

SPECIFICATIONS *

Model Number

19D416781G1 19D416781G2	Single Channel Two Channels
Controls	Power-On Volume Squelch Selector Switch Channel Selector
Indicators	Power On Light Transmit Light
Model Number	FRONT PANEL \& SYSTEM BOARD

TABLE OF CONTENTS

SPECIFICATIONS
CONTROL UNIT 1
Description 1
Circuit Analysis 1
2
Maintenance
FRONT PANEL AND SYSTEM BOARD 3
Description 3
Circuit Analysis 3
Repeating ICOMS 5
Maintenance 6
Disassembly 6
Troubleshooting. 7
TRANSMITTER KEYING \& POWER DISTRIBUTION DIAGRAM 9
OUTLINE DIAGRAMS
Control Unit. 10
Front Panel \& System Board 11
INTERCONNECTION DIAGRAM. 12 \& 13
(Includes Control Unit and System Board Schematic Diagrams)
PARTS LIST AND PRODUCTION CHANGES 14
Control Unit 14
Front Panel \& System Board 14
Associated Assemblies 14
Microphone \& Hookswitch 17
Handset \& Hookswitch 18
Speaker 19

Although the highest DC voltage in the radio is supplied by the vehicle battery, high current may be drawn under short circuit conditions. These currents can possibly heat metal objects such as tools, rings, watchbands, etc. enough to cause burns. Be careful when working near energized circuits:

High-level RF energy in the transmitter Power Amplifier assembly can cause RF burns. KEEP AWAY FROM THESE CIRCUITS WHEN THE TRANSMITTER IS ENERGIZED!

CONTROL UNIT

DESCRIPTION

MASTR II Control Units are attractively styled, highly functional units that are enclosed in a two-piece molded Lexan ${ }^{(1)}$ housing for durability and ease of disassembly. The Control Units are mounted to the vehicle with a Safety Release Lexan ${ }^{\circledR}$ mounting bracket assembly for passenger safety.

The Control Unit uses a printed wiring board to provide a minimum of wiring. The only internal wires used are on the POWER-ON switch and indicator lights.

Cable plugs are secured to the back of the Control Unit by plastic locking clips. The plugs are equipped with indexing tabs to assure connection to the correct jack. The cable is equipped with a strain relief hook that attaches to a steel plate on the bottom rear of the Control Unit.

The microphone plug is secured to a jack on the bottom of the unit by means of a captive locking screw.

A11 indicator lights are light-emitting diodes (LEDs) for reliability, long life, and low power consumption.

CIRCUIT ANALYSIS

The Control Units are equipped with a VOLUME control, SQUELCH control and a POWER-ON rocker switch. The two-frequency Control Unit is also equipped with a frequency selector switch.

When the POWER-ON switch (S701) is in the OFF position, power is removed from the radio except for the transmitter $P A$, which is connected to the vehicle battery at all times. Pushing the switch to the ON position applies power to the radio, provides power for the push-to-talk (PTT) circuit and lights the power-on LED in the PowerOn/Frequency Indicator window.

Pressing the PTT switch on the microphone energizes the antenna switch, keys the transmitter, mutes the receiver, and lights the transmit indicator LED.

Releasing the PTT switch turns off the transmitter and transmit indicator, deenergizes the antenna switch and un-mutes the receiver. Refer to the Table of Contents for a simplified Transmitter Keying and Power Distribution Diagram.

CR701 and CR708 are protective diodes. CR701 will cause the fuse in the yellow lead to blow if the polarity is reversed. CR708 inhibits the PTT circuit if the
polarity of the red lead is reversed.

TWO-FREQUENCY SWITCH (S702)
The frequency select switch is a 12position switch with a mechanical stop that limits rotation to two positions.

In two-frequency radios, the frequency selector switch selects the desired channel (1 or 2) for both transmitting and receiving. The switch connects A- to the selected transmitter and receiver ICOM so that the radio operates on the selected channel.

IGNITION SWITCH CONNECTIONS

The Control Unit may be connected for three different modes of operation, depending on the way the three ignition switch cables are connected in the vehicle system. The black cable provides the system ground connection. The yellow fused lead provides the receiver hot connections, and the red fused lead provides the transmitter Push-To-Talk hot connection. The three types of operation are:

1. Ignition Switch Standby - For this type of operation, the red fused lead (PTT) is connected to the ACCESSORY or ON terminal of the ignition switch. The yellow fused lead (receiver hot) is connnected to the hot side of the ignition switch, and the black lead connects to vehicle ground.

