

SPECIFICATIONS *

Controls

Channel Search Rate
Priority Sample Rate
Priority Signal Override
Temperature Range
Current Drain

Priority Squelch Adjust Search (ON-OFF)

Four Times Per Second
6-7 Milliseconds
20 dB quieting
$-40^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}\left(-40^{\circ} \mathrm{F}\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$
45 mA maximum @ 13.8 VDC

TABLE OF CONTENTS

SPECIFICATIONS Cover
DESCRIPTION 1
CIRCUIT ANALYSIS 2
Master Pulse Generator 2
Two Frequency Search, Selectable Priority 2
Receiver Squelched 2
Receiving Priority 2
Receiving Non Priority 4
Priority Disable 7
Transmit Revert Mode 7
Voltage Regulator 7
Multi-Frequency Locked Priority 8
Multi-Frequency Locked Non Priority 8
FIELD INSTALLATION 9
MA INTENANCE 10
PRIORITY SQUELCH ADJUSTMENT 10
OUTLINE DIAGRAMS
Two Frequency Priority Search Lock Monitor 12
Extender Board 19C320588Gl 12
SCHEMATIC DIAGRAM AND TROUBLESHOOTING PROCEDURE 14
PARTS LIST AND PRODUCTION CHANGES 13
TROUBLESHOOTING PROCEDURE 15

[^0]
DESCRIPTION

The General Electric Two Frequency Priority Search Lock Monitor Option consists of Option Kit 19A129567G5. (Variations in strapping of the Option Kit provide the three modes of operation.

The Option Kit (see Figure 1) is made up of the following components and is supplied factory installed, or may be field installed at a later date.

- Priority Search Lock Monitor Board 19C320453.
- Control Unit Nameplate NP270753P5.
- Option Switch with mounting hardware.
- Option Indicator (LED) and retainer clip.

Figure 1

The PSLM board plugs into designated pins on the Control Unit printed wire board and contains the necessary circuitry to continuously and sequentially monitor any two channels of a multi-frequency receiver.

The two-frequency PSLM allows the user to select two of up to eight receive channels to be searched. Depending on the option employed either channel can be designated as the priority channel or when only two channels comprise a system the priority channel may be selected by the Frequency Selector Switch on the Control Unit.

The locked priority channel is selected by means of interconnecting straps in accordance with Table 1 of the Installation Instructions.

The PSLM assures reception of all signals on the priority channel regardless of the signal strength of the first signal received.

The three modes of operation are:

- Two Frequency SearchSelectable priority
- Multi-Frequency Locked Priority-Selectable NonPriority.
- Multi-Frequency Locked Non-Priority-Selectable Priority

When a signal is received on the priority channel, the PSLM stops searching and locks on the priority channel for the duration of the message. When a signal is received on the non-priority channel, the PSLM stops on that channel but continues to monitor the priority channel. If a signal is then received on the priority channel whose signal strength equals or exceeds 20 dB quieting, the PSLM reverts to the priority channel and locks for the duration of the priority message.

NOTE

The PSLM operates only when the receiver is squelched. When the receiver is unsquelched the PSLM will lock onto the active channel. If this should be the non-priority channel and a second signal is received the PSLM will revert to priority (locked) channel operation.

Channel Busy Indicator

The Channel Busy Indicator is a light emitting diode (LED) that turns on when a message is being received on the priority channel and flashes when a message is recevied on the non-priority channel.

Search Switch (S1701)

When the SEARCH Switch is in the On position, the PSLM alternately monitors the priority and non-priority channels and selects the appropriate channel when a message is received.

When the SEARCH Switch is on the "Off" position, the PSLM circuitry is disabled and messages are received and transmitted on the channel indicated by the Frequency Selector Switch on the Control Unit.

Operating the push-to-talk (PTT) Switch disables the PSLM circuitry and permits message transmissions on the frequency indicated by the Frequency Selector Switch. The Channel Busy Indicator is out when transmitting.

