(4.) мотовоLA

RF DEVICE DATA VOLUME II

Volume I

Selector Guide

Discrete Transistor Data Sheets

Case Dimensions

Volume II
Selector Guide

Amplifier Data Sheets

Tuning, Hot Carrier and PIN Diode Data Sheets

Case Dimensions

Cross Reference and Sales Offices

Prepared by
Technical Information Center

Extensive changes have been made to the sixth edition of the RF Data Manual. In March, 1988, Motorola acquired the RF Devices Division of TRW. The RF products manufactured by the acquired facilities were included for the first time in the fifth edition of the RF Data Book. During the past 2 years, a consolidation of products has taken place with the result being the deletion of a large number of products previously included in the fifth edition. However, an equally large number of new products has resulted in the data book remaining as a 2 volume set.

Once again, Volume 1 contains all Discrete Transistors (along with the Discrete portion of the RF Selection guide). All other devices, primarily amplifiers along with tuning diodes, are included in Volume 2. Also in Volume 2 is a greatly expanded section on Applications. The many diverse Application Notes from the TRW facilities in California and France have been integrated along with the previously available application notes from the RF facility in Arizona. This data forms one of the most comprehensive groups of RF application available in the industry today.
HOW TO USE THIS RF DATA BOOK:
Note that all devices in a given section - Discrete Transistors, Amplifiers and Tuning Diodes - are organized in conventional alphanumeric order.
If you know the part for which you desire technical data, simply turn to the appropriate page in Volume 1 or 2. If you are seeking a replacement for a competitor's part, then use the Cross Reference in Volume 2 to find the Motorola recommended replacement. If you have a requirement for a specified frequency band, then use the Selector Guide (in both Volumes 1 and 2) to find a suitable part with the desired voltage, output power, gain or other requisite characteristic.
Although information in these books has been carefully checked, no responsibility for inaccuracies can be assumed by Motorola. Please consult your nearest Motorola Semiconductor sales office for further assistance regarding any aspect of Motorola RF Products.
Motorola reserves the right to make changes without further notice to any products herein to improve reliability, function or design. Motorola does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (A) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Employment Opportunity/Affirmative Action Employer.

Sixth Edition
First Printing
©CMOTOROLA INC., 1990
Printed in U.S.A.

DATA CLASSIFICATION

Product Preview

Data sheets herein contain information on a product under development. Motorola reserves the right to change or discontinue these products without notice.

Advanced Information

Data sheets herein contain information on new products. Specifications and information are subject to change without notice.

Formal

For a fully characterized device there must be devices in the warehouse and price authorization.

Designer's

The Designer's Data Sheet permits the design of most circuits entirely from the information presented. Limit curves - representing boundaries on device characteristics - are given to facilitate "worst case" design.

Designer's, Epicap, MACRO-T, MACRO-X and TMOS are trademarks of Motorola Inc.
Annular Semiconductors patented by Motorola Inc.AMPLIFIERSDevice NumberACR900-30EAMR175-60AMR225-60AMR440-60AMR470-60AMR900-60AMR900-60AATV5030ATV5090BATV6031
ATV7050
ATV7060
CA901CA2800
CA2810C
CA2813C,CH
CA2818,H
CA2820,H
CA2830, HCA2832,HCA2833CA2842,H
CA2850R
CA2851RCA2870,HCA2875RCA4800,H
CA4812,H
CA4815,H
CA5800; H
CA5815,HCA5900CA5915CA7901CA97901
CR820
CR2424,HCR2425
CR3424, H
CR3425
DHP02-36-40
DHP05-18-20
DHP05-36-10
DHP10-14-15
DHP10-32-08FF124,BFF224,B
PageDescriptionNumber
Linear Power Amplifier 5-2
Linear Power Amplifier 5-3
Linear Power Amplifier 5-4
Linear Power Amplifier 5-5
Linear Power Amplifier 5-6
Linear Power Amplifier 5-7
Linear Power Amplifier 5-10
Linear Power Amplifier 5-12
Linear Power Amplifier 5-15
Linear Power Amplifier 5-16
Linear Power Amplifier 5-1.7
Linear Power Amplifier 5-19
VHF/UHF CATV Amplifier 5-20
Wideband Linear Amplifier 5-22
Wideband Linear Amplifier 5-25
Wideband Linear Amplifiers 5-28
Wideband Linear Amplifiers 5-31
Wideband Linear Amplifiers 5-34
Wideband Linear Amplifiers 5-37
Wideband Linear Amplifiers 5-40
Wideband Linear Amplifier 5-37
Wideband Linear Amplifiers 5-43
Wideband Linear Amplifier 5-46
Wideband Linear Amplifier 5-46
Wideband Linear Amplifiers 5-49
Wideband Linear Amplifier 5-52
Wideband Linear Amplifiers 5-55
Wideband Linear Amplifiers 5-58
Wideband Linear Amplifiers 5-62
Wideband Linear Amplifiers 5-64
Wideband Linear Amplifiers 5-67
Wideband Linear Amplifier 5-70
Wideband Linear Amplifier 5-72
Hi-Slope Trunk Amplifier 5-74
Hi-Slope Input/Oütput Trunk Amplifier 5-75
High Frequency Complementary Pair Transistor Array 5-77
Video Driver Hybrid Amplifiers 5-78
Video Driver Hybrid Amplifier 5-78
Video Driver Hybrid Amplifiers 5-80
Video Driver Hybrid Amplifier 5-80
Linear Power Amplifier 5-82
Linear Power Amplifier 5-83
Linear Power Amplifier 5-84
Linear Power Amplifier 5-85
Linear Power Amplifier 5-86
450 MHz CATV Feedforward Amplifiers 5-87
550 MHz CATV Feedforward Amplifiers 5-89

Device Number	Description	Page Number
AMPLIFIERS - continued		
MHW590	Low Distortion Wideband Amplifier.	5-91
MHW591	Low Distortion Wideband Amplifier.	5-94
MHW592	Low Distortion Wideband Amplifier.	5-97
MHW593	Low Distortion Wideband Amplifier.	5-100
MHW607 Series	VHF Power Amplifiers .	5-103
MHW703	UHF Power Amplifier.	5-107
MHW707 Series	UHF Power Amplifiers.	5-111
MHW709 Series	UHF Power Amplifiers.	5-116
MHW710 Series	UHF Power Amplifiers.	5-120
MHW720 Series	UHF Power Amplifiers.	5-124
MHW720A1 Series	UHF Power Amplifiers.	5-128
MHW801 Series	UHF Power Amplifiers.	5-132
MHW803 Series	UHF Power Amplifiers.	5-137
MHW806A Series	UHF Power Amplifiers.	5-142
MHW807 Series	UHF Power Amplifiers.	5-147
MHW812A3	UHF Power Amplifier.	5-152
MHW820 Series	UHF Power Amplifiers.	5-156
MHW851 Series	UHF Power Amplifiers.	5-132
MHW1134	CATV High-Split Reverse Amplifier.	5-161
MHW1184	CATV High-Split Reverse Amplifier.	5-161
MHW1224	CATV High-Split Reverse Amplifier.	5-161
MHW1244	CATV High-Split Reverse Amplifier.	5-161
MHW2001-15	VHF Power Amplifier:	5-163
MHW5122A	60-Channel (450 MHz) CATV Trunk Amplifier	5-165
MHW5141A, MHW5142A	60-Channel (450 MHz) CATV Input/Output Trunk Amplifiers	5-167
MHW5162A	60-Channel (450 MHz) CATV Trunk Amplifier .	5-169
MHW5171A, MHW5172A	60-Channel (450 MHz) CATV Input/Output Trunk Amplifiers	5-171
MHW5181A, MHW5182A	60-Channel (450 MHz) CATV Input/Output Trunk Amplifiers	5-173
MHW5185	High Output Doubler 450/550 MHz CATV Amplifier	5-175
MHW5222A	60-Channel (450 MHz) CATV Trunk Amplifier . .	5-178
MHW5225,R	High Output Doubler 450 MHz CATV Amplifiers	5-180
MHW5272A	60-Channel (450 MHz) CATV Line Extender Amplifier	5-181
MHW5332A	60-Channel (450 MHz) CATV Line Extender Amplifier	5-183
MHW5342A	60-Channel (450 MHz) CATV Line Extender Amplifier	5-185
MHW5382A	60-Channel (450 MHz) CATV Line Extender Amplifier	5-187
MHW6122	77-Channel (550 MHz) CATV Input/Output Trunk Amplifier	5-189
MHW6141, MHW6142	77-Channel (550 MHz) CATV Input/Output Trunk Amplifiers	5-191
MHW6171, MHW6172	77-Channel (550 MHz) CATV Input/Output Trunk Amplifiers	5-193
MHW6181, MHW6182	77-Channel (550 MHz) CATV Input/Output Trunk Amplifiers	5-194

Device Number

MHW6185
MHW6222
MHW6272
MHW6342
MHW10000 Series
MWA0204
MWA0211L
MWA0270
MWA0304
MWA0311,L
MWA0370
MWA110
MWA120
MWA130
MWA131
MWA210
MWA22O
MWA230
MWA310
MWA320
MWA330
MX20 Series
PAA0105-29-6L
PAA0105-45-25L
PAA0105-50-50LAS
PAA0200-34-1.5L
PAA0200-34-3.1L
PAA225-42-10L
PAA0450-33-0.4L
PAA0500-17-1.0L
PAA0500-17-2.0L
PAA0500-35-1.0L
PAA0510-25-6L
PAA0810-24-5L
PAA0810-31-25L
PAA0810-32-10L
PAA0810-38-5LAS
PAA0810-38-100AB
PAA0810-40-50L
PAA0810-40-50LAM
PAA0810-52-100AB
PAA0810-52-100AM
PAA0810-54-50LAS
PAA0810-54-50LSM
PAA1000-14-0.6L
PAA1000-14-1.3L
PAA1000-30-0.6LDescription
High Output Doubler $450 / 550 \mathrm{MHz}$ CATV Amplifier 5-175
77-Channel (550 MHz) CATV Input/Output Trunk Amplifier 5-196
77-Channel (550 MHz) CATV Line Extender Amplifier 5-198
77-Channel (550 MHz) CATV Amplifier 5-199
Broadband RF Amplifiers 5-200
Monolithic Microwave Integrated Circuit 5-203
Monolithic Microwave Integrated Circuit. 5-203
Monolithic Microwave Integrated Circuit. 5-203
Monolithic Microwave Integrated Circuit. 5-208
Monolithic Microwave Integrated Circuits 5-208
Monolithic Microwave Integrated Circuit 5-208
Wideband Hybrid Amplifier 5-214
Wideband Hybrid Amplifier 5-214
Wideband Hybrid Amplifier 5-214
Wideband Hybrid Amplifier 5-222
Wideband Hybrid Amplifier 5-229
Wideband Hybrid Amplifier 5-229
Wideband Hybrid Amplifier 5-229
Wideband Hybrid Amplifier 5-237
Wideband Hybrid Amplifier 5-237
Wideband Hybrid Amplifier 5-237
UHF Power Amplifiers 5-245
Linear RF Power Amplifier 5-248
Linear RF Power Amplifier 5-249
Linear RF Power Amplifier 5-250
Linear RF Power Amplifier 5-251
Linear RF Power Amplifier 5-252
Linear RF Power Amplifier 5-253
Linear RF Power Amplifier 5-254
Linear RF Power Amplifier 5-255
Linear RF Power Amplifier 5-256
Linear RF Power Amplifier 5-257
Linear RF Power Amplifier 5-258
Linear RF Power Amplifier 5-259
Linear RF Power Amplifier 5-260
Linear RF Power Amplifier 5-261
Linear RF Power Amplifier 5-262
Linear RF Power Amplifier 5-263
Linear RF Power Amplifier 5-264
Linear RF Power Amplifier 5-265
Linear RF Power Amplifier 5-266
Linear RF Power Amplifier 5-267
Linear RF Power Amplifier 5-268
Linear RF Power Amplifier 5-269
Linear RF Power Amplifier 5-270
Linear RF Power Amplifier 5-271
Linear RF Power Amplifier 5-272Page

Number
 Number

Page

Device Number

AMPLIFIERS - continued
PAA1000-42-5L
PAM0105-6-50L
PAM0105-7-25L
PAM0105-29-6L
PAM225-42-10LA
PAM0510-25-6L
PAM0810-6-50L
PAM0810-7-25L
PAM0810-8-10L
PAM0810-24-3L
PAM0810-24-5LA
SHP-02-36-20
SHP05-20-10
SHP05-22-04
SHP05-35-04
SHP06-18-04
SHP10-15-08
SHP10-15-08-15
SHP10-17-04
SHP10-17-04-15

TUNING DIODES

1N5139,A thru 1N5148,A
1N5441A,B thru 1N5456A,B
MBD101
MBD301
MBD701
MMBD101L
MMBD301L
MMBD352L
MMBD353L
MMBD701L
MMBV105GL
MMBV109L
MMBV409L
MMBV432L
MMBV609L
MMBV809L
MMBV2101L thru MMBV2109L
MMBV3102L
MMBV3401L
MMBV3700L
MPN3404
MPN3700

Description
Number
Linear RF Power Amplifier 5-273
Linear RF Power Amplifier 5-274
Linear RF Power Amplifier 5-276
Linear RF Power Amplifier 5-278
Linear RF Power Amplifier 5-280
Linear RF Power Amplifier 5-282
Linear RF Power Amplifier 5-284
Linear RF Power Amplifier 5-286
Linear RF Power Amplifier 5-288
Linear RF Power Amplifier 5-290
Linear RF Power Amplifier 5-292
Linear RF Power Amplifier 5-294
Linear RF Power Amplifier 5-295
Linear RF Power Amplifier 5-296
Linear RF Power Amplifier 5-297
Linear RF Power Amplifier 5-298
Linear RF Power Amplifier 5-299
Linear RF Power Amplifier 5-300
Linear RF Power Amplifier 5-301
Linear RF Power Amplifier 5-302
Voltage-Variable Capacitance Diodes 6-2
Voltage-Variable Capacitance Diodes 6-5
Silicon Hot-Carrier UHF Mixer Diode 6-8
Silicon Hot-Carrier Detector and Switching Diode 6-10
High-Voltage Silicon Hot-Carrier Detector and Switching Diode 6-12
High-Voltage Silicon Hot-Carrier Detector and Switching Diode 6-8
Silicon Hot-Carrier Detector and Switching Diode 6-13
Dual Hot-Carrier Mixer Diode 6-14
Dual Hot-Carrier Mixer Diode 6-14
High-Voltage Silicon Hot-Carrier Detector and Switching Diode 6-12
Voltage-Variable Capacitance Diode 6-15
Voltage-Variable Capacitance Diode 6-17
Silicon Epicap Diode 6-19
Dual Voltage-Variable Capacitance Diode 6-21
Silicon Epicap Diode 6-23
Silicon Epicap Diode 6-24
Voltage-Variable Capacitance Diodes 6-25
Voltage-Variable Capacitance Diode 6-28
Silicon PIN Switching Diode 6-30
Silicon PIN Switching Diode 6-32
Silicon PIN Switching Diode 6-34
Siticon PIN Switching Diode 6-32

Device Number	Description	Page Number
MV104	Dual Voltage-Variable Capacitance Diode	6-36
MV209	Voltage-Variable Capacitance Diode . .	6-17
MV409	Silicon Epicap Diode .	6-19
MV1401,H	High Tuning Ratio Voltage-Variable Capacitance Diodes	6-38
MV1403,H	High Tuning Ratio Voltage-Variable Capacitance Diodes	6-38
MV1404,H	High Tuning Ratio Voltage-Variable Capacitance Diodes	6-38
MV1405,H	High Tuning Ratio Voltage-Variable Capacitance Diodes	6-38
MV1620 thru MV1650	Silicon Epicap Diode .	6-40
MV2101 thru MV2115	Voltage-Variable Capacitance Diode	6-25
MV7005T1	Silicon Epicap Diode .	6-41
MV7005T3	Silicon Epicap Diode .	6-41
MVAM108, MVAM109	Tuning Diodes with Very High Capacitance Ratio	6-43
MVAM115	Tuning Diode with Very High Capacitance Ratio.	6-43
MVAM125	Tuning Diode with Very High Capacitance Ratio.	6-43