With the ignition switch OFF and the POWER-ON switch on, the Power-On indicator light turns on, and the receiver is on, ready to receive messages. Turning the ignition switch to the ON or ACCESSORY position permits the transmitter to be keyed. Turning the POWER-ON switch to OFF removes power from the Two-Way Radio.
2. Ignition Switch Control-For ignition switch control, the yellow and red fused leads are connected to the ACCESSORY or ON terminal of the ignition switch. The transmitter and receiver will operate only when the ignition switch is in the ACCESSORY or ON position. Turning the ignition switch OFF removes all power from the radio.
3. Ignition Switch Bypass - For ignition switch bypass, the yellow and red fused leads connect to the "hot" side of the ignition switch or the vehicle fuse block assembly. Both the transmitter and receiver operate independently of the ignition switch and are turned on and off only by the POWER-ON switch on the Control Unit.

DISASSEMBLY

To gain access to the inside of the Control Unit, simply remove the two screws on the bottom of the front edge of the unit, and lift off the top cover.

To remove the printed wiring board from the control unit housing:

1. Remove the two screws holding the microphone jack.
2. Remove the screw between J 701 and J702, and remove the screw between J 702 and J703.
3. Remove the screw at each end of the switch and control mounting bracket.
4. Remove the screw holding Power-On switch S701 to the bottom housing. Then swing the printed wiring board up from the front and lift the board out.

RE-INSTALLATION

Standard MASTR II mobile combinations operate in ± 12-Volt systems only. If the radio is moved to a different vehicle, always check the battery polarity and voltage of the new system before using the radio.

Figure 1 - Using Extraction Tool

Figure 2 - 12-Volt, Negative Ground Connections

Figure 3 - 12-Volt, Positive Ground Connections

If the radio is moved to a vehicle with different battery polarity, it will be necessary to change the ignition switch leads to the vehicle systems plug. Use the extraction tool as shown in Figure 1, and change the leads as shown in Figures 2 or 3 as required.

FRONT PANEL \& SYSTEM BOARD

DESCRIPTION

The System Board mounts to the front casting of the radio, and terminates the power/control cable through jack J901 on the front panel. The System Board provides all power and control functions through printed wiring runs and jacks J902, J903 and J904 to the modules making up the transmitter and receiver functions.

The jack provides 30 control pins that are soldered directly to the System Board, two power pins, and holes for eight optional pins. Power cables from the two power pins run directly from $J 901$ through the left side rail to the bottom of the transmitter PA assembly.

Transmitter exciter and receiver modules plug in from the bottom to jacks on the rear of the System Board.

A hybrid integrated circuit 10 -Volt regulator and control module, a centralized metering jack, and pins for plugging in Channel Guard and Carrier Control Timer modules are also mounted on the System Board.

In Channel Guard applications, a jumper between H71 and H72 on the System Board is removed.

Centralized metering jack J905 is provided for use with General Electric Test Set 4EX3All or Test Kit 4 EX8K12. The red metering plug provides continuous access to the regulated 10 Volts, $A+$, transmitter and receiver audio, and PTT.

The black metering plug on the Test Set is used for metering the transmitter and receiver circuits.

CIRCUIT ANALYSIS

10-VOLT REGULATOR IC

The 10-Volt Regulator IC contains the following circuits:

- l0-Volt Regulator Reference Amplifiers
- Compensation Voltage Divider
- Receiver Muting and Delay
- Transmitter Keying and Delay
- Receiver Oscillator Control
- Transmitter Disable

A typical regulator IC is shown in Figure 4.

Figure 4 - Typical Regulator IC

10-Volt Regulator

The 10 -Volt regulator includes regulator amplifiers Q1 and Q2 (in the IC), and regulator pass transistor Q901. Q901 is mounted on the side of the front casting which acts as a heatsink for the transistor. The regulator circuit provides a closelycontrolled supply voltage for the transmitter exciter and receiver (except for the audio PA), and for Channel Guard and Carrier Control Timer options when present. Input voltage (A+) is supplied from the Control Unit on J901-29.

Turning on the radio applies voltage (A+) through input filter L901, C901 and C902 to pin 1 of the regulator and to the base of Q1, causing it to conduct. This turns on PNP regulator pass transistor Q901 and an output voltage appears at the collector. When the output voltage (at pin 3) reaches 10 Volts, zener diode VRI breaks down, and Q2 starts conducting.