CIRCUIT ainalysis

The Priority Search Lock Monitor is fully transistorized using both discrete components and integrated circuits (IC's) to achieve maximum reliability. Discrete components are used in the Master Pulse Generator, Inverter, Channel Drivers, Transmit Revert, Lamp Driver, and Voltage Regulator circuits. IC's are used in the logic circuitry while hybrid circuits are employed for audio muting and squelch control.

References to symbol numbers mentioned in the following text may be found on the Block Diagram, Schematic Diagram, Outline Diagram or Parts List (see Table of Contents).

Supply voltage for the PSLM is provided from the vehicle ignition switch through Jack 701-11 and the power ON-OFF Switch. A voltage regulator on the PSLM board provides +9.5 V to the PSLM muting and squelch circuit hybrid U1704 and to the Master Pulse Generator. Regulated +5 V is supplied to the logic circuits.

MASTER PULSE GENERATOR

The Master Pulse Generator generates the timing pulses required to permit searching the selected channels and to permit monitoring the priority channel while receiving on the non-priority channel. The Master Pulse Generator consists of unijunction transistor Q1701, resistors R1701R1704 and capacitor Cl701.

When power is applied to the circuit C1701 charges up and causes Q1701 to conduct (emitter to base 1). This quickly discharges Cl701 causing Q1701 to stop conducting until Cl701 again charges up through R1701 and R1702. This cycle is repeated as long as power is applied. The value of Rl701 is selected to provide a frequency of 8 Hz . (A pulse every 125 milliseconds).

The output of the Master Pulse Generator is applied to two IC's (Ul701-A and Ul702-C) to provide timing pulses required for different modes of operation. The PSLM sample rates and times discussed in the different modes of operation assures the reception of the first syllable of a message received on either channel, and to assure full intelligibility of messages received on the non-priority channel. Figure 2 is a Functional Block Diagram of the PSLM and also shows the primary signal interconnections required for normal operation.

TWO FREQUENCY SEARCH, SELECTABLE PRIORITY
Operation of the PSLM can be divided into three modes:

- Receiver Squelched
- Receiving Priority Channel
- Receiving Non-Priority Channel

Receiver Squelched

When the receiver is squelched (no signal applied), the PSLM alternately monitors each channel four times per second for a duration of 125 milliseconds. A typical Timing Diagram for this mode of operation is shown in Figure 3.

The base of Inverter Q1703 is connected to the CAS Buffer Switch in the receiver. When the receiver is squelched the base of Q1703 is near ground potential keeping the transistor turned off. When turned off the collector of Q1703 is high permitting the Search Control Gate (U1702-G) to trigger the Channel FF under control of the Master Pulse Generator. The Channel FF is triggered every 125 milliseconds and alternately turns on the Fl and F2 drivers. The drivers are turned on when their base voltage is positive and turned off when the base voltage approaches zero. When turned on, the driver applies $A-$ to the associated receiver ICOM to monitor that channel during the time it is being searched.

A- is also applied to the set direct (SD) input of FF Ul701-A causing it to remain in the true state (pin 8 high, pin 9 low) until a signal is received. So long as the $S D$ input is held low the output of Priority Sample Control GATE 2 remains high. Since the Priority Sample Pulse Generator operates only when GATE 2 changes state, it is disabled when the receiver is squelched.

The Channel Busy Indicator is biased off during this mode of operation due to $A-$ being applied from the carrier activity sensor line (CAS) to the base of Q701. Ais present on the CAS line when a carrier signal is not being received.

Receiving Priority Channel

This mode of operation allows the user to select the priority channel via the Frequency Selector Switch on the Control Unit. The circuit description below assumes Fl as the priority channel.

When a carrier signal is received on the priority channel, the PSLM locks on that channel for the duration of the message. A typical Timing Diagram for this mode of operation is shown in Figure 4.

