

SPECIFICATIONS *

TONE FREQUENCIES
ENCODER DISTORTION
DECODER RESPONSE

POWER REQUIREMENTS
TEMPERATURE RANGE
71.9 to 203.5 Hertz

1\% Max.
Less than $\frac{100}{\text { CG Freq. } \times 250 \mathrm{~ms}}$
10 VDC @ 35 Milliamperes
$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.144^{\circ} \mathrm{F}\right)$

TABLE OF CONTENTS

SPECIFICATIONS Cover
DESCRIPTION 1
OPERATION 1
CIRCUIT ANALYSIS 1
Decode Mode 1
Encode Mode 1
Squelch Tail Elimination 2
MA INTENANCE 3
OUTLINE DIAGRAM
Channel Guard 19C321931G1-G3 5
SCHEMATIC DIAGRAMS (Includes Parts Lists and Production Changes) Channel Guard Encoder/Decoder 19C321931G1 7-8
Channel Guard Encode Only 19C321931G2 9-10
Channel Guard Decode Only 19C321931G3 11-12
INSTALLATION INSTRUCTIONS 13

DESCRIPTION

The 19C321931G1-G3 Channel Guard assemblies use digital techniques to generate the EIA continuous tone-controlled squelch system (CTCSS) frequencies. A monolithic integrated circuit is used for the generation and detection of the tonecoded signal. The encoder provides tonecoded modulation to the transmitter. The decoder operates in conjunction with the receiver to inhibit all calls that are not tone coded with the proper Channel Guard frequency.

Three models of the Channel Guard board are available. The 19C321931G1 board provides single-tone encode/decode capability. The 19C321931G2 board (Option 1918) is for single-tone encode only applications. The 19C321931G3 board (Option 1919) is for single-tone decode only applications.

The Channel Guard circuit consists of a voice reject filter, a limiter, the Channel Guard encode/decode integrated circuit, a resistive ladder digital-to-analog converter, a low pass filter, a tone reject filter, PTT delay and receiver mute delay. Frequency selection is achieved by the use of a plug-in crystal operation at 256 times the desired Channel Guard frequency.

OPERATION

A Channel Guard MONITOR switch (S702), located on the control panel of the radio, controls the operation of the Channel Guard decode circuitry. When the switch is moved to the MON position, the Channel Guard decode function is disabled, allowing all calls to be heard. The encode function is controlled by the PTT switch and is enabled only when the PTT switch is operated. All transmitted calls are tone coded with the Channel Guard frequency.

CIRCUIT ANALYSIS

Channel Guard is a continuous-tone controlled squelch system that provides communications control in accordance with EIA standard RS-220. The basic Channel Guard system utilizes standard tone frequencies from 71.9 to 203.5 hertz with both the encoder and decoder operating on the same frequency. The standard Channel Guard tone frequencies are listed below.

STANDARD TONE FREQUENCIES					
71.9	88.5	107.2	131.8	162.2	
74.4	91.5	110.9	136.5	167.9	
77.0	94.8	114.8	141.3	173.8	
79.7	97.4	118.8	146.2	179.9	
82.5	100.0	123.0	151.4	186.2	
85.4	103.5	127.3	156.7	192.8	
				203.5	

DECODE MODE

The Channel Guard circuitry continuously monitors all calls on the receiver frequency via the Volume HI circuit in the receiver. All signals are fed to the filter-limiter circuits. Q1003 and the associated RC network form a low-pass active filter. Q1004 and Q1005, together with their associated RC network, form an active notch filter. The two filters present a minimum attenuation of at least 25 dB to all voice frequencies above 300 Hertz while passing the Channel Guard tone frequencies.

The tone signals are coupled to limiter AR1002-A. The clipping action of the limiter eliminates variations in the squelch performance due to changes in tone deviation.

The encoder/decoder integrated circuit (U1001) consists of a digital decoder, a divide-by-256 counter, a digital phase shifter and a digital sine wave generator (Walsh Function Generator).

The output of the limiter (pin 1 of AR1002-A) is applied to the tone decoder in U1001. The decoder compares the output of the limiter with the clock frequency (generated by the crystal oscillator). The decoder determines when the proper Channel Guard tone is received so that the receiver may be unmuted.

Audio from the SAS board is connected to the tone reject filter via P1006-3 The tone reject filter is an active filter composed of Q1006 and Q1007. All frequencies from 70 to 204 Hertz are rejected by the filter, while passing all other audio frequencies via P1006-2 back to the SAS audio circuits.

