MASTR II maltienaice manual

406-420 \& 450-512 MHz RECEIVER

SPECIFICATIONS *

12 Watts at less than 3% distortion

Sensitivity
12-dB SINAD (EIA Method)
20-dB Quieting Method
SELECTIVITY
EIA Two-Signal Method 20-dB Quieting Method

Spurious Response
Intermodulation (EIA)
Squelch Sensitivity
Critical Squelch
Maximum Squelch

Frequency Stability

> 5C-ICOM with EC-ICOM
> 5C-ICOM or EC-ICOM
> 2C-ICOMS

Modulation Acceptance
Maximum Frequency Separation (Multi-Frequency Units)
$406-470 \mathrm{MHz}$
$470-494 \mathrm{MHz}$
$494-512 \mathrm{MHz}$

Frequency Response

RF Input Impedance

$\pm 0.0005 \%\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
$\pm 0.0002 \% ~\left(0^{\circ} \mathrm{C}\right.$ to $+55^{\circ} \mathrm{C}$)
$\pm 0.0002 \%\left(-40^{\circ} \mathrm{C}\right.$ to $\left.+70^{\circ} \mathrm{C}\right)$
$\pm 7 \mathrm{kHz}$ (narrow-band)

Full Specifications

$$
\begin{aligned}
& 1.60 \mathrm{MHz} \\
& 1.80 \mathrm{MHz} \\
& 1.50 \mathrm{MHz}
\end{aligned}
$$

3dB Degradation 2.0 MHz
2.30 MHz 2.30 MHz
2.0 MHz

Within +1 and -8 dB of a standard $6-\mathrm{dB}$ per octave de-emphasis curve from 300 to 3000 Hz ($1000-\mathrm{Hz}$ reference)

50 ohms

TABLE OF CONTENTS

SPECIFICATIONS Cover
DESCRIPTION 1
CIRCUIT ANALYSIS 1
RF Assembly 1
UHS Pre-amplifier 1
Antenna Input A301 2
Mixer Board A302 2
IF Amplifier Board A303 2
Oscillator/Multiplier Board 2
ICOMs 2
Multiplier and Amplifier 3
IF-Filter Board 4
Crystal Filter 4
IF Amplifier 4
IF-Audio \& Squelch Board 5
Crystal Filters, IF AMP and Limiter 5
Discriminator and Audio Pre-Amp 5
Audio IC 5
Squelch IC 5
MAINTENANCE 6
Disassembly 6
Alignment Procedure 9
Test Procedures 10
Receiver Troubleshooting 11
OUTLINE DIAGRAM 12
SCHEMATIC DIAGRAMS
RF Assembly, Osc/Mult \& IF-Filter Boards 14
IF-Audio \& Squelch Board 15
PARTS LIST AND PRODUCTION CHANGES
RF Assembly, Osc/Mult \& IF-Filter Boards 13
IF Audio \& Squelch Board 16
ILLUSTRATIONS
Figure 1 - Block Diagram 1
Figure 2 - Typical Crystal Characteristics 3
Figure 3 - Equivalent ICOM Circuit 4
Figure 4 - Disassembly Procedure (Top View) 6
Figure 5 - Disassembly Procedure (Bottom View) 6
Figure 6 - Test Set-Up 9
Figure 7 - Frequency Characteristics Vs. Temperature 9

DESCRIPTION

MASTR II, 406 to 420 and 450 to 512 megahertz receivers are single conversion, superheterdyne FM receivers designed for one- through eight-frequency operation. The solid state receiver utilizes integrated circuits (ICs), monolithic crystal filters and discrete components with each of the crystal filters located between gain stages to provide 100 dB selectivity and maximum protection from de-sensitization and intermodulation.

The receiver consists of the following modules:

- RF Assembly (Includes Mixer and IF-Amplifier)
- IF-Filter
- Oscillator/Multiplier (Osc/Mult)
- IF/Audio and Squelch (IFAS)
- Optional Ultra-High Sensitivity (UHS) Pre-Amplifier

Audio, supply voltages and control functions are connected to the system board through $P 903$ on the Osc/Mult board, and P904 on the IFAS board. The regulated +10 Volts is used for all receiver stages except the audio PA stage which operates from the A+ system supply.

