mULTIPLE RECEIVER STATIONS

TABLE OF CONTENTS

NOMENCLATURE CHART iii
DESCRIPTION 1
INSTALLATION 1
ADJUSTMENT 8
MA INTENANCE 9
CIRCUIT ANALYS IS 9
Multiple Receiver Station Power Supply 9
Multiple Receiver Station Audio Circuits 9
Battery Standby (Option 9700) 9
121 VAC Battery Standby/Charger (Option 9701) 9
242 VAC Battery Standby/Charger (Option 9702) 9
Antenna Matching Units (Options 9703 \& 9404) 9
INTERCONNECTION DIAGRAM 11
TEST PROCEDURE 12
OUTLINE DIAGRAMS
Multiple Receiver Station Power Supply 19 E 501707 13
Amplifier Board A801 14
Battery Standby/Charger 19C320677 15
SCHEMATIC DIAGRAMS (Includes Parts Lists \& Production Change)
Multiple Receiver Station Power Supply 19E501707Gl 17
Multiple Receiver Station Power Supply 19E501707G2 19
Battery Standby Kit 19C320677G4 \& G5 21
Battery Standby/Charger Kits 19C320677G3 \& G6 23
INSTALLATION INSTRUCTIONS
Battery Standby/Charger Kits 19C320677G3-G6 25

WARN ING

No one should be permitted to handle any portion of the equipment that is supplied with high voltage; or to connect any external apparatus to the units while the units are supplied with power. KEEP AWAY FROM LIVE CIRCUITS.

High-level RF energy in the transmitter power Amplifier assembly can cause RF burns. KEEP AWAY FROM THESE CIRCUITS WHEN THE TRANSMITTER IS ENERGIZED!

COMBINATION NOMENCLATURE

DESCRIPTION

The General Electric MASTR ${ }^{\text {© }}$ II Multiple Receiver Station is designed to accommodate a maximum of eight MASTR II Auxiliary Receivers, A maximum of five receivers can be mounted in the 30 -inch Desk Mate Cabinet. The Auxiliary Receivers are supplied separately from the station and are described in LBI-4915.

A Receiver Power Supply is provided with each station. The supply will operate at 60 Hertz (Model 19E501707G1) or 50 Hertz (Model 19E501707G2). A metering circuit and meter mounted on the front panel of the supply allows functional checks of up to eight receivers. The metering points are the same as in the MASTR II Station Receivers. An audio power amplifier is included in the supply along with a speaker mounted on the front panel. A switch is also provided for connecting each receiver line audio output to the amplifier and speaker. The receiver audio PA is not used in Multiple Receiver Stations.

A total of four Auxiliary Receivers may be coupled by means of Antenna Matching Units (AMU) to a single receiving antenna. Each General Electric 19C32ll50 AMU results in a loss of approximately 3.5 dB for each power splitter in series with the receiver input. If Antenna Matching Units are not used in the station, a 19A129312G4 coaxial cable (equipped with an Auxiliary Antenna UHF Connector) is supplied with each receiver.

INSTALLATION

Three cabinet styles (Desk-Mate, PoleMount and Floor Mount) are available to meet different system requirements. The following paragraphs list the characteristic of the individual style of cabinet.

> Desk-Mate -- The Desk Mate station cabinet can be conveniently located on either side of a desk to provide additional working area or in some other suitable location as required. Two Desk-Mate cabinets are available: the

30-inch cabinet contains 14 EIA rack units of space ($24-1 / 2$ inches); the 44-inch cabinet contains 22 EIA rack units of space (34-1/2 inches).

The cabinets have removable front and rear doors secured with individual locks. 3/4-inch holes are provided for cable entry.

Pole Mount -.. The Pole Mount Station Cabinet is a weather-proof cabinet designed for indoor or outdoor use. The cabinet can be mounted on a pole or a wall. The brackets supplied with the cabinet (19C320924P1) permit mounting on the crossarm of a single pole, on the crossarms between two poles, on a wall (inside or outside) or some other vertical surface. The cabinet may also be mounted on a pedestal or platform. Optional brackets (19B226279Pl) are available for mounting the cabinet to a pole. The front and rear doors may be locked by a customer supplied padlock. The cabinet contains 22 EIA rack units of space (38-1/2 inches).

