

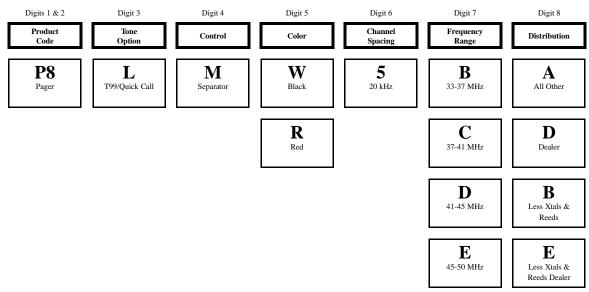
Mobile Communications

MAINTENANCE MANUAL FOR GENERAL ELECTRIC 33-50 MHz BeaconTM Monitor Pager

Maintenance Manual

Printed in U.S.A.

TYPICAL SPECIFICATIONS (CONT.)


TABLE OF CONTENTS	
	Page
DESCRIPTION	2
OPERATION	2
BATTERY INFORMATION	2
CIRCUIT ANALYSIS	2
Receiver	2
Sequential Tone Decoder	3
DETERMINATION OF TONE FREQUENCIES	5
GE Format	5
Quik-Call II Format	5
SERVICING	
Disassembly	6
Alignment Procedure	6
Troubleshooting	8
OUTLINE DIAGRAM	11, 12
SCHEMATIC DIAGRAM	13
PARTS LIST AND PRODUCTION CHANGES	14
PARTS BREAKDOWN	15

TYPICAL SPECIFICATIONS

FCC Identification Number	AXA9ERER-145-A1, B1, C1, D1
GE Type Number	ER-145-A1: 41-45 MHz ER-145-B1: 37-41 MHz ER-145-C1: 33-37 MHz ER-145-D1: 45-50 MHz
Frequency Range	33-50 MHz
Type of Operation	Tone, Voice and Monitor
Signalling System	Two-Tone Sequential
Audio Power Output (4 Ohm Speaker) HI LO	150 Milliwatts 20 Milliwatts

Current Drain (at 2.5 Volts)	5.0
Standby Receive	5.2 m 105 r
Receive	105 1
Battery Life	
Nicke1-Cadmium	25 ho
Mercury	115 ł
Modulation Acceptance	±8 k]
-	
Channel Spacing	20 kl
Selectivity (EIA)	-65 d
Paging Sensitivity	7 uV
Usable Sensitivity (12 dB SINAD)	18 u'
Spurious Docponso	-56 d
Spurious Response	-30 0
Frequency Stability	±5 P]
Audio Distortion	5%
	570
Dimensions (H x W x D)	110 2
	(4.3
	(1.5)
Weight	160 g

COMBINATION NOMENCLAURE

LBI-31482

milliamperes milliamperes

hours hours

kHz

kHz

dB

V/meter

uV/meter

i dB

PPM

0 x 52 x 36 millimeters (with belt clip)

 $3 \times 2 \times 1.4$ inches)

grams (5.66 ounces) with battery and belt clip

DESCRIPTION

The General Electric Beacon[™] Monitor Pager is a highly reliable, extremely compact receiver for tone and voice paging and channel monitor applications.

The Pager is equipped with a built-in speaker, earphone jack and antenna, and is shipped with two nickel-cadmium rechargeable batteries and an external earphone.

The receiver is housed in a ruggedly-constructed case, with all operating controls conveniently mounted on the top and side of the case. An accessory jack on the bottom of the radio is provided for an external earphone.

Power for the Pager is normally supplied by two rechargeable nickel-cadmium batteries that fit in a separate battery compartment in the bottom section of the case. The batteries can be recharged either in or out of the receiver.

If desired, the Pager can also be operated by mercury, zinc-carbon, or alkaline batteries. However, these batteries are not rechargeable.

The spring clip on the Pager may be used to clip the radio to a pocket or belt.

OPERATION

Turn the receiver on by placing the Power/Volume switch to Volume HI position (See Figure 1). Several short bursts of tone should be heard. The receiver is now ready to receive messages.

Before a message is received, a short, interrupted burst of tone will be heard, followed by a voice message. As soon as the message is completed, press the Reset/Monitor button to reset the receiver.

NOTE

Failure to press the Reset button after receiving a message may shorten battery life. Do not press the Reset button while receiving a message or an alert tone. Doing so will prevent you from receiving the message.

The Pager operates in either the SELECTIVE or MONI-TOR mode.

In the SELECTIVE mode, the Pager operates as a tone and voice receiver, and allows only those calls that are tone

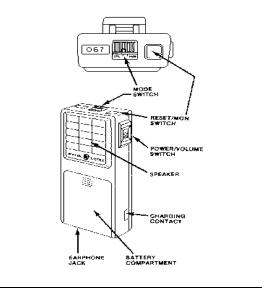


Figure 1 - Operating Controls

coded for the Pager to be heard. After the call has been received, the Pager switches automatically to the MONITOR mode. The Pager will remain in the MONITOR mode, receiving all calls on the channel until the RESET switch is pressed.

Placing the mode switch in the MONITOR position allows all calls on the channel to be heard whether they are tone coded or not. The Pager will squelch when no calls are being received.

An earphone is available for use in high-noise areas, or for receiving messages in private. Plugging the earphone into the earphone jack disables the Pager speaker so that messages can only be heard through the earphone.

After receiving the first message, it may be desirable to reduce the volume by placing the OFF-HI switch in the LO position.

CHARGERS

A single-unit desk-top charger and a multi-unit charger are available for recharging the nickel-cadmium batteries in the radio as well as spare nickel-cadmium batteries.

Temperature characteristics of nickel cadmium batteries prevent a full charge at temperature extremes. For maximum capacity, recharge the batteries at room temperatures between 65° to 85° Fahrenheit.

	WARNING		3.
-	-	ury, alkaline or zinc- cause the batteries to	4.
explode.			

To use the charger, connect the power cable to an appropriate power source. Place the Pager into the charger. The red light will turn on, indicating that the Pager is being charged. To charge spare nickel-cadmium batteries, place them into the battery insert. A second red light will come on to indicate that the batteries are being charged.

BATTERY INFORMATION

Two different types of batteries are normally used in the Pager. The type and battery life for each battery is shown in the following chart.

BATTERY TYPE	PART NUMBER	TYPICAL BATTERY LIFE
Nickel-Cadmium (Rechargeable)	19A703502P1	25 Hours
Mercury (Not Rechargeable)	19A701300P1 Mallory MP401, Eveready EP401E	115 Hours

NOTE -Nickel-cadmium batteries should be fully re-charged before using.

BATTERY REPLACEMENT

The Pager is shipped from the factory ready for immediate operation upon installation of two fully charged batteries.

To install or replace the batteries:

- 1. Slide the Pager OFF-HI switch to the OFF position.
- 2. Press in the battery cover on the ridges at the top of the cover and slide cover down as shown.

tery to explode.

There is no way to dispose of mercury batteries without possible polution except by returning them to the manufacturer for recycling.

Mallory Battery Company will buy all used mercury batteries at the current market price. Batteries are to be shipped prepaid, enclosing a packing slip indicating who is to receive payment for the batteries to:

Plant #2

RECEIVER

Paging receiver Types ER-145-A1, -B1, -C1 and -D1 are double-conversion, superheterodyne receiver for tone and voice paging in the 33-50 MHz range. One circuit board con-

Replace batteries according to the (+) and (-) signs in the battery compartment.

Slide battery cover back into place.

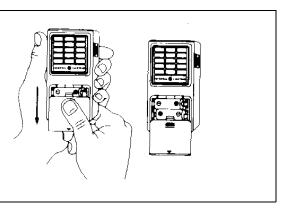


Figure 2 - Battery Replacement

WARNING

Do not dispose of either the rechargeable battery or the Mercury battery by burning. To do so may cause a bat-

NOTE -

Mallory Battery Company

Lexington, North Carolina 27292

CIRCUIT ANALYSIS

tains both tone and voice circuits, and utilizes both discrete components and Thick Film Integrated Circuit Modules (IC's).

The receiver has intermediate frequencies of 10.7 MHz and 455 kHz. Adjacent channel selectivity is provided by using two, 2-pole ceramic filters. References to symbol numbers mentioned in the following text are found in the Outline Diagram, Schematic Diagram and Parts List (See Table of Contents). A block diagram of the receiver is shown in Figure 3.

Receiver Front End

An RF signal from the antenna is coupled through the antenna circuit to the base of RF amplifier Q1. The antenna circuit consists of L1, CV1 and C2. The circuit is tuned by CV1.

The output of Q1 is coupled through three tuned circuits that provide most of the front end selectivity. The tuned circuits are L2, L3, L4 and associated circuitry. The output of L4 is coupled through C10 to the base of the first mixer.

1st Oscillator

Q2, X1, L5 and associated circuitry make up a Colpitts oscillator. The frequency is controlled by a third mode crystal operated at one third of the required injection frequency. L5 is used to set the oscillator on frequency. R3 is in parallel with X1 to ensure operation on the third overtone of the crystal. The injection frequency is the operating frequency (-) 10.7 MHz, and is coupled through C16 to the first mixer. L6 is tuned to three times, the crystal frequency. The output to the 1st mixer is approximately 60-90 millivolts rms.

