406-420 \& 450-512 MHz, 40-WATT TRANSMITTER

SPECIFICATIONS *

Power Output
$406-420 \mathrm{MHz} \& 450-470 \mathrm{MHz}$
$470-494 \mathrm{MHz}$
494-512 MHz
Crystal Multiplication Factor
Frequency Stability
$5 \mathrm{C}-\mathrm{ICOM}$ with EC-ICOM
$5 \mathrm{C}-\mathrm{ICOM}$ or EC-ICOM
$2 \mathrm{C}-\mathrm{ICOMS}$

Spurious and Harmonic Emission
Modulation

Modulation Sensitivity
Audio Frequency Characteristics

Distortion

Deviation Symmetry
Maximum Frequency Spread (2 to 8 channels)
406-420 MHz
$450-470 \mathrm{MHz}$
470-494 MHz
$494-512 \mathrm{MHz}$
Duty Cycle
RF Output Impedance

40 Watts (Adjustable from 12 to 40 Watts)
38 Watts (Adjustable from 12 to 38 Watts)
35 Watts (Adjustable from 12 to 35 Watts)
36
$\pm 0.0005 \%\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
$\pm 0.0002 \% \quad\left(0^{\circ} \mathrm{C}\right.$ to $+55^{\circ} \mathrm{C}$)
$\pm 0.0002 \% \quad\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
At least 80 dB below full rated power output.
Adjustable from 0 to $\pm 5 \mathrm{kHz}$ swing with instantaneous modulation limiting.

75 to 120 Millivolts
Within +1 dB to -3 dB of a $6-\mathrm{dB}$ /octave preemphasis from 300 to 3000 Hz per EIA standards. Post limiter filter per FCC and EIA.

Less than 2% (1000 Hz)
Less than 3\% (300 to 3000 Hz)
0.5 kHz maximum

Full Specifications
1 dB Degradation
2.75 MHz
6.00 MHz
2.75 MHz
9.00 MHz
9.50 MHz
9.75 MHz

EIA 20\% Intermittent
50 Ohms

TABLE OF CONTENTS

SPECIFICATIONS Cover
DESCRI PTION 1
CIRCUIT ANALYSIS 1
Exciter 1
ICOMs 1
Audio IC 4
Buffer Phase Modulators \& Amplifiers 4
Buffer, Multipliers \& Amplifier 4
Power Amplifier 4
RF Amplifiers 4
Power Control Circuit 5
Carrier Control Timer 6
MA INTENANCE 6
Disassembly 6
PA Transistor Replacement 7
Alignment Procedure 9
Test Procedures 10
Power Output 10
Tone Deviation 10
Voice Deviation 10
Troubleshooting 11
OUTLINE DIAGRAM 12
SCHEMATIC DIAGRAMS (with voltage readings)
Exciter 14
Power Amplifier 15
PARTS LIST AND PRODUCTION CHANGES
Exciter 13
Power Amplifier 16 \&
ILLUSTRATIONS
Figure 1 - Block Diagram 1
Figure 2 - Typical Crystal Characteristics 2
Figure 3 - Equivalent ICOM Circuit 3
Figure 4 - Simplified Audio IC 6
Figure 6 - Disassembly Procudure (Bottom View) 6
Figure 7 - PA Transistor Lead Identification 7
Figure 8 - PA Transistor Lead Forming 7
Figure 9 - Frequency Characteristics Vs. Temperature 9
Figure 11- 38-Watt Power Output Setting Chart 9
Figure 12- 35-Watt Power Output Setting Chart 9

WARNING

Although the highest DC voltage in MASTR II Mobile Equipment is supplied by the vehicle battery, high currents may be drawn under short circuit conditions. These currents can possibly heat metal objects such as tools, rings, watchbands, etc., enough to cause burns. Be careful when working near energized circuits! High-level RF energy in the transmitter Power Amplifier assembly can cause RF burns upon contact. KEEP AWAY FROM THESE CIRCUITS WHEN THE TRANSMITTER IS ENERGIZED:

DESCRIPTION

MASTR II transmitters are crystalcontrolled, phase modulated transmitters designed for one through eight-frequency operation in the 406 to 420 and 450 to 512 megahertz band. The solid state transmitter utilizes both integrated circuits (ICs) and discrete components, and consists of the following assemblies:

Exciter Board; with audio, modulator, amplifier and multiplier stages

Power Amplifier Assembly; with amplifier, driver, PA, power control, filter and antenna switch.