Centralized metering jack J601 on the IFAS board is provided for use with GE test Set 4EX3A11 or Test Kit 4EX8K12. The test set meters the oscillator, multiplier, discriminator and IF amplifier stages. Speaker high and low are metered on the system board metering jack.

CIRCUIT ANALYSIS

RF ASSEMBLY

PRE-AMPLIFIER

The pre-amplifier is present only in UHS receivers, and uses a bi-polar transistor to provide approximately 10 dB gain.

RF from the antenna is link-coùpled through helical resonator $L 2301$ to the base of Class A pre-amplifier Q2301. L2301 matches the 50 -ohm input to the base of Q2301. The amplified output is coupled through L2302, and connected through W2301 to J1 on Antenna Input Board A301. P2301 connects to J502 on the IF-Filter Board for regulated +10-Volt supply voltage.

ANTENNA INPUT A301

An RF signal from the antenna or UHS pre-amplifier is applied to A301 which provides an AC ground between vehicle ground and receiver A-. Resistor Rl prevents a static charge from building up on the vehicle antenna. The output of A301 is coupled through five high Q helical resonators that provide the front end RF selectivity. The helicals are tuned to the incoming frequency by C301 through C305.

MIXER A302

The mixer uses 4 hot-carrier diodes which are low noise diodes with non-linear resistance characteristics.

RF from the helical resonator is coupled to the mixer circuit through Tl. Injection voltage from the oscillatorselectivity stages is coupled to the mixer circuit through T2. The mixer IF output is proportional to the level of the RF input and is independant of the injection voltage. The 11.2 MHz IF output is taken from H 9 in the secondary of T1 and applied to an IF amplifier stage.

IF AMPLIFIER A303

The IF amplifier uses a Field-Effect Transistor (FET) as the active device. The mixer output is applied to the Gate of the amplifier, and the output is taken from the drain and applied to the IF Filter Board. The amplifier provides approximately 15 dB of IF gain.

OSCILLATOR - MULTIPLIER

The oscillator-multiplier can be equipped with up to eight Integrated Circuit Oscillator Modules (ICOMs). The ICOM crystal frequencies range from approximately 14.5 to 18.5 megahertz, and the crystal frequency is multiplied 27 times to provide a low side injection frequency to the mixer.

ICOMS

Three different types of ICOMs are available for use in the Osc/Mult module. Each of the ICOMs contains a crystal-controlled Colpitts oscillator, and two of the ICOMs contain compensator ICs. The different ICOMs are:

- 5C-ICOM - contains an oscillator and a 5 part-per-million ($\pm 0.0005 \%$) compensator IC. Provides compensation for EC-ICOMs.
- EC-ICOM - contains an oscillator only. Requires external compensation from a 5C-ICOM.
- 2C-ICOM - contains an oscillator and a 2 PPM ($\pm 0.0002 \%$) compensator IC. Will not provide compensation for an EC-ICOM.

The ICOMs are enclosed in a dust-proof, RF shielded can with the type ICOM ($5 \mathrm{C}-\mathrm{ICOM}$, EC-ICOM or 2C-ICOM) printed on the top of the can. Access to the oscillator trimmer is obtained by prying up the plastic tab on the top of the can. The tabs can also be used to pull the ICOMs out of the radio.

Frequency selection is accomplished by switching the ICOM keying lead (terminal 6) to A- by means of the frequency selector switch on the control unit. In single-frequency radios, a jumper from H9 to H 10 in the control unit connects terminal 6 of the ICOM to A-. In the receive mode, +10 Volts is applied to the external ICOM load resistor (R401) by the RX Osc control line, keeping the selected ICOM turned on. Keying the transmitter removes the 10 Volts at R401, turning the ICOM off.

CAUTION

All ICOMs are individually compensated at the factory and cannot be repaired in the field. Any attempt to repair or change an ICOM frequency will void the warranty.

In standard 5 PPM radios using EC-ICOMs, at least one 5 C -ICOM must be used. The 5C-ICOM is normally used in the receiver Fl position, but can be used in any transmit or receive position. One 5C-ICOM can provide compensation for up to 15 EC-ICOMs in the transmitter and receiver. Should the 5C-ICOM compensator fail in the open mode, the EC-ICOMs will still maintain 2 PPM frequency stability from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$ due to the regulated compensation voltage (+5 Volts) from the $10-$ Volt regulator IC. If desired, up to 165 C -ICOMs may be used in the radio.

