DESCRIPTION 1
CIRCUIT ANALYSIS 1
OUTLINE DIAGRAM 4
SCHEMATIC DIAGRAM (REPEATER AUDIO BOARD 19A129924G1) 5
PARTS LIST 6
SCHEMATIC DIAGRAM (REMOTE AUDIO BOARDS 19A129924G2 \& G3 7
PARTS LIST 8

DESCRIPTION

The 19A129924Gl Audio Board is used in MASTR ${ }^{\circledR}$ II Repeater and Local/Repeater Base Stations. The 19A129924G2 Audio Board is used in MASTR II Remote/Repeater Base Stations. The 19Al29924G3 Audio Board is used in MASTR II Remote Control Base Stations. The repeater circuits consist of a high-pass filter, audio amplifiers, a de-emphasis network, a repeater audio switch and receiver unsquelch sensor (RUS) switch. The remote circuits consist of a high-pass filter, audio amplifiers, a deemphasis network, a line driver for feeding receive audio to the telephone line, a compressor amplifier for controlling the line audio level fed to the transmitter, and audio and RUS switches for controlling the transmit and receive audio paths.

CIRCUIT ANALYSIS

Audio Board 19A129924G1

Audio from the station receiver is coupled to emitter follower Q1 through the high-pass filter consisting of $\mathrm{C} 2-\mathrm{C} 3$ and R1-R2. This filter attenuates 60 and 120 Hz to reduce the hum and noise. The output of the emitter follower is passed through a de-emphasis network C5 and R6. This network provides a 6 dB/octave rolloff. The signal is then amplified by $Q 2$ and $f e d$ to another emitter follower Q3. The TX MOD control Rl4 is connected in the emitter circuit of Q3 and allows feeding the trans.mitter modulator input at a maximum level of 200 millivolts.

The receiver Unsquelched Sensor Operating Switch (RUSOS) lead is at a positive
potential when the receiver is squelched. CR4 is forward biased, allowing Q5 to conduct. This grounds the collector of Q2 at audio frequencies, preventing the audio signal from passing to Q3. Q12 is normally conducting, grounding the gate of FET Q13 and blocking the audio from the transmitter. When the receiver is unsquelched, the RUS lead D12 goes high, turning on Q1l. This grounds the RUSOS lead and turns off Q5 and Q12. The audio signal is now allowed to pass through Q3 and Q13 to the transmitter modulator.

Audio Board 19A129924G2

The 19A129924G2 Audio Board is used in remote/repeat station combinations. The receiver audio amplifiers, de-emphasis network and repeater audio switch operate in the same manner as described for the 19A129924Gl Board. A separate emitter follower (Q4) is connected to the emitter of Q3 for repeater applications. The REPEATER TX LEVEL control (R15) is connected in the emitter circuit of Q4. R14 (in the emitter circuit of Q3) now serves as the LINE OUT level control.

The audio from the station receiver is connected to the Remote Control/Repeat Audio Board at VOL/SQ HI lead Bll. The audio signal is amplified by Q1-Q4; the level is adjusted by means of REPEATER TX LEVEL Control R15 and passed to the TX AUDIO HI lead Bl4.

The emitter-follower Q3 output is coupled by means of Clo to the RCVR NOTCH FILTER OUTPUT lead D14 and connected to the Transmitter Control Board where the 2175 Hz Secur-it tone components are notched out of the received audio. Resistor R16 and the jumper between H 7 and $H 8$ are removed in tone control systems.

When the audio is returned from the Transmitter Control Board, via RCVR NOTCH FILTER INPUT lead D13, the signal is connected to amplifiers Q6 and Q8. Q7 serves as an audio gate controlled by the RUS input circuit. As long as the RUS input is active $Q 7$ passes the signal to the audio output transistor $Q 9$ which, in turn, couples the signal to Tl and the audio path.

