

This Manual Must Be Used With Applicable Radio Set Manual:
29.7.50 MHz
136.174 MHz
$403-420$ \& 450.512 MHz

68ロ81037E65
68P8:037E70 68P81037E75

CONTENTS

Section Number
Specifications Page iii
FCC Designation Page iv
Foreword. Page v
Model Chart (' B ', Version 60 W Low Band Stations) Page vii
Model Chart ('B'" Version 110 W Low Band Stations) Page viii
Model Chart ('‘B'’ Version 40 \& 60 W VHF Stations) Page ix
Model Chart ('B'" Version 110 W VHF Stations) Page x
Model Chart ("A"' Version 110 W Low Band Stations) Page xi
Model Chart ("A" Version 60 W Low Band Stations) Page xi
Model Chart ("A"' Version 40 \& 60 W VHF Stations) Page xii
Model Chart ("A"'Version 110 W VHF Stations) Page xii
Model Chart ("A"'Version 30 \& 50 W UHF Stations). Page xiii
Model Breakdown Chart Page xiv
Transmitter-Receiver Unit Cross Reference Chart xiv
Station Options Chart xv
STATION DATA
DESCRIPTION 68P81043E12
Local Control Station Functional Interconnect Diagram EEPS-27407
Local/Remote Control Station Functional Interconnect Diagram EEPS-28088
Remote Control Station Functional Interconnect Diagram EEPS-28090
Local/Remote Control Station Audio Path Functional Diagram PEPS-27406
Local Control Station w/Optional "Channel-Scan" Monitor Functional Interconnect Diagram PEPS-28089
INSTALLATION. 68P81043E13
STATION EQUIPMENT
CONTROL PANEL AND CHASSIS (HLN4135A, 36A, 37A) 68P81043E14
Local Control Chassis Wiring Diagram EEPS-28092
Local/Remote Control Chassis Wiring Diagram EEPS-28091
Remote Control Chassis Wiring Diagram. EEPS-28093
Local Control Chassis with "Channel-Scan" Monitor Wiring Diagram EEPS-27400
Monitor Intercom Wiring Diagram (Local/Remote Control Station) CEPS-28588
Monitor Intercom Wiring Diagram (Local Control Stations) CEPS-28096
INTERFACE BOARD (HLN4132A) 68P81043E31
POWER SUPPLY (HPN1000A, HPN1003A) 68P81043E32
POWER SUPPLY (HPN 1001A, HPN1002A) 68P81043E33
DESK MICROPHONES (TMN1004B, TMN1005B). 68 P 81109 E 85
DESK MICROPHONES (TMN1004A, 05A, 12A, 13A, 14A, 15A) 68P81103E48
TONE REMOTE CONTROL (TCN1217A, 18A, 19A) 68P81034E21
DC REMOTE CONTROL (TCN1214A, 15A, 16A) 68P81034E19
MISCELLANEOUS EQUIPMENT
DC METER (HLN4138A) 68P81043E34
VU METER (TLN1734A) 68P81025E61
MONITOR-INTERCOM (HLN1043A, 44A) 68P81043E36
PAGING OR "QUIK-CALL’’ CONVERSION KIT (HLN 1045A) 68P81043E37
ALERT TONE OSCILLATOR (TLN1735A) 68P81025E62
SINGLE TONE ENCODER (TLN1736A, AV) 68P81025E63
"CHANNEL-SCAN" MONITOR (HLN1048A) 68P81044E49
DIGITAL ELECTRONIC CLOCK (TRN6125A, TRN6703A) 68P81025E68
EMERGENCY POWER REVERTING KIT (TLN1374A, B) 68P81102E13
12 V DC ONLY KIT (TRN6182A) 68P81106E85

PERFORMANCESPEC:

GENERAL

Model Series	Frequency Range (MHz)	Minimum RF Output Power (Wats)	Maximum P.A. Input Power (Watts)	Supply Voltage	AC Current Drain (a) $121 \mathrm{~V} ; 60 \mathrm{~Hz}$		DC Current Drain @13.6V	
					Standby	Transmil	Standby	Transmit
L51JJB	29.7-50	60	120	$120 \mathrm{Vac} @ 60 \mathrm{~Hz}$.4A	3.5 A .	1A	15A
L71JJ日	$29.7-50$	110	-	(120/220/240 V ac	.4A	6.0 A .	1 A	25A
L43JJB	136-174	40	90	$50 / 60 \mathrm{~Hz}$ Opt.)	.4A	3.0 A	1 A	13A
L53JJB	136-174	60	120	(12 V de Opt.)	.4A	3.5A	1 A	1SA
L.73JJB	146-174	110	-		4A.	6.5 A	1A	28A
LA4JJ	$\begin{aligned} & 403--420 \\ & 450-512 \end{aligned}$	30	87.5		. 4 A	3.0 A	1 A	13A
L\$4JJB	$\begin{aligned} & 403-421 \\ & 450-512 \end{aligned}$	50	137		.4A	4.5A	IA	19A

NO. OF FREQUENCIES:	Local Control: Single, dual, and multifrequency (up-to-four transmit and receive) models. Local/Remote and Remote: Single and dual frequency (up-to-two transmit and receive models).
SQUELCH OPTIONS:	Carrier squelch, Private-Line coded squelch, or Digital Private-Line coded squelch.
DIMENSIONS:	$6-7 / 8^{\prime \prime}$ high $\times 16-3 / 4$ "' wide $\times 21^{\prime \prime}$ long. ($175 \times 425 \times 533 \mathrm{~mm}$)
WEIGHT	Approximately 45 lbs . (20.5 kg.) Shipping weight, including accessories: approx. 49 lbs. (22.5 kg .)
METERING:	Optional panel-mounted meter and switch, or single-scale 0-50 micorampere meter with selector switch, can be used to measure all circuits essential to tuning and checking.

RECEIVER					
CHANNEL SPACING:	Low Band	VHF			UHF
	20 kHz	30 kHz			25 kHz
INPUTIMPEDANCE:	50 ohms				
EIA MODULATION ACCEPTANCE:	$\pm 7 \mathrm{kHz}$ minimum VHF \& UHF; 6.5 kHz LOW BAND				
FREQUENCY STABILITY:	Channel element maintains oscillator stability within $\pm .0005 \%$ (5 ppm) from $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ ambient ($+25^{\circ} \mathrm{C}$ reference), low band $\pm .002 \%_{(}(20 \mathrm{ppm})$				
RECEIVER PROFILE:	UHF		- VHF		LB
CHANNEL SPACING:	25 kHz		30 kHz		20 kHz
SENSITIVITY:	$\begin{gathered} \text { With } \\ \text { Pre-Amp } \end{gathered}$	Wihnout Pre-Amp	$\begin{gathered} \text { With } \\ \text { Pre-Amp } \end{gathered}$	Without Pre-Amp	
20 dB Quieting	$0.25 \mathrm{uV}$	$0.50 \mathrm{uV}$	0.25 uV	0.50 uV	. 30 uV
EIA SINAD	$0.20 \mathrm{uV}$	$0.75 \mathrm{uV}$	0.20 uV	0.35 uV	- .25 uV
Selectivity EIA SINAD	90 dB	90 dB	95 dB	95 dB	95 dB
Intermodulation EIA SINAD	80 dB	85 dB	80 dB	85 dB	85 dB
Spurious \& Image Rejection	$\begin{gathered} 100 \mathrm{~dB} \\ \text { (minimum) } \end{gathered}$	$\begin{gathered} 100 \mathrm{~dB} \\ (\text { minimum) } \end{gathered}$	$\begin{gathered} 100 \mathrm{~dB} \\ \text { (minimum) } \end{gathered}$	$\begin{gathered} 100 \mathrm{~dB} \\ \text { (minimum) } \end{gathered}$	$\begin{gathered} 100 \mathrm{~dB} \\ \text { (mimimum) } \end{gathered}$

SQUELCH SENSITIVITY:	Carrier squelch (at threshold setting), Tone-Coded Squelch (fixed)。 Digital-Coded Squelch (fixed), are all 6 dBq in all bands.
FREQUENCY SEPARATION:	Low Band: $750 \mathrm{kHz}-1.0 \mathrm{MHz}$
	VHF: 2.0 MHz
	UHF: 2.0 MHz
AUDIO CHARACTERISTICS:	Telephone Line:
	Ootput: +11 dBmat 600 ohms
	Response: $+1,-3 \mathrm{~dB}$
	Distortion: 3% at 1000 Hz
	Hum\& Noise: 50 dB
	For Local Speaker:
	Output Available: 6 W at 3.2 ohms
	Response: +2.8 dB
	Distortion: 5% at 1000 Hz
	Hum \& Noise: -55 dB

[^0]
PERFORMANCE SPECIFICATIONS (Cont'd.)

TRANSMITTER	
RF POWER OUTPUT:	$\begin{aligned} & 110 \mathrm{~W}(29.7-50 \& 146-174 \mathrm{MHz}) \\ & 60 \mathrm{~W}(29.7-50 \& 136-174 \mathrm{MHz}) \\ & 50 \mathrm{~W}(403-420 \& 450-512 \mathrm{MHz}) \\ & 40 \mathrm{~W}(136-174 \mathrm{MHz}) \\ & 30 \mathrm{~W}(403-420 \& 450-512 \mathrm{MHz}) \end{aligned}$
OUTPUT IMPEDANCE:	50 ohms
SPURIOUS AND HARMONIC EMISSIONS:	More than 85 dB below carrier (per EIA spec., RS-152B par. 4)
FREQUENCY STABILITY:	$\pm .002 \%(25-50 \mathrm{MHz}), \pm .0005 \%(136-174 \mathrm{MHz}), \pm .0002 \%(403-512 \mathrm{MHz}) \text { of assigned center }$ frequency from $-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$ ambient $\left(+25^{\circ} \mathrm{C}\right.$ reference)
MAXIMUM FREQUENCY SEPARATION:	$29.7-39 \mathrm{MHz}$ $39-50 \mathrm{MHz}$ $136-174 \mathrm{MHz}$ $403-420 \mathrm{MHz}$.75 MHz 1.0 MHz 3.0 MHz $450-512 \mathrm{MHz}$ 9.0 MHz
MODULATION:	15F2, 16F3 and 16F9 $\pm 5 \mathrm{kHz}$ for $100 \% @ 1000 \mathrm{~Hz}$
AUDIO SENSITIVITY:	$0.100 \mathrm{~V} \pm 3.2 \mathrm{~dB}$ for 3 kHz max. deviation at 1000 Hz .
FM NOISE:	55 dB below $\pm 3.0 \mathrm{kHz}$ deviation @ 1000 Hz
AUDIO RESPONSE:	$+1,-3 \mathrm{~dB}$ of 6 dB / octave pre-emphasis characteristic from 300 to 3000 Hz
AUDIO DISTORTION:	Less than $3 \% @ 1000 \mathrm{~Hz} ; \pm 3.0 \mathrm{kHz}$ deviation

Motorola guarantees that this equipment at the time of proper installation, will meet or excced the performance specifications listed above.
(4) Motorola, Mitrek, Consolette, Quik-Call, Digital Private-Line, Private-Line, and Channel Scan are trademarks of Motorola, Inc.
(c) Motorola, Inc. Printed in U.S.A.

FCC DESIGNATIONS

Transmitter

Transmitter Power Output	Frequency	Frequency Stability	FCC Acceptance Number
110 W	$29.7-50 \mathrm{MHz}$	$\pm 0.002 \%$	CC1170
60 W	$29.7-50 \mathrm{MHz}$	$\pm 0.002 \%$	CC1159
110 W	$146-174 \mathrm{MHz}$	$\pm 0.0005 \%$	CC3358
60 W	$150-174 \mathrm{MHz}$	$\pm 0.0005 \%$	CC33477
40 W	$150-174 \mathrm{MHz}$	$\pm 0.0005 \%$	CC3346
50 W	$450-512 \mathrm{MHz}$	$\pm 0.0002 \%$	CC4310C
30 W	$450-512 \mathrm{MHz}$	$\pm 0.0002 \%$	CC 4309 C
30 W	$450-512 \mathrm{MHz}$	$\pm 0.0005 \%$	CC4309

Receiver (for AC \& DC Operation)

Frequency	FCC Acceptance Number
$29.7-50 \mathrm{MHz}$ with Extender	RC0214
$29.7-50 \mathrm{MHz}$ without Extender	RC0213
$150-174 \mathrm{MHz}$ with Pre-Amp	RC0216
$150-174 \mathrm{MHz}$ without Pre-Amp	RC0215
$450-512 \mathrm{MHz}$ with Pre-Amp	RC0218
$450-512 \mathrm{MHz}$ without Pre-Amp	RC0217

Model Breakdowns

Kit Number	Description
TCN1271A One-Frequency Carrier Squelch Tone Remote Control	
$\begin{gathered} \text { TCN1220A } \\ \text { KLN6209A } \\ \text { TRN6742A } \\ \text { TRN6299A } \\ \hline \end{gathered}$	One-Frequency Carrier Squelch Tone Remote Control Kit "Vibrasponder" Resonant Reed One-Frequency Carrier Squelch Tone Remote Control Board Tone Remote Control Hardware Kit
TCN1218A One-Frequency "Private-Line" Tone Remote Control	
$\begin{gathered} \text { TCN1221A } \\ \text { KLN6209A } \\ \text { TRN6743A } \\ \text { TRN6299A } \\ \hline \end{gathered}$	One-Frequency "Private-Line" Tone Remote Control Kit "Vibrasponder" Resonant Reed One-Frequency "Private-Line" Tone Remote Control Board Tone Remote Control Hardware Kit
TCN1219A Two-Frequency "Private-Line" Tone Remote Control	
$\begin{aligned} & \text { TCN1222AA } \\ & \text { KLN6209A } \\ & \text { TRN6744A } \\ & \text { TRN6299A } \\ & \hline \end{aligned}$	```Two-Frequency "Private-Line" Tone Remote Control Kit "Vibrasponder" Resonant Reed Two-Frequency "Private-Line" Tone Remote Control Board Tone Remote Control Hardware Kit```
HPN1001A Power Supply	
HKN4053A HLN4130A HLN4151A TLN4405A	Power Supply Cable Kit Power Supply Chassis Hardware Kit Circuit Board Kit
HPN1003A Power Supply	
HLN4139A HLN4153A TLN5779A	Power Supply Chassis Hardware Kit Circuit board Kit
TMN1004B Desk Microphone (Carrier Squelch)	
TRN8986A THN6388A TKN8063A	"Private-Line" Microphone Circuit Board Microphone Housing and Hardware Kit Microphone Cable Kit
TMN1005B Desk Microphone ('Private-Line"')	
TRN8986A THN6389A TKN8063A	"Private-Line" Microphone Circuit Board Microphone Housing and Hardware Kit Microphone Cable Kit

Transmitter-Receiver Unit Unified Chassis Cross Reference Chart
"Mitrek"
Super

"Consolette" Base Station	"Mitrek" Mobile Radio	Frequency	Power
HUB1003B	HUB1001B	$29.7-38.99 \mathrm{MHz}$	60 W
HUB1004B	HUB1002B	$39-50 \mathrm{MHz}$	60 W
HUB1023B	HUB1021B with Extender	$29.7-38.99 \mathrm{MHz}$	60 W
HUB1024B	HUB1022B with Extender	39.50 MHz	60 W
HUB1013B	HUB1011B	$29.7-38.99 \mathrm{MHz}$	110 W
HUB1014B	HUB1012B	$39-50 \mathrm{MHz}$	110 W
HUB1033B	HUB1031B with Extender	$29.7-38.99 \mathrm{MHz}$	110 W
HUB1034B	HUB1032B with Extender	$39-50 \mathrm{MHz}$	110 W
HUD1003B	HUD1001B	$136-150.8 \mathrm{MHz}$	40 W
HUD1004B	HUD1002B	$146-174 \mathrm{MHz}$	40 W
HUD1013B	HUD1011B	$136-150.8 \mathrm{MHz}$	60 W
HUD1014B	HUD1012B	$146-174 \mathrm{MHz}$	60 W
HUD1034B	HUD1032B	$146-174 \mathrm{MHz}$	110 W
HUE1003A	HUE1001A	$403-420 \mathrm{MHz}$	30 W
HUE1004A	HUE1002A	$450-512 \mathrm{MHz}$	30 W
HUE1007A	HUE1005A with Pre-Amp	$403-420 \mathrm{MHz}$	30 W
HUE1008A	HUE1006A with Pre-Amp	$450-512 \mathrm{MHz}$	30 W
HUE1013A	HUE1011A	$403-420 \mathrm{MHz}$	50 W
HUE1014A	HUE1012A	$450-512 \mathrm{MHz}$	50 W
HUE1017A	HUE1015A with Pre-Amp	$403-420 \mathrm{MHz}$	50 W
HUE1018A	HUE1016A with Pre-Amp	$450-512 \mathrm{MHz}$	50 W

OPTIONCHART (Cont'd.)

