-(9\%) MOBILE RADIO

MASTR PROGRESS LINE

MAINTENANCE MANUAL

HICH POWER REPEATER
DC REMOTE/REPEATER TONE REMOTE/REPEATER

LBI-4523

TABLE OF CONTENTS

EQUIPMENT INDEX iii
SPECIFICATIONS iv
DESCRIPTION 1
Transmitter Assembly 2
Receiver 2
Power Supplies 2
Transmitter Exciter-Receiver Power Supply 2
Power Amplifier Power Supply 2
Antenna Circuits 2
Control Shelf Assembly 2
AC Input 2
Surge Protection 3
Microphone 3
Speaker Assembly 3
METERING CIRCUITS 3
Meter Panel 3
Meter Switching Panel Assembly 3
CIRCUIT ANALYSIS 4
INITIAL ADJUSTMENT 4
Test Equipment Required 4
Transmitter Adjustment 4
Receiver Adjustment 5
Power Supply Adjustment 5
Control Shelf Adjustment 5
MAINTENANCE 5
Test and Troubleshooting Procedures 5
Preventive Maintenance 5
OUTLINE DIAGRAM (Meter Switching Panel) 8
SCHEMATIC DIAGRAM (Meter Switching Panel) 9
INTERCONNECTION DIAGRAM 11
PARTS LIST
Meter Switching Panel 19A121460Gl 10
Floor Mount 7668242G14 12
Meter Panel 19C303519G4 12
Cabinet Blower, 4029917 G 2 (optional) 12
Line Voltmeter 19Al20042G5 (optional) 12
Microphone Model 4EM25Alo 13
Speaker Assembly 19B219618G1 14

No one should be permitted to handle any portion of the equipment that is supplied with high voltage; or to connect any external apparatus to the units while the units are supplied with power. KEEP AWAY FROM LIVE CIRCUITS.