Floor-Mount -- The Floor-Mount Station Cabinet can be located in the building adjacent to the antenna installation or in some other convenient area as required. The cabinet contains 33 EIA rack units of space (57-3/4 inches).

Desk-Mate Cabinet Installation

The two Desk-Mate Cabinets with their dimensions are illustrated in Figure 1.

The Desk Mate cabinet can be placed adjacent to either side of a desk. A typical installation is shown in Figure 2. The front and rear of the station should be kept clear of obstructions so that the serviceman can easily gain access to the transmitter, receiver and power supply compartments and to avoid obstructing the front and rear vents.

Pole-Mount Cabinet Installation

Make certain the selected mount for the Pole-Mount cabinet will bear the weight of the station.

Figure 1 - Desk Mate Station Cabinets

Figure 2 - Typical Desk-Mate Station Installation

Figure 3 - Pole Mount Cabinet

MOUNTING CABINET TO POLE

Determine which side of cabinet is to mount to pole. Minimum pole diameter is 12 inches.
Remove four plastic plugs from cabinet mounting holes.

1. MOUNT THE TOP 19B226279P1 BRACKET TO THE POLE. BRACKET WILL ACCEPT 1/2INCH HARDWARE.
2. SCREW TWO $3 / 8 \cdot 16 \times 7 / 8$ INCH LONG BOLTS AND LOCKWASHERS (PART OF 19A130145G1 KIT) PART WAY INTO TOP MOUNTING HOLES.
3. MOUNT THE BOTTOM 19B226279P1 BRACKET TO THE BOTTOM MOUNTING HOLES IN THE CABINET USING TWO $3 / 8 \cdot 16 \times 7 / 8$ INCH LONG BOLTS AND LOCK WASHERS. INSTALL SO THAT CABINET WILL BE SUPPORTED BY BRACKET.
4. MOUNT CABINET TO POLE BY PASSING HEAD OF 3/8-16 BOLT THROUGH HOLE IN TOP BRACKET.
5. TIGHTEN 3/8-16 BOLTS IN TOP BRACKET. INSTALL LAG SCREWS IN BOTTOM BRACKET AND SECURE TO POLE.

RIGHT
SIDE
CABINET MOUNTING HOLES

REAR VIEW OF CABINET

FRONT VIEW OF CABINET

MOUNTING CABINET TO CROSSARMS

Determine which side of cabinet is to mount to crossarms. Remove four plastic plugs from cabinet mounting holes. 19C320924P1 brackets are supplied with cabinet.

1. ATTACH TWO 19C320924P1 MOUNTING BRACKETS TO CABINET USING 4-3/8. $16 \times 7 / 8$ INCH LONG BOLTS AND LOCKWASHERS © SUPPLIED IN 19A130145G1 HARDWARE KIT. INSTALL BRACKETS AS SHOWN AT RIGHT.
2. INSTALL CROSSARMS WITH VERTICAL SPACING AS SHOWN BELOW.
DIMENSIONS GIVEN WILL ALLOW MOUNTING LAG SCREW TO BE APPROXIMATELY CENTERED IN CROSSARMS IF STANDARD CROSSARM (3-4/16 x 4-7/8 INCHES, FINISHED SIZE) IS USED.

3. MOUNT CABINET OVER TOP CROSSARM AND INSTALL TWO LAG SCREWS IN EACH BRACKET IN LOCATION SHOWN. USE 3/8-INCH DIAMETER SCREWS. CENTER LINE TO CENTER LINE OF LAG SCREWS IS 47.51 INCHES. CAUTION MUST BE USED
 CHES, FINISHED SIZE) IS USED. IF CROSSARM SIZE IS LARGER THAN 47/8 INCHES OR SPACING IS GREATER THAN 47-1/8 INCHES BECAUSE OPENING OF CABINET DOOR MAY BE BLOCKED.

MOUNTING CABINET TO WALL

Determine which side of cabinet is to mount to wall. Remove four plastic plugs from cabinet mounting holes.