Option	Add	Delete	Applicability
L179AC	TRN6125A Digital Clock Kit	Nothing	All Local Control Models
L226AH	HLN1043A Local Intercom Kit	Nothing	All Local Control Models
L226AJ	HLNI044A Local Remote Intercom Kit	Nothing	All Local/Remote Control Models
L273AB	TLN4427A Wall Mounting Kit	Nothing	All Models
L276AA	KLN6209A "Vibrasponder" Resonạnt Reed	Nothing	All Tone PL Models
L501AG	Nothing	One KXN1087A Transmitter Channel Element	All $29.7-50 \mathrm{MHz}$ Models
L.501AH	Nothing	One KXN1088A Transmitter Channel Element	All $136-174 \mathrm{MHz}$ Models
L501AJ	Nothing	One KXN1095A Transmitter Channe! Element	All $403-512 \mathrm{MHz}$ Models
L502AG	Nothing	Two KXN1087A Transmitter Channel Elements	All 29.7-50 MHz . Twe \& Four-Frequency Models
L502AH	Nothing	Two KXN1088A Transmitter Channel Elements	All $136-174 \mathrm{MHz}$, Two \& Four-Frequency Models
L502AI	Nothing	Two KXN1095A Transmitter Channel Elements	All $403-512 \mathrm{MHz}$, Two \& Four-Frequenc' Models
1.503 AE	Nothing	Three KXN1087A Transmitter Channel Elements	All $29.7-50 \mathrm{MHz}$, Four-Frequency Models
L503AF	Nothing	Three KXN1098A Transmitter Channel Elements	All $136-174 \mathrm{MHz}$, Four-Frequency Models
L503AG	Nothing	Three KXNI095A Transmitter Channel Elements	All $403-512 \mathrm{MHz}$, Four-Frequency Models
L504AE	Nothing	Four KXN1087A Transmitter Channe! Elements	All $29.7-50 \mathrm{MHz}$, Four-Frequency Models
L504AF	Nothing	Four KXN1088A Transmitter Channel Elements	All $136-174 \mathrm{MHz}$, Four-Frequency Models
L504AG	Nothing	Four KXN1095A Transmitter Channel Elements	All 403 -512 MHz. Four-Frequency Models
L521AG	Nothing.	One KXN1085A Receiver Channel Element	All $29.7-50 \mathrm{MHz}$ Models
L.521AH	Nothing:	One KXN1086B Receiver Channe! Element	All $136-174 \mathrm{MHz}$ Models
L522AG	Nothing,	Two KXN1085A Receiver Channel Elements	All $29.7-50 \mathrm{MHz}$, Two \& Four-Frequency Models
L522AH	Nothing.	Two KXiN1086B Receiver Channel Elements	All i36-174 $\overline{\mathrm{M}} \mathrm{Hz}$. Two \& Four-Frequency Models
LS32AE	Nothing	Three KXN1085A. Receiver Channel Elements	All $29.7-50 \mathrm{MHz}$, Four-Frequency Models
1.523 AF	Nothing	Three KXN1086B Receiver Channel Elements	All $136-174 \mathrm{MHz}$, Four- Frequency Models
L524AE	Nothing	Four KXN1085A Receiver Channel Elements	All 29.7 -50 MHz, Four-Frequency Models
L524AF	Nothing	Four KXN1086B Receiver Channel Elements	All $136-174 \mathrm{MHz}$, Four-Frequency Models
L566AB	TLN1736AV Single-Tone Encoder (Non-Standard)	Nothing	All Local Control Models
L567AB	TLNi736A Single-Tone Encoder (Standard)	Nothing	All Local Control Models
L276AA	TLN5730A Two-Code Adapter Board TRN6005A Code Plug	Nothing	All Two-Frequency "Digital Private-Line" Models
L521AJ	Nothing	One KXN1086B Receiver Channe! Element	All $403-512 \mathrm{MHz}$ Models
1.522AJ	Nothing	One KXN1086B Receiver Channel Element	All $403-512 \mathrm{MHz}$, Two \& Four-Frequency Models
L523AG	Nothing	Three KXN1086B Receiver Channel Elements	All $403-512 \mathrm{MHz}$. Four-Frequency Models
L524AG	Nothing	Four KXN1086B Receiver Channe! Elements	All $403-512 \mathrm{MHz}$. Four-Frequency Models

Communications Group

1. INTRODUCTION

The Motorola Mitrek Super Consolette base station is a compact two-way radio suitable for desk top mounting. The base stations are available in a variety of models as shown in the model charts at the front of this manual. These include the operating frequency range, i-f power output, carrier squelch, Private-Line tonecoded squelch, Digital Private-Line binary coded squelch, single- or multiple-frequency and local or remote control models. All models are designed for desk or table top installation and fully utilize the advantages of solid-state circuits - reliability, small size, ruggedness and low maintenance requirements. Contained within the compact steel cabinet is an easily removable transmitter-receiver unit, ac operated power supply, and control panel which contains all controls necessary for local operation of the station. The rear of the cabinet is equipped with an antenna connector, terminal boards for external connections and a key-lock. Efficient heat radiators to ensure safe operating temperatures for the transmitter power amplifier stages and the power supply regulator transistors extend from the rear of the cabinet. The station cabinet facilitates ease of maintenance and is easily removed from the chassis assembly by unlocking the key-lock and loosening two thumb-screws at the rear of the cabinet. All external connections (except primary power) are made at terminal boards at the rear of the chassis and need not be disturbed for removal of the cabinet. The transmitter-receiver chassis is secured to the main chassis assembly by two quick-release snap fasteners. When these are released, the transmitterreceiver unit may be readily removed for maintenance or quick access to optional kits.

2. BASIC TYPES OF STATIONS

2.1 CARRIER SQUELCH MODELS

These models are used when all transmissions on a specific frequency are to be heard. The receivers incorporate a noise-actuated squelch circuit consisting of a noise limiter, a noise detector and a dc control stage (switching circuit) to cut off audio signals to the audio
amplifier. This eliminates disturbing noise which would otherwise be heard at the speaker during intervals between received messages.

2.2 PRIVATE-LINE CODED SQUELCH MODELS

This type of station is an improvement in FM twoway radio equipment especially when operating under crowded channel conditions. Several Private-Line systems can use the same rf carrier frequency in the same area if each system uses a different Private-Line code.

The transmitters are modulated by a continuous code signal in addition to the voice modulation. The receivers accept only correctly code-modulated signals when the "PL" ON-OFF switch is in the ON position, and reject all others.

Private-Line coded squelch models also include noise-actuated squelch circuitry as previously described for carrier squelch models. This enables the operator to monitor the channel before transmissions ("PL" ONOFF switch in the OFF position) and prevent interference with other users on the frequency. The desk microphone supplied with 'PL'" stations, has a PrivateLine disable switch to permit switching to the noiseactuated squelch circuit for monitoring purposes before transmitting.

The SQUELCH control has no effect on "PL" squelch sensitivity. In normal operation ('PL'' ON), the receiver audio is activated when the on-frequency rf signal is FM modulated with the proper "PL'" code to activate the Private-Line decoder.

Either one of two types of Private-Line coded squelch may be used; tone-coded or binary-coded. In Private-Line tone-coded squelch systems, sub-audible tones are transmitted and then detected to unsquelch the audio path in a particular receiver or group of receivers. In Private-Line digital binary-coded squelch systems, a 23-bit binary code word is transmitted continuously and detected to unsquelch the audio path in the receiver(s). The binary code rate is such that it falls below the
$300-3000 \mathrm{~Hz}$ voice frequency range used in radio communications equipment, therefore, the code signals are not heard by the operator.

3. CONTROL FACILITIES

Four types of control facilities are possible with Mitrek Super Consolette base station systems: (1) local control, (2) extended local control, (3) local-remote control, and (4) remote control. Each of these types of control are described below. Usage of optional accessory equipment is given in Table 1.

3.1 LOCAL CONTROL OPERATION

In local control systems, the base station is normally supplied with a desk microphone. The desk microphone contains a TRANSMIT switch and in Private-Line systems, a MONITOR switch. All other controls necessary for operation are mounted on the control panel of the Consolette base station. This system may be a single control point station (see Figure 1) or a local control point station with multiple dispatch points. When dispatch points are used, a monitor-intercom kit is installed in the Consolette radio position. The Consolette radio position is the control point and has

Figure 1. Typical Local Control System

(gure .
complete supervision over transmissions from the dispatch points. Transmit audio is monitored at all points except the point sending the message. Using the monitor-intercom kit, all dispatch points may communicate with one another and with the control point without keying the transmitter. The system incorporates a priority feature which causes any on-frequency radio message to have priority over any intercommunication taking place. (When a monitor-intercom kit is not installed, the control point does not have supervisory capability, therefore, each dispatch point must be FCC licensed as a control point.)

3.2 EXTENDED LOCAL CONTROL OPERATION

The base station can be operated in an extended local control mode in cases where the radio cannot be located on the desk top at the operators position. In this mode, a remote desk set is used as the control point with the radio located within 100 feet of the desk set. This system may be a single extended local control point station (see Figure 2) or an extended local control station with multiple dispatch points as described previously for local control systems.

A. Single Extended Local Control Point Station

B. Extended Local Control Point Station with Multiple Dispatch Points

Figure 2. Typical Extended Local Control Systems

3.3 LOCAL-REMOTE CONTROL OPERATION

In local-remote systems, a distant remote control point is licensed in addition to the primary (local) control point located at the base station radio position. The radio may be controlled from only one location at a time. A switch is provided which permits transfer of the control point. The remote control point may be either a remote control console or a desk set which is connected to the Consolette base station via two-wire telephone lines (see Figure 3). Monitor intercom capability may be used as previously described for local control systems.

Figure 3. Typical Local-Remote Control Systems

3.4 REMOTE CONTROL OPERATION

In remote control systems, all radio control functions are conducted from a remote control console (see Figure 4). The control panel of the base station is blank except for the transmit and power-on indicators. The remote control console is connected to the Consolette base station via two-wire telephone lines (see Figure 4).

AEPS-17064-O
CONTROL POINT
Figure 4. Typical Remote Control System

4. EQUIPMENT DESCRIPTION

4.1 CONTROL PANEL AND CHASSIS

The control panel and chassis contains all operating circuits of the Mitrek Super Consolette base station except for the microphone. The power supply is secured to the chassis by four mounting screws. The transmitter-receiver unit is secured to the chassis by two
quick-release snap fasteners. Optional accessory equipment boards and/or a remote control circuit board mounts on the chassis below the transmitter-receiver unit. In local control models, the control panel contains the operating controls and indicators (including panel mounted accessories) and the station speaker. In remote control models, the control panel is normally blank except for the power-on and transmit indicators.

4.2 TRANSMITTER-RECEIVER UNIT

The transmitter-receiver is a completely transistorized FM two-way radio (less control circuitry) which fully utilizes the advantages of solid-state circuits -- reliability, small size, ruggedness and low maintenance requirements. Current demands are low, since tube filaments are eliminated and unheated crystals are used for frequency control.

A variety of models are available to give carrier or Private-Line coded squelch, single- or multi-frequency capability.

The Mitrek Mobile radio which is used as the transmitter-receiver unit in the Mitrek Super Consolette base station is mounted by two quick-release snap fasteners for easy removal. All electrical connections are made through two front panel receptacles (J 1 and J 4) and a four-wire cable assembly. The cable assembly connects to push-on pins within the transmitter-receiver unit. The Mitrek Super Consolette base station control cable connector P 4 mates with mobile radio receptacle J1 and the internal antenna line (W2) mates with Mitrek radio antenna connector J 4 . External antenna connections are made to J105 on the rear of the Mitrek Super Consolette base station chassis.

The Mitrek Mobile radio used as the transmitterreceiver unit requires certain electrical modifications. As shown in Figure 5, the mobile receiver audio and squelch section is modified by the removal of capacitor C440, coil L401, and diode CR404. A four-wire cable assembly is added to connect the mobile receiver audio and squelch circuitry to the base station interface board.

The detected mobile receiver audio, from the base station mobile receiver audio preamplifier, U403A, is routed via P4-11 to the base station interface board by J201-7. Also, the detected audio is routed from P4-11 through R502 to R501, the volume level set control, and from P4-11 through R503 to R504, the SQUELCH control.

The center tap of R501 connects the detected receiver audio, via $\mathrm{P} 4-15$, to the mobile receiver audio preamplifier U403B and Q401. The audio from Q401 is routed, via J201-11, to the base station interface board, through the receive squelch gate U1C and audio amplifier U2D, back to the mobile receiver audio final amplifier U401, via J201-5.

The center tap of R504 connects the detected receiver audio, via P4-14, to the mobile receiver squelch circuit (Q402 through Q405) and mute switch Q406. Q406 is connected, via J201-15 to receive squelch gate U1C on the base station interface board. U1C squelches or unsquelches the detected mobile receiver audio. A mobile receiver radio ground reference is connected to the base station interface board at J201-12 for ground reference buffering.

NOTE
Due to the loading of the base station interface board, exciter audio, and/or microphone, inputs cannot be applied to the transmitter test socket. Exciter audio and/or microphone inputs must be applied to terminal strip TB2-6, -7 only.

The Mitrek Mobile radio, used as the transmitterreceiver unit in the Mitrek Super Consolette, is mechanically modified by the removal of its handle assembly, lock assembly and miscellaneous hardware pieces. Refer to the transmitter-receiver unit cross reference chart, at the front of this manual to identify the Mitrek Super Consolette electrically equivalent transmitter-receiver unit.

With the exception of these electrical and mechanical modifications, the appropriate Mitrek mobile radio instruction manual is fully applicable.

4.3 POWER SUPPLY

The 120 -volt, 60 Hz (or optional $120-220-, 240-$ volt, $50 / 60 \mathrm{~Hz}$) power supply is a regulated unit providing all necessary dc voltages for operation of the associated transmitter-receiver and optional accessories. The power supply consists of a power transformer, fullwave rectifier, series transistor regulator, and associated control circuits assembled on a compact chassis. The power supply is secured to the main chassis by four screws which provides easy removal to facilitate maintenance. The output of the power supply is connected to the station control panel and transmitterreceiver unit via two screw terminals located on the main chassis. The regulator transistors are mounted on an efficient heat radiator at the rear of the power supply to ensure safe operating temperatures. AC line protection is provided by a fuse located on the power supply chassis.

5. ANTENNA (NOT SUPPLIED)

The Super Consolette base station radio is sold as a complete, ready-to-use station (less antenna). The type of antenna required depends on local operating conditions and should be determined by a qualified communications representative. Contact your local Motorola radio communications representative for your antenna selection and ordering needs.

6. ACCESSORIES

The majority of the following described accessories are available as factory installed options in new stations, A
and some are required as part of specific station models. Table 1 shows the usage of accessories and defines the restrictions on using them. Also, other accessories are available which have more special application than those listed here. See your local Motorola representative for complete details on all "add-to" accessories.

Certain accessories cannot be added if the station is already equipped with another accessory. For example, dc metering cannot be added if the station is already equipped with a vu meter (see Table 1).

6.1 HLN4138A DC METER (OPTION L149A)

The meter is available for local control stations and provides metering of the transmitter and receiver circuitry directly from the control panel. A $0-50$ microampere meter and an eighteen-position rotary switch are used for metering. The meter and switch permit measurement and selection of critical test points in all receiver and transmitter circuits.

NOTE

Receiver meter 4 positions are not used in Mitrek Super Consolette base stations during normal operation.

Specific circuits to be measured are connected to the meter via receptacles on the receiver and transmitter chassis. The meter is mounted on the front panel and is held in place by a clip which is supplied with the meter kit. The rotary switch is mounted on the control panel frame which is in turn fastened to the front panel.

6.2 TLN1734A VU METER (OPTION L114A)

The vu meter provides a relative indication of the speech level input to the transmitter exciter audio circuits, from a microophone or remote control line. The kit consists of a vu meter which mounts on the control panel of the station and circuit board which mounts behind the front panel. A variable attenuator on the circuit board is used to set the vu meter reading for a specific audio input level.

6.3 TLN1736A (STANDARD FREQUENCIES) OR TLN1736AV (NON-STANDARD FREQUENCIES) '‘SINGLE-TONE'" ENCODER OPTIONS L567A OR L566A)

The transistorized multiple-frequency 'SingleTone" encoder is a selective tone source for the base station in a "Single-Tone" controlled two-way radio communication system. It permits base-to-mobile selective calling, or provides remote switching functions for control of standby equipment. Up to five fixed-frequency tones may be individually selected by a rotary switch. Jumper connections provide optional tone durations from 0.5 second to 1.5 seconds, or a continuous tone for test purposes.