When the Channel Guard hookswitch (Option 1920) is used, lifting the handset from the hookswitch applies ground from J1-6 of the radio harness to the CG DISABLE terminal (Jl-8) to disable the squelch circuit.

ENCODE MODE

The divide by 256 counter in U 1001 divides the reference clock frequency by 256 to produce a square wave at the desired Channel Guard frequency. The desired output is obtained by converting the digital pulses developed by the divider to a fair approximation of a sine wave. This is accomplished by a digital-to-analog converter. The Walsh Function Generator, summing amplifier and resistor ladder provide this conversion.

The Walsh Function coefficients of a sine wave are given in the following table. See Figure 1.

WALSH FUNCTION
1
3
7
5

SINE WAVE COEFFICIENT

$$
\begin{array}{r}
0.637 \\
-0.264 \\
-0.127 \\
-0.052
\end{array}
$$

The resistive weighting network (R1023, R1024, R1027, R1029) sets the level of the output current for each. binary bit from the Walsh Function Generator. Capacitor C1025 AC couples the combined current to the summing amplifier (AR1002-B) which serves as a current to voltage converter. The resultant waveshape is shown in Figure 2. This is the result of adding waveform No. 1 times 0.637 to waveform No. 3 times -0.264 to waveform No. 5 times -0.052 to waveform No. 7 times -0.127.

De-emphasis capacitor C1027 in the feedback loop of the summing amplifier provides a $6 \mathrm{~dB} /$ octave rolloff. The signal is then passed through the active harmonaic filter Q1008, through CG MOD ADJUST potentiometer R1060 to the transmitter exciter.

SQUELCH TAIL ELIMINATION
Squelch Tail Elimination (STE) is accomplished by changing the phase of the

Figure 2 - Weighted Sum of Walsh Functions

WALSH FUNCTION

modulating tone 135 degrees at the transmitter when the PTT switch is released and simultaneously delaying the transmitter carrier dropout for approximately 175 milliseconds. This allows sufficient time for the decoder to detect the phase reversal in the transmitted tone and mute the receiver, eliminating the squelch tail. The delay in transmit dropout is determined by the RC time constant of C1002 and R1005.

Initially, when the PTT switch is closed, Q1001 is turned on. Conduction of Q1001 operates AR1001-A. The 7.2 VDC at pin 5 of AR1001-A turns on Q1010, applying ground to P1011 to key the transmitter.

When PTT is released, Q1001 is turned off but ARIOO1-A cannot turn off until C1002 discharges to the level where the current at pin 1 is less than the current at pin 6. After approximately 175 milliseconds (determined by the RC time constant of C1002 and R1005), AR1001-A is turned off, turning off Q1010. Ground is thus removed from the DELAYED PTT lead P1011.

In the decode mode, when the tone decoder in Ul001 detects the properly coded Channel Guard frequency, AR1001-B turns Q1009 off. This unmutes the receiver audio. In the squelch mode, Q1009 is operating, grounding the RX MUTE lead and muting the receiver audio.

The digital phase shifter in Ul001 shifts the square wave at the Channel Guard frequency by 135 degrees. The receiver mute delay circuit (AR1001-B and ARI001-D) keeps the receiver muted for 300 milliseconds once the Channel Guard tone falls below the decode threshold. This prevents the receiver from opening during the 175 ms STE phase-shift tone burst.

MA INTENANCE

Typical voltage readings for servicing the Channel Guard board are provided on the schematic diagrams. A troubleshooting diagram containing waveform data at selected points in the circuit is provided. See Figure 3.

REMOVING INTEGRATED CIRCUITS

Removing IC's (and all other solderedin components) can be easily accomplished by using a de-soldering tool such as a SOLDA-PULLT ${ }^{\circledR}$ or equivalent. To remove an IC, heat each lead separately on the solder side and remove the old solder with the de-soldering tool.

An alternate method is to use a special soldering tip that heats all of the pins simultaneously.

ENCODE

DECODE

Figure 3 - Troubleshooting Diagram

19B227193, Sh. 3, Rev. 1)

LEAD IDENTIFICATION
FOR 01-a10

NOTES:

1. PARTIAL REFERENCE DESIGNATIONS ARE SHOWN. FOR COMPLETE DESIGNATION. PREFIX WITH
1000 SERIES.
EXAMPLE:C1-C1001. R1-R1001....ETC.
IN-LINE TRIANGULAR
TOP VIEW

NOTE: LEAD ARRANGEMENT, AND NOT
CASE SHAPE, IS DETERMINING FACTOR FOR LEAD IDENTIFICATION.

