

SPECIFICATIONS *

MODEL NUMBERS	4EC59A95 through 4EC59A98
USED WITH	MASTR Professional Series 4-Frequency Mobile Combinations
CONTROLS	VOLUME Control
	SQUELCH Control
	OFF-ON-STBY Switch
SEARCH-OFF Switch	
OPTIONAL CONTROLS	Fl-F4 Selector Switch
INDICATORS	CHANNEL GUARD Monitor Switch
PRIORITY SQUELCH	Transmitter filament-on light: green
SENSITIVITY	Transmit light: red
TEMPERATURE RANGE	Frequency Select Indicators

[^0]
TABLE OF CONTENTS

SPECIFICATIONS Cover
DESCRIPTION 1
CIRCUIT ANALYSIS 1
Controls 1
Indicator Light Control Circuits 2
12-Volt Systems 2
6- and 28-Volt Systems 3
Logic Circuits 3
Priority Search Lock Monitor Circuits 7
SYSTEM MODIFICATION 9
PRIORITY SQUELCH ADJUSTMENT 10
MAINTENANCE 10
OUTLINE DIAGRAMS
MASTR Control Unit 12
PSLM Board A703 16
Lamp Dimmer Board A702 16
Integrated Circuit Logic and Schematics 15
SCHEMATIC \& INTERCONNECTION DIAGRAM 13
PSLM SCHEMATIC DIAGRAM 17
PARTS LIST
Control Unit and System Accessories 14
PSLM Board A703 18
TROUBLESHOOTING PROCEDURE 20

DESCRIPTION

MASTR Progress Line Control Units with two-frequency Priority Search-Lock Monitors (Models 4EC59A95-98) are used in three or four frequency MASTR mobile combinations. These control units are compact, highly functional units designed for Trunk Mount installation. A plate is installed on the back of the control unit to hold the connectors. A mounting bracket is supplied for mounting the control unit within convenient reach of the operator. Cable connections are secured to the control unit by means of captive locking screws.

The two-frequency Priority Search-Lock Monitor (PSLM) has the feature of selecting either the priority or the non-priority channel from one of four frequencies by using the frequency selector switch on the control unit. The PSLM assures reception of all signals on the priority channel regardless of signal strength or which channel receives the first signal.

[^1]Either the priority or the non-priority channel is pre-selected in the control unit. The second channel to be searched can then be selected from the remaining channels by means of the frequency selector switch on the control unit. If the pre-selected channel is priority, the non-priority channel can be selected with the frequency selector switch from the remaining three or four channels. If the pre-selected channel is nonpriority, the priority channel can be selected with the frequency selector switch.

An automatic pilot light dimmer has been incorporated in these control units. This dimmer uses a photo-resistor to sense ambient light and adjust the lamp regulator to provide the proper lamp current to the pilot lamps for the existing ambient light conditions. The intensity of the green power on lamp and the four channel lamps are controlled by this automatic pilot light dimmer. The red transmit lamp intensity is not adjustable. The lamps are extinguished when the combination is in STANDBY.

The mobile option numbers and the applications of each option are shown in the
following chart.

OPTION NUMBER	MODEL NO.	CHANNEL GUARD SWITCH	TONE OPTION JACK
7380	4EC59A95		
7381	4EC59A96	x	
7382	$4 E C 59 A 97$		x
7383	$4 E C 59 A 98$	x	x

NOTE
The PSLM is compatible with receive Channel Guard in the five-Watt MASTR mobile receiver. PSLM is not compatible with two-Watt receivers with Channel Guard. The presence or absence of the correct Channel Guard encode tone will only determine whether audio is or is not heard from the speaker. Priority channel will always be heard. Carrier without Channel Guard will not be heard, but the channel lamp will light and serve as a channel busy indicator.

CIRCUIT ANALYSIS

CONTROLS

In addition to VOLUME and SQUELCH controls, the control units are provided with the controls described in the following paragraphs.

OFF-ON-STBY Switch (S701)

The OFF-ON-STBY (standby) switch determines the operating modes of the transmitter and receiver. With the switch in the OFF position, all power is removed from the Two-Way Radio. Turning the switch to STBY applies power to the receiver only, and the green pilot lamp does not light.

Turning the switch to the ON position applies filament voltage to the transmitter, activates the push-to-talk (PTT) circuits, and lights the green power-on pilot lamp. After a short warm-up time, the PTT button may be pressed to key the transmitter. Pushing the PTT button energizes the system relay which, in turn, activates the power supply, switches the antenna and mutes the receiver. Keying the transmitter also lights the red transmit pilot lamp.

F1-F4 Frequency Selector Switch (S702)

The frequency selector switch selects the desired channel (F1-F4) for both transmitting and receiving. However, frequency selection for the receiver is also determined by the SEARCH-OFF switch S703.