Volume II

Table of Contents

Page Number
RF Amplifiers
High Power
Land Mobile/Profile 4-3
136-174 MHz, VHF Band - Class C 4-3
400-512 MHz, UHF Band - Class C 4-3
806-960 MHz, UHF Band - Class C 4-3
Base Station 4-4
145-225 MHz Band - Class AB 4-4
400-512 MHz Band - Class AB 4-4
806-960 MHz Band - Class A and/or AB $4-4$
TV Transmitters 4-5
PAM Series - Ultra Linear 4-5
VHF Band - Class A. 4-5
VHF/UHF Band - Class A 4-5
UHF Band - Class A. 4-5
PAA Series - Ultra Linear Integrated Amplifier Assemblies 4-6
Wide Band, Medium Power - Class A 4-6
Wide Band, High Power - Class A 4-6
VHF Band, High Power - Class A 4-6
VHF/UHF Band, High Power - Class A 4-6
UHF Band, High Power - Class A 4-6
Low Power
CATV Distribution 4-7
Hybrids up to 60 Channels and 450 MHz 4-7
Hybrids up to 77 Channels and 550 MHz $4-8$
Hybrids up to 860 MHz 4-8
Reverse Amplifier Hybrids 4-8
450/550 MHz Power Doubling Hybrids 4-9
450/550 MHz Feedforward Hybrids 4-9
General Purpose Wideband 4-9
50Ω Hybrids 4-9
50Ω-100 Ω Hybrids. 4-10
50Ω Monolithic 4-10
Standard Linear Hybrids 4-11
SHP and DHP Linear. 4-12
CRT Driver 4-13
RF Transceiver Modules 4-13
Tuning and Switching DiodesTuning Diodes, Abrupt Junction4-14
General Purpose, Glass 4-14
General Purpose, Plastic 4-15
High Capacitance 4-16
Dual Diodes 4-16
Tuning Diodes, Hyper-Abrupt Junction 4-17
Hot-Carrier (Schottky) Diodes 4-18
PIN Switching Diodes 4-18
RF Chips
Ordering and Shipping Information 4-19
Die Geometries 4-20
Preferred Parts List 4-21
Storage and Handling Information 4-21

RF Amplifiers

High Power

Complete amplifiers with 50 ohm in/out impedances are available for a variety of applications including land mobile radios, base stations, TV transmitters and other uses requiring large-signal amplification, both linear and Class C. Frequencies covered range from 1 MHz to 1000 MHz with power levels extending to 100 watts.

Land Mobile/Portable

The advantages of small size, reproducibility and overall lower cost become more pronounced with increasing frequency of operation. These amplifiers offer a wide range in power levels and gain, with guaranteed performance specifications for bandwidth, stability and ruggedness.
$136-174 \mathrm{MHz}$, VHF BAND - Class C

	Pout Output Power Watts	Pin Input Power Watts	\mathbf{f} Frequency MHz	Gp Power Gain dB Min	VCC Supply Voltage Volts	Package/Style
MHW607-1	7	0.001	$136-150$	38.4	7.5	$301 \mathrm{~K}-02 / 3$
MHW607-2	7	0.001	$146-174$	38.4	7.5	$301 \mathrm{~K}-02 / 3$

400-512 MHz, UHF BAND - Class C

MHW707-1	7	0.001	$403-440$	38.4	7.5	$301 \mathrm{~J}-02 / 1$
MHW707-2	7	0.001	$440-470$	38.4	7.5	$301 \mathrm{~J}-02 / 1$
MHW709-1	7.5	0.1	$400-440$	18.8	12.5	$700-03 / 1$
MHW709-2	7.5	0.1	$440-470$	18.8	12.5	$700-03 / 1$
MHW709-3	7.5	0.1	$470-512$	18.8	12.5	$700-03 / 1$
MHW710-1	13	0.15	$400-440$	19.4	12.5	$700-03 / 1$
MHW710-2	13	0.15	$440-470$	19.4	12.5	$700-03 / 1$
MHW710-3	13	0.15	$470-512$	19.4	12.5	$700-03 / 1$
MHW720-1	20	0.15	$400-440$	21	12.5	$700-03 / 1$
MHW720-2	20	0.15	$440-470$	21	12.5	$700-03 / 1$
MHW720A1 (21)	20	0.15	$400-440$	21	12.5	$700-03 / 1$
MHW720A2 (21)	20	0.15	$440-470$	21	12.5	$700-03 / 1$
MHW721A2	20	0.15	$450-460$	21	12.5	$700-03 / 11$
MX20-1	20	0.15	$400-440$	21	12.5	$830-01 / 1$
MX20-2	0.15	$440-470$	21	12.5	$830-01 / 1$	
MHW703	20	0.002	$450-460$	30.6	7.2	$301 \mathrm{~J}-02 / 1$

806-960 MHz, UHF BAND - Class C

MHW801-1	1.6	0.001	820-850	32	6	413-01/1
MHW801-2	1.6	0.001	870-905	32	6	413-01/1
MHW801-3	2	0.001	890-915	33	6	413-01/1
MHW801-4	1.6	0.001	915-925	32	6	413-01/1
MHW803-1	2	0.001	820-850	33	7.5	301E-04/1
M ${ }^{\text {WW803-2 }}$	2	0.001	806-870	33	7.5	301E-04/1
MHW803-3	2	0.001	870-905	33	7.5	301E-04/1
MHW806A1 (21)	6	0.03	820-850	23	12.5	$301 \mathrm{H}-03 / 1$
MHW806A2 (21)	6	0.03	806-870	23	12.5	$301 \mathrm{H}-03 / 1$
MHW806A3 (21)	6	0.04	890-915	21.7	12.5	$301 \mathrm{H}-03 / 1$
MHW806A4 (21)	6	0.04	870-950	21.7	12.5	301H-03/1
MHW807-1	6	0.001	820-850	38	12.5	301L-01/1
MHW807-2	6	0.001	870-905	38	12.5	301L-01/1
MHW812A3 (21)	12	0.1	870-950	20.8	13	301H-03/1
MHW820-3	18	0.35	870-950	17.1	12.5	301G-03/1
MHW820-1	20	0.25	806-870	19	12.5	301G-03/1
MHW820-2	20	0.25	806-890	19	12.5	301G-03/1
MHW851-1	1.6	0.001	820-850	32	6	$301 \mathrm{~N}-01 / 1$
MHW851-2	1.6	0.001	870-905	32	6	$301 \mathrm{~N}-01 / 1$
MHW851-3	2.0	0.001	890-915	33	6	$301 \mathrm{~N}-01 / 1$
MHW851-4	1.6	0.001	915-925	32	6	$301 \mathrm{~N}-01 / 1$
MHW857-1	6	0.001	820-850	37.8	12.5	301L-02/2
MHW857-2	6	0.001	870-905	37.8	12.5	301L-022

Base Station

The convenience of complete amplifiers for base station transmitters is offered for many two-way radio bands from VHF through the high-UHF cellular bands ($806-960 \mathrm{MHz}$). Power levels to 120 W are available operating from 24 to 26 volt supplies. Class AB or Class A operation provides linear performance suitable in both analog and digital systems.

The AMR/ACR series can optionally be modified in frequency, power and mechanical outline. Please contact your local MOTOROLA field sales office.

145-225 MHz BAND - Class AB

	Pout Output Power Watts	Pin Input Power Watts	\mathbf{f} Frequency MHz	Gp Power Gain dB Min	Vupply Voltage Volts	Package/Style
AMR175-60	60	6	$145-175$	10	28	$389 \mathrm{~K}-01 / 1$
AMR225-60	60	6	$180-225$	10	28	$389 \mathrm{~K}-01 / 1$

400-512 MHz BAND - Class AB

AMR440-60	60	12	$400-440$	7	28	389 L-01/1
AMR470-60	60	12	$440-470$	7	28	$389 L-01 / 1$

806-960 MHz BAND - Class A and/or $A B$

AMR900-60A (22)	20	2.25	$800-960$	9.5	26	$389 \mathrm{~B}-02 / 1$
ACR900-30E	30	0.48	$890-960$	18	25	$389 \mathrm{~J}-01 / 1$
AMR900-60	60	12	$800-960$	7	24	$389 \mathrm{~B}-02 / 2$
AMR900-80 (1)	80	16	$865-900$	7	26	$389 M-01 / 1$
AMR960-80 (1)	80	16	$935-960$	7	26	$389 M-01 / 1$
AMR960-100 (1)	100	20	$860-960$	7	26	$389 M-01 / 1$

[^0]New introductions

TV Transmitters

These amplifiers are characterized for ultra-linear applications in Band IV and V TV transmitters.

	Frequency MHz	Pref Watts	Gp (Min)/Freq. Power Gain dB/MHz	3 Tone (12) IMD 1 dB	3 Tone (24) IMD 2 dB	VCC Volts	Package/ Style
ATV5030	$470-860$	20	$7.5 / 860$	-51	-54	26	$3898-02 / 1$
ATV5090B	$470-860$	$90(13)$	$7 / 860$	-	-	28	$389 N-01 / 1$
ATV6031	$470-860$	20	$10.5 / 860$	-50	-53	26.5	$389 B-02 / 1$
ATV7050	$470-860$	30	$8 / 860$	-51	-54	25	389 -01/1
ATV7060	$470-860$	40	$10 / 860$	-51	-54	25.5	$389 H-01 / 1$

PAM Series - Ultra Linear

PAM devices are class A and class AB linear amplifiers with medium and high output powers in the VHF and UHF frequency range. They feature a wide dynamic range and a high third order intercept point. These high quality amplifiers are offered in a heavy-duty machined housing and are ideal for applications in instrumentation, communications and electronic warfare.
VHF BAND - Class A

Device	Frequency MHz		Gain Typ dB	V_{CC} Volts	3rd Order Intercept Typ dBm	Package/ Style
PAM225-42-10L	172-225	10	46	24	-58(25)	389C-01/1
PAM225-42-10LA	172-225	10	46	28	-58 (25)	389C-01/1

VHF/UHF BAND - Class A

PAM0105-29-6L	$100-500$	6	31	24	+48.5	$389 \mathrm{C}-01 / 1$
PAM0105-29-6LA	$100-500$	6	31	28	+48.5	$389 \mathrm{C}-01 / 1$
PAM0105-7-25L	$100-500$	25	7.5	24	+53.5	$389 \mathrm{E}-01 / 1$
PAM0105-7-25LA	$100-500$	25	7.5	28	+53.5	$389 E-01 / 1$
PAM0105-6-50L	$100-500$	50	7	24	+56.5	$389 \mathrm{D}-01 / 1$
PAM0105-6-50LA	$100-500$	50	7	28	+56.5	$389 \mathrm{D}-01 / 1$

UHF BAND - Class A

PAM0510-25-6L	$500-1000$	27	24	48.5	$389 \mathrm{C}-01 / 1$	+45
PAM0810-24-3L	$800-1000$	3	26	24	$389 \mathrm{C}-01 / 1$	
PAM0810-24-3LA	$800-1000$	3	26	28	+45	$389 \mathrm{C}-01 / 1$
PAM0810-24-5L	$800-1000$	5	26	24	+47.5	$389 \mathrm{C}-01 / 1$
PAM0810-24-5LA	$800-1000$	5	26	28	+47.5	$389 \mathrm{C}-01 / 1$
PAM0810-8-10L	$800-1000$	10	10	24	+50	$389 \mathrm{E}-01 / 1$
PAM0810-8-10LA	$800-1000$	10	10	28	+50	$389 \mathrm{E}-01 / 1$
PAM0810-7-25L	$800-1000$	25	8	24	+55	$389 \mathrm{E}-01 / 1$
PAM0810-7-25LA	$800-1000$	25	8	28	+55	$389 \mathrm{E}-01 / 1$
PAM0810-6-50L	$800-1000$	50	7	24	+56.5	$389 \mathrm{D}-01 / 1$
PAM0810-6-50LA	$800-1000$	50	7	28	+56.5	$389 \mathrm{D}-01 / 1$

(12) Vision Carrier $=-8 \mathrm{~dB}$; Sound Carrier $=-7 \mathrm{~dB}$; Sideband Carrier $=-16 \mathrm{~dB}$
(13) Output power at 1 dB compression, in Class $A B$
(17) Higher Voltage Version
(24) Vision Carrier $=-8 \mathrm{~dB}$; Sound Carrier $=-10 \mathrm{~dB}$; Sideband Carrier $=-16 \mathrm{~dB}$
(25) Composite Triple Beat in dB. Tones: $-8,-11$ and -16 dB

PAA Series - Ultra Linear Integrated Amplifier Assemblies

PAA and PAE integrated assemblies are class A amplifiers with internal power supply. Available in either 115 Vac or 220 Vac operation. They provide high-gain, excellent linearity and can withstand any load VSWR.
WIDE BAND, MEDIUM POWER - Class A

Device	Frequency MHz		Gain Typ dB	$V_{A C}$ Volts	3rd Order Intercept Typ dBm	Package/ Style
PAA0200-34-1.5L	1-200	1.5	36	115	$+45$	389R-01/1
PAA0200-34-3.1L	1-200	3.1	35	115	+48	389R-01/1
PAA0450-33-0.4L	30-450	0.4	34	115	$+38$	389R-01/1
PAA0500-17-1.0L	30-500	1	18	115	+42	389R-01/1
PAA0500-35-1.0L	30-500	1	36.5	115	+42	389R-01/1
PAA0500-17-2.0L	30-500	2	18	115	+33	389R-01/1
PAA1000-14-0.6L	10-1000	0.6	15	115	+42	389R-01/1
PAA1000-30-0.6L	10-1000	0.6	32	115	+42	389R-01/1
PAA1000-14-1.3L	10-1000	1.3	15	115	+44	389R-01/1
PAE0200-34-1.5L	1-200	1.5	36	220	+45	389R-01/1
PAE0200-34-3.1L	1-200	3.1	35	220	+48	389R-01/1
PAE0450-33-0.4L	30-450	0.4	34	220	+38	389R-01/1
PAE0500-17-1.0L	30-500	1	18	220	+42	389R-01/1
PAE0500-35-1.0L	30-500	1	36.5	220	+42	389R-01/1
PAE0500-17-2.0L	30-500	2	18	220	+33	389R-01/1
PAE1000-14-0.6L	10-1000	0.6	15	220	+ 42	389R-01/1
PAE1000-30-0.6L	10-1000	0.6	32	220	+42	389R-01/1
PAE1000-14-1.3L	10-1000	1.3	15	220	+44	389R-01/1

WIDE BAND, HIGH POWER — Class A

PAA1000-42-5L	$25-1000$	5	42	115	+46.5	$389 \mathrm{~F}-01 / 1$
PAE1000-42-5L	$25-1000$	5	42	220	+46.5	$389 \mathrm{~F}-01 / 1$

VHF BAND, HIGH POWER - Class A

PAA225-42-10L	$172-225$	10	46	115	$-58(25)$	$389 \mathrm{~F}-01 / 1$
PAE225-42-10L	$172-225$	10	46	220	$-58(25)$	$389 \mathrm{~F}-01 / 1$