EQUIPMENT INDEX

EQUI PMENT	TYPE OR MODEL NUMBER
Transmitter Exciters	ET-54-A, through ET-59-C
Power Amplifier (25-50 MHz)	4EF4A1, 2, 3
Power Amplifier ($144-174 \mathrm{MHz}$)	4EF5A1
Power Amplifier ($450-470 \mathrm{MHz}$)	4EF6A1
Power Amplifier Power Supply	4EP6A1 or 4EP6B1
Receiver	ER-39-A through ER-42-H
Cabinet	7668242G14
Station Power Supply	EP-38-A
Control Shelf	19D416725G1
Control Shelf System Board (Back Plane)	19D416721G1
Repeater Control Repeater Board Audio Board	$\begin{aligned} & \text { 19D416675G2, G4 } \\ & \text { 19D416667G1 } \end{aligned}$
Remote/Repeater-Tone Control Secur-it Tone Board Transmitter Control Board Audio Board Repeater Board	$\begin{array}{ll} \text { 19D416728G1 } & \\ \text { 19D416660G1, } & \mathrm{G} 4 \\ \text { 19D416667G2 } & \\ \text { 19D416675G2, } & \mathrm{G} 6 \end{array}$
```Remote/Repeater-DC Control DC Remote Control Board Repeater Board Audio Board```	19D416661G1   19D416675G2, G6 19D416667G2
Extender Board	19D416760G1
Microphone Microphone Mounting Kit	$\begin{aligned} & \text { 4EM25A10 } \\ & 7141414 \mathrm{G} 2 \end{aligned}$
Speaker Assembly	19B219618G1
117-VAC Power Cable	7491206P1
Alignment Tools (hex slug type)   (slotted screw type)	$\begin{aligned} & \text { 4038831P2 } \\ & 4033530 \mathrm{G} 2 \end{aligned}$
Meter Switching Circuit	19A121460Gl
Meter Panel	19C303518G4

## SPECIFICATIONS*

DIMENSIONS ( $\mathrm{H} \times \mathrm{W} \times \mathrm{D}$ )
WEIGHT

DUTY CYCLE (Transmit \& Receive)
INPUT VOLTAGE
INPUT POWER

TEMPERATURE RANGE
$69^{\prime \prime} \mathrm{x} 22^{\prime \prime} \mathrm{x} 23^{\prime \prime}$

Approximately 395 pounds
Continuous

117 VAC, $\pm 20 \%, 50 / 60 \mathrm{~Hz}$
Transmit: 9.3 amps max 1100 W . Receive: 1.5 amps max 176 w .
$-30^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right)$ to $+60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$

* These specifications are intended primarily for use by the serviceman. Refer to the appropriate Specifications Sheet for complete specifications.


## COMBINATION NOMENCLATURE



## DESCRIPTION

The General Electric MASTR Progress Line Floor Mount Station is a complete twoway High Power Repeater Station. The station can be placed in building adjacent to the antenna installation or it may be located in another location suitable to your communication requirements. The transmitter exciter board and the receiver are fully transistorized. Silicon transistors are used throughout for added reliability.

A muffin fan is used to air-cool the transmitter and 12.6 Volt regulator tran-
sistors. The fan is mounted on the front of the Transmitter-Receiver Power Supply, A blower is also used to cool the PA tubes in the Power Amplifier and is mounted on the front of the PA Power Supply. An optional cabinet blower is available for continuous duty and high temperature operation. This blower mounts in the bottom of the cabinet.

Both front and back doors on the station cabinet can be opened to gain access to the transmitter, receiver and power supply. The transmitter and receiver modules are equipped with centralized metering jacks, and are mounted on swing-out chassis for simplified alignment and troubleshooting.


Figure 1 - Typical Station Equipment Arrangement

The transmitter and receiver modules may be used interchangeably in mobile and station installations. No modifications are required when transferring the units from one type of operation to another.

The rear door is interlocked to protect personnel from voltages when the door is opened. A 117 VAC receptacle mounted in the cabinet provides AC for service equipment.

## TRANSMITTER ASSEMBLY

The transmitter assembly consists of the transmitter exciter and power amplifier. The PA is air-cooled by a blower mounted on the PA power supply chassis. The standard transmitter may be equipped with:

- One frequency
- Channel Guard (tone squelch)


## RECEIVER

The fully transistorized receiver is completely contained in an aluminum casting, which provides excellent electrical and reduces the effects of vibration. The standard receiver may be equipped with:

- One frequency
- Channel Guard (tone squelch)


## POWER SUPPLIES

Transmitter Exciter Receiver Power Supply EP-38-A

Station Power Supply Type EP-38-A provides operating voltage for the transmitter exciter, receiver and Control Shelf. The power supply provides:

- Regulated -20 Volts for the transistorized transmitter exciter-board.
- Regulated +10 Volts for the receiver, transmitter, Channel Guard, and Control Shelf.
