DESCR IPTION Page 1
MAINTENANCE Page 1
Disassembly Page 1
PA Transistor Replacement Page 2
Alignment Procedure Page 5
Test procedures Page 6
Power Output Page 6
Tone Deviation Page 6
Voice Deviation Page 6
Troubleshooting Page 7
ILLUSTRATIONS
Figure 1 - Block Diagram Page 2
Figure 2 - PA Transistor Lead Identification Page 3
Figure 3 - Frequency Characteristics Vs Temperature Page 5

DESCRIPTION

MASTR Custom MVP transmitters are crystal controlled, phase modulated transmitters designed for one through four frequency operation in the 138-174 MHz frequency band. This solid state, high reliability transmitter uses one integrated circuit and discrete components to provide 25 watts of transmitted RF power. The transmitter consists of:

- Exciter Board; with oscillator, audio, modulator, amplifier and multiplier stages.
- Power Amplifier Assembly; with amplifier, pA final, power control, and low pass filter and relay assembly.
- Multi-frequency board; used with multifrequency radios only (common to transmitter and receiver).

Figure 1 is a block diagram of the MASTR Custom MVP transmitter showing the exciter, PA board and multi-frequency board.

The exciter contains the oscillator, audio IC, modulator and multipliers to provide 250 milliwatts of modulated RF power to the power amplifier.

The power amplifier assembly includes two transistor stages (amplifier and power amplifier) to provide rated output power, a low pass filter and relay, and a power adjust circuit to adjust the output power level.

MA INTENANCE

DISASSEMBLY

- To service the transmitter remove the wing nut at the rear of the radio and pull radio out of case assembly.
- To remove exciter board:
(1) Unplug cables w201 (exciter output) and when present w2602 (multifrequency cable).
(2) Remove the six screws holding the exciter board to the mounting frame and gently lift exciter board out of radio.

NOTE

When replacing the PA board it is necessary to first remove the exciter board to allow installation of the PA transistor mounting hardware.

Figure 1 - Transmitter Block Diagram

To remove PA board:

1. Unplug the exciter/PA cable from Jl. Then unsolder the center conductor of the PA/low pass filter cable w202 from H1. The shield will come loose when the PA board mounting screws are removed.
2. Unsolder power lead w203 at E2, and remove the retaining screw from power adjust transistor Q215. Be careful not to damage the mica insulator between the transistor and the chassis.
3. Remove the two screws securing each of the two flange transistors to the mounting shelf.
4. Remove the five PA board mounting screws, and lift the board out.

PA TRANS ISTOR REPLACEMENT

WARNING

The stud mounted RF Power Transistors used in the transmitter contain Beryllium Oxide, a TOXIC substance. If the ceramic or other encapsulation is opened, crushed, broken or abraded, the dust may be hazardous if inhaled. Use care in replacing transistors of this type.

To replace the PA RF transistors:

1. Remove exciter and PA boards.
2. Unsolder one lead at a time with a 50-watt soldering iron. Use a scribe or X-acto ${ }^{\circledR}$ knife to hold the lead away from the printed circuit board until the solder cools.
3. Lift out the transistor, and remove the old solder from the printed circuit board with a de-soldering tool such as a SOLDA PULLT ${ }^{\circledR}$. Special care should be taken to prevent damage to the printed circuit board runs because part of the matching network is included in the base and collector runs.
4. Trim the new transistor leads (if required) to the lead length of the removed transistor. The letter "C" on the top of the transistor also indicates the collector (see Figure 2).
5. Apply a coat of silicon grease to the transistor mounting surface. Place the transistor in the mounting hole. Align the leads as shown on the Outiine Diagram. Then hold the body of the transistor and replace the transistor mounting hardware, using moderate torque (6 inch-pounds). A torque wrench must be used for this adjustment since transistor damage can result if too little or too much torque is used.
6. Solder the leads to the printed circuit pattern. Start at the inner edge of mounting hole and solder the remaining length of transistor lead to the board. Use care not to use excessive heat that causes the printed wire board runs to lift up from the board. Check for shorts and solder bridges before applying power.

CAUTION

Failure to solder the transistor leads as directed may result in the generation of RF loops that could damage the transistor or may cause low power output.

(RC-2937)

Figure 2-Lead Identification

TROUBLES HOOT ING

A Troubleshooting Procedure, including QUICK CHECKS, permits rapid fault location in the exciter and power amplifier.
cold

 PA PoWER INPUT

TEST PROCEDURES

test fauipment required

$\underset{\substack{\text { Bird } \# 43 \\ \text { Jones } \# 711 \mathrm{~N}}}{ }$

test procedure
Connect transmitter out topt tron the antenna jack to the wat tmeter through a 50 -ohm coaxial cable. Make sure
. Key the transmit ter and check the wat tmeter for the desired power output

service check

(B)

Refer to the quick cricks on the Transmitter Troubleshooting procedure.

VOICE DEVIATION, SYMMETRY AND AUDIO SENSITIVITY

. Connect the test equipment to the transmitter as shom
In radios equipped with Channel Guard set Channel Guard Mod Adjust rio60 for zero tone deriation.
3. Set the Audio generator output to 1.0 voirs Rus and frequency to 1 kHz
. Key the transmitter and adjust peviation weter to carrier frequency.

STEP I- QUICK CHECKS

既	\%amem	momed	manmix
acma			
(r-1)		${ }^{\text {ouas, aus }}$	
(mimme)	${ }^{\text {aues, nes }}$		
(umins)			${ }^{\infty}$
${ }^{\text {cmammen }}$	Ques, cine		nos, nos, aves, ulos
mam manure			
(mime mave		\%mentutum	\%entot
come	${ }^{\text {a20 }}$	${ }^{\text {q20 }}$	amo
(ix) cimem)	${ }_{\text {gaba }}$	comb	
\%em	${ }^{\text {ex } 20}$		${ }^{\text {cene, } 2020}$

ORDERING SERVICE PARTS

Each component appearing on the schematic diagram is identified by a symbol number, to simplify locating it in the parts list. Each component is listed by symbol number, followed by its description and GE Part Number.
Service parts may be obtained from Authorized GE Communication Equipment Service Stations or through any GE Radio Communication Equipment Sales Office. When ordering a part, be sure to give:

1. GE Part Number for component
2. Description of part
3. Model number of equipment
4. Revision letter stamped on unit
[^0]
[^0]: These instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance.

 Should further information be desired, or should particular problems arise which are not covered sufficiently for the purchaser's purposes, contact the nearest Radio Communication Equipment Sales Office of the General Electric Company.