SEARCH-OFF Switch (S703)
When switch S 703 is in the SEARCH Position, PSLM operation is selected. This gives priority to the pre-selected channel. The OFF position of S703 disables the PSLM. In this condition, the position of the frequency selector switch determines which channel is monitored.

When the SEARCH-OFF switch is OFF, the frequency selector switch connects +10 Volts to the selected receiver oscillator switching diode and connects the transmitter oscillator switching diode and connects the transmitter oscillator switching diode to ground. This permits the unit to operate on the frequency determined by each of the crystal-controlled oscillators.

When SEARCH is selected, the +10 Volts is applied to the pre-selected receiver oscillator from the PSLM circuits. The transmitter oscillator switching diode connected to ground is determined by the position of the frequency selector switch. The position of the frequency selector switch also determines which channel is the non-priority channel to be monitored.

INDICATOR LIGHT CONTROL CIRCUITS (A7O2)

Turning the OFF-ON-STBY switch to the ON position completes the emitter circuit of series regulator transistor Q701. Conduction of Q701 lights the green power-on lamp. Current through Q701 is controlled by the conduction of Q1, whose base bias is controlled by the setting of adjustable potentiometer R4 and the series resistance of photo-resistor V701. The resistance of V701 is determined by the ambient light falling on its photosensitive surface.

When a signal is received, a positive voltage from the monitor lock output of the PSLM is applied to the base of Q7. Conduction of Q7 turns on Q6. Conduction of Q6 grounds the emitters of Q2-Q5. Depending on which frequency is being received, +10 Volts is applied to the base of the corresponding lamp control transistor (Q2-Q5), causing the transistor to conduct through its associated frequency indicator lamp and the series regulator circuit.

When the SEARCH-OFF switch is in the OFF position, the +10 Volts is applied to the control transistors through the frequency selector switch.

12-VOLT SYSTEMS

In 12 -Volt vehicle systems, the Control Unit may be connected for three different modes of operation, depending on the way the three ignition switch cables are connected in the vehicle system. The black ignition switch cable provides the receiver ground connection. The yellow fused lead provides the receiver hot connections, and the red fused lead provides the hot connections for the transmitter filaments. The three types of operation are:

1. Ignition Switch Standby - For this type of operation, the red fused lead (transmitter filament voltage) is connected to the ACCESSORY or ON terminal of the ignition switch. The yellow fused lead (receiver hot) is connected to the hot side of the ignition switch, and the black lead connects to vehicle ground.

With the ignition switch OFF, the receiver automatically reverts to STBY, ready to receive messages. Turning the ignition switch to the ON or ACcessory position turns on the green pilot light and supplies transmitter filament voltage. Turning the OFF-ONSTBY switch to OFF removes all power to the Two-Way Radio.
2. Ignition Switch Control - For ignition switch control, the yellow and red fused leads are connected to the ACCESSORY or ON terminal of the ignition switch. The transmitter and receiver will operate only when the ignition switch is in the ACCESSORY or ON position. Turning the ignition switch OFF removes all power to the radio.

Figure 1 - 12-VDC Connections for Ignition Switch Standby
3. Ignition Switch Bypass - For ignition switch bypass, the yellow and red fused leads connect to the "hot" side of the ignition switch or the vehicle fuse block assembly. Both the transmitter and receiver operate independently of the ignition switch and can be turned on and off only by the OFF-ON-STBY switch on the MASTR Control Unit.

6- AND 28-VOLT SYSTEMS

In 6- and 28-Volt systems, the Control Unit may be connected for two different modes of operation, depending on the way the two ignition switch cables are connected in the vehicle system. The black cable provides the connection from the relay coil on the fuse assembly to the control head. The yellow fused lead provides the hot connection to operate the relay. The two types of operation are:

1. Ignition Switch Control - For ignition switch control, the yellow fused lead connects to the ON or ACCESSORY terminal of the ignition switch. The transmitter and receiver will operate only when the ignition switch is in the ON or ACCESSORY position. Turning the ignition switch OFF removes all power to the radio.
2. Ignition Switch Bypass - For ignition switch bypass, the yellow fused lead connects to the "hot" side of the ignition switch or vehicle fuse block assembly. Both the transmitter and receiver operate independently of the ignition switch, and can be turned on and off only by the OFF-ON-STBY switch on the MASTR Control Unit.

LOGIC CIRCUITS

This section contains a detailed description of all of the logic circuits used in the PSLM board. It is suggested that the serviceman study the following information carefully, as a good understanding of basic logic circuitry is essential for servicing the PSLM.