CIRCUIT ANALYSIS

EXCITER

The exciter uses seven transistors and one integrated circuit to drive the PA assembly. The exciter can be equipped with up to eight Integrated Circuit Oscillator Modules (ICOMS). The ICOM crystal frequency ranges from approximately 11.3 to 14.2 megahertz, and the crystal frequency is multiplied 36 times.

Audio, supply voltages and control functions are connected from the system board to the exciter board through P902.

Centralized metering jack $J 103$ is provided fro use with GE Test Set Model 4EX3All or Test Kit 4EX8K12. The test set meters the modulator, multiplier and amplifier stages, and the regulated 10 -Volts.

ICOMS
Three different types of ICOMs are available for use in the exciter. Each of the ICOMs contains a crystal-controlled Colpitts oscillator, and two of the ICOMs contain compensator ICs. The different ICOMs are:

> 5C-ICOM - contains an oscillator and a 5 part-per-million ($\pm 0.0005 \%$ compensator IC. Provides compensation for EC-ICOMs.

EC-ICOM - contains an oscillator only. Requires external compensation from a $5 \mathrm{C}-\mathrm{ICOM}$.

$$
\begin{aligned}
& \text { 2C-ICOM - contains an oscillator only. } \\
& 2 \text { PPM (} \pm 0.0002 \% \text {) compensator IC. Wili } \\
& \text { not provide compensation for an }
\end{aligned}
$$ EC-ICOM.

The ICOMs are enclosed in an RF shielded can with the type ICOM (5C-ICOM, EC-ICOM or 2C-ICOM) printed on the top of the can. Access to the oscillator trimmer is obtained by prying up the plastic tab on the top of the can. The tabs can also be used to pull the ICOMs out of the radio.

Figure 1 - Transmitter Block Diagram

Frequency selection is accomplished by switching the ICOM keying lead (terminal 6) to $A-$ by means of the frequency selector switch on the control unit. In single-frequency radios, a jumper from H 9 to H10 in the control unit connects terminal 6 of the ICOM to A-. The oscillator is turned on by applying a keyed +10 Volts to the external oscillator load resistor.

CAUTION

> All ICOMs are individually compensated at the factory and cannot be repaired in the field. Any attempt to repair or change an ICOM frequency will void the warranty.

In Standard 5 PPM radios using EX-ICOMs, at least one $5 \mathrm{C}-\mathrm{ICOM}$ must be used. The 5C-ICOM is normally used in the receiver Fl position, but can be used in any transmit or receive position. One 5C-ICOM can provide compensation for up to 15 EC-ICOMs in the transmit and receiver. Should the 5C-ICOM compensator fail in the open mode, the EC-ICOMs will still maintain 2 PPM frequency stability from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$ due to the regulated compensation voltage (5 Volts) from the 10 -Volt regulator IC. If desired, up to $165 C$-ICOMs may be used in the radio.

The 2C-ICOMs are self-compensated at 2 PPM and will not provide compensation for EC-ICOMS.

Oscillator Circuit

The quartz crystals used in ICOMs exhibit the traditional "S" curve characteristics of output frequency versus operating temperature.

At both the coldest and hottest temperatures, the frequency increases with increasing temperature. In the middle termperature range (approximately $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$), frequency decreases with increasing temperature.

Since the rate of change is nearly linear over the mid-temperature range, the output frequency change can be compensated by choosing a parallel compensation capacitor with a temperature coefficient approximately equal and opposite that of the crystal.

Figure 2 shows the typical performance of an uncompensated crystal as well as the typical performance of a crystal which has been matched with a properly chosen compensation capacitor.

At temperatures above and below the mid-range, additional compensation must be introduced. An externally generated compensation voltage is applied to a varactor (voltage-variable capacitor) which is in parallel with the crystal.

Figure 2 - Typical Crystal Characteristics

A constant bias of 5 Volts (provided from Regulator IC U901 in parallel with the compensator) establishes the varactor capacity at a constant value over the entire mid-temperature range. With no additional compensation, all of the oscillators will provide 2 PPM frequency stability from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(+32{ }^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$.