Line audio is coupled from the primary of $T 1$ to LINE AUDIO lead A8. The signal is connected to the Secur-it Tone Board and the Transmitter Control Board. The TX NOTCH FILTER removes the 2175 Hz tone from the audio and the signal is returned to the COMP INPUT FROM TONE CONTROL lead A9. The compressor amplifier functions in the same manner as described for the Remote Audio Board.

Audio Board 19A129924G3

Audio from the station receiver discriminator is coupled to emitter follower Q1 through the high-pass filter consisting of C2-C3 and R1-R2. This filter attenuates 60 and 120 Hertz to reduce the hum and noise. The output of the emitter follower is passed through a de-emphasis network C5 and R6. This network provides a $6 \mathrm{~dB} /$ octave rolloff. The signal is then amplified by Q2 and fed to another emitter follower Q3. The LINE OUT Control R14 is connected in the emitter circuit of Q3 and allows feeding the audio to the line driver at the proper level.

The audio is coupled through Clo to the RX NOTCH FILTER OUTPUT lead D14. This lead is connected to the Transmitter Control Board where the 2175 Hz tone components are notched out of the receiver audio. Resistor R16 and the jumper between H7 and H8 are removed in tone control systems.

When the audio is returned from the Transmitter Control Board via RCVR NOTCH FILTER INPUT lead D13, the signal is coupled to the line driver. Q6 and Q8 amplify the signal. Q7 serves as an audio switch controlled by the RUS circuit. As long as the RUS switch (Q11) is turned off (receiver squelched), CR5 is forward biased allowing Q7 to conduct. Conduction of Q7 grounds the audio path between Q6 and Q8, preventing the audio from being passed to the line. When the receiver unsquelches, the RUS lead goes high. This turns Qll on, turning off CR5 and Q7. The audio is now allowed to pass to the output amplifier Q9 and to the line transformer TI. CR2, CR3 and VR1 are provided for line surge protection.

Audio from the telephone pair is coupled to the input of the transmitter compressor amplifier which consists of

Q15-Q19. The proper audio level for the compressor amplifier is adjusted by LINE INPUT control R39. R41 and the AC impedance of transistor Q15 act as a voltage divider for the AC input signal. The output of Q15 is amplified by a four stage, direct-coupled amplifier (Q16-Q19). Both AC and DC feedback in the amplifier circuit provides for stable operation.

One portion of the amplified output is fed through R50 (REM TX LEVEL) to the XMTR AUDIO HI lead to modulate the transmitter. The remaining portion of the signal is rectified by detector CR6-CR7, filtered by C29, and amplified by DC current amplifier Q20. This DC output is fed back to the base of gain control transistor Q15.

The amount of DC feedback to Q15 determines the AC impedance of this transistor. When the input level rises, the AC amplifier output starts to increase. The output is detected, amplified and fed back to the base of Q15. The increase in feedback reduces the AC impedance of Q15 which decreases the audio voltage to the AC amplifiers, keeping the output constant.

When the input decreases, the output of the AC amplifier starts to decrease, reducing the feedback to Q15. This raises the AC impedance of Q15 and increases the audio voltage to the AC amplifier, keeping the output constant.

The compressor amplifier resets when switching from the receive to transmit mode. Resetting the compressor amplifier prevents losing the first portion of a weak line signal due to the compressor release time. When the RUS lead returns to ground, Q1l is turned off. This allows the Receiver Unsquelch Sensor Operating Switch (RUSOS) lead to go high. Transistor Q14 is turned on, grounding the base of Q20. This shorts capacitor C29 for approximately 10 milliseconds. This resets the compressor amplifier.

Transmit audio is coupled from the REM TX LEVEL control R50 to the source terminal of FET Q21. Q22 is normally conducting, grounding the gate terminal of Q21 and preventing the audio from passing through the FET. Applying ground to the REMOTE PTT terminal D3 forward biases CR10, turning Q22 off. Q21 is now allowed to conduct, passing the audio signal to the TRANSMITTER AUDIO HI lead D14 and to the station transmitter modulator.

