maintenance mandal
$138-174 \mathrm{MHz}, 100 / 110$ WATT POWER AMPLIFIER 19D424583G4 MOBILE "M" SERIES \& INTERMITTENT DUTY STATION 19D424583G8 MOBILE "E" SERIES 19D424786G4 CONTINUOUS DUTY STATION 19D424786G7,G8 \& G9 CONTINUOUS DUTY DUPLEX

TABLE OF CONTENTS

		Page
description	1
Circuit analysis		1
outline diagrams	4-5
SChematic diagrams		6-7
parts list and production changes		7-10

DESCRIPTION

The modularized 110 Watt PA assembly contains a 10 watt driver module A201, a 110 Watt PA module A206, power control circuitry and low pass filter. A total of five transistors, two in the 10 -watt driver and three in the 110-watt PA, are used to provide 110 watts RF power for MASTR (I applications and 100-watts for MASTR ${ }^{-1}$ Executive II. The output power is adjustable from 20 watts to rated output power and is held constant for normal variations in temperature and voltage. For combining applications PA module A207 is used in place of A206. This increases power to 130 watts.

CAUTION
Mobile and Station Power Amplifier Assemblies ARE NOT interchangeable due to different chassis grounding requirements.
However, the individual driver and power amplifier board may be interchanged between mobiles and stations.

Supply voltage for the PA is connected through power leads (from the system-audiosquelch board (SAS) on MASTR Executive II and from the system board on MASTR II) to feedthrough capacitors C297 and C298 on the bottom of the PA assembly. C297, C298, C299, L201 and L202 prevent RF from getting on the power leads. Diode CR295 will cause the main fuse in the fuse assembly to blow if the polarity of the power leads is reversed, providing reverse voltage protection for the radio.

The PA assembly is insulated from vehicle ground to permit operation in positive or negative ground vehicles.

NOTE

In positive ground vehicles, A - is "hot" with respect to vehicle ground. Shorting the transmitter PA printed wiring board ground pattern to the radio case may cause one of the inline fuses to blow.

Centralized metering jacks J205 and J210 are provided for use with GE Test Set Model 4EX3A11 or Test Kit 4EX8K12. The Test Set, when connected to J205, meters the Ampl-1 drive (exciter output), power control voltage, Ampl-2 current, and driver current. pa current is metered at $J 210$.

CIRCUIT ANALYSIS

10 WATT DRIVER A201

The exciter output is coupled through an RF cable to PA input jack J201. The RF is coupled through a matching network to the base of Class C amplifier Q1. The network matches the 50 ohm input to the base of Q1 and consists of A201-T1, CA, C5 and C39. R3, C3, R13 and L1 are stablizing networks in the base circuit of Q1.

Part of the $R F$ input is rectified by CR1 and is applied to voltage divider R1 and R2. The voltage is divided to activate the Power Control circuits and fur metering the Ampl-1 drive at J205.

Collector voltage to $Q 1$ and $Q 2$ is controlled by the Power Control circuit, and is applied to Q1 through collector stabilizing network L4 and R4 and collector feed network L3 and C6. The collector voltage is metered through R7 at J205-3 (Pos. C).

The output of $Q 1$ is coupled to the base of the second class C amplifier $Q 2$ through a matching network consisting of C10 through C14 and L5 through L7. Collector voltage to $Q 2$ is applied through collector stabilizing network $L 11$ and $R 6$ and collector feed network L8 and C15.

The output of the 10 watt driver is taken from the collector of $Q 2$ and applied to the base of PA driver A206-Q1 on the 110 watt $P A$ module through an impedance network, two 50 ohm microstrips, W30, and a second impedance matching network.

The collector impedance matching network for A201-Q2 (L9, L10, C20 and C21), matches the output of Q 2 to 50 ohm microstrip A201W2. C22 is a DC blocking capacitor. W30 interconnects the output of the 10 watt driver (A201-W2) to the input (50 ohm microstrip A206-W1) of the 110 watt PA module.

