MASTR $_{\text {progeses Line }}$
RF POWER AMPLIFER POWER SUPPIY MODEL 4EP6B1

MAIN CHASSIS - FRONT VIEW

SPECIFICATIONS *

Power Anplifiers	
$\mathrm{Mr}-\mathrm{A}-\mathrm{A}$	$(25-50 \mathrm{MHz})$
$\mathrm{EF}-\mathrm{b}-\mathrm{A}$	$(132-174 \mathrm{MHz})$
$\mathrm{EF}-\mathrm{C-A}$	$(450-470 \mathrm{MHz})$

$117 \mathrm{VAC} \pm 20^{\circ}, 50 / 60 \mathrm{~Hz}$
Standby: 95 Watts
Transmit: 730 Watts
2000 VDC " 250 mA for PA Plate
300 VDC $\quad 25 \mathrm{~mA}$ for PA Screen
6 VDC $i i \quad 3$ amperes for Filaments
140 VoC for Antenna Relay
5
9
3
1
(1) 6680 12AU7 (clamper circuit)

Continuous
-30 C to $+60^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right.$ to $\left.+140^{\circ} \mathrm{F}\right)$
$8-3 / 4^{\prime \prime} \times 19^{\prime \prime} \times 14-1 / 2^{\prime \prime}$
$7^{\prime \prime} \times 19^{\prime \prime} \times 8-1 / 2^{\prime \prime}$

31 pounds
57 pounds

TABLE OF CONTENTS

SPECIFICATIONS Cover
DESCRIPTION I
CIRCUIT ANALYSIS 1
AC Input 1
Power Circuits 1
Control Circuits 3
Indicators 5
Metering 5
ADJUSTMENT 5
MA INTENANCE 6
Blower 6
Relays 6
Troubleshooting Procedure 9
OUTLINE DIAGRAM 8
SCHEMATIC DIAGRAM 9
PARTS LIST 10
PRODUCTION CHANGES 10
ILLUSTRATIONS
Figure l -- Filament Supply 2 2
Figure 2 -- Antenna Relay Supply
Figure 2 -- Antenna Relay Supply
Figure 3 -- Drive Relay Supply 3
Figure 4 -- High Voltage Supply 3
Figure 5 -- Screen Voltage Supply 3
Figure 6 -- Plate Relay String 4
Figure 7 -- PA Plate Current Metering Circuit 5

DESCRIPTION

General Electric Power Supply Model 4EP6Bl supplies the filament, grid, antenna relay and high voltage to Power Amplifier Models 4EF4A1-3, 4EF5Al, and 4EF6Al. The power supply consists of a main chassis and a transformer chassis, mounted separately in the station cabinet. The overall height of the two panels is $15-3 / 4^{\prime \prime}$.

Voltages provided by the power supply
are:

- 2000 VDC $-\mathrm{B}+$ to PA
- 300 VDC - PA screen grid
- 6 VDC - Filaments and relays
- 140 VDC - Antenna relay

8 VDC - Drive relay (K454) on power supply chassis.

The high voltage output (2000 VDC) is taken from C451-1 and connected to PO\#2 on the power amplifier through the station harness. The remaining voltages are fed to the power amplifier through a 4-wire cable (part of the PA) which connects to the power supply at J451.

Jacks are provided on the main chassis front panel to meter the grid current and filament voltage. The high $B+$ voltage is metered through the plate voltage meter located on the cabinet metering panel. Voltages are not exposed on the front side of the power supply panels. The rear cabinet door is interlocked for protection against exposure to high voltages. The high voltage indicator lamp illuminates when the high voltage supply is ON. The lamp turns off when the cabinet rear door is opened and the high voltage at C45l-1 is discharged to ground by shorting bar 5903.

The blower (BM451) is used to cool the PA tube and is mounted on the front of the power supply.

CIRCUIT ANALYSIS

The main chassis consists of all circuit components except the power transformer (T452), cabinet blower thermostat K455, filter choke L451, fuse F 452 , R457, R469,
C458, C459, high voltage supply rectifiers (CR33 through CR36), R1 through R32, C455, and C456. These components are mounted on the transformer chassis.

AC INPUT

Unregulated

The high side of the 117-VAC input to the Power Supply is connected to TB45l-9, and the neutral side is connected to TB45l-7 and -8. Switch $S 452$ is the control voltage ON-OFF switch with fuse F451 (1 amp) in series with the line. 5451 is the supply switch to the plate transformer and blower BM451.