Compensator Circuits

Both the 5C-ICOMs and 2C-ICOMs are temperature compensated at both ends of the temperature range to provide instant frequency compensation. An equivalent ICOM circuit is shown in Figure 3.

The cold end compensation circuit does not operate at temperatures above $0^{\circ} \mathrm{C}$. When the temperature drops below $0^{\circ} \mathrm{C}$, the circuit is activated. As the temperature decreases, the equivalent resistance decreases and the compensation voltage increases.

The increase in compensation voltage decreases the capacity of the varactor in the oscillator, increasing the output frequency of the ICOM.

The hot end compensation circuit does not operate at temperatures below $+55^{\circ} \mathrm{C}$. When the temperature rises above $+55^{\circ} \mathrm{C}$, the circuit is activated. As the temperature increases, the equivalent resistance decreases and the compensation voltage decreases. The decrease in compensation voltage increases the capacity of the varactor, decreasing the output frequency of the ICOM.

SERVICE NOTE: Proper ICOM operation is dependent on the closely-controlled input voltages from the 10 -Volt regulator. Should all of the ICOMs shift off frequency, check the 10-Volt regulator module.

Figure 3 - Equivalent ICOM Circuit

Figure 4 - Simplified Audio IC

AUDIO IC

The transmitter audio circuitry is contained in audio IC Ul01. A simplified drawing of the audio IC is shown in Figure 4.

Audio from the microphone at pin 12 is coupled through pre-emphasis capacitor Cl to the base of $Q 1$ in the operational ampli-fier-limiter circuit. Collector voltage for the transistorized microphone preamplifier is supplied from pin 11 through microphone collector load resistor R18 to pin 12.

The operational amplifier-limiter circuit consists of Q1, Q2 and Q3. Q3 provides limiting at high signal levels. The gain of the operational amplifier circuit is fixed by negative feedback through R19, R20 and the resistance in the network (Pin'9).

The output of $Q 3$ is coupled through a de-emphasis network (R10 and C3) to an active post-limiter filter consisting of C4, C5, C6, R11, R12, R13, R15, R17 and Q4.

Following the post-limiter filter is class A amplifier Q5. The output of Q5 is coupled through MOD ADJUST potentiometer R104 and resistor R125 to the phase modulator.

SERVICE NOTE: If the DC voltages to the Audio IC are correct and no audio output can be obtained, replace Ul01.

For radios equipped with Channel Guard, tone from the encoder is applied to the phase modulator through CHANNEL GUARD MOD ADJUST potentiometer R105, and resistor R127. Instructions for setting Rlo5 are contained in the modulation adjustment section of the Transmitter Alignment Procedure.

BUFFER, PHASE MODULATORS \& AMPLIFIERS

The output at pin 3 of the selected ICOM is coupled through buffer-amplifier Q101 to the modulator stage. The phase modulator is varactor (voltage-variable capacitor) CV103 in series with tunable coil Tl03. This network appears as a series-resonant circuit to the RF output of the oscillator. An audio signal applied to the modulator circuit through blocking capacitor Cl07 varies the bias of CV103, resulting in a phase modulated output. A voltage divider network (R110 and R111) provides the proper bias for varactor CV103.

The output of the modulator is coupled through blocking capacitor CI50 to the base of Class A amplifier Q104. The output of the modulator is metered through Cl23, R128 and CR104, and is applied to the base of buffer Q105. Diodes CR105 and CR106 remove any ampiitude modulation in the modulator output.

BUFFER, MULTIPLIERS \& AMPLIFIER

Buffer Q105 is saturated when no RF signal is present. Applying an RF signal to Q105 provides a sawtooth waveform at its collector to drive the class C tripler, Q106. The tripler stage is metered through R138. The output of Q106 is coupled through tuned circuits T104 and T105 to the base of doubler Q107. The doubler stage is metered through R141.

The output of Q107 is coupled through tuned circuits T106 and T107 to the base of second doubler Q108. Q108 is metered through R146 .

The output of Q108 is coupled through three tuned circuits (T108, T109 and T110) to the base of amplifier Q109.