The 2C-ICOMs are self-compensated to 2 PPM and cannot provide compensation for EC-ICOMs.

Oscillator Circuit

The quartz crystals used in ICOMs exhibit the traditional "S" curve characteristics of output frequency versus operating temperature.

At both the coldest and the hottest temperatures, the frequency increases with increasing temperature. In the middle temperature range (approximately $0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$), frequency decreases with increasing temperature.

Since the rate of change is nearly linear over the mid-temperature range the output frequency change can be compensated by choosing a parallel compensation capacitor with a temperature coefficient approximately equal and opposite that of the crystal.

Figure 2 shows the typical performance of an uncompensated crystal as well as the typical performance of a crystal which has been matched with a properly chosen compensation capacitor.

Figure 2 - Typical Crystal Characteristics
At temperatures above and below the mid-range, additional compensation must be introduced. An externally generated compensation voltage is applied to a varactor (voltage-variable capacitor) which is in parallel with the crystal.

A constant bias of 5 Volts (provided from Regulator IC U901 in parallel with the compensator) established the varactor capacity at a constant value over the entire mid-temperature range. With no additional compensation, all of the oscillators will provide 2 PPM frequency stability from $0^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}\left(+32^{\circ} \mathrm{F}\right.$ to $\left.131^{\circ} \mathrm{F}\right)$.

Compensator Circuits

Both the 5C-ICOMs and 2C-ICOMs are temperature compensated at both ends of the temperature range to provide instant frequency compensation. An equivalent ICOM circuit is shown in Figure 3.

The cold end compensation circuit does not operate at temperatures above $0^{\circ} \mathrm{C}$. When the temperature drops below $0^{\circ} \mathrm{C}$, the circuit is activated. As the temperature decreases, the equivalent resistance decreases and the compensation voltage increases.

The increase in compensation voltage decreases the capacity of the varactor in the oscillator, increasing the output frequency of the ICOM.

The hot end compensation circuit does not operate at temperatures below $+55^{\circ} \mathrm{C}$. When the temperature rises above $+55^{\circ} \mathrm{C}$, the circuit is activated. As the temperature increases, the equivalent resistance decreases and the compensation voltage decreases. The decrease in compensation voltage increases the capacity of the varactor, decreasing the output frequency of the ICOM.

Service Note: Proper ICOM operation is dependant on the closely-controlled input voltages from the 10-Volt regulator. Should all of the ICOMs shift off frequency, check the 10 -Volt regulator module.

MULTIPLIER \& AMPLIFIER

The output of the selected ICOM is coupled through a tuned circuit (L401 and C405) that is tuned to three times the crystal frequency. The output of the tuned circuit is applied to the base of Class C multiplier Q401. The collector tank circuit of the multiplier (L 402 and C409) is tuned to nine times the crystal frequency. The multiplier stage is metered at metering jack J601-3 on the IFAS board.

Following the multiplier is a Class A Amplifier stage, Q402. Q402 is metered at J601-4 on the IFAS board through a metering network consisting of C415, C416, CR401 and R408. The amplified output of Q402 is applied to a tuned circuit (L403 and C413) that is tuned to nine times the crystal frequency. The tuned circuit provides some selectivity in the oscillator-multiplier chain.

The amplifier output is applied to the base of Class C multipiier Q403 through a matching network (T401 and C424). The output of Q403 is inductively coupled to the first of three helical resonators through L407. The helicals are tuned to 27 times the crystal frequency by C306, C307 and C308.

Figure 3 - Equivalent ICOM Circuit

Most of the selectivity for the oscillatormultiplier chain is provided by the three high-Q helicals. The output of the helicals is applied to the mixer circuit through T2 on the mixer board.

The multiplier output is metered at J605-7 through a metering network on the IF-Filter board. The metering network consists of L505, L506, C512, C513, C514, CR501 and R506.

IF-FILTER

CRYSTAL FILTER

The output of A303-Q1 is coupled through a tuned circuit (L501 and C501) which matches the output to the input of the four-pole monolithic crystal filter. The highly-selective crystal filter (FL501 and FL502) provides the first portion of the receiver IF selectivity. The output of the filter is coupled through impedancematching network L505 and C511 to the IF amplifier.

Service Note: Variable capacitor C504 does not require adjustment when performing normal alignment. If the four-pole monolithic crystal filter is replaced, then adjustment of C504 is necessary for optimum IF response.