When the Intercom Kit is used in the station, audio from the local microphone is connected from the Intercom Board via D9 to the base of Q8 and, after amplification, the local audio is fed to the line transformer.

Line audio, after passing through the compressor amplifier is connected via B10 to the Intercom Board. Receiver audio overrides the intercom audio. Instructions for the Intercom Kit are provided in the maintenance manual for Option 9508.

When Secur-it Tone is detected, +10 VDC is applied to the AUDIO MUTE lead D2 from
the Secur-it Tone Board. This turns Q10 on, grounding the base of Q11. Q7 is now allowed to conduct and prevent the receive audio from reaching the line and masking the function tone. The RX 1 MUTE lead turns the receiver off during transmit, causing the RUS lead to go low. This turns off the receiver audio to the line.

NOTE:
THIS DIAGRAM IS INTENDED TO SHOW COMPONENT LOCATIONS FOR ALL GROUPS OF THE BOARD. REFER TO APPROPRIATE SCHEMATIC DIAGRAM OR PARTS LIST FOR COMPONENTS USED IN A SPECIFIC GROUP.

N2TE: LEAD ARRANGEMENT, AND NOT CASE SHAPE, IS DETERMINING FACTOR FOR LEAD IDENTIFICATION.

LEAD IDENTIFICATION
FOR OIS a ORI

TRIANGULAR OR IN-LINE VIEW FROM IEAD END

NOTE:

LEAD ARRAGEMENTAND MOT

 FACTOR FOR LEAD IDENTIFICATION| REFER TO WIRING DIAGRAM
 FOR THE FOLLOWING CONNECTION
 FROM
 H1 H2 | | | |
| :---: | :---: | :---: | :---: |
| WIRE | GROUP | | |
| H5 | H6 | DA | G1, G2,G3 |
| H7 | H8 | DA | |
| H12 | H13 | DA | G2, G3 |
| H17 | HI8 | DA | G2,G3 |
| H19 | H20 | SF24-W | G1 |

(19D423136, Rev, 9)
(19D417083, Sh. 2, Rev, 11)

OUTLINE DIAGRAM

ALL RESSISTORS ARE $1 / 4$ WATT UNLESS
WLLIES IN OHMS UMLESS FOLLOWED BY
TO MCROMCROFARADS) LIVESSS FOLOWED
BY UF: MICROOFARADS. NOUCTANCE VVUVES
$\begin{aligned} & \text { N MICROHENRYS UNLESS FOLOWE } \\ & \text { MH= MLLHENRYS OR HFHENRYS }\end{aligned}$
In order to retain rated equipment
PERFORMANCE, REPLACEMENT OF ANY
SERVICE PART SHOULD BE MADE ONLY WITH
$\begin{aligned} & \text { A COM PONENT HAVING THE SPECIFICATICNS } \\ & \text { SHOWN ON THE PARTS LST FOR THI PART }\end{aligned}$