Q109 is a Class C amplifier, and is metered through R148. The amplifier collector circuit consists of T111, C154, C155, T112 and C157, and matches the amplifier output to the input of the power amplifier assembly.

POWER AMPLIFIER

The PA assembly uses seven RF power transistors and seven transistors in the Power Control circuitry to provide rated power output. The broadband PA has no adjustments other than Power Control potentiometer R226.

Supply voltage for the PA is connected through power leads from the system board to feedthrough capacitors C297 and C298 on the bottom of the PA assembly. C297, C298, C299, L295 and L296 prevent RF from getting on the power leads. Diode CR295 will cause the main fuse in the fuse assembly to blow if the polarity of the power leads is reversed, providing reverse voltage protection for the radio.

Centralized metering jack $\mathbf{J} 205$ is provided for use with GE Test Set Model 4EX3All or Test Kit 4EX8K12. The Test Set meters the Tripler drive (exciter output), Ampl-2 input, Driver and PA current.

TRIPLER \& RF AMPLIFIERS

The exciter output is coupled through an RF cable to PA input jack J201. The 50-ohm RF input is coupled through a matching network (C206 and W209) to the base of the broadband tripler stage, Q201.

Part of the RF input is rectified by CR201 and is used to activate the Power Control circuit. Another portion of the rectified RF is applied to $J 205$ for metering the tripler drive.

The output of Q201 is coupled through a 20-ohm collector matching network (C212, C213, C4219 and L203) to the input of a high-pass filter consisting of $\mathbf{C 2 1 7}$ through C225, and W210 through W213.

Following the high-pass filter is a low-pass filter consisting of W214 through W219, C226 through C230 (and C4214 through C42l7 in the $406-420 \mathrm{MHz}$ band). The two filter sections combine to act as a bandpass filter providing a minimum of 60 dB rejection below 300 megahertz and 30 dB rejection above 600 megahertz.

In 450 to 512 megahertz transmitters, the filter output is coupled through a matching network (C231, C232, C233 and W220) to the base of Class C amplifier Q207. Collector voltage to Q207 is coupled through collector stabilizing network L220, R216, L219 and C234. The output of Q207 is coupled through a matching network (W221, C236, C237 and W222) to the base of the second Class C amplifier Q202. Drive to Q202 is metered at J 205 (Ampl-2 Input) through metering network C238, CR202, C239 and R205.

In 406 to 420 megahertz transmitters, Q207 and its associated circuitry is removed, and the filter output is coupled through C285 to the base of second amplifier Q202.

Collector voltage for Q202 is coupled through stabilizing network L206, R206, L205 and C240. Matching network' W223, C241, C242, C243 and W224 matches the output of Q202 to the base of third amplifier Q203.

Collector voltage for Q203 is applied through stabilizing network R207, L209, and C246.

The output of Q203 is coupled through a matching network (W225, C247, C248, C249 and W226) to the base of Class C driver Q204. Collector voltage for Q204 is applied through collector stabilizing network C201, L211 and C267.

Collector current for Q204 is metered across tapped manganin resistor R214 at J205 (Driver Current). The reading is taken on the one-Volt scale with the High Sensitivity button pressed, and read as 10 amperes full scale.

Following Q204 is a matching network (W227 and C253) that matches the driver output to the $50-\mathrm{ohm}$ impedance of power divider network W228 and R209.

The power amplifier stages consist of two identical paralleled Class C PA circuits (Q205 and Q206). One output of the power divider network is applied to the base of Q205 through matching network W229 and C268

Supply voltage for Q205 is coupled through collector stabilizing network L213, R210, L214 and C255. The output of Q205 is coupied through a matching network (W231 and C258) and added to the output of Q206 in power combiner network R212 and W233. The combined collector current for Q205 and Q206 is metered across tapped manganin resistor R213 at J205 (PA Current). The reading is taken on the one-Volt scale with the High Sensitivity button pressed, and read as 10 amperes full scale.

The PA output is coupled through a low-pass filter to the antenna through antenna switch K201. Capacitors C214, C270 through C4218 provide DC ground isolation for \pm ground operation.

WARNING

The stud mount RF Power Transistors used in the transmitter contain Beryllium Oxide, a TOXIC substance. If the ceramic, or other encapsulation is opened, crushed, broken or abraded, the dust may be hazardous if inhaled. Use care in replacing transistors of this type.