NOTE

For MASTR II High Power Solid State applications where "Combining" is used a new Power Amplifier, A207, (19D424786G8) has been added. The new PA does not use 10 watt driver A201 or driver Q203 as in A206. Two new PA's are used in conjunction with a combiner panel to sum the power output of each PA.

PA MODULE A206/A207

The base impedance matching network (L1-L3, C1-C4 and R1) matches the 50 ohm input impedance to the base of Q1. Collector voltage is coupled through collector stabilizing network $Z 1$ and collector feed network L5 and C5.

Collector current for $Q 1$ is metered across tapped manganin resistor R15 at J205 (Driver Current). The reading is taken on the one-volt scale with the High Sensitivity button pressed and read as 10 amperes full scale.

Following $Q 1$ is a matching network (L4, L21, C7, C57 and C61) that matches the output of Q1 to 50 ohm microstrip W2. The RF energy is then coupled to power divider L6, L7 and Z4 through W2, 50 ohm microstrip W9 and impedance matching network L22, $\mathbf{C 6}$ and C62.

The power amplifier stages consist of two identical paralleled Class C PA circuits Q2 and Q3. The output of power divider provides drive for PA transistors Q2 and Q3.

One output of the power divider is applied to the base of $Q 2$ through impedance matching network C8 through (C11 and L23). L25, L8, C13 and R3 comprise a stabilizing network in the base of $Q 2$. Supply voltage for $Q 2$ is coupled through collector stabilizing network $Z 2$ and collector feed network L10 and C12.

Collector current for $Q 2$ and $Q 3$ is metered across paralleled tapped manganin resistors R 12 and $\mathrm{R13}$. The reading is taken on the one-volt scale with the High Sensitivity button pressed, and read as 30 amperes full scale.

The output of $Q 2$ is coupled through matching network L9, L11, C28 and C14-C16 and added to the output of $Q 3$ by power combiner $Z 5, L 12$ and L13. The combined output is applied to 50 ohm microstrip W6 through T1 and C56 and is coupled through a low pass filter to the antenna. Capacitors A206-C43 through C54 and A201-C30 through C34 provided isolation for \pm ground operation.

WARN ING

The RF Power Transistors used in the transmitter contain Beryillium Oxide, a TOXIC substance. If the ceramic, or other encapsulation is opened, crushed, broken or abraded, the dust may be hazardous if inhaled. Use care in replacing transistors of this type.

POWER CONTROL CIRCUIT

The power control circuit, located on the 10 watt driver module and PA Assembly, consists of power control IC A201-U1, thermistor RT201, power adjust A201-R8, pass transistor Q215 and the directional coupler. The power control IC senses the presence of drive power from the exciter, the heat sink temperature, power level, reflected power, and input voltage to provide automatic power leveling across the frequency band.

When the transmitter is keyed, rectified RF from A201-CR1 is applied to pin 10 of U1, turning it on. Ul supplies a reference voltage through pin 4 to power adjust potentiometer A201-R8. The voltage appearing at the arm of R 8 is applied back to pin 2 of U1. This voltage determines the base voltage of Q215. The conduction of Q215 sets the collector voltage for 10 watt drivers A201-Q1 and Q2, thereby controlling the $R F$ drive to the $P A$. The RF
output power varies in direct proportion to the $R F$ drive applied to the $P A$ and can be adjusted from approximately 22 to 100 watts for MASTR Fxecutive II and 22 to 110 watts for MASTR II.

CAUTION

Due to the reduced heat dissipation capability of the MASTR Executive II heat sink assembly, the MASTR Executive II transmitter should not be adjusted above 100 watts RF output.

Once the power is set to the desired level, U1 compares the setting of power adjust control R8 to the actual output power flowing through the directional coupler and adjusts the collector voltage on the 10 watt driver transistors accordingly. A206-CR1 rectifies the sensed forward power from the directional coupler and A206-R6 sets the forward power reference voltage applied to pin of U1.

Beflected power is sensed by the directional coupler and rectified by A206CR2. When the reflected power exceeds a. preset level established by A206-R7, a DC voltage proportional to the reflected power is applied to pin 3 of U1. U1 lowers the base voltage of Q215, which in turn lowers the collector voltage of the 10 watt driver transistors, thereby reducing transmitter output power.