- Regulated +12.6 Volts for transmitter filaments, receiver audio, relays, and pilot lights.


## PA Power Supply (4EP6B1)

The power supply provides the B-plus plate and screen grid voltages for the PA (types EF-4-A, EF-5-A and EF-6-A). In addition, the following voltages are provided for the PA:

- Volts regulated filament supply
- $\quad 140$ Volts $D C$ antenna relay supply


## Antenna Circuits

The transmission line from the antenna tower is coupled to the top connector on the antenna relay located on the Power Amplifier chassis. The antenna is coupled from the front connector on the relay directly to the high power amplifier. A coax cable connects the high power amplifier plug $P 482$ to the exciter jack Jl03 (Transmitter Exciter on Transmitter-Receiver Power Supply chassis). The receive transmission line connects directly to the left socket on the antenna mounting bracket located on the Transmitter-Receiver Power Supply chassis.


Figure 2 - Antenna Connections - Rear View

## CONTROL SHELF ASSEMBLY

Control Shelf 19D416725Gl contains the System Board, the AC input circuit and plugin printed wire modules with solid state circuitry for up to six DC Remote Control functions and up to twelve Tone Remote Control functions. The Control Shelf also contains the Repeater Control plug-in module.

## AC Input

The 117 VAC input is connected directly to TB1202-1 and -2. All power to the station is controlled by switch Sl201 on the control shelf. When S 1201 is turned $\mathrm{ON}_{2}$ the green Power-On light on the meter panel ${ }^{t}$ will become illuminated.

An optional 220/110 VAC Stepdown Transformer Kit is available for use when the input line voltage is 220 VAC.


#### Abstract

WARNING 117-Volts AC is always present at TB1202-1 and -2, even when S1201 is in the OFF position. Always use care when servicing the cabinet power module on the Control Shelf.


## Surge Protection

Surge Protection Thyrector 19A129370Gl is connected across the 117 Volt Line in high power station combinations for lightning protection and to eliminate voltage surges on the input power leads. The thyrector is connected between terminals 1 and 2 of TB1202 located on Control Shelf 19D416725GI.

## MICROPHONE

A microphone is mounted inside the station for use during service and maintenance work by the serviceman. The microphone is connected to jack J902 located on the front side of the power supply.

## SPEAKER ASSEMBLY

Speaker Assembly 19B219618Gl is designed for an audio input of 1.5 Watts when used in MASTR Progress Line Remote/Repeater Stations. The Speaker Assembly mounts on the chassis of transmitter-receiver power supply Type EP-38-A, as an aid to the serviceman.

## NOTE

When a speaker is not used, a 3.5 ohm, lo-Watt resistor must be connected from TB501-11 to TB502-5 as a substitute for the speaker load impedance.

## METERING CIRCUITS

## Meter Panel (19C303518G4)

The Meter Panel is located above the front door on the station cabinet. The panel contains the following meters:

- Meter M901 - measures test voltages in transmitter circuits.
- Meter M902 - measures test voltages in receiver circuits.
- Meter M903 - measures PA Plate current in Transmitter power amplifier.
- Meter M904 - measures the PA Plate voltage of the power amplifier.
- Line Voltmeter 19A120042G5 (option) continuously monitors line voltage. The meter is a $0-150$ VAC voltmeter connected across the 117 VAC line.

Meter Switching Panel Assembly (19A121460G1)
The Meter Switching Panel Assembly is mounted on the front of the accessory panel and contains the switches and circuitry for

The Meter voltage check points are:

Tx (S1001)   \& Rx (S1002)   Switch Posi-   tion Number	Transmitter   Function	Meter Range Full Scale	Receiver   Function	Meter Range Full Scale
$\begin{aligned} & \mathrm{A} \\ & \mathrm{~B} \\ & \mathrm{C} * * \end{aligned}$	$\begin{array}{ll} \text { MULT } 1 \\ \text { MULT } 2 \\ \text { AMPL } & 3 \\ \hline \end{array}$	$\begin{array}{ll} 1 & V \\ 1 & V \\ 1 & V \end{array}$	$\begin{aligned} & \text { DISC } \\ & 2 \text { nd IF } \\ & \text { lst LIM } \end{aligned}$	$\begin{array}{ll} 1 & \mathrm{~V} * \\ 1 & \text { V* } \\ 1 & \mathrm{~V} * \end{array}$
$\begin{aligned} & \mathbf{D} \\ & \mathbf{E} * * * \\ & \mathbf{F} \end{aligned}$	MULT 3   AMPL/MULT 4   PA GRID	$\begin{array}{ll} 1 & V \\ 1 & V \\ 1 & V \end{array}$	MULT 1 MULT 2	$\begin{array}{ll} 1 & \mathrm{~V} * \\ 1 & \mathrm{~V} * \end{array}$