VHF/UHF BAND, HIGH POWER - Class A

PAA0105-29-6L	$100-500$	6	31	115	+48.5	$389 \mathrm{~F}-01 / 1$
PAA0105-45-25L	$100-500$	25	47	115	+53	$389 \mathrm{~F}-01 / 1$
PAA0105-50-50LAS	$100-500$	50	52	115	+56.5	$389 \mathrm{G}-01 / 1$
PAE0105-29-6L	$100-500$	6	31	220	+48.5	$389 \mathrm{~F}-01 / 1$
PAE0105-45-25L	$100-500$	25	47	220	+53	$389 \mathrm{~F}-01 / 1$
PAE0105-50-50LAS	$100-500$	50	52	220	+56.5	$389 G-01 / 1$

UHF BAND, HIGH POWER - Class A

PAAO510-25-6L	$500-1000$	6	27	115	48.5	$389 F-01 / 1$
PAAO810-24-5L	$800-1000$	4.5	26	115	+47.5	$389 F-01 / 1$
PAAO810-38-5LAS	$800-1000$	4.5	42	115	+47.5	$389 F-01 / 1$
PAAO810-32-10L	$800-1000$	10	35	115	+50	$389 F-01 / 1$
PAAO810-31-25L	$800-1000$	25	33	115	+55	$389 F-01 / 1$
PAAO810-40-50L	$800-1000$	50	42	115	+56.5	$389 G-01 / 1$
PAAO810-40-50LAM (26)	$800-1000$	50	42	115	+56	$389 G-01 / 1$
PAAO810-54-50LAS	$800-1000$	50	56	115	+56.5	$389 G-01 / 1$
PAA0810-54-50LSM (26)	$800-1000$	50	56	115	+56	$389 G-01 / 1$
PAA0810-38-100AB	$800-1000$	100	38	115	-	$389 G-01 / 1$
PAAO810-52-100AB	$800-1000$	100	52	115	-	$389 G-01$
PAAO810-52-100AM (26)	$800-1000$	100	52	115	-	$389 G-01 / 1$
PAE0810-24-5L	$800-1000$	4.5	26	220	+47.5	$389 F-01 / 1$
PAE0810-38-5LAS	$800-1000$	4.5	42	220	+47.5	$389 F-01 / 1$
PAE0810-32-10L	$800-1000$	10	35	220	+50	$389 F-01 / 1$
PAE0810-31-25L	$800-1000$	25	33	220	+55	$389 F-01 / 1$
PAE0810-40-50L	$800-1000$	50	42	220	+56.5	$389 G-01 / 1$
PAE0810-40-50LAM (26)	$800-1000$	50	42	220	+56	$389 G-01 / 1$
PAE0810-54-50LAS	$800-1000$	50	56	220	+56.5	$389 G-01 / 1$
PAE0810-54-50LSM (26)	$800-1000$	50	56	220	+56	$389 G-01 / 1$
PAE0810-38-100AB	$800-1000$	100	38	220	-	$389 G-01 / 1$
PAE0810-52-100AM (26)	$800-1000$	100	52	220	-	$389 G-01 / 1$

(25) Composite triple beat in dB . Tones: $-8,-11$ and -16 dB
(26) Includes directional wattmeter, filter and directional coupler

Low Power

The following categories describe a wide range of complete amplifier assemblies both hybrid and monolithic for use in CATV distribution systems, instrumentation, communications and military equipment. A variety of power levels and frequencies of operation are offered for many applications.

CATV Distribution

Motorola Hybrids are manufactured using fourth generation technology which has set new standards for CATV system performance and reliability. These hybrids have been optimized to provide premium performance in all CATV systems up to 77 channels.

HYBRIDS UP TO 60 CHANNELS AND 450 MHz

Device	Hybrid Gain (Nominal) dB	Channel Loading Capacity	Maximum Distortion Specifications				NoiseFigure@ $\mathbf{4 5 0 ~ M H z}$dB		Package/Style
			Output Level dBmV	$\begin{array}{\|c} \text { 2nd Order } \\ \text { Test (28) } \\ \text { dB } \\ \hline \end{array}$	Composite Triple Beat dB	Cross Modulation dB			
					60 CH	60 CH	Max	Typ	
MHW5122A	12	60	+46	-72	-58	-61	8	7	714-04/1
MHW5141A	14	60	+46	-72	-56	-59	7	-	714-04/1
MHW5142A	14	60	+46	-74	-61	-62	7	6	714-04/1
MHW5162A	16	- 60	+46	-72	-58	-61	7	6	714-04/1
MHW5171A	17	60	+46	-72	-58	-59	7	-	714-04/1
MHW5172A	17	60	+46	-74	-60	-62	7	6	714-04/1
MHW5181A	18	60	$+46$	-72	-57	-56	6.5	5.5	714-04/1
MHW5182A	18	60	+46	-72	-61	-59	6.5	5.5	714-04/1
MHW5222A	22	60	+46	-72	-60	-59	5	4.5	714-04/1
MHW5272A	27	60	+46	-72	-59	-60	6	-	714-04/1
MHW5342A	34	60	+46	-72	-59	-59	6	5	714-04/1
MHW5382A	38	60	+46	-70	-59	- 59	5	4	714-04/1
MHW5332	33	60	+46	-70	-60	- 59	6	5	714-04/1
CA7901	21	60	+46	-61	-58	-60	-	, 5.6	714F-01/1

(28) Channels 2 and M13 @ M22

HYBRIDS UP TO 77 CHANNELS AND 550 MHz

Device	Hybrid Gain (Nominal) dB	Channel Loading Capacity	Maximum Distortion Specifications				NoiseFigure@ 550 MHzdB		Package/Style
			Output Level dBmV	2nd Order Test (29) dB	Composite Triple Beat dB	$\begin{array}{\|c\|} \hline \text { Cross } \\ \text { Modulation } \\ \mathrm{dB} \\ \hline \end{array}$			
					77 CH	77 CH	Max	Typ	
MHW6122	12	77	+44	-74	-56	-62	8.5	7	714-04/1
MHW6141	14	77	+44	-72	-56	-59	7.5		714-04/1
MHW6142	14	77	+44	-72	-59	-62	7.5		714-04/1
MHW6171	17	77	+44	-68	-56	-59	7		714-04/1
MHW6172	17	77	+44	-70	-59	-62	7		714-04/1
MHW6181	18	77	+44	-70	-56	-59	7		714-04/1
MHW6182	18	77	$+44$	-72	-58	-62	7		714-04/1
MHW6222	22	77	+44	-66	-57	-57	6		714-04/1
MHW6272	27	77	$+44$	-64	-57	-57	6.5	6	714-04/1
MHW6342	34	77	+44	-64	-57	-57	6.5	5.5	714-04/1

HYBRIDS UP TO 860 MHz

Device	Gain dB	Frequency MHz	$V_{C C}$ Volts	2nd Order IMD dB (a) $\mathrm{V}_{\text {out }}=$ $50 \mathrm{dBmV} / \mathrm{ch}$	Composite Triple Beat dB @ $\mathrm{V}_{\text {out }}$ /Freq. ($\mathrm{dBmV} / \mathrm{MHz}$)	DIN45004B dBmV (a) Freq. (MHz)	NF @ 860 MHz dB Max	Package/Style
CA901	17	40-860	24	-60		$\begin{gathered} 60 \\ (860) \end{gathered}$	9	714P-01/2
CAB914	23	470-860	24		$\begin{aligned} & -51 \\ & (61 / 860) \end{aligned}$	$\begin{gathered} 62 \\ (860) \end{gathered}$	8.5	830A-01/1

REVERSE AMPLIFIER HYBRIDS

Device	Hybrid Gain (Nominal) dB	Channel Loading Capacity	Maximum Distortion Specifications								NoiseFigure@ 175 MHzdBMax	Package/ Style
			Output Level dBmV	2nd Order Test dB (30)	Composite Triple Beat dB			Cross Modulation dB				
					12 CH	22 CH	26 CH	12 CH	22 CH	26 CH		
MHW1134	13	22	+50	-72	-	-73	-71 (16)	-	-65	-65 (16)	7	714-04/1
MHW1184	18	22	+50	-72	-	-72	-70 (16)	-	-64	-64 (16)	5.5	714-04/1
MHW1224	22	22	+50	-72	-	-71	-68 (16)	-	-62	-62 (16)	5.5	714-04/1
MHW1244	24	22	+50	-72	-	-70	-68(16)	-	-61	-61 (16)	5	714-04/1

(16) Typical
(29) Channels 2 and M30 @ M39
(30) Channels 2 and A@ 7

New introductions

450/550 MHz POWER DOUBLING HYBRIDS

Device	Hybrid Gain (Nominal) dB	Channel Loading Capacity	Maximum Distortion Speciftcations						NoiseFigure@ $450 / 550 \mathrm{MHz}$dB		Package/Style
			Output Level dBmV	2nd Order Test dB	Composite Triple Beat dB		$\begin{gathered} \text { Cross } \\ \text { Modulation } \\ \mathrm{dB} \end{gathered}$				
					60 CH	77 CH	60 CH	77 CH	Max	Typ	
MHW5185(36)	18	60	+46	-74 (28)	-65	-	-66	-	7	-	714-04/1
MHW6185(36)	18	77	+44	-71 (29)	-	-63	-	-63	7.5	-	714-04/1
TMHW520 (36)	22	760	$+46$	-63(29)	$-62{ }^{10}$		-60	\square	6	5	71404

450/550 MHz FEEDFORWARD HYBRIDS (Case 774-01/2)

Device	Hybrid Gain (NomInal) dB	Channel Loading Capacity	Maximum Distortion Specifications						NoiseFigure@ 450/550 $\mathbf{M H z}$dB		Package/Style
			Output Lovel dBmV	2nd Order Test dB	Composite Triple Beat dB		Cross Modulation $d B$				
					60 CH	77 CH	60 CH	77 CH	Max	Typ	
FF124	24	60	+46	-84	-79	-	-75	-	10	-	825-02/1
FF124B	24	60	+46	-84	-79	-	-75	-	10	-	825A-01/1
FF224	24	77	$+44$	-86	-	-75	-	-70	11	-	825-02/1
FF224B	24	77	+44	-86	-	-75	-	-70	11	-	825A-01/1

General Purpose Wideband

A wide range of hybrid and silicon monolithic amplifiers is offered for low level signal amplification. Package type, gain, frequency of operation, output level and supply voltage combinations can be selected to fit the design engineer's specific requirements.

50Ω HYBRIDS (Case 31A-03/2)

The MWA Series features excellent gain versus frequency flatness, temperature stability and are cascadable for high gain lineups. Construction techniques include thin film gold metal circuitry and hermetic TO-205AD package. MWA devices processed similarly to MIL-S-883, Method 5004.4, Class B, are available to special order.

Device	Frequency Range MHz	Gain dB MIn/Typ	Supply Voltage Vdc	Output Level 1 dB Compression dBm	Nolse Figure @ 250 MHz dB
MWA110	0.1-400	13/14	2.9	-2.5	4
MWA120	0.1-400	13/14	5	+8.2	5.5
MWA130	0.1-400	13/14	5.5	$+18$	7
MWA13t	$0-400$	13/14	5.5	$+20$	5 (39)
MWA210	0.1-600	9/10	1.75	$+1.5$	6
MWA220	0.1-600	9/10	3.2	+10.5	6.5
MWA230	0.1-600	9/10	4.4	+18.5	7.5
MWA310	0.1-1000	$7 / 8$	1.6	+3.5	6.5
MWA320	0.1-1000	$7 / 8$	2.9	+11.5	6.7
MWA330	0.1-1000	-6.2	4	+15.2	9

(28) Channels 2 and M13 (a) M22
(29) Channels 2 and M30 @ M39
(36) Available in reverse voltage (-24 V) version (in Case 714C-04) by piacing Suffix " R " after device number.
(39) $N F$ (a) $f=400 \mathrm{MHz}$

Now introductions

LOW POWER (continued)

$50 \Omega-100 \Omega$ HYBRIDS (Case 714-04/1)

The general purpose hybrid amplifiers listed are for broadband system applications requiring superior gain and current stability with temperature. The $\mathbf{5 0}$ to $\mathbf{1 0 0}$ ohm input and output impedances help simplify designs.

Device	Frequency Range MHz	Gain dB Min/yp	Supply Voltage Vode	Output Level 1 dB Compression mW/ (MHz)	Noise Figure @ 250 MHz dB
MHW591	$1-250$	$34.5 / 36.5$	13.6	$700 / 100$	5
MHW593	$10-400$	$33 / 34.5$	13.6	$600 / 200$	5
MHW590	$10-400$	$31.5 / 34$	24	$800 / 200$	5
MHW592	$1-250$	$33.5 / 35$	24	$900 / 100$	

50Ω MONOLITHIC

These monolithic amplifiers are fully cascadable and usable to frequencies over 3 GHz . External blocking capacitors are required along with an extemal bias resistor. Hermetic versions are available to special order in Case 303-01.

| | Frequency
 Range
 MHz | Galn
 dB
 Typ @ $1 \mathbf{~ G H z}$ | Recommended
 Operating Current
 mA | Output Level
 1 dB Compression
 dBm Typ | Noise Flgure
 $@ 1500 \mathrm{MHz}$
 dB |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Case 317-01/3

MWA0204	DC-3000	11.5	25	7	6
MWA0304	DC-3000	11.5	35	12	6

Case 318A-05/4

MWA0211L	DC-3000	11.5	25	7	6
MWA0311L	DC-3000	11.5	35	12	6

Case 303A-01/3

MWA0270	DC-3000	12	25	7	6
MWA0370	DC-3000	12	35	12	6

STANDARD LINEAR HYBRIDS

The CA series of RF linear hybrid amplifiers consists of a family of medium power, broadband gain blocks in the CATV industry standard "CA" package. These amplifiers were designed for multi-purpose RF applications where linearity, dynamic range and wide bandwidth are of primary concern. Each amplifier is available in various package options. For hermetic package option add suffix " H " to part number except where noted (32). Four parts are available as indicated in a low profile package. Hermetic package parts are in Case 826-01/1 (for positive supply) or 826-01/2 (for negative supply).