The encoder may be used to tone-alert a receiving station to a pertinent incoming call, or the associated receiver may incorporate a tone decoder unit, which will
Table 1. Accessory Equipment Usage and Compatibilty

hem	Suxion Type Uaspe				Accessory Comostibitivy												
	Locs: Contra	$\begin{aligned} & \text { Extended } \\ & \text { Locot } \\ & \text { Control } \end{aligned}$	Loca Remote Control	Remote	yo	$\begin{aligned} & \text { DC } \\ & \text { Meter } \end{aligned}$	$\begin{aligned} & \text { Single } \\ & \text { Tine } \\ & \text { Tocoder } \end{aligned}$	"Single Tone" Encoder (Mon standard. Freguencies	Aler Tone Cocllato	Crannel Scan Monisor $\left\langle\mathrm{Mul} \mathbf{I}_{1}\right.$ Freq, Models only)	Digtal Clock	$\begin{aligned} & 120,220 \\ & 240.200 \\ & \text { Poser Supply } \end{aligned}$	$\dot{x i t}^{2 \mathrm{i} v o c}$	Moniqor intercom	oc Remote Control Board	Tone Remote Control Board	$\begin{aligned} & \text { Emergency } \\ & \text { Poneercy } \\ & \text { Remerting } \end{aligned}$
vu Metur	yes		ves	no		NO	YES	No									
OC Meer	Yes		yes	No	NO		YEs	Yes	yes	No	YES						
"Single Tone" Encooer	YES		No	No	yes	Yes			no	No	ves	YES	YES	YES	No	no	
"Single-Tone" Encoder (non-standard frequencies)	ves		No	No	ves	YES			No	no	YES	Yes	Yes	YEs	No	No	res
Alert Tone Owilistor	ves		No	No	yes	yes	No	No		so	yes	Yes	Yes	YES	No	No	YES
Channel Scan Manitor imulti-freg. models orty	yes		no	no	Yes	No	No	No	No		yes	Yes	Yes	$\begin{gathered} \text { YES } \\ \text { (NOTE) } \\ \hline \end{gathered}$	No	No	YEs
Digital Clock	Yes		res	No	yes	\%es	Yes	ves	yes	Yes		res	No	yes	yes	YES	Yes
$\begin{aligned} & 120,220,240 \text { Volt } \\ & \text { Power Supply } \end{aligned}$	YES	YEs	ves	YEs	YES	Yes	YEs	YEs	ves	yes			No	Yes	VES	YEs	res
$\cdot 12 \mathrm{Vdc}$ Kit	yes	yes	ves	Yes	Yes	VEs	Yes	YES	ves	yes	No	No		YES	YEs	Yes	No
Nonitor-Intercam	Yes		YES	No	Yes	Yes	Yes	YES	yes	YEs (NOTE)	YES	yes	YES		ves	YEs	YES
Time Out Timer	yes	ves	Yes	yes	All models												
Watl or Hack Mount Kin	res	yes	YES	yes	All models												
"PL,., Station Paging Conversion Kit	yes		No	Yes	-PL"MODELS OnL.Y									No	No	No	
RF Preanglitier	Yes	YES	res	ves	ALL VHF ANO UHF												
DC Remote Cantiol	No	No	yes	YES	YES	ves	No	No	No	No	Yes	YES	yes	ves		No	Yes
Tone Remote Control	no	No	ves	yes	yes	res	No	No	No	Na	YES	Yes	yes	YES	No		YES
"Private-Line" Tone Coded Squelch Encooder/Decoder	yes	YES	YEs	Yes	YONE "PL" MOOELS ONLY												
"Private-Line" Digitai Coded Squelch Encoder Decoder	yes	YES	Yes	YES	DIGITAL PL"MODELS ONLY												
$\begin{aligned} & \text { Emergencry Power } \\ & \text { Reverting } \end{aligned}$	yes	res	Yes	yes	No	ALL GOW LOW BAND 403 60 W VHF, 30 W UHF				ves			No	ALL 60W LOW BAND. 40 A 60 W VHF, 30 W UHF			

[^1]complete the audio output circuits. Thus, only the receiver for which the call was intended will receive the message. Also, a tone-decoder equipped receiver can energize an external control circuit for repeater or alarm systems.

6.4 TLN1735A ALERT TONE OSCILLATOR OPTION L25A)

The alert-tone oscillator provides a $1000-\mathrm{Hz}$ tone that can be used as an alerting signal prior to actual voice transmission or as a test tone when adjusting the deviation of a transmitter. The kit consists of a transistorized oscillator, a switch, the cabling required for circuit interconnections and the hardware for mounting to the control panel.

6.5 TRN6125A CLOCK KIT (OPTION 179A)

The clock kit is an electronic digital clock which utilizes a four-digit light emitting diode (LED) display. The clock can be jumpered for either 12 - or 24 -hour and 50 or 60 Hz operation. The digital display is mounted on the control panel at a convenient angle for viewing. Circuit components are mounted on a printed circuit board which is located behind the control panel.

6.6 HPN1000A, HPN1002A POWER SUPPLIES (OPTION L43A)

These power supplies permit operation of the station from $120-, 220-$, or 240 -volts, $50-$ or $60-\mathrm{Hz}$ power and are directly interchangeable with the 120 -volt, $60-\mathrm{Hz}$ models. Both power supplies provide all dc power to the station and accessories as required.

6.7 TRN6182A 12 V DC KIT (OPTION L32A)

This kit allows the station to operate from a +12 -volt power source ONLY. Therefore, the ac operated clock and 120 -, 220-, 240 -volt power supply are not compatible with this option.

6.8 HLN1043A (LOCAL CONTROL) OR HLN1044A (LOCAL-REMOTE CONTROL) MONITOR-INTERCOM KIT (OPTION L226A)

This kit permits intercommunication between the base station and a remote control console, between the base station and a desk set, or between two or more desk sets connected in parallel with the base station, without keying the transmitter. The kit consists of a transistorized amplifier, the cable for circuit interconnections, the mounting hardware, and the takeover and intercom switch (mounted on the front panel). The intercom also has a "squelch-priority" feature which disables the intercom anytime an on-frequency carrier is received by the base station receiver.

When Motorola desk sets or remote control consoles are used with the station, the VOLUME control on the Super Consolette base station permits independent audio level control at the control panel and desk set or a remote control console speaker(s).

6.9 HLN4012A TIME-OUT-TIMER (OPTION L11A)

The Motorola time-out timer is a "supervisory" device designed to turn off the base station transmitter after approximately one minute of continuous transmission. In addition, it provides an alert tone to the receiver audio circuit to signal the operator that the transmitter is no longer on-the-air. The time-out timer is reset when the push-to-talk switch is released, permitting transmission to be resumed for another minute. The kit consists of plug-in Time-Out Timer module installed in the radio.

6.10 TLN4427A WALL OR RACK MOUNT KIT (OPTION L273A)

This kit is available for use with all models of the Super Consolette base stations. The base station may be mounted in any 19 -inch rack, or attached to a wall panel with this kit. When mounted, the base station is vertically oriented and is operated in the extended local or remote control mode.

6.11 HLN1045A "PL" STATION PAGING CONVERSION KIT (OPTION L63A)

The paging conversion kit is used to adapt a Private-Line Super Consolette base station for use in a selective paging system. The kit permits operation of the transmitter without Private-Line modulation so that paging tones from a selective paging encoder may be transmitted when desired. The transmitter may also be operated in the Private-Line mode when transmissions without selective paging tones are desired. The kit consists of a relay, printed circuit board, mounting bracket and interconnecting cable.

6.12 TCN1214A, TCN1215A, AND TCN1216A DC REMOTE CONTROL BOARDS (OPTIONS L139A AND L169A)

A dc remote control board is used in dc controlled remote control stations and local-remote control stations to permit the station to be remotely controlled via a two-wire telephone type line. The board contains dc transfer oscillators and switching circuits which convert dc control currents, from the remote control point, into control signals for operation of the Consolette base station. The board also contains all the necessary amplifier and gating circuits for control of transmit and receive audio. Model TCN1214A is used in one-frequency carrier squelch stations, Model TCN1215A is used in single frequency Private-Line squelch stations, and Model TCN1216A is used in two-frequency stations.

6.13 TCN1217A, TCN1218A, AND TCN1219A TONE REMOTE CONTROL BOARDS (OPTION L168A)

A tone remote control board is used in tone controlled remote control stations and local-remote control stations to permit the station to be remotely controlled via a two-wire telephone type line. The board contains tone decoder and switching circuits which converts guard and function tones, from the remote control point, into control signals for the operation of the Consolette base station. The board also contains all the necessary amplifier and gating circuits for control of transmit and receive audio. Model TCN1217A is used in one-frequency carrier squelch stations, Model TCN1218A is used in one-frequency Private-Line squelch stations, and Model TCN1219A is used in twofrequency stations.

6.14 HLN4020A PRIVATE-LINE TONE CODED SQUELCH ENCODER-DECODER

The Private-Line tone coded squelch encoderdecoder is installed in the transmitter receiver to permit private communications on crowded radio communications channels. During transmissions, the transmitter is modulated by a continuous sub-audible "PL" tone in addition to the voice modulation. The tone is generated by the encoder. During receive, the receiver audio circuits are disabled by the decoder until a proper tone code is received, therefore, signals not containing the proper tone code are not heard. In Private-Line systems, a switch is required to disable the squelch so that the channel can be monitored to be sure it is clear before initiating a transmission.

6.15 HLN4011A PRIVATE-LINE DIGITAL CODED SQUELCH ENCODER-DECODER

The Private-Line digital coded squelch encoderdecoder is installed in the transmitter-receiver to permit private communications over crowded radio communications channels. The digital encoder-decoder functions essentially the same as the tone encoderdecoder except that is uses digital codes which provide a more secure system. During transmissions, the transmitter is modulated by a continuous sub-audible 23-bit binary code in addition to the voice modulation. During receive, the receiver audio circuits are disabled by the decoder until a proper binary code is received, therefore, signals not containing the proper binary code are not heard. In Private-Line systems, a switch is required to disable the squelch so that the channel can be monitored to be sure it is clear before initiaiting a transmission.

6.16 TLN1374B EMERGENCY POWER REVERTING KIT (OPTION L28A)

This kit permits operation of the base station from either a 120 -volt ac primary power source or a 12 -volt dc power source. The emergency power reverting kit is
used in applications where communications must remain operational during ac power failures. In the event of a 120 -volt ac power failure, instantaneous automatic switchover to battery operation is provided. Operation on emergency power is indicated by the green power-on indicator blinking. Included in the kit is a full time trickle charging circuit for the standby 12 -volt battery, functional with HPN1001A or HPN1002A power supplies only.

7. FUNCTIONAL DESCRIPTION

7.1 GENERAL

The overall functional interconnect diagrams for Super Consolette base stations are shown in Figure 6 through Figure 8. Figure 6 shows a local control station, Figure 7 shows a local/remote control station, and Figure 8 shows a remote control station. Figure 9 is the audio path functional diagram of a local/remote control station.

7.2 POWER APPLICATION

Primary input voltage (120 volts ac) is connected to the station power supply through the line cord. The power supply is activated when the power cord is plugged into an ac outlet. The regulated high current $\mathbf{A}+$ line to operate the transmitter high power stages is routed to the transmitter via the transmitter-receiver connector. When the on-off switch (part of the OFFVOLUME control) is turned on, the green (power-on) indicator lamp on the control panel lights and the low current dc output from the power supply is applied to the transmitter-receiver.

7.3 FREQUENCY SELECTION (MULTIFREQUENCY MODELS ONLY)

Multi-frequency station incorporate up to four frequencies for local control stations, or a maximum of two frequencies for remote control stations. In local control stations, the appropriate transmit and receive oscillators are activated when their ground path is completed by the frequency selector switch on the control panel. In remote control stations, the oscillators are activated when the proper function tone or dc current is received from the remote control unit.

7.4 PRIVATE-LINE DISABLE (PRIVATE LINE CODED SQUELCH MODELS ONLY)

When the Private-Line switch on the control panel is placed in the OFF position, a ground is removed from the receiver audio switch circuit permitting the noiseoperated squelch circuit to operate. All on-frequency signals with or without Private-Line coding will now be heard.

10

Figure 8.
Remote C
Remote Control Station Functional Interconnect Diagram
Motorola No. EEPS-28090-O $\underset{2-24-84 \mathrm{GGI}}{\text { Mation }}$

IMPORTANT

The operation of the transmitter in this radio set is covered by governmental rules and regulations. Several provisions of Federal Communications Commission (FCC) rules are briefly summarized in the following paragraphs. For complete information on FCC rules (or for rules in other countries), refer to the most current applicable regulations.

- Transmitter frequency and deviation must be checked and adjusted, if necessary, before a transmitter is placed in service. While it is not required, it is recommended that the transmitter frequency and deviation be checked at the end of the first and third months of service and one year after installation. This will aid the maintenance technician in detecting frequency changes due to crystal aging. After this initial period, the frequency and deviation should be checked periodically to be sure that the ransmitter stays within specifications.
- The rf power output of a transmitter shall be no more than required for satisfactory technical operation considering the area to be covered and the local conditions.
- Radio transmitters may be tuned or adjusted only by a person holding a valid first or second class commercial radiotelephone operator's license or by personnel working directly under his immediate supervision.

REMEMBER

The efficiency of the equipment depends upon a good installation.

1. INSPECTION

Inspect the equipment thoroughly as soon as possible after delivery. If any part of the equipment has been damaged in transit, report the extent of damage to the transportation company immediately.

2. ANTENNA AND TRANSMISSION LINE CONSIDERATIONS

The antenna and transmission line kit are not included with the base station since each installation requires special attention. Consult your nearesi Motorola representative for antenna and transmission line requirements. Installation of the antenna should be made prior to the installation of the base station. Follow the instructions included with the antenna and transmission line kits.

Figure 1. Cabinet Dimensional Details

Figure 2. Cabinel Rear View Detail

3. INSTALLATION OF CABINET

3.1 UNPACKING

Step I. Remove the foam blocks from either side of the station cabinet.

Step 2. Remove the envelope containing the keys from the front panel.

Step 3. Remove the accessories from the shipping carion.

3.2 LOCATION

The cabinet should be located on a solid, level surface convenient to the ac power source and the transmission line. See Figure 1 and plan the installation to allow space for ventilation at the sides and rear of the cabinet. The transmission line should be kept as short as possible 10 minimize line losses.

The cabinet of the local control model base station should be located at a level where the controls on the panel are convenient to the operator.

3.3 SUPER CONSOLETTE BASE STATION EXTERNAL CONNECTION TERMINAL FUNCTIONS

Terminal function identification is given in Table 1.

Table 1. External Connection Terminal Functions

Function	Super Consolette Base Station TB\#
Auxiliary A + Out	TB2-1
Desk Set PTT	TB2-2
3.2-Ohm Audio HI	TB2-3
Ground	TB2-4
MIC PTT	TB2-5
MIC LO or Intercom Audio Shield	TB2-6
MIC HI or Intercom Audio HI	TB2-7
PL Disable	TB2-8
F1 Frequency Switching (local control)	TB1-1
F2 Frequency Switching (local control)	TB1-2
Oscillator Ground	TB1-3
Remote Line (+)	TB1-4
Remote Line (-)	TB1-5
Paging Option PTT	TB1-6
3.2 Ohm Audio HI	TB1-7
3.2 Ohm Audio Mute	TB1-8

INSTALLATION REQUIREMENT

If the Consolette base station is equipped with monitor-intercom and a desk microphone, jumper JUl in the microphone must be cut. The jumper must be cut to prevent acoustical feedback during standby operation. Refer to the microphone section of the manual for localion of jumper JUI.

3.4 DESK MICROPHONE CONNECTIONS

Connect the desk microphone as shown iu rable 2.
Table 2. Microphone Connections

Function	Super Consolette Base Station TB\#
GND E Sidet Black	TB2-4
PTT q	TB2-5
MICLO 8hsill	TB2-6
MICHI Prowns	TB2-7
"PL'"Disable white	TB2-8
3-Ohm Audio HI	TB1-7
3-Ohm Audio Mute	TB1-8

3.5 DESK SET CONNECTION

When using a desk set and no local microphone with the Consolette base station remove the jumper beiween TBI-7 and -8. This disables the station speaker. Connect the desk set as shown in Table 3.

Table 3. Local Control Desk Sel Connections
Stations Without Intercom Kit

Control Unit Terminal \#	Function	Super Consolette Base Station TB
T1	Desk Set MIC HI	TB2-7
T4	Desk Set MIC LO	TB2-6
T2	Desk Set PTT	TB2-5
T7	Ground	TB2.4
T6	3-Ohm Audio HI	TB2.3
78	PL Disable	TB2-8
T9*	A+	TB2-1
Stations Wilh Intercom Kit		
T1	Desk Set Mic HI	TB2-7
T4	Desk Set Mic LO	TB2-6
T2	Desk Set PTT	TB2-2
T7	Ground	TB2-4
T6	3-Ohm Audio HI	TB2-3
T8	PL Disable	TB2-8
T9*	A+	TB2-1

* Wallmount Local Conirol Unit only.