$\begin{aligned} & \mathrm{G} \\ & \mathrm{H} * * * \\ & \mathrm{I} \\ & \hline \end{aligned}$	pa Plate current POWER OUTPUT 20 VOLTS	$\begin{array}{r} 1 \mathrm{~V} \\ 1 \mathrm{~V} \\ 30 \mathrm{~V} \\ \hline \end{array}$	AUDIO PA BLANKER -----	$\begin{array}{ll} 1 & \mathrm{~V} * \\ 1 & \mathrm{~V} * \end{array}$
$\begin{aligned} & \mathrm{J} \\ & \mathrm{~K} \\ & \mathrm{~L} / \mathrm{VM} \end{aligned}$	pa plate voltage EXTERNAL PROBE RECEIVER 2nd IF	$\begin{array}{rr} 1,000 & \mathrm{~V} \\ 3 & \mathrm{~V} \\ 1 & \mathrm{~V} \end{array}$	10-VOLTS	15 V

* can be increased to 3 V by switch Sl 1003 .
** not used in ET-54-A.
*** used only in ET-59-D.
switching from stage to stage in the receiver and transmitter. The voltage readings for each stage is indicated on the meters located in the Meter Panel. The Meter Switching Panel Assembly includes:
- Plug P1001 - plugs into transmitter centralized metering jack Jl02 (or Jl001 if optional transmitter top cover is used).
- Plug Ploo2 - plugs into receiver centralized metering jack J442 (or Jl002 if optional receiver top cover is used).
- Test Probe P1003 - to measure high power amplifier grid voltage.
- Switch S1001 - to switch transmitter voltage test points into the test meter circuit.
- Switch S1002 - to switch receiver voltage test points into the test meter circuit.
- Switch Sl004 - Test probe polarity reversing switch.

Test probe P1003 is used to measure the high voltage power amplifier grid current/voltage and plugs into the PA grid jack on the high power supply.

Refer to the transmitter and/or receiver maintenance manual for the proper voltage readings for each stage tested.

Transmitter voltage readings will be indicated on transmitter "tune up" meter (M901) and receiver readings will be indicated on the receiver "tune up" meter (M902). Both meters are located on the Meter Panel.

## CIRCUIT ANALYSIS

The voltage test points in the receiver and transmitter are connected through the connecting cables to lug terminals on the receiver and transmitter voltage wafer switches. With the receiver switch in the "A" meter switch position for example, the discriminator output voltage is connected by the switch to TB901-11 and 12 through wire numbers 22 and 23 to receiver meter (M902) in the Meter Panel. If the transmitter switch is in the " $F$ " position, for example, the PA grid voltage is connected by the switch to TB901-9 and 10, through wire numbers 20 and 22 to meter (M901) in the Meter Panel.

Switch S1003 is used to connect the 3 -Volt multiplying resistor into the receiver meter circuit. Test probe Plo03 is used to measure the high power amplifier grid drive. When using the test probe, turn the transmitter switch S1001 to the
"External" position. Rl002 is a multiplier resistor in series with the test probe to make the meter 3 -Volts full scale when using the external proble.

Resistor R1007 is a multiplier resistor in series with the receiver meter when switch Sl003 is in the 3 -Volt position. Silicon rectifiers CR1001, CR1002, resistors R1003 and R1004 in the transmitter meter circuit and CR1003, CR1004, R1005 and R1006 in the receiver meter circuit protect the meters from overload and voltage spikes.

## NOTE

For continuous monitoring of test voltages, optional transmitter and receiver top covers, (19C303676G3 and G2, respectively) are available. The covers contain external sockets to attach the transmitter and receiver cables from the Meter Switching Panel Assembly.

## INITIAL ADJUSTMENT

After the Station has been installed as described in the Installation Manual, the transmitter exciter, PA receiver, power supply and control panel must be adjusted by an electronics technician who holds a lst or 2nd Class FCC Radiotelephone or Radiotelegraph license before the station can be placed in operation. Built-in metering circuits are provided with this station.

## TEST EQUIPMENT REQUIRED

The following test equipment is required for the adjustment of both transmitter and receiver.

1. A tuning tool and a screwdriver.
2. A signal source operating at the system frequency (preferably the transmitter which will normally be monitored by the receiver).

## TRANSMITTER ADJUSTMENT

The initial adjustment for the transmitter assembly includes:

- Tuning grid \& Plate controls on PA.
- Loading the power amplifier into the antenna.
- Checking the frequency and modulation.

For the Initial Adjustment procedure, refer to the transmitter exciter and power amplifier MAINTENANCE MANUAL.

## RECEIVER ADJUSTMENT

The initial adjustment for the receiver includes:

- Zeroing the receiver to the system operating frequency.
- Matching the antenna transformer to the antenna

