\\ \section*{\title{
DESCRIPTION AND MA INTENANCE\\ \section*{\title{
DESCRIPTION AND MA INTENANCE 30-50 MHz, 100-WATT MASTR ${ }^{\text {® }}$ EXECUTIVE II TRANSMITTER
}} 30-50 MHz, 100-WATT MASTR ${ }^{\text {® }}$ EXECUTIVE II TRANSMITTER
}}

TABLE OF CONTENTS

MAINTENANCE	
Disassembly	
PA Transistor Replace	
Alignment Procedure.	
Test Procedures ...	
Power Output	
Tone Deviation	
Voice Deviation	
Troubleshooting	

ILLUSTRATIONS

Figure 1 - Block Diagram
Figure 2 - PA Transistor Lead Identificaipion

2

DESCRIPTION

MASTR ${ }^{\oplus}$ Executive II transmitters are crystal controlled, phase modulated transmitters designed for one through four frequency operation in the $30-50 \mathrm{MHz}$ frequency band. This solid state, high reliability transmitter uses two integrated circuits, a crystal module and discrete components to provide 100 watts of transmitted RF power. The transmitter consists of:

- Exciter Board; with audio IC, crystal module modulator, amplifier and multiplier stages.
- Power Amplifier Assembly; with amplifier, driver, PA, power control, filter and antenna switch.
- Multi-frequency board; used with multifrequency radios only (common to transmitter and receiver).

Figure 1 is a block diagram of the MASTR Executive II transmitter showing the exciter, PA board and multi-frequency board.

The exciter contains the oscillator, audio IC, crystal module modulator and multipliers to provide 250 millivolts of modulated RF power to the power amplifier. In vehicles with a positive ground, a polarity converter is used to power the exciter.

The power amplifier assembly includes six RF power transistors, a low-pass filter, an antenna switch and seven transistors for the power control circuit. The amplifier driver and the four paralieled power amplifiers provide up to 100 watts of output power.

MA INTENANCE

The PA operates from a floating DC source to permit operation in negative or positive ground vehicles.

> In positive ground vehicles, A- is not with respect to vehicle grouna. Shorting the printed wiring board ground patterns to the radio case may cause one of the line fuses to blow.

DISASSEMBLY

To service the transmitter remove the two retaining screws from the front cap assembly and pull radio out of case assembly.

To remove exciter board:

1. Unplug the exciter/PA cable and multifrequency W2601 (if present).

Figure 1 - Transmitter Block Diagram
2. Remove the six screws holding the exciter board to the mounting frame and gently lift exciter board out of radio.

To remove the PA assembly:

1. Remove the PA top cover and unplug the exciter/PA cable, the antenna, receiver and PTT cables.
2. Remove the four side-rail screws and unsolder the power cables from the bottom of the PA assembly if desired.

To remove the PA board:

1. Remove the PA top cover and unplug the exciter/PA cable.
2. Unsolder the two feedthrough coils and the thermistor leads.
3. Remove the PA transistor hold-down nuts and spring washers on the bottom of the PA assembly.
4. Remove the four PA board mounting screws, the five screws in the filter casting, the retaining screw in Q210 and lift the board out.

PA TRANSISTOR REPLACEMENT

WARNING
The stud mounted RF Power Transistors used in the transmitter contain Beryllium Oxide, a TOXIC substance. If the ceramic or other encapsulation is opened, crushed, broken or abraded, the dust may be hazardous if inhaled. Use care in replacing transistors of this type.

To replace the PA RF transistors:

1. Unsolder one lead at a time with a 50watt soldering iron. Use a scribe or X-acto knife to hold the lead away

Iron the printed elroust bourd until the eolder coole.
2. Turn tho tranamittor over.
3. Hold the body of the tranelator to prem vent it from turaing. Remove the traneintor hold-down nut and mering menter throush the hole in the heateink with an 11/31-1日ch mint-driver. Lift out the tranulitor, and remove the old molder irom the printed circult board with demeldering tool such an a solbh pullutw. Special caro hould be taken to prevent danage to the printed circuit board runs.

1. Trim the now transietor leads (11 required) to the lead length of the removed traneisior. Cut the collector lead at a 43° angle for future identilication (eoe Fifure 2). The letter "C" on the top of the transietor also Indicates the collector.
2. Apply a coat of elilcon grease around the transistor mounting curface, and place the transietor in the mounting hole. Align the leade as show on the Outiine Diagram. Then hold the body of the transistor and replace the holddown nut and epring-wieher using moderate torque (8 inch-pounds). A torque wrench must bo used for thle adjustment since transistor damage cen result if too littie or too much torque in used.

Finure 2 - Lead Identification
6. Make muro thif tho traneietor leade are lommed as hown in Piguro 3 no that the leads eas beroldernd to the pritited circuit pattorp, atarting erom thod inner adse of the mounting noloftat
7. solder the leade to the printed circuit pattorn, ftapt at the inner edge of mounting hole and molder the remaining length of transintor lead to the board. Vee care mot to use oxconsive hoat that caumos the printed wire board ruse to lift up irem the board. Ciseck 100 shorts and solder beidgen before applying powat.

Failure to molderthe transistor leade ac directed may result in the sencration of RF loops that could damage the transistor or may cause 100 power output.

TROUBLESHOOTIMG

A Troublenhooting Procedure, incinding QuICK CHECKS, permits rapid fault location in the oxciter and power apliifor.

NOTE: This page was reproduced from microfiche. Page 4 is blank.
modulation level adjustment

${ }_{\text {peacmana }}$
1.

PA POWER INPUT

-

transmitter alignment

alignment procedure

 Input vortares
short dust
must

$\underset{\text { artmeter sinmil }}{\text { Bird } \# 43}$

lett $\# 850$
$\mathrm{n} \# \mathrm{M}-21$

wult ineter siminiar to:

test procedure

service check

Check the setting of the power Adjust Control R261.
Refer to the QUICK chBcks on the Transmitter Troubleshooting Procedure.

VOICE DEVIATION, SYMMETRY AND AUDIO SENSITIVITY

test procedure

1. Connect the test equipment to the transmitter as shown.
2. In radios with Channel Guard, set Channel Guard mod Adjust for zero tone deviation
3. Set the Autio generator output to 1.0 voirs rus and frequency to 1 kHz

4. Deviation reading should be $\pm 4.5 \mathrm{kHz}$ in radios without Channel Guard, and $\pm 3.75 \mathrm{kHz}$ in radios with
5. If necessary, adjust MoD AdJusf control R108 for the proper deviation on plus (+) or minus (-)

6. If the deviation reading plus (+) or minus (-) differs by more than 0.5 khz, recheck steps 1 and 2

test procedure
7. Set up the Deviation Meter and monitor the output of the transmitter.
8. Remove the thoo the audio generator
 notes:

STEP I- QUICK CHECKS			
\%			
		emm	
aman		eas, eses	
amme	amem, mes,		
\%min	amem nos	mam, mot	
		game	
(anam)	mex, mas	came,	ame
	${ }^{\text {wem}}$	mamm	
meine man			
\%	${ }^{2017}$	${ }^{\text {cer }}$	mixime
cax	${ }^{\text {mos }}$		gex yex mex
mixmmom	縎;	\%u.um	\%ixamememm