Temperature protection is provided by U1 and thermistor RT201. RT201 is mounted on the heat sink assembly. Under normal operating conditions, the temperature sensing circuit is inactive. When the heat sink temperature reaches approximately $100^{\circ} \mathrm{C}$, the resistance of RT 101 decreases, decreasing the base voltage of Q215. This in turn reduces the collector voltage applied to the 10 watt driver transistors,
reducing the transmitter output until at approximately $125^{\circ} \mathrm{C}$ the output is almost zero. As the temperature of the heat sink descreases the output power increases until full power returns at approximately $100^{\circ} \mathrm{C}$.

Overvoltage protection for the $R F$ transistors is also provided by U1. Should the supply voltage exceed approximately 18 volts, U1 will switch off the collector voltage to the driver transistors, turning them off. The IC will hold the driver transistors off until the supply voltage is reduced to a safe level.

CAUTION

U1 may be damaged if output terminals 12 or 14 are shorted to ground. Use extreme caution when servicing the power control circuit.

ANTENNA MATCHING UNIT

The Antenna Matching Unit is used only in continuous duty duplex stations to optimize impedance matching between the power amplifier and the load. It consists of a Pi network (C2-C5 and L1) and a reverse directional coupler. $R F$ from the low pass filter is applied to the pi network through the reverse directional coupler and then to the duplexer load. The reverse directional coupler permits monitoring the reflected power by connecting a DC voltmeter across TP1 (+) and ground (-). C2 and C4 are tuned for minimum DC voltage which represents minimum reflected power. The turns of L1 may also be spread or compressed to further reduce the DC voltage. C2, C4, and L1 should be alternately tuned until an absolute minimum voltage reading is obtained. The residual voltage reading after tuning may vary from one transmitter to the next depending on output power level, operating frequency and the load.

(19D433141, Rev. 1)

