The output of U2B is low, reverse biasing CRI6. The high at UlA-3 forward blases CRI5, operating Q12 and disabling Channel Guard.

$\substack{\text { ungrame } \\ \text { roum }}$	merbencer				
		-6	\bigcirc	-	+11
${ }^{\text {ana-2 }}$	${ }_{\text {croma }}$		${ }_{\text {a }}^{\text {a }}$		
${ }^{\text {at- }}$		(ouv		S.	So.
${ }^{\text {as-5, }}$,omver	${ }_{\text {a }}^{\substack{\text { out }}}$	lesp	$\underbrace{\substack{\text { and } \\ \text { atove }}}$
${ }^{60-5}$		¢oom	${ }_{\text {2, }}^{\substack{\text { ouv }}}$	\%	$\underset{\substack{\text { and } \\ \text { and } \\ \text { ind }}}{\text { and }}$
${ }^{2 \times-5}$		com	\%	¢0\%	ofvo
${ }^{6} \times$		¢,	, \%ov	(ov	(ob
${ }^{\text {and }}$			¢, 8	(\%ay	${ }_{\text {cosm }}^{\substack{\text { on }}}$
${ }^{013,5}$		cov	cov		cot
${ }^{\text {ander }}$, ord		
${ }^{\text {and }}$					
${ }^{216-8}$		(ovy	.o.	covo	
			,		
${ }^{\text {ala }}$			(oun		
${ }^{200-8}$			(iay		

	- Bremer	cormane cunemen (un)						Comarioc cruneray (aut)			
		-6	\bigcirc	-	+12			-2.5	\bigcirc	-	${ }^{11}$
${ }^{208-18}$	niad		, ob	Souv		${ }^{\text {ana-2 }}$			${ }_{\text {atem }}^{\text {atav }}$		
${ }^{\text {cen- }}$			$\underbrace{}_{\substack { \text { and } \\ \begin{subarray}{c}{\text { and } \\ \text { ara }{ \text { and } \\ \begin{subarray} { c } { \text { and } \\ \text { ara } } }\end{subarray}}$	$\underset{\substack{\text { and } \\ \text { ave }}}{\text { ave }}$		${ }_{\text {coser }}^{\alpha-\frac{\mathrm{E}}{2}}$		-o.	-o.		,
${ }^{298-\frac{1}{8}}$		laty		lot		${ }_{\text {a }}^{\text {as-m }}$		${ }^{2} 0.0{ }^{06}$			
${ }^{-{ }^{50-5}}$		${ }_{\text {gr }}^{\text {gr }}$	${ }^{10.00}$	${ }_{\text {ar }}^{\text {ar }}$	${ }_{\text {ov }}^{\text {ov }}$	${ }^{6-\frac{18}{\text { en }}}$		${ }_{\text {cos }}$		(ow	
${ }^{33-4}$		${ }_{\text {a }}^{\text {giv }}$	${ }^{10.000}$	${ }_{\text {ard }}^{\text {and }}$	9.90	${ }^{\text {Qr-E, }}$,om		coivy	oov
${ }^{404}$		1.0.06	${ }_{\text {10.00 }}$.or	${ }_{\text {ov }}$			s.ov	s.ev	avors	as
						$\stackrel{\text { a }}{\text { a }-\frac{1}{8}}$			${ }_{\text {\% }}^{\text {\%fo }}$	s.ive	,
								(out	oby	${ }_{\text {cos }}^{\substack{\text { of }}}$	$\underbrace{\substack{\text { anv } \\ \text { gev }}}_{\text {and }}$
						${ }^{\text {O23-5 }}$		\%ob	${ }_{\text {cos }}^{\substack{\text { ow }}}$	¢0.	(ovy
						${ }^{\text {alt- }}$			\%		
									(intion		
						${ }^{20,0-2}$		${ }_{\text {coid }}^{\text {of }}$		ab	
									¢		
	${ }_{\text {cosem }}^{\text {cin }}$,	¢								
			¢	:90\%		$\stackrel{\text { coser }}{ }$					
${ }^{-\sigma_{5-1}}$			${ }_{0}$			${ }^{202-\mathrm{B}}$					
${ }^{\text {isa-2, }}$		${ }_{\text {cose }}^{-7.7}$	${ }_{0}{ }^{\circ}$: P : ev	${ }^{12}$	$\stackrel{\square}{8}$			1:30		
${ }_{\text {u-1 }}$			${ }_{\text {or }}{ }^{\circ}$								

