# MOBILE RADIO MASTR II maintenance manual CONTROL UNITS, FRONT PANEL \& SYSTEM BOARD 

19A129576G1
19A129577G1
19A129578G1
Power-On
Volume
Squelch
Channel Selector Switch
Option Switch
Optional Blanker Disable Switch
Power On Light
Transmit Light
Optional Channel Busy Light
Option Light

FRONT PANEL \& SYSTEM BOARD

Model Number
19D416653G1
Input Voltage
12 Volts DC
Output
Regulated 10 Volts DC At 0.1 to 0.5 amperes

## TABLE OF CONTENTS

SPECIFICATIONS Cover
CONTROL UNIT ..... 1
Description ..... 1
Circuit Analysis ..... 1
Options ..... 1
Maintenance ..... 4
FRONT PANEL AND SYSTEM BOARD ..... 5
Description ..... 5
Circuit Analysis ..... 5
Repeating ICOMS ..... 8
Maintenance ..... 8
Disassembly ..... 8
Troubleshooting ..... 9
TRANSMITTER KEYING \& POWER DISTRIBUTION DIAGRAM ..... 11
OUTLINE DIAGRAMS
Control Unit ..... 12
Front Panel \& System Board ..... 13
INTERCONNECTION DIAGRAM ..... 14 \& 15(Includes Control Unit and System Board Schematic Diagrams)
PARTS LIST \& PRODUCTION CHANGES ..... 16
Control Unit ..... 16
Front Panel \& System Board ..... 16
Associated Assemblies ..... 16
OPTIONAL 18-CONDUCTOR POWER/CONTROL CABLE ..... 18
MICROPHONE \& HOOKSWITCH ..... 19
HANDSET \& HOOKSWITCH ..... 20
SPEAKER ..... 21

OPTIONS

| DESCRIPTION | MODEL NUMBER |
| :--- | :--- |
| Interna1/Externa1 Speaker (Option 1001) |  |
| Public Address (Option 1002) | 19A129576G1 |
| Fixed Squelch (Option lo03) | 19A129576G2 |
| Squelch Operated Relay (Option 1004) | 19A129576G3 |
| Two-Frequency PSLM (Options 1005, 1006, 1007) | 19A129576G4 |
| Channel Busy Light (Option 1008) |  |
| Noise Blanker Switch (Option 1009) | 19A129576G5 |

## WARNING

Although the highest DC voltage in the radio is supplied by the vehicle battery, high current may be drawn under short circuit conditions. These currents can possibly heat metal objects such as tools, rings, watchbands, etc. enough to cause burns. Be careful when working near energized circuits:

High-level RF energy in the transmitter Power Amplifier assembly can cause RF burns. KEEP AWAY FROM THESE CIRCUITS when the transmitter is energized:

## CONTROL UNIT

## DESCRIPTION

MASTR II Control Units are attractively styled, highly functional units that are enclosed in a two-piece molded Lexan ${ }^{\circledR}$ housing for durability and ease of disassembly. The Control Units are mounted to the vehicle with a Safety Release Lexan ${ }^{\circledR}$ mounting bracket assembly for passenger safety.

The Control Unit uses a printed wiring board to provide a minimum of wiring. The only internal wires used are on the POWER-ON switch and indicator lights.

Cable plugs are secured to the back of the Control Unit by plastic locking clips. The plugs are equipped with indexing tabs to assure connection to the correct jack. The cable is equipped with a strain relief hook that attaches to a steel plate on the bottom rear of the Control Unit.

The microphone plug is secured to a jack on the bottom of the unit by means of a captive locking screw.

All indicator lights are light-emitting diodes (LEDs) for reliability, long life, and low power consumption.

## CIRCUIT ANALYSIS

The Control Units are equipped with a VOLUME control, SQUELCH control and a POWER-ON rocker switch. The multi-frequency Control Unit is also equipped with a frequency selector switch.

When the POWER-ON switch (S701) is in the OFF position, power is removed from the
radio except for the transmitter PA, which is connected to the vehicle battery at all times. Pushing the switch to the ON position applies power to the radio, provides power for the push-to-talk (PTT) circuit and lights the power-on LED in the PowerON/Frequency Indicator window.

Pressing the PTT switch on the microphone energizes the antenna switch, keys the transmitter, mutes the receiver, and lights the transmit indicator LED.

Releasing the PTT switch turns off the transmitter and transmit indicator, deenergizes the antenna switch and un-mutes the receiver. Refer to the Table of Contents for a simplified Transmitter Keying and Power Distribution Diagram.