Receiving a carrier signal on the Fl Channel unsquelches the receiver and applies +10 V to the base of Inverter Q1703, turning it on. When turned on, the collector of

RC-2573

Figure 3 - Receiver Squelched

RC- 2574

Figure 4 - Receiving Priority Channel

Inverter Q1703 drops to ground potential and disables the Search Control Gate (Gate 1) thereby preventing the Master Pulse Generator from triggering the Channel Select FF. The output of Search Control Gate l remains high as long as a carrier signal is received. Additionally the "O" level applied to the SD output of divider FF Ul70lA is removed and a 250 millisecond square wave is applied to Priority Sample Control Gate 2. Gate 2, however, is disabled by A- applied through the Frequency Select Switch from Channel Driver Fl (1705-C). This disables the Priority Sample Pulse Generator and prevents it from triggering the Channel FF.

The Channel Busy Indicator is turned on when receiving the priority channel.

During this time A- is applied to the base of Q1704 turning it off and removing Afrom the base of Q701 allowing the base of Q701 to go positive, turning it and the Channel Busy Indicator "on".

Receiving Non-Priority Channel
When a signal is received on the nonpriority channel, the PSLM stops on that channel while monitoring the priority channel. The priority channel is monitored for 6-7 milliseconds at approximately 250 millisecond intervals (four times per second). If a signal is received on the priority channel while receiving the non-priority channel, the PSLM will transfer operation from the non-priority channel to the priority channel for the duration of the message. A typical

Timing Diagram for this mode of operation is shown in Figure 5 .

Figure 5 - Receiving Non-Priority Channel

Assume that F 2 is the non-priority channel. Receiving a signal on the F2 channel turns on Inverter Q1703. The collector of Q1703 goes low, disabling Search Control Gate 1. The output of the Search Control Gate goes high locking the Channel FF to Channel Driver F2 for the duration of the message or until a 20 dB quieting signal is received on the priority channel. The F2 driver, Q1706, stays on and applies a constant ground to the associated receiver ICOM, to assure continuous reception of the message. Channel Driver Fl is turned off during this time. In addition, Divider FF Ul701A is enabled and applies a 250 millisecond square wave to Priority Sample Control Gate 2.

In this mode of operation A - from the F2 Driver is not returned through the Frequency Selector Switch to the input of Priority Sample Control Gate. Gate 2 therefore is enabled allowing the Priority Sample Pulse Generator to generate a seven millisecond pulse four times a second. The Priority Sample Pulse Generator consists of U1701A, U1702A \& B, Q1702, U1703A \& B, C1703, C1708 and differentiator C1702 and R1705. C1703 and C1708 determine the width of the priority pulse. The values of Cl703 and C1708 are selected to provide a sample time of seven milliseconds. The priority sample pulse is generated coincident with the normal turn on time of the Fl Channel Driver when the PSLM is searching both channels. This enables the PSLM to monitor the priority channel while receiving on the non-priority channel.

The output of Gate 2 is differentiated by C1702 and R1705 (see Figure 5) and the pulses are applied to the base of Q1702. As Q1702 is an NPN transistor, only the positive pulses (applied every 250 milliseconds) cause the transistor to conduct. When it conducts, the negative-going output pulse at its collector forward biases CR1701 and switches the Channel FF to the priority channel. The output of Q1702 also activates One-Shot Time Delay Ul703 which provides a seven millisecond positive output pulse. The output pulse is simultaneously applied to the audio muting circuit in Ul704 and to Inverter Ul702B.

In the audio muting circuit, audio and noise from the emitter of audio-noise amplifier in the receiver is connected to Pl7ll on the PSLM board. The audio is normally coupled through Pin 3 on Ul704. C3, R4, C2 and Emitter Follower Q4, and then connected from Pin 4 on U1704 to P1712 on the PSLM board. Refer to Figure 6 for a Simplified Diagram of PSLM Audio Mute Hybrid Ul704.

The positive pulse from the One-Shot turns on Q2 and then Q3 for a total time of eight milliseconds. When turned on, the collectors of Q2 and Q3 drop to A-, shunting the receiver audio path. This prevents objectionable noise bursts from being heard at the speaker each time the priority channel is monitored.