1st Mixer and IF Filter

RF from the Pager front end is applied to the base of first mixer Q3. Injection voltage from the first oscillator is also applied to the base of Q3. The 10.7 MHz first IF frequency is coupled through L7 to 10.7 MHz filter FL1. L7 is used to match the mixer output to the input of FL1.

The highly-selective filter provides the first portion of the receiver IF selectivity. The 10.7 MHz output of FL1 is applied to the second mixer IC (Al).

2nd Oscillator, Mixer and IF Filter

Al and associated circuitry make up the 2nd oscillator and mixer. The crystal for the oscillator is X2. The oscillator operates at 10.245 MHz for low side injection of the 2nd IF (standard), or 11.155 MHz for high side injection for those radios determined to be operating on a tweet frequency. This frequency is mixed with the 10.7 MHz input to provide the 455 kHz 2nd IF frequency. The output of Al is coupled through ceramic filter FL2 which provides the 455 kHz selectivity. The filter output is applied to IF amplifier A2.

IF Amplifier and Detector

A2 and associated circuitry make up the IF amplifier. The amplifier IC also provides the 455 kHz limiting. The output of A2 is applied to the discriminator.

The discriminator demodulates the 455 kHz signal. This type of detector provides a high degree of AM rejection. The recovered audio, tone and noise is applied to audio amplifier IC A51.

Audio Stages

The discriminator output is applied to buffer/pre-amp A51. One output at A51-4 is coupled through high-pass filter A56 which filters out frequencies under 200 Hz to eliminate any Channel Guard (CTCSS) tone. The filter output is applied to squelch circuit A55, and to the decoder circuitry.

Applying the proper sequential tones to the receiver activates the decoder circuitry and audio stages, causing the second alert tone to be heard at the speaker.

After the alert tone is heard, the output of A51 is applied to the push-pull audio amplifiers Q51 and Q52, and then to the speaker.

Squelch

Squelch control IC A55 monitors noise in the 30-40 kHz range on A55-1. When there is no carrier present, the noise is above a squelch threshold set by RV52. This condition makes A55-7 high, shutting off the audio amp at A51-9. When a carrier is present, the noise level drops below the threshold driving A55-7 and A51-9 low. This turns the audio amp on allowing transmissions on the channel to be monitored.

SEQUENTIAL TONE DECODER

The decoder is a two-reed, sequential tone decoder for operation with any two-tone sequential encoder in individual call applications.

The two reeds mount at the bottom of the circuit board, and are available for operation on tone frequencies in the 288.5 to 2000 Hz range.

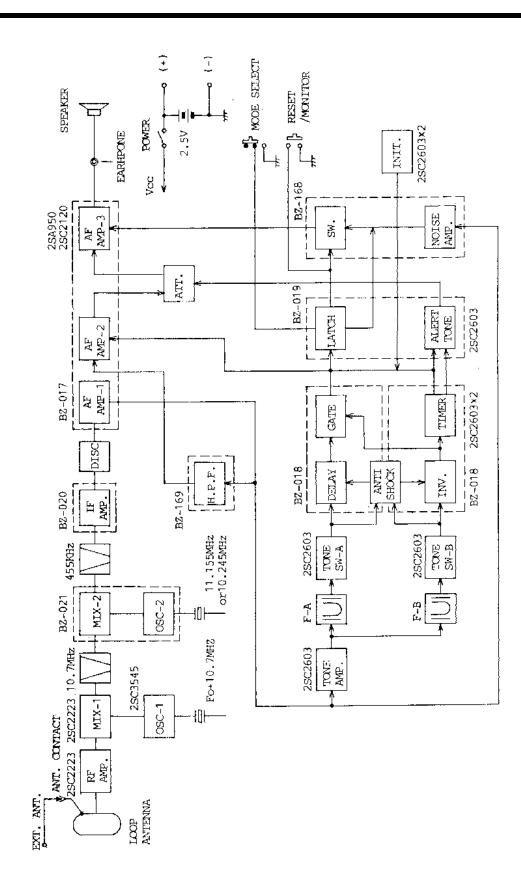


Figure 3 - Pager Block Diagram

The pager is also compatible with Quik-Call II two-tone paging systems, and operates in both individual call and group call applications.

Timing waveforms for the decoder circuitry are shown in Figures 4-1, 4-2 and 5-1, 5-2. It is recommended that these waveforms be studied in conjunction with the circuit analysis for a better understanding of the decoder operation.

Tone Amplifiers & Reeds

When the proper tone sequence is applied to the Pager, the discriminator output is applied to buffer/amplifier A51-1.

Tone A

When an HE signal containing Tone A is applied to the Pager for approximately one second, the output at A51-2 is applied to limiter-amplifier Q53. The square wave output of Q53 drives reed FL51 into mechanical resonance. The reed output is applied to tone amplifier Q54 which provides a gain of approximately 20 dB. The amplifier output is rectified by D52, and the resulting low (-0.2 VDC) is applied to A52-1.

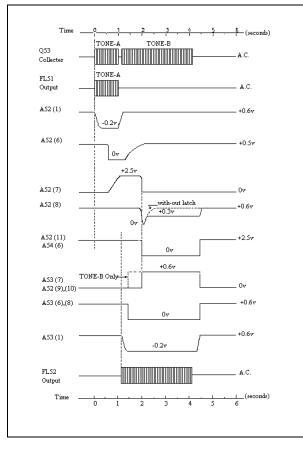


Figure 4-1 - Individual Call Timing Diagram

Tone B

After Tone A has been received, Tone B is applied to the receiver for approximately three seconds. The tone is amplified by Q53 and applied to reed FL52. The reed output is amplified by Q55 (approximately 20 dB gain) and rectified by D53. The low output (-0.2 VDC) is applied to A53-1.

Individual Call

The one-second low output from Q54 and D52 applied to A52-1 causes A52-6 to go low for approximately one second after a delay of 0.6 second (See Figures 4-1 and 4-2). A52-6 then returns to a high state controlled by delay timer C68 and R69. The high at A52-6 causes A52-8 to go low momentarily, and then go high.

After Tone A is received. Tone B causes a low to be applied to A53-1. The lows applied to A52-1 and A53-1 activate an "AND" gate in A52, causing the output at A52-11 to go low for approximately 2.5 seconds. The low at A52-11 is applied to A54-6, activating the alert tone oscillator.

Hold down the Rese

- (SS2) - +0.5v

+0 S

+2.5

TONE-B

+2.2v

TONE-A

+2.5v

Q53

Collector

A52(11)

A54 (6)

A 54 (9)

A54 (11)

A54 (12)

ASS (9)

ASS (7) ASS (9)

Q51,52

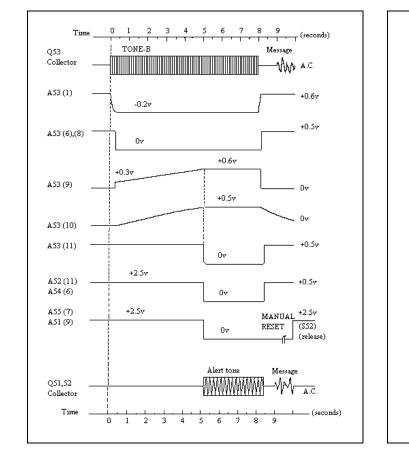
Collecto:

A54 (7)

Q51,52 Collator

A54 (2)

The continuous tone output at A54-7 is shunted to ground for 50 milliseconds at 100 millisecond intervals by O59 to provide the interrupted alert tone. The alert tone is then applied to A51-5.


The same time the tone alert oscillator starts, A55-5 and A55-7 go low. The low at A55-7 is applied to amplifier A51-9, turning the amplifier on so that messages can be heard.

GROUP CALL

In group call applications, only Tone B is applied to the receiver. The tone is applied for approximately 8 seconds. This applies a low to A53-1, causing A53-6 to go low after a 0.3 second delay caused by C72. After a 5-second delay by delay timer circuit R72, R73, and C73, A53-11 goes low and turns off Q56. This allows Q57 to turn on, applying a low to A54-6 and a high to A54-3. This causes a continuous, interrupted 3.5 second alert tone to be heard, followed by the voice message.

ANTI-SHOCK CIRCUIT

When the Pager is subjected to a mechanical shock, both reeds will vibrate and apply a low to pin 1 of A52 and A53.

RESET/MONITOR CIRCUIT

Pressing momentary reset button S52 at any time applies a negative pulse to A54-9. This drives A54-12 and squelch control IC A55-13 low. A55-7 then applies a low to audio amp A51-9 and turns it on. While the reset button is depressed, noise or any transmission on the Pager frequency will be heard. Releasing the reset button causes A54-9, A54-12, A55-13, A55-7 and A51-9 to all go high shutting off the audio amp and resetting the Pager.

MODE SELECT

Other

C81

060

When mode select switch S53 is in the SEL (SELECT) position, A54-11 is high and the Pager operates in the tone and voice paging mode. Placing S53 in the MON (MONITOR) position applies a low to A54-11, causing A54-6 to go low and A54-12 to go high. This causes the Pager to switch to the monitor mode so that all transmissions on the Pager frequency can be monitored.

LBI-31482

This causes a high at pin 2 of decoders A52 and A53 which disables the decoders to prevent falsing.