SCHEMATIC DIAGRAM REPEATER AUDIO BOARD 19A129924G1
parts list
LB14803A

SYMBOL	GE PART NO.	DESCRIPTION
${ }^{11}$		COMPONENT BOARD 19 D 427210 Gl
${ }^{\circ}$	191160808105	Polyester: $0.047 \mu \mathrm{f} \pm 1 \sigma_{\text {gre }}$, so vocr.
c2	19A1160800103	Polyester: $0.022 \mu \mathrm{f} \pm 10_{0}^{\prime \prime}, 50 \mathrm{ydCm}$.
${ }^{\text {c3 }}$	1911688809702	Polyester: $0.015 \mu \pm \pm 1 \sigma_{\sigma}$, 50 vch .
$\underset{\substack{\mathrm{c} 4 \\ \mathrm{and}}}{\substack{ }}$	19A1160800709	Polyester: $0.22 \mu \mathrm{f} \pm 1 \mathrm{~F}_{6}$, so vDCN.
${ }^{\text {c6 }}$	5494488ip111	Ceramic disc: 1000 pf $\pm 20_{o}^{\circ}, 1000$ VDCH; sim to RMC Fype JF Discap.
${ }^{\text {c7 }}$	${ }_{5496667814}$	$\begin{aligned} & \text { Tantaliun: } \\ & \text { Type } 1500\end{aligned}{ }^{15} \mu \mathrm{f} \pm 22 \%, 20 \mathrm{vdCN} ;$ sim to sprague
${ }^{\text {c8 }}$	1911268800109	Polyester: $0.22 \mu \mathrm{f} \pm 0_{6}$, 50 vDCN.
${ }^{\text {c9 }}$	${ }_{5496267814}$	$\begin{gathered}\text { Tantalum: } \\ \text { Type } 1500 .\end{gathered}{ }^{15} \mu \mathrm{f} \pm 20 \%, 20$ vDC n; sim to Sprague
${ }^{\text {c15 }}$	19A11588007	
$\begin{gathered} \text { cid } \\ \text { cid } \\ \text { nif } \end{gathered}$	${ }_{5496267 P 10}$	
${ }^{\text {c32 }}$	$549488 \mathrm{Pr11}$	Ceramic disc: 1000 pf $\pm 20 \%, 1000$ VDCH; sim to RMC Type JF Discap. iscap.
CR4	199115250p1	
$\begin{aligned} & 33 n \\ & \text { and } \\ & \text { and } \end{aligned}$	19A116779P1	Contact, electrical: sim to Molex 08-54-0404. (Quantity 3 each connector).
${ }^{\text {P6 }}$		Connector. (Part of printed board 19D417083P1).
$\begin{gathered} 91 \\ \text { and } \\ \mathrm{nd}_{2} \end{gathered}$	19A116774P1	Silicon, wpN; sim to Type 2ns210.
${ }^{\text {Q3 }}$	${ }^{19 A 11588991}$	silicon, nPN.
${ }^{\text {Q }}$	191129184P1	siliticon, ner.
Q^{11}	199115910 Pa	S111con, wnN; sim to Type 2x3904.
${ }^{9} 12$	199115889991	si1icon, wpr.
${ }^{\text {Q13 }}$	19A134137P1	* Type, field effect; sim to type 2N3458.
	31152p333J	Composition: 33 K ohms $\pm 5 \%, 1 / 4$
$\begin{aligned} & \text { R3 } \\ & \text { R4 } \end{aligned}$	3R152P104J 3R152P204e	Composition: 0.10 megobm $\pm 55^{5}, 1 / 4 \mathrm{w}$.
${ }^{85}$	${ }^{\text {3R152p512k }}$	Composition: 5.1 k ohms $\pm 10 \%, 1 / 4 \mathrm{w}$.
${ }^{\text {R6 }}$	${ }^{\text {3R152P153\% }}$	Composition: 15 K omms ± 105 \% $1 / 4 \mathrm{w}$.
$\begin{aligned} & \mathrm{R} 7 \\ & \mathrm{R} 8 \end{aligned}$	3R152P393J 3R152P154J	Composition: 39 K ohms $\pm 5 \%, 1 / 4 \mathrm{w}$. Composition: 0.15 megohm $+5 \%, 1 / 4 \mathrm{w}$.