	nermaxice				
		-2.5	\bigcirc	${ }^{7}$	${ }^{+11}$
${ }^{\text {ex } 2-1}$	croma				
${ }^{\text {an }}$					
${ }^{233-8}$					
${ }^{23-1-8}$					
${ }^{205-8}$			aimp		
${ }^{20-8-8}$		¢ob	${ }_{\text {cos }}^{\text {of }}$		
${ }^{827-x^{2}}$		¢omb	${ }_{\text {or }}^{\text {ob }}$	\%	(oit
${ }^{282-8.8}$					
${ }^{\mathrm{V} 5 \cdot 5}$		10.0\%	${ }^{10.000}$	\%	${ }^{\text {ox }}$
${ }^{i 3-5}$		\%	$\frac{12.00}{10 .}$	\%	${ }_{\text {10.0. }}$
${ }^{4-8}$		20.0\%	${ }^{10.000}$	${ }_{\text {or }}^{\circ}$	${ }_{\text {a }}^{\text {ar }}$
					(eam

	nermamer				
		-2.5	-	+8	$\underline{+12}$
$\stackrel{\text { Q } 2 \text { - }}{\text { el }}$	${ }_{\text {cominol }}^{\text {grat }}$			(tay	$\underbrace{\substack{\text { a,av } \\ \text { a,om }}}_{\text {and }}$
				年:090	
${ }^{68-\mathrm{E}} \mathrm{8}$		-		(ix	
		- 4.3 Sm	\%		
${ }^{\text {u5-2 }}$		- $3: 305$	\%		
${ }^{45-\frac{1}{2}}$		$\stackrel{\text { c-g.ev }}{-8.20}$	ov	${ }_{\text {cisem }}^{\text {cisu }}$	

	merames	cormec cruener（au）					
		－11	－6	－2．5	－	\％	＋1
${ }^{\operatorname{an}-2}$	croma				\％		
${ }^{\alpha+\frac{1}{8}}$		\％om	\％	\％	\％	Stign	¢，
${ }^{0-\frac{8}{8}-\frac{1}{8}}$		${ }_{\text {a }}$	${ }_{\text {an }}^{\text {on }}$	ab	${ }_{\text {a，}}^{\text {am }}$		
${ }_{\text {co－m }}^{6-\frac{1}{c}}$		\％o．	${ }_{\text {o．ow }}$	\％ow		${ }_{\text {\％}}^{\substack{\text { and } \\ \text { ivv }}}$	cow
${ }_{\text {crer }}^{\text {c－}}$		\％．0．0	${ }_{\text {com }}^{\text {om }}$	\％．．．	\％．g	\％	\％．w
		${ }^{\text {axp }}$	\％	，\％fy		哭	\％
${ }_{\text {cose }}$		\％．8！	\％．0\％	哭	为为	\％．．\％	\％．gn
${ }^{20-\frac{2}{8}}$		\％	\％	\％	\％．6\％	\％	cos
${ }^{\text {O12－1．}}$		\％	\％	\％．w	\％．0．	\％	cow
${ }^{\text {ate }}$		\％	\％．0\％		\％om	cis	\％．av
${ }^{(20)-8}$					\％．0¢		
${ }^{\text {ather }}$					\％ow		
${ }^{\text {atabe }}$							
ater		．0\％	$\stackrel{\text { axy }}{\text { ary }}$	oin	．．aw	\％ow	o．20
${ }^{\text {atr－2．}}$					\％		
${ }_{\text {a }}^{\text {aber }}$					（ax		