(19R601706, Rev. 1

SYMBOL	GE PART NO.	DESCRIPTION
		- - capacitors
${ }^{\text {c1 }}$	194700015P17	Teflon/Mica: $33 \mathrm{pr} \pm 5 \%$, 250 vdCW .
${ }^{\text {c2 }}$	19A116795P1200	wica: $120 \mathrm{pr} \pm 5 \%, 250 \mathrm{vdCr}$.
$\begin{gathered} \text { cud } \\ \text { and } \\ \text { and } \end{gathered}$	194700014837	Hetalitized teflon: 220 pF t5\%, 250 vocw.
${ }^{\text {cs }}$	${ }^{194700015837}$	Teflon/Mica: 220 pF E5\%, 250 vdCw .
${ }^{\text {c6 }}$	19A16795pious	
${ }^{\text {c7 }}$	${ }^{19} 700015 p 16$	Tefion/4ica: 30 pF t5\%, 250 vDCW .
c8	${ }^{194700015831}$	Teflon/Mica: 120 PF $558,250 \mathrm{vdCr}$.
c9	${ }^{194700015537}$	
${ }^{\text {c10 }}$	194700014935	
${ }^{\text {c11 }}$	194700014833	Hetalilized teflon: 150 pF t5, 250 VdCW .
${ }^{\text {c12 }}$	194700015841	тeflor/Mica: $330 \mathrm{pF} \pm 58,250 \mathrm{vDCr}$.
${ }^{\text {c13 }}$	194700015P36	reflon/Mica: $200 \mathrm{pF} \pm 58,250 \mathrm{vDCW}$.
$\begin{gathered} \text { cid } \\ \text { cid } \\ c i d i \end{gathered}$	194700014935	Metallized teflon: ${ }^{180} \mathrm{pF}$ t5\%, 250 vdC.
${ }^{\text {c16 }}$	${ }^{194700015828}$	Tefloor/4ica: 91 pF t58, 250 vDCW .
${ }^{\text {c17 }}$	194700015831	Tefloo/M10a: $120 \mathrm{PF} 558,250 \mathrm{vDCF}$.
${ }^{\text {c18 }}$	${ }^{194700015837}$	Teflon/M1/ca: $220 \mathrm{PF} 55 \%, 250 \mathrm{vDCH}$.
${ }^{\text {c19 }}$	194700019833	Hetallized teflon: 150 pF 55, 250 vDCW .
${ }^{\text {c20 }}$	198700014835	Metalilized teflon: $180 \mathrm{pF} \pm 5 \mathrm{sk}, 250 \mathrm{vDCW}$.
c_{21}	194700015936	Teflon/4ica: $200 \mathrm{pP} \pm 58,250 \mathrm{vDCr}$.
$c 22$ nad nad	194700014935	Hetalized teflon: $180 \mathrm{pF} \pm 5 \%$, 250 vocw.
${ }^{\text {c24 }}$	194700015P28	Teflor/Mica: 91 pr t5s, 250 vDCW .
${ }^{\text {c25 }}$	191344202P15	rantal um: 6.8 uf $\pm 208,35 \mathrm{VDCCH}$.
${ }^{\text {c26 }}$	19811688809107	Polyester: 0.1 uF $\pm 10 \%$, 50 vCCW .
${ }^{\text {c27 }}$	${ }^{194116655 P 13}$	Ceramic disc: $470 \mathrm{pF} \pm 20 \%, 1000 \mathrm{VDCW}$; sim to RMC Type JF Discap.
$\underbrace{\substack{\text { and } \\ \hline}}_{\substack{c 28 \\ \text { and }}}$	19870001.5P37	Teflon/wica: 220 PP 558, 250 vDCr .
$\begin{aligned} & \text { c30 } \\ & \text { can } \\ & \text { cas } \end{aligned}$	${ }^{194116655813}$	Ceramic disc: $470 \mathrm{pF} \pm 20 \%, 1000$ VDCW; sim to RMC Type JF Discap. Type JF Discap.
${ }^{\text {c32 }}$	194700015P41	Teflon/Mica: 330 pF t5\%, 250 vDCr .
${ }^{\text {c33 }}$	191160808107	Polyester: $0.1 \mathrm{uF} \pm 108,50 \mathrm{vDCW}$.
${ }^{\text {c34 }}$	191134202715	rantal um: 6.8 uF $\pm 208,35 \mathrm{vDCW}$.
${ }^{\text {c35 }}$	$198116655 P^{3}$	
${ }^{\text {c36 }}$	194116795P1105	wica: $110 \mathrm{pP} 55 \%, 250 \mathrm{vDCM}$.
${ }^{\text {c37 }}$	194700015P4	Teflon/Mica: 10 pr \$5\%, 250 vDCF .
${ }^{\text {c38 }}$	54962188648	
$\begin{gathered} \substack{\text { chru } \\ \text { char }} \end{gathered}$	19A116192P2	
${ }^{\text {c43 }}$	19A116880p 107	Poiyester: 0.1 uF $\pm 108,50 \mathrm{vch}$.
${ }^{\text {c44 }}$	${ }_{194116655 P 13}$	Ceramic disc: $470 \mathrm{pF} \pm 20 \%, 1000 \mathrm{VDCW}$; sim to RMC Type JF Discap.