IF AMPLIFIER

IF Amplifier Q501 is a dual-gate FET. The filter output is applied to Gate 1 of the amplifier, and the output is taken from the drain. The biasing on Gate 2 and the drain load determines the gain of the stage. The amplifier provides approximately 20 dB of IF gain. The output of Q501 is coupled through a network (L504 and C509) that matches the amplifier output to the crystal filter on the IFAS board. The output of the IF-Filter board is applied to the IFAS board through feed-through capacitor C325.

Supply voltage for the RF amplifier and IF-Filter board is supplied from the IFAS board through feed-through capacitor c326.

IF-AUDIO \& SQUELCH

CRYSTAL FILTERS, IF AMP \& LIMITER

IF from the MIF board is applied to a second four-pole monolithic crystal filter (FL601 and FL602) for additional selectivity. The filter output is coupled through matching network L601, C602 and C603 to the IF amplifier IC(U601). The amplifier IC provides approximately 60 dB IF gain.

Following $U 601$ are matching network L602 and C607 and two-pole crystal filter FL603 which provides the final receiver selectivity. The filter output is coupled through matching network L603, C611 and C612 to the limiter IC (U602). The limiter IC provides approximately 60 dB of IF gain. The IF amplifier output is metered at J601-1 through metering network C613, C614, L604 and CR601.

Service Note: Variable capacitors C601, C603, C607 and C612 do not require adjustment when performing normal alignment. If the 4 -pole crystal filter or the 2 -pole crystal filter is replaced, then adjustment of the associated capacitors will be necessary to achieve optimum IF response.

DISCRIMINATOR \& AUDIO PRE-AMP

The limiter output is applied to a Foster-Seely crystal discriminator where diodes CR602 and CR603 recover the audio. L605 is adjusted for zero discriminator reading. The discriminator is metered at J601-2 through R616.

The discriminator output is coupled through potentiometer R614 which is adjusted to set the audio level to the audio pre-amp IC (U602). The pre-amp provides approximately 26 dB of audio gain.

Service Note: R614 does not normally require adjustment unless U602 or parts of the discriminator are replaced. If adjustment should be required, set R614 for one Volt RMS measured at P904-11 with a 1000 microvolt signal with 1 kHz modulation and 3 kHz deviation applied to the antenna jack.

The output of the audio pre-amp is coupled through a low-pass filter (L607 and C636) to VOLUME and SQUELCH control high. The filter removes any IF signal remaining in the audio output of the pre-amp.

AUDIO IC

The hybrid audio IC (U604) uses a custom flip-chip monolithic integrated circuit. The audio IC contains a standard EIA Channel Guard tone reject filter, a receiver deemphases circuit, and the low level audio PA drive circuitry.

Audio from the pre-amp is coupled through the VOLUME control to pin 4 of the audio IC from P904-13 (VOL ARM). Audio at pin 4 is applied to the Channel Guard tone reject circuit, and then to the $6 \mathrm{~dB} / o c t a v e$ de-emphasis circuit. The filter output through C635 to the differential audio driver circuit. The output of the audio driver circuit is DC-coupled to the push-pull, Class $A B$ audio PA transistors, Q601 and Q602. The PA output is coupled through audio transformer T601 to provide a low distortion, 12-Watt output to the 8-ohm loudspeaker. R619 and C637 in the transformer secondary protects the PA transistors against a "no-load" or open circuit. Feedback from windings T601-3 and $\mathbf{- 4}$ determines the gain of the audio driver amplifier.

When the receiver is squelched, pin 1 of audio IC U604 is near A-, and the entire audio circuit is turned OFF to eliminate current drain. Pin 1 is also connected to the system board through p904-7 (RX MUTE) so that the receiver audio can be disabled by the time delay circuit in the lo-Volt regulator, and by the Channel Guard option when used.

Pins 6 and 7 are connected to the system board through P904-16 (RX PA) and P904-21 (INTCM INPUT) so that the receiver audio stages can be used to provide an audio output when the radio is equipped with the Intercom option.

Pin 2 is connected to the system board through P904-6 (SQ DISABLE) so that the receiver audio stages can be independently activated and used to provide an alert tone output when the radio is equipped with the Carrier Controlled Timer option.