POWER CONTROL CIRCUIT

When the transmitter is keyed, rectified RF from CR201 is applied to the base of switch Q208, turning it on. Turning on Q208 turns on voltage regulator Q210, supplying a constant voltage to Power Adjust potentiometer R226.

Q212, Q213 and Q215 operate as an amplifier chain to supply voltage to the collector of Q202 (Ampl-2). The setting of R226 determines the voltage applied to the base of Q212. The higher the voltage at the base of Q212, the harder the amplifiers conduct, supplying more collector voltage to Q202. The lower the voltage at the base of Q212, the less collector voltage is supplied to Q202. Reducing the supply voltage to Q202 reduces the drive to Q203 and Q204, thereby reducing the power output of the PA. The power output can be adjusted by R226 from approximately 12 to 40 Watts.

Temperature protection is provided by Q209, Q211 and thermistor RT201 which is mounted in the PA heatsink. Under normal operating conditions, the circuit is inactive (Q209 is on and Q2ll is off). When the heatsink temperature reaches approximately $100^{\circ} \mathrm{C}$, the resistance of RT201 decreases. This increases the base voltage applied to Q209, turning it off. Turning off Q209 allows Q211 to turn on, decreasing the voltage at Power Adjust potentiometer R226. This reduces the base voltage to Q212 which causes Q213 and Q215 to conduct less, reducing the collector voltage to Q202 (Ampl-2). This reduces the transmitter
output power, keeping the heatsink at a maximum of approximately $100^{\circ} \mathrm{C}$. When the heatsink temperature decreases below $100^{\circ} \mathrm{C}$, the temperature control circuit turns off, allowing the normal transmitter power output.

CARRIER CONTROL TIMER

The Carrier Control Timer option shuts off the transmitter on each transmission after a one-minute timing cycle, and alerts the operator that, the transmitter is off by means of an alarm tone in the speaker. The transmitter can be turned on again by releasing and rekeying the push-to-talk switch on the microphone.

The timing cycle (transmitter keyed time) is normally set at the factory for a duration of one minute. A potentiometer permits the timing cycle to be adjusted from approximately 15 second to 3 minutes.

MAINTENANCE

DISASSEMBLY

To service the transmitter from the top:

1. Pull the locking handle down, then pry

Figure 5 - Disassembly Procedure Top View
up the cover at the front notch and lift off the cover.

To service the transmitter from the bottom:

1. Pull the locking handle down and pull the radio out of the mounting. frame.
2. Remave the top cover, then loosen the two bottom cover retaining screws and remove the bottom cover (see Figure 5).
3. To gain access to the bottom of the exciter board, remove the six screws
(A) holding the exciter board and its bottom cover to the module mounting frame, and remove the bottom cover.

To remove the exciter board from the radio:

1. Unplug the exciter/PA cable (B)
2. Remove the six screws (A) holding the exciter board and its bottom cover to the module mounting frame (see Figure 6).
3. Press straight down on the plug-in exciter from the top to avoid bending the pins when unplugging the board from the system board jack.

To remove the PA assembly:

1. Remove the Pa top cover and unplug the exciter/PA cable (B), the antenna, receiver and PTT cables (C).

Figure 6 - Disassembly Procedure Bottom View
2. Remove the four side-rail screws (D), and unsolder the power cables from the bottom of the PA assembly if desired.

To remove the PA board:

1. Remove the PA top cover and unplug the exciter/PA cable (B).
2. Unsolder the two feedthrough coils and the thermistor leads (F).
3. Remove the PA transistor hold-down nuts and spring washers on the bottom of the pA assembly.
4. Remove the four PA board mounding screws (G), the five screws in the filter casting (H) , and the retaining screw in Q215 (J), and lift the board out.

PA TRANSISTOR REPLACEMENT

WARNING
The stud mounted RF Power Transistors used in the transmitter contain Beryllium Oxide, a TOXIC substance. If the ceramic or other encapsulation is opened, crushed, broken or abraded, the dust may be hazardous if inhaled. Use care in replacing transistors of this type.