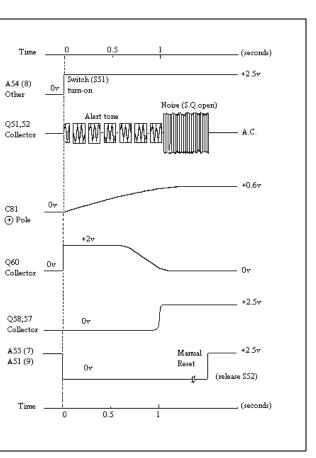


Figure 5-2 - Group Call Timing Diagram

DETERMINATION OF TONE FREQUENCIES

The Pager can receive and decode two-tone sequential signals coded in the GE Type 99 format or the Motorola format.

The GE tone frequencies range from 517.5 Hz to 967.5 Hz. Motorola tone frequencies range from 288.5 Hz to 1433.4 Hz. The Pager is capable of both Individual and Group Call. However, the Group Call will operate only with the Quik-Call II signaling format.

GE FORMAT

INDIVIDUAL CALL

Tables 1 and 2 enable the technician to determine the tone frequencies without opening the radio to examine the reed networks.

For example, assume the paging number to be 123. The first digit of the paging number is a 1. Look in Table 1, and read down the column labeled "100's Digit" to a 1. Read horizontally across to the column labeled "10's Digit". The tone group is B. The second digit of the paging number is a 2. The tone number is B2. Look in Table 2 and down the column labeled "Tone Designator" to find B2. Read horizontally across to the column labeled "Tone Frequency". The first tone frequency is 787.5 Hz.

To determine the second tone frequency look in Table 1 and as before, find the first digit of the paging number 1. Read horizontally across to the column labeled "1's Digit".

The second tone group is A. The third digit of the paging number is a 3 and the Tone Designator is A3. In Table 2 read down the column labeled "Tone Designator" and find A3. Read horizontally across the column labeled "Tone Frequency". The second tone frequency is 802.5 Hz.

For different paging numbers, locate the first digit in the "100's Digit" column and determine the tone frequencies as described in the example. For a complete description of tone applications see DATAFILE BULLETIN DF-5000-3A.

Table 1 - Tone Groups				
100'S DIGIT	10'S DIGIT	1'S DIGIT		
	For 1st Tone	For 2nd Tone		
0	А	А		
1	В	А		
2	В	В		
3	А	В		
4	С	С		
5	С	А		
6	С	В		
7	А	С		
8	В	С		
9	Not Used			

<u>о</u> т

Table 2 - Tone Generator			
TONE GROUP	TONE DESIGNATOR	TONE FREQUENCY	
	A0	682.5 Hz	
	Al	592.5 Hz	
	A2	757.5 Hz	
	A3	802.5 Hz	
	A4	847.5 Hz	
	A5	892.5 Hz	
	A6	937.5 Hz	
	A7	547.5 Hz	
	A8	727.5 Hz	
	A9	637.5 Hz	
	B0	652.5 Hz	
	B1	607.5 Hz	
	B2	787.5 Hz	
	B3	832.5 Hz	
	B4	877.5 Hz	
	B5	922.5 Hz	
	B6	967.5 Hz	
	B7	517.5 Hz	
	B8	562.5 Hz	
	B9	697.5 Hz	
	C0	667.5 Hz	
	C1	712.5 Hz	
	C2	772.5 Hz	
	C3	817.5 Hz	
	C4	862.5 Hz	
	C5	907.5 Hz	
	C6	952.5 Hz	
	C7	532.5 Hz	
	C8	577.5 Hz	
	C9	622.5 Hz	
Diagonal Tone	·	742.5 Hz	

QUIK-CALL II FORMAT

INDIVIDUAL CALL

Tables 3 and 4 are used to determine the Quik-Call II tone frequencies.

The first digit of the code determines the tone groups used in the code (See Table 3). Then Table 4 is used to determine the actual tone frequencies.

FIRST DIGIT OF CODE	GROUP FROM WHICH TONE A IS SELECTED	GROUP FROM WHICH TONE B IS SELECTED
1	1	1
2	2	2
3	1	2
4	4	4
5	5	5
6	2	1
7	4	5
8	5	4
9	2	4
0	4	2
А	3	3

For a code of 124, the tone groups used are shown in Table 3. (Tone A and Tone B are both located in Tone Group 1.)

Table 4 - Quik-Call II Tone Frequencies and Groups

TONE NO.	TONE GROUP 1	TONE GROUP 2	TONE GROUP 3	TONE GROUP 4	TONE GROUP 5	TONE GROUP 6
1	349.0 Hz	600.9 Hz	288.5 Hz	339.6 Hz	584.8 Hz	1153.4 Hz
2	368.5 Hz	634.5 Hz	296.5 Hz	358.6 Hz	617.4 Hz	1185.2 Hz
3	389.0 Hz	669.9 Hz	304.7 Hz	378.6 Hz	651.9 Hz	1217.8 Hz
4	410.8 Hz	707.3 Hz	313.0 Hz	399.8 Hz	688.3 Hz	1251.4 Hz
5	433.7 Hz	746.8 Hz	953.7 Hz	422.1 Hz	726.8 Hz	1285.8 Hz
6	457.9 Hz	788.5 Hz	979.9 Hz	445.7 Hz	767.4 Hz	1321.2 Hz
7	483.5 Hz	832.5 Hz	1006.9 Hz	470.5 Hz	810.2 Hz	1357.6 Hz
8	510.5 Hz	879.0 Hz	1034.7 Hz	496.8 Hz	855.5 Hz	1395.0 Hz
9	539.0 Hz	928.1 Hz	1063.2 Hz	524.6 Hz	903.2 Hz	1433.4 Hz
0	330.5 Hz	569.1 Hz	1092.4 Hz	321.7 Hz	553.9 Hz	1122.5 Hz

LBI-31482

Tone A is tone number 2 in Tone Group 1, and Tone B is tone number 4. Refer to the following examples for additional information.

EXAMPLE 1 - Code 098:

The digit "0" in Table 3 (First Digit of Code) shows that Tone A is in Tone Group 4, and Tone B is in Tone Group 2 as shown in Table 4.

Tone number 9 in Tone Group 4 is 524.6 Hz.

Tone number 8 in Tone Group 2 is 879.0 Hz.

EXAMPLE 2 - Code 265:

The digit "2" in Table 3 shows that both Tone A and Tone B are both in Tone Group 2.

Tone number 6 is 788.5 Hz.

Tone number 5 is 746.8 Hz.

GROUP CALL

In Group Call application, the Tone Group is determined by Table 5, while the frequency is determined by Table 4. Refer to the following examples.

NOTE

Group Call code numbers range from 00 to 99. However, there are several Group Calls with the same Tone B frequency. This limits the total number of Group Calls to 40.

EXAMPLE 1 - Group Call Code 07 (also code 27 and 37):

The digit "0" in Table 5 shows that Tone B is in Tone Group 2 along with 20 to 29 and 30 to 39. Tone number 7 in Tone Group 2 is 832.5 Hz (See Table 4).

EXAMPLE 2 - Group Call Code 98 (also code 48 and 88):

The digit "9" in Table 5 shows that Tone B is in Tone Group 4 along with 40 to 49 and 80 to 89. Tone number 8 in Tone Group 4 is 496.8 Hz.

Table 5 - Group Call Tone Groups (TG)

GROUP CALL CODE NUMBER	TONE GROUP (Tone B)
00 - 09	TG2
10 - 19	TG1
20 - 29	TG2
30 - 39	TG2
40 - 49	G4
50 - 59	TG5
60 - 69	TG1
70 - 79	TG5
80 - 89	TG4
90 - 99	TG4

DISASSEMBLY

To gain access to the receiver board for servicing:

- 1. Loosen the two screws in the back cover and while applying pressure to the lower portion of the front cover, lift off cover.
- 2. With the speaker facing down, carefully loosen the board in the front cover, starting with the bottom of the printed board first.
- 3. Carefully turn the Pager over in the palm of the hand (speaker facing up) and lift off the front cover.

When replacing the board in the case, hold the case with the speaker grill facing down and insert the Mode Select switch, Reset switch and the Power/Volume switch into their appropriate positions in the top of the case first. Make sure the speaker is properly located. Then gently press the board up into the case. Snap the back cover back into place and tighten the two securing screws.

ALIGNMENT PROCEDURES (33-50 MHz)

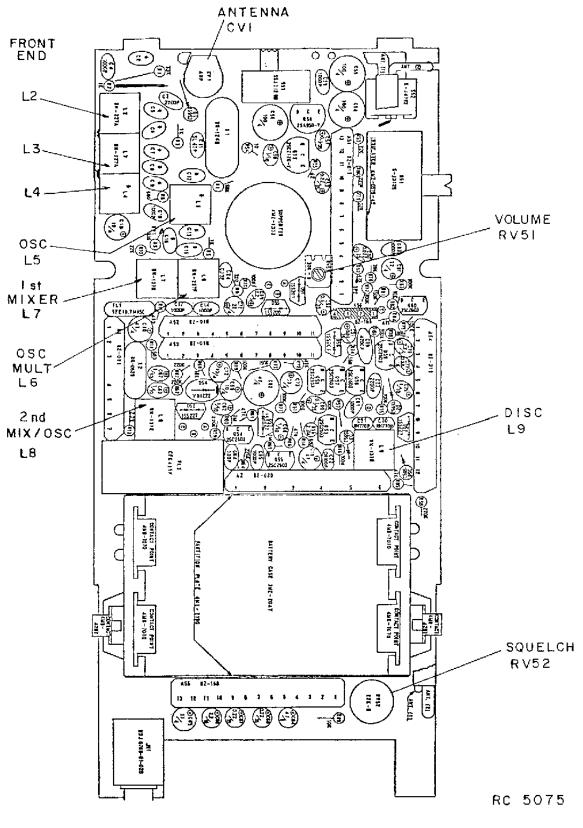
EQUIPMENT REQUIRED:

- 1. Multimeter.
- 2. SINAD Meter or Distortion Analyzer (with floating instrument circuit ground).
- 3. RF Signal Generator (two required).
- 4. 2-Tone Generator.