If the output voltage starts to increase, the base current of Q2 also increases, causing it to conduct harder. This causes Q1 to conduct less, decreasing the forward bias on Q901. The voltage drop across Q901 increases and the output remains constant.

When the input voltage starts to drop, the output voltage also tends to drop, causing Q2 to conduct less. This allows Q1 to conduct harder, increasing the forward bias on Q901 and causing it to con-
duct harder. This reduces the voltage drop across Q901 to keep the output constant.

Service Note: The 10 -Volt regulator is protected against short circuits. When supply voltage is present but there is no lo-Volt output, the trouble is probably not in the 10 -volt regulator. Always check for a short (or high drain) on the 10 -Volt line before replacing the regulator (see Troubleshooting Procedure).

Compensation Voltage Divider

When the regulator is turned on, the lo-Volt output is applied to a voltage divider network consisting of R12 and R13. This high impedance source provides a stable 5 -Volt compensation input (at pin 5) to the transmitter and receiver ICOMs. This source must not be used for any other purpose.

Receiver Muting \& Delay

Pressing the PTT switch grounds the base of $Q 6$ in the receiver muting and delay circuit, turning it on. Turning on Q6 turns on Q7, causing its collector to drop to A-. The $A-$ at pin 6 is applied to the receiver squelch and audio ICs, muting the receiver.

With the PTT switch pressed, C906 starts to charge from the +10 -Volt line. When the PTT switch is released, C906 keeps Q6 and Q7 on for approximately 50 milliseconds as the capacitor discharges through R19, the emitter-base junction of Q6, and R16. This delays the turn-on of the receiver audio for 50 milliseconds.

Transmitter Keying \& Delay

Pressing the PTT switch on the microphone connects pin 8 of the regulator IC to A-. Capacitor C905 starts to charge through R6 and R7. In 15 milliseconds, C 905 is charged to a voltage high enough to allow time delay switch Q3 to turn on. This causes transmitter oscillator control switch Q4 to turn on. Turning on Q4 applies voltage to the transmitter ICOM(s), keying the transmitter. Keying the transmitter ICOM is the only keying control function in the transmitter. The collector voltage of Q4 also reverse biases CR6, turning off Q5 and removing the supply voltage from the receiver $\operatorname{ICOM}(s)$ 。

The 15 millisecond time delay in the transmitter oscillator keying circuit allows the antenna switch to energize before RF is applied to the antenna switch. When the PTT is released, diode CR901 delays the antenna switch from de-energizing until the RF is removed from the contacts.

Receiver Oscillator Control

When the radio is in the receive mode (transmitter unkeyed), transmitter oscillator control switch Q4 is off and receiver oscillator control switch Q5 is conducting. The voltage at the collector of Q5 is applied to the receiver ICOM(s).

Transmitter Disable
In radios equipped with a Carrier Control Timer, pin 11 connects to P907-1
(TX DISABLE) on the Carrier Control Timer plug. When the timing cycle on the Carrier Control Timer runs out, $A-$ is applied to pin 11, turning off the transmitter oscillator control voltage which turns off the transmitter.

REPEATING ICOMS

A matrix on the bottom of the System Board permits both the transmitter and

RC-2435A

Figure 5 - Repeating ICOMs
receiver to be adapted to repeat the use of the same frequency without the use of additional ICOMs. Isolation diodes and \#22 AWG sleeved jumpers are used to connect a single ICOM to more than one frequency control lead.

To repeat the receiver frequencies:

1. Cut the run between H 5 and H 6 , and H12 and H13 (see Figure 5).
2. Add a diode in each of the cut runs as shown.
3. Add a sleeved jumper between H7 and H14.
4. This provides two transmit frequencies and one receive frequency.

To repeat the transmitter frequencies:

1. Cut the run between H2 and H3, and H9 and H10.
2. Add a diode in each of the cut runs with the cathodes towards the control input.
3. Add a jumper between H4 and H1l.
4. This provides one transmit frequency and two receive frequencies.

Figure 6 - Disassembly Procedure (Top View)

MAINTENANCE

DISASSEMBLY

To service the System Board from the top (see Mechanical Parts Breakdown):

1. Pull the locking handle down, then pry up the top cover at the front notch and lift off the cover.

To service the board from the bottom:

1. Pull the locking handle down and pull the radio out of the mounting frame.
2. Remove the top cover, then loosen the two bottom cover retaining screws and remove the bottom cover.