Regulated

When using a voltage regulator, the high side of the 117-VAC input is connected to TB451-10 and the neutral side is connected to TB451-7 and -8.

POWER CIRCUITS

Filament Supply (Figure 1)
The filament power circuit supplies a regulated ($\pm 5 \%$) 6 VDC to the $E F-4-A$ and EF-5-A PA tube filaments and 5 VDC to the EF-6-A tube filaments.

With the Control Switch (S452) in the ON position, power is applied to the primary of the filament voltage transformer T451. The output across the two brown secondary wires of T 451 is rectified by a full-wave rectifier circuit, CR453 and CR454. The output at the center tap of T451 is filtered by choke input filter L452 and capacitors C 452 and C461. The filter circuit output is applied through voltage dropping rectifier CR455 to the emitters of Q453 and Q45l. If the output of Q453 and Q451 attempts to rise, the base of Q1 is made more positive. This decreases the positive voltage at the base of driver transistor Q452. Q452 will then conduct more heavily, causing a greater voltage drop across R455. The bases of Q451 and Q453 will become more positive, thereby cutting off Q451 and Q453 and keeping the voltage at the output terminal at a $\pm 5 \%$ regulated voltage level.

If the output of Q453 and Q451 drops, Q1 conducts less, decreasing the forward bias on Q452 and reducing the voltage drop across R455. This will cause Q451 and Q453 to conduct more heavily and hold the output voltage within the $\pm 5 \%$ regulated level.

Figure 1 - Filament Supply

R4 seldom requires any adjustment. it is adjusted to 6 VDC for use with power amplifier type EF-4-A and EF-5-A and 5 VDC with power amplifier type EF-6-A at the factory for the proper $\pm 5 \%$ regulation required from the A45l circuit.

Filament measuring jacks (Jl and J2) are provided on the 4451 board as an aid to servicing the equipment and are accessible from the rear of the supply. Use a DC voltmeter to measure the filament voltage at J1 and J2.

Re-adjust R4 only when service or troubleshooting checks indicate the output is not rated value.

Antenna Relay Supply (Figure 2)

The 140 VDC is supplied to the antenna relay located on the left rear of the power amplifier chassis. The 140 VDC is a keyed voltage derived from a half-wave rectifier circuit consisting of CR45l and C453 across
the 117 VAC line. The output is measured from TB452-7 to -8.

Drive Relay Supply (Figure 3)

The drive relay supply is a half-wave rectifier circuit (CR452, C454, and R452) across the yellow-yellow secondary leads of T451 to provide 8 VDC keyed voltage to grid drive relay K 454.

High Voltage Plate Supply (Figure 4)

The high voltage supply provides 2000 volts for the PA tube plate circuit. The full-wave bridge rectifier circuit consists of eight silicon rectifiers in each leg of the bridge (32 rectifiers total). The bridge circuit is connected across the secondary of power transformer T452. The rectified output is filtered by choke L45l and capacitor C45l. R457, R469, C458, and C459 form a ringing suppression circuit. The high voltage output is taken off at terminal 1 of C 451 and is connected to the

Figure 2 - Antenna Relay Supply

Figure 3 - Drive Relay Supply
power amplifier unit through the station harness.

Screen Voltage Supply (Figure 5)
The screen voltage supply provides 300 VDC for the PA tube screen grids. Screen voltage is obtained for the PA tube by use of a voltage divider in the plate supply circuit of the high voltage power supply. The voltage divider network (R462, R460, and R461) also serves as a bleeder. The screen voltage may be varied by adjusting the screen control R461 located on the front of the power supply chassis. Resistors R465, R466, and R467 are the voltage dividers for the metering terminal TB45l-2.

The screen voltage supply maintains a constant power output, limiting screen current, and preventing plate voltage from appearing at the PA circuit, (for added protection) if plate voltage is not present.

Figure 5 - Screen Voltage Supply

CONTROL CIRCUITS

Overload and Overload Hold Circuit
Silicon controlled rectifier (SCRI) is driven by excessive current in the secondary of the high voltage supply. When SCR1 fires, it shunts the drive to trigger transistor Q1. SCR1 operates until the drive is removed from the PA.

Grid Drive Circuit

Q1 keys grid drive relay K 454 , when driven by the self-developed grid bias from the PA tube. Indicator lamp 1453 becomes illuminated as soon as the drive relay becomes energized. Grid current can be measured at grid jack J452 located on the front of the power supply chassis.