1. ATTACH TWO 19C320942P1 MOUNTING BRACKETS TO CABINET USING 4-3/8$16 \times 7 / 8$ LONG BOLTS AND LOCKWASHERS (SUPPLIED IN HARDWARE KIT 19A130145G1) AS SHOWN AT RIGHT.
2. LAYOUT THE FOLLOWING HOLE PATTERN ON THE WALL.

3. DRILL AND INSTALL ANCHORS IF REQUIRED. BRACKETS WILL ACCEPT 3/8 INCH BOLTS OR SCREWS. INSTALL BOLTS AND WASHERS IN TOP MOUNT. ING HOLES. ALLOW $3 / 8$-INCH TO 1/2-INCH TO PROTRUDE FROM WALL.
4. MOUNT CABINET TO WALL. TOP BRACKET SCREWS WILL ACCEPT SLOTS IN TOP BRACKET. INSTALL SCREWS AND WASHERS IN WALL TO SECURE LOWER BRACKET. LARGE HOLES IN BRACKET FACILITATE ASSEMBLY. TIGHTEN ALL WALL MOUNTINGS.

MOUNTING CABINET TO PLATFORM OR PEDESTAL

Remove four plastic plugs from bottom of cabinet, two from each side.

1. ATTACH TWO 19C320942P1 MOUNTING BRACKETS TO CABINET USING $4-3 / 8-16 \times 7 / 8$ LONG BOLTS AND LOCK WASHERS (SUPPLIED IN HARDWARE KIT 19A130145G1) AS SHOWN BELOW.

2. LAYOUT MOUNTING HOLES FOR BRACKETS BY PLACING CABINET IN POSITION AND MARKING HOLES. 3/8-INCH HARDWARE IS USED IN BRACKETS. PLACE CABINET IN POSITION AND BOLT DOWN.

Floor-Mount Cabinet Installation

Figure 8 - Floor Mount Cabinet

Your station cabinet occupies a floor area of 22 inches by 23 inches. Be sure to allow sufficient space in front of -- and behind -- the cabinet to permit front and rear doors to open completely. Either door may be removed, inverted, and hinged on the opposite side if desired.

Three knockouts are located along the rear bottom edge of the cabinet for cable entry. If it is desirable to bring the cables up through the floor, the cabinet can be situated over the power receptacle or cable hole on the floor. Conduit may be extended into the cabinet through one of the two 7 -inch by 17 -inch baseplate openings in the cabinet bottom. A cable entry hole (2"x 1") is located in the top rear of the cabinet to bring in the antenna cables or conduit from above the station. The front and back sides of the station must always be accessible for the serviceman.

Holes are located on the bottom for bolting the cabinet securely to the floor with $1 / 2^{\prime \prime}$ bolts. An FCC license holder (19Al30126G1) is provided with the Floor Mount cabinet. This holder may be attached to the cabinet where desired using the adhesive backing on the holder.

Power and Ground Connections

A 15 or 20 ampere, 121 VAC, 60 Hertz electrical circuit must be provided for the station. The power cable from the station is provided with a standard 3-prong plug. One of the prongs grounds the station to protect personnel. Check the electrical code to be sure the power outlet complies with local ordinances.

If a 242 VAC source is to be used for the station, jumper connections on TB801 of the power supply must be changed. Refer to the Schematic Diagram of the Power Supply. The plug on the power cable must also be changed to mate with the 242 VAC outlet. The station should be connected to a good earth ground using No. 14 or larger wire. A ground stud is provided on all cabinets for a separate cabinet ground. Use No. 14 or larger wire for grounding the cabinet.

Antenna Requirements

The antenna should be located as close as possible to the station so that the transmission line can be kept as short as possible. Receiving efficiency decreases as the length of the transmission line increases.

Station Cable Connections

1. Route the antenna transmission line through hole in cabinet and connect to Auxiliary Receiver Antenna Connector located on the rear bracket of the receiver (if no Antenna Matching Unit is used), or connect the transmission line to antenna Connector Jl on AMU if used.
2. Route telephone pair through hole in cabinet and make connection to TB1 (part of station harness) mounted to rear panel of receiver.
3. Connect power cable to the 121 VAC receptacle.