\begin{tabular}{|c|c|c|}
\hline SYMBOL \& GE PART NO. \& DESCRIPTION

\hline R9
R10
R10
R11
R12
R13
R14*

R17
R28
R29
R29
R38
R32
R23
R34
R35
R36
R37
R60
R63

R69 \& \begin{tabular}{l}
3R152P512J

3R152P181K 3R152P102K 3R152P153J 3R152P203J 19B209358P116

19B209358P103

3R152P101J

3R152P120

3R152P102J

3R152P103J

3R152P153K

3R152P334J

3R152P103J

3R152P474

3R152P333J

$3 R 152 P 104 \mathrm{~K}$

3R152P181K

3R152P823J

3R152P153J

19B219690GI

 \&

Composition: 5.1 K ohms $\pm 5 \%, 1 / 4 \mathrm{w}$. Composition: 180 ohms $\pm 10 \%, 1 / 4 \mathrm{w}$ Composition: 1 k ohms $\pm 10_{\mathrm{F}}^{\mathrm{r}}, 1 / 4 \mathrm{w}$. Composition: 15 K ohms $\pm 5 \%, 1 / 4 \mathrm{w}$. Composition: 20 K ohms $\pm 5 \%, 1 / 4 \mathrm{w}$. Variable, carbon film: approx 25 to 2.5 K ohms
$\pm 10 \%, 0.2 \mathrm{w}$; sim to Stackpole Rll -44442 . Earlier than REV A:

Variable, carbon film: approx 50 to 1 K ohms
$\pm 10 \%, 0.2 \mathrm{w}$; sim to CTS Type $X-201$. Composition; 100 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$. Composition: 12 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$. Composition: 1 K ohms $\pm 5 \%, 1 / 4 \mathrm{w}$. Composition: lok ohms $\pm 5 \%, 1 / 4 \mathrm{w}$. Composition: 15 K ohms $\pm 10 \%, 1 / 4 \mathrm{w}$. Composition: 0.33 megohms $\pm 5 \%, 1 / 4 \mathrm{w}$. Composition: 10 K ohms $\pm 5 \%, 1 / 4 \mathrm{w}$. Composition: 0.47 megohms $\pm 5 \%, 1 / 4 \mathrm{w}$. Composition: 33 K ohms $\pm 5 \%, 1 / 4 \mathrm{w}$. Composition: 0.10 megohms $\pm 10 \%$, $1 / 4 \mathrm{w}$. Composition: 180 ohms $\pm 10 \%, 1 / 4 \mathrm{w}$. Composition: 82 K ohms $\pm 5 \%, 1 / 4 \mathrm{w}$. Composition: 15 K ohms $\pm 5 \%, 1 / 4 \mathrm{w}$.
\qquad Handle Assembly.
\end{tabular}