CR701 and CR708 are protective diodes. CR701 will cause the fuse in the yellow lead to blow if the polarity is reversed. CR708 inhibits the PTT circuit if the polarity is reversed.

## MULTI-FREQUENCY SWITCH (S702)

The frequency selector switch is a 12position switch with a mechanical stop that limits rotation from one through eight positions as required.

The frequency selector switch selects the desired channel for both transmitting and receiving. The switch connects $A$ - to the selected transmitter and receiver ICOM so that the radio operates on the selected channel.

## OPTIONS

MASTR II control units may be equipped with different options. All controls and indicator lights (LEDs) are shown in Figure 1.


Figure 1 - Control Unit Layout

## Channel Busy Indicator

When no signal is applied to the receiver, the Carrier Activity Sensor (CAS) voltage from the receiver squelch IC is near A-. This forward biases diode CR702 in the control unit, keeping Q701 turned off. When a signal is applied to the receiver (with or without audio), the CAS voltage rises to approximately 10 Volts. This reverse biases CR702, allowing Q701 to conduct, turning on Channel Busy Indicator CR706. The indicator will remain on as long as a signal is applied to the receiver, or until the transmitter is keyed.

## Noise Blanker Disable Switch

Noise Blanker Disable switch Sl mounts on the back of the control unit (see outline Diagram). Placing the switch in the "Off" position applies A- to the blanker disable lead. The A- is connected to pin 4 of the receiver blanker IC (U551), disabling the noise blanker circuit. The $A-$ is connected to the blanker disable circuit by a jumper from H63 to H 66 on the system board (see Figure 2).

Placing the switch in the "ON" position removes the $A$ - to pin 4 of the blanker IC, allowing the blanker to operate.

## Fixed Squelch

In radios with the Fixed Squelch option, a two-position rotary switch replaces the standard variable squelch potentiometer. A squelch potentiometer is then mounted on J904 on the system board (see Figure 2).

Turning the optional squelch switch on the Control Unit to the right applies A- to the squelch disable lead. The A- is connected to pin 2 of the receiver audio IC (U604), disabling the squelch circuit (and Channel Guard if present). Turning the switch to the left removes the A- to Pin 2 of the squelch IC, enabling the squelch circuit (and Channel Guard).

## Internal/External Speaker

For radios equipped with the Internal/ External Speaker option, the control unit will be equipped with optional SPEAKER switch (marked INT-EXT), an Option indicator light and an Internal/External Speaker component board. The radio also has an external speaker mounted outside of the vehicle passenger compartment (on the roof, under the hood, etc.).

With the switch in the INT (Internal) position, all of the messages received will be heard on the speaker mounted in the vehicle.

Placing the switch in the EXT (External) position turns on the option light, and applies all received messages to both the external and internal speaker. This allows the received messages to be heard while the operator is inside or outside of the vehicle.

For complete details, refer to the Maintenance Manual for the Internal/External Speaker option.


Figure 2 - Blanker Disable and Fixed Squelch Modifications

## Public Address

With the Public Address option, the control unit will be equipped with an optional PA-ON switch, an Option indicator light, and a Public Address component board. The vehicle will also have an additional speaker mounted outside of the passenger compartment.

With the PA switch in the "OFF" position, the operator can send and receive messages as he normally does. Placing the PA switch in the ON position lights the Option light, disables the transmitter, and switches the receiver audio output to the external speaker.

Pressing the PTT switch on the microphone switches the microphone output through the receiver audio amplifier circuit so that the amplified message is heard on the external speaker only. No messages can be transmitted in this mode of operation, and all incoming messages will be heard on the external speaker. The audio output of the Public Address circuit is connected to the receiver audio PA by a jumper from H100 to Hl01 on the system board (see Figure 2).

For complete details, refer to the Maintenance Manual for the Public Address option.

## Priority Search-Lock Monitor

For radios equipped with Priority Search-Lock Monitor, (PSLM), the control unit will be equipped with a SEARCH-ON switch, a Channel Busy light, and a PSLM board.

With the SEARCH switch in the ON position, the PSLM provides two channel monitoring (depending on the PSLM option used) by alternately sampling a priority channel and then a non-priority channel.

When a signal is received on the priority channel, the PSLM stops searching and locks on the priority channel for the duration of the message. When a signal is first received on the non-priority channel, the PSLM stops on that channel while monitoring the priority channel. If a signal is received on the priority channel while the PSLM is stopped on the non-priority channel, the PSLM reverts to the priority channel and locks on that channel for the duration of the message.