ADJUSTMENT

The initial adjustments for the receiver are provided in the receiver MAINTENANCE MANUAL. Adjustments for the Auxiliary Receiver System Board are provided in LBI-4915. Select the desired receiver to be monitored by means of switch S803 on the front panel of the Power Supply and then adjust the VOLUME control (R802) for the desired listening level.

MAINTENANCE

To insure high operating efficiency and to prevent mechanical and electrical failures from interrupting system operations, routine checks should be made of all mechanical and electrical parts at regular intervals. To check the Auxiliary Receiver functions, refer to the Test Procedure (see Table of Contents).

CIRCUIT ANALYSIS

Multiple Receiver Station Power Supply

When the power supply ON-OFF switch S801 is in the ON position, 121 VAC is connected across the primary of T801 (T802 in the 50 Hz model). The power transformer is a ferro-resonant type which has inherent good line regulation. C80l serves as a resonating capacitor across the secondary taps of the transformer.

The transformer steps the input voltage down to 12 Volts and this lower voltage is applied to the bridge rectifier composed of CRI-CR4 mounted on heat sink A802. The rectified output of the bridge is fed to the filter composed of Cl and C 2 (mounted on A802) and L801.

The output of the filter is connected through P802 to the printed board A801 which, in turn, connects the A+ to the receiver power jacks J3-Jlo. Fuse Fl serves to protect the A+ circuit.

Multiple Receiver Audio Circuits

The audio from the Auxiliary Receiver line driver is connected through J2402-20 (LINE DRIVER MON) on the Auxiliary Receiver to pin 3 of each power plug (P2) on the station harness. The audio is then coupled through the receiver jacks (J3-J10) on the Power Supply to switch S803. The position of S803 (RCVR AUDIO) determines which receiver audio is selected.

The selected audio is then passed to VOLUME control R802 and the properly adjusted audio is then connected to the input (pin 7) of the monolithic audio amplifier IC, AR1. This amplifier delivers 1.25 Watts to the station speaker LS801. The discrete resistors and capacitors connected to ARl insure the proper roll-off characteristic of 300 to 3000 Hertz. The audio power amplifier in the MASTR II Auxiliary Receiver is disabled in this application.

Battery Standby (Option 9700)
The Battery Standby Option provides a means for automatic transferring the system power supply to a customer furnished standby battery when the primary $A C$ power fails.

The station is automatically transferred back to primary AC power when power is restored. The MASTR II Receiver Battery Standby Kit 19C320677G5 (Option 9700) consists of Battery Standby printed board $19 \mathrm{C} 320677 \mathrm{G4}$ and a pair of connectors (Pl \& P2) for connecting the board into the power supply circuit. Refer to the Installation Instructions (see Table of Contents).

When the station power supply is operating properly, approximately +15 Volts appears at Pl-2. This voltage is rectified at CR3 and CR4 to energize relay Kl. When the power supply is off, Kl is de-energized and the relay switches in the battery as the power source.

121 VAC Battery Standby/Charger (Option 9701)
The MASTR II Receiver Battery Standby/ Charger Kit for 121 VAC operation (19 C 320677 G 3) consists of Battery Standby/ Charger printed board 19C320677G2, connectors P1 and P2 and 121 VAC transformer T1. The same transfer function as in Option 9700 is performed, along with a battery charging function that keeps the battery charged as long as the station is on primary AC power (121 VAC, 60 Hz). The charging current decreases as the standby battery reaches full charge. The maximum charge rate is 2 amperes DC.

Transformer T1 supplies +15 Volts to P1-2. This voltage is rectified by CR1 and CR2 and applied to the current regulator Q1 (pass transistor) and Q2 (driver transistor). R2 is a current sensing resistor which limits the battery charging current to a maximum of 2 amperes. A voltage divider, consisting of R3, R4 and R5, allows a variable voltage (adjusted by R4) to set the base bias of Q2. This in turn controls the conduction of Q1. Cl provides filtering for the input voltage. The regulator output is fused by Fl, providing overload protection.