Device	BW MHz	Gain Flatness $\pm \mathrm{dB}$	Gain/Freq. $\mathrm{dB} / \mathrm{MHz}$	$P_{1 d B}$ dBm	$\mathrm{NF} /$ Freq. $\mathrm{dB} / \mathrm{MHz}$	3rd Order Intercept Point/Freq. $\mathrm{dBm} / \mathrm{MHz}$	$\begin{aligned} & \text { VSWR } \\ & 50 \Omega / 75 \Omega \end{aligned}$	$\mathrm{V}_{\mathrm{S}} / \mathrm{l} \mathrm{S}$ V/mA	Case/ Style
CA2800 (31)	10-400	1	17/50	29	8.5/300	44/300	2/1.3	24/200	714F-01/1
CA2810 (31)	10-350	1.5	33/50	29	8/300	43/300	2/1.3	24/300	714F-01/1
CA2813 (31)	40-300	1.25	34/50	22	5/300	40/300	2/1.3	15/160	714F-01/1
CA2818 (31)	1-200	1	18.5/50	29.5	5.5/150	47/150	2/1.3	24/205	714F-01/1
CA2820 (31)	1-520	1.5	30/100	26.5	8/500	37/500	$2 /$	24/330	714M-01/2
CA2830 (31)	5-200	1	34.5/100	29	4.7/200	46/200	2	24/300	714F-01/1
CA2833 (31)	5-200	1	34.5/100	29	4.7/200	46/200	$2 /$	24/300	714G-01/1
CA2832 (31)	1-200	1	35.5/100	33	6/200	47/200	$2 /$	28/435	714F-01/1
CA2842 (31)	30-300	1	22/100	30	5/100	46/300	1.5/	24/230	714F-01/1
CA2846 (31)	30-300	1	22/100	30	5/100	46/300	1.5/	24/230	714G-01/1
CA2850R (31)	40-100	0.2	17.5/100	25	4.5/70	40/70	1.3/	-19/125	714H-01/1
CA2851R (31)	40-100	0.2	17.5/100	25	4.5/70	40/70	1.3/	-19/125	714L-01/1
CA2870 (31)	20-400	1	34/100	27	7.5/400	45/300	$2 /$	24/300	714M-01/1
CA2875R (31)	40-100	0.2	17.5/100	26	4.5/70	43/70	/1.07	- 19/155	714H-01/1
CA2880R (31)	40-100	0.3	22/100	22	3/70	36/70	/1.2	-19/73	714L-01/1
CA2885 (32)	40-550	1	17.7/50	33	7/500	43/500	2/1.3	24/425	714F-01/1
CA4800 (31)	10-1000	0.5	17/100	26	7.5/1000	40/1000	$2 /$	24/220	714P-01/2
CA4812 (31)	10-1000	0.5	17/100	26	7.5/1000	40/1000	$2 /$	12/380	714P-01/3
CA4815 (31)	10-1000	0.5	17/100	26	7.5/1000	40/1000	$2 /$	15/380	714P-01/3
CA5800 (31)	10-1000	0.5	15/100	30	8.5/1000	41/1000	$2 /$	28/400	714P-01/2
CA5815 (31)	10-1000	0.5	16/100	30	8/1000	41/1000	2	15/700	714P-01/3
CA5900	10-1200	0.5	15/100	30	8.5/1200	41/1200	2	28/400	714P-01/2
CA5915	10-1200	0.5	15/100	30	8.5/1200	41/1200	2	15/700	714P-01/3

(31) Available in Hi-Rel hermetic package manufactured compliant to MIL-A-28875. To order, insert an " R " in the part number following the prefix "CA" (Example, CAR2800).
(32) Not available in hermetic package

New introductions

LOW POWER (continued)

SHP and DHP Linear

The SHP and DHP series of linear amplifiers consist of medium power, broadband, high gain amplifiers operating from 15 to 28 volt supplies. Both their wide dynamic and frequency ranges make them suitable for use in instrumentation, communications and military equipments.

SHP (Case 389A-01/1)

Device	$\begin{gathered} \mathrm{BW} \\ (\mathbf{M H z}) \end{gathered}$	Gain (dB)	VSWR 50 Ohms	DC Power	$\begin{gathered} 1 \mathrm{~dB} \\ \text { Compression } \\ \mathbf{W} @ \mathbf{M H z} \end{gathered}$	$\begin{aligned} & \text { Third Order } \\ & \text { Intercept } \\ & \text { dBm@ MHz } \end{aligned}$	Nolse Figure dB @ MHz
SHP02-36-20	1-200	36	2:1	$28 \mathrm{~V} / 430 \mathrm{~mA}$	$\begin{gathered} 2 @ 50 \\ 1.5 @ 200 \end{gathered}$	$\begin{aligned} & +50 @ 50 \\ & +43 @ 200 \end{aligned}$	$\begin{aligned} & 5 @ 100 \\ & 6 @ 200 \end{aligned}$
SHP06-18-04	30-550	18	1.5:1	$24 \mathrm{~V} / 220 \mathrm{~mA}$	$\begin{aligned} & 0.8 @ 300 \\ & 0.3 @ 550 \end{aligned}$	$\begin{aligned} & +44 @ 300 \\ & +36 @ 550 \end{aligned}$	$\begin{gathered} 6 @ 300 \\ 7.5 @ 550 \end{gathered}$
SHP05-22-04	30-450	22	1.5:1	$24 \mathrm{~V} / 220 \mathrm{~mA}$	$\begin{aligned} & 0.8 @ 300 \\ & 0.4 @ 450 \end{aligned}$	$\begin{aligned} & +44 @ 300 \\ & +38 @ 450 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \text { @ } 300 \\ & 6 @ 450 \end{aligned}$
SHP05-34-04	30-450	34	1.5:1	$24 \mathrm{~V} / 330 \mathrm{~mA}$	$\begin{aligned} & 0.8 @ 300 \\ & 0.4 @ 450 \\ & \hline \end{aligned}$	$\begin{aligned} & +43 @ 300 \\ & +38 @ 450 \end{aligned}$	$\begin{gathered} 5.5 @ 300 \\ 6 @ 450 \\ \hline \end{gathered}$
SHP05-20-10	30-500	20	1.5:1	$24 \mathrm{~V} / 430 \mathrm{~mA}$	$\begin{aligned} & 2 @ 300 \\ & 1 @ 500 \end{aligned}$	$\begin{aligned} & +48 @ 300 \\ & +41 @ 500 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 @ 300 \\ & 6 @ 500 \end{aligned}$
SHP10-17-04	10-1000	17	2:1	24 V/220 mA	$\begin{gathered} \hline 0.4 @ 500 \\ 0.4 @ 1000 \\ \hline \end{gathered}$	$\begin{array}{r} +40 @ 500 \\ +39 @ 1000 \\ \hline \end{array}$	$\begin{gathered} 6.5 @ 500 \\ 7.5 @ 1000 \\ \hline \end{gathered}$
SHP10-17-04-15	10-1000	17	2:1	$15 \mathrm{~V} / 400 \mathrm{~mA}$	$\begin{aligned} & 0.4 @ 500 \\ & 0.4 @ 1000 \end{aligned}$	$\begin{array}{r} +40 @ 500 \\ +39 @ 1000 \end{array}$	$\begin{aligned} & 6.5 @ 500 \\ & 7.5 @ 1000 \end{aligned}$
SHP10-15-08	10-1000	15	2:1	$28 \mathrm{~V} / 400 \mathrm{~mA}$	$\begin{gathered} 0.8 @ 500 \\ 0.7 @ 1000 \end{gathered}$	$\begin{aligned} & +43 @ 500 \\ & +42 @ 1000 \end{aligned}$	$\begin{gathered} 7.5 @ 500 \\ 8.5 @ 1000 \end{gathered}$
SHP10-15-08-15	10-1000	15	2:1	$15 \mathrm{~V} / 700 \mathrm{~mA}$	$\begin{gathered} 0.8 @ 500 \\ 0.7 @ 1000 \end{gathered}$	$\begin{array}{r} +43 @ 500 \\ +42 @ 1000 \end{array}$	$\begin{gathered} 7.5 @ 500 \\ 8.5 @ 1000 \end{gathered}$

DHP (Case 389-01/1)

Device	$\begin{gathered} \mathrm{BW} \\ \left(\mathrm{MHz}_{\mathbf{2}}\right. \end{gathered}$	Gain (dB)	$\begin{aligned} & \text { VSWR } \\ & 50 \text { Ohms } \end{aligned}$	DC Power	1 dB Compression W@ MHz	Third Order Intercept dBm @ MHz	
DHP02-36-40	1-200	36	2:1	28 V/870 mA	$\begin{gathered} 4 @ 50 \\ 3 @ 200 \end{gathered}$	$\begin{aligned} & +53 @ 50 \\ & +46 @ 200 \end{aligned}$	$\begin{aligned} & 5.5 @ 100 \\ & 6.5 @ 200 \end{aligned}$
DHP05-36-10	30-500	36	1.5:1	$24 \mathrm{~V} / 600 \mathrm{~mA}$	$\begin{aligned} & 2 @ 300 \\ & 1 @ 500 \end{aligned}$	$\begin{aligned} & +48 @ 300 \\ & +41 @ 500 \end{aligned}$	$\begin{aligned} & 5 @ 300 \\ & 6 @ 500 \end{aligned}$
DHP05-18-20	30-500	18	1.5:1	24 V/830 mA	$\begin{aligned} & 4 @ 300 \\ & 2 @ 500 \end{aligned}$	$\begin{aligned} & +51 @ 300 \\ & +44 @ 500 \\ & \hline \end{aligned}$	$\begin{aligned} & 5.5 @ 300 \\ & 6.5 @ 500 \\ & \hline \end{aligned}$
DHP10-14-15	10-1000	14	2:1	$28 \mathrm{~V} / 800 \mathrm{~mA}$	$\begin{gathered} 1.5 @ 500 \\ 1.5 @ 1000 \end{gathered}$	$\begin{array}{r} +45 @ 500 \\ +44 @ 1000 \end{array}$	$\begin{gathered} 8 @ 500 \\ 9 @ 1000 \end{gathered}$
DHP10-32-08	10-1000	32	2:1	$28 \mathrm{~V} / 600 \mathrm{~mA}$	$\begin{gathered} 0.8 @ 500 \\ 0.7 @ 1000 \end{gathered}$	$\begin{array}{r} +43 @ 500 \\ +42 @ 1000 \end{array}$	$\begin{aligned} & 6.5 @ 500 \\ & 7.5 @ 1000 \end{aligned}$

CRT Driver

These complete hybrid amplifiers are specifically designed for CRT driver applications requiring high frequency response and high voltage, such as high resolution color graphics video monitors. Gold metallized dice and substrates are used to insure high reliability and improved ruggedness.

Device	VCC Volts	Gain (34) V/V	3 dB BW MHz	Vout (Max) Volts	Load	Package/Style
CR2424 (33)	60	12	145	$50 \mathrm{P}-\mathrm{P}$	6 to $>20 \mathrm{pF}$	$714 \mathrm{G}-01 / 1$
CR2424R	-60	12	145	$50 \mathrm{P}-\mathrm{P}$	6 to $>20 \mathrm{pF}$	$714 \mathrm{H}-01 / 1$
CAR2424H (35)	60	12	145	$50 \mathrm{P}-\mathrm{P}$	6 to $>20 \mathrm{pF}$	$826-01 / 1$
CR2424H	60	12	145	$50 \mathrm{P}-\mathrm{P}$	6 to $>20 \mathrm{pF}$	$826-01 / 1$
CR2425 (33)	60	12	145	$50 \mathrm{P}-\mathrm{P}$	6 to $>20 \mathrm{pF}$	$714 \mathrm{~F}-01 / 1$
CR3424	80	12	115	$40 \mathrm{P}-\mathrm{P}$	6 to $>20 \mathrm{pF}$	$714 \mathrm{G}-01 / 1$
CR3424H	80	12	115	$40 \mathrm{P}-\mathrm{P}$	6 to $>20 \mathrm{pF}$	$826-01 / 1$
CR3425	80	12	115	$40 \mathrm{P}-\mathrm{P}$	6 to $>20 \mathrm{pF}$	$714 \mathrm{~F}-01 / 1$
CR3424R	-80	12	115	$40 \mathrm{P}-\mathrm{P}$	6 to $>20 \mathrm{pF}$	$714 \mathrm{H}-01 / 1$
CR3425R	-80	12	115	$40 \mathrm{P}-\mathrm{P}$	6 to $>20 \mathrm{pF}$	$714 \mathrm{H}-01 / 1$

RF Transceiver Modules

These modules are designed for use in PC networks handling data rates up to 2 Mbps . Surface mount construction results in extremely small size $-<8$ square inches of circuit board area. Each module provides high spectral purity and selectivity to prevent interference when used with other CATV signals on the cable interconnect system.

Device	Transmit P_{o} dBmV 75 Ohms Typ	Transmit Freq. MHz	Receive Freq. MHz	Input Level dBmV @ 75 Ohms Typ	Package/Style
MHW10000	54	50.75	219	8.5	817-01/1
MHW10001	54	56.75	249	8.5	817-01/1
MHW10002	54	62.75	255	8.5	817-01/1
MHW10003	54	50.75	243	8.5	817-01/1

(33) Text fixtures available. To order add "TF" suffix to device number
(34) Insertion gain; 50 ohm source
(35) Hi-Rel Hermetic packaged amplifier, manufactured compliant to MIL-A-28875

New introductions

Tuning and Switching Diodes

Tuning Diodes

Abrupt Junction
Voltage variable capacitance diodes for electronic tuning and control of RF circuits through UHF frequencies. Utilized for television tuning and AFC circuits.

TYPICAL CHARACTERISTICS
Diode Capacitance versus Reverse Voltage

V_{R}. REVERSE VOLTAGE IVOLTS)

General-Purpose

Glass		- High \mathbf{Q} - Capacitance TOL 10\% - No Suffix 5% - Suffix A			- High Q - Controlled CR - Capacitance TOL $10 \%-A, 5 \%-B$			- General-Purpose		
		Maximum Working Voftage								
		60 Volts			30 Volts			20 Volts		
		Cap Ratio C4/C60 Min	$\begin{gathered} 0 \\ @ 4 \mathrm{~V} \\ 50 \mathrm{MHz} \\ \mathrm{Min} \end{gathered}$	Device Type	$\begin{aligned} & \text { Cap } \\ & \text { Ratlo } \\ & \text { C2/C30 } \\ & \text { Min } \end{aligned}$	$\begin{gathered} 0 \\ @ 4 \mathrm{~V} \\ 50 \mathrm{MHz} \\ \mathrm{Min} \end{gathered}$	Device Type	Cap Ratio C2/C20 Min	$\begin{gathered} Q \\ @ 4 V \\ 50 \mathrm{MHz} \\ \mathrm{Min} \end{gathered}$	Device Type
CT Nominal Capacitance pF $\pm 10 \%$ @ $\begin{aligned} & V_{R}=4 V \\ & f=1 \mathrm{MHz} \end{aligned}$	6.8	2.7	350	1N5139,A	2.5	450	1N5441A	2	300	MV1620
	10	2.8	300	1N5140,A	2.6	400	1N5443A	2	300	MV1624
	12	2.8	300	1N5141,A	2.6	400	1N5444A	2	300	MV1626
	15	2.8	250	1N5142,A	2.6	450	1N5445A	2	250	MV1628
	18	2.8	250	1N5143, A	2.6	350	1N5446A	2	250	MV1630
	22	3.2	200	1N5144,A	2.6	350	1N5448A	2	250	MV1634
	27	3.1	200	1N5145,A	2.6	350	1N5449A	2	200	MV1636
	33	3.2	200	1N5146,A	2.6	350	1N5450A	2	200	MV1638
	39	3.	200	1N5147,A	2.6	300	1N5451A	2	200	MV1640
	47	3.2	200	1N5148, A	2.6	250	1N5452A	2	200	MV1642
	56				2.6	200	1N5453A	2	150	MV1644
	82				2.7	175	1N5455A	2	150	MV1648
	100				2.7	175	1N5456A	2	150	MV1650

General-Purpose

Plastic

CASE 182-02 (TO-226AC)		- Low-Cost - High Volume			- Low-Cost - High Volume		
		Maximum Working Voltage					
		30 Volts			30 Volts		
		CASE 182-02 2-Lead TO-92			CASE 318-07 TO-236AB		
CASE 318-07 (TO-236AB)		Cap Ratio C2/C30 Min	$\begin{gathered} \text { Q } \\ @ 4 \mathrm{~V} \\ 50 \mathrm{AHz} \\ \text { Min } \end{gathered}$	Device Type	$\begin{gathered} \text { Cap } \\ \text { Ratlo } \\ \text { C2/C30 } \\ \text { Min } \\ \hline \end{gathered}$	$\begin{gathered} Q \\ @ 4 \mathrm{~V} \\ 50 \mathrm{MHz} \\ \mathrm{Min} \end{gathered}$	Device Type
$\begin{gathered} \mathrm{C}_{\mathbf{T}} \\ \text { Nominal } \\ \text { Capacitance } \\ \text { pF } \\ \pm 10 \% \\ @ \\ \mathrm{~V}_{\mathrm{R}}=4 \mathrm{~V} \\ \mathbf{t}=1 \mathrm{MHz} \end{gathered}$	6.8	2.5	450	MV2101	2.5	400	MMBV2101L
	10	2.5	400	MV2103	2.5	350	MMBV2103L
	12	2.5	400	MV2104	2.5	350	MMBV2104L
	15	2.5	400	MV2105	2.5	350	MMBV2105L
	18	2.5	350	MV2106	2.5	300	MMBV2106L
	22	2.5	350	MV2107	2.5	300	MMBV2107L
	27	2.5	300	MV2108	2.5	250	MMBV2108L
	33	2.5	200	MV2109	2.5	200	MMBV2109L
	47	2.5	150	MV2111			
	68	2.6	150	MV2113			
	82	2.6	100	MV2114			
	100				2.6	100	MV2115

TYPICAL CHARACTERISTICS
Diode Capacitance versus Reverse Voltage

Dual Diodes

$\begin{array}{llll} & \text { (1) Case } 29 & \text { (2) Case } 318 & \circ\end{array}$

TYPICAL CHARACTERISTICS Diode Capacitance versus Reverse Voitage

V_{R}, REVERSE VOLTAGE (VOLTS)

Tuning Diodes Hyper-Abrupt Junction

For AM Radio, Disc Drives

TYPICAL CHARACTERISTICS
Diode Capacitance versus Reverse Voltage

VR. REVERSE VOLTAGE (VOLTS)

CASE 182-02 (TO-226AC) K A		- High Capacitance Ratio - Guaranteed Diode Capscitance - Close Matching			
CT		O @ 1 Vdc, $1 \mathrm{MHz}=150$ (Min)			
$\mathrm{V}_{\mathrm{R}}=1 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		$\begin{gathered} \text { VBR(R) } \\ \text { MIn } \end{gathered}$	$\begin{aligned} & \text { Cap } \\ & \text { Ratio @ } \\ & \text { Min } \end{aligned}$	V_{R} Volts	Device Type
Min	Max				
440	560	12	15	1/8	MVAM108
400	520	15	12	1/9	MVAM109
440	560	18	15	1/15	MVAM115
440	560	28	15	1/25	MVAM125

For High Capacitance and High Rellability Applications

100\% Screening to High Rel electrical and environmental specifications, H suffix.