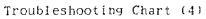
NOTE

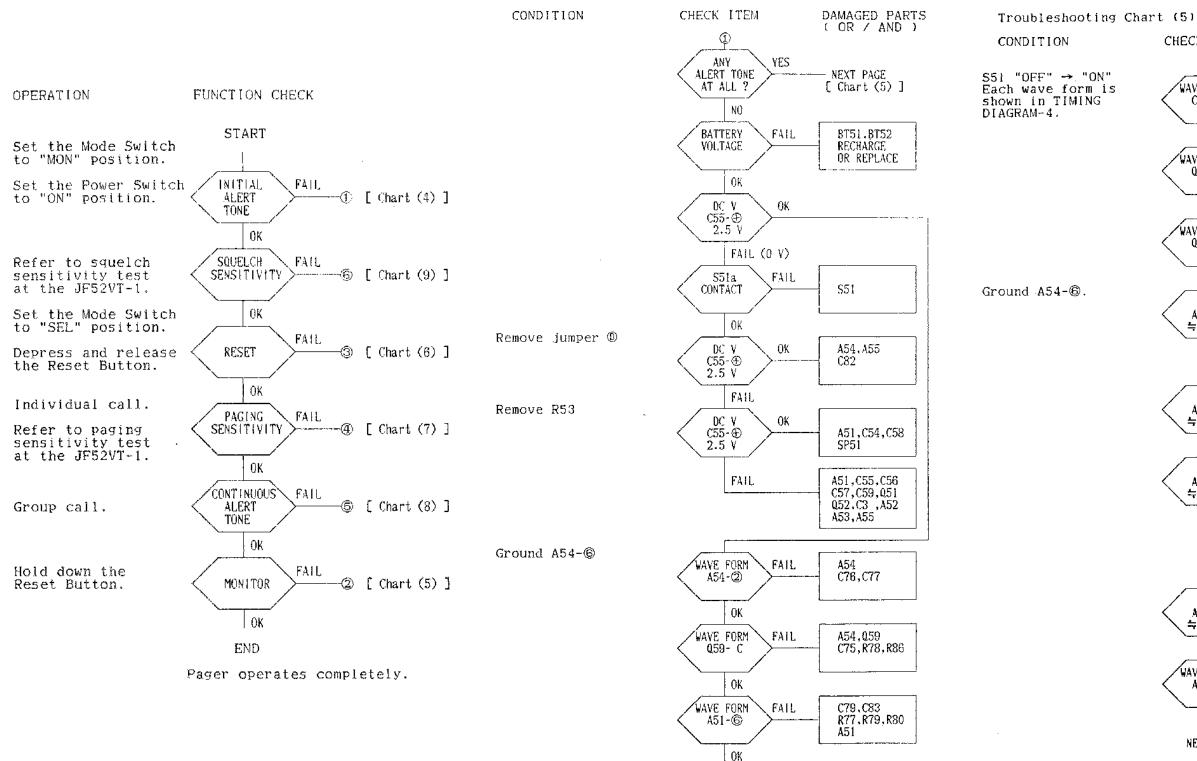
Use short, direct cabling and wiring to keep RF interference to a minimum.

STEP	PROCEDURE
1.	Construct a 50 ohm coaxial cable (RG58-type) with a BNC connection
2.	Remove printed hoard assembly from case and insert fully charge
3.	Connect the shield clip lead of the coaxial cable to the negative be to chassis ground.)
4.	Place the center conductor lead of the coaxial cable beneath the p lead should be insulated from radio circuitry.)
5.	Connect BNC end of cable to the RF Signal Generator.
6.	Turn of the Pager and adjust squelch control RV52 until the page
7.	Set unmodulated RF signal generator to desired pager operating f frequency. Slowly turn up the RF output of the generator until the
8.	Set another unmodulated RF generator to 10.7 MHz. Loosely cou
9.	Adjust L5 for desired frequency by tuning until a zero beat betwee
10.	Remove the 10.7 MHz signal. Connect an RF millivolt meter to T meter.
11.	Modulate the RF generator with 1 kHz tone at 3 kHz deviation. S of approximately 12 dB SINAD is heard at the speaker.
12.	Adjust L2, L3 and CV1 for best quieting. Reduce the generator o of approximately 12 dB SINAD.
13.	Adjust L7 to mid-range.
13.1	Connect the probe of the RF millivolt meter to TP1. Note theread un-modulated RF input to the pager by turning up the generator of reading is obtained. Then adjust L4 for maximum reading on the one nearest the top of the coil form.)

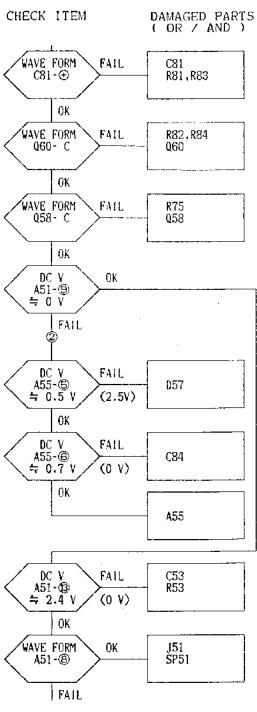

nector on one end and clip leads on the other end.
ged batteries.
battery terminal. (This terminal connects directly
pager and lay pager flat on work bench. (cable
er is fully un-squelched.
frequency. Keeping the RF generator exactly on he pager starts to quiet.
ouple this 10.7 MHz signal into coil form of L7.
een the two signals is heard in the speaker.
TP1 and adjust L6 for maximum output on the
Set the generator's output so that an audible level
output while tuning to maintain an audible level
ding on the meter. Next, increase the radiated, output until a significant increase in meter e meter. (If two peaks are observed, tune to the

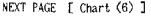
STEP	PROCEDURE
14.	Peform steps 14 and 15 Only if deemed necessary.
	Discriminator: Apply a strong RF signal (approximately 1 mV Carrier with 1 kHz modulation at 3 kHz deviation) and adjust the discriminator coil (L9) for maximum audio output level measured across the 4 ohm speaker.
	Service Note: If there are two output peaks, set the coil to the higher peak.
15.	<u>Audio Output Level</u> : Apply a strong RF signal (approximately 1 millivolt carrier with 1 kHz modulation, but now at <u>2 kHz</u> deviation). Set the power/volume switch to HI, and adjust the audio gain potentiometer (RV51) for rated audio output (150 milliwatts or 0.775 volts RMS across the 4-ohm speaker).
	Set the Power/Volume switch to LO. The audio output level should drop 10 dB +2 dH.
16.	Set up as in Step 11 above. Adjust squelch control (RV52) for an audible level of approximately 12 dB SINAD squelch opening.
17.	Slide S53 to SEL position and push S52 to reset pager.
18.	Modulate the RF generator with the proper tone sequence from the 2-tone generator. Verify the alignment and performance by successfully decoding several pages.

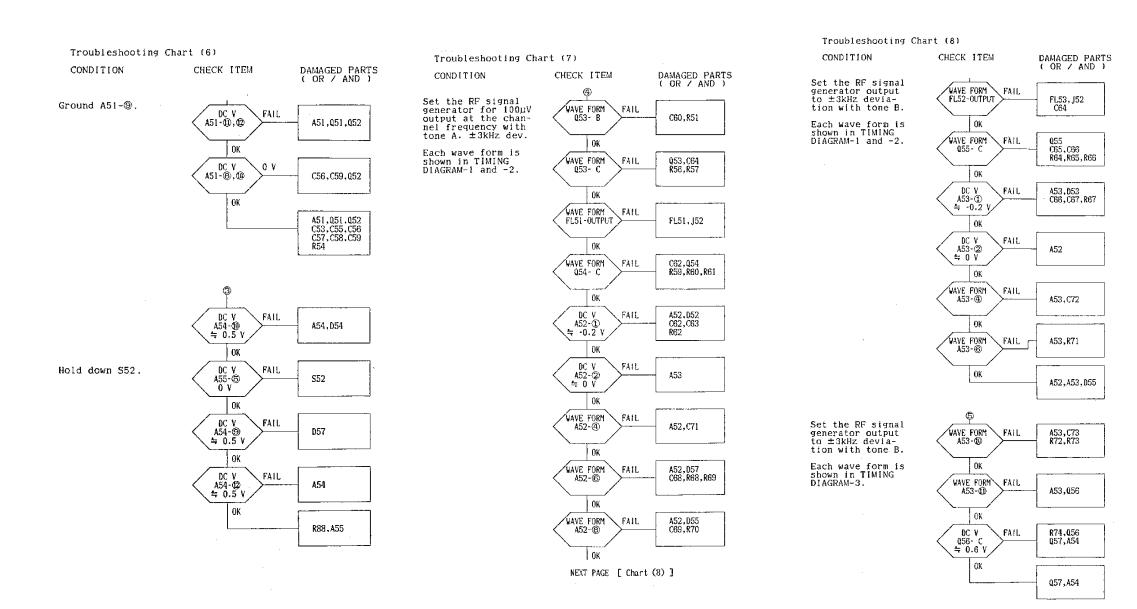

ALIGNMENT PROCEDURES WITH TQ0602 TEST FIXTURE)