	aremener								Emax	$\underset{\text { crand }}{\text { E．enanace }}$								$\frac{\text { mereanace }}{\text { Cromen }}$				
		${ }^{-11}$	$1-$	${ }^{-2.5}$		－		41						\square								
200－8．	croma																			${ }_{\text {a }}^{\text {a }}$		
${ }^{\text {cose－}}$						（ex													\％			
${ }^{\text {cex } 2 \text {－}}$						（10											${ }^{\text {asem }}$		co．	${ }_{\text {cog }}^{\text {ato }}$		
${ }^{\text {cos－}}$										（cintrol）				\square			${ }^{6 \times-\frac{1}{8}}$		co．	${ }_{\text {cow }}^{\text {cow }}$	\％om	
${ }^{203-1}$					${ }_{\text {\％}}^{\text {8，}}$									${ }^{\text {a } 20-\mathrm{E}}$				：\％	ob	，omm		
${ }^{202-5}$					${ }_{\text {a }}^{\text {andem }}$	为								${ }^{204-\frac{1}{c}}$					\％			
${ }^{250-8}$					${ }_{\text {\％}}^{\text {\％}}$									${ }^{\text {ase－E }}$				\％．ser	，			
${ }^{20} 6$		com	c．iv	${ }_{\text {a }}^{\text {ation }}$	c．i．		＊	（120						ater				${ }_{\text {cose }}^{\text {a，ob }}$	${ }_{\text {cow }}^{\text {a．ow }}$	\％		
		o．．．	o．ficm	．．．65	c．ay		com											${ }^{\text {ara－}}$			¢	
${ }^{2085}$				${ }_{\text {a }}^{\text {a }}$	${ }_{\text {a }}^{\substack{0.098 \\ 0.00}}$	（eation	\％	（ix）										${ }^{0.0}$			$\xrightarrow{\substack{\text { a，} \\ \text { at }}}$	
$0^{05 \frac{5}{6}}$		${ }_{\text {\％}}{ }^{\circ}$	\％	${ }^{1.0 .00^{2}}$	${ }^{10.000}$	${ }^{\circ}$	${ }^{\circ}$	${ }^{\text {ow }}$										为				
		${ }_{\text {20，}}^{20.080}$	${ }_{\text {cos }}^{\text {ciom }}$	${ }_{\text {or }}^{\text {or }}$		（ex	cos															
																	${ }^{\text {Qux－E }}$					
																	为					
																	${ }^{23-5}$			${ }_{\text {a }}^{\text {a }}$		
																	cener			${ }_{\text {a }}^{\text {a }}$		

OUTLINE DIAGRAM
DC REMOTE CONTROL BOARDS
19D423480G1-G5

$$
\begin{aligned}
& \text { LEAD IDENIFICATON } \\
& \text { FOR O6. O17. } 018 \text {. O20 }
\end{aligned}
$$