SOLID STATE SWITCHES

An ideal switch has infinite resistance when open and zero resistance when closed. The transistor and semiconductor diode can be made to approach these conditions while operating at a much higher rate than conventional switches. Logic circuits are primarily switching devices which are either in a state of full conduction (saturated) or turned off. These devices can be switched from one state to the other as rapidly as required by the circuit function.

DIODE SWITCH

A semiconductor diode presents maximum resistance to the circuit when the diode is reverse-biased or there is no difference of potential between the cathode or anode (see Figure 2). Applying a negative potential to the cathode of the diode (with respect to the anode), or a positive potential (with respect to the cathode) to the anode of sufficient amplitude to overcome the series resistance of the diode, forward biases the diode causing it to conduct. The diode now switches from maximum to minimum resistance.

The resulting current flow in the diode circuit increases from near zero to the

Figure 2 - Diode Switching Circuit

Figure 3 - Transistor Switch \& Inverter
maximum value allowed by the amplitude of the switching voltage and the series resistance of the circuit.

TRANSISTOR SWITCH \& INVERTER

The high value of "off" resistance and the low value of "on" resistance make the transistor invaluable for switching applications. When no base current is applied to the transistor switch shown in Figure 3, and the collector has the proper voltage applied, the open circuit resistance of the transistor approaches several megohms. If sufficient base current is suddenly applied to drive the transistor into saturation (turned $O N$), the collector-emitter resistance will drop to as low as 1.0 ohm . Voltage across the transistor under these conditions may be only a few tenths of a Volt:

The transistor stage shown in Figure 3 can also be used as an inverter for reversing the polarity of the input signal. A positive signal applied to the base-emitter junction will cause the collector voltage to drop from +6 Volts to near ground potential.

Figure 5 - Simple OR Gate

GATING CIRCUITS

Formal logic requires that a statement be either true or false; no other condition can exist for the statement. A logic circuit is basically a switch or gate that is either closed or open; no other condition can exist for the circuit. By logical arrangement of these gating circuits, electrical functions can be performed in a pre-determined sequence by opening or closing the gates at the proper time.

A single-pole, single-throw switch is equivalent to a binary device with only two possible operating conditions: either open or closed. If point " C " of Figure 4 is to be made equal to potential V , switches A and B must be closed. It can then be said that A AND $B=C$. If switches A and B are considered as gates, then potential V is said to be gated to "C" when both gates are closed. By representing the closed state of a switch or gate as "l" and the open state of a switch or gate as "0", then all possible conditions for the AND gate are shown in the Truth Table in Figure 4.

Figure 6 - Diode OR Gate

Figure 7 - Diode AND Gate

In Figure 5, if point "C: is to be made equal to potential V, either switch A or B (or both) may be closed. It can then be said A OR $B=C$. All possible conditions for the OR gate are shown in the Truth Table in Figure 5.

DIODE GATING CIRCUITS

In gating circuits, the desired state of the gate may be represented by either "O" or "l"。 In this section, "l" will be used to represent a positive potential (approximately +6 Volts) and " 0 " will be used to represent a low potential (near zero Volts).

Logic Symbols

The use of logic symbols in this manual provides a simple method of showing the function of complicated logic circuits without drawing each diode, resistor and transistor in the circuit. The individual symbols can be tied together to form a logic diagram of a complete unit. Logic symbols of circuits used in the PSLM are shown in the following simplified diagrams.

Figure 8 - Simplified NAND Gate

OR Gate

A simple diode $O R$ gate is shown in Figure 6. The same conditions exist in this circuit as the switch gate of Figure 5. Application of a positive potential at any of the inputs will result in an output of the same polarity, representing the "l" state。

AND Gate
A simple diode AND gate is shown in Figure 7. The same conditions exist in this circuit as in the switch gate of Figure 4. Application of a positive potential to the diodes at all inputs will result in a positive potential at the output. This represents the " 1 " state of the gate. Application of a positive potential to one or two terminals will result in no potential developed, representing the " 0 " state of the gate.

NAND Gate

The basid logic circuitry used in the PSLM is the NAND gate (NOT-AND). A NAND gate is simply an AND gate with a transistor inverter (NOT) stage added (see Figure 8). Applying a positive potential to inputs A and B back biases diodes CRI and CR2, permitting inverter Q1 to conduct. When conducting, the collector of Q1 drops to near ground potential.

Additional buffer or amplifier stages are usually added to the NAND gate to provide better isolation and increased gain. These additional stages are connected so that the logical output of the inverter is not changed.

NAND Gate One-Shot

Two NAND gates may be connected as shown in Figure 9 to provide virtually the same function as a conventional "one-shot" multivibrator. One of the NAND gates is required to have a direct input (called an expander node).