Hot-Carrier (Schottky) Diodes

Hot-Carrier diodes are ideal for VHF and UHF mixer and detector applications as well as many higher frequency applications. They provide stable electrical characteristics by eliminating the point-contact diode presently used in many applications.

CASE 318-05

TYPICAL CHARACTERISTICS
Capacitance versus Reverse Voltage

PIN Switching Diodes

... designed for VHF band switching and general-purpose switching.

$\begin{aligned} & V_{(\mathrm{BR}) \mathrm{R}} \\ & \mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{AdC} \\ & \mathrm{Voits} \\ & \text { Min } \end{aligned}$	$\begin{gathered} \mathrm{RS}_{\mathbf{S}} \\ \mathrm{I}_{\mathrm{F}}=10 \mathrm{mAdc} \\ \mathrm{f}=100 \mathrm{MHzz} \\ \mathrm{Ohms} \\ \mathrm{Max} \end{gathered}$	$\begin{gathered} C_{T} \\ V_{R}=20 \mathrm{~V} \\ \mathrm{f}=1 \mathrm{MHz} \\ \mathrm{pF} \operatorname{Max} \end{gathered}$	Device Type

CASE 182, STYLE 1

20	0.85	2	MPN3404
200	1	1	MPN3700

CASE 318, STYLE 8

35	0.7	1	MMBV3401L
200	1	1	MMBV3700L

RF Chips

Ordering and Shipping Information

Minimum Order Requirements:

In conjunction with Motorola corporate policy the minimum order, release or linefline shipment of standard product is $\$ 200$.
The minimum order, release or line item shipment of nonstandard product is $\$ 2500$ unless otherwise stated at the time of quotation, order entry or acknowledgement.

Packaging:

Multi-Pak - Motorola supplies all discrete semiconductors in the industry standard multi-pak. (Waffle type carrier, Figure 1.) This is a 2×2 or 4×4 waffle type carrier with a separate hole for each die. Chips are 100% visually inspected with the rejects removed. There is no suffix associated with the multipak carrier.

Circle Pak (CP Suffix) (See Figure 2) - The wafer is placed on a sticky film before being sawed. Each wafer is completely sawed through with the back side against the PVC film. The die stick to the PVC fitm and maintain exact wafer orientation and spacing. This packaging method alsoo offers the convenience of storage with original orientation and spacing even after a portion of the wafer is used. The evacuated plastic bag is thermally sealed holding the contents securely with no die movement. Die can be removed from the sticky film by a sharp ejector-pin pushing a die up and a vacuum needle manually picking: it up: This package can also be handled by an automatic die loader with some minor adjustments. To order this package, the suffix CP must appear with the part number.

Wafer Pak (WP Suffix) (See Figure 3) - The pak contains a wafer that is 100% electrically tested. With the rejects inked, the water is left unsawed and is packaged with protective cardboard in a vacuum sealed plastic bag. The WP suffix must appear after the chip part number.

Heatspreader (See Figure 4) - Some chips (indicated by footnote in the preferred parts list) are also available mounted with eutectic bonding to copper heatspreaders that have been plated with nickel and gold. The use of heatspreaders increases thermal conductivity and allows solder reflow attachment of the die-heatspreader assembly.

Figure 1. Multi-Pak (No Suffix)

Figure 3. Wafer Pak (WP Suffix)

```
PHYSICAL DIMENSIONS IN MILS)
```


Figure 4. Heatspreader

Die Geometries

1	2	$\longdiv { 3 }$	
5		17	8
9	10	11	12
13	14	15	
		O直县	$\begin{aligned} & \mathrm{B}=\text { Base } \\ & \mathrm{E}=\text { Emitter } \end{aligned}$

Preferred Parts List

Standard D.C. Parameters (at $\left.25^{\circ} \mathrm{C}\right)-\mathrm{V}_{\text {(BR)CBO, }} \mathrm{V}_{\text {(BR)CEO }} \mathrm{V}_{\text {(BR)EBO, }}$ hFE (d.c. current gain)
Special Request Parameters - ICEO, ICES, ICEX, IEBO, VCE(sat), VBE(sat), fT, CCB, CEB, hFE (ac), NF (Noise Figure), GPE Front Metallization Thickness - a minimum of 10,000 A
Back Metallization Thickness - a minimum of 3,000 A-24,000 A

Standard Part \#	Chlp Part \#	Dle Geometry Reference \#	Dia Sizo Inches 1/1000	Dte Thickness inches 1/1000	Bond Pad Slze		Metallization		Packaging			Heatspreader
					inches 1/1000 Base	inches $1 / 1000$ Emitter	Front	Back	Multi (none)	Wafer (WP)	Circle (CP)	
2N2857	2C2857	1	14×16	4-8	4.0×4.8	4.0×4.8	AI	Au	-	-	-	
2N3866	2C3866	2	15x22	4-8	4×4	4×4	AI	Au	-	-	-	
2N4957	$2 \mathrm{C4957}$	3	12×22	4-8	4×4	4×4	Al	Au	-	*	-	
2N5108	2C5108	11	12×17	4-8	2.5×2.1	2.5×2.1	Au	Au	*	*	*	
2N5160	2C5160	4	15×20	4-8	2.2x3.2	2.2×3.2	Al	Au	-	-	-	
2N5583	2C5583	4	15x20	4-8	2.2×3.2	2.2×3.2	Au	Au	-	-	-	
2N5943	2C5943	2	15×22	4-8	4×4	4×4	Al	Au	-	-	-	
BFR90	BFRC90	6	14×16	4-8	2.8 dia.	2.8 dia.	Au	Au	*	-	*	
BFR91	BFRC91	7	14×16	4-8	2.8 dia.	2.8 dia.	Au	Au	-	*	*	
BFR96	BFRC96	8	13×16	4-8	3.4×3.4	3.4×3.4	Au	Au	-	-	-	
LT1817	CD1880 (37)(38)	14	22x22	4-5	3.6 dia.	3.6 dia.	Au	Au	-			-
LT3005	CD3240 (37)(38)	13	16x25	4-5	2.75×3.75	2.75×3.75	Au	Au	-			-
LT4217	CD6150 (37)(38)	13	16x25	4-5	2.75×3.75	2.75x3.75	Au	Au	*			*
LT4700	CD3660 (37)(38)	15	17×17	4-5	1.5 dia.	1.5 dia.	Au	Au	-			,
LT5217	CD4880 (37)(38)	13	16x25	4-5	2.75×3.75	2.75×3.75	Au	Au	*			-
LT5817	CD5880 (37)(38)	14	22×22	4-5	3.6 dia.	3.6 dia.	Au	Au	*			-
MM4049	MMC4049	3	12x22	4-8	4×4	4×4	Al	Au	-	-	-	
MRF2369	MRFC2369	9	15×16	4-8	2.2×2.2	2.2×2.2	Au	Au	-	*	-	
MRF559	MRFC559	5	15×24	4-8	3.5 dia.	2.16×4	Au	Au	-	-	-	
MRF544	MRFC544	10	34×27	4-8	3×4	3×4	Au	Au	-	-	-	
MRF545	MRFC545	10	34×27	4-8	3×4	3×4	Au	Au	*	-	-	
MRF901	MRFC901	12	15×15	4-8	4.0×2.6	4.0×2.6	Au	Au	-	-	-	
MRF904	MRFC904	12	15×15	4-8	4.0×2.6	4.0×2.6	Aus	Au	-	-	-	

Samples available upon request, contact the Motorola Sates Office.
-Avaitable Packaging
(37) To order CHiP mounted on a heatspreader, change pretix to "CH."
(38) To order high reliability chip with SEM qualfications and lot acceptance per MIL-STD-750 and 883, change prefix to "HD" or "HH" for die alone or die mounted on heatspreader respectively.

Storage and Handling Information

It is recommended that all Motorola die be stored at room temperature in an inert environment after removal of the seal from the original shipping package.

Special Electro-Static Discharge (ESD) precautions should be taken to avoid damaging the chips. Motorola recommends storage in the original ESD shipping package.

MOTOROLA RF DEVICE DATA

Volume II

Advance Information The RF Line
 Linear Power Amplifier

... specifically designed for cellular radio base station applications. This solid state, high power amplifier incorporates microstrip technology and utilizes discrete power transistors with gold metallization and diffused emitter ballast resistors for enhanced reliability and ruggedness.
Custom versions with modified electrical and mechanical specifications are available upon request.

- 890-960 MHz
- 30 W - Pout
- 25 V - V CC
- 18 dB Gain
- Class AB

$$
\begin{gathered}
30 \mathrm{~W}-890-360 \mathrm{MHz} \\
\text { LINEAR } \\
\text { POWER AMPLIFIER }
\end{gathered}
$$

CASE 3893-02, STYLE 1 (ACR)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector Voltage Supply	VCC	30	Vdc
Operating Temperature Range (Note 1)	TC	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=50^{\circ} \mathrm{C}, 50 \Omega$ system, $\mathrm{V}_{\mathrm{CC}}=25 \mathrm{~V}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Bandwidth	BW	890	-	960	MHz
Power Gain (Pout $=\mathbf{3 0}$ W, f $=\mathbf{9 6 0 ~ M H z}$)	G_{p}	18	-	-	dB
Supply Current (${ }_{\text {Pout }}=30 \mathrm{~W}$)	ICC	-	3	-	A
Input Return Loss ($\mathrm{P}_{\text {out }}=30 \mathrm{~W}$)	IRL	15	20	-	dB
Efficiency ($\mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{f}=\mathbf{5 6 0} \mathrm{MHz}$)	η	-	40	-	\%
Output Return Loss ($\mathrm{P}_{\text {out }}=30 \mathrm{~W}$)	ORL	15	20	-	dB
Load Mismatch ($P_{\text {out }}=30 \mathrm{~W}, \mathrm{f}=960 \mathrm{MHz}$, Load VSWR $=5: 1$, All Phase Angles)	ψ	No degradation in power output			

[^1]This document contains information on a new product. Specifications and information herein are subject to change without notice.

The RF Line

Linear Power Amplifier

AMR175-60

... specifically designed for VHF land mobile base station applications. Microstrip design
combined with the use of the most modern bipolar RF power transistor technology assures a reliable, cost effective complete power amplifier.
Custom versions with modified electrical and mechanical specifications are available upon request.

$$
\begin{gathered}
60 \mathrm{~W}-145-175 \mathrm{MHz} \\
\text { LNEAR } \\
\text { POWER AMPLIFIER }
\end{gathered}
$$

- 145-175 MHz
- 60 W - Pout
- 28 V-VCC
- Class AB

CASE 38SK-01, STYLE 1 (AMR)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector Voitage Supply	VCC	30	Vde
Operating Temperature Range (Note 1)	T_{C}	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Renge	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=70^{\circ} \mathrm{C}, 50 \Omega\right.$ system, $\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Bandwidth	BW	145	-	175	MHz
Power Gain ($\mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{f}=175 \mathrm{MHz}$)	G_{p}	10	-	-	dB
Supply Current ($\mathrm{P}_{\text {out }}=60 \mathrm{~W}$)	ICC	-	4.2	-	A
Input Return Loss (Pout $=60 \mathrm{~W}$)	tRL	10	12	-	dB
Load Mismatch ($P_{\text {out }}=60$ W, $f=175 \mathrm{MHz}$, Load VSWR $=20: 1$, All Phase Angles)	ψ	No degradation in power output			
Gain Flatness ($\mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{BW}=145-175 \mathrm{MHz}$)	$\mathrm{G}_{\boldsymbol{r}}$	-	-	± 1	dB

Note 1. Case Temperature is measured at base plate.

The RF Line
 Linear Power Amplifier

AMR225-60

... specifically designed for high VHF band land mobile base station applications. Microstrip design combined with the use of the most modern bipolar RF power transistor technology assures a reliable, cost effective complete power amplifier.

Custom versions with modified electrical and mechanical specifications are available upon request.

- $180-225 \mathrm{MHz}$
- 60 W - Pout
- 28 V - VCC
- Class AB
$60 \mathrm{~W}-180-225 \mathrm{MHz}$
LINEAR
POWER AMPLIFIER

CASE 389K-01, STYLE 1 (AMR)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector Voltage Supply	$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{3 0}$	Vdc
Operating Temperature Range (Note 1)	T_{C}	-20 to +90	${ }^{\circ} \mathrm{C}$
Storage Temparature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{C}}=70^{\circ} \mathrm{C}, 50 \Omega$ system, $\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Bandwidth	BW	180	-	225	MHz
Power Gain (Pout $=60 \mathrm{~W}, \mathrm{f}=225 \mathrm{MHz}$)	G_{p}	10	-	-	dB
Supply Current (${ }_{\text {out }}=60 \mathrm{~W}$)	ICC	-	4.2	-	A
Input Return Loss ($\mathrm{P}_{\text {out }}=60 \mathrm{~W}$)	IRL	10	12	-	dB
Losd Mismatch $\text { (Pout }=60 \text { W, } f=225 \text { MHz, Load VSWR }=20: 1 \text {, All Phase Anglas) }$	ψ	No degradation in power output			
Gain Flatness ($\mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{BW}=180-225 \mathrm{MHz}$)	G_{p}	-	-	± 1.25	dB

Note 1. Case Temperature is measured at base plate.

SEMICONDUCTOR
 TECHNICAL DATA

The RF Line
Linear Power Amplifier
.. . specifically designed for high UHF land mobile base station applications. Microstrip design combined with the use of the most modern bipolar RF power transistor technology assures a reliable, cost effective complete power amplifier.

Custom versions with modified electrical and mechanical specifications are available upon request.

AMR440-60

- $\mathbf{4 0 0} \mathbf{- 4 4 0} \mathrm{MHz}$
- 60 W - Pout
- 28 V - VCC
- Class AB
$60 \mathrm{~W}-400-440 \mathrm{MHz}$
LINEAR
POWER AMPLIFIER

CASE 389L-02, STYLE 1 (AMR)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Coilector Voltage Supply	$\mathrm{V}_{\text {CC }}$	$\mathbf{3 0}$	Vdc
Operating Temperature Range (Note 1)	T_{C}	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=70^{\circ} \mathrm{C}, 50 \Omega\right.$ system, $\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Bandwidth	BW	400	-	440	MHz
Power Gain ($P_{\text {out }}=60 \mathrm{~W}, \mathrm{f}=440 \mathrm{MHz}$)	G_{p}	7	-	-	dB
Supply Current ($\mathrm{P}_{\text {out }}=60 \mathrm{~W}$)	ICC	-	4.5	-	A
Input Return Loss ($\mathrm{P}_{\text {out }}=60 \mathrm{~W}$)	IRL	10	12	-	dB
Load Mismatch $\text { (Pout }=60 \text { W, } f=440 \mathrm{MHz}, \text { Load VSWR }=20: 1 \text {, All Phase Angles) }$	ψ	No degradation in power output			
Gain Flatness (${ }_{\text {out }}=60 \mathrm{~W}, \mathrm{BW}=400-440 \mathrm{MHz}$)	Gr_{r}	-	-	± 0.5	dB

Note 1. Case Temperature is measured at base plate.

The RF Line

Linear Power Amplifier

AMR470-60

. . . specifically designed for UHF land mobile base station applications. Microstrip design combined with the use of the most modern bipolar RF power transistor technology assures a reliable, cost effective complete power amplifier.

Custom versions with modified electrical and mechanical specifications are available upon request.

> 60 W - $440-470 \mathrm{MHz}$ LINEAR POWER AMPLFIER

- 440-470 MHz
- 60 W - Pout
- 28 V - VCC
- Class AB

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector Voltage Supply	VCC	$\mathbf{3 0}$	Vdc
Operating Temperature Range (Note 1)	T_{C}	$-\mathbf{- 2 0}$ to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T C=70^{\circ} \mathrm{C}, 50 \Omega\right.$ system, $\mathrm{V} C C=28 \mathrm{~V}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Bandwidth	BW	440	-	470	MHz
Power Gain (Pout $=60 \mathrm{~W}, \mathrm{f}=470 \mathrm{MHz}$)	G_{p}	7	-	-	dB
Supply Current (${ }_{\text {Out }}=60 \mathrm{~W}$)	ICC	-	4.5	-	A
Input Return Loss ($\mathrm{P}_{\text {Out }}=60 \mathrm{~W}$, BW $=440-470 \mathrm{MHz}$)	IRL	10	12	-	dB
Load Mismatch (Pout $=60 \mathrm{~W}, \mathrm{f}=470 \mathrm{MHz}$, Load VSWR $=20: 1$, All Phase Angles)	*	No degradation in power output			
Gsin Flatness ($\mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{BW}=440-470 \mathrm{MHz}$)	G_{r}	-	-	± 0.5	dB

Noto 1. Case Temperature is measured at base plate.

The RF Line

Linear Power Amplifier

.. . designed for cellular radio base station applications in the $860-900 \mathrm{MHz}$ frequency range. This solid state, Class $\mathbf{8}$ amplifier incorporates microstrip circuit technology and linear push-pull transistors to provide a complete broadband, linear amplifier operating from a supply voltage of 24 volts.

- Wide Bandwidth $800-960 \mathrm{MHz}$ (without retuning)

AMR900-60

- 50 Ohm Input/Output Impedance
- Specified 24 Volt Characteristics:

Output Power - 60 Watts
Power Gain - 7 dB Typ

- Gold Metallized Push-Pull Transistors Give Broadband Performance and Excellent Reliability

$$
\begin{gathered}
60 \mathrm{~W}-800-960 \mathrm{MHz} \\
\text { LINEAR } \\
\text { POWER AMPLIFIER }
\end{gathered}
$$

CASE 389B-02, STYLE 2 (AMR)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	VCC	25	Vdc
Supply Current	ICC	6	Adc
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	TC	-20 to +70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ${ }^{(T} C=50^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current ($\mathrm{V}_{\text {CC }}=24 \mathrm{~V}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}$)	ICC	-	4	-	mA
Power Gain ($f=800-360 \mathrm{MHz}$, Pref $=50 \mathrm{~W}$)	GP_{P}	-	7	-	dB
Bandwidth (Continuous without retuning)	BW	800	-	960	MHz
Source/Losd Return Loss	\mathbf{R}_{L}	-	-	20	dB
InputOutput Return Loss ($\mathrm{f}=800-960 \mathrm{MHz}$)	IRLORL	10	15	-	dB
Load Mismatch $\text { (} \left.P_{\text {out }}=50 \mathrm{~W}, \mathrm{f}=960 \mathrm{MHz}, \text { Load VSWR }=5: 1 \mathrm{Typ}\right)$	ψ	No Degradation in Performance			

Note 1. Case Temperature is measured at base plate.

Figure 1. Output Power versus Input Power

Figure 3. Input Power versus Frequency

Figure 2. Output Power versus Frequency

Figure 4. Case Temperature versus Frequency

Figure 5. Manufacturing Flow Chart Operation

Advance Information

The RF Line

Linear Power Amplifier

AMR900-60A

... specifically designed for cellular radio cell enhancer applications. This solid state, high power amplifier incorporates microstrip technology and utilizes discrete power transistors with gold metalization and diffused emitter ballast resistors for enhanced reliability and ruggedness.

Custom versions with modified electrical and mechanical specifications are available upon request.

- $800-960 \mathrm{MHz}$
- 30 W - Pout
- 26 V - VCC
- 10 dB Gain, Class A

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector Voltage Supply	V_{CC}	27	Vdc $^{\text {(Note 1) }}$
Operating Temperature Range	T^{C}	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

$$
\begin{gathered}
30 \mathrm{~W}-800-960 \mathrm{MHz} \\
\text { LNEAR } \\
\text { POWER AMPLIFIER }
\end{gathered}
$$

CASE 389B-02, STYLE 2 (AMR)

ELECTRICAL CHARACTERISTICS (TC $=50^{\circ} \mathrm{C}, 50 \Omega$ system, $\mathrm{V}_{\mathrm{CC}}=26 \mathrm{~V}$ untess otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Bandwidth	8W	800	-	960	MHz
Power Gain (${ }_{\text {Out }}=30 \mathrm{~W}, \mathrm{f}=960 \mathrm{MHz}$)	G_{p}	10	11	-	${ }^{\text {d }}$ B
Power Output @ 1 dB Gain Compression (Reference to $\mathrm{P}_{\text {out }}=\mathbf{3 0} \mathbf{W}, \mathrm{f}=\mathbf{9 6 0} \mathbf{~ M H z}$)	Pout(1 dB)	25	28	-	w
Supply Current ($\mathrm{P}_{\text {out }}=20 \mathrm{~W}$)	Icc	-	3.6	-	A
Input Return Loss (Pout $=30 \mathrm{~W}$)	IRL	15	-	-	dB
Output Return Loss ($\mathrm{P}_{\text {out }}=30 \mathrm{~W}$)	ORL	15	-	-	dB
```Load Mismatch (P Put = 20 W PEP, f = 960 MHz, Load VSWR = =:1. All Phase Angles)```	$\psi$	No degradation in power output			
Intermodulation Distortion - 2 tones   (Pout PEP $\left.=\mathbf{2 7} \mathbf{W}, f=\mathbf{9 6 0} \mathbf{~ M H z}, \Delta f=1.6 \mathrm{MHz}, \mathrm{IC}_{\mathrm{C}}=\mathbf{3 . 6} \mathrm{A}\right)$	IMD	-	-	-30	dB

Note 1. Case Temperature is measured at base plate.


Figure 1. IMD versus Output Power


Figure 2. Output Power versus Input Power

## The RF Line <br> Linear Power Amplifier

... a solid state Class A amplifier specifically designed for TV transposers and transmitters. This amplifier incorporates microstrip technology and discrete linear push-pull transistors with gold metallization and diffused emitter ballast resistors to enhance ruggedness and reliability.

- $470-860 \mathrm{MHz}$
- 20 W - Pout
- 26.5 V - VCC
- 8.5 dB Typ Gain, Class $A$


## ATV5030

$$
\begin{gathered}
20 \mathrm{~W}-470-860 \mathrm{MHz} \\
\text { LINEAR } \\
\text { POWER AMPLIFIER }
\end{gathered}
$$



CASE 3898-02, STYLE 1 (AMR)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector Voltage Supply	VCC $^{\prime}$	27	Vdc
Supply Current	$\mathbf{I C C}$	4	Adc
Operating Temperature Range (Note 1)	$\mathrm{T}_{\mathrm{C}}$	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=50^{\circ} \mathrm{C}, 50 \Omega\right.$ system, $\mathrm{V}_{\mathrm{CC}}=26.5 \mathrm{~V}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Bandwidth	BW	470	-	860	MHz
Power Gain (Pref $=20 \mathrm{~W}, 3$ tones)	$\mathrm{G}_{\mathrm{p}}$	7.5	8.5	-	dB
Power Output @ 1 dB Gain Compression (Reference to $\mathrm{P}_{\text {out }}=20 \mathrm{~W}$ )	Pout(1 dB)	25	28	-	W
Supply Current ( $\mathrm{P}_{\text {out }}=20 \mathrm{~W}$ )	ICC	-	3.8	-	A
Input Return Loss ( $\mathrm{P}_{\text {out }}=20 \mathrm{~W}$ )	IRL	15	-	-	dB
Output Return Loss ( $\mathrm{P}_{\text {out }}=20 \mathrm{~W}$ )	ORL	15	-	-	dB
Load Mismatch ( $\mathrm{P}_{\text {ref }}=20 \mathrm{~W}, 3$ tones, $\mathrm{f}=\mathbf{8 6 0} \mathrm{MHz}$, Load VSWR $=\infty: 1$, All Phase Angles)	$\psi$	No degradation in power output			
Gain Flatness ( $\mathrm{P}_{\text {ref }}=20 \mathrm{~W}, 3$ tones, $\mathrm{BW}=470$ to 860 MHz )	$\mathrm{G}_{\mathrm{r}}$	-	$\pm 0.5$	$\pm 0.8$	dB
$\begin{aligned} & \text { Intermodulation Distortion }-3 \text { tones } \\ & \quad\left(f=860 \mathrm{MHz}, V_{C E}=25.5 \mathrm{~V}, \mathrm{P}_{\text {ref }}=20 \mathrm{~W}\right. \text {, } \\ & \text { Vision Carrier }=-7 \mathrm{~dB} \text {, Sound Carrier }=-8 \mathrm{~dB}, \\ & \text { Sideband Signal }=-16 \mathrm{~dB} \text {, Specification TV05001) } \end{aligned}$	$\mathrm{IMD}_{1}$	-	-52	-51	dB
```Intermodulation Distortion (IDEM) (f = 860 MHz, VCE = 25.5 V. Pref = 20 W. Vision Carrier = -10 dB, Sound Carrier =-8 dB, Sideband Signal = -16 dB)```	$\mathrm{IMD}_{2}$	-	-55	-54	dB

Notes: 1. Case Temperature is measured at base plate.

Figure 1. Small-Signal «S s Parameter Magnitude versus Frequency

Figure 3. Output Power at 1 dB Gain Compression versus Frequency

Figure 2. Intermodulation versus Frequency

* 3 tones test method:

IMD1: Vision carrier - 8 dB , sound carrier - 7 dB Sideband signal - 16 dB ; Zero dB corresponds to peak sync level.
IMD2: Vision carrier - 8 dB , sound carrier - 10 dB Sideband signal - 16 dB ; Zero corresponds to reference level.

Figure 4. Relative Level versus Frequency

Figure 5. Manufacturing Flow Chart Operation

The RF Line
 Linear Power Amplifier

ATV5090B

... a solid state Class AB amplifier specifically designed for TV transposers and transmitters. This amplifier incorporates microstrip technology and discrete linear push-pull transistors with gold metallization and diffused emitter ballast resistors to enhance ruggedness and reliability.

```
90 W-470-860 MHz
            LINEAR
    POWER AMPLIFIER
```

- $470-860 \mathrm{MHz}$
- 90 W - Pout
- 28 V - VCC
- 7 dB Min. Gain, Class AB

CASE 38SN-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector Voltage Supply	$V_{\text {cC }}$	29	Vdc
Supply Current	ICC	9	Adc
Source and Load VSWR (50 Ω REF.)	VSWRS,L	1.20:1	-
Operating Temperature Range (Note 1)	T_{C}	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to + 100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ${ }^{1} \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 50 \Omega$ system, $\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}$ unless otherwise noted)

Characteristic	Symbal	Min	Typ	Max	Unit
Bandwidth	BW	470	-	860	MHz
Power Gain (Pout $=90 \mathrm{~W}, \mathrm{CW}$)	G_{p}	7	-	-	dB
Efficiency	η	40	-	-	\%
Power Output @ 1 dB Gain Compression	Pout(1 dB)	90	-	-	w
Input Return Loss ($\mathrm{P}_{\text {out }}=20 \mathrm{~W}$)	IRL	15	-	-	dB
```Load Mismatch (Pref \(=30 \mathrm{~W}, 3\) tones, \(\mathrm{f}=860 \mathrm{MHz}\), Load VSWR \(=3: 1\), All Phase Angles)```	$\psi$	No degradation in power output			
Gsin Ripple ( $\mathrm{Pout}^{\text {a }}=90 \mathrm{~W}, \mathrm{CW}, \mathrm{BW}=470$ to 860 MHz )	$\mathrm{G}_{\mathrm{r}}$	-	-	$\pm 1.5$	dB

## The RF Line

## Linear Power Amplifier

... a solid state Class A amplifier specifically designed for TV transposers and transmitters. This amplifier incorporates microstrip technology and discrete linear push-pull transistors with gold metallization and diffused emitter ballast resistors to enhance ruggedness and reliability.

## ATV6031

- $470-860 \mathrm{MHz}$
- 20 W - Pout
- 26.5 V - VCC
- 10.5 dB Min. Gain, Class A


CASE 3898-02, STYLE 1 (ATV)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector Voltage Supply	VCC $^{\prime}$	27	Vdc
Supply Current	$\mathrm{I}_{\mathrm{CC}}$	4	Adc
Source and Load VSWR (50 $\Omega$ REF.)	VSWR $\mathrm{S}, \mathrm{L}$	1.2	
Operating Temperature Range (Note 1)	$\mathrm{T}_{\mathrm{C}}$	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathbf{s t g}}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (TC $^{\prime}=50^{\circ} \mathrm{C}, 50 \Omega$ system, $\mathrm{V}_{\mathrm{CC}}=26.5 \mathrm{~V}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Bandwidth	BW	470	-	860	MHz
Power Gain ( $\left.\mathrm{P}_{\text {out }}=20 \mathrm{~W}, \mathrm{CW}\right)$	$\mathrm{G}_{\mathrm{p}}$	10.5	-	-	dB
Power Output @ 1 dB Gain Compression	$P_{\text {out }}(1 \mathrm{~dB})$	25	28	-	W
Supply Current ( ${ }_{\text {Out }}=20 \mathrm{~W}$ )	ICC	-	-	3.6	A
Input Return Loss ( $\mathrm{P}_{\text {out }}=20 \mathrm{~W}$ )	IRL	15	-	-	dB
Load Mismatch ( $P_{\text {out }}=20 \mathrm{~W}, \mathrm{CW}, \mathrm{f}=860 \mathrm{MHz}$, Load VSWR $=\infty: 1$, All Phase Angles)	$\downarrow$	No degradation in power output			
Gain Ripple ( $\mathrm{P}_{\text {out }}=20 \mathrm{~W}, \mathrm{CW}, \mathrm{BW}=470$ to 860 MHz )	$\mathrm{G}_{\mathrm{r}}$	-	$\pm 0.5$	$\pm 1$	dB
```Intermodulation Distortion - 3 tones If = 860 MHz, VCE =25.5 V, Pref = 20 W, Vision Carrier = -8 dB, Sound Carrier = -7 dB, Sideband Signal = - 16 dB, Specification TV05001)```	$\mathrm{IMD}_{1}$	-	-	-50	dB
```Intermodulation Distortion (IDEM) ff=860 MHz, VCE =25.5 V, P Vision Carrier = -8 dB, Sound Carrier = -10 dB, Sideband Signal = -16 dB)```	$1 \mathrm{MD}_{2}$	-	-	-53	dB

Note: 1. Case Temperature is measured at base plate - on RF transistor flange.

## Advance Information

The RF Line
Linear Power Amplifier
... a solid state Class A amplifier specifically designed for TV transposers and transmitters. This amplifier incorporates microstrip technology and discrete linear push-pull transistors with gold metallization and diffused emitter ballast resistors to enhance ruggedness and reliability.

$$
\begin{gathered}
30 \mathrm{~W}-470-860 \mathrm{MHz} \\
\text { LNEAR } \\
\text { POWER AMPLIFIER }
\end{gathered}
$$

- $470-860 \mathrm{MHz}$
- 30 W - Pout
- 25.5 V - VCC
- 8 dB Min Gain, Class $A$


CASE 3898-02, STYLE 1 (ATV)

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector Voltage Supply	$V_{C C}$	26.5	Vdc
Supply Current	ICC	6.5	Adc
Operating Temperature Range (Note 1)	$\mathrm{T}_{\mathrm{C}}$	-20 to +60	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=50^{\circ} \mathrm{C}, 50 \Omega\right.$ system, $\mathrm{V}_{\mathrm{CC}}=25.5 \mathrm{~V}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Bandwidth	BW	470	-	860	MHz
Power Gain (Pref $=30 \mathrm{~W}, 3$ tones)	$\mathrm{G}_{\mathrm{p}}$	8	-	9.5	dB
Power Output @ 1 dB Gain Compression (Reference to Pout $=30 \mathrm{~W}$ )	Pout(1 dB)	40	-	-	w
Input Return Loss ( $\mathrm{P}_{\text {out }}=30 \mathrm{~W}$ )	IRL	15	-	-	dB
Output Return Loss ( $\mathrm{P}_{\text {out }}=30 \mathrm{~W}$ )	ORL	15	-	-	dB
```Load Mismatch (Pref = 22 W, 3 tones, f = 860 MHz, Load VSWR = \infty:1, All Phase Angles)```	$\psi$	No degradation in power output			
Gain Flatness ($\mathrm{P}_{\text {ref }}=30 \mathrm{~W}, 3$ tones, BW $=470$ to 860 MHz)	G_{r}	-	± 0.5	± 0.7	dB
Intermodulation Distortion - $\mathbf{3}$ tones If $=860 \mathrm{MHz}, \mathrm{V}_{\mathrm{CE}}=25.5 \mathrm{~V}, \mathrm{P}_{\mathrm{ref}}=30 \mathrm{~W}$, Vision Carrier $=-8 \mathrm{~dB}$, Sound Carrier $=-7 \mathrm{~dB}$, Sideband Signal $=-16 \mathrm{~dB}$, Specification TV05001)	$1 \mathrm{MD}_{1}$	-	-52	-51	dB
```Intermodulation Distortion (IDEM) If = 860 MHz, VCE = 25.5 V, Pref = 30 W, Vision Carrier =-8 dB, Sound Carrier =-10 dB, Sideband Signal = -16 dB)```	$1 \mathrm{MD}_{2}$	-	-55	-54	dB

[^2]This document contains information on a now product. Specifications and information herein are subject to change without notice.

## ATV7050

## TYPICAL CHARACTERISTICS



Figure 1. S Parameters versus Frequency


Figure 3. Compression Gain versus Frequency


Figure 2. Intermodulation versus Frequency


Figure 4. Peak Sync Level or Reference Level

## The RF Line

Linear Power Amplifier
... a solid state Class A amplifier specifically designed for TV transposers and transmitters. This amplifier incorporates microstrip technology and discrete linear push-pull transistors with gold metallization and diffused emitter ballast resistors to enhance ruggedness and reliability.

- $470-860 \mathrm{MHz}$
- 40 W - Pout
- 26.5 V - VCC
- 10 dB Min. Gain, Class A

$$
\begin{gathered}
40 \mathrm{~W}-470-860 \mathrm{MHz} \\
\text { LINEAR } \\
\text { POWER AMPLIFIER }
\end{gathered}
$$



CASE 389B-02, STYLE 1
(ATV)

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Coilector Voltage Supply	VCC	26	Vdc
Suppiy Current	ICC	9.4	Adc
Source and Load VSWR (50 $\Omega$ REF.)	VSWRS,L	1.2	
Operating Temperature Range (Note 1)	TC	-20 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=50^{\circ} \mathrm{C}, 50 \Omega\right.$ system, $\mathrm{V}_{\mathrm{CC}}=26.5 \mathrm{~V}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Bandwidth	BW	470	-	860	MHz
Power Gain ( $\mathrm{P}_{\text {out }}=40 \mathrm{~W}$ )	$\mathrm{G}_{\mathrm{p}}$	10	-	-	dB
Power Output @ 1 dB Gain Compression	Pout(1 dB)	55	-	-	W
Supply Current ( Pout $=40 \mathrm{~W}$ )	ICC	-	3.8	-	A
Input Return Loss ( $\mathrm{P}_{\text {out }}=40 \mathrm{~W}$ )	IRL	15	-	-	dB
Load Mismatch    All Phase Angles)	$\psi$	No degradation in power output			
Gain Flatness ( $\mathrm{P}_{\text {out }}=40 \mathrm{~W}, \mathrm{BW}=470$ to 860 MHz )	$\mathrm{G}_{\mathrm{r}}$	-	-	1.0	dB
Intermodulation Distortion - $\mathbf{3}$ tones $\left(f=860 \mathrm{MHz}, \mathrm{V}_{\text {CE }}=25.5 \mathrm{~V}, \mathrm{P}_{\mathrm{ref}}=40 \mathrm{~W}\right.$, Vision Carrier $=-8 \mathrm{~dB}$, Sound Carrier $=-7 \mathrm{~dB}$, Sideband Signal $=-16 \mathrm{~dB}$, Specification TV05001)	$1 \mathrm{MD}_{1}$	-	-	-51	dB
```Intermodulation Distortion (IDEM) (f = 860 MHz, V CE = 25.5 V, P Pref = 40 W, Vision Carrier = -8 dB, Sound Carrier = -10 dB, Sideband Signal = - 16 dB)```	$1 \mathrm{MD}_{2}$	-	-	$-54$	dB

[^3]
The RF Line VHF/UHF CATV Amplifier

... designed for broadband applications requiring low-distortion amplification. Specifically intended for CATV/MATV market requirements. These amplifiers feature ionimplanted arsenic emitter transistors and an all gold metal system.

- Specified Characteristics at $\mathrm{V}_{C C}=24 \mathrm{~V}, \mathrm{~T}^{\mathrm{C}} \mathrm{C}=25^{\circ} \mathrm{C}$:

Frequency Range - 40 to 860 MHz
Power Gain - 17 dB Typ $@ \mathrm{f}=40 \mathrm{MHz}$
Noise Figure - 6.5 dB Typ @ $\mathrm{f}=500 \mathrm{MHz}$ $120 \mathrm{~dB} \mu \mathrm{~V}$ DIN45004B

- All Gold Metallization for Improved Reliability
- Superior Gain, Return Loss and DC Current Stability with Temperature

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 75 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	860	MHz
Power Gain ($\mathrm{f}=40 \mathrm{MHz}$)	P_{G}	16.5	17	17.5	dB
Slope ($40-860 \mathrm{MHz}$)	S	0.2	0.8	1.4	dB
Gain Flatness	-	-	-	± 0.3	dB
$\text { Return Loss - Input } \begin{aligned} f & =40-100 \mathrm{MHz} \\ f & =100-800 \mathrm{MHz} \\ f & =800-860 \mathrm{MHz} \end{aligned}$	IRL	$\begin{aligned} & 20 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & \overline{17} \\ & 12 \end{aligned}$	-	dB
	ORL	$\begin{aligned} & 20 \\ & 15 \end{aligned}$	$\overline{18}$	-	dB
Second Order Intermodulation Distortion ($\mathrm{V}_{\text {out }}=+50 \mathrm{dBmV}$ per ch.)	IMD	-	-	-60	dB
$\text { DIN45004B (f=40-860 MHz. See Figure 1) } \begin{aligned} f & =40-400 \mathrm{MHz} \\ f & =400-860 \mathrm{MHz} \end{aligned}$	DIN	$\begin{aligned} & 121 \\ & 120 \end{aligned}$	-	-	$\mathrm{dB} \mu \mathrm{V}$
$\text { Noise Figure } \begin{aligned} & \mathrm{f}=500 \mathrm{MHz} \\ & \mathrm{f}=860 \mathrm{MHz} \end{aligned}$	NF	—	$\begin{aligned} & 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	dB
DC Current	IDC	-	235	255	mA

Figure 1. DIN45004B Test

Figure 2. External Connections

The RF Line

Wideband Linear Amplifier

．．．designed for amplifier applications in $\mathbf{5 0}$ to $\mathbf{1 0 0}$ ohm systems requiring wide bandwidth，low noise and low distortion．This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push－pull circuit design．
－Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=\mathbf{2 4} \mathrm{V}, \mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}$ ：
Frequency Range－ 10 to 400 MHz
Output Power－ 800 mW Typ＠ 1 dB Compression， $\mathrm{f}=\mathbf{2 0 0} \mathbf{~ M H z}$
Power Gain－ 17 dB Typ＠ $\mathrm{f}=50 \mathrm{MHz}$
PEP－ 400 mW Typ＠－ 32 dB IMD
Noise Figure－ 8.5 dB Typ＠$f=300 \mathrm{MHz}$
－All Gold Metallization for Improved Reliability
maximum ratings

Rating	Symbol	Value	Unit
DC Supply Voltage	V_{CC}	28	Vdc $^{(16}$
RF Power Input	$\mathrm{P}_{\text {in }}$	+16	dBm
Operating Case Temperature Range	T_{C}	-20 to +30	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS（TC $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega$ system unless otherwise noted）

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	10	－	400	MHz
$\begin{array}{cc} \hline \text { Gain Flatness } & (f=30-300 \mathrm{MHz}) \\ & (f=10-400 \mathrm{MHz}) \end{array}$	－	二	二	$\begin{gathered} \pm 0.5 \\ \pm 1 \end{gathered}$	dB
Power Gain（f＝ 50 MHz ）	PG	16.25	17	17.75	dB
Noise Figure，Broadband$(f=60 \mathrm{MHz})$ $(f=300 \mathrm{MHz})$	NF	二	$\begin{gathered} 5 \\ 8.5 \end{gathered}$	－	dB
Power Output－ 1 dB Compression（ $\mathrm{f}=\mathbf{2 0 0 ~ M H z}$ ）	Po1 dB	800	－	－	mW
Third Order Intercept（See Figure 11， $\mathrm{f}_{1}=\mathbf{3 0 0} \mathbf{~ M H z}$ ）	ITO	－	44	－	dBm
Input／Output VSWR（ $f=10-400 \mathrm{MHz}$ ）	VSWR	－	2：1	－	－
Second Harmonic Distortion （Tone at $10 \mathrm{~mW}, \mathrm{f}_{2 \mathrm{H}}=10-\mathbf{3 0 0} \mathrm{MHz}$ ）	$\mathrm{d}_{\mathbf{s o}}$	－	－66	－	dB
Reverse Isolation（ $\mathrm{f}=10-400 \mathrm{MHz}$ ）	－	－	25	－	dB
Peak Envelope Power （Two Tone Distortion Test－See Figure 11） （ $\mathrm{f}=10-300 \mathrm{MHz}$＠-32 dB IMD）	PEP	－	400	－	mW
Supply Current	Icc	－	－	220	mA

TYPICAL CHARACTERISTICS

Figure 1. Power Gain versus Frequency

Figure 3. 1 dB Gain Compression versus Voltage

Figure 5. Third Order Intercept versus Voltage

Figure 2. Relative Power Gain versus Temperature

Figure 6. Peak Envelope Power versus Voltage

Figure 7. Second Harmonic Distortion versus Voltage

Figure 8. Group Delay versus Frequency

Biased at 24 Volts

$\begin{aligned} & \text { Frequency } \\ & \text { (MHz) } \end{aligned}$	S11		S21		512		S22	
	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
10	-8.3	19.3	16.3	14.5	-24.2	. 165	. 9.7	36.5
100	-12.2	-21.0	16.8	-64.5	-23.8	135	. 13.1	-29.3
200	-22.1	28.8	17.2	. 136	-23.6	83	. 22.0	30.0
300	-12.4	39.4	17.0	145	-24.6	27	-12.1	41.7
400	-11.0	17.6	16.2	63.1	-27.0	-34	-8.3	7.5

Magnitude in dB, Phase Angle in degrees.
Figure 9. S-Parameters

$\mathrm{ITO}=P_{0}+\frac{\mathrm{IMD}}{2}$ ©IMD $>60 \mathrm{~dB}$
PEP $=4 \mathrm{XPO} @ 1 M D=-32 \mathrm{~dB}$
Figure 11. Intermodulation Test

The RF Line
 Wideband Linear Amplifiers

... designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at $V_{C C}=24 \mathrm{~V}, \mathrm{TC}=25^{\circ} \mathrm{C}$:
- Frequency Range - $\mathbf{1 0}$ to $\mathbf{3 5 0} \mathbf{~ M H z}$

Output Power - 800 mW Typ @ 1 dB Compression, $\mathrm{f}=\mathbf{2 0 0} \mathrm{MHz}$
Power Gain - $33 \mathrm{~dB} @ f=50 \mathrm{MHz}$
PEP - 400 mW Typ @ -32 dB IMD
Noise Figure $-8 \mathrm{~dB} \operatorname{Max} @ \mathrm{f}=300 \mathrm{MHz}$

- All Gold Metallization for Improved Reliability
maximum ratings

Rating	Symbal	Value	Unit
DC Supply Voltage	Vcc	28	Vdc
RF Power Input	$P_{\text {in }}$	+ 5	dBm
Operating Case Temperature Range	TC	-20 to +90	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (TC $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	10	-	350	MHz
Gain Flatness(f $=30-300 \mathrm{MHz})$ $(f=10-350 \mathrm{MHz})$	-	二	-	$\begin{gathered} \pm 1 \\ \pm 1.5 \end{gathered}$	dB
Power Gain (f $=\mathbf{5 0 ~ M H z}$)	PG	32	33	34	dB
Noise Figure, Broadband (f $=\mathbf{6 0} \mathbf{~ M H z}$) ($f=300 \mathrm{MHz}$)	NF	-	4.6	8	dB
Power Output - 1 dB Compression ($\mathrm{f}=\mathbf{2 0 0} \mathbf{M H z}$)	Po1 dB	800	-	-	mW
Third Order Intercept (See Figure 11, $\mathbf{f}_{\mathbf{1}}=\mathbf{3 0 0} \mathbf{~ M H z}$)	ITO	-	43	-	dBm
Input/Output VSWR (f $=10-350 \mathrm{MHz}$)	VSWR	-	2:1	-	-
Second Harmonic Distortion (Tone at $10 \mathrm{~mW}, \mathrm{f}_{2 \mathrm{H}}=10-300 \mathrm{MHz}$)	d_{50}	-	-66	-	dB
Reverse Isolation (f $=10-350 \mathrm{MHz}$)	-	-	40	-	dB
Peak Envelope Power (Two Tone Distortion Test - See Figure 11) ($f=10-300 \mathrm{MHz} @-32 \mathrm{~dB}$ IMD)	PEP	-	400	-	mW
Supply Current	ICC	-	-	330	mA