At the same time the audio is muted, the output of the One-Shot is inverted and applied to Squelch Muting Transistor Q5 and to Differentiator Q1.

The fast squelch circuit consists of Q5 through Q8. When the priority channel is not being monitored, audio and noise applied to the fast squelch circuit is shunted to ground by normally-on transistor Q5. When the Channel FF is switched to the priority channel, the negative-going output of the seven millisecond One-Shot is applied

Figure 6 - Typical PSLM Mute Hybrid U1704
to the base of Q5 turning the transistor off While Q5 is turned off, the noise output of the active high-pass noise filter is applied to the base of Noise Amplifier Q7. The filter consists of C4, C5, C6, R9 and R10, Squelch Adjust potentiometer R1710 and Qll. Instructions for setting R1710 are listed in the Table of Contents.

The output of $Q 7$ is rectified by CR3 and CR4 and the resultant negative voltage turns off DC Switch Q8. Turning off Q8 removes the ground at the input of Gate 3 (Ul702D) thereby allowing it to pass the priority pulse.

While Q8 is turned off, the output of the Inverter UC1702B is differentiated by Cl and R21 (see Figure 6), and the positivegoing pulse turns off PNP Transistor Q1. Turning off Q1 applies a "l" to the remaining input of Gate 3 , switching the output to a "O". The "O" triggers the Channel FF, causing it to switch back to the non-priority channel. The entire cycle is repeated every 250 milliseconds until a carrier signal with a strength of 20 dB quieting or more is received on the Priority Channel or for the duration of the message.

If a signal is received on the priority channel during the seven millisecond monitor period, the signal quiets the receiver.

With the receiver quieted, there is insufficient noise to operate the fast squelch circuit so that Q6 remains on (its collector at ground potential). A- at the collector of Q8 blocks Gate 3, while A- from Q1705 collector is applied back through the Frequency Selector Switch to disable Priority Sample Control Gate 2. With both gates 2 and 3 disabled, the Channel FF remains locked on the priority channel for the duration of the message.

The Channel Busy Indicator will flash on when receiving messages on the non-priority channel. Since messages are now being received on the non-priority channel, A- is removed from the base of Indicator Light Control Transistor Q1704, allowing Q1704 to turn on. Q1704 then applies A- to the base of Q701 which turns off and keeps the Channel Busy Indicator off. However, when the priority sample pulse is generated and the priority channel sampled, A- is applied to the base of Indicator Light Control Transistor Q1704 turning it off for the duration of the priority sample pulse (7 milliseconds). During this time A- is removed from the base of Q701 which allows it to turn on and to turn on the Channel Busy Indicator.

PRIORITY DISABLE

The PSLM can also be modified to operate without priority for any channel. To disable the priority function of the PSLM and revert to Search Lock Monitor operation remove Cl702 in the PSLM Priority Sample Pulse Generator.

TRANSMIT REVERT MODE

When operating in the Transmit Revert Mode (PTT switch depressed) the Transmit Revert circuits within the PSLM disable the Priority Pulse Generator, the Fl and F2 Channel Drivers and turn off the Indicator Light Control. Messages are transmitted on the channel selected by the Frequency Selector Switch.

Operating the PTT switch pulls the base of Transmit Revert Driver Q1709 low, turning it on. Q1709 in turn applies A+ to Transmit Revert Switch Q1707 and DC Switch Q1710, turning both transistors on.

The Transmit Revert Switch applies Ato Indicator Light Control Q1704, Priority Sample Control Gate 2 U1702A and the Frequency Select Switch common lead, turning off the Indicator Light Control, disabling the Priority Sample Pulse Generator. The transmit frequency is determined by the Frequency Selector Switch.