Figure 4 - High Voltage Supply

Screen Clamping Circuit

The V451 clamper tube (6680) is connected to the PA screen to hold the PA screen at a safe level when the selfdeveloped bias on the PA tube is shut off. With no grid drive present, the clamper conducts, lowering its own plate voltage and the PA screen voltage. This action holds the PA plate current at a safe level. With grid drive present, the clamper cuts of f and allows the circuit to rise to its normal level.

CAUTION

K454 and V45l are connected in parallel to protect the power amplifier tube when the transmitter is unkeyed. If V451 goes bad, pins 9 and 10 of K454 may weld together. If relay K 454 is replaced, check V451.

External Interlock (S902)

Safety interlock switch S902, is mounted on the rear of the equipment cabinet and is connected to TB451-4 and -5 on the power supply chassis. Opening the rear door opens the interlock switch, causing K 454 to deenergize. This opens the primary of the plate supply and turns OFF the Plate indicator light 1451. Shorting bar 5903 shorts the high voltage terminal on C 451 to ground when the cabinet rear door is opened.

Air Flow Switch (K451)

Air Flow switch K45l (thermostat) with resistor R 453 is located in the air duct of the blower mounted on the main power supply chassis. If the air fails and the thermostat temperature exceeds $200^{\circ} \mathrm{F}$ K45l-1 and -2 will open, causing plate relay, K453 to de-energize and open the primary of the plate supply.

Plate Relay (K453)

When plate relay K 453 is energized, 117 VAC is supplied to plate transformer T452. Plate relay $K 453$ is connected in series with the grid drive relay (K454) to allow the proper grid current to develop before the 117 VAC is applied to the T452 primary.

Drive Relay (K454)
Drive relay K 454 is energized only when adequate current exists in the grid circuit. When K 454 is energized, it causes (1) the Grid current indicator lamp to light; (2) the filament voltage dropping resistor to be shorted out; (3) the PA screen to become ungrounded; (4) a set of contacts to close in series with the plate relay coil K 453 so that the antenna relay becomes energized.

Cabinet Blower Thermostat (K455)

Thermostat for optional cabinet blower (K455) is located on the transformer chassis. A lead from the thermostat is brought out to TB451-6 for connection to the cabinet blower. The high side of the thermostat connects to the line through fuse F452. Whenever the temperature inside the cabinet exceeds $120^{\circ} \mathrm{F}$, the thermostat cuts in, allowing the blower to operate. When the temperature in the cabinet drops to $100^{\circ} \mathrm{F}$, the thermostat cuts off, causing the blower to stop.

Time Delay Relay (K456)
The thermal time delay relay K 456 is actuated by the 6-volt filament circuit. It provides a 45-second time delay before closing a set of contacts in the primary circuit of the plate supply. This delay allows sufficient time for PA tube filament to warmup before plate voltage is applied to the PA tube.

Figure 6 - Plate Relay String

INDICATORS

Plate (I451)

Plate indicator lamp (red) on the main chassis front panel becomes illuminated when the PA plate high voltage is turned ON.

Time Delay (1452)

Time Delay lamp (amber) on the main chassis front panel becomes illuminated when the time delay relay (K456) is energized.

Grid (I453)

Grid lamp (amber) on the main chassis front panel becomes illuminated when the proper grid bias is present at the PA tube grid.

Plate (1454)

Plate lamp (red) on the rear of the main chassis becomes illuminated when the PA plate high voltage is turned ON.

METERING

PA Plate Voltage

The PA plate voltage meter M904 is mounted on the cabinet meter panel and is connected to TB451-1 and -2 on the power supply chassis. R467 is the plate voltage metering resistor.

PA Plate Current

The PA Plate Current Meter M903 is mounted on the cabinet meter panel and is connected as shown in Figure 7. Note that both the PA screen current (approximately 25 mA) and PA plate current pass through the meter. To obtain actual plate current, subtract 25 mA from the meter reading.

Grid

To measure grid voltage, insert the probe from one of the tuning meters on the cabinet meter panel into grid jack J452 on the power supply chassis. Rl0 is the metering resistor for J452.

Filament

The filament metering jacks (J1 \& J2) are located on the 6-VDC regulator board (A451).

ADJUSTMENT

The following adjustments have been made at the factory. They should be checked and adjusted only during periodic maintenance checks and when troubleshooting.

FILAMENT

Measure output at test points Jl and J2 on 6-VDC regulator board A45l. Adjust R4 for 6 VDC when the power amplifier is type EF-4-A or EF-5-A; adjust R4 for 5 VDC when the type EF-6-A power amplifier is used.