## NOTE

The PSLM will operate only when the receiver is squelched. When the receiver is unsquelched, the PSLM will lock on the first channel that receives a message.

The Channel Busy light will glow steadily whenever a message is received on the priority channel. When a message is received on a non-priority channel, the Channel Busy light will flash on and off. Keying the transmitter turns on the red Transmit light, and turns off the Channel Busy light.

Placing the SEARCH switch in the "OFF" position disables the PSLM circuit, and messages can be sent and received only on the channel selected by the frequency selection switch.

For complete details, refer to the Maintenance Manual for the Priority SearchLock Monitor option.

## Squelch Operated Relay

In radios equipped with the Squelch Operated Relay option, the control unit will be equipped with an OPTION-ON switch an Option light and a Squelch Operated Relay component board.

When the switch is in the on position, the relay will energize and the Option light will turn on each time a message is received (receiver unsquelches). The relay will remain locked up and the Option light will remain on until the OPTION switch is turned "OFF". The relay can be connected to turn on a light, operate an alarm or perform other functions as desired.

For complete details, refer to the Maintenance Manual for the Squelch Operated Relay option.

## IGNITION SWITCH CONNECTIONS

The Control Unit may be connected for two different modes of operation, depending on the way the ignition switch cables are connected in the vehicle system. The black cable provides the system ground connection. The yellow fused lead provides the receiver hot connections and the transmitter Push-To-Talk hot connection. The two types of operation are:

1. Ignition Switch Control - For ignition switch control, the yellow fused lead connects to the ACCESSORY or ON terminal of the ignition switch. The transmitter and receiver will operate only when the ignition switch is in the ACCESSORY or ON position. Turning the ignition switch OFF removes all power to the radio.
2. Ignition Switch Bypass - For ignition switch bypass, the yellow fused leads connect to the "hot" side of the ignition switch or the vehicle fuse block
assembly. Both the transmitter and receiver operate independently of the ignition switch and are turned on and off only by the POWER-ON switch on the Control Unit.

## MAINTENANCE

## DISASSEMBLY

To gain access to the inside of the Control Unit, simply remove the two screws
on the bottom of the front edge of the unit, and lift off the top cover.

To remove the printed wiring board
from the control unit housing.

1. Remove the two screws holding the microphone jack.
2. Remove the screw between $J 701$ and J702, and remove the screw between $J 702$ and J703.


Figure 3 - Using Extraction Tool


Figure 4 - 12-Volt, Negative Ground Connections


Figure 5 - 12-Volt, positive Ground Connections
3. Remove the screw at each end of the switch and control mounting bracket.
4. Remove the screw holding Power-On switch S701 to the bottom housing. Then swing the printed wiring board up from the front and lift the board out.

## RE-INSTALLATION

Standard MASTR II mobile combinations operate in $\pm 12$-Volt systems only. If the radio is moved to a different vehicle, always check the battery polarity and voltage of the new system before using the radio.

If the radio is moved to a vehicle with different battery polarity, it will be necessary to change the ignition switch leads to the vehicle system plug. Use the extraction tool as shown in Figure 3, and change the leads as shown in Figures 4 or 5 as required.

## FRONT PANEL \& SYSTEM BOARD

## DESCRIPTION

The System Board mounts to the front casting of the radio, and terminates the power/control cable through jack J901 on the front panel. The System Board provides all power and control functions through printed wiring runs and jacks J902, J903 and J904 to the modules making up the transmitter and receiver functions.

The jack provides 30 control pins that are soldered directly to the System Board, two power pins, and holes for eight optional pins. Power cables from the two power pins run directly from J90l through the left side rail to the bottom of the transmitter PA assembly.

Transmitter exciter and receiver modules plug in from the bottom to jacks on the rear of the System Board.

A hybrid integrated circuit lo-Volt regulator and control module, a centralized metering jack, and pins for plugging in Channel Guard and Carrier Control Timer modules are also mounted on the System Board.

## NOTE

In Channel Guard applications, a jumper between H 71 and H 72 on the System Board is removed.

Centralized metering jack 5905 is provided for use with General Electric Test Set 4EX3All or Test Kit 4 EX8Kl2. The red metering plug provides continuous access to the regulated 10 Volts, $A+$, transmitter and receiver audio, and PTT.

The black metering plug on the Test Set is used for metering the transmitter and receiver circuits.