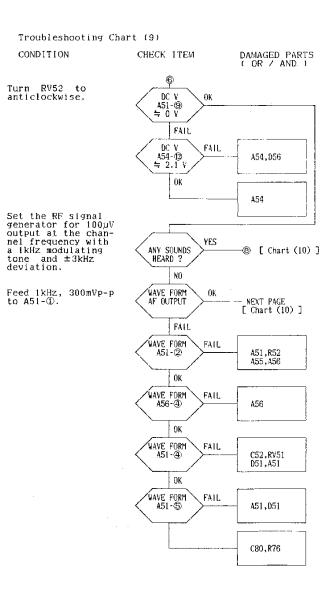

ALTERNATE TUNING PROCEDURE

- 1. Remove Printed Board Assembly from Case and insert fully charged batteries.
- 2. Place back cover of pager in fixture.
- 3. Place the pager on the cover.
- 4. Connect RF generator to RF input jack on fixture.
- 5. Go to step 6 of the main alignment procedure and continue through that procedure to complete the alignment.

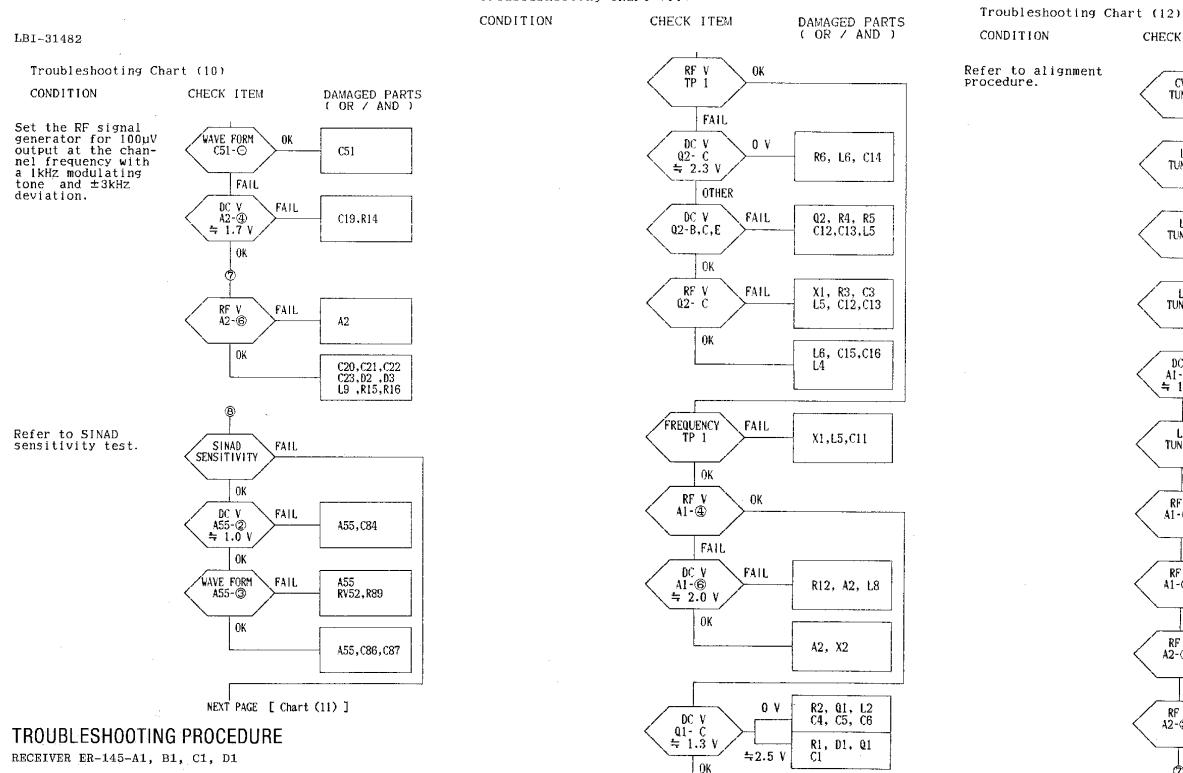

RECEIVER ER-145-A1, B1, C1, D1 ISSUE 1

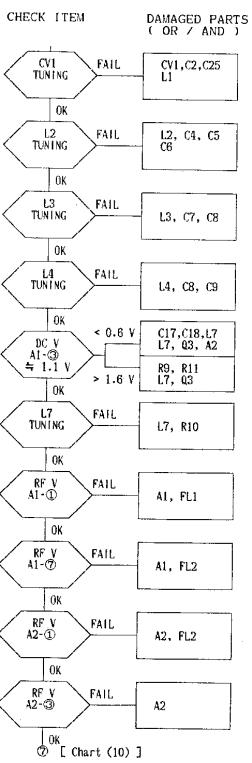


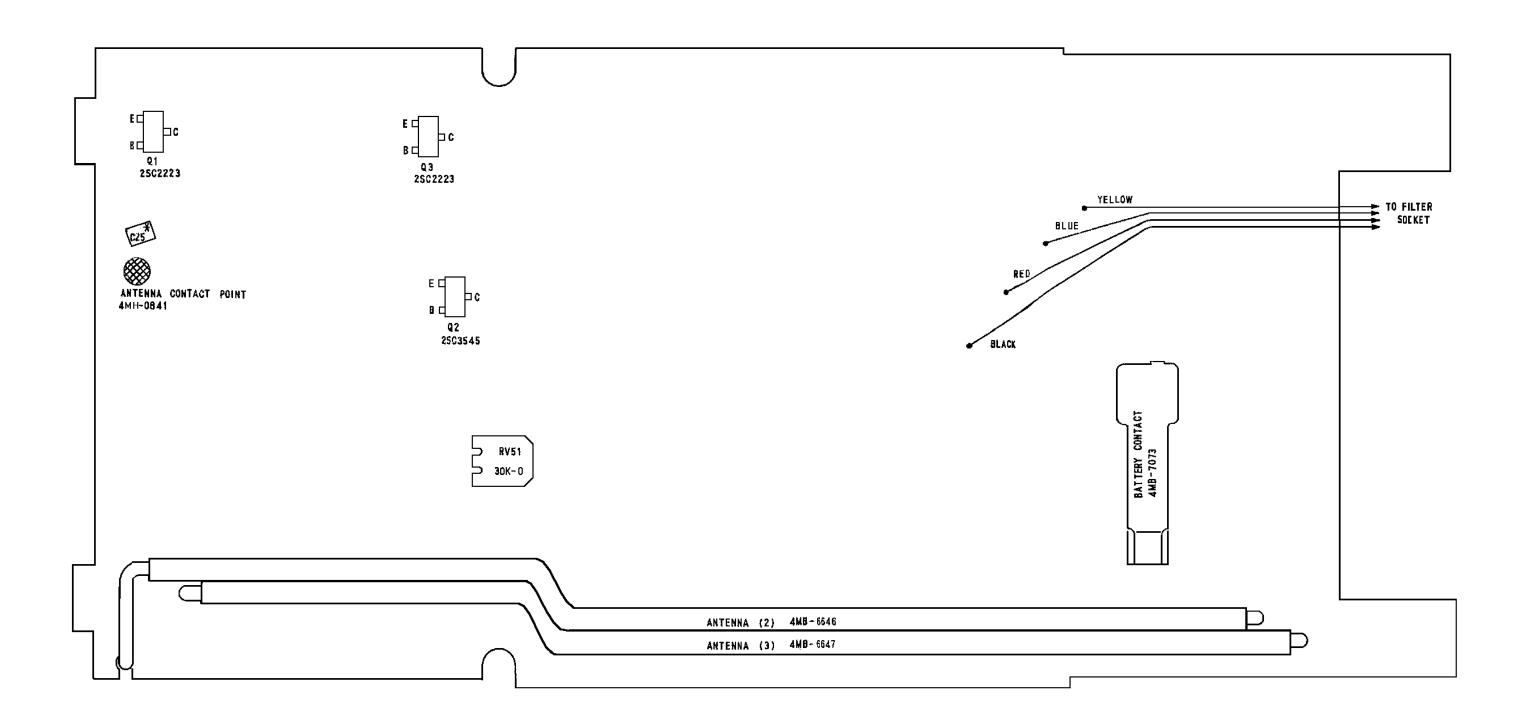



NEXT PAGE [Chart (5)]