DC switch Q17l0 applies A- to the set direct (SD) input of the Channel FF and to the base of Channel Driver Fi. When A- is applied to the $S D$ input of the Channel $F F$ the Q and \bar{Q} outputs are " 1 " and " 0 " respectively. This, then, turns off the F2 Channel Driver. Under this condition, when the PTT switch is operated, both channel drivers are off and the PSLM is disabled.

When the PTT switch is released a delay of approximately 250 milliseconds , due to the discharge of Cl711 through R1715 and the base emitter junction of Q1710 and through R1702 and the base emitter junction of Q1707 allows the Transmit Revert Driver Q1709 to keep the transmit frequency selected. This is required to allow for the Squelch Tail Elimination delay, when Channel Guard is used. To eliminate the delay when Channel Guard is not used remove the DA wire between H 4 and H 5 .

VOLTAGE REGULATOR

The Voltage Regulator, consisting of Q1708 and associated circuitry, provides +9.5 V and +5.0 V to the PSLM circuits. Transistor Q1708 is a series regulator whose base emitter voltage is held constant by zener diode CR1704. Q1708 can be considered as a voltage controlled variable resistor whose resistance varies with a change in collector voltage.

With the base emitter voltage constant, a drop in collector voltage will cause Q1708 to conduct harder thereby reducing the voltage drop across the emitter and maintain a constant +9.5 V at collector. Conversely, an increase in collector voltage will decrease conduction of Q1708 which effectively increases the series resistance and prevents the emitter voltage from rising.

Zener diode CR1702 connected across the +9.5 V regulator through a series resistor provides a regulated +5 V output to the various logic circuits in the PSLM.

Two Frequency Selectable Priority was discussed above; therefore, the following description is limited to the circuit differences for optio, 1006 and 1007.

MULTI FREQUENCY LOCKED

This mode of operation permits the user to designate any one of eight channels as the locked priority channel and to select, at will, any of the remaining channels as the non-priority channel to be searched by setting the Frequency Selector Switch to the desired channel.

NOTE

Only two channels may be searched-the priority and non-priority.

Locked priority is achieved by strapping the collector of Channel Driver (Fl) to the Frequency Selector Switch in accordance with Table 1 on the Schematic Diagram.

Channel Driver F2 is connected via H1 to the wiper (common) of the Frequency Selector Switch to permit selection of the non-priority channel.

When a message is received on the priority channel the collector of Fl Channel Driver goes low and applies A- to the Priority Sample Control Gate and to Indicator Light Control Q1704. This inhibits operation of the Priority Pulse Generator and turns on the Channel Busy Indicator. The SEARCH Control Gate is disabled by the CAS signal applied to Inverter Q1703. Disabling these two gates, inhibits operation of the Channel FF and causes the Channel FF to lock on to the priority channel.

When a message is received on the nonpriority channel (selected by the Frequency Selector Switch) A- is applied from the collector of Channel Driver F2 to the selected non-priority receiver ICOM through the Frequency Selector Switch. The Search Control Gate is disabled by the CAS signal, however, the Priority Sample Gate is enabled due to the absence of A- from the Fl Channel Driver. Under these conditions, a priority sample pulse is generated four times per second and applied to the Channel FF to permit monitoring the priority channel.

When the priority channel is monitored, Fl Channel Driver Q1705 turns on for six milliseconds and applies $A-$ to the Indicator Light Control via contacts 4 and 5 of Sl701 causing the Channel Busy Indicator to flash. Additionally A- is applied to the Priority Sample Control Gate to disable it during the monitor period.

If a message is received on the priority channel while receiving on the nonpriority channel, the Priority Sample Gate remains disabled preventing the Channel FF from reverting back to the non-priority channel.

NOTE

If the Frequency Selector Switch is set to the Priority Channel, the PSLM will appear not to search. Under these conditions the collectors of both Channel Drivers are connected together through the Frequency Selector Switch, thus the Priority Channel is monitored as if manually selected.