NOTE

For multiple control unit connections to a Super Consolette base station without the intercom kit, refer to the TLN1218B Iunction Box instruction manual.

3.6 REMOTE CONTROL CONNECTIONS

3.6.1 General

Two-wire telephone line is used to connect the remote control unit to the Super Consolette base station in semote control stations. Connect the relephone line 10 TBI-4 $(+)$ and TBI-5(-). The jumper beiween TBI-7 and -8 muse be removed to disable the station speaker. Audio lines used for remote control operation must meet the requirements given in the following paragraphs. When using leased telephone lines, the characteristics of the lines must be checked with the company providing the service 10 assure that they meet these requirements.

3.6.2 Tone Remote Audio and Control Line Requirements

Line requirements for tone remote control operation are as follows:

Frequency Response: 300103000 Hz
Frequency Translacion Error: $\pm 5 \mathrm{~Hz}$ max.
Impedance: 600-ohm balanced line
Signal-to-Noise: 35 dB min .
Maximum Line Loss

Phone-Company Specified Maximum Input	Maximum Phone Line Loss Usable with Remotely- Controlled Radio
$+8 \mathrm{vu}(14 \mathrm{dBm})$	32 dB
$0 \mathrm{vu}(6 \mathrm{dBm})$	24 dB
$-8 \mathrm{vu}(-2 \mathrm{dBm})$	16 dB

3.6.3 DC Remote Control Audio and Control Line

Requirements

Line requirements for dc remote concroi operation are as follows:

Audio Line Requirements

1. Frequency Response: 300103000 Hz .
2. Impedance: 600 -ohm balanced line.

DC Line Requirements

1. DC resistance 0 to 8000 ohms.
2. Must have dc continuity.

3.7 ANTENNA CONNECTION

Connect the antenna lead-in connector to the antenna connector on the back of the Consolette station.

3.8 AC POWER CONNECTION

3.8.1 l'sing HPN100IA or HPNIO03A Power Supply

A three-wire ac line cord is supplied with the power supply. Connect the line cord to a $120 \mathrm{~V}, 60 \mathrm{~Hz}$ ac outlet.

3.8.2 Using Optional HPN1000A or HPN1002A Power Supply

These optional power supplies are used for 120 -, 220 - 240 -volt, 50 or 60 Hz power sources. The ihreewire ac line cord that is provided with the station is for use with a 120 -volt power source ONLY -- simply connect the line cord to an ac outlet. For $220 / 240 \mathrm{~V}$ ac operation, the line cord plug should be removed and discarded and a second line luse of the same type as FI must be field installed in the white ac power line lead. Install the fuse in accordance with applicable local electrical codes. Refer 10 Figure 3 and Table 4 (for HPNIOOOA) or Figure 4 and Table 5 (for HPNIO02A) for proper connections to the transformer terminal board.

Figure 3. Transformer Tap Connections for HPNIOO0A Power Supply

Table 4. Transformer Tap Connecrions for HPN1000A Power Supply

HPN1000A Power Supply					
Power Source	Connect	From	To	Fuse (F1)	
120 Vac	JU1	-	TB1-5		
	JU2	TB1-4	TB1-7	10A	
	JU3	TB1-2	TB1-5		
220 Vac	JU1	-	TB1-3	5 A *	
	JU2	TB1-4	TB1-5		

Figure 4. Transformer Tap Connections for HPNIO02A Power Supply

Table S. Transformer Tap Connections for HPNIO02A Power Supply

Power	Connections	
Source	JU1	Blk/Wht Lead
120 V ac	Between TB1-1 \& -4	To TB1-3
220 V ac	Not Used	To TB1-2
240 V ac	Not Used	To TB1-1

4. INITIAL CHECKS AND ADJUSTMENTS

4.1 POWER SUPPLY CHECK

The power supply requires no adjustment. however, the outpul should be checked for approximately 13.5 Vdc at the time of installation. When using an optional power supply, be sure the transformer tap connections are correct for the specific power source voltage being used as described previously.

4.2 TRANSMITTER-RECEIVER CHECK

The transmitter and receiver were accurately aligned at the factory before the station was shipped. However, the equipment should be checked hefore aclual operation since it may have been mishandled during transit. FCC regulations also require that transmitter
frequency, power and deviation be checked before the station is placed in operation. Refer to the transmitterreceiver instruction section of the appropriate Mitrek Mobile instruction manual for these check procedures.

4.3 PRE-OPERATIONAL ADJUSTMENTS

4.3.1 General Information

Most telephone companies limit the maximum signal power which they will allow on their lines. This maximum is specified with respect to a specified Test Level Point (TLP) at full systern deviation ($\pm 5 \mathrm{kHz}$). The maximum signal power usually specified (in the U.S.A.) is -13 dB average below the TLP. The -13 dB average is defined as the peak to average ratio of a speech signal over a 3 -second period. For purposes of these instructions, the TLP is assumed to be 0 dBm for voice and -16 dBm for multiplex unless otherwise specified.

Since it is difficult (if not impossible) to measure speech power, a test tone (sine wave) is used for setting line levels. A 1000 Hz tone set for 60% full system deviation or $\pm 3 \mathrm{kHz}$ is recommended for serting the line level.

4.3.2 DC Line Current Levels

When the dc control line is initially connected, it must be tested to assure that its loop resistance is low enough to allow sufficient current for remote operation. Use the following test procedure:

Step I. Connect a dc millimeter in series with the dc control line.

Step 2. Press the push-to-talk switch at the remote conirol console.

Step 3. The current must be at least +5.5 mA to key the transmitter; at least +10 mA for two-frequency transmitters. Check the current polarity and note wherher the station is actually keyed; reverse the polariIy of the line connections if necessary. Adjust the remote control console for F1 line current until +5.5 mA is achieved. For a two-frequency transmitter: adjust the remote control console for F2 line current of +101012 mA . If the loop resistance is 100 high , the line current with the console set for maximunt current will not key the transmitter.

Adjust the line current for Private-Line disable at the remote control console for -2.5 mA , if a PrivateLine model is being adjusted.

4.3.3 Conerol Tone Levels

The control tone levels for the remotely controlled functions are adjusted at the remote control console. No additional adjustments are required.

4.3.4 Audio Level Setting

4.3.4.1 General

A local speaker at the station may be used for testing and level settings. The speaker in a Motorola portable test set may be used by connecting the test set to the receiver test receptacle. The station VOLUME control sets the audio level at the local speaker only.

NOTE

Exciter audio should not be injected at transmitter test socket.

Private-Line receivers must be PL disabled during adjustments with the PL DISABLE switch.

NOTE

When setting line audio levels with a local-remote option station, be sure that the local audio level is set first (typically 6 -watts with the volume control on the front of the station at the minimum level).

4.3.4.2 IDC Level Setting Procedure

Connect audio oscillator and ac voltmeter to microphone input TB2-6, -7. Apply 100 Hz test tone at 1.0 V rms. Adjust IDC control for a maximum deviation of 4.8 kHz , including PL. Reduce test tone level until deviation is 3 kHz . Record test tone level. This is the exciter audio level, which should be approximately the sensitivity value stamped on the exciter.

4.3.4.3 Remote Level Setting Procedure

Determine the maximum allowable audio level permitted on the lines and set line audio levels to this amplitude. The lines used to carry audio have an ac impedance of 600 -ohms. The amplitude of signals is most conveniently measured in dBm . Zero dBm is equal to

1 milliwatt across 600 -ohms. Most audio voltmeter, such as the Motorola Transistorized AC Voltmeter, are calibrated to read directly in dBm when measuring across a 600 -ohm impedance. Never use a volt-ohmmeter or a multimeter.

Step 1. Apply a 1000 Hz test tone at the remote control console which will drive the amplifier into compression. Adjust the output of the remote control console for maximum allowable audio level on the transmit audio line as it leaves the remote control console. If the level at TB1-4 and TB1-5 is above 0 dBm remove JU2 on the remote control board.

Step 2. With tone remote remote control or dc remote control the exciter level should be measured at TB2-7 and TB2-4 (GND). Adjust the XCTR LEVEL control (on the remote control board) so the exciter audio input equals the value stamped on the exciter (modulator sensitivity plus 3 dB or approximately $\pm 4 \mathrm{kHz}$ transmitter deviation).

Step 3. Remote the transmit audio tone.
Step 4. Set the receiver SQUELCH control for squelch threshold.

Step 5. Inject a 1000 uV carrier frequency signal at the antenna input of the receiver. Modulate the signal with a 1000 Hz tone at $\pm 3 \mathrm{kHz}$ deviation.

Step 6. Adjust the VOLUME LEVEL SET control (behind the front panel) for 4.4 V rms (rated power output) at the local audio terminal (TB2-3) at the rear of $t^{\text {L }}$ station.

Step 7. With the line terminals connected to the 600 -ohm line or a 600 -ohm load, adjust the LINE LEVEL control on the remote control board for 4.4 dB below the specified TLP as measured with an ac voltmeter across the line terminals (TB1-4 and TB1-5 at the rear of the station).

1. DESCRIPTION

The control panel and chassis mount the transmitter-receiver unit and power supply of the Mitrek Super Consolette base station. The compact design of the control panel and chassis requires a minimum of space for installation. Three chassis models are available - the specific model used depends on system applications. Refer to the appropriate Mitrek Mobile radio instruction manual for a description of the transmitter-receiver unit itself, Also, see the Description section, under the Station Data tab, of this manual for specific modifications made 10 the iransmitter-receiver unit.

[^2]- HLN4136A - used in remote control systems. The control panel on the front of this unis is blank except for the power-on and iransmit indicators.
- HI V4I37A - used in local-remote control systems. This model may be controlled wither locally from the conirol panel or remotely from a remote control unit, but not from boith locations at the same time. A switch located on the front panel selects either local or local-remote control.

The rear of each chassis is equipped with an antenna connector, iwo terminal boards for external connections, a key lock, and (on $29.7-50 \mathrm{MHz}$ 'extender' models only) an 'extender' switch. All external connections are made at the rear of the chassis. Complete chassis wiring for each model is hown in diagrams al the end of this section.

2. MAINTENANCE

2.1 GENERAL

To facilitate maintenance, the station cabinet is easily removed from the chassis by unlocking the key lock and loosening two thumbscrews at che rear of the cabinet. Then, the cabinet housing is pulled back and lifted clear of the chassis.

The transmitter-receiver unit is secured to the chassis by two quick-release snap fasteners which permit rapid removal for maintenance and access to optional accessory printed circuic boards mounted underneath.

2.2 TRANSMITTER-RECEIVER REMOVAL AND INSTALLATION

Remove the cabinet housing as described previously and then removi the transmitter-receiver unit as follows:

NOTE

If the transmitter-receiver unit is being removed 10 gain access 10 other station circuitry, then omit Steps 1 through 3, leaving the cables attached as shown in Figure 1.

Step 1. Disconnect the 19-pin plug (P 4) from its receptacle (J 1) on the front of the transmitter-rcceiver unit by turning the locking screw counterclockwise and pulling the plug.

Step 2. Disconnect the rf cable connector (P3) from its receptacle (J4) on the front of the transmitter-recciver unic.

Step 3. Remove the transmitter and receiver metering cable plugs, if metering facilities are included in the sta-
tion. Unplug the four-wire cable assembly, with pushon pins, from the receiver audio and squelch section of the transmitter-receiver unit. Be sure to note the location of these leads to ensure that they will be replaced correctly. (Refer to the Description section under the STATION DATA $1 a b$ of this manual.)

Step 4. Release the two quick-release fasteners from the transmitter-receiver unit, lift the fastener side of the unit and pull it away from the retaining tab.

Step 5, When re-installing the transmitter-receiver unit, insert it under the tip of the retaining wall tab from the right side of the station chassis, as shown in Figure 2. Then, lower the side of the unil until the chassis mounting tab engages the slot on the bottom of the unit. See inset in Figure 2 for correct orjentation.

Step 6. Complete the re-installation by reversing the procedures of Steps 1 through 4 above.

2.3 POWER SUPPLY REMOVAL

Step 1. Disconnect the iwo power supply leads from TB9 or remove the power supply cable connector from 3201 on the lop of the power supply chassis.

Step 2. Four screws secure the power supply chassis 10 the base station bottom plate. Remove two screws from the top of the power supply chassis near the front of the unit and two screws at the back of the base station below the power supply heat radiator.

Step 3. Lift the power supply chassis, with ac line cord attached, straight up and away from the control panel and chassis.

2.4 CONTROL PANEL ACCESS

Step 1. Remove two screw, on each side of the control panel.

Figure 1. Transmitter-Receiver Unil
Temporary Removal (Cables A (rached)

Figure 2. Transmilter-Receiver Unil Installation Detail

Step 2. Fold the control panel down and forward, away from the chassis, for access to control panel components.

2.5 FREQUENCY SELECTOR SWITCH REPLACEMENT

Mulu-frequency stations have a mechanical stop on the :requency selector switch, This stop is set for wo- or four-frequency operation as shipped from the factory. If the selector switch is replaced, the mechanical stop must be properly set. Refer to Figure 3 for proper orientation of the switch and positioning of the mechanical stop.

2.6 TERMINALSTRIP LOCATION

Terminal strip locations are as shown in Figure 4.

2.7 WIRING DIAGRAMS

Wiring diagrams for the various configurations of Mitrek Super Consolette base stations are shown in Figures 5,6 , and 7 . Figure 5 shows a local control station, Figure 6 shows a local remote control station, and Figure 7 shows a remote control station.

SWITCH VIEWED FROM BOTTOM OF EQUIPMENT

Figure 3. Frequency Swith Srop Adjustmen

Figure 4. Station Layout Detail

Figure 5.
Local Control Chassis
Wiring Diagram
Motorola No. EEPS-28092-O

WHEN THE MONTTOR RTEERCOM KITIS ADDED, THE WHT-BL

Motorola No. 63P81011E23-J
2-24-84 GGI

PARTS LISTS

＂jemoie		osaseman		ossampon
cenn	memens	deame	coma	
oses，se	esmomen	andeme		
${ }^{\text {son }}$	memos			
88				
son	steamen	aimmeme	cemen	
user	semrenen	amamenem		
${ }_{\text {m }}^{\infty}$	coma			
		＂emome		Semmem
		mexame	边	
			ckit	
pen		边	\％	
		込		
${ }^{\text {osam }}$	meam	\％amome		隹
	边	cisecisix		
nem	vemenes			
${ }^{\text {stam }}$		Fiminement		
		\％		
	Rexide			
	:pew			
	，ersosem			

Cosy	，emwa
，mesematy dimmeme	边
込	
	2，
1ncludes： 9.80 －cont； 15－820750 connector，female 15－82075003 housing，right－hand； 1－20using，left－hand；	
	（tas
为	
ssumee	
，eromee	

		Kixazew
（eym	\％eyemam	
casen	asemeta	Smam
osen，	esemanes	
8，2	samamer	\％mat
son	semm	\％ex
son		
${ }^{108}$	samatar	
Lsan	wesrren	
${ }^{\text {m }}$		\％emexix
		，imianaiqu
${ }^{\text {now }}$		
${ }_{\text {pow }}$		
${ }^{8}$		and
sim	memenos	
＂		
	gimat	
	\％：［zay	
	，jum	20esme
	erreem	

Hyemace	
cis	coumeme
	\％
	cmasem
cix	込
\％tem	
\％	
	込
\％ikuma	
	込
	边
\％	Nowean ix
	\％ay
	Satmian
，	
\％＂udu	Noxixezas
Stam mexven	

description

1. General
 2. SYStem Configurations

parts list

POWER SUPPLY

MODELS HPN1000A, HPN1003A

FUNCTION
Provides operating voltages for all circuits in the Mitrek Super Consolette Base Station. Optional HPN1000A Power Supply is used for $120 / 220 / 240 \mathrm{~V}$ ac, 50 or 60 H

POWER SUPPLY

MODELS HPN1001A, HPN1002A

${ }_{2-24-84 \mathrm{GGI}}^{\text {688104E3-A }}$

parts list

	Mors	descarprion
		cinder
		为
		${ }^{\text {a }}$ 2033:100
		dioleatise nite)
	${ }_{\text {a }}^{488885854+01}$	
${ }_{\substack{0 \\ 0202 \\ 020203}}^{020}$		transistor: (see note) PNP; type M9641 PN; type M9170
		cose
		${ }_{\substack{68 \\ 200}}^{60}$
$\underbrace{\substack{\text { R212 } \\ \text { R213 }}}_{\text {cher }}$		-
	A2:0271702	
	42 420277a02	

 \qquad ${ }^{\text {PL. } 66330}$

	5is

1. DESCRIPTION

The TMNIOAB Desk Microphone contains a
microphone and preamplifier circuit board, and a
 operation for either hand-held or desk top use in carrier
suulech applications. The TMNOOSB Desk Miroro-
 tains an additional dual action
use in coded squelch applications.
1.2 All electrical components are mounted verically in the housing with the microphone carriridge at the
top and the switches at the botiom. A 7 -foot stranded

2. installation
2.1 Jumper configuration

Before connecting the desk mirrophone to external
anment verify that prinited circuil board tumpers
 plication. Microphones are shipped from the factory
with obit jumpers instalded. hin e uimpers are removed
to obtain the following conditions

- Jumper JUl is removed when parallel microphones or
onher ocal
microphonone input. Jumper JU2 (Model TMNIOOSB only) is removed
 verify it is clear. With JU2 removed. both the
MoNITOR and TRANSMIT swithes must be acMONITOR and TRANSM
tivated before ransmiting.