Figure 9 - NAND Gate One-Shot

Assume that the inputs to Gate 1 are positive, making the output near ground potential. This ground is applied to the input of Gate 2, making its output positive so that Cl charges. Applying a negativegoing pulse to the input of Gate 1 causes its output to go positive. This positive output is applied to the input of Gate 2 , causing its output to drop to ground, discharging capacitor C1. Cl starts charging through the circuitry in Gate l, keeping the output of Gate 1 positive until the
capacitor charges. When C1 is charged, both inputs to Gate 1 are positive, and the output drops to near ground potential. The output of the "one-shot" is a square wave whose pulse width is determined by the value of $C 1$ and the resistance in NAND Gate 1.

FLIP-FLOPS

Two NAND gates connected as shown in Figure 10 will provide the same logic functions as the conventional flip-flop (bistable multivibrator).

Assume that a positive potential is applied to all inputs. Momentarily grounding the cathode of CR4 turns off Q2, causing its collector voltate to rise to approximately +6 Volts. This turns on Q1, causing its collector voltage to drop to near ground potential, keeping Q2 turned off. The flipflop will remain in this state until CR1 is grounded.

Usually, two or more of the flip-flops are connected in a "master-slave" configuration (one flip-flop driving the other) for additional flexibility. Terminal identification for the flip-flop is shown in Figure llA. However, the flip-flops used in the PSLM are actually connected as shown in Figure 11B, with external connections from input terminal 3 to output terminal 5, and from input terminal 2 to input terminal 6. This leaves terminal 1 as the input terminal 1 as the input terminal or "Trigger". A flip-flop connected in this manner ($J-K$ connected) will change state each time a pulse is applied to the trigger (terminal 1).

Figure 10 - NAND Gate Flip-Flop

For purposes of simplicity, supply the ground terminals (as well as any unused terminal) are not shown in the logic diagrams.

Figure 11 - Flip-Flop Terminal Identification

PSLM CIRCUITS (A703)

The Priority Search-Lock Monitor is fully transistorized, using both discrete components and Integrated Circuit modules (IC's). Discrete components are used in the pulse generator, differentiator, driver, audio muting and squelch circuits. The IC's are used in the logic circuitry. Typical schematic and logic diagrams for the IC's are listed in the Table of Contents.

References to symbol numbers mentioned in the following text may be found on the Outline Diagram, Schematic Diagram and Parts List (see Table of Contents).

Supply voltage for the PSLM is provided by the mobile or station lo-Volt regulator. +10 Volts is required for operating the discrete transistor stages. The IC's are supplied by the output of the 5.4 -Volt regulator circuit composed of C4, CR2, and R7.

MASTER PULSE GENERATOR

The heart of the PSLM is the Master Pulse Generator. The pulse generator consists of unijunction transistor Q1, resistors R1 through R4 and capacitor C1. When power is applied to the circuit, Cl charges up and causes Q1 to conduct (emitter to base-1). This quickly discharges C1, causing Q1 to stop conducting until Cl charges up again through R1 and R2. This cycle is repeated as long as power is applied to the circuit, and provides a positive output pulse every 125 milliseconds (8 Hz).

This output is applied to two different IC's to provide the timing pulses required for the different modes of operation. The PSLM sample rates and times discussed in the different modes of operation were selected to assure the reception of the first syllable of a message received on either channel, and to assure full intelligibility of messages received on the non-priority channel.

MODES OF OPERATION

Operation of the PSLM can be divided into three different modes. The three modes are:

- Receiver squelched
- Receiving priority channel
- Receiving non-priority channel

RECEIVER SQUELCHED

When the receiver is squelched (no signal applied), the PSLM alternately monitors each channel four times per second for a duration of 125 milliseconds. IC output timing waveforms for this mode of operation are shown in Figure 12.

The base of Inverter Q14 is tied to the Mon-Lock input (collector of DC amplifier Q9 in the MASTR Receiver). When the receiver

Figure 12 - Receiver Squelched Waveforms
is squelched, approximately 8.5 Volts are applied to the base of Q14, keeping the transistor turned off. When turned off, the emitter of Q14 is at a positive potential (or "1") which is continuously applied to terminal 9 of NAND Gate 1.

When a positive pulse fromMaster Pulse Generator Q1 is applied to terminal 10, the "l" at both inputs causes output terminal 8 to drop to "0", triggering the Channel FlipFlop. The flip-flop is triggered every 125 milliseconds by the pulse generator, which alternately turns on the F1 and F2 Drivers, applying +10 Volts to the receiver oscillators. The PSLM will continue switching until a signal unsquelches the receiver.

RECEIVING PRIORITY CHANNEL

When a signal is received on the priority channel, the PSLM locks on that channel for the duration of the message. IC output timing waveforms for this mode of operation are shown in Figure 13.