\hline
\end{tabular}

PRODUCTION CHANGES

$\frac{19041721001:}{\text { REV } A-T o}$

REV. B - Board dhange required for new desi ign (CE--MARC v). Added H19

LBI30705

parts List

SYMBOL	GE Part no.	description
$\underbrace{}_{\substack{\text { and } \\ \text { and } \\ \text { as }}}$		
${ }^{\text {c1 }}$	198700234P11	Polyester: 0.047 ur ± 108, 50 vCCF .
${ }^{\text {c2 }}$	19770234P9	Poly yester: $0.022 \mathrm{uf} \pm 108,50 \mathrm{vCCF}$.
${ }^{\text {c3 }}$	19770234988	Polyesteris: 015 up $\pm 10 \%$, 50 vDCM; stim to misser
	19A116880pios	Polyester: $0.22 \mathrm{uf} \pm 10 \%$, 50 vocr.
${ }^{\text {c6 }}$	19a70023387	Ceramic: 1000 pr $\pm 0 \%$, 50 vocr.
${ }^{\text {c7 }}$	${ }_{5966267 P 14}$	
${ }^{\text {c8 }}$	1991168807109	Polyester: $0.22 \mathrm{up} \pm 10 \%$, 50 vocr.
${ }^{\text {c9 }}$	59498278 Pr 4	
${ }^{\text {c10 }}$	${ }^{19111608089}$	Polyester: $0.22 \mathrm{up} \pm 20 \%$, 50 voch.
${ }^{\text {c11 }}$	19870023377	Ceranic: $1000 \mathrm{pH} \pm 208$, 50 vocr.
${ }^{\text {c12 }}$	191413477726	Polyester: . 1 uf ± 028, 50 voci.
${ }^{\text {c13 }}$	19811588097	
${ }^{\text {c14 }}$	5496867 P	
${ }^{\text {c15 }}$	19A11568077	
$\begin{gathered} \text { cid } \\ \text { cat } 12 \\ \text { cir } \end{gathered}$	5996287P	
${ }^{\text {c18 }}$	191434477 P26	Poiyester: . 1 uf $\pm 20 \%$, 50 vocr.
$\begin{aligned} & c_{19} \\ & \text { c20* } \end{aligned}$	19A116080p111 19A700234P10	Polyester: 0.47 uF $\pm 10 \%$, 50 vDCF. Polyester: $0.033 \mathrm{uF}+10 \%$, 50 VDCW . Change
	${ }^{198111688808905}$	Polyester: $0.047 \mathrm{uF} \pm 10 \%, 50 \mathrm{VDCW}$
	19470023377	Ceranic: $1000 \mathrm{pr} \pm 208$, 50 vch .
${ }^{\text {c23 }}$	7489162711	
${ }^{24}$	19011608007109	Polyester: $0.22 \mathrm{uF} \pm 10 \%$, 50 vcch .
${ }^{\text {c25 }}$	4029038P104	
${ }^{\text {c26 }}$	19A11588097	
${ }^{\text {c27 }}$	${ }^{5986267710}$	
${ }^{\text {c28 }}$	19870023887	Ceranic: 1000 pp ± 208, 'so vocr.
${ }^{\text {c29 }}$	${ }_{549628792}$	
${ }^{\text {c30 }}$	5998277 Pl 7	
${ }^{\text {c31 }}$	194700233p5	Ceranic: $470 \mathrm{pr} \pm 208$, 50 vccr .
${ }^{\text {c32 }}$	199770023857	Ceranic: $1000 \mathrm{pPF} \pm 208,50 \mathrm{vDCF}$.
${ }_{\text {c34 }}^{\text {c33 }}$	19A116080P10 19A700233P5	Polyester: $0.33 \mathrm{uF} \pm 20 \%, 50$ VDCW. Ceramic: $470 \mathrm{pF} \pm 20 \%$, 50 VDCW .
${ }_{\text {c35 }}$	19970023387	Ceramic: $1000 \mathrm{pF} \pm 20 \%$, 50 VDCW .