2.2 microphone connections

The desk microphone is connected to external
uipment through a 7 -foot stranded cord with spade Luap terminations. Refere to the applicable equipme
manuals to determine the correct microphone manuals to determine the correct microphone connct
tions. Tabbe 1 shows the microphone lead functions. Table 1. Microphone Leads And Functions

Lead Color	Function
$\stackrel{\text { Brown }}{\text { soud }}$	Microphone High
Shield	Microphone Low
Green	PTT
${ }_{\text {White }}$	$\underset{\text { Mround }}{\text { Moritor }}$
Yellow*	Speaker Audio Hot

* Used only when transmit monitor is desired at
parallec-connected dispatch points when microphone
is transmititing.

3. operation
3.1 general microphone procedure

To assure good audio transmission quality
observe the following general microphone practices. - Keep microphone approximately 8 inches away from
the mouth. The dipactance may vary depending on the
user's tone of voice.

- Speak clearly and directly into the microphone at
normal conversational level
3.2 transmit switch When pressed and held, the dual-action
TRANSMIT swith causes the associated transmmiter to
be keyed.

$$
\begin{aligned}
& \begin{array}{l}
\text { NOTE } \\
\text { If jumper JUU is cut and intercom opera- } \\
\text { tion is reaured the operaror must ress } \\
\text { both the intercom trato n on the }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \text { TRANSMIT bution on the microphone. }
\end{aligned}
$$

3.3 MONITOR SWITCH

The MON ITOR switch is a dual-action switch
ich operates in the same manner as the TRANSMIT switch.
The MONTTOR swich (Model TMN1OOSB only when
acivated, allows the operator to monitor a channel

 hold both the MONITOR and TRANSITT swithes
before he can ransmit. Releasing either swith ends the
transmision.
4. maintenance
4.1 Disassembly

Step 2. On the bottom of the microphone, remove the
four screws that secure the bascplate to the housing then Step 2. On the bour.
four sceww that secure
remove the a asenlate.
Step 3. Remove the shaft retainer clip from the piva
shat see Figure 1). Step 4. Remove the cord strain relief from the U
shaped slot. Sten 5 . Slide both halves of the pivot shaft toward the
center eleasing the shaft from the retaining holes in the
housing. Step 6 . Swing the lower edge of the printed circuir
board (including switches) forward to disengage the up
 assembly
Assembly is essentially the reverse order
disassembly.
disassembly.

4.3 TESTING

4.3.1 Test Equipment Required

- S-1063 Motorola Solid-State DC Multimeter or
equivalent
- S-1053 Motorola Solid-State AC Voltmeter or

R-1000 Motorola General Purpose Dual Trace
15 MHz Oscilloscope.
4.3.2 Test Procedure

Potentiomerer R1 is fact
adiustment is not ref
Potentioneter R 1 is factory set and field
adjustmentis not required.

 Hegure 2. Basict tessing consists of checking resistances
and dc volages against the schematic diaram.
Dynamic testing can be accomplished by speaking into

DESK MICROPHONE

EARLY VERSION

LATER VERSION

DESK MICROPHONES

 TMN1012A, TMN1013A,TMN1014A, TMN1015A, AND TMN1023A

MODEL	Sufrix	SUB MODEL	SuFrix	DESCRPPTITON
TMM1004A	2		2	
TMN1005A	2		2	Circurf board
TTMN1012		Trnve96a		${ }_{\text {circilit }}^{\text {coic }}$
тмM1013 ${ }^{\text {a }}$				
tman 1014				Cith
tmaniolia				Gousinc ind mardva
TMN1023				

applications
The desk microphones provide a desk surface selfsupporting stand to mount the PTT and PL monitor
switches and to support the dynamic cartioid switches and to support the dynamic cartioid
microphone element at mouth level. The TMN1005A, TMN1013A and TMN1015A are used in "PrivateLine" squelch systems and provides both PTT and monitor switches; the TMN1004A, TMN1012A,
TMN1014A and TMN1023A are used carrier squelch TMN1014A and TMN1023A are use

ONNECTION

Lead Color Function

Yellow*	Ground
Speaker Audio Hot	

Use only when transmit monitor is desired at parallel onnected dispatch points when microphone is transmit

JUMPERS

Jumper JU1 is removed when parallel microphones or ther local equipment are connected at the same microphone input. (For TMN1012A and TMN1013A,
at JU1 to systems without intercom.)
Jumper JU2 (Models TMN1005A and TMN1013A only) is removed when it is necessary to prevent a hannel to verify it is clear. With JU2 removed, both the MONITOR and TRANSMIT switches must be activated before transmitting.

maintenance

Potentiometer R1 is factory set and field

adjustment is not required.
The microphone can be tested either while connected to its associated equipment or to the test setup as show below. Basic testing consists of checking resistances and dc voltages against the schematic diagram. Dynamic
testing can be accomplished by speaking into the esting can be accomplished by speaking into the
microphone and using an oscilloscope or ac voltmeter to monitor the amplification (gain) of the various stages.
However, since a known dynamic input signal for field testing is not practicable, gain measurements are to be esting is not practicable, gain measurements are to be
used only as indications of proper stage functioning. For that reason, no ac voltages are provided on the
schematic.

8P81103E48-W
 Sheet 2 of 2)

PARTS LIST

REVIIIIONS			prps.9463-N
		Change	Location
	${ }^{\text {R } 6}$		O2 Emitit er
	${ }^{\text {R10 }}$		${ }_{\text {O }}^{\text {emit }}$ er
	${ }^{\text {R4 }}$		${ }_{\text {OR }}^{\text {OL Collect- }}$
TLIN492A-2			
		MODELIS ADPED	
	${ }^{\text {c9 }}$		ARTS
${ }^{\text {M }}$ N1023A		MODEL ADDE	

DESCRIPTION

The meter and switch permit measurement and selection of various test points in the receiver and transmitter circuits. The specific circuits to be measured
are connected to the either via receptacles on the receiver and transmitter chassis. The meter is mounted in the front panel space reserved for a meter so that either the dc meter or the vu meter may be used, but not both.

parts list

HLN4138A DC Metering Kit		PL-6663-O
REFERENCE SYMBOLICODE	$\begin{aligned} & \text { MOTOROLA } \\ & \text { PART NO. } \end{aligned}$	DESCRIPTION
M1	72-83319G01	ammeter, dc: $00-50 \mathrm{uA}$; internal resistance 2560 ohms $\pm 10 \%$
P1		```connector: includes: 28-864669 plug, male, 12-contact: 15-82798H01 shell, plug, plated```
P2		includes: 28-864669 plug, male, 12-contact; 15-82798H01 shell, plug. plated
		resistor, Ilxed; ohms; $\pm 2 \%$; $1 / 2 \mathrm{~W}$; unless otherwise stated
R1	6.855337	17.5k
R2	6-811974	980k
S1	40-83106B01	switch, rotary: 2-section; each section single pole; 18-position, non-shorting
		cable, assembly:
W1 \& W2 7	$\begin{aligned} & 1-80703 \mathrm{~T} 17 \\ & 42-10217 \mathrm{~A} 02 \end{aligned}$	laced, dc metering includes: STRAP, tie; 15 used
non-referenced ltems		
	1.80703 T 16	CABLE \& SWITCH, dc metering includes: referenced parts P1, P2, R2, S1 and W1 \& W2;
	29-83446D01	TERMINAL, pin; 2 used
6	37-10559	GROMMET, rubber; 2 used
4	$2 \cdot 1376$	NUT, 3/8"-32 $\times 1 / 2$ ' $\times 3 / 32$ "
9	3-3375	SCREW, tapping, 6-20 5/16"; 2 used
10	47666	LOCKWASHER, external, \#6; 2 used
5	4.7691	LOCKWASHER, internal, 3/8'
12	26-83747G01	SHIELD, meter
1\&2	36-82869K01	KNOB, includes: 3-7104 set screw, 8-32 x 3/16"
11	42-83155G01	CLIP, meter mounting
3	64-80191801	PANEL, insert, switch mounting
8	64-83073G08	PANEL, insert, meter mounting

悬 鼻

		$\frac{\text { CAPACITOR , fixed: uF; }}{\text { stated }}$ uni.
${ }_{\text {cl }}$	23-83214C02	15 +208: 25.5
${ }_{\text {C2 }}^{\text {C2 }}$	${ }_{\substack{\text { 25-82601A25 } \\ 21-845214}}$	
${ }_{4}$	23-83224C15	$4.7 \pm 20 \overline{8}$, 25 V
${ }^{\text {c5 }}$	23-83214C07	22 2 208\% 15 V
${ }_{6} \mathrm{Cb}$	${ }_{\substack{21-845214 \\ 23-82214}}$	510 pF 5 50, 300 V
c	23-83214002	15 5208 : 25 y
c,	21-82428827	. $00 \overline{47} \pm 1088 ; 100 \mathrm{~V}$
		$\frac{\text { SEMICONDUCTOR DEVICE, diode: }}{\text { (SEE NOTE) }}$
CR1 invu 4	48-82178A04	germanium
Q1. 2	48-889299	
		$\frac{\text { RESISTOR, fixed; }}{10} \pm 10 \%$ \% $1 / 4$
${ }_{\text {R2 }} \mathrm{R}$	e-124C01 18.83083601	10 var. 100 k
R3	6-124C7!	8,2k
R4	6-124C57	2.2k
R5	6-124C6!	3,3k
R6	6-124c29	${ }^{150}$
R_{8}	-6-124C47	820
${ }_{89}^{28}$	¢-124665	${ }_{\text {4, }}^{4.7 \mathrm{k}}$,
R10	6-124C47	820
R^{11}	6-124C17	47
$\mathrm{R}^{\mathrm{R} 12}$	-6-124C35	270
${ }_{\text {R13 }} \mathrm{R} 14$	-0.124C49	${ }^{\text {2k }}$

PARTS LIST

\section*{description
 | $\substack{\text { REFERENCE } \\ \text { SYMBOL }}$ | $\begin{array}{c}\text { MOTOROLA } \\ \text { PART NO }\end{array}$ |
| :---: | :---: |}

TEST PROCEDURE

Step 1. Connect an audio oscillator between the input lead and ground. Set output level to zero and frequency to 1000 Hz .

Step 2. Set the variable attenuator control (R2) fully clockwise.
Step 3. Increase the audio oscillator output level until the vumeter indication is 0 . The audio level until the vumeter indication is 0.1 he audio

CIRCUIT DESCRIPTION

Audio that is applied through variable attenuator R2 is amplified in a two-stage amplifier, $Q 1$ and $Q 2$. The audio is then rectified in bridge rectifier CRI through CR4 and the dc output causes a meltive

function

Provides relative indication of spuech evel to exciter.

SHOWN FROM SOLDER SIDE

SERVIIE PUBLICATIONS 1301 E. ALGONQUIN ROAD

FUNCTION

This kit adds intercom and supervisory control facilitie for operators of local and local-remote control Mitrel Super Consolette base stations used with parallel connected desk sets. Model HLN1043A, used in local con ol stations, and Model HLN1044A, used in local emote stations provide the following operationa

- Provisor
- Provisions for the base station operator to monitor a transmissions originated by the desk sets with a super visory facility to
from desk sets.
- Communication between the desk set operators and the base station operator without actuating the transmitter.
- Monitoring of all transmitted and received message by all local operators
- A "squelch priority" feature which disables the inter com circuit whenever an on-frequency rf signal is

The monitor-intercom kit allows the use of the base radio as a control point meeting all FCC requirements when local control units are used as dispatch points Without this kit, each piece of local control equipmen which is not within sight of the base station operato must be licensed as a control point

Function	Connection Point	
	Local Control	Local Remote Control
A+	тв3-9	тВ3-9
Ground	TB3-3	TB3-3
Intercom Audio Output	P202-3,2	P202-3, 2
Receiver Squelch Sense	P2024	P2024
Local Mic PTT	тВ3-2	TB3-1
Station PTT	TB3-1	NOT USED
Desk Set PTT	TB2-2	TB2-2
Desk Set PTT	Juncl. CR3, CR6	TB2-5
Xmit Mon Input	TB3-7, 5	TB3-6, 5
Intercom Bias Swich	NOT USED	P202-6

parts list

44222A Monitor/ntercom Board K		kit
REFERENCE SYMBOL	MOTOROLA PART NO.	description
$\begin{aligned} & c_{1} \\ & c_{2}^{2} \\ & \text { c3 } \\ & \text { c5 } \\ & \text { cs thru cs } \end{aligned}$		capacitor, fixed: uF $\pm 10 \% \mathbf{5 0 ~ V}$; unless otherwise stated
		0.15
		$444 \mathrm{~A}){ }^{4.720 \% ; 25 \mathrm{~V} \text { (not used in HLN104 }}$
${ }_{\text {CR2 }}^{\text {CR }}$ tru 6	$48.82256 C 37$$488.8364 H 01$	semiconductor device, diode: (see note) Zener 6.8 V silicon (CR2 not used in HLN1043A, 44A)
$\begin{aligned} & 01 \\ & 01 \\ & 02 \\ & 02 \\ & 04 \\ & 04 \\ & 0.5 \\ & 0.6 \\ & 06 \\ & 08 \\ & 08 \\ & 09 \end{aligned}$		ransistor: (see note) NPN; M9570 NPN; M9570 N-channet field-effect; M9411 NPN: M9570 PNP; M9571 NPN; M9570 NPN; M9570
	6.124C17	resistor, fixed ohms; $\pm 10 \% ; 1 / 4 \mathrm{~W}$ uniess otherwise slated
${ }_{\text {R2 }}^{\text {R2 }}$	${ }_{\text {c }}^{6.1244683}$	${ }_{88 \mathrm{k}}^{27 \mathrm{k}}$
${ }_{\text {R4 }}$		
${ }_{\text {R }}$	6.124c99	${ }_{22}$
${ }^{\text {R6 }}$	6.124683	
${ }_{88}^{\mathrm{R} 7}$		${ }_{68 \mathrm{c}}^{220} \mathbf{2 1 2 \mathrm { W }}$
R9	${ }^{6}$-124C49	${ }^{1 \mathrm{k}}$
		${ }_{100 \mathrm{k}}^{22}$
R12	6-124c53	${ }^{1.56}$
R13	6.124697	100k
${ }_{815}^{814}$		${ }_{\text {l }}^{\text {10k }}$ Not used
${ }_{\text {P17 }}$	${ }_{6}^{6.124665}$	4.7 k
${ }_{\text {R18 }}$	$\underbrace{6-12489}_{6-124 c 81}$	${ }_{22 \mathrm{k}}^{4 \mathrm{~K}}$ (NOTUSED in HLIN1043A, 44A)
${ }^{\text {R19 }}$	${ }^{6}$-124C81	22 K (NOTUSED in HLN $10433 \mathrm{~A}, 44 \mathrm{~A}$)
${ }_{\text {R21 }}^{\text {R20 }}$	${ }_{\text {c- }}^{6 \cdot 1244667}$	${ }_{4}^{5.7 \mathrm{k}}$
R22	6-124c89	47k
${ }_{22} \mathbf{R 2 3}$	${ }_{6}^{6 \cdot 1244883}$	${ }^{27 \mathrm{k}}$
${ }^{224}$		
${ }_{\text {R26 }}$		
${ }^{\text {R27 }}$	$6 \cdot 12449$	$1 \mathrm{k} \pm 5 \%$
${ }_{\text {R29 }}{ }_{\text {R28 }}$	6-124S3	
${ }^{\text {a30 }}$	6-124449	1 k
${ }_{8}^{\text {R33 }}$		${ }_{5620}^{\text {variabie; } 1 \mathrm{k} \pm 20 \%}$
${ }_{\text {R33 }}$	${ }_{6-124006}^{6}$	${ }_{220}$

OPERATION

1. TO SET-UP STATION

Step 1. Turn on station and adjust all controls in normal manner.

Step 2. In Private-Line stations, place the Privateine disable switch in "PL" OFF position.

Step 3. Turn SQUELCH control fully counterStep 3. Turn SQUELCH control fully counter
clockwise. Gradually turn control clockwise until receiver is squelched.