SQUELCH IC

The hybrid squelch IC (U603) also uses a custom filp-chip monolithic integrated circuit. The squelch IC contains the noise amplifier, active noise filter, detector, slow and fast squelch circuits as well as the receiver unsquelched sensor (RUS) switch, and carrier activity sensor (CAS) switch.

Noise Amp, Filter \& Active Detector

Noise from the discriminator is coupled through the SQUELCH control to pins 1 and 2 on the squelch IC. This signal is applied to the noise amplifier and then to the active filter circuit.

The noise amp and active filter provide the gain and selectivity to distinguish between noise and audio. The filter output drives the active detector circuit to provide the squelch switching functions. Thermistor RT601 keeps the input to the active detector constant over wide variations in temperature.

Slow \& Fast Squelch

With a signal below the 20 dB quieting level, the slow squelch circuit provides a conventional slow (200 millisecond) squelch operation to prevent rapid squelch opening and closing iu weak signal areas.

A signal at or above the 20 dB quieting level is sensed by the signal level detector and activates the fast squelch circuit, providing a fast (10 millisec (m) squelch operation.

The squelch circuits have two outputs. One output controls the squelch switch and the other output controls the CAS switch.

Squelch Switch

The squelch switch output at pin 7 is connected to pin 1 of the audio IC. When the receiver is squelched, the output pin at 7 is near A-. This keeps the receiver audio stages turned ofl, muting the receiver. When the receiver is quieted by an on-frequency signal (unsquelches), the voltage at pin 7 rises to approximately +10 Volts. This turns on the audio stages and sound is heard at the speaker.

With the receiver unsquelched, the output of the squelch switch turns on the RUS switch. The output of the RUS switch is connected to the noise amplifier, providing a hysteresis loop in the squelch eircuit. The RUS output increases the gain of the noise amplifier, preventing squelch closing on weak signals. The RUS output at pin 8 is also connected to the system board through p904-8 for special applications.

Figure 4 Disassembly Procedure (Top View)

NOTE
In Channel Guard radios, the RUS switoh will operate only when an on-fxequency signal with the correct Channel Guard tone is applied to the receiver.

CAS Switch

The squelch circuits also drive the CAS switch. When the receiver unsquelches, the voltage at pin 6 rises to approximately 10 Volts. This voltage is connected to the system board through P904-9, and is used to turn on an optional. Channel busy light on the control Unit.

NOTE

The CAS switch will operate whenever an on-frequency signal is received, with or without a correct Chanvel Guard tone.

MAINTENANCE

DISASSEMBLY

To service the Receiver from the top (see Mecinanical Parts Breakdown):

1. Pull the locking handle down, then pry up the top cover at the front noteh and lift off the cover.

To service the Receiver from the bottom:

1. Pull the locking handle down and pull the radio out of the mounting frame.
2. Remove the top cover, then loosen the two bottom cover retaining screws and remove the botton cover (see Figure 4).

Figure 5 Disassembly Procedure (Bottom View)
3. To gain access to the bottom of the Osc/Mult and IFAS board, remove the six screws A holding the receiver bottom cover (see Figure 5).

To remove the Osc/Mult board from the radio:

1. Remove the six screws (A) holding the receiver bottom cover.
2. Remove the eight screws (E) holding the IF-Filter bottom cover.
3. Remove the four screws (B) holding the board.
4. Press straight down on the plug-in Osc/Mult board from the top to avoid bending the pins when unplugging the board from the system board jack.

To remove the IFAS board from the radio:

1. Remove the six screws (A) holding the bottom cover, and the one screw (C) holding the board.
2. Remove the two screws (D) holding the audio PA heatsink to the right side rail.
3. Press straight down on the plug-in IFAS board from the top to avoid bending the pins when unplugging the board from the system board jack.

To remove the $\mathrm{IF}-\mathrm{Fil}$ ter board from the radio:

1. Remove the eight screws (E) holding the IF-Filter bottom cover.
2. Remove the six screws (F) holding the IF-Filter top cover.
3. Remove the two screws © and the Connector (H), and carefully push down on the top of the board to avoid damaging the feedthrough capacitors.

To remove the optional UHS pre-amplifier board:

1. Remove the eight screws (E) holding the IF-Filter bottom cover, and the six screws (F) holding the IF-Filter top cover.
2. Disconnect the two connectors and 10Volt lead (J).
3. Remove the three screws on the bottom side of the board, and lift out the board.