MULTI FREQUENCY LOCKED NON-PRIORITY

This mode of operation is similar to the locked priority mode except that the locked non-priority channel is assigned by strapping the collector of non-priority Channel Driver F2 instead of Channel Driver Fl to the Frequency Selector Switch in accordance with Table 1 on the Schematic Diagram. The priority channel is then selected by setting the Frequency Selector Switch to one of the remaining channels as desired. Again, only two channels may be searched -- the priority and the non-priority.

Channel Driver Fl is connected via Hl to the wiper (common) of Frequency Selector Switch to permit selection of the priority channel. Channel Driver F2 is connected to the desired non-priority channel in accordance with Table 1.

When a message is received on the priority channel, Q1705 turns on and its collector goes low, applying A- to the Priority Sample Control Gate and to Indicator Light Control Q1704. This inhibits operation of the Priority Pulse Generator and turns on the Channel Busy Indicator. The Search Control Gate is disabled by the CAS signal. Disabling these two gates inhibits operation of the Channel FF causing it to lock onto the selected priority channel.

When a message is received on the locked non-priority channel, A- is applied from the collector of Channel Driver F2 directly to the receiver ICOM. The search Control Gate is disabled by the CAS signal; however, due to the absence of A- from Channel Driver Fl the Priority Sample Control Gate is enabled. Under these conditions the priority sample pulse is generated four times a second to permit monitoring the priority channel.

When the priority channel is monitored, F1 Channel Driver Q1705 turns on for six milliseconds and applies A - to the Indicator Light Control causing the Channel Busy Indicator to flash.

If a message is received on the priority channel while receiving on the non-priority channel, the Priority Sample Control Gate remains disabled, preventing the Channel FF
from reverting operation to the non-priority channel.

NOTE

If the Frequency Selector Switch is set to the locked non-priority channel the PSLM will appear not to search. Under these conditions the collectors of both Channel Drivers are connected together through the Frequency Selector Switch, thus, the Priority Channel is monitored as if manually selected.

FIELD INSTALLATION

The following instructions can be used to install the PSLM board in a multifrequency Control Unit that is not equipped with any other option boards.

Control Unit Models:

19A129576Gl (Common Kit)
19A129578Gl (1-thru 8-Frequency Kit)
19A129578G2 (1-thru 12-Frequency Kit)
Installation of the PSLM Option Kit in this model requires that the Control Unit printed wiring board (PWB) be removed from the Control Unit. This is necessary in order to cut the applicable points on the Control Unit PWB. Proceed as follows:
a. Remove the two screws on the bottom of the front edge of the Control Unit and lift off the top cover.
b. Remove the two screws securing the microphone jack.
c. Remove the screw between $J 701$ and $J 702$, and the screw between $J 702$ and J 703.
d. Remove the screw at each end of the switch and control mounting bracket.
e. Remove the screw securing the Power-On switch (S701) to the Control Unit housing, then swing the board up from the front and lift out.
f. Remove the printed wiring board from the Control Unit and cut the printed wiring run at Points F and G. Refer to the Control Unit Maintenance Manual for the location of the specified points.
g. Re-install the board assembly in the Control Unit, but do not replace the top cover at this time.
h. Follow Step 1 through Step 6 to complete the installation.

Control Unit Models:
19D423590G3, $4 \& 5$
Installation of the PSLM Option Kit in this Control Unit model requires the following:
a. Remove the two screws on the bottom of the front edge of the Control Unit and lift off the top cover.
b. On the Control Unit printed wire board, cut DA jumpers " F " (H55 to H56) and " G " (H53 to H54). Refer to the Control Unit Maintenance Manual for the location of specified jumpers.
c. Follow Step 1 through Step 6 to complete the installation.

STEP 1: Position the PSLM component board assembly in the guide slots located inside the sides of the Control Unit housing. Gently insert the board assembly into the Control Unit, making sure that the connectors on the board assembly mate correctly with the square pins of the Control Unit printed wire board.