Step 4. The NORMAL-TAKEOVER switch should be in the NORMAL position at all times except when complete takeover of the station is required by the local operator. With the switch in the NORMAL position, a to the base station operator. The base station operator can also intercom to any local control unit operator The base station operator monitors all transmissions or intercom messages.
Step 5. Place the NORMAL-TAKEOVER switch in Step 5. Place the NORMAL-TAKEOVER switch in function.

Step 6. On local-remote stations, the LOCAL REMOTE switch should be in the REMOTE position a all times to permit full operation of the tone or do remote desk sets. When complete control of the station is required by the local operator, place the switch in th OCAL position. This will allow the tone or dc remote desk set operator to hear received audio and to use the meran all transmissions or intercom messages.
2. INTERCOM

To communicate with other parallel-connected operators (desk sets and wallmount units)

Step 1. Press and hold the NORMAL-INTERCOM switch in the INTERCOM position.

Step 2. Speak directly into the front panel speaker. Do not use the microphone. Identify the operator being called.
Step 3. Release the switch to hear a reply at the end of the conversation.

Step 4. If a radio transmission is received at the station the intercom facility is automatically disabled while the message is being received.
3. TO TRANSMIT A RADIO MESSAGE

Operate the PTT switch on the microphone and proceed in the normal manner
4. TRANSFER OF CONTROL POINT

If the system is equipped with an alternate control point (FCC authorized) and the station is to be left unattended, place the NORMAL-TAKEOVER switch in the NORMAL position. The alternate control point now assumes all supervisory functions.
5. DESK SET AND/OR WALLMOUNT OPERATION (INTERCOM)

To communicate with other desk set operators or the base station operator, lift the handset and speak into the mouthpiece. Do not operate the PTT switch on the handset. Identify the operator being called. Replies will be heard from the earpiece without actuation of any switches. Hang up the handset when the conversation is completed.
6. DESK SET AND/OR WALLMOUNT OPERATION (TRANSMISSION OF MESSAGE OR REPLY)

Press the PTT switch on the handset and speak into the mouthpiece. Release the PTT switch to hear a reply.

PAGING OR "QUIK-CALL" CONVERSION KIT

1. DESCRIPTION

MODEL HLN1045A
When a paging signal is initiated by pressing the PAGE pushbutton on the encoder, a relay is energized within the encoder. This relay will remain energized for on this relay applies a chassis ground from the encoder to the coil of relay K1, in the conversion kit, energizing K 1 .

With relay K1 energized, the PL code and secondary PTT generators on the PL encoder/decoder board are disabled and PL code transmission is inhibited. A station push-to-talk input eliminating the need to manually key the transmitter during paging tone transmission.

When the TRANS pushbutton on the encoder is pressed, a chassis ground is applied to the coil of relay K1, in the conversion kit. The sequence of events for this action is the same as previously described once relay PL units. Voice transmission to PL units is made as usual using the desk microphone.

2. OPERATION

Step 1. Connect power cord to ac outlet.
Step 2. Turn on base station.
Step 3. Turn the SQUELCH control fully counterclockwise and press the monitor switch on the microphone. This disables the tone-coded squelch circuit causing the speaker to emit a rushing noise if the channel is clear. Reset the SQUELCH control

Step 4. Press the selector button(s) and the PAGE button on the selective paging encoder. The indicator lamp will light and the transmitter will be keyed. The transmisison will not be heard on a Private-Line tonecoded squelch receiver since the tone generator in the
transmitter is disconnected. However, the pager coded to respond to the paging tones selected by the particular selector button(s) will be activated. Voice cannot be transmitted while the indicator lamp is on, as the microphone is disconnected. Press the TRANS button on the encoder immediately after the indicator lamp is turned on. Keep the transmit button pressed after the lamp turns off and talk into the microphone. The pa
will alert and a voice message may be transmitted.

FUNCTION
Inhibits transmit "PL" code during paging or "QuikCall" tone transmissions.

HLNI045A	
Hodel Breakdown	
HLN4145A	Paging Board Kit
HLN4146A	Misc. Parts Kit

parts list

DESCRIPTION

The alert tone oscillator provides a 1000 Hz tone that can be used as a signal prior to actual voice transmission or as a test tone when acluct－ ing the deviation of a transmitter．The kit con－ sists of a transistorized oscillator，a switch，the
cabling required for circult interconnections and the hardware for mounting to the front panel．

OPERATION

To transmit the alert tone，press and hold the ALERT TONE switch．The tone will be trans－ mitted as long as the switch is held in．Release the switch to stop the tone．

REFERENCE SYMBOL	MOTOROLA PART NO.	DESCRIPTION

PARTS LIST

TLN1735A	Tone Kit	PL-3318-O
		CAPACITOR, fixed
Cl	$23 \mathrm{D} 83214 \mathrm{C02}$	$15 \mathrm{uF} \pm 20 \% ; 25 \mathrm{~V}$
C2	8D82905G08	. $033 \mathrm{uF} \pm 10 \% ; 50 \mathrm{~V}$
C3	8D82905G11	$0.22 \mathrm{uF} \pm 10 \% ; 50 \mathrm{~V}$
C4	21082428B27	. $0047 \mathrm{uF} \pm 10 \% ; 100 \mathrm{~V}$
C. 5	8D82905G08	. $033 \mathrm{uF} \pm 10 \%$; 50 V
C6	8D82905G08	. $033 \mathrm{uF} \pm 10 \% ; 50 \mathrm{~V}$
C7	$21 \mathrm{C} 82187 \mathrm{B06}$	$560 \mathrm{pF} \pm 10 \% ; 50 \mathrm{~V}$
Q 1	48 R 869389	$\begin{aligned} & \text { TRANSISTOR: (SEE NOTE) } \\ & \text { N-P-N; type } \mathrm{M} 9389 \end{aligned}$
	65128687	$\frac{\text { RESISTOR, fixed }: \pm 10 \% ; 1 / 4 \mathrm{~W} ;}{6 \mathrm{k}}$
R1, 2	65128687	6.8 k
R3	$6 S 129269$	1. 8 k
R4	5 S 128688	2. 7 k
R5	65127803	1. 5 k
R6	6 S 129231	3. 3 k
R7	6S 127803	1. 5 k
S 1	40C83303G03	$\frac{\text { SWITCH, lever: }}{\text { dpst; 2-position; non-locking }}$

NOTE:

Replacement transistors must be ordered by Motorola part number only for optimum performance.

PARTS LIST
TLN1735A Alert Tone Kit
MECHANICAL PARTS
PL-3319-O

CODE	MOTOROLA PART NO.	DESCRIPTION
1	7B84109C01	BRACKET, circuit board mounting
2	4S8424	LOCKWASHER; 15/32' internal type
3	2S115190	NUT, machine; 15/32-32 x 9/16" hex
4	64 D83071C61	PANEL INSERT, switch mounting

DESCRIPTION

The multiple frequency single-tone encode provices
selective calling, and provides remote switch functions for control of standby equipment. Models with an "AV" suffix are the same as
those with an "A" suffix except non-standard

The os cillator may be used to tone-alert a the associated receiver station may incorporate a tone decoder unit, which will complete the
audio output circuit. Thus, only the receiver audio output circuit. Thus, only the receiver(s)
for which the call was intended will receive the message. Also a tone decoder equipped receive
can energize an external control circuit for recan energize an external control circuit for re-
peater or alarm systems. The unit provides up peater or alarm systems. The unit provides up
to five tones which may be individually selected. A six-position selector switch is used to
select one of the tone frequencies or to turn "off
 lator circuit is on a printed circuit board mo
ed inside the control console or base station,

djustment

A level adjustment is usually unnecessary
as the decoders in the receiving station operate
ver a wide range of deviation. However, if the
scillator fails to operate, check first to make sure all jumper options and external connections
are properly made. Check to see that the unit is are properly made. Check to see that the unit is
oscillating and then make the following tone level ${ }^{\text {oscheck: }}$
With a clip lead jumper connected across
esistor R23 (for continuous tone operation during resistor R23 (for continpous connected across operation during
adjustment) turn the radio set "on". The output adjustment) turn the radio set "on". The output
control may then be set for proper deviation.

With deviation monitoring equipment, check With deviation monitoring equipment, check
the deviation caused by the tone modulation. This
value should be Hum allowable be devproxiotion (maximum allowable 50 of the maxi mum allowable deviation (maximum allowable
deviation is $\pm 5 \mathrm{kHz}$). If it is less than 30% or hore than 90%, adjust the pin terminal jumper
on the oscillator printed circuit board for the on the oscillator
desired deviation.
service
Complete removal of the circuit board for access to the components is not necessary. Tor expose the components. expose the components. If it is necessary to
disconnect leads from the circuit board, obser standard servicing procedures such as tagsing
leads and identifying connecting points. Refer to Leads and identify yng connecting points. Refer to
the photograph and to the circuit board detail for the photograph and to the
aid in lead identification.

(A) MOTOROLA INC. Communications Division
(A) MOTOROLA INC. Communications Division
\qquad

Tone Frequency Range	1350 Hz to 1950 Hz	
Power Input	+13.8 V dc	
Tone Duration	Approx. $0.5,0.7,1.0$ and 1.5 seconds	
Output*	Pin Terminal	Meter
	High	Not more th
	Medium	more th
		mV
	Low	Not more than

"Output specifications indicated for a transmitte
input impedance of approximately 560 ohms. Specifications subject to change without notice The standard tone frequencies in " A " suffix
models are as follows:
$\mathrm{F} 1=1950 \mathrm{~Hz}$
$\mathrm{F2}=1500 \mathrm{~Hz}$
$\mathrm{~F} 3=1650 \mathrm{~Hz}$
$F 2=1800 \mathrm{~Hz}$
$F 3=1650 \mathrm{~Hz}$
$\mathrm{~F} 4=1500 \mathrm{~Hz}$
$\mathrm{F} 4=1500 \mathrm{~Hz}$
$\mathrm{~F} 5=1550 \mathrm{~Hz}$

1. DESCRIPTION

This "Channel-Scan" monitor is an optional accessory for local-control, multi-frequency "Mitrek" Super Consolette base stations. It allows the operator to automatically monitor up to four channels with a single receiver. The unit provides sequential scanning of the receiver's frequencies, activating each receiver channel element in turn.

When a signal is received on any channel, the unit stops scanning and the message is heard. However, if it stops on a non-priority channel, the unit continues to sample the priority channel at a rate which does not disturb the intelligibility. When a signal is received on the priority channel, the receiver switches to the priority channel and all scanning stops until priority is inactive. This assures that the operator can monitor any of the channels which the radio is capable of receiving without missing any messages on the priority channel.

2. OPERATING INSTRUCTIONS

On stations equipped with "Channel-Scan" monitor, the frequency selector switch is a dual concentric control device. The front control selects the receiver priority channel - F1, F2, F3 or F4. The rear control selects the transmitter frequency - F1, F2, F3, or F4. All channels are monitored when the SCAN ON-SCAN OFF switch is in the SCAN ON position, and the four LED indicators on the front panel provide a visual indication of which channel is received.

Select the channel which is to have priority with the front F1-F2-F3-F4 control. Set the SQUELCH control at threshold for most sensitive operation. Since the audio is muted while scanning, disable scan operation while adjusting squelch as follows:

- SCAN ON-SCAN OFF switch to SCAN OFF.
- "PL" ON-OFF to OFF on PL stations.
- SQUELCH control counterclockwise until noise is heard.
- Adjust VOLUME as desired.
- Turn SQUELCH control clockwise slowly to a point where noise just quiets.
- Turn SCAN ON-SCAN OFF switch to SCAN ON and PL switch ON to return to scan operation.

When a signal is received, readjust the VOLUME control as desired. If a signal is received on a channel, the LED indicator for that channel will light. A signal on the priority channel will never be missed, the unit automatically reverts to the priority channel when a signal is present, and the indicator for the priority channel will light.

To monitor only one channel, place the SCAN ONSCAN OFF switch in the SCAN OFF position and select the desired receive frequency with the rear F1-F2-F3-F4 control. In the SCAN OFF position the indicators will be off.

On Private-Line stations equipped with this "Channel-Scan" monitor, the operation is the same as described previously except that the signal will be heard only if it is coded with the proper PL tone, or the PL switch is OFF.

3. FUNCTIONAL OPERATION

3.1 GENERAL

Once priority status is determined, as described previously, the channels are scanned in sequence until a carrier is received. The unit will then stop scanning and lock onto that channel if it is a priority channel. If it is a non-priority channel, it will lock onto that channel but will continue to sample the priority channel four times a second to ensure the complete reception of all priority channel messages. If a non-priority signal was being received when a priority signal arrived, the unit will revert to that same non-priority channel, if it is still active, when the priority signal disappears. Normal sequential scanning resumes when no signals are present.

When a channel is "scanned" or "sampled", a ground is applied to its particular receiver channel element from the scan unit. This enables the channel element which, in effect, turns that receiver channel on. If there is no signal on that channel, the scan unit then ungrounds the channel element, inhibiting that channel, and sequentially, enables the next channel searching for an on-channel signal.

The following discussion describes circuit operation during no signal input conditions and received signal input conditions. Refer to the schematic diagram at the end of this manual while the reading the following discussion.

3.2 NO ON-CHANNEL SIGNAL CONDITION

3.2.1 Squelch IC1

The "Channel-Scan" monitor unit receives its input from the arm of the SQUELCH control in the associated control module. This allows the noise input level to be adjusted to the desired threshold level.

While there is no on-channel signal, the input noise level to squelch IC1-15 is high which causes its output at pin 10 to be a logic "high" (5 V dc). Figure 1 shows the relationship of input noise at J1-1 (upper trace) to IC1-10 output (lower trace).

Figure 1.

3.2.2 1st Current Amplifier, Gate, Gate Driver, Gate, and High-Speed Clock Multivibrator

While IC1-10 is "high" first current amplifier Q1 is conducting, gate Q3 is cut off, gate driver Q4 and gate Q5 are conducting. This provides an emitter ground to Q6 through Q5 which enables the high-speed clock multivibrator Q6 and Q7. This multivibrator runs with a period of approximately $20-22$ milliseconds (a pulse lasts approximately $10-11$ milliseconds). These pulses are routed to non-priority binary counter IC2.

3.2.3 Non-Priority Binary Counter IC2

Refer to Figure 2. Integrated circuit IC2 is a dual flip-flop binary counter with one input and four out-
puts. As connected, four unique output states occur, in sequence, as pulses are applied to pin 1 from the highspeed clock multivibrator.

IC2 input relationships are shown in Figures 3 and 4. The top waveform of Figure 3 shows input pulses arriving at pin 1 . The bottom waveform shows resulting output pulses at pin 15. The top waveform of Figure 4 shows input pulses to pin 6 while the bottom waveform shows output pulses at pin 11 .

Figure 2.

NO ON-CHANNEL SIGNAL
Figure 3.

NO ON-CHANNEL SIGNAL

Figure 4.

Figure 5.

3.2.4 Non-Priority Decoder IC3

The output of non-priority binary counter IC2 is connected to non-priority decoder IC3. This IC consists basically of four AND gates which convert IC2 output combinations into channel $1,2,3$, or 4 intelligence. Refer to Figure 5.

Each AND gate requires a logic "high" on both input leads to produce a logic "high" (approximately 5 volts) output. As connected to non-priority binary counter IC2, only one AND gate can receive both logic "highs"' at any one time. Therefore, one AND gate has a logic "high" output while the remaining three AND gates have logic 'low'' (approximately 0 volts) outputs. The logic output states shown in Figure 5 illustrate a first received pulse condition. As shown in Figure 2, a second pulse causes IC2-15 and -10 only to go high. IC3 AND gate 2 is connected to IC2-15 and -10 and therefore is the only AND gate with a "high" output due to the reception of the second pulse.

3.2.5 LED and Non-Priority Channel Element Driver IC4

The output of non-priority decoder IC3 is applied to the LED and non-priority channel element driver IC4. This IC consists basically of four dual input NAND gates - two input "highs" are required to produce a "low" output. Each NAND gate is connected to one output from decoder IC3 and to non-priority inhibit switch Q22. Refer to Figure 6.

While there is no on-channel message, a logic "high" appears on IC4-1, -4, -10, and -12 from nonpriority inhibit switch Q22. When a logic "high"' arrives from decoder IC3, the associated IC4 NAND gate provides a logic 'low', output.

A logic "low"' from one of the four IC4 output terminals: (1) activates the associated receiver channel
element by grounding it, and turns on the associated channel indicator LED driver. The indicators will remain off during scanning. For example, a logic "low" at IC4-6 is routed via jumper JU1 to the F1 receiver channel element in the radio set. The "low" is also routed through diode CR3 to LED driver inhibit switch Q8 which grounds the emitter. Q8 will remain off, however, until bias drive is supplied from the collector of 1 st current amplifier Q1 which occurs during onchannel message conditions. When Q8 conducts, bias drive is supplied to LED driver Q12 and it conducts turning on the F1 indicator. Pins 3,8 , and 11 of IC4 are used with F2, F3 and F4 receiver channel elements, and Q9, Q10, and Q11 lamp driver inhibit switches respectively.