242 VAC Battery Standby/Charger (Option 9702)

The MASTR II Receiver Battery Standby/ Charger Kit for 242 VAC operation
(19C320677G6) consists of Battery Standby/ Charger printed board 19 C 320677 G 2 , connectors P1 and P2 and 242 VAC transformer T2. The transfer circuit and charger circuit operate in the same manner as described for Options 9700 and 9701.

Antenna Matching Units (Options 9703 \& 9704)
The Antenna Matching Units are designed to match two or more (up to a total of four) auxiliary receivers to a single antenna. The Antenna Matching Units may be operated with any receiver having an input impedance of approximately 50 ohms. The Antenna Matching Units are described in LBI-4915. Installation of the AMU in the Multiple Receiver Station is provided in the Interconnection Diagram. Refer to the Table of Contents.

RC-2747A

1. SLIDE OUT RECEIVER TO BE TESTED.
2. APPLY A 1000 MICROVOLT ON-FREQUENCY SIGNAL MODULATED BY 1,000 HERTZ WITH $\pm 3 \mathrm{kHz}$ DEVIATION TO THE AUXILIARY RECEIVER ANTENNA JACK J2402.
3. SELECT THE RECEIVER AUDIO WITH SWITCH S803 ON THE POWER SUPPLY. DISABLE CHANNEL GUARD WITH S802 (ON THE RECEIVER SYSTEM BOARD) IF PRESENT.
4. ADJUST VOLUME CONTROL (R802 ON POWER SUPPLY) FOR DESIRED AUDIO LEVEL.
5. CONNECT METERING CABLE 19C321099GI BETWEEN J803 (ON POWER SUPPLY) AND J601 (ON RECEIVER CHASSIS).
6. SWITCH S802 (ON POWER SUPPLY) THROUGH THE METERING POSITIONS AND OBSERVE TYPICAL READINGS ON METER.
7. WITH SWITCH S802 IN SUP V POSITION, METER SHOULD READ SUPPLY VOLTAGE OUTPUT ± 0.5 VOLTS.
8. IF STANDBY BATTERY IS USED, CHECK FOR 12 VOLT BATTERY CONDITION BY PLACING RCVR TEST SWITCH S802 IN BAT V POSITION.
9. FOLLOW STEPS 1 THROUGH 8 FOR ALL OTHER RECEIVERS IN STATION.

TEST PROCEDURES

(198501726, Rev. 0)

$\underset{(E N L A B G E D)}{D E T A I L}$

VIEW OF G2 ONLY

REFER TO WIRING DIAGRAM	
FOR THE FOLLOWING	CONNECTIONS
FROM	TO
HI	H2
H3	H5
H4	H6

OUTLINE DIAGRAM

AMPLIFIER BOARD A801
14

NOTE

SCHEMATIC DIAGRAM
MULTIPLE RECEIVER STATION POWER SUPPLY 19E501707G1

notes:
. TERMINATE V-20-Y. VI6-0 \& V20-BK TO P2 WITH 19Al1678iP3.
2. TERMINATE IG-Y WIRE AT KI-IL WITH PORTION OF TERMINAL WITH HEAT SHRINKABLE TELEEVING WSE 403866IP7 WIRE
3. TERMINATE V2O-OAT KI-2R \& V2O-BK
AT KI-IR WITH SOLDER CONN
4. TERMINATE V2O-G \& VZO-BL WIRES WITH

NOTE:
CHANGES TO THIS DIAGRAM MAY
AFFECT 190417739 AND 190417267.

in order to retain rated equipment PERFORMANCE, REPLACEMENT OF AN SERVICE PART SHOULD BE MADE ONLI WITH a component having the specifications SHOWN ON THE PARTS LIST FOR THAT PART.