To remove the System Board from the radio:

1. Remove the top and bottom covers.
2. Disconnect the receiver antenna input plug (A), and the exciter output plug (B).
3. Remove the five screws (C) holding the receiver RF assembly to the module mounting frame. Then remove the two screws (D) holding the receiver audio PA heatsink to the right side rail.

Figure 7 - Disassembly Procedure (Bottom View)
4. Remove the five screws (E) holding the receiver boards to the module mounting frame (see Figure 7).
5. Remove the six screws (F) holding the exciter board and its bottom cover to the module mounting frame.
6. Press straight down on the plug-in Exciter and then the Osc/Mult and IFAS boards to avoid bending the pins when unplugging the boards from the System Board jacks.
7. Remove the four screws (G) in each of the side rails and remove the side rails (see Figure 6). NOTE: Remove the shield on the left side rail to expose the power cables, and if desired, unsolder the cables from the bottom of the PA Assembly.
8. Disconnect the PTT leads from J910 on the System Board, and the antenna plug from the PA assembly.
9. If it is necessary to remove the System Board from the front casting, remove the mounting screw (H) from regulator transistor Q901. Then remove six screws (J) (three along the top and three along the bottom) on System jack $J 901$ and remove the System Board.

TROUBLESHOOTING
10-VOLT REGULATOR U901

SYMPTOM	PROCEDURE
No 10-Volt output	1. Check input voltage (A+) at pin 1 of $\mathbf{U 9 0 1}$. 2. Remove the Power/Control cable from J901. Check for shorts from Pins 3, 7 and 14 to A-. These readings should be no less than 100 ohms. 3. Check Pass transistor Q901. 4. Replace U901.
Regulator output too high	1. Check Q901. 2. Replace U901.
No switched 10 -Volts for transmitter or receiver	1. Check for shorts from Pins 7 and 14 to A-. 2. Check to see that Pin 8 of $\mathbf{~} 901$ goes to Awhen PTT switch is pressed. 3. Replace U901.

TRANSMIITER KEING \& POWER

\longleftarrow RUNS ON COMPONENT SIIE

OUTLINE DIAGRAM

CONTROL UNIT
19D416781G1 \& G2
10 Issue 3

SOLDER SIDE

(Page 16 is blank)

Symbo	6E Part No.	description
${ }^{51}$	${ }^{1982}$	
"1	19A116768P6 N193P1410C N84P5008C N404P8C6	

SCHEMATIC DIAGRAM

SERVICE SHEET

ANDSET \& HOOKSWITC
arts list

Symbol	ge Part no.	ESCRRITITION
		Adapter. Part of item 1. \qquad Receiver Cap. Part of item 1. Washer. Part of item 1 . Escutcheon. Part of 1 tem 27. Flat head screw, socket cap: No. $4-40 \times 1 / 4$. Part of item 27. Actuator. Part of item 27. Spring. Part of item 27. Plunger bar. Part of item 27. Transmitter cap. Part of item 1. Washer. Part of item 1. Transmitter cartridge. Shure Brothers RP139. Cable assembly: Includes items 14-23 and cable RP141. Flex relief. Cable clamp: sim to Kalco 21012-3. Resistor, (RI) Composition, 4700 ohms $\pm 10 \%$, $1 / 2$ w. Connector case. Screw. Pin contact. Connector Cover. Screw. (Secures cover, item 22 to case, item 18) Screw. Part of item 14. Cable clamp. Part of item 14. Shield. Part of item 1. Switch Assembly. Includes items 6-10. Shure Brothers RP143. Connector assembly: Includes items 15, 16, 18- 23. Does not include resistor, item 17.

ORDERING SERVICE PARTS

Each component appearing on the schematic diagram is identified by a symbol number, to simplify locating it in the parts list. Each component is listed by symbol number, followed by its description and GE Part Number.

Service parts may be obtained from Authorized GE Communication Equipment Service Stations or through any GE Radio Communication Equipment Sales Office. When ordering a part, be sure to give:

1. GE Part Number for component
2. Description of part
3. Model number of equipment
4. Revision letter stamped on unit

These instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with installation, operation or maintenance.

Should further information be desired, or should particular problems arise which are not covered sufficiently for the purchaser's purposes, contact the nearest Radio Communication Equipment Sales Office of the General Electric Company.

MAINTENANCE MANUAL

LBI-4480