## CIRCUIT ANALYSIS

## 10-VOLT REGULATOR IC

The lo-Volt Regulator IC contains the following circuits:

- 10-Volt Regulator Reference Amplifiers
- Compensation Voltage Divider
- Receiver Muting and Delay
- Transmitter Keying and Delay


Figure 6 - Typical Regulator IC

- Receiver Oscillator Control
- Transmitter Disable

A typical regulator IC is shown in Figure 6.

## 10-Volt Regulator

The lo-Volt regulator includes regulator amplifiers Q1 and Q2 (in the IC), and regulator pass transistor Q901. Q901 is mounted on the side of the front casting which acts as a heatsink for the transistor. The regulator circuit provides a closelycontrolled supply voltage for the transmitter exciter and receiver (except for the audio PA), and for Channel Guard and Carrier Control Timer options when present. Input voltage (A+) is supplied from the Control Unit on J901-29.

Turning on the radio applies voltage (A+) through input filter L901 and C902 to pin 1 of the regulator and to the base of Q1, causing it to conduct. This turns on PNP regulator pass transistor Q901 and an output voltage appears at the collector. When the output voltage (at pin 3) reaches 10 Volts, zener diode VRl breaks down, and Q2 starts conducting.

If the output voltage starts to in-
crease, the base current of Q2 also increases, causing it to conduct harder. This causes Q1 to conduct less, decreasing the forward bias on Q901. The voltage drop across Q901 increases and the output remains constant.

When the input voltage starts to drop, the output voltage also tends to drop, causing Q2 to conduct less. This allows Q1 to conduct harder, increasing the forward bias on Q901 and causing it to conduct harder. This reduces the voltage drop across Q901 to keep the output constant.

Service Note: The 10-Volt regulator is protected against short circuits. When supply voltage is present but there is no 10-Volt output, the trouble is probably not in the 10 -Volt regulator. Always check for a short (or high drain) on the 10 -Volt line before replacing the regulator (see Troubleshooting Procedure).

## Compensation Voltage Divider

When the regulator is turned on, the 10-Volt output is applied to a voltage divider network consisting of R12 and R13. This high impedance source provides a stable 5-Volt compensation input (at pin 5) to the transmitter and receiver ICOMs. This source must not be used for any other purpose.

## Receiver Muting \& Delay

Pressing the PTT switch grounds the base of Q6 in the receiver muting and delay circuit, turning it on. Turning on Q6 turns on Q7, causing its collector to drop to A-. The $A-$ at pin 6 is applied to the receiver squelch and audio ICs, muting the receiver.

With the PTT switch pressed, C906 starts to charge from the +10 -Volt line. When the PTT switch is released, C906 keeps Q6 and Q7 on for approximately $50 \mathrm{milli-}$ seconds as the capacitor discharges through R19, the emitter-base junction of Q6, and R16, This delays the turn-on of the receiver audio for 50 milliseconds.

## Transmitter Keying \& Delay

Pressing the PTT switch on the microphone connects pin 8 of the regulator IC to A-. Capacitor C905 starts to charge through R6 and R7. In 15 milliseconds, C905 is charged to a voltage high enough to allow time delay switch Q3 to turn on. This causes transmitter oscillator control switch Q4 to turn on. Turning on Q4 applies voltage to the transmitter ICOM(s), keying the transmitter. Keying the trans-
mitter ICOM is the only keying control function in the transmitter. The collector voltage of Q4 also reverse biases CR6, turning off Q5 and removing the supply voltage to the receiver $\operatorname{ICOM}(5)$.

The 15 millisecond time delay in the transmitter oscillator keying circuit allows the antenna switch to energize before RF is applied to the antenna switch. When the PTT is released, diode CR901 delays the antenna switch from de-energizing until the RF is removed from the contacts.

## Receiver Oscillator Control

When the radio is in the receive mode (transmitter unkeyed), transmitter oscillator control switch Q4 is off and receiver oscillator control switch Q5 is conducting. The voltage at the collector of Q5 is applied to the receiver ICOM(s).

## Transmitter Disable

In radios equipped with a Carrier Control Timer, pin 11 connects to P907-1 (TX DISABLE) on the Carrier Control Timer plug. When the timing cycle on the Carrier Control Timer runs out, A- is applied to

pin 11, turning off the transmitter oscillator control voltage which turns of $f$ the transmitter.