Assume that $F 1$ is the priority channel. Receiving a signal on the Fl channel unsquelches the receiver and grounds the base of Inverter Q14, turning it on. When turned on, the emitter of Q14 drops to ground potential, applying a " 0 " to terminal 9 of Gate l, resulting in a " 1 " at output terminal 8. The output will remain a "l" as long as a " 0 " is applied to the input. This blocks the Master Pulse Generator output and prevents the Channel Flip-Flop from being triggered.

The " 0 " at terminal 6 of the Channel Flip-Flop keeps Fl Driver Q5 turned on, applying +10 Volts to the Fl receiver oscillator。

[^2]The Master Pulse Generator output also drives the Divider Flip-Flop, whose output is applied to the input of Gate 2. When a signal is received on the priority channel, the output of the Priority Selector/Identifier Gates (gates 4, 5 and 6) blocks Gate 2, preventing the timing pulses from being applied to the other IC's and triggering the Channel Flip-Flop.

When Fl is the priority channel, +10 Volts is continuously applied to Fl Priority jack J3. This results in a "l" at terminal 2 of Gate 4. The " 0 " at terminal 6 of the Channel Flip-Flop is applied to terminal 1 of Gate 4, resulting in a " 1 " output to Gate 6.

Applying a "1" to both inputs of Gate 6 results in a "0" at the output. This " 0 " is applied to the input of Gate 2, blocking the gate.

With Gates 1 and 2 blocked, the PSLM remains locked on the Fl channel until the message is completed (receiver squelches).

RECEIVING NON-PRIORITY CHANNEL

When a signal is received on the nonpriority channel, the PSLM stops on that channel while monitoring the priority channel four times per second for a duration of six milliseconds. If a signal is received on the priority channel while receiving the non-priority channel, the PSLM will revert from the non-priority channel and lock on the priority channel for the duration of the message. IC output timing waveforms for this mode of operation are shown in Figure 14.

Assume that F2 is the non-priority channel. Receiving a signal on the F2 channel turns on Inverter Q14. This blocks Gate 1 and the Channel Flip-Flop turns on the F2 Driver, applying +10 Volts to the F2 receiver oscillator.

On the non-priority channel, +10 Volts is not applied to the F2 Priority jack (J2) so that both inputs to Gate 5 are " 0 ", resulting in a "l" output to Gate 6. With the Channel Flip-Flop stopped on the F2 channel, both inputs to Gate 4 are "l"s, resulting in a "0" output to Gate 6.

Applying a " 1 " and a " 0 " to the inputs of Gate 6 results in a "l" at the output. The " 1 " output does not disable Gate 2, so that the timing pulses from the Master Pulse Generator are passed to Differentiator Q2.

The output of Gate 2 is differentiated by C2 and R5 (see Figure 14), and the pulses are applied to the base of Q2. As Q2 is an NPN transistor, only the positive pulses (applied every 250 milliseconds) cause the transistor to conduct. When Q2 conducts, the negative-going output pulse at its collector forward biases CR1 and switches the

Figure 14 - Non-Priority Channel Waveforms

Channel Flip-Flop to the priority channel. The output of Q2 also activates One-Shot Time Delay IC3, which provides a six-millisecond positive output pulse. The output pulse is simultaneously applied to the audio muting circuit and to Inverter IC-2B.

In the audio muting circuit, audio and noise from the emitter of audio-noise amplifier Q5 on the MASTR receiver is connected to J8 on the PSLM board. The audio is normally coupled through C8, R20, C7 and EmitterFollower Q9, and then connected from J7 to volume high in the mobile or station combination.

The positive pulse from the One-Shot turns on Q7 and then Q8 for a total time of eight milliseconds. When turned on, the collectors of Q7 and Q8 drop to ground
potential, shunting the receiver audio path. This prevents an objectionable noise burst from being heard at the speaker each time the priority channel is monitored (every 250 milliseconds).

At the same time the audio is muted, the output of the One-Shot is inverted and applied to the Squelch Muting Transistor Q10 and to Differentiator Q4.

The fast squelch circuit consists of Q10 through Q13. When the priority channel is not being monitored, audio and noise a pplied to the fast squelch circuit is shunted to ground by normally-on transistor Q10. When the Channel Flip-Flop is switched to the priority channel, the negative-going six millisecond inverter output is applied to the base of Q10, turning the transistor off. While Q10 is turned off, the noise output of the active high-pass noise filter is applied to the base of Noise Amplifier Q12. The filter consists of C9, Clo, Cl2, R25, R26, Squelch Adjust potentiometer R29, and Q11. Instructions for setting R29 are listed in the Table of Contents.

The output of Q12 is rectified by CR7 and CR8, and the resultant negative voltage turns off DC Switch Q13. Turning off Q13 removes the " 0 " at the input of Gate 3, unlocking the gate.