SYMBOL	GE PART NO.	DESCRIPTION
ar1	19A116297p2	Integrated circuit, Linear: with ro99 Package, operational amplifier.
${ }^{\text {c1 }}$	7486445p5	Electrolytic, non polarized: $4 \mu \mathrm{t}+100 \%-10 \%$, 150 VDCW.
c8	$5494481 P^{111}$	Cerainc disc: 1000 pt $\pm 20 \%, 1000 \mathrm{VDCW} ;$ sin to RMC Type JF Discap.
c9	19A1160809108	Polyester: $0.15{ }_{\mu \mathrm{f}} \mathrm{t} 108,50 \mathrm{vCM}$.
${ }^{\text {c10 }}$	1911168800102	Polyester: $0.015 \mu \mathrm{t}$ t10\%, 50 nccr .
${ }^{\text {cıl }}$	191116080p8	Polyester: $0.15 \mu \mathrm{t} \pm 20 \%$, 80 vCCW .
${ }^{\text {c12 }}$	5996267p10	Tantalum: $22 \mu f \pm 20 \%, 15$ VDCW; sin to Sprague Type 150D. Type 150D
${ }^{\text {c13 }}$	1911568097	Blectrolytic: $100 \mu f+150 \%-10 \%, 15 \mathrm{VDCW}$; sim to Mallory Type TTX.
cl^{4}	1981168808107	Poiyester: $0.1 \mu \mathrm{t}+10 \%$, 50 vNCr .
c15	54944811^{111}	Ceraicic disc: 1000 pf $\pm 20 \%$, 1000 VDCW; sim to bich Type JF Discap.
c16	1981168808107	Poiyester: $0.1 \mu \mathrm{t} \pm 108,50 \mathrm{ncri}$.
${ }^{226}$	190116080077	Polyester: $0.1 \mathrm{mf}^{ \pm 208, ~} 50 \mathrm{ncCr}$.
${ }^{2} 7$	19811688801107	Polyester: $0.1 \mu \mathrm{ft} \pm 08$, 50 vich.
		-- - - - - drodsa and rectitirrs - -
	${ }^{\text {4037822P2 }}$	siltion.
$\begin{gathered} \text { cinc } \\ \substack{\text { cha }} \end{gathered}$	19111523001	silic
cr8	4037823P2	si11 con.
cr19	4037822p2	silicon.
car2o nad nad	1901152309P1	sillicon.
CR22	403782292	si11con.
${ }_{\text {mid }}^{\text {Liru }}$	191116883p1	Protector, telephone: sim to Reliable sk-zsso.
${ }^{\text {p901 }}$	19A116659P21 19A116781P5 19A116781P6 198209519P1	Connector. Includes: Shell. Contact, electrical: wire range No. ${ }^{\text {16-20 AWG; }}$ sim to Molex 08-50-0106. (Quantity 2). Contact, electrical: Wire range No. 22-26 AWG; sin to Molex 08-50-0108. (quantity 7). Polarity tab.
${ }^{91}$	191139910pl	St11con, xpy; sili to Type 2xs904.
$\begin{gathered} 94 n_{0}^{90} \\ 989 \end{gathered}$	19A115910p1	silicon, ypm; sim to Type 2xs904.
${ }^{6}$	18A11530092	Stilicon, ymp; sien to Type 2rsoss.
${ }^{014}$	19A11590081	silicon, MN\%; sin to Type 2 23904.
-17	191209184P1	silicon, wey.

SYMBOL	GE PART NO.	DESCRIPTION
mp1v5	198211379P1	_ - - - - - - - TEST POINTS - . Spring (Test Point).
	19A116908P1	Optoelectronic coupler: Dual In Line 6 Pin Mini Dip Package; sin to TI T1Lil2
$\begin{aligned} & \text { vR2 } \\ & \text { vR4 } \end{aligned}$	4036887P5 19A116325P4	Sllicon, Zener. Silicon, Zener; sim to 1N5349.
		HARNESS ASSEGMBLY 19D423480G7 (Includes P901)
	4036555P1 4029851 P13 19C307038P11 198201074P304 19B201074P305 19A121457P1 198219835P1 19B201074P208	clip loop. (Used with p901). mut, push on. (Used vith peol clip loop). Cable clamp. (Part of stratin reliet tor tral). Support, V shaped. (Part ot strain rellet for