NOTES:

2. IF CNOCETONE IS DES IRED ONL ANO HEN PTT IS IOW.
3. 194115250 P1 DIODE IS INSERTED BETWEEN H11 \& H12. DESIGNATION PREFIX WITH 1000 SERIES. EXAMPLE:

* fart of 1002
$\begin{aligned} & \text { VOLTACE READINGS ARE TYPICAL READINGS } \\ & \text { MEASURED TO SSTM NEGATVE (H5) WITH }\end{aligned}$
MEASUEO 20.000 OHM-PER-VOLTT METER.

Voltage reading

IN ORDER TO RETAIN RATED EOUIPMENT

A COMPONENT HAVING THE SPECIFICATIONS
SHOWN ON THE PARTS LIST FOR THAT PART.

ALL RESISTORS ARE $1 / 4$ WATT UNLESS
OTHERWISE SPECIFIED ANO RESISTO
OTHERISE SPECIFIED ANO RESISTOR
VALUES IN OHMS UNLESS FOLLOWED BY
VAL UES IN OHMS UNLESS FOL LOWED BY
$K=1000$ OHMS OR MEG-1. 0000 , 000 OHMS.

TO MICROMICROFARADS UNLESS FOLLOW
IN MICROHENRYS UNLESS FOLLOWED BY
IN MICROHENRYS UNLESS FOLLOW
MH-MILLHENRYS OR H-HENRYS.

-

ALL RESISTORS ARE $1 / 4$ WATT UNLESS
THERHE SPECIFIED ANOTEUNLESS
VALUES IN OHMS UMLESS FOLLOWED BY
K-1000 OHMS OR MEC-1. 0 OOO OOO OHS
CPOACITOR VOLUES

SCHEMATIC DIAGRAM

CHANNEL GUARD INSTALLATION

THE FOLLOWING CONNECTIONS AND MODIFICATIONS MUST BE MADE WHEN INSTALLING CHANNEL GUARO I9C32I93IGI-G3:

ENCODE/DECODE
Pl006 TO J906
GREEN WIRE TO CI
CUT DA WIRE JUMPER BETWEEN HI \& H2 ON SYSTEM BD.
WHITE-RED CENTER COND. TO J902-9 SHIELD TO J902-7
DISCONNECT BLUE WIRE (TERMINATED WITH P9II) WHICH IS CONNECTED TO J91I ON SYSTEM BD. AND CONNECT TO JIOO2 ON CHANNEL GUARD BD.
CONNECT BROWN WIRE (TERMINATED WITH PIOII) FROM CHANNEL GUARD BD. TO J9II ON SYSTEM BD.
DISCONNECT ORANGE WIRE (TERMINATED WITH PIOOI) WHICH IS CONNECTED TO J910 ON SYSTEM BD. AND CONNECT TO JIOOI ON CHANNEL GUARD BD.

GROUP 2

PIO06 TO J906

WHITE-RED CENTER COND. TO J902-9 SHIELD TO J902-7.
DISCONNECT BLUE WIRE (TERMINATED WITH P9II) WHICH IS CONNECTED TO J911 ON SYSTEM BD. AND CONNECT TO JIOO2 ON CHANNEL GUARD BD.
CONNECT BROWN WIRE (TERMINATED NITH PIOII) FROM CHANNEL GUARD BD. TO J9II ON SYSTEM BD

GROUP 3
 DECOOE ONLY

P1006 TO J906
GREEN WIRE TO Cl
CUT DA WIRE JUMPER BETWEEN HI \& H2 ON SYSTEM BD.
OISCONNECT ORANGE WIRE (TERMINATED WITH PICOI) WHICH IS CONNECTED TO J910 ON SYSTEM BD. ANO CONNECT TO JIOOI ON CHANNEL GUARD BD.

ORDERING SERVICE PARTS

Each component appearing on the schematic diagram is identified by a symbol number, to simplify locating it in the parts list. Each component is listed by symbol number, followed by its description and GE Part Number.

Service parts may be obtained from Authorized GE Communication Equipment Service Stations or through any GE Radio Communication Equipment Sales Office. When ordering a part, be sure to give:

1. GE Part Number for component
2. Description of part
3. Model number of equipment
4. Revision letter stamped on unit
[^0]
MAINTENANCE MANUAL

LBI-30195

[^0]: These instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance.

 Shoulf further information be desired, or should particular problems arise which are not covered sufficiently for the purchaser's purposes, contact the nearest Radio Communications Equipment Sales Office of the General Electric Company.