SCREEN

Refer to "Alignment Procedure" in Power Amplifier Maintenance Manual for adjustment of screen control R461.

PLATE OVERLOAD

Plate Overload potentiometer R1 on the A452 board has been set at the factory to maintain plate current at 350 mA . A plate current of 375 mA turns on SCRI, causing the plate voltage to drop out.

Figure 7 - PA Plate Current Metering Circuit

MAINTENANCE

To obtain optimum performance from the equipment, a program of regular preventive maintenance should be followed. This preventive maintenance should include the following:

1. A mechanical inspection of the unit for loose, broken or damaged components.
2. A check of the input voltage.
3. Measurement of PA PLATE voltage (M904), PLATE current (M903), GRID current (J452), and FILAMENT (J1 and J2). A log should be kept of these readings when the equipment is first installed so that tube or component failures can be anticipated and the defect corrected before trouble becomes serious.
4. Check clamper tube V451.
5. Blower and relay maintenance as described in the sections below:

BLOWER

The blower which is installed on the Power Supply and used for cooling the PA tube on the Power Amplifier should be cleaned periodically to maintain its efficiency. The motor bearings must be oiled (with an oil similar to Gulfcrest A
(WCR) low viscosity) every three months Do not allow oil to get on the impeller blades. If the impeller blades have become coated with oil they should be removed, washed in a grease solvent and hot water, and then replaced.

RELAYS

The relays in these units require little care. However, they should be inspected periodically to assure maximum operating efficienty. If the contacts become pitted, they should be cleaned with a burnishing tool to smooth out any metallic deposits. When relay contacts carry little or no current the contacts do not clean themselves and an insulating coating is apt to form. This coating may be removed by cleaning the contacts with a burnishing tool. Do not oil the relay bearings. When relays are in dusty locations, lubricated bearings will collect dust and grit and will wear more rapidly than non-lubricated bearings. Some of the relays used are of the multiple-contact type and, in the unenergized position, should have contact spacings of approximately 0.1625 to 0.125 inch. More important, the contact spacings on any multiple-contact relay should be equal so that the contact pressures will be equal when the relay is energized. The back pressure of the antenna relay should be at least 15 grams. Low back pressure will shorten the life of contacts, due to excessive arcing, and may also cause noise in the receiver, due to chatter of the antenna relay contact.

MAIN CHASSIS - rear VIEW

transformer chassis - rear view

vIEW "A"

voltage a resistance readings

bir	vorace ± 10	Ressistinet ± 20	sucrion
-1-1	:	${ }_{\text {4\%ox }}$	
5			cick
?			
-9	117 VAC HIGH 117 VAC HIGH		
-12			
${ }_{5}^{4}$		\bigcirc	
			${ }^{\text {Husi Pr, maney }}$
-	movo	.-.	
	5.55080 voc		grow
${ }_{-3}^{4}$			为
cus	2000 voc ***		*, ich votias

$* *$ Hassive on weere wer
6-VDC REGULATOR

TROUBLESHOOTING PROCEDURES

syuprom	Chick the folowing
No power supply outputvoltages when unit is keyed.	1. Fuses F451, F452, and F453.
	2. Tr451-8-9 for 117 vac unregulated,
	3. $\begin{aligned} & \text { rb4il-8-10 for } 117 \text { vac regulated, if } \\ & \text { used. }\end{aligned}$
	4. T8452-1-2 for 117 vaC .
	5. TB453-1-2 for 117 vac.
	6. K454 should become energized, when RF is applied to the PA.
	7. S452, T451, CR451, C453, and K456
	2. CR33 through CR36 on rectififier board
	3. $\begin{gathered}\text { Trase , C455, and c456 for opens or } \\ \text { shorts. }\end{gathered}$
No Grid voltage at J452.	R461, C460, K454 for opens or shorts.
No 140 VDC at $\mathrm{TB} 452-7-8$.	C453 and CR451 for opens or shorts.
No 6 vDC at $\mathrm{Jl} \& \mathrm{~J} 2$.	F453.
No 8 vic at tbs-1.	1. CR452, C454, R452 for opens or shorts.
	2. Check for 8 VDC across T 451 yellow- yellow leads.
No screen cur rent reading onPA plate current meter (1904)	1. 2000 VDC must be operating properly, then check R460, R461, R462, and C460 for opens or shorts
	2. Check 12 AuT .
${ }^{\text {Blower does }}$	

 ne ournuess unume ore. ,