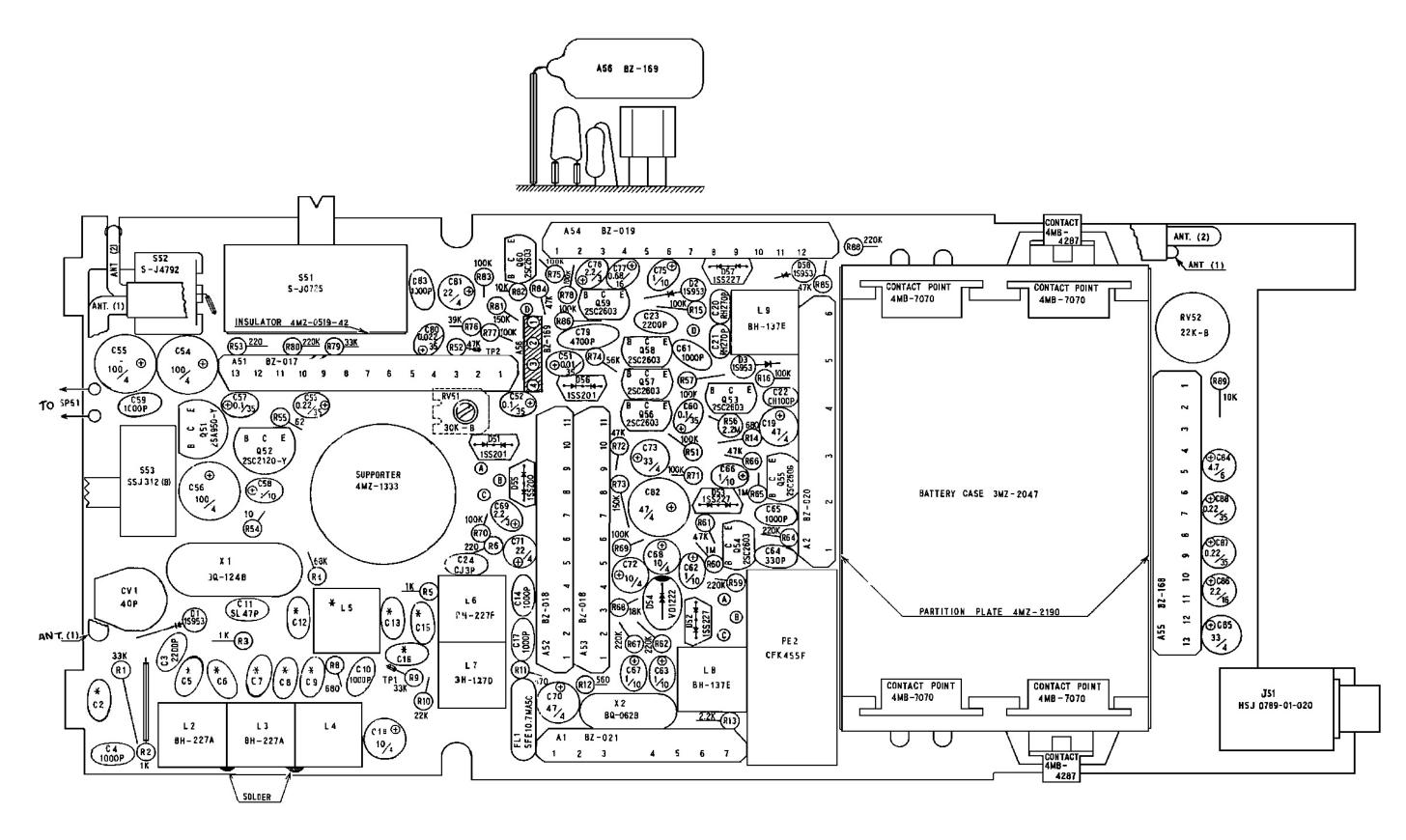
RECEIVER ER-145-A1, B1, C1, D1

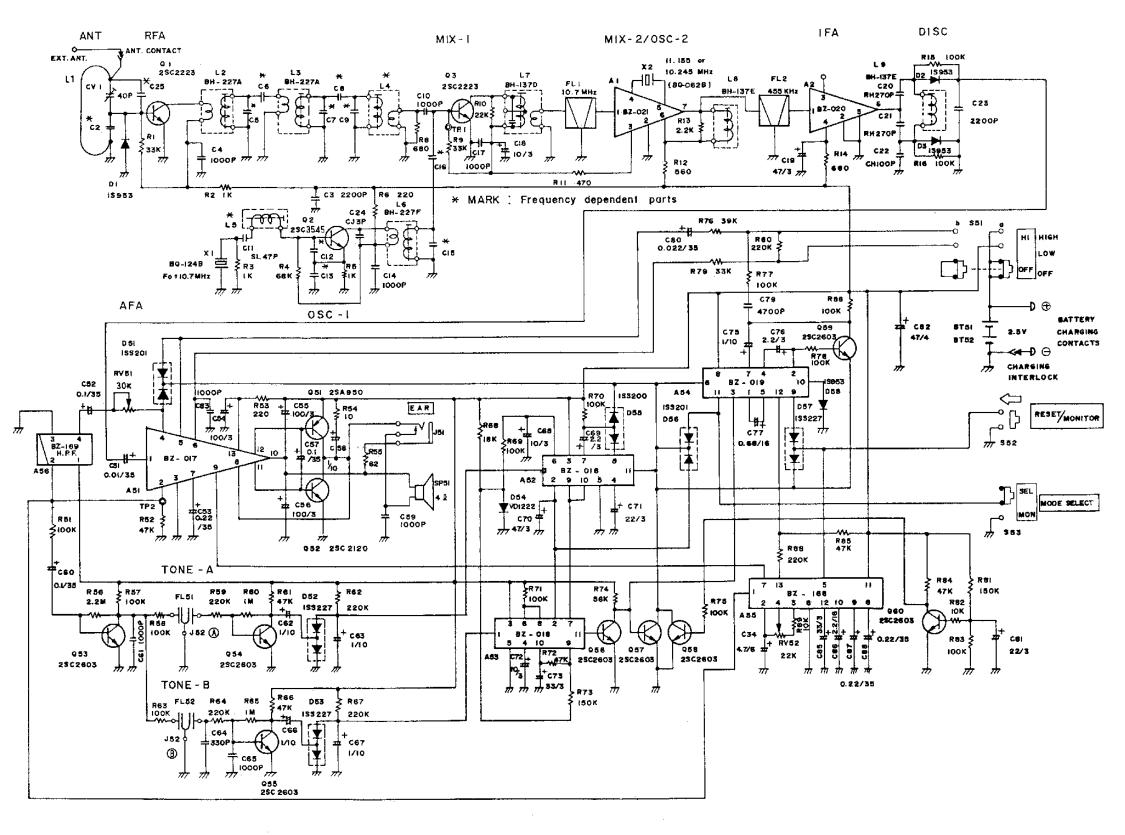



RECEIVER ER-145-A1, B1, C1, D1


NEXT PAGE [Chart (12)]

Troubleshooting Chart (11)


RECEIVER ER-145-A1, B1, C1, D1

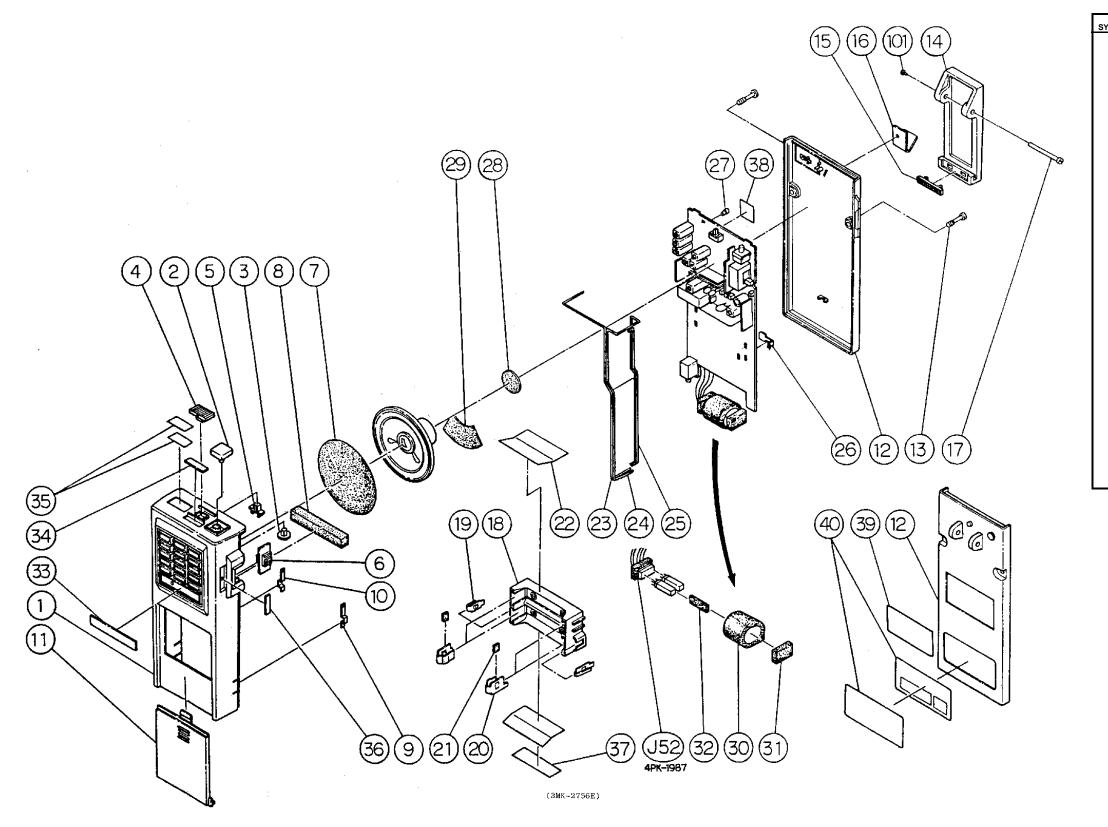

SOLDER SIDE

ISSUE 1

COMPONENT SIDE

SCHEMATIC DIAGRAM

(3DC-6077E)