SYMBOL	ge part no.	description	SYMBOL	GE Part No.	DESCRIPTION
$\underbrace{\substack{\text { cand } \\ \text { and }}}_{\text {c36 }}$	19A7002385	\%cw.	${ }^{\text {R15 }}$	1982093888103	
			${ }^{816}$	${ }^{197700019943}$	Deposited carbon: 3.3 Somms 558 ,
${ }^{\text {cr1 }}$	19011525091	Sili icon, fast recovery, 225 ma , 50 pry	${ }_{\text {R17 }}^{\text {R17 }}$	199700019p25 19870009P99	
$\underbrace{\text { and }}_{\substack{\text { cha } \\ \text { and }}}$	${ }_{403782297}$	Silicon, 1000 ma, soo prv.	${ }_{819}$	1991434400862	
			${ }^{\text {R20 }}$	199700019P47	Deposited carbon: 6.8 sk onns 55%, $1 / 4 \mathrm{w}$.
	19A11525091		${ }^{\text {R21 }}$	191143400952	Deposited carbon: 20k ohns $558,1 / 4 \mathrm{~m}$.
			${ }^{\text {R22 }}$	${ }^{19977000199561}$	Deposited carbon: 15 SK onss $555,1 / 4 \mathrm{w}$.
$\underbrace{\substack{\text { crio }}}_{\substack{\text { cnad } \\ \text { cnio }}}$	${ }^{19 A 11525081}$	con, tast	${ }^{\text {R23 }}$	${ }^{1997700019837}$	Deposited carbon: 2 LK onms $55 \%, 1 / 4 \mathrm{w}$.
			${ }_{\text {R25 }}$	19A700019P54	$\begin{array}{ll}\text { Deposited carbon: } & 82 \mathrm{~K} \text { ohms } \pm 5 \%, 1 / 4 \mathrm{w} \\ \text { Deposited carbon: } & 27 \mathrm{~K} \text { ohms } \pm 5 \%, 1 / 4 \mathrm{w}\end{array}$
$\xrightarrow[\substack{\text { and } \\ \text { and }}]{ }$	4033513 Pa		${ }^{\text {R22 }}$	199143400941	Deposited carbon: $2.4 \mathrm{4k}$ omms $55 \%, 1 / 4 \mathrm{~m}$.
			${ }^{\text {R27 }}$	19914346	Deposited carbon: 43 ohms $555,1 / 4 \mathrm{w}$.
	19870178851	Contact, electrical; stm to Molex 08-50-0404.	${ }^{\text {R28 }}$	1987000	Deposited carbon: 12 ohns $55 \%, 1 / 4 \mathrm{w}$
			${ }_{\text {R29 }}$	199700019837	Deposited carbon: $11 \mathrm{comss} 558,1 / 4 \mathrm{w}$.
${ }^{\text {p6 }}$		tor. (Part of printed bard 19047708	${ }_{\text {п3 }}$	${ }_{19} 98700019985$	Deposited carbon: 680 omms $\pm 5 \%, 1 / 4 \mathrm{w}$.
			${ }^{\text {п32 }}$	199700019	Deposited carbon: 15 K ohns $55 \mathrm{\%}, 1 / 4 \mathrm{w}$.
and	19911677991	Sl1icon, wen; sim to Type ens210.	${ }^{\text {R33 }}$	${ }^{19870000.9967}$	Deposi ted carbon: 0.33 M ohns $55 \%, 1 / 4 \mathrm{w}$.
			${ }^{\text {n34 }}$	199700019949	Deposit ted carbon: 10 K ohns $55 \%, 1 / 4$
${ }^{23}$	19A115889P1	Stilicon, NpN.	${ }_{\text {R35 }}^{\text {R36 }}$	${ }^{19970000.19855}$	Deposited carbon: $0.474 \mathrm{obns} \pm 55,1 / 4$
Q4 ${ }_{\text {Q }}$		sillicon, NNN; sim to Type 2n3004. silicon, nev.	${ }_{\text {R} 37}{ }^{\text {R36 }}$	19a700019pge	Deposited carbon: $0.14 \mathrm{momsm} 558,1 / 4 \mathrm{w}$.
${ }^{96}$		ilicon, wpy; sim to type 2x5210	${ }_{\text {R38 }}$	199700019853	Deposited carbon: 22 x ohms $558,1 / 4 \mathrm{~m}$
${ }^{97}$	${ }^{198129184891}$	siilicon, nev.	${ }^{\text {R39 }}$	1982093	
- ${ }_{\text {Q }}$	19A116774911911530094	Silicon, sNN; sim to Type 2n5210.		199700019P49	Deposited carbon: 10 K ohns $558,1 / 4$
		stilicon, xeN.	${ }_{\text {R41 }}^{\text {mad }}$		
	19811599091	S112	${ }^{\text {R42 }}$	$199700019{ }^{\text {P37 }}$	carbon: 11 ohns $55 \%, 1 / 4 \mathrm{~m}$.
${ }_{\text {Q12 }}^{212}$		N -type, field effect; sim to 2 m	${ }^{\text {R44 }}$	-	
