GE Mobile Communications

MASTR ${ }^{\circledR}$ II
PRIORITY SEARCH-LOCK MONITOR 19A130107G1
(OPTIONS 9552, 9553, \& 9554)

Maintenance Manual

TABLE OF CONTENTS

SPECIFICATIONS ii
DESCRIPTION 1
STATION SWITCHING 1
CIRCUIT ANALYSIS 3
Master Pulse Generator 3
Modes of Operation 3
MAINTENANCE 5
SYSTEM MODIFICATIONS 6
PRIORITY SQUELCH ADJUSTMENT 6
OUTLINE DIAGRAM 8
SCHEMATIC DIAGRAM 9
PARTS LIST 10
MODIFICATION \& INSTALLATION DIAGRAM 11
INTERCONNECTION DIAGRAM 12
SPECIFICATIONS*

Search Rate (Each Channel)	Four times per second
Sample Time (Each Channel)	125 milliseconds
Priority Channel Search Rate	Four times per second
Priority Channel Sample Time	$5-6$ milliseconds
Priority Squelch Sensitivity	$20-\mathrm{dB}$ quieting
Input Power	45 milliamperes @+10 volts DC
Silicon Transistors	9
Integrated Circuit Modules	4
Light Emitting Diode	1
Temperature Range	$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$

[^0]
WARNING

Under no circumstances should any person be permitted to handle any portion of the equipment that is supplied with high voltage, or to connect any external apparatus to the units while the units are supplied with power. KEEP AWAY FROM LIVE CIRCUITS.

General Electric Priority SearchLock Monitor provides two-channel monitoring by alternately searching a priority channel and a non-priority channel. The Priority Search-Lock Monitor (PSLM) assures reception of all signals received on the priority channel regardless of signal strength or which channel receives the first signal.

When a signal is received on the priority channel, the PSLM stops searching and locks on the priority channel for the duration of the message. When a signal is first received on the non-priority channel, the PSLM stops on that channel while monitoring the priority channel. If a signal is received on the priority channel while the PSLM is stopped on the non-priority channel, the PSLM reverts to the priority channel and locks on that channel for the duration of the message.

NOTE

The PSLM will operate only when the receiver is squelched. When the receiver is unsquelched, the PSLM will lock on the priority channel.

Also, operating the PSLM with the control unit squelch set at maximum (fully counterclockwise) may result in a repetitive thumping sound in the speaker. This is caused by a priority channel that is slightly weaker than the receiver maximum squelch sensitivity being rapidly accepted and rejected by the receiver squelch circuit.

In station applications, the priority channel is locked on either the F1 or F2 channel by simply changing a connection on the PSLM board. Instructions for making this change are contained on the Schematic Diagram (see Table of Contents).

In applications where a priority channel is not desired, the priority feature may be disabled by disconnecting C2 and C9. The PSLM will then alternately search both channels and will lock on the channel receiving the first signal.

The station option numbers and the application of each option are shown in the following chart.

Option Number	Station Control	Number of frequencies		
	Xmtr	Rcvr		
9552	Extended Local/ DC \& Tone Remote	1 or 2	2	
9553	DC Remote	1 or 2	2	
9554	Tone Remote	1 or 2	2	

STATION SWITCHING

LOCAL CONTROL STATIONS
(Refer to Figure 1)
In local control stations, the PSLM is controlled by the PSLM switch on the Local MASTR Controller.

Pushing the PSLM switch removes the ground to either receiver oscillator, and applies a ground to the PSLM lead. This activates the PSLM which alternately applies ground to each of the receiver oscillators at a rate of four times per second. If a signal is received on either channel, the PSLM will lock on that channel for the duration of the message, or until a signal is received on the priority channel.

When the PSLM pushbutton is out and the R-F1/F2 switch is out the Receiver F1 is activated. When the R-F1/F2 pushbutton switch is pushed in the Receiver F2 is activated. In Local/Remote control stations the control of the PSLM is from the local control point only.

DC/TONE REMOTE CONTROL STATIONS
(Refer to Figure 2)
In DC/TONE Remote Control Stations three different control currents or Audio Tones on the control line select the receiver frequencies.

When -6A's of current for DC Control (or a tone of 1750 Hz for Tone Control) appears on the control line, this current (or tone) is detected and Q10 (or Q3) is turned on. This grounds the Rec F1 line to lock the receiver on F1.

When - 11 mA 's of current for DC Control (or tone of 1650 Hz for Tone Control) appears on the control line, this current (or tone) is detected and Q14 (or Q7) is turned on. This grounds the Rec F2 line to lock the receiver on F2.