The top waveform in Figure 7 shows the output pulses that occur on the collector of Q7 while no signal is being received. The bottom waveform shows a nonpriority channel element being "activated" during no signal input conditions and can be found at any IC4 output pin.

3.3 ON-CHANNEL SIGNAL CONDITION

3.3.1 Squelch IC1

When an on-channel message is received, receiver noise output is reduced. When the received signal strength is above the reference level established by setting of the control module SQUELCH control, the output from IC1-10 is at a logic "low'. The upper trace of Figure 8 was taken at $\mathrm{J} 1-1$. It illustrates receiver quieting due to the reception of an on-channel signal. The lower trace shows IC 1 output at pin 10 dropping to a logic "low" (0 volts), when the signal is received.

3.3.2 Squelch Timing Circuit

Pin 12 of ICI is connected to a circuit within the squelch integrated circuit which has the ability to

Figure 6.

NO ON-CHANNEL SIGNAL

Figure 7.
distinguish between weak and strong signals. When a weak signal is detected (a signal less than 20 dB quieting) the voltage on pin 12 rises to about 5.0 volts, charging C35. This charge on C35 causes a long squelch drop-out or "squelch tail" to prevent loss of signal on fades.

This long squelch response on weak signals cannot, however, be tolerated when sampling priority in the presence of a weak non-priority signal. The long response time would cause an unacceptably large "hole" to be cut in the non-priority message. It is for this reason that transistor Q36 and its associated circuitry is provided to rapidly discharge C35 when sampling priority.

When the priority sampling monostable begins its cycle, the collector of Q27 goes positive. A positive

Figure 8.
pulse is coupled from this collector through isolation diode CR23, capacitor C34, and resistor R90 to the base of Q36. Q36 turns on,shorting capacitor C35 to ground, rapidly discharging it. The time constant of C34-R90 is set so that the grounding is applied for approximately 3 milliseconds. This allows time for the squelch to respond to the new channel being looked at, but is short enough to allow activation of the long squelch tail feature if a weak signal is detected on priority. Resistor R89 allows capacitor C34 to discharge between samples.

3.3.3 1st Current Amplifier, Gate, Gate Driver, Gate, and High-Speed Clock Multivibrator

While IC1-10 is "low", first current amplifier Q1 is cut off, gate Q3 is conducting, gate driver Q4 and
gate Q5 are cut off. This disables the high-speed clock multivibrator Q6 and Q7 by removing the emitter ground to Q6. While the high-speed clock multivibrator is inhibited, binary counter IC2 stays in the state created by the last input pulse and further non-priority channel scanning is prohibited. The message will be heard if the associated channel select pushbutton switch is closed. With the priority model, the message will be heard unless there is a message on another channel which has priority. A delay network is used to prevent the resumption of non-priority channel scanning should a received signal be lost or 'fade"' for less than approximately 150 milliseconds. When a received signal is lost, gate Q3 stops conducting immediately and capacitor C14 begins to charge. After approximately 150 milliseconds, C14 is charged sufficiently to forward bias Q4 and Q5, the high-speed clock multivibrator is enabled, and scanning resumes. This is illustrated in Figure 9. The bottom waveform shows the output at $\mathrm{ICl}-10$ going from a logic "low'" (low noise - on-channel signal received) to a logic "high" (loss of signal). The top waveform taken at Q7 collector shows by comparison that scanning resumes approximately 150 milliseconds after the loss of the signal.

Figure 9.

3.3.4 Slow-Speed Clock Inhibit Switch

This switch (Q16) inhibits the output of the slowspeed clock multivibrator (Q23 and Q24) at the base of inverter Q25 while no on-channel message is being received. The base of Q16 is connected to the collector of gate Q3. While no on-channel message is being received, Q3 is cut off and Q16 is conducting, grounding the output of Q24. When an on-channel signal is received, Q16 cuts off and slow-speed clock pulses are passed to inverter Q25.

3.3.5 Slow-Speed Clock Multivibrator and Inverter

The slow-speed clock multivibrator (Q23 and Q 24) generates pulses at the rate of 4 per second. These pulses are used to cause priority channel sampling while a message is being received on a non-priority channel. Output pulses, if not grounded by the slow-speed clock inhibit switch Q16, are inverted by Q25 and passed to the priority sampling monostable Q26 and Q27.

3.3.6 Priority Sampling Monostable

The priority sampling monostable converts the positive pulses from Q25 into 6-7 millisecond duration positive pulses.

The monostable consists of transistors Q26 and Q27 with associated circuitry. Q26 conducts for the duration of a positive pulse from Q25. Capacitor C24 and resistor R68 form a voltage decay delay network that causes Q27 to conduct for approximately 67 milliseconds after Q26 is cut off. When Q27 conducts, its collector voltage is "high". Since a triggering pulse arrives at the input to the monostable at the rate of 4 times a second, a "high" is present on the collector of Q27 for 6-7 milliseconds every 250 milliseconds (during non-priority message reception conditions). This "high" output is routed to four places - (1) nonpriority inhibit switch Q22, (2) priority sampling mute switch Q30, (3) priority channel element drivers Q28 and Q29 and (4) priority detect gate Q21.

3.3.7 Non-Priority Inhibit Switch

Non-priority inhibit switch Q22 disables the non-priority channel while the priority channel is being sampled, or when a priority signal is being received. This prevents the possibility of two channel elements being on at the same time which would cause spurious oscillations.

When the priority channel is sampled, Q27 conducts and applies a "high" to the base of Q22 through resistor R58. This causes Q22 to conduct which grounds one input terminal of each NAND gate in IC4. Since an output 'low', is required from a NAND gate to enable its associated non-priority channel and two input "highs" to the NAND gate are required to get a "low", grounding one input terminal inhibits non-priority channel element grounding.

3.3.8 Priority Sampling Mute Switch

Priority sampling mute switch Q30 prevents a "blip"' of noise from being heard each time the priority channel is sampled.

Q27 drives Q30 through diodes CR16 and CR17 and resistor R73. When the collector of Q27 goes "high", Q30 conducts and mutes receiver audio. Capacitor C25 "softens" the muticg to minimize objectionable 'popping'' during priority sampling. C25 provides approximately 7 milliseconds of delay to Q30 turn off.

3.3.9 Priority Channel Element Drivers

Priority channel element drivers Q28 and Q29 provide a switched ground to enable the priority channel
element. This occurs when the priority channel is "scanned" (a "high'" on the collector of Q27) or when a message is received on the priority channel (a "high" on the collector of priority detect gate Q21).

3.3.10 Priority Detect Gate

Priority detect gate Q21 is a NAND gate "looking" at squelch IC1 output and scanning status. When on-channel signal reception (IC1-10 "low') and priority sampling happen simultaneously, this circuit causes all scanning to stop and the receiver is locked onto the priority signal.

On-channel signals cause squelch IC1-10 to go "low". First current amplifier Q1 is cut off and second current amplifier Q2 is conducting. This applies a "low" through diode CR11 to the base of priority detect gate Q21. The second input to Q21 is via nonpriority inhibit switch Q22 which has a "low" output while the priority channel is being sampled. The third input to Q21 is from off-transmit revert switch Q19 which is cut off unless the "Channel-Scan" monitor unit is off or the radio set is keyed. When Q2, Q22, and Q19 outputs are 'low", Q21 is cut off and a "high" is routed through resistor R55 to priority channel element drivers Q28 and Q29 which turns them on. The priority sampling monostable turns the priority channel element drivers on to sample the priority channel. The priority detect gate holds the priority channel element drivers on once a priority signal is detected, until that signal disappears. During an on-channel non-priority condition, capacitor C32 delays the 'high'' output of Q2 by about 3 milliseconds. This will have no effect on the priority detect gate turn-on time.

A "high" output from Q21 also biases on slowspeed clock inhibit switch Q16 to inhibit further slowspeed pulses at the base of Q25; and turns on nonpriority inhibit switch Q22 via resistor R57 to inhibit non-priority channel element grounding.

3.3.11 Priority Clock Inverter

While there are no on-channel signals, the highspeed clock multivibrator is running and non-priority channels are sampled. Priority clock inverter Q17 causes the priority channel to be sampled after a non-priority channel has been sampled. For example, the sampling sequence of a four-frequency radio with F3 priority is F1, F3, F2, F3, F3, F3, F4, F3, F1, F3, etc.

The high-speed clock multivibrator drives binary counter IC2 via the priority sampling monostable Q26 and Q27 through priority clock inverter Q17. When the collector of Q7 goes "low', Q17 is cut off. This causes capacitor C23 to charge positively through bias resistor R67 and forward biases Q26. When the collector of Q7 goes "high", Q17 conducts and Q26 is cut off. Nonpriority inhibit switch Q22 is activated by Q27 when priority is sampled during the high or slow speed modes.

This inhibits the non-priority channel to prevent the possibility of two channel elements being on at the same time.

3.3.12 Noise Oscillator and Delay Gate

The noise oscillator (Q32 and Q33) keeps the receiver fully squelched to prevent a 'buzzing'" sound from being heard from the speaker while there is no onchannel signal. This is accomplished by generating artificial noise during the high speed scan rate, because the noise level is not sufficient to keep the receiver fully squelched. Whether the SCAN is on or off, the squelch input is routed to the "Channel-Scan"' monitor circuits and the noise oscillator provides the squelch output to the radio. The delay gate (Q31) prevents the noise oscillator from squelching the radio set when the priority channel is sampled while a non-priority channel message is being received. Otherwise, a partial loss of non-priority message would result.

When an on-channel signal disappears, second current amplifier Q2 is cut off, charging C32, and its collector goes "high"' after 3 milliseconds. After approximately 30 to 35 milliseconds, capacitor C27 is charged sufficiently to forward bias delay gate Q31 which provides emitter grounds to Q32 and Q33 and the oscillator is enabled.

Figure 10 shows the noise oscillator output waveform present at J1-3 when no on-channel signal is being received. A low from squelch inhibit switch Q18 enables the oscillator during transmit to prevent a noise burst from being heard in the speaker upon de-keying.

Figure 10.
Figure 11 illustrates noise oscillator turn-on delay. The bottom waveform shows squelch IC1-10 going from a logic "low" to a logic "high" when an onchannel signal is lost. Approximately 35 milliseconds later, the noise oscillator starts to oscillate as is shown in the top waveform, taken at J1-3.

3.3.13 Off-Transmit Revert Switch

This switch inhibits non-priority and priority element grounding, disables squelch during transmit, and causes transmitter channel element to be grounded when a PTT function is applied. When the SCAN switch is off, this switch performs these functions continuously.

ON-CHANNEL SIGNAL LOST

Figure 11.

When a ground is applied via the microphone PTT switch, Q37 conducts which causes Q19 to conduct. This causes squelch inhibit switch Q18 to conduct and grounds the output of squelch ICl. This keeps the high-speed clock from running, and insures that the appropriate LED will light by applying bias through resistors R24-R27.

Transmitter channel element driver Q20 turns on, which routes a ground through jumper JU9 to the selected transmitter channel element. However, the transmitter channel element is not enabled until A+ is applied to it as well as the ground which is routed from the "Channel-Scan" monitor unit. When the scan is turned off, Q18 is inhibited by the low through CR10 to allow the squelch to continue to operate. The high speed clock is inhibited through CR19.

Non-priority elements are inhibited when Q19 goes "high" through diode CR12 and resistor R56. The priority element is inhibited through diode VR2 and resistor R49.

When transmitting or when "off", slow-speed pulses must be inhibited to prevent priority channel element grounding. This is accomplished when Q19 goes "high"' through resistor R43 to slow-speed inhibit switch Q16.

4. MAINTENANCE

4.1 MAINTENANCE AND ADJUSTMENT PROCEDURES

Maintenance information for the "Channel Scan" monitor is provided on the schematic diagram, wiring diagram and the block diagram (Figure 12). Adjustment and troubleshooting procedures are given in the following paragraphs. The circuit board can be accessed for maintenance by removing the station cabinet housing and the transmitter-receiver unit. Once this is accomplished, the solder side of the "channel scan" monitor circuit board is accessible for convenient servicing.

To reach the component side, either remove the four screws securing the board to the stand-off posts or turn the station chassis on the side and remove the four screws securing the stand-off posts to the chassis.

CAUTION

If the board is removed from the standoffs, be sure to re-install the insulating washers before re-mounting the board.

4.1.1 Voltage Regulator Output

Step 1. Measure the voltage from emitter of Q34 to ground with the dc voltmeter. It should be 10 V dc , $\pm 6 \%$.

Step 2. Measure the voltage across capacitor C31 with the dc voltmeter. It should be $5 \mathrm{~V} \mathrm{dc}, \pm 6 \%$.

4.1.2 High-Speed Clock Multivibrator Frequency

Step 1. With the scan 'on'' and no rf signal in, set the SQUELCH control so that noise just cuts out (squelches) so that scanning is initiated.

Step 2. With the oscilloscope, observe the waveform on the collector of Q7. Its frequency should be 33 Hz , $\pm 10 \%$ as shown on waveform 18 , top trace.

Step 3. Turn the SQUELCH control until nosie is heard from the speaker. Scanning should stop.

4.1.3 Slow-Speed Clock Multivibrator Frequency and Non-Priority Lock-On

Step 1. Set channel priority switch (front control) to F4.

Step 2. Turn the SQUELCH control until noise from the speaker just cuts out.

Step 3. Set the rf signal generator to the radio set F1 frequency@100 microvolts. The unit should lock onto F1 (F1 LED indicator illuminates) and observe the F4 LED indicator blinking (sampling F4 priority channel). Audio is not heard during this test because the rf input signal is not modulated, although it could be.

Step 4. Observe the waveform on the collector of Q24 with an oscilloscope. The frequency should be 4 Hz , $\pm 20 \%$ as shown on waveform 11 , top trace.

Step 5. Adjust the signal generator output to the F2 frequency, then F3 frequency @ 100 microvolts. The unit should lock onto F2, then F3, respectively.

Step 6. Set the channel priority switch to F1.
Step 7. Set the rf signal generator to the radio set F4 frequency @ 1000 microvolts. The unit should lock onto

F4 (F4 LED indicator illuminates) and observe the F1 LED indicator blinking (sampling F1 priority channel).

4.1.4 Sampling Time

Step 1. With test equipment set up as in Step 5 of the previous paragraph, observe the waveform at the collector of Q29 with an oscilloscope. The channel element sampling period (0 volts) should be greater than 10 milliseconds (see waveform 11).

Step 2. Disconnect the signal generator. The sampling period at the collector of Q29 (0 volts) should still be greater than 10 milliseconds (see waveform 1).

4.1.5 Priority Lock-On

Step 1. Set channel priority switch to F4.
Step 2. Connect the signal generator and adjust it to the radio set F4 frequency @ 100 microvolts. The unit should lock on F4 and the F4 LED indicator should light. Repeat this step with F1, F2, and F3 selected as priority.

4.1.6 Noise Oscillator Frequency

Step 1. With the rf signal generator disconnected, turn the SQUELCH control until noise from the speaker is just cut out.

Step 2. Observe the waveform at the collector of Q33. The frequency should be $15 \mathrm{kHz}, \pm 3.2 \mathrm{kHz}$ (see waveform 13).

Step 3. Turn the SQUELCH control until noise is heard from the speaker. The noise oscillator should stop.

4.1.7 Revert

Step 1. Turn the SCAN ON-SCAN OFF switch to SCAN OFF.

Step 2. Set the rear frequency selector switch to the F1 position.

Step 3. Tune the signal generator to $F 1$ @ 1000 microvolts and apply modulation. This signal should be heard on the speaker.

Step 4. Repeat Step 2 and Step 3 for F2, F3, and F4.

4.2 TROUBLESHOOTING INTEGRATED CIRCUITS

Integrated circuits (IC's) are very reliable components and should not be replaced until all checks have proven definitely that the IC is the defective component. Removal of an IC is time consuming and often ruins the part. Therefore, a few extra checks before that task is attempted are worthwhile. Before replacing a bad IC, make sure that the external components in the circuit are normal.

The IC's in the "Channel-Scan" monitor may be checked by dc voltage measurements although signal tracing with an oscilloscope is preferred. Typical dc voltages are shown on the schematic diagram. Waveforms are shown on the waveforms diagram.

If an IC is to be replaced, heat each IC terminal and remove all solder with a 'solder sucker" vacuum bulb or use a special IC removing tool.

Figure 12. Channel Scan Monitor Block Diagram

(1)

recelved non.priority sianal

(2)

ECEEIIED Non.prioritry signal

on.channel signal lost
(3)
(4)

2 viviviv.
2 msecriv.

(16)

2 viniv.
mseciviv.