COMPLETE RECEIVER ALIGNMENT

 2 and

		$\frac{\text { Multimeter }}{}$	muna ompar	\％ma	
	ate	man	\＃ma	边	
	anto	8 m	\％	니…x	边
	eimp	mas	${ }^{\text {mon }}$	meme	
	为	mas	\％ame us wem	5imem	
	amime	m	amam an mix	fremer	
	（mex	mos		\％om	
	${ }^{\text {cmamp }}$	nan	som memm	mamm	
	（0nmom	${ }^{2 m}$	commam	\％	
	（mime	${ }_{\text {nam }}$	\％m momm	＂me	
－	\％rime	${ }_{\text {nom }}$	${ }_{\text {cosen man }}$	mater	
	\％rim	${ }^{\text {man }}$		${ }^{\text {maxam }}$	
	mixm			natam	

ALIGNMENT PROCEDURE

STEP 1
AUDIO POWER OUTPU AND DISTORTION
test procedure
Measure Audio Power Output as follows
 with +3.0
A301-s1.
B. With 15 -Watt Speaker

Disconnect speaker lead pin from Systems
Plug p701-11 (on rear of Control Unit).

 Connect the Distortion Ane Iyyser input
across the resistor as shown.
with Handet:
Lift the handset off of the hookswitch
Connect the Distortion Analyzer input
from P904-19 to p904-18.
Adjust the VoLUNE control for 12 -Watt
oututut 9.8 KRMS
Analysing as a the Distortion
Make distortion measurements according
to manufacturer's instructions. Reading should be less than 3\% If If the receiver
sensititity is to be meared. leave
all controls and equipment as they are.

SERVICE Check

If the distortion is more than 3\%, or
maximum audio output is less than 12.0
Watts, make the following checks:
E. Battery and regulator voltage---1ow volt age will case distortion. (Refer to
Receiver Schematic Diagram for voltages.
F. Audio Gain (Refer to Receiver Trouble-
G. $\quad \begin{aligned} & \text { Discriminator Alignment (Refer to } \\ & \text { Receiver Alignment on } \\ & \text { page) }\end{aligned}$

USABLE SENSITIVITY

 (12-dB SINAD)If STEP 1 checks out properly, measure
the receiver sensitivity as follows:

B. Place the RANGE switch on the Distortion
Analyzer in the 200 to $2000-\mathrm{Hz}$ distortion

Place the RANGE switch to the SET LEVEL
position (filter out of the circuit) and adjust the input LEVEL controi for for a and +2
dB reading on a mid range (30%)
D. While reducing the signal generator out-
put, switch the RANGE control from SET
隹 LEVEL to the distortion range until a
$12-\mathrm{dB}$ difference $(+2 \mathrm{~dB}$ to $-10 \mathrm{~dB})$ is 12-dB difference (+2 dB to -10 dB) is
obtained between the SET LEVEL and
antortion range positions (filter distortion range
and filter in).

- The $12-\mathrm{dB}$ difference (Signal plus Noise and Distortion to noise plus distortion
ration is the tusabien sensitivitity level
The sensitive ty should be less than rated
 out tut of at least 6.0 Watts $(6.9$ Volts
RMS across the as
the Distortion Aneoreiver
Leave all controls as they are and all
equipment connected if the Modulation Accepptant connected if the Modulation
formed.

SERVICE CHECK

STEP 3

BANDWITH (IF BANDWITH)

If STEPS 1 and 2 check out
asure the bandwidth as follows: Set the Signal Generator output for twice
the microvolt reading obtained in the 12-dB SINAD measurement
Set the RaNGE control on the Distortion
Analyzer in the SET LEVEL position (1000 the input LEVEL control for a a +2 dB read the input men the 30% range
While increasing the deviation of the
Signal Generator,
switch the RANGE conSignal Generator, swi th the RANGE con
trol from SET LEVEL to distortion range trol from SET LEVEL to distortion range
until a $12-\mathrm{dd}$ difference is obtained
between the SET LVEL and distortion range
readings (from +2 dB to -10 dB)
D. The deviation control reading for the 12-dB difference is the Modulation
Acceptance Bandwidthoo the receiver.
It should be more than $\pm 7 \mathrm{kHz}$.
service check

test set checks

smexex	macause
	为
	-
, into	
me senrivit	
	-
	\%
	\%

STEP 4-VOLTAGE RATIO READINGS \longrightarrow
Evemex FOW= 2xaz