Figure 1 - Local Switching Diagram

Figure 2 - Remote Switching Diagram

When 0 mA's of current for DC Control (or a tone of 1050 Hz for Tone Control) is present on the control line, this current (or tone) is detected and Q16 (or Q10) is turned on. This removes the ground from either receiver oscillator and applies ground to the PSLM. This activates t. © PSLM which alternately switches ground to each of the receiver oscillators at a rate of four times per second. If a signal is received on either channel, the PSLM will lock on that channel for the duration of the message, or until a signal is received on the priority channel.

NOTE

The PSLM is normally strapped for $F 1$ priority. To change or disable the priority function, refer to notes 1,2 and 3 on the Schematic Diagram for the PSLM.

CIRCUIT ANALYSIS

The Priority Search-Lock Monitor is fully transistorized, using both discrete components and Integrated circuit modules (IC's) to achieve maximum reliability. Discrete components are used in the Master Pulse Generator, Regulator, Priority Sample One-Shot, Channel Switches and Priority Channel Indicator. IC's are used in the logic circuitry with a hybrid circuit used for audio muting and squelch control.

References to symbol numbers mentioned in the following text may be found on the Outline Diagram, Schematic Diagram and Parts List (see Table of Contents).

The input supply voltage for the PSLM is provided by the 10 Volt regulator on the Control Shelf. This 10 Volts feeds the 5 Volt Regulator on the PSLM board which supplies voltage for all the circuits on the PSLM board. Q9 is used as a switch to turn the PSLM on and off. Q9 is turned on when the PSLM lead A12 is grounded.

MASTER PULSE GENERATOR

The heart of the PSLM is the Master Pulse Generator. The pulse generator is made up of Q2 and Q3 which form a transistor pair that operates like a unijunction transistor. The pulse generator produces negative going pulses at 125 milliseconds or 250 milliseconds intervals. Capacitor C1 is charged thru R4 to give a 250 ms timing pulse. When Q1 is
off, R3 also charges C1 thru CR3, giving a shorter timing period of 125 ms . The 125 ms pulse is used to drive Clock Gate 1 U1D and the 250 ms pulse is used to drive Clock Gate 2 U1B which provide the timing pulses required for the different modes of operation. The PSLM sample rates and times discussed in the different modes of operation were selected to assure the reception of the first syllable of a message received on either channel, and to assure full intelligibility of messages received on the nonpriority channel.

MODES OF OPERATION

Operation of the PSLM can be divided into three different modes. The three modes are:

```
- Receiver squelched
- Receiving priority channel
- Receiving non-priority channel
```


RECEIVER SQUELCHED

When the receiver is squelched (no signal applied), the PSLM alternately monitors each channel four times per second for a duration of 125 milliseconds. Associated timing waveforms for this mode of operation are shown in Figure 3.

Figure 3 - Receiver Squelched Waveforms

NOTE
Logical " 0 " is less than +1.0 Volts. Logical "1" is greater than +2.5 Volts.

When the PSLM operation is selected a logical " 0 " is placed on the A12 lead which turns on Q9 and the Master Pulse Generator. Q2 and Q3 conduct every 125 milliseconds delivering a sharp negative pulse (logical "0") to inverter U1A-1. The inverter converts the logical " 0 " pulse to a logical "1" pulse which is fed to Clock Gate 1 U1D-12. Clock Gate 1 U1D also has a logical "1" on pin 13 because the CAS lead (C1) is at logical " 0 " which keeps Q4 turned off providing a continuous logical "1" at the collector of Q4 or pin 13 of U1D. With both inputs to clock Gate 1 at logical "1" the gate feeds a logical " 0 " pulse to the Channel FF U2-1 from the control of the Master Pulse Generator. The Channel FF is triggered every 125 milliseconds and alternately turns on F1 switch Q5 and F2 switch Q7. When turned on Q5 or Q7 provides a ground to the associated receiver ICOM to monitor that channel during the time it is being searched. The PSLM will continue switching until a signal unsquelches the receiver.

The Clock Gate 2 is held off by the logical " 0 " on the CAS lead. This keeps the Priority Sample One-Shot from operating since no pulses can get through U1B.

The Priority Channel Indicator CR6 is turned on and off at the same rate as the channels are being searched. A logical "0" on the base turns on Q6 forward biasing light emitting diode CR6.

RECEIVING PRIORITY CHANNEL

When a signal is received on the priority channel, the PSLM locks on that channel for the duration of the message.

Assume that F 1 is the priority channel. Receiving a signal on the Fi channel unsquelches the receiver and the CAS lead goes to logical "1". A logical "1" on the CAS lead turns on Q1 and C1 is charged only through R4 to make Q2 and Q3 conduct every 250 milliseconds. Inverter U1A converts the logical " 0 " pulse from Q2 and Q3 to a logical "1" pulse to Clock Gate 1 (U1D-12). The logical " 1 " on the CAS lead also turns on Q4 placing a logical "0" on Clock Gate 1 (U1D-13). Clock Gate 1 (U1D) is now inhibited bcause of the logical "1" and "0" on the two inputs. The output of U1D will remain a logical "1".

Clock Gate 2 (U1B) is also inhibited because $Q 5$, the priority channel switch, is conducting providing a logical " 0 " to U1B-5 through CR1. The output of U1B will remain a logical " 1 ".

With Gates 1 and 2 inhibited the PSLM remains locked on the F1 channel until the message is completed (receiver squelches).

RECEIVING NON-PRIORITY CHANNEL

When a signal is received on the non-priority channel, the PSLM stops on that channel while switching to the priority channel four times per second for a duration of six milliseconds each time. If a signal is received on the priority channel while receiving the non-priority channel, the PSLM will revert from the non-priority channel and lock on the priority channel for the duration of the message. Timing waveforms for this mode of operation are shown in Figure 4.

Figure 4 - Receiving Non-Priority Channel Waveforms

Assume that F 2 is the non-priority channel. Receiving a signal on the F2 channel unsquelches the receiver and the CAS lead goes to logical "1". A logical "1" on the CAS lead turns on Q1 and C1 is charged only through R4 to make Q2 and Q3 conduct every 250 milliseconds. Inverter U1A converts the logical " 0 " pulse from Q2 and Q3 to a logical "1" pulse to Clock Gate 1 (U1D-12). The logical " 1 " on the CAS lead also turns on Q4 placing a logical "0" on Clock Gate 1 (U1D-13). Clock Gate 1 (U1D) is now inhibited because of the logical " 0 " on the input. The output of U1D will remain a logical "1".

Clock Gate 2 (U1B) with a logical "1" on U1B-5 from the CAS lead and a logical "1" pulse on U1B-4 from the inverter U1A provides a logical "0" pulse to U5-2. This triggers the Priority Sample One-Shot u5. A six millisecond logical " 1 " pulse is applied from U5-3 to the Audio Muting'Coupling of PSLM Hybrid U4-2.

In the audio Muting/Coupling circuit, audio and noise from the MASTR II receiver comes in on $\mathrm{P} 12-\mathrm{C} 2$ and is connected to pin 3 of the PSLM Hybrid U4, goes through the Audio Muting/Coupling and then goes from U4-4 to P12-C5 which is connected to Volume/Squelch high on the station combination. The Volume/ Squelch HI lead is "broken" and the PSLM is inserted.

The six millisecond logical "1" pulse comes in to U4-2 to mute the Audio Muting/Coupling path for eight milliseconds, shunting the receiver audio and noise to ground. This prevents an objectionable noise burst from being heard at the speaker each time the priority channel is monitored (every 250 milliseconds).

At the same time the audio is muted, U5 applies a logical "1" to Inverter U3B. Inverter U3B converts the logical "1" to a logical " 0 " of 6 milliseconds duration. This six milliseconds logical "1" is applied to differentiator and noise mute circuit in PSLM Hybrid U4 Pin 9. Also, the logical " 0 " switches Channel Flip Flop U2 to the priority channel.

The fast squelch circuit consists of Noise Mute, Noise Filter, Noise Amp, and Noise Detector switch inside PSLM Hybrid U4. When the priority channel is not being monitored, audio and noise applied to the fast squelch circuit is normally shunted to ground by the noise Mute Circuit. When Channel Flip Flop U2 is switched to the priority channel via the output of U3B, the six millisecond logical " 0 " turns off the Noise Mute Circuit to pass the noise through the Noise Filter to the Squelch Adjust potentiometer R16 (Instructions for setting R16 are listed in the Table of Contents). The noise is amplified in the Noise Amp and fed to the Noise Detector Switch. The Noise Detector Switch supplies a logical "1" to the input of Priority Channel Noise Detect Gate U3A-2.

The Differentiator converts the six millisecond logical "0" to a logical "1" pulse on the trailing edge of the six millisecond logical "0" pulse. This logical "1" is fed to the Priority Channel Noise Detect Gate U3A-1. The two logical "1"'s on the input of the Priority Channel Noise Detect Gate U3A are converted to a logical "0" which is fed
to Channel F1ip Flop U2-3. The logical " 0 " triggers the Channel Flip Flop causing it to switch back to the nonpriority channel. The entire cycle is repeated every 250 milliseconds until a signal is received on the priority channel.

If a signal is received on the priority channel, the signal quiets the receiver. With the receiver quieted, there is a lack of noise to operate the fast squelch circuit so that the Noise Detector Switch provides a logical "0" to block the Priority Channel Noise Detect Gate U3A-2. With this gate blocked the Channel Flip Flop remains locked on the priority channel for the duration of the signal.

Priority Channel Indicator CR6 will flash on for 6 milliseconds and off for 250 milliseconds when receiving messages on the non-priority channel. Since a message is being received on the nonpriority channel a logical " 1 " is applied to the base of Q6 keeping Q6 and Priority Channel Indicator CR6 off. However, when the priority channel is searched a 6 millisecond logical " 0 " pulse is applied to the base of Q6 turning Q6 and CR6 on for the duration of the search (6 milliseconds).

PRIORITY DISABLE

The PSLM can also be modified to operate without priority for either channel. To disable the priority function of the PSLM and revert to SearchLock Monitor operation, remove C2 and C9.

VOLTAGE REGULATOR

The Voltage Regulator CR7 provides +5.0 Volts to the PSLM circuits. Transistor Q9 is a DC switch. DC Switch Q9 is turned on by grounding the PSLM lead A12.

MAINTENANCE

DISASSEMBLY

To service the PSLM Board turn off the power switch on the Base Station Power Supply and unplug the PSLM Board. The PSLM Board normally plugs into the J1212 position on the Control Shelf.

TROUBLESHOOTING

To troubleshoot the PSLM Board remove the power as described above and unplug the PSLM Board. Plug the PSLM Board into the extender board (19D417458G1). The extender board extends the connections at the system board jacks to the pin jacks on the PSLM

Board so that the PSLM circuits on the card are beyond other card mounted on the system board. This allows convenient access to the circuits for troubleshooting with all operating voltages applied.

SYSTEM MULTFICATION

Modifications are required in the MASTR II Station Combination when the priority Search-Lock Monitor options are installed. Refer to the Modification Drawing 19D417613 and Interconnection Drawing 19C320972.

Priority Squelch Adjust R16 was set at the factory for 20 dB quieting sensitivity on the priority channel, and will normally require no further adjustment. If it should become necessary to set R16, use one of the following procedures. Procedure A requires two signal generators (803A or equivalent) with a three way 6 dB pad. Procedure B requires a signal generator (803A or equivalent) with a 6 dB pad. Use the extender board (19C317762G1) to extend the PSLM board out so the Priority Squelch R16 can be adjusted.

PROCEDURE A

Before starting Procedure A, make sure that the receiver is properly aligned with the PSLM disabled (PSLM switch in the off position). Then measure and record the F1 (or priority channel) 20 dB quieting sensitivity.

1. In local/remote stations push the PSLM switch. Set Priority Squelch Adjust R16 fully clockwise.
2. Set the receiver squelch at critical squelch. Apply a 100 microvolt signal from generator \#2, with standard moulation, to Channel 2. Also apply a 20 dB quieting level modulated signal from generator \#1 to Channel 1 . Slowly turn the priority squelch adjust R16 counterclockwise until the PSLM locks on Channel 1 (priority channel). This will be shown by a steady flow of LED CR6 on the front panel.

PROCEDURE B

1. In local/remote stations, push the PSLM switch.
2. With the receiver squelched, apply a 100 microvolt signal on Channel 2 (non-priority channel).
3. Turn R16 fully counterclockwise, causing the receiver to false (a repeated thumping noise is heard in the speaker).
4. Carefully turn R16 clockwise until the falsing stops. Then continue turning R16 clockwise for an additional 15 to 20 percent of rotation.

OUTLINE DIAGRAM

PRIORITY SEARCH-LOCK MONITOR

parts list

Lв14692B
prionty ssarch Lock monitor board

proovetrion changes

FIG. 1

 instructions:

4. Instul pgin overiu hewess is foloms:

c. Insinu (ishl

test fer isalza96.

INTERCONNECTION DIAGRAM

MASTR II STATION PSLM
(19c320972, Rev. 1

surerom	mectuas
wor seastre asaso	
Smemet simerty	
隹	 2. Check Station Squelch Control Adjustment.

wawaway

[^0]: * These specifications are intended primarily for the use of the serviceman. Refer to the appropriate Specification Sheet for the complete specifications.

