DESCRIPTION AND MAINTENANCE
406-512 MHz MASTR ${ }^{\circledR}$ EXECUTIVE II RECEIVER

TABLE OF CONTENTS

DESCRIPTION

MASTR ${ }^{(1)}$ Executive II, 406 to 512 megahertz receivers are single conversion, superheterodyne FM receivers designed for one-through four-frequency operation. The solid state receiver utilizes integrated circuits (ICs), monolithic crystal filters and discrete components with each of the crystal filters located between gain stages to provide 85 dB selectivity and maximum protection from de-sensitization and intermodulation.

The receiver consists of the following modules:

- RF Assembly
- IF Filter Board
- Oscillator/Multiplier (Osc/Mult)
- Audio and Squelch circuits (part of System-Audio \& Squelch (SAS) board)
- IF Detector (IF Det)
- Optional Ultra-High Sensitivity (UHS) Pre-Amplifier

Audio, supply voltages and control functions are connected to the system board through P903 on the IF Det board, and through W401 to the Osc/Mult board. The regulated +10 Volts is used for all receiver stages except the audio PA stage which operates from the A+ system supply.

Centralized metering jack J601 on the IF Det board is provided for use with GE Test Set 4EX3A11 or Test Kit 4EX8K12. The test set meters the oscillator, multiplier, FM Detector and IF amplifier stages. Speaker high and low are metered
on the system board metering jack.
A block diagram of the complete receiver is shown in Figure 1.

Refer to the appropriate Maintenance Manal for complete details on each receiver module as listed in the Table of Contents.

MA INTENANCE

DISASSEMBLY

To gain access to the receiver for servicing, unlock the radio and remove the two retaining screws in the front cover. Then pull the radio out of the mounting frame. To remove the receiver modules from the radio:

1. Remove all power to the radio.
2. Remove the three countersunk Phillips head screws in the siderail of the radio near the RF casting. NOTE: Do not remove the three screws in the bracket along the top edge of the RF casting.
3. Loosen the screws in the two locking tabs on the corners of the RF casting and release the tabs.
4. Remove the two screws securing the IF-Det board to the mounting frame.
5. Remove the screw securing the Osc/ Mult board.
6. Unplug the receiver antenna connector. In multi-frequency units, unplug the lead on the Osc/Mult board.
7. Lift the receiver modules out of the radio with a gentle rocking motion.

GENERAL ELECTRIC COMPANY• MOBILE COMMUNICATIONS DIVISION WORLD HEADQUARTERS•LYNCHBURG, VIRGINIA 24502 U.S.A.

Figure 1 - Receiver Block Diagram

ICOM FREQUENCY ADJUSTMENT

First, check the frequency to determine if any adjustment is required. The frequency measurement requires equipment with an absolute accuracy which is 5 to 10 times better than the tolerance to be maintained. When performing frequency measurement, the entire radio should be as near as possible to an ambient temperature of $26.5^{\circ} \mathrm{C}\left(79.8^{\circ} \mathrm{F}\right)$.

ICOMs should be reset only when the measured frequency error exceeds the following limits:
A. $\pm 0.5 \mathrm{PPM}$, when the radio is at $26.5^{\circ} \mathrm{C}\left(79.8^{\circ} \mathrm{F}\right)$.
B. $\pm 2 \mathrm{PPM}$ at any other temperature within the range $-5^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}\left(+23^{\circ} \mathrm{F}\right.$ to $\left.+131^{\circ} \mathrm{F}\right)$.
C. The specification limit ($\pm 2 \mathrm{PPM}$) at any temperature within the range $-40^{\circ} \mathrm{C}$ to $-5^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+23^{\circ} \mathrm{F}\right)$ or $+55^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}\left(+131^{\circ} \mathrm{F}\right.$ to $\left.158^{\circ} \mathrm{F}\right)$.

If frequency adjustment is required, lift up the cover on the top of the ICOM to expose the adjustment trimmer. Depending upon the type of frequency measuring equipment that is available, any of the following procedures may be used:

A. DIRECT MEASUREMENT IN THE INJECTION CHAIN

1. WITH A FREQUENCY COUNTER. "Count" the frequency at the junction of C416 and L403 on the Oscillator/Multiplier Board. The frequency measured at this point is 9 times the ICOM frequency. NOTE: The output from the ICOM itself is not sufficiently sinusoidal for reliable operation with most frequency counters.
2. WITH A COMMUNICATION MONITOR (for example: Cushman Model CE-3). "Monitor" frequency at the junction of C 416 and L 403 on the Oscillator/Multiplier Board. The frequency monitored at this point is 9 times the ICOM frequency. NOTE: This frequency will not always fall within an available measuring range of all monitors at all receiver operating frequencies.
B. STANDARD "ON FREQUENCY" SIGNAL AT THE RECEIVER INPUT (Generated from a COMMUNICATION MONITOR, for example: Cushman Model CE-3).
3. WITH A FREQUENCY COUNTER. "Count" the developed IF frequency at the tap of Z602-R2 on the IF-Detector board. The deviation from the nominal IF frequency (11.2 MHz) in Hz is compared to the receiver operating frequency (also in Hz) to calculate error in PPM.
4. WITH AN 11.2 MHz IF FREQUENCY STANDARD (for example: General Electric Model 4EX9A10). Loosely couple the IF frequency standard to the IF signal path to heterodyne with the developed IF frequency. The resultant "beat frequency" can be moniotred by either of the following methods:

NOTE

To set ICOM frequency using "beat frequency" method, the temperature should be at $26.5^{\circ} \mathrm{C}\left(79.8^{\circ} \mathrm{F}\right)$. If the temperature is not $26.5^{\circ} \mathrm{C}$, then offset the "ON FREQUENCY" signal (at the receivers input, as a function of actual temperature, by the frequency ERROR FACTOR (in PPM) shown in Figure 2.
a. Audible "beat frequency" from the receiver speaker (this requires careful frequency adjustment of the frequency standard).
b. Observe "beat frequency" at J601-1 with an Oscilloscope.
c. With GE TEST SET (Meter Position B) connected to J601 on the IF-Detector board, visually observe the "beat frequency" indicated by meter movement.