LBI-31482

RECEIVER ER-145-A1, B1, C1, D1

	33	ARTS LIST 3-50 MHz MONITOR PAGER		SYMBOL	DESCRI	PTION	PART NO.
		DT-2049E		C15	Ceramic Capacitor		
					33 MHz - 37 MHz	50V, SH15 pF	2001013321
YMBOL	DESCRI	IPTION	PART NO.		37 MHz - 41 MHz	50V, SH13 pF	2001012321
۸1	Integrated Circuit		0800210000		41 MHz - 45 MHz	50V, SH12 pF	2001011321
A1 A2	Integrated Circuit Integrated Circuit		0800210000 0800200000	C16	45 MHz - 50 MHz Ceramic Capacitor	50V, SH10 pF	2001009321
A51	Integrated Circuit		0800170000	010	33 MHz - 37 MHz	50V, CH7 pF	2001108321
A52	Integrated Circuit		0800180000		37 MHz - 41 MHz	50V, CH7 pF	2001108321
A53	Integrated Circuit		0800180000		41 MHz - 45 MHz	50V, CH5 pF	2001106321
A54	Integrated Circuit		0800190000		45 MHz - 50 MHz	50V, CH5 pF	2001106321
A55	Integrated Circuit		0801680000	C17	Ceramic Capacitor	50V, 1000 pF	2001400321
A56	Integrated Circuit		0801690000	C18	Tantalum Capacitor	4V, 10 uF	2013040501
100	integrated enour		0001000000	C19	Tantalum Capacitor	4V, 10 uF	2013041501
BT51	Nickel-Cadmium Batte	erv 1.2V/150 mAh	5300170818	C20	Ceramic Capacitor	50V, RH270 pF	2004441321
BT52	Nickel-Cadmium Batte		5300170818	C21	Ceramic Capacitor	50V, RH270 pF	2004441321
-		,		C22	Ceramic Capacitor	50V, CH100 pF	2004135321
C1				C23	Ceramic Capacitor	50V, 2200 pF	2001901321
C2	Ceramic Capacitor			C24	Ceramic Capacitor	50V, CJ3 pF	2001104321
-	30 MHz - 33 MHz	50V, RH200 pF	2004438321	C25	Chip Capacitor	,	
	33 MHz - 37 MHz	50V, RH160 pF	2004436321		33 MHz - 37 MHz	50V, CH39 pF	2004908061
	37 MHz - 41 MHz	50V, RH100 pF	2004431321		37 MHz - 41 MHz	50V, CH33 pF	2004909061
	41 MHz - 45 MHz	50V, RH75 pF	2004428321		41 MHz - 45 MHz	50V, CH22 pF	2004910061
	45 MHz - 50 MHz	50V, RH51 pF	2004424321		45 MHz - 50 MHz	50V, CH15 pF	2004911061
C3	Ceramic Capacitor	50V, 2200 pF	2001901321	C51	Tantalum Capacitor	35V, 0.01 uF	2014001501
C4	Ceramic Capacitor	50V, 1000 pF	2001400321	C52	Tantalum Capacitor	35V, 0.1 uF	2014002501
C5	Ceramic Capacitor			C53	Tantalum Capacitor	35V, 0.22 uF	2014003501
	30 MHz - 33 MHz	50V, RH43 pF	2004422321	C54	Tantalum Capacitor	4V, 100 uF	2013042501
	33 MHz - 37 MHz	50V, RH36 pF	2004420321	C55	Tantalum Capacitor	4V, 100 uF	2013042501
	37 MHz - 41 MHz	50V, SH27 pF	2001019321	C56	Tantalum Capacitor	4V, 100 uF	2013042501
	41 MHz - 45 MHz	50V, SH24 pF	2001018321	C57	Tantalum Capacitor	35V, 0.1 uF	2013004501
	45 MHz - 50 MHz	50V, SH20 pF	2001016321	C58	Tantalum Capacitor	10V, 1 uF	2014004501
C6	Ceramic Capacitor			C59	Ceramic Capacitor	50V, 1000 pF	2001400321
	30 MHz - 33 MHz	50V, CH4 pF	2001105321	C60	Tantalum Capacitor	35V, 0.1 uF	2014002501
	33 MHz - 37 MHz	50V, CH4 pF	2001105321	C61	Ceramic Capacitor	50V, 1000 pF	2001400321
	37 MHz - 41 MHz	50V, CJ3 pF	2001104321	C62	Tantalum Capacitor	10V, 1 uF	2014004501
	41 MHz - 45 MHz	50V, CJ3 pF	2001104321	C63	Tantalum Capacitor	10V, 1 uF	2014004501
o .	45 MHz - 50 MHz	50V, CJ3 pF	2001104321	C64	Ceramic Capacitor	50V, 330 pF	2001402321
C7	Ceramic Capacitor		0004405555	C65	Ceramic Capacitor	50V, 1000 pF	2001400321
	30 MHz - 33 MHz	50V, RH47 pF	2004423321	C66	Tantalum Capacitor	10V, 1 uF	2014004501
	33 MHz - 37 MHz	50V, RH39 pF	2004421321	C67	Tantalum Capacitor	10V, 1 uF	2014004501
	37 MHz - 41 MHz	50V, RH30 pF	2004418321	C68	Tantalum Capacitor	4V, 10 uF	2013040501
	41 MHz - 45 MHz	50V, SH24 pF	2001018321	C69	Tantalum Capacitor	3V, 2.2 uF	2014005501
0	45 MHz - 50 MHz	50V, SH20 pF	2001016321	C70	Tantalum Capacitor	4V, 47 uF	2013041501
C8	Ceramic Capacitor		2001104224	C71	Tantalum Capacitor	4V, 22 uF	2013043501
	30 MHz - 33 MHz	50V, CJ3 pF	2001104321	C72 C73	Tantalum Capacitor	4V, 10 uF	2013040501
	33 MHz - 37 MHz	50V, CJ3 PF	2001104321 2001103321	C73 C74	Tantalum Capacitor	4V, 33 uF	2013044501
	37 MHz - 41 MHz 41 MHz - 45 MHz	50V, CK2 pF 50V, CK2 pF	2001103321 2001103321	C74 C75	Tantalum Capacitor	10V, 1 uF	2014004501
	41 MHz - 45 MHz 45 MHz - 50 MHz	50V, CK2 pF 50V, CK2 pF	2001103321	C75 C76	Tantalum Capacitor	3V, 2.2 uF	2014004501 2014005501
9	45 MHZ - 50 MHZ Ceramic Capacitor	50V, GRZ PF	2001103321	C76 C77	Tantalum Capacitor	3V, 2.2 uF 16V, 0.68 uF	2014005501 2014006501
	30 MHz - 33 MHz	50V, RH36 pF	2004420321	C77		10V, 0.00 UF	2017000001
	33 MHz - 37 MHz	50V, RH30 pF 50V, RH30 pF	2004420321 2004418321	C78 C79	Ceramic Capacitor	25V, 4700 pF	2001902321
	37 MHz - 41 MHz	50V, RH30 pF	2004418321 2004419321	C79 C80	Tantalum Capacitor	35V, 0.022 uF	2014007501
	41 MHz - 45 MHz	50V, KH35 pF 50V, SH27 pF	2004419321 2001019321	C80	Tantalum Capacitor	4V, 22 uF	2013043501
	45 MHz - 50 MHz	50V, SH22 pF	2001019321	C82	Aluminum Capacitor	4V, 22 ul 4V, 47 uF	2029501803
210	Ceramic Capacitor	50V, 1000 pF	2001400321	C83	Ceramic Capacitor	50V, 1000 pF	2029301803
C11	Ceramic Capacitor	557, 1000 pi	2001 1000E1	C83	Tantalum Capacitor	6.3V, 4.7 uF	2013032501
	33 MHz - 37 MHz	50V, SL47 pF	2001326321	C85	Tantalum Capacitor	4V, 33 uF	2013044501
	37 MHz - 41 MHz	50V, SL47 pF	2001326321	C86	Tantalum Capacitor	16V, 2.2 uF	2013023501
	41 MHz - 45 MHz	50V, SL47 pF	2001326321	C87	Tantalum Capacitor	35V, 0.22 uF	2013005501
	45 MHz - 50 MHz	50V, SL47 pF	2001326321	C88	Tantalum Capacitor	35V, 0.22 uF	2013005501
212	Ceramic Capacitor	, . _ p.		000	Capacitor		
-	33 MHz - 37 MHz	50V, SH33 pF	2001021321	CV1	Variable Capacitor	250V, 40 pF	2090012803
	37 MHz - 41 MHz	50V, SH33 pF	2001021321			··· , ·• F·	
	41 MHz - 45 MHz	50V, SH22 pF	2001017321	D1	Diode		0500017501
	45 MHz - 50 MHz	50V, SH22 pF	2001017321	D2	Diode		0500017501
	Ceramic Capacitor			D3	Diode		0500017501
213		50V, SH33 pF	2001021321	D51	Diode		0500050324
:13	33 MHz - 37 MHz		2001021321	D52	Diode		0500051324
C13		50V, SH33 pF					0500051324
C13	33 MHz - 37 MHz		2001017321	D53	Diode		
13	33 MHz - 37 MHz 37 MHz - 41 MHz	50V, SH33 pF		D53 D54	Diode Diode, Varistor		0500028501