To replace the PA RF transistors:

1. Unsolder one lead at a time with a 50-Watt soldering iron. Use a scribe to hold the lead away from the printed circuit board until the solder cools.
2. Turn the transmitter over.
3. Hold the body of the transistor to prevent it from turning. Remove the transistor hold-down nut and spring washer through the hole in the heatsink with an 11/32-inch nut-driver. Lift out the transistor, and remove the old solder
from the printed circuit board with a de-soldering tool such as a SOLDA PULLT®. Special care should be taken to prevent damage to the printed circuit board runs because part of the matching network is included in the base and collector runs.
4. Trim the new transistor leads (if required) to the lead length of the removed transistor. Cut the collector lead at a 45° angle for future identification (see Figure 7). The letter "C" on the top of the transistor also indicates the collector.
5. Applying a coating of silicon grease around the transistor mounting surface, and place the transistor in the mounting hole. Align the leads as shown in the Outline Diagram. Then hold the body of the transistor and replace the holding-down nut and spring-washer, using moderate torque (8 inch-pounds). A torque wrench must be used for this adjustment since transistor damage can result if too little or too much torque is used.
6. Make sure that the transistor leads are formed as shown in Figure 8 so that the leads can be soldered to the printed circuit pattern, starting from the inner edge of the mounting hole.
7. Solder the leads to the printed circuit pattern. Start at the inner edge of mounting hole and solder the remaining length of transistor lead to the board. Use care not to use excessive heat that causes the printed wire board runs to lift up from the board. Check for shorts and solder bridges before applying power.

CAUTION

Failure to solder the transistor leads as directed may result in the generation of RF loops that could damage the transistor or may cause low power output.

䢒
 ond

pa Power input

\pm vivavavivavig

$\underbrace{2}_{n}$

No.
 and

 and

DEgREES FAHRENHEIT

nem 2.

$$
\begin{aligned}
& \text { latan } \\
& \text { notion } \\
& \text { Rout }
\end{aligned}
$$

TEST PROCEDURES

Serore bench testing the mastr. 1 Mobile Radio, be sure of the output voitage
Characteristics of your bench power supply. To protect the transmint ter pooper output transistors from possible instant destruc-
tion, the folilowing input voltages must not pe exceeded:

> TEST EQUIPMENT REQUIRED tor test hookp as thown:

procedur

Connect transniter output from the antenna jack to the wat tmeter through a 50 -ohm coaxial cable. Make sure
the wattmeter is terminated into a 50 -ohn 1 1 oad.

. Key transmitter and

service check

Check the setting of the power Adjust Control (R226)
hefer to the Quck checks on the Transmit ter trouleshooting procedure.

VOICE DEVIATION SYMMETRY AND AUDIO SENSITIVITY

TEST PROCEDURE

1. Connect the test equipment to the transmitter as shown.
2. In radios with Channel Guard, set Channel Guard Mod Adjust rios for zero tone deviation.
3. Set the Audio generator output to 1.0 vours rus and frequency to 1 kHz .
. Key the transmitter and adjust Deviation Meter to carrier frequenc
4. Deviation reading should be ± 4.5 kHz in radios without channel Guard, and $\pm 3.75 \mathrm{kHz}$ in radios with
5. If necessary. adjust mod ADJUST control R104 for the proper deviation on plus (+) or minus (-)

6. If the deviation reading plus (+) or minus (-) differs by more than 0.5 khz, recheck steps 1 and 2

tone deviation with channel guard

test procedure

1. Set up the Deviation Neter and monitor the output of thr transmitter.
2. Remove the 1000 Hz signal from the audio generator,
3. Kev the transmit ter and check for 0.75 khz deviation. If the reading is low or high,
adjust Channel Guard MoD ADUUS R105 for a reading of o. 75 kize. notes:
 The Tone peviation Test Procedures should be repeated every time the Tone Frequency
is changed.

SCHEMATIC DIAGRAM

PRODUCTION CHANGES

Changes in the equipment to improve performance or to simplify circuits are identified by a "Revision Letter", which is stamped after the model number of the unit. The revision stamped on the unit includes all previous revisions. Refer to the Parts List for descriptions of parts affected by these revisions.

REV. A: Power Amplifier Component Board 19D417166G3. To increase Power Output. Changed C258 and C262.