	19A134137P1 19A115910P	Si1icon, wpN; sim to Type exs304.	${ }^{\text {R45 }}$	198700009831	Deposited carbon: 330 ohns $55 \%, 1 / 4$
${ }^{220}$		Siilicon, NPN; sim to Type 2v5210.	${ }^{846}$	${ }^{1914143400958}$	Deposited carbon: 62 K onms $558,1 / 4 \mathrm{w}$.
	19A116774P1 19A134137P	N Type, field effect; sim to Type 2x345s.	${ }_{\text {R488 }}^{\text {R47 }}$	198143400890 19870009893	Deposited carbon: 2 zk ohns 558 , $1 / 4 \mathrm{w}$.
${ }^{22}$	19A134137P 19A115910P1	S11icon, nev; stm to Tyye ens304.	${ }^{\text {R49 }}$	19470009985	Deposited carbon: 1.5 K ohms $\pm 5,1 / 4$ Deposited carbon: 15 K ohms $\pm 5 \%, 1 / 4 \mathrm{w}$
			850	198209388 P 103	
	198700019955	Deposited carbon: ${ }^{\text {33k }}$ chns 558 , 1/4 w.	${ }^{\text {R51 }}$	00019p25	Deposited carbon: 100 onns $55 \%, 1 / 4 \mathrm{w}$.
${ }^{83}$	${ }_{19} 9700099961$	Deposited carbon: 0.11 ohns $55 \%, 1 / 4 \mathrm{~m}$.	${ }_{\text {R53 }}^{\text {R } 2 \times}$	19A700019P26 19A700019P55	Deposited carbon: 120 ohms $\pm 5 \%, 1 / 4 \mathrm{w}$ Deposited carbon: 33 K ohms $\pm 5 \%, 1 / 4 \mathrm{w}$
${ }_{\text {R }}^{\substack{\text { R4 } \\ \text { ¢ }}}$	198143480086419114380945		${ }_{\text {R54 }}$	1987000 19 P 41	
			${ }^{\text {as5 }}$	199700019955	Doposited carbon: 33 k onms $55 \%, 1 / 4 \mathrm{w}$.
${ }_{\text {R7 }}^{\text {R }}$	197700019956		${ }_{\text {R56 }}^{\text {R56 }}$	198700019841 19870009968	Deposi ted carbon: 2.28 ouns $558,1 / 4 \mathrm{w}$.
	198700019p6319814300845	Deposit ted carbon: 0.15 w onis $\pm 5 \%, 1 / 4 \mathrm{w}$.	${ }_{\text {n58 }}^{\text {R57 }}$	19A700019P69	$\begin{array}{ll}\text { Deposited carbon: } & 0.39 \mathrm{M} \text { ohms } \pm 5 \%, 1 / 4 \mathrm{w} . \\ \text { Deposited carbon: } & 0.47 \mathrm{M} \text { ohms } \pm 5 \%, 1 / 4 \mathrm{w} .\end{array}$
${ }^{\text {R9 }}$		Deposited carbon: $5.11 \mathrm{lomms} \pm 55,250 \mathrm{vDCW}, 1 / 4 \mathrm{w}$	${ }^{\text {as9 }}$	19870019845	Deposit ted carbon: 4.7 zo ons $\pm 55 \% 1 / 4 \mathrm{w}$.
$\begin{aligned} & \text { R10 } \\ & 811 \end{aligned}$	19A700019P28		в60	198700019288	Deposited carbon: 180 ohms $558,1 / 4 \mathrm{w}$.
${ }_{812}$	19A700019P51		$\underbrace{\text { a }}_{\substack{\text { Red } \\ \text { Red } \\ \text { Red }}}$	198700019899	Deposited carbon: 200 obns $55 \%, 1 / 4 \mathrm{w}$.
${ }_{\text {R14* }}$	19A143400P52 19B209358P116	Varriable carbor fl 11m: approx 25 to 2.5 sk omm	${ }^{\text {®63 }}$	19770001986	Deposited carbon: 82 x onms $558,1 / 4$
			${ }^{864}$	3R77p6215	Conposition: 620 ohms $558,1 / 2 \mathrm{w}$.
	${ }^{1982093588703}$	Variable, carbon film: approx 50 to 1 K ohms $+10 \%, 0.2 \mathrm{w}$; sim to CTS Type $\mathrm{X}-201$.	${ }_{\text {866 }}$	199700019P25	Deposited carbon: 100 oons $558,1 / 4$

PRODUCTION CHANGES

Fv. C - To radedee audio dis tor tion.
1504721002-63:

kRY. C - To reduce audio distortion. Added kro.

This addendum describes Revision Letter changes that are not yet included in the publication.

REV.D-Excessive gain caused distortion in repeat audio path. Changed R10 to 19A700019P31 (330 ohms $+/-5 \%, 1 / 4$ w.).