## REPEATING ICOMS

A matrix on the bottom of the System Board can be modified to permit both the transmitter and receiver to repeat the use of the same frequency without the use of additional ICOMs. This can be done by simply cutting frequency selection runs on the System Board, adding isolation diodes across the cut runs, and then connecting the repeated channels together with a jumper. With this modification, the frequency selector switch will have the same transmitter or receiver frequency on one or more switch positions as desired, using only one ICOM for each of the repeated channels. An example of the System Board modified for repeating ICOMs is shown in Figure 7.

For example, to repeat transmitter channels F1, F3, F5 and F7:

1. Cut the runs between H 2 and H 3 , H16 and H17, H3O and H31, and H44 and H45.
2. Connect a diode (cathode end towards the frequency select lead) across each of the cut runs.
3. Connect a \#26 AWG sleeved jumper from H4 to H18, H18 to H32 \& H32 to H46.


To repeat receiver channels F3, F6 and F8:

1. Cut the runs between H 19 and H20, H40 and H41, and H54 and H55.
2. Connect a diode (cathode end towards the frequency select lead) across each of the cut runs.
3. Connect a \#26 AWG sleeved lead from H21 to H 42 , and from H 42 to H 46 .

## MAINTENANCE

## DISASSEMBLY

To service the System Board from the top (see Mechanical Parts Breakdown):

1. Pull the locking handle down, then pry up the top cover at the front notch and lift off the cover.

To service the board from the bottom:

1. Pull the locking handle down and pull the radio out of the mounting frame.
2. Remove the top cover, then loosen the two bottom cover retaining screws and remove the bottom cover.


To remove the System Board from the radio:

1. Remove the top and bottom covers.
2. Disconnect the receiver antenna input plug (A), and the exciter output plug (B) . (see Figure 8).
3. Remove the five screws (C) holding the receiver RF assembly to the module mounting frame. Then remove the two screws (D) holding the receiver audio PA heatsink to the right side rail.
4. Remove the five screws (E) holding the receiver boards to the module mounting frame (see Figure 9).
5. Remove the six screws (F) holding the exciter board and its bottom cover to the module mounting frame.
6. Press straight down on the plug-in Exciter and then the Osc/Mult and IFAS
boards to avoid bending the pins when unplugging the boards from the System Board Jacks.
7. Remove the four screws (G) in each of the side rails and remove the side rails (see Figure 8). NOTE: Remove the shield on the left side rail to expose the power cables, and if desired, unsolder the cables from the bottom of the PA Assembly.
8. Disconnect the PTT leads from J910 on the System Board, and the antenna plug from the PA assembly.
9. If it is necessary to remove the System Board from the front casting, remove the mounting screw (H) from regulator transistor Q901. Then remove six screws (J) (three along the top and three along the bottom) on System jack J901 and remove the System Board.

## TROUBLESHOOTING

10-VOLT REGULATOR U901

| SYMPTOM | PROCEDURE |
| :---: | :---: |
| No 10-Volt output | 1. Check input voltage ( $\mathrm{A}+$ ) at pin 1 of U901. <br> 2. Remove the Power/Control cable from J901. Check for shorts from Pins 3, 7 and 14 to A-. These readings should be no less than 100 ohms. <br> 3. Check Pass transistor Q901. <br> 4. Replace U901. |
| Regulator output too high | 1. Check Q901. <br> 2. Replace U901. |
| No switched 10-Volts for transmitter or receiver | 1. Check for shorts from Pins 7 and 14 to A-. <br> 2. Check to see that Pin 8 of U901 goes to Awhen PTT switch is pressed. <br> 3. Replace U901. |




## OUTLINE DIAGRAM

## - THRU 8-FREQUENC

12 Issue 3


## 

| FIXED SQUELCH SWITCH (VIEWED FROM KNOB END) |
| :---: |

(EAD IoENTIFCATION

LEAA DENTFFICATION For




SOLDER SIDE



SYSTEMS BOARD
COMPONENT SIDE


SOLDER SIDE


power /control cable

## FIXED SQUELCH OPTION

## schematic diagram







RC- 2447 B



SCHEMATIC DIAGRAM
MIL MIC HOOKSWITCH]

(199129660, Rev.
parts list
Lil-4483a


| SYMBOL | GE PART NO. | DESCRIPTION |
| :---: | :---: | :---: |
| s2 | 19B219698G1 <br> 19A116676P1 | S1ide: SPST, 3 amp at 125 vac, 2.2 amp at 14 <br>  <br> Sensitive: SPDT, 5 amp at 24 VDC or 5 amp at |
| *1 | N193P1410C <br> N84P5008C6 <br> N210P5C6 <br> N404P8C6 | 2 conductor cable: approx 5 feet long, includes (2) 19All6781P3 contacts. $\qquad$ Strain relief: sim to Heyco SR-3P-4. (Used with $W 1$ ). wh <br> Tap screw, phillips: No. $8 \times 5 / 8$. <br> Screw, phillips: No. 2-56 x $1 / 2$. (Secures S2). <br> Hexnut: No. 2-56. (Secures S2). <br> Lockwasher, internal tooth: No. 2. (Secures S2). |