OVALE	DECODICTION		0/4/201	
SYMBOL D55 D56 D57 D58	Diode Diode Diode Diode Diode	PART NO. 0500052324 0500050324 0500051324 0500017501	SYMBOL R13 R14 R15 R16 R16	Ca Ca Ca
FL1 FL2 FL51 FL52	Ceramic Filter 10.7 MHz Ceramic Filter 455 kHz Reed Filter Reed Filter	5010011321 5010005321 5010002803 5010002803	R51 R52 R53 R54 R55 R56	Ca Ca Ca DA Ca
J51 J52	Earphone Jack 2.5 ø Filter Socket	3700110718 3700130901	R57 R58 R59	Ca Ch Ch
L1 L2 L3 L4	Antenna Coil RF Coil RF Coil RF Coil 33 MHz - 37 MHz 37 MHz - 41 MHz 41 MHz - 45 MHz	See Antenna (1)-(3) 3002270101 3002270101 3002270301 3002270201 3002270201	R59 R60 R61 R62 R63 R64 R65 R65 R66	Ca Ca Ca Ch Ca Ca Ca
L5 L6	45 MHz - 50 MHz RF Coil 33 MHz - 37 MHz 37 MHz - 41 MHz 41 MHz - 45 MHz 45 MHz - 50 MHz RF Coil	3002270201 3002270501 3002270401 3002270401 3002270401 3002270601	R67 R68 R69 R70 R71 R72 R73	Cá Cá Cá Cá Cá Cá Cá
L7 L8 L9	IF Coil IF Coil IF Coil	3001370401 3001370501 3001370501	R74 R75 R76	Ca Ca Ca
C1 Q2 Q3 Q52 Q53 Q54 Q55 Q56 Q56 Q57 Q58 Q59 Q60 R1	Transistor (NPN) Transistor (NPN) Transistor (NPN) Transistor (PNP) Transistor (NPN) Transistor (NPN) Transistor (NPN) Transistor (NPN) Transistor (NPN) Transistor (NPN) Transistor (NPN) Transistor (NPN) Transistor (NPN)	0222232501 0235451501 0009502324 0221202324 0226033806 0226033806 0226033806 0226033806 0226033806 0226033806 0226033806 0226033806 0226033806 0226033806 0226033806	R77 R78 R79 R80 R81 R82 R83 R84 R85 R86 R87 R88 R87 R88 R89 RV51 RV52	Caa Caa Caa Caa Caa Caa Caa Caa Caa Caa
R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12	Carbon Film Resistor 1/8 W, 33KΩ Carbon Film Resistor 1/8 W, 1KΩ Carbon Film Resistor 1/8 W, 1KΩ Carbon Film Resistor 1/8 W, 68KΩ Carbon Film Resistor 1/8 W, 20Ω ————————————————————————————————————	1000070803 1001070803 100112803 1001070803 1001055803 1001066803 100105803 100105803 1001052803 1001064803	S51 S52 S53 SP51 X1 X2	Sli Pu Sli Sp Cr Cr

DESCRIPTION	PART NO.
Carbon Film Resistor $1/8$ W, 2.2K Ω	1001078803
Carbon Film Resistor $1/8$ W, 680Ω	1001066803
Carbon Film Resistor 1/8 W, 100K Ω Carbon Film Resistor 1/8 W, 100K Ω	1001116803 1001116803
Carbon Film Resistor $1/8$ W, 100 K Ω	1001116803
Carbon Film Resistor 1/8 W, 47KΩ	1000108803
Carbon Film Resistor $1/8$ W, 220Ω Carbon Film Resistor $1/8$ W, 10Ω	1001055803 1001024803
DA Jumper	
Carbon Film Resistor 1/8 W, 2.2MΩ	1000346803
Carbon Film Resistor 1/8 W, 100K Ω Chip Resistor 1/16 W, 100K Ω	1001116803 2004904061
Carbon Film Resistor 1/8 W, 220K Ω	1001124803
Carbon Film Resistor 1/8 W, 1MΩ	1001139803
Carbon Film Resistor 1/8 W, 47K Ω Carbon Film Resistor 1/8 W, 220K Ω	1001108803 1001124803
Chip Resistor 1/16 W, 100K Ω	2004904061
Carbon Film Resistor 1/8 W, 220KΩ	1001124803
Carbon Film Resistor 1/8 W, 1 M Ω Carbon Film Resistor 1/8 W, 47K Ω	1001139803 1001108803
Carbon Film Resistor $1/8$ W, $47/32$	1001124803
Carbon Film Resistor $1/8 \text{ W}$, $18 \text{K}\Omega$	1001099803
Carbon Film Resistor 1/8 W, 100K Ω Carbon Film Resistor 1/8 W, 100K Ω	1001116803 1001116803
Carbon Film Resistor 1/8 W, 100K Ω Carbon Film Resistor 1/8 W, 100K Ω	1001116803
Carbon Film Resistor 1/8 W, 47KΩ	1001108803
Carbon Film Resistor 1/8 W, 150K Ω Carbon Film Resistor 1/8 W, 56K Ω	1001120803 1001110803
Carbon Film Resistor 1/8 W, $50K\Omega$ Carbon Film Resistor 1/8 W, $100K\Omega$	1001116803
Carbon Film Resistor 1/8 W, 39KΩ	1001144803
Carbon Film Resistor 1/8 W, 100KΩ	1001116803
Carbon Film Resistor 1/8 W, 100K Ω Carbon Film Resistor 1/8 W, 33K Ω	1001116803 1001105803
Carbon Film Resistor 1/8 W, 220K Ω	1001124803
Carbon Film Resistor 1/8 W, 150KΩ	1001120803
Carbon Film Resistor 1/8 W, 10K Ω Carbon Film Resistor 1/8 W, 100K Ω	1001093803 1001116803
Carbon Film Resistor $1/8$ W, 100 Kg	1001108803
Carbon Film Resistor 1/8 W, 47KΩ	1001108803
Carbon Film Resistor 1/8 W, 100K Ω	1001116803
Carbon Film Resistor 1/8 W, 220KΩ	1001124803
Carbon Film Resistor $1/8 \text{ W}, 10 \text{K}\Omega$	1001093803
Variable Resistor B-30KΩ	1049022803
Variable Resistor B-22KΩ	1049002004
Slide Switch	4200001224
Push Switch	4100001224
Slide Switch	4200029004
Speaker 40ø 4Ω/0.1W	5210001370
Crystal	4512403321
Crystal 11.155 MHz	4506210221
or 10.245 MHz	4506209221


```
LBI-31482
```

YMBOL NO.	DESCRIPTION	GE STOCK NUMBER
1	FRONT CASE (BLACK)	2Mz-2111-1
	FRONT CASE (RED)	2MZ-2111-2
2	PUSH BUTTON (1)	4MZ-1760-3
3	PUSH BUTTON (2)	4MZ-1761-3
4	SWITCH PARTS (1)	4MZ-2128-1
5	SWITCH PARTS (2)	4MZ-2129-1
6	SWITCH PLATE	4MZ-2114-1
7	SPEAKER NET	4MZ-1277
8	CUSHION	4MZ-0489-57
9	CHARGE CONTACT	4MB-7098-1
10	CHARGE CONTACT	4MB-7098-2
11	BATTERY COVER (BLACK)	3MZ-2113-1
	BATTERY COVER (RED)	3MZ-2113-2
12	REAR COVER ASSEMBLY (BLACK)	2MZ-2112-1
	REAR COVER ASSEMBLY (RED)	2MZ-2112-2
13	ANTI REMOVABLE SCREW	4MH-0634
14	ANTENNA CONTACT	4MB-6644
15	CLIP	3MZ-1894
16	NON. SLIDING PARTS	4MZ-1258
17	ANTENNA PLATE	4MB-6643
18	SPRING	4MB-5960
19	CLIP PIN	4MH-0829
20	BATTERY CASE	3MZ-2047
21	CONTACT	4MB-4287J
22	CONTACT POINT	4MB-7070
23	CUSHION	4MZ-2085
24	PARTITION PLATE	4MZ-2190
25	BATTERY CONTACT	4MB-7073
26	INSULATOR	4MZ-1936
27	ANTENNA CONTACT POINT	4MH-0841
28	TUNER CASE ASSEMBLY	4MB-5783
29	SUPPORT	4MZ-1333
30	INSULATOR	4MZ-2201
31	CUSHION	4MZ-19 71-1
32	CUSHION	4MZ-1971-2
33	CUSHION	4MZ-1971-3
34	NAMEPLATE	4MN-1770
35	SWITCH NAMEPLATE	4MN-2132
36	CALL SEAL	4MN-1771
37	SWITCH NAMEPLATE	4MN-1741
38	NUMBER SEAL	4MN-1883
39	DEALER LABEL	4MN-2088
40	FACTORY MUTUAL LABEL	4MN-2130
41	MAIN NAMEPLATE	3MN-1772
101	CYLINDER SCREW	MI.7X5

RECEIVER ER-145-A1, B1, C1, D1 Issue 1