(${ }^{8}$

(19)

${ }^{1}$.
\square - umporo oferf

Numesisumanit
 Asssom

DIGITAL ELECTRONIC CLOCK
 MODELS TRN6125A AND TRN6703A

MODEL	APPLICA TION
TRN6125A	"Super Consolette" Base Stations
TRN6703A	"Consolette" Base Stations

1. DESCRIPTION

Either clock kitis a 12-or 24-hour digital clock which may be used with either 50 or 60 Hz ac power sources. All components are mounted on a printed circuit board which mounts behind the control panel. The digital readouts are permanently mounted at a convenient angle to assure proper viewing when installed within the control panel.

2. FUNCTIONAL OPERATION

(See Schematic Diagram and Circuit Board Detail PEPS-J7369.) Accuracy of the clock is determined by the line frequency. The 60 Hz (or 50 Hz) power line frequency serves as the external clock input to drive the integrated circuit decade counters. Jumper JU2 determines the counting rate of the circuit and must be cut when operating from 50 Hz power. Jumper JUl, when removed, changes the divide rate from $\div 12$ to $\div 24$ (hours) and allows the kit to function as a 24 -hour clock.

Integrated circuit U 1 has two primary outputs: a multiplexed seven-segment output and a digit enable output. Both outputs are related to the strobe frequency of Ul. The strobe, which operates at a frequency of approximately 450 Hz , generates pulses which drive a divider/decoder. The divider/ decoder output is the strobe frequency divided by four (the decoder has four output lines) or approximately 112 Hz on any one line alternately. The divider/decoder outputs drive the digit enable transistors sequentially and these apply power to the anodes of Al through A4.

The seven-segment output of the multiplexer consists of a series of logic highs or lows on each
line depending upon the digit to be indicated (Table 1). The seven-segment lines are common to all the readouts. The pulse, which gates on a digit enable transistor (Ql-Q4), also interrogates the multiplexer to supply the seven-segment code for a digit to the appropriate readout. Only the readout having an enable pulse will indicate. The next output pulse from the divider/decoder gates on the adjacent digit enable transistor and also causes the multiplexer to release the seven-segment code for the associated digit. This means that each digit is actually lit for one quarter of the 450 Hz strobe frequency, or approximately 2.0 milliseconds.

Table 1. Multiplexer Seven-Segment Output Code

U.1 Multiplexed							
10	9	8	7	6	5	4	Digit Portrayed
0	1	1	1	1	1	1	
0	0	0	0	1	1	0	1
1	0	1	1	0	1	1	2
1	0	0	1	1	1	1	3
1	1	0	0	1	1	0	4
1	1	0	1	1	0	1	5
1	1	1	1	1	0	0	6
0	0	0	0	1	1	1	7
1	1	1	1	1	1	1	8
1	1	0	0	1	1	1	9

*Positive logic is assumed, 1 is high and 0 is low.

3. MAINTENANCE

3.1 TEST EQUIPMENT REQUIRED

(1) Oscilloscope
(2) S1063B Motorola Solid-State DC Multimeter, or equivalent.

3.2 TEST PROCEDURE

The troubleshooting chart shown in Figure l will aid in the servicing of this clock kit. The kit may be tested while installed in the base station or it may be tested on a bench. If tested on the
bench, make the following connections to the clock kit printed circuit board:
(1) Connect a ground to pin 1.
(2) Connect $\mathrm{A}+(13.8 \mathrm{~V} \mathrm{dc})$ to pin 3.
(3) Apply a 50 Hz or 60 Hz (depending on the status of JU2) half-wave rectified signal (approximately $25 \mathrm{~V} \mathrm{p-p}$) to pin 2.

4. REFERENCE DIAGRAM

TRN6125A/TRN6703A Clock Kits
Schematic Diagram and Circuit Board Detail. . . PEPS-17369

PARTS LIST

SHOWN FROM COMPONENT SIDE.

[^3]${ }_{2-24-84 \mathrm{GGI}}$

[^4]MOTOROLA INC.
Communications Group

1. DESCRIPTION

This unit is for use with a Consolette type base station. It automatically switches the station to a 12 -volt dc standby power source in the event of primary ac power source failure. A visual indication of standby power usage is provided by causing the base station green power-on lamp to flash while using standby power.

The station automatically reverts to primary ac power operation and the power-on lamp returns to steady operation when the primary ac power source is restored.

A "trickle" charging circuit maintains a normally charged battery at full capacity for extended periods of time. However, lead-antimony batteries must be removed and equalized (charged) periodically as determined by the battery type and operating conditions.

2. THEORY OF OPERATION

Operation from primary or standby power is controlled by transistor Q651 which is connected as a diode. The transistor "monitors" the power supply output voltage at $\mathrm{J} 201-\mathrm{M} 1$ and -R 1 . While +13.5 volts dc is present at these pins, Q651 is reversed biased and resistor R651 limits the charging current to the standby battery. When ac power is lost, +13.5 volts dc is removed from J201-M1 and -R1, and Q651 becomes forward biased causing standby battery power to be routed to the station.

The station power-on lamp flashing is controlled by the warning light circuit board. This circuit consists of an astable multivibrator, Q601 and Q603, a lamp driver transistor Q604, and a dc sense amplifier Q602. Primary ac power to the station is rectified by the power supply bridge and applied to its regulator circuit. A sample
 This de vollage causes the 8.2 voli Zener diode 10 breakdown and forward bias iransistor Q602. The voltage is sufficient to saturate Iransistor Q602, which. in turn, applies a ground potential to the anode of diode CR603. The ground on the arode of CR603 removes the base drive from Q603 which results in a positive potential at its collector. The positive potential reverse biases CR604 and allows $A+10$ reach the base of Q604. The voliage divided $A+$ voltage forward biases Q604, which presents a ground potental to the power-on lamp and iturns it on. $A+$ is applied 10 the lamp continnously while the station is turned "on".

During a polver failure, the anode of CR603 is not "iied" 10 ground through Q602 since the lack of the de sample input prevents Q602 from turning on. While Q602 is off, astable transisior Q603 and Q601 iurn on and off alternately. This catises Q604 to turn on and off aliernately, presenting an interrupted switched ground to the power-on lamp which causes it to flash.

3. INSTALLATION

3.1 GENERAL

Locate the battery (or batterics) in a secure place, as close to the station as possible (battery cables should be kepl as shorl as possible). The location must be adequately ventiated to provide unobstructed air cilculation and should be fully accessible for inspection and maintenance. The battery must not be placed near radiatom, boikers, or other heat-producing devices, or in direct sunlight.

3.2 REVERT PLUG INSTALLATION

Step 1. Turn off the base station power.
Suep 2. Unplug the base stalion from the power source.

Siep 3. Remove the base station cabinet.
Siep 4. Disconnect the 15 -pin pousi cable plug from the power supply (item 4 in Figure 1).

Step 5. Remove the screws indicated by item 5 in Figure 1.

Step 6. Remove two screws at the back of the power supply below the heat sink (item 6 in Figute I).

Step 7. Lift the power supply chassis (with ac line cord attached) straight up and away from the base station chassis).

Step 8. Connect the emergency reverting kit to thi power supply (item 8 in Figure 2).

Step 9. Tighten screws (item 9 in Figure 2).

Figure 1. Power Supply Removal

Figure 2. Emergency Reverting Kit Installation

Step 10. Reroute the RED and BLK leads underneath the power supply as illustrated in Figure 3.

Step 11. Reinstall the power supply in the base station.
Step 12. Connect the 15 -pin power cable plug to the emergency reverting kil as indicated at item 12 in Figure 2.

Step 13. Connect the RFD lead to battery (+) and the BLK lead to battery (-).

3.3 WARNING LIGHT CIRCUIT BOARD IN. STALLATION

Step 1. Attach the metal bracket to the base station front panel with screws provided as indicated at item 1 in Figure 5.
Step 2. Actach the warning light circuit hoard to the metal bracket with screws provided as indicated at item 2 in Fipure 5.

Step 3. Solder the BLK lead to ground at TB4-8 as shown in Figure 4.

Step 4. Connect the BLU-WHT lead connector to the mating connectur on the BLU-RED lead from the power supply plug J201.

Siep 5. Solder the BRN-YEL lead to the RED transmit indicator lamp socker as shown in Figure 4.

Step 6. Remove the bare jumper on the green poweron indicator lamp socket. This removes ground from the lamp.

Step 7. Solder the bare end of the BLK lead with the push-on pin to the ground terminal of the GRN poweron lamp sockel as shown in Figure 4. Connect push-on pin end of this lead to the warning light circuit board.

Figure 3. Battery Cable Instailation

Figure 4. Comnection Derail

Figure 5. Brackel and Warming Light Circuit Board Installation

4. GENERALBATTERYINFORMATION

4.1 BATTERY TYPE CONSIDERATIONS

Different lypes of batteries exhibit different characteristics and each lype varies in performance in relation to such operating conditions as temperature. amount of use, age, etc. A brief comparison between the iwo batlery types recommended for use with the emel gency power reverting kil is given in Table 1.

Aulomative batteries are not designed for continuous standby service. They require frequent usc. discharge and charge cycling, to maintain top efficiency. However, economics or availability may dictate their use over the siationary call lype.

4.2 BATTERY CAPACITY CONSIDERA IIONS

Battery capacity, or size, needed for use with the solid-statc Consolette Base Station is dictated primarity by the power requirements of the station itself, the length of lime power will be required, and the temperature of the battery while being used.

Assuming the receive or standby mode draws 1 ampere and the transmit mode draws 14 amperes, the 20% transmit duty cycle of the station means that an 18 ampere-hour capacily batlery is required for each five hours of operation as room temperature $\left(77^{\circ} \mathrm{F}\right)$. Ten hours of emergency operation wouid therefore require at least a 36 ampere-hour batlery if it wit: fully charged initially and the battery ambinent temperature remained above $77^{\circ} \mathrm{F}$ while in use. Lead-calcium and lead- anlimony ballery performance degradation is shown in Table 2.

Table 1. Recommended Battery Types

	Batlery Type (Stationary Cells)	
Characteristic	Lead - Calcium	Lead - Antimony
Life Expectancy	$10-15$ Years	$2-5$ Years
Standby Performance	Good	Poor
Add Electrolyte (Water)	Every 6 Months	Monthly
Equalize	Every 3 Months	Monthly

CAUTION

Care must be excrised below 0 ए 10 prevent discharged batteries from freezing.

Table 2. Battery Performance Degradation

Temperature	Capacity
$77^{\circ} \mathrm{F}$	100%
$32^{\circ} \mathrm{F}$	72%
$0^{\circ} \mathrm{F}$	47%

5．MAINTENANCE

5．1 ROUTINE MAINTENANCE

The battery or batteries used for emergency power require certain routine maintenance procedures to assure long trouble－free operation．Persons servicing the batteries should refer to the manufacturer＇s recommen－ dations for routine maintenance．In addition，certain maintenance procedures are appropriate following each interval of emergency power operation，especially if the battery has been completely discharged．

CAUTION

The battery or batteries must be discon－ nected from the station while being charged．

The importance of keeping good battery maintenance records cannot be over－emphasized．The battery status chart following this maintenance in－ formation allows the listing of cell voltage readings， temperature and hydrometer readings（where ap－ plicable），versus the dates on which the readings were taken．To be most effective，the battery status chart should be kept at the battery location for ready reference．

5．2 LEAD ACID BATTERIES

Perform the routine maintenance procedures mon－ thly．
－Clean the battery and inspect it for damage．
－Measure cell voltages and enter the voltage readings on your maintenance report．Most maintenance schedules require voltage readings of every cell each time maintenance is performed．If a difference of .05 volt or more exists between any two cells，apply an ＂equalizing charge＂to the battery for the number of hours recommended by the manufacturer for a ter－ minal voltage of 13.5 volts．
－Take specific gravity readings with a hydrometer calibrated for the type of electrolyte used．
－Observe the necessary precautions to see that the readings are accurate，that no chemical con－ tamination of the cells occurs，and to prevent bodily injury from contact with the electrolyte．
－After taking a reading，always return the elec－ trocyte in the hydrometer syringe to the cell from which it came．（Failure to do so will decrease the specific gravity of the cell when water is added to fill up the cell．）
－For an accurate comparison with＂standard＂ specific gravity readings，as published in manufacturer＇s specifications，a correction fac－ tor must be applied to all readings to normalize them with the standard values，when taken at temperatures other than 77° Fahrenheit． However，if the battery temperature tends to be the same each time specific gravity readings are taken，a trend toward a change in specific gravity will be apparent without having to apply the cor－ rection factor to the readings．
－The correction factor is easily applied，due to a linear relationship between changes in temperature and specifc gravity above and below $77^{\circ} \mathrm{F}$ ．For each three degrees above $77^{\circ} \mathrm{F}$ ，add .001 （known as＂ 1 point＂）to the＂standard＂ value of specific gravity．Conversely，for each three degrees below $77^{\circ} \mathrm{F}$ ，subtract 1 point．
－Take a specific gravity reading of the＂pilot cell＇monthly．If is not necessary to continually check the specific gravity of all cells because any gradual changes usually occur simultaneously in all cells．One cell is therefore chosen and designated the＂pilot cell＂，and the monthly routine specific gravity readings are always taken from this one cell．（Be sure to indicate on the maintenance chart which cell is the pilot cell．）
－Take specific gravity readings of all the bat－ tery cells every three months，and record them on the maintenance chart．
－Add water as required to keep the electrolyte solution in each cell up to a minimum level．In some batteries， the electrolyte level should be between the high－and low－level marks on the inside of each cell．If the cells have no such markers，check the manufacturer＇s literature．Use distilled water only．

NOTE

Do not use any tool on a lead－acid battery which may have been used with nickel－ cadmium batteries．To do so may destroy the lead－acid battery，due to checmical contamination by electrolyte or other foreign matter from the nickel－cadmium battery existing on the surface of the tool in question．

5．3 CABLE CONNECTIONS

Cable connections to the emergency power equip－ ment must be clean and firmly made at all times． Tighten all bolted connections yearly．Clean and remake any corroded connections．

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

parts list

三 \begin{tabular}{|c|c|c|}
\hline REFERENCE

SYMBOL

MOTOROLA

PART NO．
\end{tabular}\quad DESCRIPTION

PARTS LIST
TRN6182A DC Only Kit
PL－3338－O

$\begin{aligned} & \text { F201 } \\ & \text { XF201 } \end{aligned}$	$\begin{aligned} & 65-84161 \mathrm{B01} \\ & 9-84277 \mathrm{~B} 02 \end{aligned}$	$\begin{aligned} & \frac{\text { FUSE, cartridge: }}{40 \mathrm{~A} ; 32 \mathrm{~V}} \\ & \frac{\text { FUSEHOLDER: }}{\text { "In-line type }} \end{aligned}$
NON－REFERENCED ITEMS		
	$\begin{aligned} & 29-824151 \\ & 29-832116 \\ & 30-813233 \\ & 30-831572 \\ & 37-842245 \\ & 42-82143 \mathrm{C} 02 \\ & 64-84682 \mathrm{C} 03 \end{aligned}$	LUG，terminal： 2 required LUG，ring type： 2 required CABLE，No． 10 black： 122 inches required CABLE，No． 10 red： 118 inches required STRAIN RELIEF CLAMP，cable PLATE，cover

1．DESCRIPTION

The dc－only cable kit is used in place of the ac power supply in those installations where only dc operation is required．

Two terminal lugs on the cable kit connect to TB9 in the station to provide the necessary power for operation．An in－line fuse protects the unit should a short occur．

2．INSTALLATION

As shipped from the factory，the cable kit is connected to the station terminal board TB9，and coiled in the left side of the chassis．A cover plate and an envelope with mounting hardware are taped to the chassis below the coiled cable．

Installation consists of routing the cable through the plate from the inside，and inserting the feedthrough cable strain relief from the inside． The plate mounts vertically from the inside of the chassis to cover the hole through which the heat sink of the power supply would protrude in ac powered units．It is secured using two of the self－ tapping screws provided．

END OF DOCUMENT

[^0]: - $1 / 21 \cdot \mathrm{~F}$ spur rejection degrades 1090 dB from 1 MHz to 2 MHz frequency separation.

[^1]: NOIE ADI Compatatie on UHF Mosters

[^2]: - HLN4135A - used in local control systems. The control panel on the front of this unit contains all the controls necessary (including front panel mounted ac. cessories) for operation of the station.

[^3]: TRN61.25A/TRN6703A Clock Kit
 Schematic Diagram \& Circuit Board Detail
 Motorola No. PEPS-17369-C

[^4]:

 $\underbrace{0}_{\substack{\text { or } \\ \text { orfen } \\ 0}}$ $\operatorname{cic}_{\substack{\text { onf } \\ \text { orm } \\ \text { or } \\ 0}}^{0.1}$

 $\sin _{\text {out }}^{\text {oof }}$
 $\underbrace{0.12}_{\text {couccros nueroens ros }}$

 cautero manaterns
 notes:

 3. Dc voltages ane postrive

 - Munemens.ing vorme