While Q13 is turned off, the output of Inverter IC-2B is differentiated by C5 and Rlo (see Figure 14), and the positive-going pulse turns off PNP transistor Q4. Turning off Q4 applied a " 1 " to the remaining input of Gate 3, switching the output to a " 0 ". The " 0 " triggers the Channel Flip-Flop, causing it to switch back to the non-priority channe1. The entire cycle is repeated every 250 milliseconds until a signal is received on the priority channel.

If a signal is received on the priority channel during the six millisecond monitor period, the signal quiets the receiver.

With the receiver quieted, there is insufficient noise to operate the fast squelch circuit so that Q13 remains on (its collector at ground potential). The "0" at the collector of Q13 blocks Gate 3, while the output of the Priority Selector/Identifier Gates block Gate 2. With both gates blocked, the Channel Flip-Flop remains locked on the priority channel for the duration of the signal.

SYSTEM MODIFICATION

The following modifications are required for MASTR mobile combinations when the Priority Search Lock Monitor options are installed. The modifications change receivers equipped with standard crystal oscillators (non-ICOM) to reduce the oscillator starting time.

1. On all Receiver and Dual Front End oscillator boards, C5, C6, C7 and C8 were removed. C17, C18, C19 and C20 were replaced with 7 pF , NPO ceramic capacitors (GE Part No. 19C300685P95).
2. On all UHF Receivers and Dual Front End oscillator boards, removed C5, C6, C7 and C8. Replaced C17, C18, C19 and C20 with 7 pF , NPO ceramic capacitors (GE Part No. 19C300685P95). Also removed RT9 and C43.

PRIORITY SQUELCH ADJUSTMENT

Priority Squelch Adjust R29 was set at the factory for $20-\mathrm{dB}$ quieting sensitivity on the priority channel, and will normally require no further adjustment. If it should become necessary to set R29, use the following procedure. A signal generator (M560 or equivalent) with a 6-dB pad is required.

Before starting the procedure, make sure that the receiver is properly aligned with the PSLM disabled (SEARCH-OFF switch in the OFF position). Then measure and record the priority channel $20-\mathrm{dB}$ quieting sensitivity.

1. Place the Frequency Selector Switch in a non-priority frequency position and the SEARCH-OFF switch in the SEARCH position.
2. Alternately squelch and unsquelch the receiver until the PSLM stops on the non-priority channel. The PSLM searches when the receiver is squelched and may lock on either the priority or non-priority channel when the receiver is unsquelched. Therefore, several attempts may be required to stop the PSLM on the non-priority channel. Make sure that the PSLM is stopped on the non-priority channel by checking the light on the mobile control unit.
3. Next, apply a signal on the priority channel from the signal generator output until the receiver switches to the priority channel. This should be at the $20-\mathrm{dB}$ quieting level as measured previously.
4. If necessary, adjust the Priority Squelch control R29 until the PSLM switches channels at the $20-\mathrm{dB}$ level. Check all channels for this same function.

MAINTENANCE

DISASSEMBLY

Access to the inside of the Control Unit is obtained by removing the four Phil-lips-head screws in the back of the unit and pulling the back plate away from the housing.

PILOT LAMP REPLACEMENT

The pilot lamps can be replaced by removing the front name plate and removing the two Phillips-head screws holding the lamp bracket in place. The wires attached to the bracket are removed and then the lamps may be replaced.

Figure 15 - Disassembly of Control Cable Plug

REINSTALLATION

If it becomes necessary to move the control unit to another vehicle, the $25-\mathrm{pin}$ control cable plug may require disassembly. Refer to Figure 15 for disassembly of the plug.

NOTE
The plug is assembled so that the cable comes out of the top of the plug when connected to the Control Unit. To change the cable so that it comes out the bottom of the plug, remove the remaining two screws and rotate the metal frame 180 degrees.

SYstem frame
AND HARESS

OUTLINE DIAGRAM
MASTR CONTROL UNIT
MODELS $4 E C 59$ A95- 98
12 Issue 1

MASTER-SLAVE FLIP-FLOP 19Al15913-PIO

LOGIC DIAGRAM

LOGIC \& SCHEMATIC DIAGRAMS
FOR INTERGRATED CIRCUIT MODULES PRIORITY SEARCH-LOCK MONITOR

OUTLINE DIAGRAM

PSLM BOARD A703
\square RUNS ON COMPONENT SIDE

IN-LINE TRIANGULAR
VIEW FROM LEAD END
NOTE: LEAD ARRANGEMENT, AND NOT GASE SHAPE, IS DETERMINING FACTOR FOR LEAD IDENTIFICATION.