The frequency of the "beat" is the frequency error, related to the IF frequency. This deviation, in Hz , is compared to the receiver operating frequency, also in Hz , to calculate the error in PPM.

ICOM FREQUENCY ADJUSTMENT

Continued from page 3

NOTE
The FM Detector output (meter position A of the test set) has a DC voltage of +0.35 to 0.5 Volt with an on-frequency signal or under no-signal eonditions and is provided for routine test and measurement only. The resolution of this reading is approximately . 025 Volts per $k H z$ as read on a GE Test Set in meter position A, or $0.1 V$ per $k H z$ as measured with a VTVM at J60l-2 on the IF-Detector board is inadequate for oscillator frequency setting.

If the radio is at an ambient temperature of $26.5^{\circ} \mathrm{C}\left(79.8^{\circ} \mathrm{F}\right)$ set the oscillator for the correct mixer frequency (ICOM FREQ. X 9).

If the radio is not at an ambient temperature of $26.5^{\circ} \mathrm{C}$, setting errors can be minimized as follows:

To hold setting error to $\pm 0.35 \mathrm{PPM}$ (which is considered reasonable for 2 PPM ICOMS) : Maintain the unit at $26.5^{\circ} \mathrm{C}\left(\pm 5^{\circ} \mathrm{C}\right)$ and offset the oscillator, as a function of actual temperature, by the frequency error factor shown in figure 2 .

For example: Assume the ambient temperature of the radio is $18.5^{\circ} \mathrm{C}$ ($65.4^{\circ} \mathrm{F}$). At that temperature, the curve shows a correction factor of 0.3 PPM . (At 138 MHz , 1 PPM is 138 Hz . At $174 \mathrm{MHz}, 1 \mathrm{PPM}$ is 174 Hz).

With a mixer injection frequency of 150 MHz , adjust the oscillator for a corrected mixer injection frequency $45 \mathrm{~Hz}(0.3 \mathrm{X} 150 \mathrm{~Hz})$ higher. If a negative correction factor is obtained (at temperatures above $26.5^{\circ} \mathrm{C}$), set the oscillator for the indicated PPM lower than the calculated mixer injection frequency.

DEGREES FAHRENHEIT

$\begin{array}{lllllllllll}61.8 & 65.4 & 69.0 & 72.6 & 76.6 & 79.8 & 83.4 & 87.0 & 90.6 & 94.2 & 97.8\end{array}$

RC-2453
Figure 2 - Frequency Characteristics Vs. Temperature Eume mow

 （man

 Aitact cat

 ant and
 ，

 0 me：
 Ruthen

 $\because=$
y．国 nem

Fomm		soman		nememe
\％ime	ma^{2}	we	To．s．at	
迷	mas	wos	\％	mex
		\％amma	\％	5imisumax
，mina	${ }^{\text {mam }}$	Smama me	${ }^{\text {andm}}$	
\％	nm		5	
usplome	${ }^{n \rightarrow 2}$	Emamem	\pm	
crime	${ }_{\text {nam }}$	conem	，	
\％	${ }^{\text {max }}$		mem	
为	n		－	
（mmon	${ }_{n}$		＂mism	
			\％mom	

Tan

M

test equipment required

Distortion
Heath $\mathrm{IM}-12$

- Signa1 Cenerator similar to:
- $\underset{\substack{6-\text {-ub } \\ 5-\text { Wate tentenuation resis tor }}}{\text { pad, and } 3.2 ~ o h m, ~}$

preliminary adjustments

2. Turn the severich ontrol folly clokw
3. $\begin{aligned} & \text { Turn on all of the equipment and let it } \\ & \text { warm up or } \\ & \text { or } 20 \text { min intes. }\end{aligned}$

F. $\begin{aligned} & \text { Audioc (asin (refor } \\ & \text { shooting procedure.) }\end{aligned}$

If STrp 1 checks. out proper 1 y, measure
the receiver sensitivivity as fool ouss:

 .

service check

STEP 3

 MODULIDTH ACCEPTANCE

service check

LB130135 STEP1-QUICKCHECKS

TEST SET CHECKS

Wuterine position	comen	
	${ }_{0.350-0.500 ~ v i}$	
$\mathrm{B}_{\text {(} \mathrm{fr} \text { Aim) }}$		${ }^{0.2} \mathrm{voc}$
${ }^{\text {c amura-1) }}$	0.4 ve	
$\mathrm{D}^{\text {(uxutr-2) }}$	$0.4{ }^{0.400}$	
5 (murs-3)	${ }^{0.1} \mathrm{vog}$	
${ }^{5} \mathrm{c}$	+10 vx	

STEP 4-VOLTAGE RATIO READING cation sum
22.2

 and

TROUBLESHOOTING PROCEDURE

$406-512$ MHz MASTR EXECUTIVE 11 RECEIVER

STEP 3-AUDIO \& SQUELCH WAVEFORMS

TROUBLESHOOTING PROCEDURE