For the Receiver Initial Adjustment Procedure, refer to the FRONT END ALIGNMENT PROCEDURE in the MAINTENANCE MANUAL for the receiver.

## POWER SUPPLY ADJUSTMENT

The initial adjustment for the power supply includes:

- Turning switch S501 ON.
- Adjusting VOLUME (R5ll) and SQUELCH
(R512) as follows:
Set SQUELCH to the point at which the noise disappears; then set VOLUME to optimum listening level.


## CONTROL SHELF ADJUSTMENT

The initial adjustment for the control panel includes:

- Turning switch S1201 ON.
- Adjusting Repeater, DC Remote/Repeater or Tone Remote/Repeater Controls.

For Control Shelf adjustment procedures, refer to the MAINTENANCE MANUAL LBI-4490.

## MAINTENANCE

## TEST AND TROUBLESHOOTING PROCEDURES

The individual Maintenance Manual for the transmitter and receiver describe standard test procedures which the serviceman can use to compare the actual performance of the transmitter or receiver against the specifications of the unit when shipped from the factory.

In addition, specific troubleshooting procedures are available to assist the serviceman in troubleshooting the transmitter, receiver and power supply.

For best results in servicing the station, the TEST PROCEDURES should be used in conjunction with the TROUBLESHOOTING PROCEDURES. Both sheets are listed in the Table of Contents of the applicable Maintenance Manual.

## PREVENTIVE MAINTENANCE

To insure high operating efficiency and to prevent mechanical and electrical failures from interrupting system operations, routine checks should be made of all mechanical and electrical parts. This preventive maintenance should include checks listed on the following page.

## PREVENTIVE MAINTENANCE PROGRAM

## CHECK THE FOLLOWING ONCE A YEAR:

1. Transmitter frequency and deviation (FCC requiresthis check-up ONCE a year)
$\square$
2. Measure and record the antenna system VSWR.

$\square$
3. Check input voltage at TB1202-1 and -2 on control shelf. Reading should be within $20 \%$ of 1l7-VAC. (Also check during routine service calls).

$\square$
4. Compare and record transmitter meter readings with voltage taken during initial tune-up. Retune, if necessary ..... $\square$
5. Compare and record receiver meter readings with voltage taken during initial tune-up. Retune, if necessary

$\square$6. Check for positive indication of pressure on transmissionline pressure gauge (if pressurized line is used)$\square$
7. Clean dust from fan blades and lubricate bearings

$\square$
8. Burnish pitted or coated relay contacts to smooth outmetallic deposits or remove the coating
$\square$
MAKE THE FOLLOWING MAINTENANCE CHECKS DURING ROUTINE SERVICE CALLS:

1. Check antenna lines and mast for mechanical stability

$\square$

2. Visually check:External cables ...................................................................Internal cables| $\square$ |
| :--- |
| $\square$ |
|  |
3. Check for tightness of nuts, bolts, and screws to make surenothing is working loose from its mounting
$\square$
4. Replace tubes as necessary. (It may be convenient to replace allstation tubes during the yearly check-up)
$\square$

## OUTLINE DIAGRAM



MASTR FLOOR-MOUNT STATION COMBINATION METER SWITCHING PANEL ASSEMBLY 19A121460Gl




## INTERCONNECTION DIAGRAM

 MASTR FLOOR-MOUNT DC REMOTE/REPEATERTONE REMOTE/REPEATER STATION COMBINATION

LBI-4572
High POWER FLOOR MODEL STATION CABINET

*COMPONENTS ADDED, DELETED OR CHANGED BY PRODUCTION CHANGES


LBI-3558B
MILITARY MICROPHONE
(DLDEL 4EM25A10 (SEE RE-1163)

SYMBOL	G-E PART NO.	DESCRIPTION
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & 4 \\ & 5 \\ & 6 \\ & 7 \\ & 8 \\ & 8 \end{aligned}$		nechanical parts   MODEL 4EM25A1O   Cable clamp. Shure Brothers RP-16.   Switch. Shure Brothert RP26.   Case (back) and mounting button: platic. Shure Brcthers Rp-67.   Switch button: red plastic. Shure Brothers RP-25   Spring. Shure Brothers RP-1.   Shield. Shure Brothers RP-23.   Magnetic controlled cartridge. Shure Brothers RP-13.   Case (front) plastic. (Part of item 3).   Cable and plug: approx 6 feet long. Shure Brothers RP-14.

*COMPONENTS ADDED, DELETED OR CHANGED BY PRODUCTION CHANGES


SYMBOL	GE PART NO.	DESCRIPTION
LS1	19A115964P1   198219615p1   198209260P103   5490407P10   198201074P304	- - - - - - - - - LOUDSPEAKERS - - - - - - - -   Weatherproof, Permanent Magnet: $3-1 / 2$ inch, 18 ohm $\pm 10 \%$ imp at $1000 \mathrm{~Hz}, 15-19$ ohms DC; sim to Oaktron S-9847.   MISCELLANECUS   Cover.   Terminal, solderless: sim to AMP 60495-1. Grommet.   Tap screw: No. $6 \mathbf{- 3 2} \times 1 / 4$.

*COMPONENTS ADDED, DELETED OR CHANGED BY PRODUCTION CHANGES