PRODUCTION CHANGES

$=2=2=$

Rev. A- To prevent pluz from 1ocal or remote controi boing pated to

SYMBOL	GE Part no.	description
AR1	191116297p2	
${ }^{\text {c1 }}$	${ }^{74864555}$	
c2	19A116080p9	Poiyester: $0.22 \mu \mathrm{f} \pm 20 \%$, 50 vCCr .
	19A11668097	Polyester: $0.1{ }^{\text {ut }} \pm 204,50 \mathrm{mck}$.
	$5494881 \mathrm{Pl11}$	
с8	5994181911	Ceramic disc: 1000 pf $\pm 20 \%, 1000$ VDCW; sim to RaC Type JF Discap.
${ }^{\text {cs }}$	1981168808108	Polyester: 0.15 uf ± 108, 50 vDCr .
${ }^{\text {c10 }}$	19×1168808102	Poiyester: $0.015 \mu \pm \pm 10 \%$, 50 vCW .
${ }^{\text {c11 }}$	${ }^{191116088088}$	Polyester: $0.15{ }^{\text {uf }}+200$, 50 vocr.
c12	5496867710	
${ }^{\text {c13 }}$	1811156887	
${ }^{\text {c14 }}$	19×1168808107	
${ }^{\text {c15 }}$	$5994481 \mathrm{Pl11}$	Ceramic disc: 1000 pf $\pm 20 \%, 1000$ VDCW; sim to RMC Type JF Discap.
${ }^{\text {c16 }}$	1911168808107	Poiyester: 0.1 ut $\pm 108,50 \mathrm{ndCr}$.
${ }^{\text {c26 }}$	19111608807	Poiyester: 0.1 ut $\pm 208,50 \mathrm{vDCm}$.
${ }^{\text {c27 }}$	1911608080107	
${ }^{\text {c28 }}$	5496267 P 18	
${ }^{\text {c29 }}$	59468277 PI	Tantalum: $22 \mu \mathrm{f} \pm 20 \%, 15 \mathrm{VDCW} ;$ sim to Sprague Type 150 D.
${ }_{\text {crer }}^{\text {crum }}$	4037822P2	si1tcon.
cas	19811525091	st1 con
	1037	
	4037822P2	si11 con.
	181115250p1	silicon.
cr19	4037822P2	silicon.
$\begin{array}{\|c} \substack{\text { crao } \\ \text { cera }} \end{array}$	19A115250p1	si1icon.
${ }_{\text {ca22 }}$	4037822p2	sinicon.
	19A115250p1	si1icon.
	${ }^{19111688391}$	Protector, teleghone: sim to Reli iable SR-z3so.
p901	19A116659P21 19A116781P5	Connector. Includes: Shell. Contact, electrical: wire range No. 16-20 AMG; sim to Molex 08-50-0106. (Quantity 2).

SYMBOL	GE PART NO.	DESCRIPTION
	4036555P1 4029851 P14 19C307038P11 198201074P304 198201074P305 19A121457P1 19B219835P1 19B201074P208 19A116155Pl	HARNESS ASSEMBLY 19D423480G6 (Includes P911) \qquad Clip loop. (Used with p911). Nut, push on. (Used with p91l clip loop). Tap screw, Phillips pozidRivi ${ }^{\text {F }}$: No. $6-32 \times 1 / 4$. (Secures TBl-1 thru TBl-4). Tap screw, Phillips POZIDRIV ${ }^{\text {s }}$: No. 6-32 $\times 5 / 16$. (Secures TBl-5 and strain relief). Cable clanp. (Part of strain rellef for TBl). Support, v shaped. (Part of strain relifef for TBi). Insulator, disc. (Used with ARl).

PRODUCTION CHANGES

 .

PARTS LIST

PRODUCTION CHANGES

SCHEMATIC DIAGRAM
DC REMOTE CONTROL BOARD 19D423480G3 \& G4

		TS 4	SYMBOL	GE PART MO.	DESCRIPTION
		Lat-30120	cris	${ }^{\text {003782292 }}$	silicon.
			creo	19011525091	st11c
			${ }_{\text {cr22 }}$	4037822P2	sinco
		DESCRIPTION			
${ }^{181}$	19816297p2				
				19A116659P21	Printed board: sin to wolex 09-50-321.
${ }^{\text {c1 }}$	7486445Ps 19All6080pe 19A116080P7	Electrolytic, non polarized: $4 \mu f+100 \%-10 \%$, 150 VDCW. 150 HDCN Polyester: $0.22 \mu \mathrm{f} \pm 20 \%, 50$ VDCW. Polyester: $0.1 \mu \mathrm{f} \pm 20 \%$, 50 vDCW.		19811678	
				192209519P1	Polarity tob.
					-- - - - - - тensist
${ }_{\text {c }}$	5494481P111	Ceramic dige: 1000 pf $\pm 20 \%$, 1000 VDCW; sig toRMC Type $J F$ Discap. ach Type JF Discap.	$\substack{\text { and } \\ \text { and } \\ \text { and }}^{\text {a }}$	19112591091	Stilcon, MRE; sill to Type ex39
${ }_{\text {cad }}^{\text {cid }}$			${ }^{\text {a }}$	1991159910p	silicon, MPN; sill to Type axsos.
c9	19A116080P108 19A116080p102	Polyester: $0.15 \mu \mathrm{f} \pm 10 \%$, 50 VDCW. Polyester: $0.015 \mu \mathrm{f} \pm 10 \%$, 50 vicw. Polyenter: $0.15 \mu \mathrm{t} \pm 20 \mathrm{j}, 50$ vDCW.	${ }_{8}^{88}$		
c10			${ }^{6}$	198115300p2	silicon, ninf; sim to type 2 ryoss.
${ }^{\text {c11 }}$	19A116080P8 5496267P10		012	198118901081	
${ }^{\text {c12 }}$		Polyenter: $0.15 \mu \mathrm{t} \pm 20 \mathrm{~s}, 50 \mathrm{VDCW}$. Tantalue: $22 \mu f \pm 20 \%, 15 \mathrm{VDCW}$; sim to Sprague Type 150D.	${ }^{14}$	${ }^{19 A 11591091}$	Silicon, Mry; sin to type 2 r3s04.
c_{13}	19111588077		cis	191116744P1	Stilicon, wns; sis to type 2rs210.
${ }^{\text {c14 }}$	19A116080P107 5404481P111	polyester: $0.1 \mu f \pm 10 \%, 50$ VDCII. Caramic dise: 1000 pf $\pm 20 \%, 1000$ VDCW; $E i m$ to EMC Type $J F$ Discap.	- ${ }_{\text {ard }}^{\text {and }}$	191299184P1	silicon, mpx.
c15			${ }^{\text {and }}$		
${ }^{16}$	$19 A 116080 \mathrm{Pl} 07$ 19C300075P47001G		${ }^{19}$	19112677481	Silicon, Mpy; sie to tope 2 2rsano.
c17		㖶 Type JF Discap. polyester: $0.1 \mu f$ tlo\%, 50 VDCT. 	-920	19112500p4 1901167741	Silicon, NPN.
${ }^{118}$	19c300075p10002G		$\underbrace{\text { and }}_{\text {and }}$		
${ }^{19}$	18c3000758870010	ce Type 61F. $\begin{aligned} & \text { Polyester: } \\ & \text { GS Type 6if. }\end{aligned} \mathbf{4 7 , 0 0 0 ~ p f ~} \pm 2 \%, 100 \mathrm{VDCW}$; sim to	${ }^{923}$	19A118852P1	Stilicon, prip; sisis to type 2naso6.
${ }^{\text {c20 }}$	19A116000P101 19A116080P205 5496287P14		${ }^{224}$	198116774P1	Slitcon, mpa; silit to Type 2153210.
${ }^{2} 1$		Polyester: $0.01 \mu f \pm 10 \%$, 30 VDCT. polyester: $0.047 \mu f \pm 5 \%, 50$ VDCW. Tantalum: $15 \mu f \pm 20 \%, 20$ VDCW; ain to Sprague	${ }_{9} 9$	${ }^{19111677791}$	
c22					
${ }^{2} 3$	1941160809205 19A116080P103		${ }^{\text {R1 }}$	38152p333	Composition: 33,000 ohars $\pm 35,1 / 4$
c24		```polyenter: \(0.022 \mu \mathrm{f} \pm 10 \%\), 50 VDCW. \\ Polyester: \(0.033 \mu \mathrm{f} \pm 20 \%\), 50 vDCW. \\ Polyester: \(0.1 \mu \mathrm{f} \pm 20 \%\), 50 vDCW . \\ Polyester: \(0.1 \mu \mathrm{H} \pm 10 \%\), 50 vDCW. \\ Tantalus: \(22 \mu f \pm 20 \%\), 15 VDCW; sim to Sprague Type 150D.```	${ }^{2}$	3815282445	Ccaposition: 0.24 negome t5, $1 / 4 \mathrm{r}$.
${ }^{c 28}$	19A116080p103 184116080 P 4			3879P152x	Composition: 1500 onses tios, 2 r .
c28 c27	10111608077		${ }_{84}$		
c20	S408887P10			31152P15	Camposition: 15,000 onase tios, $1 / 4$
			$\underbrace{}_{\substack{28 \\ \text { nd } \\ 88 \\ 88}}$	38789152	Campoition: 1500 onas tss, 1 l .
	403783292	s111con.	${ }^{2} 10$	${ }^{3115288225}$	Carposition: 8200 ohase $558,1 / 4 \mathrm{v}$.
cas			${ }_{\substack{\text { R11 } \\ \text { nind }}}$	${ }^{31152 P 1035}$	Composition: 10,000 onas \pm s8, $1 / 4 \mathrm{v}$.
cis	19011535001		212 213		
$\begin{aligned} & \text { CH7 } \\ & \text { CR8 } \end{aligned}$	2037822Pa		213 814	3E152P823J 3R152P102J	Camporition: 82,000 oms $\pm 58,1 / 4 \mathrm{v}$.
cı10	19A115950P1 4037822 P 2		${ }^{215}$	${ }^{3815281034}$	
		silicon. silton.	${ }^{816}$	${ }^{19820955885}$	
cu12	19A115250P1 $194115250 \mathrm{P1}$	silicon.silicon.	(ind	3n152P103	Ccaposition: 10,000 olase t58, $1 / 4 \mathrm{v}$.
			${ }_{19}$	${ }^{\text {3n152P823 }}$	Ccaposition: 82,000 onas tsk, $1 / 4 \mathrm{v}$.