STEP 2: Mount the SEARCH Switch (S1701) in the space provided in the Control Unit. Orient the switch as shown on the Outline Diagram. Secure the switch to the control mounting bracket with the $4-40 \times 1 / 4$ inch Phillips head POZIDRIV ${ }^{(\sqrt{B}}$ tap screw provided. Secure the other end of the switch to the Control Unit housing with the 4-40 1/4 inch Phillips head tap screw provided.

STEP 3: Position the LED (CR706) in the front indicator slot of the Control Unit housing and secure in place with the spring clip provided.

STEP 4: Make LED and switch connections as indicated in the connection chart on the outline diagram.

STEP 5: Remove the existing nameplate from the Control Unit top cover and install new Nameplate (NP270753P5) as follows:
a. Viewing the Control Unit from the front, note that there are only three of the plastic Nameplate tabs which lock in place. These are the top left hand tab, the top right hand tab and the bottom center tab. The remaining tabs function only as guide tabs.
b. Release the locking action of the tabs, starting with the top right hand tab, then the top left hand tab. Apply pressure with fingers or use a small flat blade screwdriver to release tabs. Push released tabs up through slots to prevent relocking of tabs.
c. Release the locking action of the bottom center tab and pry the nameplate loose from the top cover. The old nameplate will not be used with the PSLM Option.
d. Install the new nameplate.

STEP 6: Replace the Control Unit top cover and secure in position with the two screws previously removed.

MA INTENANCE

PRIORITY SQUELCH ADJUSTMENT

Priority Squelch Adjust R1710 was set at the factory for 20 dB quieting sensitivity on the priority channel, and will normally require no further adjustment. If it should become necessary to set R1710, use the following procedure. A signal generator (M560 or equivalent) with a 6 dB pad is required.
l. Set the Frequency Selector Switch to a non-locked frequency position and the SEARCH-OFF switch to the SEARCH position.
2. Alternately squelch and unsquelch the receiver until the PSLM stops on the non-priority channel. The PSLM searches when the receiver is squelched
and may lock on either the priority ol non-priority channel when the receiver is unsquelched. Therefore, several attempts may be required to stop the PSLM on the non-priority channel.
Make sure that the PSLM is stopped on the non-priority channel by verifying that the Channel Busy Light on the Control Unit flashes.
3. Next apply a signal on the priority channel from the signal generator. Increase the signal generator output until the receiver switches to the priority channel. This should be at the 20 dB quieting level as measured previously.
4. If necessary, adjust the Priority Squelch Control R1710 until the PSLM switches channels at the 20 dB level. Check all channels for this same function.

${ }^{\text {REV. }} \mathrm{C}$ - Tor resure search after transait ting when uscd with channel Gaiard.
kev. E -

		AVEFORMS		Rosm	${ }_{\text {cosem }}^{\text {secesem }}$,		How	\%ective	, kicume	cicamo	TROUBLESHOOTING PROCEDURETwo FREQUENCY
	mimeme		mameminimsinam								\%meme	
	Rem			¢				N	\# ${ }^{\text {a }}$		\#	
		Wemotion			${ }^{\text {cmamem }}$	${ }_{\text {momex }}$						
\%esm	Sexictio	, vecimein	citame	©				-	$\# \#$	H	\#	
	为	nemem	smame				smmex			mamm	smame	
(A)				(
					.	cmam			momm			
(B)				(1)				(a)				
	smmem	smom			,	\%				\%		
(c)				(1)				®		요		
(1)				(L)				(s)				
	mem	come				${ }_{\text {max }}$						
©				(1)				(${ }^{\text {c }}$	Eminn			

[^0]: Although the highest $D C$ voltage in the radio is supplied by the vehicle battery, high current may be drawn under short circuit conditions. These currents can possibly heat metal objects such as tools, rings, watchbands, etc., enough to cause burns. Be careful when working near energized circuits!

 High-level RF energy in the transmitter Power Amplifier assembly can cause RF burns. KEEP AWAY FROM THESE CIRCUITS WHEN THE TRANSMITTER IS ENERGIZED:

