1. FUNCTIONS

This multi-PL decoder module is used with base and repeater stations to provide multiple PL receive operation. It is also used with non-wire line repeater stations to select the PL tone transmitted with repeated messages. Depending on the PL tone received, a switched ground signal will appear at one of the outputs of this module which is used to:

- (with base stations) unsquelch the receiver, or
- (with non-wire line repeater stations) unsquelch the receiver and enable an associated PL oscillator in the multi-PL encoder module.

This module is installed with a modified tone PL encoder-decoder module, that provides this module with

Delayed Keyed A+. The modifications to the tone PL encoder-decoder module are as given in Table 1.

Table 1 .
Tone PL Encoder-Decoder Module Modifications

Factory Option No.	Tone PL Module	Components Removed
C158AB/AE	TRN5074A	C51 and 52
C261AC/AH	TRN5074A	R19
C262AE	TRN5073A	C51, C52, R19, Z1, and Z2
C263AB	TRN5074A	C51, C52, R19, and Z1

2. DESCRIPTION

This module is fully transistorized and occupies the singletone decoder module position in the RF-Control Chassis. All components and circuitry are mounted on a sturdy card with interconnecting pins to mate with the backplane interconnect board of the RF-Control Chassis.

Figure 1. Functional Diagram

3. CIRCUIT DESCRIPTIONS

3.1 INTRODUCTION

This module responds only to specific continuous lowfrequency tones from a transmitter in the same PrivateLine system. Four Vibrasponder resonant reeds are used as tone detectors by the decoder. These reeds detect tones within an accuracy of less than one Hertz (0.15%). A switched ground from an open collector output stage is provided for each of the four detected tone inputs by the decoder.

3.2 PL TONE PRESENT

When PL tones are present on the input signal to the decoder, the PL filter will pass the low frequency PL tones and attenuates voice and noise frequencies above 300 Hz . The noise switch shorts out high frequency noise frequencies. The tone from the PL filter is amplified by the PL amplifier and is limited to a fixed ievel by the amplifier/clipper. The tone is applied to the Vibrasponder resonant reed which vibrates when the tone is the same frequency as the reed's resonant frequency. When the reed is vibrating, the device acts as a transformer and couples the tone from primary to secondary. The tone is amplified in the next stage and applied to a detector. When a tone is present, the detector develops a dc output which activates the detector output switch. When the detector output switch is activated, its ground output is applied to three circuits:

- Receive PL indicate switch which, in turn, drives the high frequency noise switch (shorts input high frequency noise and voice signals to ground) and provides an output "high" on the PL indicate line to the station's receiver (unsquelches the receiver).
- Squelch gate PL indicate switch which, in turn, provides an output "high" on the PL indicate line to a repeater station's squelch gate module (keys the station's transmitter).
- Through inverter and latch circuits to an applicable output switch which, in turn, is activated (provides an associated ground level output in response to the particular PL tone detected).

3.3 PL TONE NOT PRESENT

When no PL tone is present, or when a PL tone of an incorrect frequency is present, the Vibrasponder resonant reed does not operate. Therefore, the output of all detector switches is high which inhibits the squelch gate through pin 21.

When no PL tone is detected, switch Q6 is off. This allows high frequency noise to bypass the PL filter which prevents random low frequency noise from activating the Vibrasponder resonant reeds.

3.4 INPUT CIRCUITS

The receiver discriminator output signal is applied to the multi-PL decoder input at pin 3. When no carrier is received this signal consists of noise only. When voice or voice/PL tone frequencies are received, the noise is reduced and the voice/PL tone frequencies are routed through the low pass PL filter and noise gate circuits. The low pass PL filter, which consists of L2, C2, C3, and C4, sharply attenuates all signals above 300 Hz . Therefore, voice and noise frequencies above 300 Hz are effectively blocked while PL tones are passed.

High pass filter C1, R1 and R7, provides a shunt for high frequnecy noise around the PL filter when no tones are detected. The high frequency noise desensitizes the amplifier/clipper and prevents low frequency noise from triggering the decoder. When a PL tone is detected, noise switch Q6 shorts all high frequency signals to ground.

3.5 AMPLIFIER/CLIPPER

The noise and PPL tones are ampified and coupled to amplifier/clipper Q2 by Q1. Diode CR1 and Q2 (base emitter junction) limit both the positive and negative signal swing to a maximum amplitude. The output of Q2 provides a constant drive to compensate for the tone amplitude deviation between transmitters. Q2 also reduces the sensitivity of the Vibrasponder resonant reeds to noise. Drivers Q3 and Q4 operate as emitter followers to provide current drive to the low impedance Vibrasponder resonant reed assembly.

3.6 VIBRASPONDER RESONANT REEDS

The Vibrasponder resonant reeds are the frequency detecting devices of the decoder. When the input tone from the Vibrasponder resonant reed driver is the same frequency as a reed's resonant frequency, the reed vibrates. At resonance, the reed acts as a high Q transformer coupling energy from the primary to the seconary winding. At all other frequencies, the reed will not vibrate and no energy is coupled to the secondary winding. The reed is a precision built device consisting of a tuned cantilever reed of special steel mounted on a rugged base with a coil and permanent magnets. The entire assembly is spring-mounted and hermetically sealed in a metal housing to insure long life at peak performance under all types of conditions. Its design eliminates the need for servicing throughout its useful life. The plug-in unit is easily removed and replaced. The reed is sensitive to within 1 Hz of its resonant frequency. Specific tones in the 82.5 to 210 Hz range are used.

3.7 TONE DETECTORS

The following description applies to the signal flow through Vibrasponder resonant reed " A " and associated
circuits. Vibrasponder resonant reed circuits " B ," " C ," and " D " operate in an identical manner.

When a PL tone is detected by a Vibrasonder resonant reed, a resonant sinusoidal waveform appears at its output. This signal is amplified by Q7. (Negative feedback through C11 maintains the sinusoidal voltage.) The output of Q7 is detected by Q8.

Detector Q 8 is normally turned off by +13.4 volts on the base and +12.3 volts on the emitter. Therefore, when a tone is detected, Q8 turns on each time the tone signal waveform goes negative more than 1.3 volts (the amount of Q8 reverse bias). Each time Q8 turns on, C13 is charged by the +12.3 volts on the emitter. When Q8 turns off, C13 discharges through R25 and the base of Q9 turning on Q9. When Q9 turns on, it applies a ground to the base of Q5 and Q29, turning them on. When Q5 and Q29 are turned on, they apply a positive level to the receiver and squelch gate respectively. The positive level from Q5 also turns on Q6 which shunts high frequency noise from the PL filter to ground.

3.8 DECODER OUTPUT

When a tone is detected, the low output of Q9 is applied to inverter U1-5. This low is inverted and applied to NAND gate U2-2. When delayed keyed $\mathrm{A}+$ is applied to U2-3, a low level is generated and fed back to U1-5, causing a latch condition and applying a continuous low to the base of Q27. This low turns on Q27 and Q28 producing a low (ground level) output \#1 signal at pin 2.

When transmission has been completed, and the PL tone has dropped, the collector of detector output switch Q9 goes high. This high reverse biases all three isolation diodes, causing the three associated circuits to reverse their operation as previously described. Delayed Keyed A + remains on for approximately 180 milliseconds. The voltage delay keeps the NAND gate on, feeding back the output to the input of inverter U1, thereby keeping a high applied to pin 1 of U2. This state continues until Delayed Keyed A+ drops, causing the NAND gate to return to its normal state.

4. MAINTENANCE

4.1 RECOMMENDED TEST EQUIPMENT

- Motorola S1318A, S1319A, S1320A, or S1321A RF Signal Generator. This solid-state unit provides receiver rf carrier signals.
- Motorola SLN6221A PL Tone Generator and Vibrasender resonant reeds on the same frequency as the Vibrasponder resonant reeds of the decoder. An audio signal generator may be used if it is accurately set to the decoder frequency. However, to obtain the accuracy necessary, the frequency should be adjusted while the signal is measured on a frequency counter.
- Tektronix/Telequipment Model D61 Oscilloscope for tone signal measurement. Some measurements may be taken with a high impedance ac voltmeter.
- Motorola solid state multimeter for dc voltage measurements.

4.2 PERFORMANCE TESTS

A 0.25 microvolt rf carrier signal modulated $\pm 0.5 \mathrm{kHz}$ with PL tone should unsquelch the receiver. This can be checked as follows:

Step 1. Connect the rf signal generator to the receiver rf input receptacle. Set the signal generator output to the receiver carrier frequency, then set the output to minimum.

Step 2. Modulate the signal generator output ± 0.5 kHz with a PL tone of the frequency stamped on one of the Vibrasponder resonant reeds. The tone can be generated with a Motorola SLN6221A PL Tone Generator and a Vibrasponder resonant reed. A Vibrasender resonant reed from the PL encoder may be used if it is the proper frequency.

Step 3. Also modulate the signal generator with an audio tone in the 300 to 3000 Hz range at $\pm 3.3 \mathrm{kHz}$ deviation.

Step 4. Increase the output of the signal generator until the receiver unsquelches and the audio tone is heard on the speaker. No more than 0.25 microvolt should be required to unsquelch the receiver.

4.3 TROUBLESHOOTING

If the PL decoder does not operate, or operates improperly, the following hints may be helpful in locating the malfunction.

4.3.1 Testing the Vibrasponder Resonant Reeds

One of the first tests should be a check of the Vibrasponder resonant reeds. Inject 340 millivolts rms of PL tone at the proper frequency directly to the primary of each reed. Use an oscilloscope or ac voltmeter to check the output across the secondary of the reeds. Approximatley 75 millivolts rms should be measured. If the reeds are good, continue with other decoder tests.

4.3.2 Decoder Testing

Step 1. To test the decoder, inject a 1000 microvolt carrier signal into the receiver. Adjust PL modulation for 60 millivolts rms tone signal at the input to the decoder. If the PL tone is injected directly onto the decoder for testing, an rf carrier signal should be injected into the receiver to quiet the receiver noise. Otherwise,
novise and PL tone will both be present and will produce erroneous readings.

Step 2. With 60 millivolts PL tone input, measure signal and dc voltages at various points in the decoder to isolate the trouble. Typical values for a normally operating decoder are given on the schematic diagram. Some waveforms are not sinusoidal and should be measured
with an oscilloscope. Most ac voltmeters are calibrated to read accurately only for sinusoidal signals.

Step 3. If under normal operating conditions, the PL tones are heard with the speaker audio, the high pass filter on the decoder board should be checked.

 Antinn
 nem and and $\frac{1}{2}$ 5

