MASTR III MAINTENANCE MANUAL DC CONVERTER 19047173461

TABLE OF CONTENTS

SPECIFICATIONS Cover
DESCRIPTION 1
CIRCUIT ANALYSIS 1
Switching Circuits 2
Protective Circuits 2
MA INTENANCE 3
Disassembly Procedure 3
Adjustment Procedure 4
Troubleshooting Procedure 4
OUTLINE DIAGRAM 6
SCHEMATIC DIAGRAM 7
PARTS LIST AND PRODUCTION CHANGES 8
ILLUSTRATIONS
Figure 1 - Simplified Converter Power Distribution Diagram 1
Figure 2 - Disassembly Procedure 3

WARNING

Although the highest DC voltage in MASTR II Mobile Equipment is supplied by the vehicle battery, high currents may be drawn under short circuit conditions. These currents can possibly heat metal objects such as tools, rings, watchbands, etc., enough to cause burns. Be careful when working near energized circuits.

High-level RF energy in the transmitter Power Amplifier assembly can cause RF burns upon contact. Keep away from these circuits when the transmitter is energized!

DESCRIPTION

DC Converter 19D417134Gl is a compact, solid state converter for use with MASTR II "E" Series Mobile Radios. The converter is designed for use with mobile combinations in the following power and frequency ranges;

- 50-Watt Low Band
- 35/40 and 65-Watt High Band
- 40-Watt UHF

The converter is a switching regulator capable of operating on battery voltages of 16 to 60 volts DC, and provides an output of 12.5 Volts DC. The output is both current and voltage controlled for improved operation and protection of the radio.

Protective circuits are provided to prevent damage to the radio if transients or high voltages pass through the regulator to the output. Filtering for input voltage transients is also provided.

The converter mounts in the space below the transmitter PA assembly, with the power switching transistors mounted on a rear heat sink. The unit is electrically iso-
lated from the radio chassis to permit operation in either positive or negative ground vehicles without any changes to the radio.

CIRCUIT ANAI.YSIS

Two voltage inputs are required for operating the DC converter. Supply voltage from the battery is applied to the converter at all times. CR803 is a polarity-protection diode, and will cause a fuse to blow if the polarity to the converter is reversed.

A control voltage from the control unit is used to turn the converter on and off. The control unit POWER-ON switch is modified so that placing the switch in the ON position applies the control voltage (battery plus) directiy to the converter. Turning the switch off removes the control voltage.

One output from the converter is applied directly to the feed-through capacitors on the transmitter power amplifier. A second output is applied to the system board for operating the 10 -Volt regulator, control unit indicators and options, and the receiver audio PA stages. A simplified power distribution diagram is shown in Figure 1.

Figure 1 - Simplified Converter Power Distribution Diagram

SWITCHING CIRCUITS

Turning the POWER-ON switch to the ON position applies the control voltage to the converter. The voltage developed across voltage divider R22 and R23 turns Q1 off. This allows Q803 and Q802 to conduct when the proper voltage is applied to the base of Q803. At the same time, voltage is applied to the Schmitt trigger (Q2 and Q4) and control circuits through CR1 and R2.

At the instant the power switch is turned on, Q4 and Q5 are off. With Q4 off, its collector voltage is sufficiently negative to turn Q2 on. The positive voltage at the collector of Q2 turns on Q803 and Q802. Turning on Q802 causes its collector to go negative, turning on the paralleled pass transistors Q801 and Q804 and driving them into saturation.

With Q801 and Q804 turned on, voltage is applied to the base of Q5 through voltage divider network R12, R13 and R14. When C6 charges up to the proper level, Q5 turns on. This turns on Q4 which turns Q2 off. Turning off $Q 2$ removes the drive to Q802 and Q803 and turns off the pass transistors (Q801 and Q804).

A network consisting of CR801, R802, R806, C2 and C11 is provided to minimize dissipation in pass transistors. The network passes high current during the turnoff time of Q801 and Q804, preventing simultaneous high current and high voltage in the transistors.

During the switching cycle (turning Q801 and Q804 on and off), energy is stored in L802, L803, L804, C802, C804, and C805. When Q801 and Q804 turn off, current from the inductors and capacitors is applied to the load on the output. The inductors deliver current through CR802.

With Q801 and Q804 off, the voltage applied to divider network R12, R13 and R14 is near zero. This causes capacitor C6 to start discharging through R12, R13 and R14. When C6 is discharged sufficiently, Q5 turns off and the switching cycle starts again. Instructions for setting Voltage Control potentiometer R13 are given in the Adjustment Procedure (see Table of Contents).

The total time for Q801 and Q804 to switch on and switch off is dependent on the value of C6 and the effective shunt resistance of R12, R13 and R14. It is also dependent on the voltage rating of VR1, the ratio of input to output voltage, and the differential voltage of the collector of Q5 referenced to the emitter supply (control voltage) of the Schmitt trigger (Q2 and Q4).

The ratio of "on" time to "off" time of Q801 and Q804 varies inversely with the ratio of input to output voltage, and varies directly with the load current.

PROTECTIVE CIRCUITS

Switching Circuit Control

To avoid switching high current, the converter is turned off by switching off the Schmitt trigger supply voltage (control voltage). Under certain temperature conditions, current leakage could cause Q802 and Q803 to turn on, driving Q801 and Q804 into saturation. Q1 and voltage divider R22-R23 prevent this from occurring. Turning off the POWER-ON switch forward biases Q1, turning it on. This effectively clamps the base of Q803 to A-, keeping the transistor off.

In addition, when the switch is turned off, the charge on filter capacitor C 8 is sufficient to keep Q2 and G803 turned on for a few milliseconds, which would keep Q801 and Q804 turned on. If this should occur, a transient would appear at the converter output that would be approximately equal to the input voltage. Diode CR1 isolates Q1 from the charge on C8 so that Q1 turns on the instant the control voltage is turned off. This effectively clamps the base of Q803 to $A-$, keeping the transistor off.

Current Control

The circuit consisting of $\mathrm{Q} 3, \mathrm{C}, \mathrm{Cl}$, VR2, R15 through R19 and R803 provides output limiting to protect the converter from overloads.

Zener diode VR1 (in the emitter circuit of Q5) provides the reference for the output voltage. Lowering the reference voltage lowers the output voltage, and lowering the output voltage without an increase in the output current lowers the output power.

Base bias for Q3 is determined by the setting of Current Control Potentiometer R19 and resistance wire R803. The base bias is adjusted by R19 to just below the conduction point when the maximum allowable load current is flowing through R803. Instructions for setting R19 are contained in the Adjustment Procedure (see Table of Contents).

Any increase in the allowable load current through R803 causes Q3 to conduct, which lowers the reference voltage at the emitter of Q5. This increases the conduction of Q5, decreasing the "on" time of pass transistors Q801 and Q804. As the output voltage is proportional to the "on" time of Q801 and Q804, the voltage starts to decrease. If the load current tries to increase further, the output voltage will continue to decrease until it drops to approximately 3 Volts.

When the output voltage reaches the 3 Volt level, the load is practically a short circuit and the converter automatically turns off. The automatic turn-off circuit consists of diode CR2 and voltage dividers R15 and R16.

The average voltage at the base of Q5 is dependent upon the "on" time of pass transistors Q801 and Q804. When the "on" time of Q801 and Q804 becomes too short, the base voltage is too low to keep Q5 operating properly. Before this state is reached, CR2 starts to conduct and sets a minimum voltage at the base of Q5. This voltage locks Q5 in an "on" condition and Q801-Q804 in an "off" condition. The circuit will remain in this state until the overload condition is corrected and the POWER-ON switch turned off and then turned back on. Zener diode VR2 prevents the automatic turn-off circuit from locking Q5 "on" under normal operating conditions. When the converter is turned on, the charger time of C7 keeps CR2 from conducting until a normal operating voltage is established at the base of Q5.

Over-Voltage Protection

An over-voltage protective circuit consisting of zener diode VR4, silicon controlled rectifier SCR801, voltage dividers R20 and R21, and capacitor C806 protect the radio against a short in one of the pass transistors (Q801 or Q804) and against transients.

If one of the pass transistos should short out, the high input voltage could be applied directly to the radio. If this should occur, VR 4 breaks down, turning on SCR801. The resulting high current flow will cause the input fuse to blow. Voltage dividers R20 and R21 set the turn-on level of SCR801 for an output voltage of approximately 18 volts. Capacitor C806 prevents the SCR from turning on as a result of small transients.

When the converter is operating normally and a transient causes the output voltage to exceed 18 volts, SCR801 will turn on and short the output. This is the same as a low resistance short circuit, and the converter will turn off without blowing the input fuse. Turning the POWER-ON switch off resets the SCR circuit so that turning the switch back ON will start the converter operating normally again.

A network consisting of C15, VR5 and R25 minimizes transients resulting from fast load changes.

MAINTENANCE

DISASSEMBLY

To gain access to the converter for servicing:

1. Pull the locking handle down and pull the radio out of the mounting frame.
2. Turn the radio over and remove the two bottom cover retaining screws. Then lift off the bottom cover.
To remove the converter from the radio:
3. Remove all power to the converter.
4. Remove the bottom cover and disconnect the leads from the radio at TB801 if desired.
5. Remove the two screws (A) securing the transistor cover.
6. Remove the four screws (B) (two as shown and two below in heatsink.)
7. Remove the five screws (C) and lift the converter assembly up and out of the radio.

ADJUSTMENT PROCEDURE

The converter is adjusted at the factory and will normally require no adjustment unless components are replaced in the current or voltage control circuits. If adjustment is required, make sure that the transmitter is tuned for maximum rated output.

Preliminary Check

Connect a Voltmeter between TB801-3 (A-) and TB801-4 (A+). Key the transmitter and check for a meter reading of 12.5 to 13 volts. If the meter reading is not in this range, leave the Voltmeter connected and make the following adjustment:

Adjustment

1. Set Current Control R19 fully clockwise.
2. Set Voltage Control R13 to approximately mid-range.
3. Key the transmitter and set Voltage Control R13 fully counterclockwise, or until a meter reading of 14.5 volts is reached.
4. Key the transmitter and adjust Current Control R19 for a meter reading of 13 Volts DC.
5. Key the transmitter and adjust Voltage Control R13 for a meter reading of 12.5 Volts DC.

TROUBLESHOOTING PROCEDURE

Troubleshooting Chart For DC V Converter

Input Voltage: 24-48 VDC
Load Resistance: 6 ohms

SYMPTOM	CHECK:
Anything abnormal, such as output voltage too high or too low, but with switching noise coming from converter.	Voltages Typical Value Q5 Base 9.7 VDC Cathode of VR3 3.8 VDC Cathode of VR2 6.5 VDC Q801, Q804 bases than input
If above voltages are off by more than $\pm 20 \%$.	1. Short on output (less than 0.8 ohms) 2. Components involved 3. SCR801
No output voltage and no switching noise from converter.	1. All input fuses 2. For voltages at TB8Ol-1 and -2, TB801-5 and -2 3. Switch control voltage off and on to check starting 4. VR2 5. For short on output 6. Q1 for open or short 7. Q801, Q804, Q802, Q803 for short or open
Low output voltage - less than 12.5 V but more than 3 V .	1. VRI 2. For short on output 3. Q3 for short 4. VR3 for short 5. Setting of R13 and R19

GENERAL ELECTRIC COMPANY MOBILE COMMUNICATIONS DIVISION WORLD HEADQUARTERS - LYNCHBURG, VIRGINIA 24502 U.S.A.

VIEW "A"

OUTLINE DIAGRAM

DC CONVERTER 19D417134G1

SYMBOL	GE Part No.	DESCRIPTION
${ }^{\text {n13 }}$	198115681.19	
${ }^{\text {R14 }}$	3R77p912J	Composition: 5.1 k omms $55 \mathrm{~s}, 1 / 2 \mathrm{w}$.
${ }^{\text {R15 }}$	зв77>293\%	Composition: 22 K onss $\pm 1 \%_{6}, 1 / 2 \mathrm{w}$.
${ }^{\text {R16 }}$	з877>832\%	Composition: 3.3 K oins $\pm 10 \sigma_{6}, 1 / 2 \mathrm{w}$.
${ }^{\text {n17 }}$	з8799P102\%	Composition: 1 k onms $\pm 10 \%, 2 \mathrm{w}$.
${ }^{\text {n18 }}$	з877p881K	Composition: 680 ohns $\pm 10 \%$,
${ }^{\text {R19 }}$	1941165881P3	
${ }^{\text {R20 }}$	зв77p 181 K	Composition: 180 ohns $\pm 10 \%$ \%, $1 / 2 \mathrm{w}$.
${ }^{\text {n21 }}$	3R77P221K	Compost ition: 220 omans $\pm 10 \%$ \% $1 / 2 \mathrm{w}$.
${ }^{\text {R22 }}$	3877p682K	Composition: 6.8 BX ohnss 110%, 1/2 w
${ }^{\text {п23 }}$	зп77р881к	Composition: 680 ohams $\pm 10 \%$, $1 / 2 \mathrm{w}$.
${ }^{\text {n24 }}$	зи788P00\%	Composition: 10 obas $\pm 10 \%, 1 \mathrm{w}$.
${ }^{\text {R25 }}$	3R772001k	Composition: 200 onins $\pm 10 \%$, $1 / 2$
v81	40868877	zener: $500 \mathrm{my}, ~ 9.0 \mathrm{v}$. nonina
vR2	408888776	Zener: 500 myy , 6.5 v v. nominal.
vz3	${ }^{\text {4098888P3 }}$	Zener: $500 \mathrm{nfr}, 3.8 \mathrm{v}$. nominal.
$\begin{gathered} \text { ven } \\ \text { vag } \end{gathered}$	403688777 4036887P5	
		- Capaction
${ }^{\text {c801 }}$	199126770pp12	(tiole
c802	5493132P11	
${ }^{\text {c803 }}$	19912677091	
$\underset{\substack{\text { cis04 } \\ \text { and } \\ \text { and }}}{ }$	${ }_{5493132 \mathrm{PL}}$	Electrol ytic: 3600 $\mathrm{\mu f}+755^{-10 \%}$, 30 vDCW .
${ }_{\text {c806 }}$	${ }^{549862772}$	
сп881	19111678322	silicon.
CR802	19A116524P2 19B226282G1	Silicon: sim to Type 1N2158
	403699491	Terminal, solder: siim to zierick wetg corp 00 S .
$\begin{array}{\|l} \mathrm{E} 2 \\ { }_{\mathrm{k} 3} \end{array}$	4033714 Pg 4036994 Pl	Terminal: sim to Stewart Stampinc 928. Terminal, solder: sim to Zierick Mfg Corp 5
L.801	194115391P1	Coil, rF: 50 叫 $\pm 10 \%$, 0 .
L802	19111688881	
L203	194115391P1	
L804	19811.688871	Reactor: cos max.
	19116788891	stilicon, pNP; sim to type exs
	19A11611881	Sllicon, npr.
${ }^{2804}$	198i1678881	Silicon, pxp; Sim to Type 2x439.
${ }^{\text {R801 }}$	5493035P25	
${ }^{\text {n802 }}$	54930353927	
${ }^{\text {8803 }}$	191129888p1	s

SYMBOL	ge part no.	DESCRIPTION
R805 R806 SCR801 TB2 and TB3 TB4 TB5 thru TB7 TB8 thru TB801	5493035P11 5493035P25 5493035P27 19A115814P1 7775500 P 27 7775500 P 7 7775500 p 8 7487424 P 24 19 C 301087 P 15 19A129742Gl 5491541P308 7160508 P 2 4038930 P 1 19B201074P304 19B201074P310 19A129751G1 4036555P1 19A115185P8	Wirewound: 40 ohms $\pm 5 \%, 5 \mathrm{w}$; sim to Hamilton Hall Type HR. Wirewound: 40 ohms $\pm 5 \%, 10 \mathrm{w}$; sim to Hamilton Hall Type HR. Wirewound: 10 ohms $\pm 5 \%, 5 \mathrm{w}$; sim to Hamilton Hall Type HR. \qquad Silicon Controlled Rectifier: sim to GE C30A. \qquad Phen: 11 terminals. Phen: 3 terminals Phen: 4 terminals. Miniature, phen: 3 terminals. Phen: 5 terminals; sim to GE CR15lD. MI SCELLANEOUS Strap. (Secures C801-C805) Spacer, threaded: No. 6-32 x 1-1/4. Nut, sheet spring: sim to Tinnerman C1356-632-24. (Secures TB801). C1ip: approx 13/16 $\times 13 / 16$ inches. (Secures R801, R804, R8.05). Tap screw, Phillips POZIDRIV ${ }^{\circledR}$: No. $6-32 \times 1 / 4$. (Secures TB8-TB10). Tap screw, Phillips POZIDRIV ${ }^{(®)}$: No. $6-32 \times 5 / 8$. (Secures cover over Q801, Q802, Q804 \& CR832). Cover. (Located over Q801, Q802, Q804 \& CR802). Insulator, washer: nylon. (Used with Q5 on A801) Strap, retainer: sim to Dennison BAR-LOK08470. (Used with C2, Cll on A801). $\underset{\text { (SEE RC2634) }}{\text { MECHANICAL PARTS }}$
$\begin{aligned} & 8 \\ & 9 \\ & 10 \\ & 10 \\ & 11 \\ & 12 \\ & 13 \\ & 14 \\ & 14 \\ & 15 \\ & 16 \\ & 17 \\ & 18 \\ & 18 \\ & 19 \end{aligned}$	19A115276p2 4033714P2 N210P20C6 N403P25C6 19A115275P2 4036994Pl \qquad N80P13012C6 19A121882P1 7141225P3 N402P11C6 N80P9016C6 19A116022P1 19A116023p1 19A127515G1 N404P11C6 7141225 P 2 N402P5C6	Insulator. Terminal, solderless: sim to Zierick 110 Hex nut: No. 1/4-28. Lockwasher, external tooth: 1/4 inch. Flatwasher: $1 / 4$ inch. Insulator, disc. Terminal, solder: sim to Zierick Mfg Corp 505. (E1 and E3). Insulator, plate. Screw, phillips panhead: No. 6-32 x 3/4. Washer, shield. Hex nut: No. 6-32. Flatwasher: $1 / 4$ inch. Screw, phillips panhead. No. 4-40 x 1. Insulator, bushing Insulator, plate. Terminal board. Lockwasher, internal tooth: No. 4. Hex nut: No. 4-40. Flatwasher: No. 4.

PRODUCTION CHANGES

 vious revisions. Refer to the paxts List tor desecriptiono oof parts

Rev. An To improve operation. Added clo,