OUTLINE DIAGRAM

A702 LAMP DIMMER BOARD

SYMBOL	GE PART No.	DESCRIPTION
		- capactions
${ }^{\text {c1 }}$	${ }_{54962672213}$	
${ }^{\text {c2 }}$	1991160880p	Polyester: $0.047 \mu \mathrm{f} \pm 20 \%$, 50 vvcW.
${ }^{\text {c3a }}$	$5496267 \mathrm{P417}$	
сзв	198200240815	Tantalum: 1.8 нt $55 \%, 20 \mathrm{vDCW}$.
${ }^{\text {c3c }}$	${ }_{54962677413}$	
${ }^{\text {c4 }}$	5496267 pro	Tantalum: $22 \mu \mathrm{f} \pm 20 \%, 15$ VDCW; sim to Sprague Type 150 D.
${ }^{\text {cs }}$	19A11608095	Polyester: $0.047 \mu \mathrm{f} \pm 20 \%$, 50 vvcw.
c6	${ }^{54962677228}$	
$\substack{\text { cid } \\ \text { and }}$	19A11608005	Polyester: $0.047 \mu \mathrm{f} \pm 208$, 50 vdc.
$\substack{\text { cand } \\ \text { cid }}$	$5494481 \mathrm{Pl24}$	
${ }^{\text {c11 }}$	${ }_{5496267729}$	Tantalum: $0.68 \mu f \pm 20 \%, 35$ vDCW; sim to Sprague Type 150 D.
${ }^{\text {c12 }}$	$5494481 \mathrm{P}_{2} 24$	Ceramic disc: 1500 pf $\pm 10 \%, 1000$ VDCW; sim to RMC Type JF Discap.
$\begin{gathered} \text { c13 } \\ \text { chru } \end{gathered}$	191116080p5	Polyester: $0.047 \mu \mathrm{f} \pm 20 \%$, 50 voci .
${ }^{\text {c16 }}$	${ }_{5496267 \text { 727 }}$	
$\mathrm{cl}^{17 \mathrm{~A}}$	${ }^{5496267 p 227}$	Tantalum: $0.33 \mu \mathrm{f}$ Sprague Type $\pm 10 \%, 35 \mathrm{VDCW}$; sim to
${ }_{\text {c178 }}$	5496267 P 288	
c17c	${ }^{5496267 p 229}$	
c17p	${ }^{54962677230}$	Tantalum: $0.82 \mu \mathrm{f}$ Sprague Type 150 D .
Cl_{17}	${ }^{5966267 p 217}$	Tantalum: $1.0 \mu \mathrm{f}$ Sprague Type 150%. 35 VDCW; sim to
C17\%	5496267 P 226	
${ }^{\text {c176 }}$	5496267 P 24	
$\begin{gathered} \text { cid } \\ \text { cad } \\ \text { cid } \end{gathered}$	19A116080p 4	Polyester: $0.033 \mu \mathrm{f} \pm 20 \%$, 50 vNCW .
c20	${ }^{5966267 p 228}$	
${ }^{\text {cr1 }}$	${ }^{40380568 p 1}$	----- - - drodes and rectip
${ }^{\text {cR2 }}$	${ }^{\text {4036887p5 }}$	silicon, zener.
${ }^{\text {cr3 }}$	${ }^{4036887748}$	${ }^{\text {silicon, } \mathrm{zener}}$.
$\begin{gathered} \text { Rnd } \\ \text { cnd } \\ \text { crio } \end{gathered}$	19A115250p1	sillicon.
${ }_{\text {cri }}^{\text {cri }}$	4036887748 19a815250p	St11con, Zener.
$\begin{gathered} \substack{\mathrm{ckr} 7 \\ \text { chr }} \\ \text { che } \end{gathered}$	19A152500p1	St11 icon.
ge 19	blank)	