parts lis
 Lbi-4999A

SYMBOL	GE PART NO.	DESCRIPTION
${ }^{1}$		-- -- --- -- - pucs - - - ---- - - Includes:
	198209505P102	Shell
${ }^{\text {P2 }}$	${ }_{19 \text { 19820960559P20 }}$	Connector, printed wiring: sim to Molex
r1T2	198226448G1	Transformer.
	19822644862	Transformer.
c1	19A11568095	---- -- - - Capactrons
${ }_{\text {c2* }}$	19A115680p3	
${ }^{\text {cra }}$	191116783P1	- - - - - - diodes and hectifirns silicon.
$\begin{gathered} \mathrm{cR2} 2 \\ { }_{\mathrm{cR} 3} \end{gathered}$	4037822 P 1	silicon.
cict		- . . .-. - - - messs
${ }^{1}$	${ }^{181688}$	
x1	198209492p1	Open: 80 ohms $\pm 10 \%$ coil res, 12.6 VDC nominal, Open: form A 22Rx13AA. 1 form C contacts; sim to Magnecraft
${ }^{11}$	${ }^{19191677352}$	silicon, spN.
Q ${ }^{2}$	19A116118p1	Silicon, NPN.
${ }^{\text {r1 }}$	3878P1015	Composition: 100 onms $558,1 \mathrm{l}$ \%.
${ }^{\text {a }}$	5493035528	
${ }^{\text {R }}$	${ }^{\text {3R77p3318 }}$	Composition: 330 ohns $\pm 10 \%, 1 / 2 \mathrm{~m}$.
R4	198209358prio2	
$\begin{aligned} & \text { R55 } \\ & \text { R6 } \end{aligned}$	3R77P392K 3R77P471K	Composition: 3900 ohms $\pm 10 \%, 1 / 2 \mathrm{w}$. Composition: 470 ohms $\pm 10 \%, 1 / 2 \mathrm{w}$.
		- - - - - - valitage reculators
val	$4036887{ }^{\text {a }}$	Silicon, Zener.
vR2	4036887P8	Silicon, Zener.
$\begin{aligned} & \mathrm{xF1} \\ & \mathrm{xal} \end{aligned}$	18A116688P1 $5491888 \mathrm{P1}$	Fuse clip: s.m to Littlefuse 102068. Transistor, power, phen: sim to Cinch l33-92-10-034.

SYMBOL	GE PART NO.	DESCRIPTION
	19C320294P1 19A129799P1 N130P1208C6 19a116022P1 19A116023P1 4029974P1 198209519P1 19月13021561 194130229G1 4029851 P13	- - . - - miscellaneous - - Support. (Mounts Q1). Support. (Mounts Kl). Tap, screw: No. $6 \times 1 / 2$. (Secures Q1). Insulator, bushing. (Used with Q2). Insulator, plate. (Esed with Q2). Insulator, plate. (Used with Q1). Polarity tab. (Used with P2). Cable. (Connects to J11 of A801). Cable: red, approx 14 inches long. (Connects between 8801 and XI). between sai a Cable clamp. (Used with 19A130215pl cable).

INSTRUCTIONS FOR INSTALLING BATTERY CHARGER (19C320677G3)
I. UNPLUG THE POWER SUPPLY
2. REMOVE $4: 6$ SCREWS AND REMOVE TOP COVER.
3. MOUNT BATTERY CHARGER BOARD AS SHOWN USING:6 SCREWS AND LOCKWASHERS. ROUTE EXISTING HARNESS AS SHOWN.
4. CONNECT ONE END OF RED CABLE (PLI9A130229GI) TO TERMINAL 5 OF S8OI (VIEW C) AND OTHER END TO TERMINAL 2L OF RELAY (VIEW A)
5. MOUNT TRANSFORMER (I9B226448GI) AS SHOWN USING :8 SCREWS ANO LOCKWASHERS.
6. CONNECT YELLOW TRANSFORMER LEAD AT GI3 USING: 8 LOCKWASHER ABOVE AND BELOW TERMINAL. ADDITIONAL LOCKWASHER SUPPLIED WITH KIT
7. REMOVE 2 " 6 SCREWS SECURING AC COVER AND REMOVE THE COVER.
8. CONNECT BLACK TRANSFORMER LEADS TO TB8OI-3 AND TB8OI-5 IN GI SUPPLY (OR TB802-2 AND TB802-5 IN G2 SUPPLY) AS SHOWN. REASM AC COVER.
9. CONNECT PI OF BATTERY CHARGER BOARD TO JI OF TRANSFORMER.
10. CONNECT P2 OF BATTERY CHARGER BOARD TO A8OI-JI AS SHOWN IN VIEN D
11. REASSEMBLE PONER SUPPLY
12. PLUG PI OF CABLE (I9A|302I5GI) INTO JII OF A8OI, ROUTE CABLE AS SHOWN IN VIEW D AND SECURE WITH CABLE CLAMP (402985IPI3) MOUNTED WITH EXISTING : 6 SCREW.
13. MAKE CONNECTION TO CUSTOMER FURNISHED BATTERY. RED TO (+) POSITIVE AND BLACK TO (-) NEGATIVE.
INSTRUCTIONS FOR INSTALLING BATTERY STANDBY KIT (I9C32067765)