Transistrorizzo pranyic mickophoxe
(sEE Rc-2454)

| SYMBOL | GE PART NO. | DESCRIPTION |
| :---: | :---: | :---: |
| $\begin{array}{\|c} 9 \\ 10 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \end{array}$ | 19D416766P1 19A129435PI 7109043P1 19D416767P1 19B219723G1 N136AP905C 19A116937P1 19B219749P1 <br> 19C321016G1 <br> 19 C 321016 G 3 | Front Case Assembly. RP127. (includes items 14,15 ). <br> Retaining spring. (Part of item 18). <br> Tap screw, phillips. (Part of item 16). <br> Retaining bar. (Part of item 16). <br> Connector base. <br> Contact. <br> Retaining ring. <br> Connector cover. <br> Screw. <br> Tap screw, phillips: No. $4 \times 5 / 16$. <br> Cable clip. <br> Strain relief. <br> Switch button kit. RP126. <br> Rear Case Assembly. (Part of item 1). <br> Tap screw, phillips. (Part of item 1). <br> Cable assembly: Includes items 3-12 and cable RP1.29. RP1 29. <br> Switch Assembly. RP128. <br> Grille Assembly. RP130. (includes items 2, 19, 21). <br> "O" Ring. (Part of item 18). <br> Transistorized Cartridge. RPll7. <br> Washer. (Located under cartridge- part of item 18). <br> Connector assembly: Includes items 5-12. |



SERVICE SHEET


SCHEMATIC DIAGRAM


## SERVICE SHEET

HANDSET \& HOOKSWITCH
20 Issue 3


PRODUCTION CHANGES


parts us


| SYMB0L | ge part No. | description |
| :---: | :---: | :---: |
| $\begin{aligned} & 28 \\ & 28 \\ & 28 \\ & 27 \end{aligned}$ | 19C321016G2 <br> 19B219749P1 19A116937P1 3R77P472K 19D416766P1 N136AP905C 19A129435P1 7109043P1 19D416767P1 19B219723GI |  Adapter. Part of item 1. Receiver Cartridge. Shure Brothers RP140. Receiver Cap. Part of item 1 . Washer. Part of item 1. Escutcheon. Part of item 27. Flat head screw, socket cap: No. $4-40 \times 1 / 4$. Part of item 27 . Actuator. Part of item 27. Spring. Part of item 27. Plunger bar. Part of item 27. Transmitter cap. Part of item 1. Washer. Part of item 1. $\qquad$ Cable assembly: Includes items 14-23 and cable RP141. Flex relief. <br> Cable clamp: sim to Malco 21012-3. Resistor, (RI) Composition, 4700 ohms $\pm 10 \%$, $1 / 2 \mathrm{w}$. Connector case. Screw. <br> Pin contact. <br>  Connector Cover. <br> Screw. (Secures cover, item 22 to case, item 18) Screw. Part of item 14. <br> Cable clamp. Part of item 14. <br> Shield. Part of item 1. <br> Switch Assembly. Includes items 6-10. Shure Brothers RPl43. Connector assembly: Includes items 15, 16, 18- 23. Does not include resistor, item 17. |

LBI-4488
SPEAEER 19C320302Gl


## ORDERING SERVICE PARTS

Each component appearing on the schematic diagram is identified by a symbol number, to simplify locating it in the parts list. Each component is listed by symbol number, followed by its description and GE Part Number.

Service parts may be obtained from Authorized GE Communication Equipment Service Stations or through any GE Radio Communication Equipment Sales Office. When ordering a part, be sure to give:

1. GE Part Number for component
2. Description of part
3. Model number of equipment
4. Revision letter stamped on unit
[^0]
## MAINTENANCE MANUAL

LBI-4590


[^0]:    These instructions do not purport to cover all details or variations in equipment nor to provide for every possible contingency to be met in connection with instalation, operation or maintenance.

    Should further information be desired, or should particular problems arise which are not covered sufficiently for the purchaser's purposes, contact the nearest Radio Communication Equipment Sales Office of the General Electric Company.