SYMBOL	GE PART NO.	DESCRIPTION	SYMBOL	ge part no.	DESCRIPTION
IC3 IC4	$\begin{aligned} & \text { 19A115913P10 } \\ & \text { 19A115913P7 } \\ & \text { 19A115913P1 } \\ & \text { 19A115913P7 } \\ & \\ & \text { 4033513P4 } \\ & \\ & \text { 19A115364P1 } \\ & \text { 19A115123P1 } \\ & \text { 19A115768P1 } \\ & \\ & \text { 19A115362P1 } \\ & \\ & \text { 19A115123P1 } \\ & \text { 19A115768P1 } \\ & \text { 192 } \end{aligned}$	- - . . . - - INTEGRATED CIRCUITS Monolithic, Dual 945 Flip-Flop; sim to Fairchild DTL 093. , Monolithic, Quad 2-Input Gate; sim to Fairchild DTL 946 . Monolithic, Dual 4-Input Gate; sim to Fairchild DTL 930. Fairchild DTL 930. Monolithic, Quad 2-Input Gate; sim to Fairchild DTL 946 . \qquad Contact, electrical: sim to Bead Chain L93-3. \qquad Unijunction: N Type; sim to Type 2 N 2646 . Silicon, NPN; sim to Type 2N2712. Silicon, PNP; sim to Type 2N3702. Silicon, NPN; sim to Type 2 N 2925. Silicon, NPN; sim to Type 2N2712. Silicon, PNP; sim to Type 2N3702. Compositi: 1500 , Composition: 0.10 megohm $\pm 10 \%, 1 / 4$ w.		3R152P153K 3R152P104K 19B209358P106 3R152P333K 3R152P332K 3R152P362J 3R152P101K 3R152P103K 3R152P204J 3R152P272J 3R152P821J 3R152P104K 3R152Pl 83K 3R152P223K 3R152P512K 3R152P223K	Composition: 15,000 ohms $\pm 10 \%, 1 / 4 \mathrm{w}$. Composition: 0.10 megohm $\pm 10 \%, 1 / 4$ w. Variable, carbon film: approx 75 to 10,000 ohms $\pm 10 \%, 0.25 \mathrm{w}$; sim to CTS Type X-201 Composition: 33,000 ohms $\pm 10 \%, 1 / 4$ Composition: 3300 ohms $\pm 10 \%, 1 / 4 \mathrm{w}$. Composition: 3600 ohms $\pm 5 \%, 1 / 4$ w. Composition: 100 ohms $\pm 10 \%, 1 / 4$ w. Composition: 10,000 ohms $\pm 10 \%, 1 / 4 \mathrm{w}$. Composition: 0.20 megohm $\pm 5 \%, 1 / 4 \mathrm{w}$. Composition: 2700 ohms $\pm 5 \%, 1 / 4$ w. Composition: 820 ohms $\pm 5 \%, 1 / 4$ w. Composition: 0.10 megohm $\pm 10 \%, 1 / 4 \mathrm{w}$. Composition: 18,000 ohms $\pm 10 \%, 1 / 4$ w. Composition: 22,000 ohms $\pm 10 \%, 1 / 4 \mathrm{w}$. Composition: 5100 ohms $\pm 10 \%, 1 / 4 \mathrm{w}$. Composition: 22,000 ohms $\pm 10 \%, 1 / 4 \mathrm{w}$.

				(rest Point	$\xrightarrow[\substack{\text { Recever } \\ \text { SOUELCHED }}]{ }$	REGEVING NON.PRINRITY CHANNEL		(tEsT	(tacter		$\begin{gathered} \text { RECEIVING } \\ \text { NON-PRIORITY } \\ \text { CHANNEL } \end{gathered}$	$\begin{aligned} & \text { Recedving } \\ & \text { pRRIORIT } \end{aligned}$	LBI-4313
				(F)				(N)		2V/Div.			
				(G)	$\mathrm{im}_{\mathrm{m} / \mathrm{Div}}$			(0)	$50 \mathrm{~ms} /$ Div.				
(test	$\xrightarrow{\text { REEEVER }}$	$\begin{gathered} \text { RECEIVING } \\ \text { NON-PRIORITY } \\ \text { CHANNEL } \\ \hline \end{gathered}$	$\underset{\substack{\text { Receivinc } \\ \text { perioriv }}}{\text { and }}$ CHANA										
(A)		$50 \mathrm{~ms} /$ Div. 		(H)				(P)		sv//iv.		$50 \mathrm{~ms} /$ Div. 5V/Div. 	
(B)				(1)				(a)		$0.2 \mathrm{~V} / \mathrm{Div}$			
(c)				(J)	$\boldsymbol{m}^{2 \mathrm{~m} / \mathrm{Div.}}$	2ms/Div.		(R)	$\operatorname{mam}^{2 \mathrm{~m} / \mathrm{iv.}}$	0.2V/Div	$y^{2 \text { misioiv. }}$		
(D)	\qquad			(L)				(s)		$0.5 \mathrm{~V} /$ Div.			
(E)				(M)	$50 \mathrm{~ms} /$ Div.			(T)		IVoiv.			TROUBLESHOOTING PROCEDURE PRIORITY SEARCH-LOCK MONITOR Issue 1

[^0]: *These specifications are intended primarily for the use of the serviceman. Refer to the appropriate Specification Sheet for the complete specifications.

[^1]: When a signal is received on the priority channel, the PSLM stops searching and locks on the priority channel for the duration of the message. When a signal is received on the non-priority channel, the PSLM stops on that channel but continues to monitor the priority channel. If a signal is then received on the Priority channel the PSLM reverts to the priority channel and locks for the duration of the priority message.

[^2]: Figure 13 - Priority Channel Waveforms