1. UNPLUG THE POWER SUPPLY.
2. REMOVE 4 :6 SCREWS AND REMOVE TOP COVER.
3. MOUNT BATTERY STANDBY BOARD AS SHOWN USING 6 SCREWS AND LOCKWASHERS. ROUTE EXISTING HARNESS AS SHOWN.
4. CONNECT ONE END OF RED CABLE (I9AI30229GI) TO TERMINAL 5 OF S801 (VIEW C) AND OTHER END TO TERMINAL 2L OF RELAY (VIEW A)
5. SOLDER BLUE WIRE OF CABLE (PLI9AI302।562) TO ANODE OF CR4 AND GREEN WIRE TO ANODE OF CRI AS SHOWN IN VIEW B.
6. CONNECT JI OF CABLE (PLI9AI302I5G2) TO PI OF BATTERY STANDBY BOARD
7. CONNECT P2 OF bATTERY STANDBY BOARD TU A8OI-JI AS SHOWN IN VIEW D.
8. REASSEMBLE POWER SUPPLY.
9. PLUG PI OF CABLE ($19 \mathrm{9} \mid 3021551$) INTO JII OF A8OI, ROUTE CABLE AS SHOWN IN VIEW D AND SECURE WITH CABLE CLAMP (402985IPI3) MOUNTED WITH EXISTING : 6 SCREW.
10. MAKE CONNECTION TO CUSTOMER FURNISHED BATTERY. RED TO (+) POSITIVE AND BLACK TO (-) NEGATIVE.
(3) INSTRUCTIONS FOR INSTALLING BATTERY CHARGER (19C320677G6).
11. UNPLUG THE POWER SUPPLY.
12. REMOVE 4 SCREWS AND REMCVE TOP COVER.
13. MOUNT BATTERY CHARGER BOARD AS SHOWN USING 6 SCREWS AND LOCKWASHERS. ROUTE EXISTING HARNESS AS SHOWN.
14. CONNECT ONE ENO OF RED CABLE (PLI9AI30229GI) TO TERMINAL 5 OF S8OI (VIEW C) AND OTHER END TO TERMINAL 2L OF RELAY (VIEW A).
15. MOUNT TRANSFDRMER (I9B226448G2) AS SHOWN USING : 8 SCREWS AND LOCKWASHERS.
16. CONNECT YELLOW TRANSFORMER LEAD AT GI3 USING:8 LOCKWASHER ABOVE AND BELOW TERMINAL. ADDITICNAL LOCKWASHER SUPPLIED WITH KIT.
17. CONNECT PI OF BATTERY CHARGER BOARD TO JI OF TRANSFORMER.
18. CONNECT P2 OF BATTERY CHARGER BOARD TO A8OI-JI AS SHOWN IN VIEW D.
19. INSULATE TERMINALS ON TWO bLACK TRANSFORMER LEADS aND LEAVE LOOSE INSIDE SUPPLY. (TWO BLACK TRANSFORMER LEADS ARE CLISTOMER CONNECTIONS),
20. REASSEMBLE POWER SUPPLY.
21. PLUG PI OF CAELE ($19 A 13021561$) INTO JII OF A8OI, ROUTE CABLE AS SHOWN IN VIEW D AND SECURE WITH CABLE CLAMP (402985IPI3) MDUNTED WITH EXISTING : 6 SCREW.
22. MAKE CONNECTION TO CUSTOMER FURNiSheD battery. RED TO (+) POSitive AND BLACK TO (-) NEGATIVE.