SYMBOL	ge part no.	description
${ }_{220}$	3R152P2735	ccaposition: 27,000 ohns $\pm 58,1 / 4 \mathrm{v}$.
${ }^{\text {R21 }}$	${ }^{\text {3R152Pioss }}$	Composition: 10,000 onms $\pm 58,1 / 4 \mathrm{v}$.
${ }^{2} 2$	${ }^{315252945}$	cosposition: 2400 ohas $158,1 / 4 \mathrm{~m}$.
${ }^{\text {R23 }}$	3R152P430J	Ccaposition: 43 oniss $\pm 58,1 / 4 \mathrm{v}$.
${ }^{\text {R24 }}$	3R77¢621J	Ccaposition: 620 ohas $\pm 58,1 / 2 \mathrm{~m}$.
(225	3115283035	Ccomposition: 30,000 onms $\pm 58,1 / 4 \mathrm{n}$.
${ }_{\text {R27 }}$	19820935886	
${ }^{\text {R28 }}$	зи1528333	Ccmposition: 33,000 onss $\pm 58,1 / 4 \mathrm{w}$.
${ }^{\text {R29 }}$	зи152783з	Composition: 18,000 otas $\pm 58,1 / 4 \mathrm{w}$.
${ }_{\substack{\text { R30 } \\ \text { and }}}$	${ }^{19} 8314256821692$	Metal film: 16,900 onse $\pm 18,1 / 4 \mathrm{w}$.
п33 п3		
${ }^{\text {R34 }}$	${ }_{\text {19c314256p2142 }}$	
${ }^{\text {R35 }}$	19 9314236821471	Netal film: 1470 omes $\pm 18,1 / 4 \mathrm{w}$.
${ }^{236}$	19C314256823481	Notal film: 3480 onas $\pm 18,1 / 4 \mathrm{~m}$.
${ }^{\text {R37 }}$	${ }^{19 C 314265821001}$	Netal film: 1000 omas $\pm 18,1 / 4 \mathrm{~m}$.
${ }^{\text {R38 }}$	${ }^{19 C 3142568222151 ~}$	Wetal tilin: 2150 cans $\pm 18,1 / 4 \mathrm{~m}$.
${ }^{\text {a39 }}$		Hetal rile: 154,000 oins $118,1 / 4 \mathrm{~m}$.
${ }^{\text {R } 20}$	${ }^{19} 93142568 \mathrm{P}_{1303}$	Notal tilm: 130,000 onss $118,1 / 4 \mathrm{n}$.
R41	3R152P103J	
	19c314256824641 19c31426P2250	
${ }^{244}$	${ }^{\text {32152P103s }}$	caposition: 10,000 obas $158,1 / 4 \mathrm{n}$.
R45	381528102	Ccapositioo: 1000 duns tsk, $1 / 4 \mathrm{~V}$.
(146	31152p33د	Camposition: 33,000 onas t58, 1/4 v .
	${ }^{3115282445}$	Composition: 0.25 regola $538,1 / 4 \mathrm{n}$.
\% ${ }_{\text {kad }}$		
${ }^{\text {aso }}$	${ }^{\text {31152p333 }}$	Camposition: 33,000 olams $538,1 / 4 \mathrm{n}$.
${ }^{\text {as3 }}$	${ }^{\text {3R1522203s }}$	Camposition: 20,000 ohas t58, 1/4 n .
as6	${ }^{\text {3R1528P47J }}$	Camposition: 470 obars $354,1 / 4 \mathrm{n}$.
R57 S58	3121522022	craposition: 2000 onas $\mathrm{ts5}, 1 / 4$.
R58 R59	3R152P153J	CCaposition: 150000 olas $538,1 / 4 \mathrm{n}$.
${ }^{\text {R61 }}$	${ }^{\text {31.1223335 }}$	
${ }^{\text {R } 62}$	3R1529473	Composition: 17,000 olms 558, 1/4 m .
${ }^{\text {R64 }}$	${ }^{312152812005}$	Ccaposition: 12 olme tss, 1/4.
${ }^{\text {R65 }}$	${ }^{31152975315}$	Ccaposition: 750 obans ms, $1 / 4 \mathrm{r}$.
${ }^{\text {Re6 }}$		Ccaposition: 0.33 negohat $158,1 / 4 \mathrm{~V}$.
R67 п68		Composition: 68,000 otas $558,1 / 4 \mathrm{y}$.
${ }_{\text {\% }} \times 19$		
${ }^{\text {R20 }}$	3815227104	
${ }^{871}$	${ }^{31215282033}$	composition: 20,000 omas $\pm 58,1 / 4 \%$.
${ }^{872}$	${ }^{3115281045}$	cmaposition: 0.10 negomm $558,1 / 4$ -
${ }^{875}$	${ }^{\text {3R152Pb125 }}$	Camposition: 5100 ones $555,1 / 4 \mathrm{~m}$.
$\underbrace{}_{\substack{\text { R7a } \\ \text { Red } \\ \text { neo }}}$	3n77p10as	composition: 10 omas tsx, $1 / 2 \mathrm{~F}$.
${ }^{\text {z } 81}$	3n152P4703	
"	${ }^{19111673681}$	