SYMBOL	GE PART NO.	DESCRIPTION	SYMBOL	GE PART No.	DESCRIPTION
$\begin{gathered} \substack{c \\ \hline \\ \text { caru } \\ \hline 47} \end{gathered}$	${ }^{19116655 P 18}$		R12 and ni3	19C850605P1	Shunt resistor.
$\begin{gathered} c, 18 \\ \substack{\text { tar } \\ 504} \end{gathered}$	199116655p13				transpo
${ }^{\text {c55 }}$	$19134202 p 15$	Tantalum: 6.8 uF $\pm 208,35 \mathrm{vdc} \%$.	${ }^{\text {r1 }}$	19970187861	coti.
${ }^{\text {c56 }}$	${ }^{1947000155837}$	Tefion//4ica: 220 pR t58, 250 vDCW .			-- - - - - - - - cablrs
c57	${ }^{199770001583}$	Tefloon/wica: 130 PF t55, $250 \mathrm{vdC} \mathrm{\%}$			(Part of Printed Baard 199424265P1).
${ }^{\text {c61 }}$	${ }_{1}^{199700015837}{ }^{194167958393}$				
${ }^{\text {c62 }}$	${ }^{1941167958393}$		*7	19137700682	Jumper.
${ }^{663}$	$198116655 P^{13}$		${ }^{\text {w }}$	191137006p1	Jumper
${ }^{64 *}$	${ }^{198209723 P 5}$			197701093P2	strap.
$\begin{gathered} \mathrm{cR1} \\ \text { and } \\ \mathrm{cR} 2 \end{gathered}$	198116052P2			19113733061	Filter. Includes:
J210	${ }^{19821937461}$	Connector: 9 contacts.	${ }_{\text {L1 }}^{\text {R1 }}$	19A129773G5 3R78P100J	Coil Resistor, composition: 10 ohms $\pm 5 \%, 1$ w.
L1	198229929P1	Coil.	cind	19113733261	Network, load. Includes
${ }^{2} 2$	191313700881	coil.	${ }_{\text {c1 }}$	${ }^{7489162 P 13}$	
${ }^{1} .3$	19470109161	coin.	${ }^{\text {R1 }}$		type 118.
${ }^{5} 4$	197701420P5	coil.	${ }^{\text {R1 }}$	ЗR792400	Conposition: 24 obns ± 5, 2 w .
${ }^{\text {L5 }}$	19970184881	coin.			Misce
$\underset{\substack{\text { Len } \\ \text { nit } \\ \text { LT }}}{ }$	19A137007P1	coil.		19B232325P1 19A137331P1	Shield. (Located around R6 \& Rh̀). Shield. (Located between C4 C15)
${ }^{\text {L8 }}$	19912977361				

PRODUCTION CHANGES

REV. A - $\frac{110}{\text { To matt Power Applifitier } 1994242661, \text {, } 2206}$,
B - To
A delete couponents not rest
V. B - To inprove operation when con

REv. D - To improve performance. Changed R5.
REV. E - To inaprove operation of power control circuit. Added c51.

This addendum contains revision letter changes that have not yet been incorporated in the maintenance manual. A partial view of the Schematic Diagram incorporating the modification is, n below.

REV.J - 10 WATT POWER AMPLIFIER 19D424309G1
To improve operation of power amplifier by modi ing power control circuit to eliminate overshoot at key-on. Added one transistor, two resistors and two capacitors as identi: $: d$ below.

```
C44 - 19A704314P4: electrolytic: 47 \muF, -10 +50%, 16 Vdcw.
C45 -. 19A701602P13: Ceramic: 470 pf 土20%,1000 Vdcw.
Q1. - 19A700023P1: Silicon, NPN; sim to 2N3904.
R16 -- 19A700106P61: Composition: 820 ohms \pm5%, 1/4 w.
R17 -- 19A700106P49: Composition: 270 ohms \pm5%, l/4 w.
```

OUTLINE/SCHEMATIC DIAGRAM, PARTIAL

This addendum identifies revision letter changes not previously incorporated in this publication.

REV C - 110 WATT POWER AMPLIFIER 19D424266Gl, 2
To improve reliability, changed 22 and 23 .
$Z 2$ and $Z 3$ are 19B219649G3 Filter.

ADDENDUM NO. 3 TO LBI-30739G

This addendum incorporates a revision letter change to Power Amplifier Assembly 19 D 44786 into Maintenance Manual LBI-30739.

Rev. C - Power Amplifier Assembly 19D424786G4
Rev. D - Power Amplifier Assembly 19D424786G7
Rev. A - Power Amplifier Assembly 19D424786G8 \& G9
To improve reliability. Changed power amplifier transistors Q204 and Q205 from 19A134387P1 to 19A134387P2

This addendum provides parts list changes that have not been put into the maintenance manual.

POWER AMPLIFIER 19D424786G4, 7, 8, 9
More rugged devices were selected for Q204 and Q205 to improve reliability.

Change from:
Q204 19A134387Pl Silicon, NPN.
and
Q205
TO:
Q204 19A134387P2 Silicon, NPN. and q205