SYMBOL	GE Part mo.	DESCRIPTION
TB1 TP1 thru TP3 U2 U3 thru U5 VR1 VR2 VR4 VR5	$19 \mathrm{Al16667P3}$ 198211379P1 19A134097P302 19A116908P1 4036887P3 4036887P5 19A116325P4 4036887P8 4036555P1 4029851P13 19C307038P11 N80P13006C6 19B201074P304 19B201074P305 19A121457P1 198219835P1 198201074P208	Plate nut. (quanity 5). \qquad POINTS - - Spring (Test Point). - - . integratid circuits - . . . - Digital: Guad 2-Input Nor Gate; sim to Vendor Type No. CD4001. Type No. CDHOL Optoelectronic coupler: Dual In Line 6 Pin Mini Dip Package; sim to TI Tlull2. \qquad voltage regulators - - Silicon, Zener. Sllicon, Zener. Silicon, Zener; sim to in5349. Stlicon, Zener. harness ASSEMBLY 19D423480G7 (Includes P901) \qquad Insulator, washer: nylon. (Used with © © Q20). Clip loop. Nut, push on. (Used fith clip loop). Machine screw, phillips head: No. 6-32 $\times 3 / 8$. Tap screw, Phililps pozidaiv ${ }^{\text {® }}$: No. 6-32 $\times 1 / 4$. (Secures TB1-1 thru TB1-4). Tap screw, phillips pozidriv*: No. 6-32 $\times 5 / 16$. (Secures TBl-5). Cable clamp. (Used wth 198219835pl support), Support. (Used with 19a121457Pl cable clamp). Tap screw, Phillips Pozideive ${ }^{\text {© }}$: No. $4-40 \times 1 / 2$. (Used with cable clamp).

PRODUCTION CHANGES

PARTS LIST
DC REMOTE CONTROL BOARD 19D423480G5