CA2810C CA2810CH

CASE 714F-01, STYLE 1 [CA (POS. SUPPLY)] CA2810C

CASE 826-01, STYLE 1 (SIP) CA2810CH

TYPICAL CHARACTERISTICS

Figure 1. Power Gain versus Frequency

Figure 3. 1 dB Gain Compression versus Voltage

Figure 5. Third Order Intercept versus Voltage

Figure 2. Relative Power Gain versus Temperature

Figure 4. Noise Figure versus Voltage

Figure 6. Peak Envelope Power versus Voltage

Figure 7. Second Harmonic Distortion versus Voltage

Figure 8. Group Delay versus Frequency

Biased at 24 Volts							$T=25^{\circ} \mathrm{C} \quad 20=508$	
	S11		521		S12		522	
(MHz)	Mag	Ang	Hag	Ang	Mag	Ang	Mag	Ang
30	$\cdot 13.7$	-1.5	31.9	-10.5	-49.0	2.7	-14.2	10.5
50	-14.0	3.6	32.4	-39.9	-48.6	-16.6	-13.9	19.0
100	-13.3	5.8	32.9	-100	-48.4	-53.7	$\cdot 11.8$	11.3
200	-18.7	-3.7	33.4	147	-48.2	. 123	$\cdot 14.1$	-1.7
300	-15.2	39.4	34.0	20.9	-47.7	154	-13.2	65.3

[^4]Figure 9. S-Parameters

Figure 10. Functional Schematic

$150=P_{0}+\frac{\mathrm{IMD}^{2}}{2} \Leftrightarrow \mathrm{IMD}>600 B$
PEP $=4 \mathrm{XPO}$ ® IMO $=-3268$
Figure 11. Intermodulation Test

The RF Line

Wideband Linear Amplifiers

... designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$:

Frequency Range - $\mathbf{4 0}$ to $\mathbf{3 0 0} \mathrm{MHz}$
Output Power - 160 mW Typ @ 1 dB Compression, $\mathrm{f}=300 \mathrm{MHz}$
Power Gain - 34 dB Typ @ f=50 MHz
PEP - 150 mW Typ @ - 32 dB IMD
Noise Figure - 5 dB Typ @ $\mathrm{f}=300 \mathrm{MHz}$

- All Gold Metallization for Improved Reliability
- Designed for 15 V Operation, Low Power Consumption
- Low VSWR for 75 Ohm System

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$V_{\text {CC }}$	$\mathbf{2 8}$	Vdc
RF Power Input	$P_{\text {in }}$	+5	dBm
Operating Case Temperature Range	T_{C}	-20 to +90	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	300	MHz
Gain Flatness (f $=\mathbf{4 0 - 3 0 0 ~ M H z}$)	-	-	± 0.75	± 1.25	dB
Power Gain (f = 50 MHz)	$\mathrm{PG}_{\mathbf{G}}$	33	34	35	dB
$\begin{array}{ll} \text { Noise Figure, Broadband } & (f=50 \mathrm{MHz}) \\ & (f=300 \mathrm{MHz}) \end{array}$	NF	-	$\begin{gathered} 3.5 \\ 5 \end{gathered}$	$\begin{gathered} 4.5 \\ 6 \end{gathered}$	dB
Power Output - 1 dB Compression ($\mathrm{f}=300 \mathrm{MHz}$)	$\mathrm{P}_{0} 1 \mathrm{~dB}$	-	160	-	mW
Third Order Intercept (See Figure 11, $\mathrm{f}_{1}=300 \mathrm{MHz}$)	ITO	38	2.0:1	-	dBm
Input/Output VSWR (f $=40-300 \mathrm{MHz}$)	VSWR	-	1.2:1	-	-
Second Harmonic Distortion (Tone at $10 \mathrm{~mW}, \mathbf{f}_{\mathbf{2 H}}=\mathbf{3 0 0} \mathbf{M H z}$)	$d_{\text {so }}$	-	-50	-	dB
Reverse Isolation (f $=40-300 \mathrm{MHz}$)	一	一	40	-	dB
```Peak Envelope Power (Two Tone Distortion Test - See Figure 11) (f = 40-300 MHz @ - 32 dB IMD)```	PEP	-	150	-	mW
Supply Current	ICC	150	170	190	mA

## CA2813C CA2813CH




Figure 1. Power Gain versus Frequency


Figure 3. 1 dB Gain Compression versus Voltage


Figure 5. Third Order Intercept versus Voltage


Figure 2. Relative Power Gain versus Temperature


Figure 4. Noise Figure versus Voltage


Figure 6. Peak Envelope Power versus Voltage


Figure 7. Second Harmonic Distortion versus Voltage


Figure 8. Group Delay versus Frequency

Biased at 15 Volts

$\begin{aligned} & \text { Frequency } \\ & \text { (WHz) } \end{aligned}$	S11		S21		512		822	
	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
10	-16.6	53.0	33.1	35.0	-48.1	39.1	-21.2	48.7
50	. 32.3	-2.0	33.6	-44.9	-47.8	. 21.0	$\cdot 30.9$	65.0
100	-41.4	119	34.2	-107	. 47.7	-58.0	-30.3	22.6
200	-27.8	62.0	34.5	130	-48.6	. 140	-38.5	. 105
300	-26.1	-177	35.3	-10.2	-47.1	126	-23.3	84.5

Magnitude in dB, Phase Angle in degrees.
Figure 9. S-Parameters


Figure 10. Functional Schematic


ITO $=P_{0}+\frac{H M D}{2}$ © IMDD $>60 \mathrm{~dB}$
$P E P=4 X P_{0} \oplus 1 W D=-32 d B$
Figure 11. Intermodulation Test

## The RF Line

## Wideband Linear Amplifiers

... designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at $V_{C C}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ :


## CA2818 CA2818H

Frequency Range - 1 to 200 MHz
Output Power - 800 mW Typ @ 1 dB Compression, $\mathrm{f}=200 \mathrm{MHz}$
Power Gain - 18.5 dB Typ @ $\mathrm{f}=50 \mathrm{MHz}$
PEP - 800 mW Typ @ -32 dB IMD
Noise Figure - 5.5 dB Typ @ $f=150 \mathrm{MHz}$
ITO-47dBm Typ@f=150 MHz

- All Gold Metallization for Improved Reliability
- Refer to CATV Equivalent Model CA2418 for 75 Ohm Performance Data

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	28	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	+14	$\mathrm{dBm}^{\mathrm{dBm}}$
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$



ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range.	BW	1	-	200	MHz
Gain Flatness$f$ $=50-150 \mathrm{MHz}$   $f$ $=1-200 \mathrm{MHz}$	-	二	$\begin{aligned} & \pm 0.2 \\ & \pm 0.5 \end{aligned}$	$\begin{gathered} \pm 0.5 \\ \pm 1 \end{gathered}$	dB
Power Gain (f $=\mathbf{5 0} \mathbf{M H z}$ )	PG	17.75	18.5	19.25	dB
$\begin{aligned} & \text { Noise Figure, Broadband } \\ & f=30 \mathrm{MHz} \\ & f=150 \mathrm{MHz}\end{aligned}$	NF	-	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	dB
Power Output -1 dB Compression (f $=150 \mathrm{MHz}$ )	PoldB	800	900	-	mW
Third Order Intercept (See Figure 11, $\mathrm{f}_{1}=\mathbf{1 5 0 ~ M H z}$ )	ITO	44	47	-	dBm
InputOutput VSWR (f $=\mathbf{1 - 2 0 0 ~ M H z}$ )	VSWR	-	1.7:1	2:1	-
Second Harmonic Distortion (Tone at $100 \mathrm{~mW}, \mathrm{f}_{2 \mathrm{H}}=1-200 \mathrm{MHz}$ )	$\mathrm{d}_{\text {so }}$	-	-60	-55	dB
Reverse Isolation (f $=\mathbf{1 - 2 0 0 ~ M H z}$ )	-	-	25	-	dB
Peak Envelope Power (Two Tone Distortion Test - See Figure 11) ( $\mathrm{f}=\mathbf{1 - 2 0 0} \mathbf{M H z}$ @ -32 dB (MD)	PEP	600	800	-	mW
Supply Current	ICC	190.	205	220	mA

## CA2818, CA2818H

TYPICAL CHARACTERISTICS


Figure 1. Power Gain versus Frequency


Figure 3. 1 dB Gain Compression versus Voltage


Figure 5. Third Order Intercept versus Voltege


Figure 2. Relative Power Gain versus Temperature


Figure 4. Noise Figure versus Voltage


Figure 6. Peak Envelope Power versus Voltage


Figure 7. Second Harmonic Distortion versus Voltage


Figure 8. Group Delay versus Frequency

Biased at 24 Volts							$T=25{ }^{\circ} \mathrm{C} \quad 20=509$	
Frequency	S11		S21		S12		S22	
(MHz)	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
1	-11.6	23.5	17.8	9.7	-25.4	- 167	-10.9	8.4
10	$\cdot 11.1$	0	18.2	-4.6	-24.9	-183	-11.0	0.4
50	-12.5	-14.2	18.2	-37.1	-25.0	154	-12.7	-9.6
100	-14.8	-18.0	18.2	. 74.3	-24.9	128	$\cdot 15.3$	-24.0
200	$\cdot 13.6$	21.5	18.1	-147	-24.9	76.4	-22.7	43.0

Magnitude in dB, Phase Angle in degrees.
Figure 9. S-Parameters


Figure 10. Functional Schematic

$1 \mathrm{TO}=P_{0}+\frac{\mathrm{MLD}}{2}$ © $1 \mathrm{MD}>606 B$
$P E P=4 \times P_{0} \odot I M D=-320 B$
Figure 11. Intermodulation Test
... designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at $V_{C C}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ :

Frequency Range - 1 to 520 MHz
Output Power - 440 mW Typ @ 1 dB Compression, $\mathrm{f}=1-520 \mathrm{MHz}$
Power Gain - 30 dB Typ @ $\mathrm{f}=100 \mathrm{MHz}$
Noise Figure - 8.3 dB Typ @ $\mathrm{f}=50 \mathrm{MHz}$

- All Gold Metallization for Improved Reliability
- Unconditional Stability Under All Mismatch Conditions


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	28	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	+10	dBm
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

The RF Line <br> \title{
The RF Line <br> <br> Wideband Linear Amplifiers
} <br> <br> Wideband Linear Amplifiers
}

- Und

30 dB
$1-520 \mathrm{MHz}$ 440 mWATT WIDEBAND LINEAR AMPLIFIERS


CASE 714M-01, STYLE 2
(CA)
CA2820


CASE 826-01, STYLE 4
(SIP)
CA2820H

ELECTRICAL CHARACTERISTICS $\left({ }^{T} \mathrm{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	1	-	520	MHz
Gain Flatness ( $f=1-520 \mathrm{MHz}$ )	-	-	$\pm 0.8$	$\pm 1.5$	dB
Power Gain ( $\mathrm{f}=100 \mathrm{MHz}$ )	$\mathrm{PG}_{\mathrm{G}}$	29	30	31	dB
$\text { Noise Figure, Broadband } \begin{aligned} & f=30 \mathrm{MHz} \\ & \\ & f=500 \mathrm{MHz} \end{aligned}$	NF	-	$\begin{gathered} 6 \\ 8.3 \end{gathered}$	$\begin{gathered} 8 \\ 10 \end{gathered}$	dB
Power Output - 1 dB Compression ( $f=1-520 \mathrm{MHz}$ )	$\mathrm{P}_{\mathrm{o}} 1 \mathrm{~dB}$	400	440	-	mW
Third Order Intercept (See Figure 10, $\mathrm{f}_{1}=520 \mathrm{MHz}$ )	ITO	35	37	-	dBm
Input/Output VSWR $\begin{array}{r}\text { Input } \\ \text { Output }\end{array}$	VSWR	-	$\begin{aligned} & 1.5: 1 \\ & 1.8: 1 \end{aligned}$	$\begin{aligned} & 2: 1 \\ & 2: 1 \end{aligned}$	-
Second Harmonic Distortion (Tone at $10 \mathrm{~mW}, \mathrm{f}_{2} \mathrm{H}=1-520 \mathrm{MHz}$ )	$\mathrm{d}_{\text {so }}$	-	-55	-45	dB
Reverse Isolation ( $\mathrm{f}=1-520 \mathrm{MHz}$ )	-	49	52	-	dB
$\begin{aligned} & \text { Peak Envelope Power (Two Tone Distortion Test - See Figure 10) } \\ & (f=1-520 \mathrm{MHz} @-32 \mathrm{~dB} \text { IMD) } \end{aligned}$	PEP	300	400	-	mW
Supply Current	ICC	300	330	360	mA

TYPICAL CHARACTERISTICS


Figure 1. Power Gain versus Frequency


Figure 3. 1 dB Gain Compression versus Voltage


Figure 5. Third Order Intercept versus Voltage


Figure 2. Relative Power Gain versus Temperature


Figure 4. Noise Figure versus Voltage


Figure 6. Peak Envelope Power versus Voltage


Figure 7. Second Harmonic Distortion versus Voltage


Figure 8. Group Delay versus Frequency

Biased at 24 Volts							T $=25{ }^{\circ} \mathrm{C} \quad 20=508$	
Frequency	S11		S21		512		S22	
(MHz)	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
1	-12.5	-41.4	30.1	169	-52.8	150	-6.3	138
10	-25.4	-24.0	29.6	5.0	-53.8	5.0	-24.1	78
100	-27.5	5.6	29.6	-120	. 55.3	. 51.0	-39.3	-126
200	-21.4	3.6	29.3	120	-59.0	. 118	-21.3	15.7
300	-17.1	. 43	29.1	-1.6	. 58.2	145	-16.0	-30
400	-15.5	- 106	29.1	-123	. 53.2	89.8	-10.4	. 56.6
500	-16.5	. 181	29.5	109	. 50.3	36.0	. 37.7	150
600	-17.3	129	28.7	-41.2	. 55.4	14.8	-2.5	-14.2

Magnitude in dB, Phase Angle in degrees.
Figure 9. S-Parameters


ITO $=P_{0}+\frac{\text { IMD }}{2} \oplus \operatorname{IMD}>600 \mathrm{~B}$
$P E P=4 X P_{0}$ © IMD $=-32 d B$
Figure 10. Intermodulation Test


Figure 11. Functional Schematic


Figure 12. External Connections

## The RF Line

## Wideband Linear Amplifiers

... designed for amplifier applications in $\mathbf{5 0}$ to $\mathbf{1 0 0}$ ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at VCC $=24 \mathrm{~V}, \mathrm{~T} \mathrm{C}=25^{\circ} \mathrm{C}$ :

Frequency Range - 5 to 200 MHz
Output Power - 800 mW Typ @ 1 dB Compression, $\mathrm{f}=\mathbf{2 0 0} \mathrm{MHz}$
Power Gain - 34.5 dB Typ @ $\mathrm{f}=100 \mathrm{MHz}$
PEP - 800 mW Typ @ - $\mathbf{3 2} \mathbf{~ d B ~ I M D ~}$
Noise Figure - 4.7 dB Typ @f $=200 \mathrm{MHz}$ ITO-46 dBm @ $\mathrm{f}=\mathbf{2 0 0} \mathbf{M H z}$

- All Gold Metallization for Improved Reliability
- Unconditional Stability Under All Load Conditions

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	28	Vdc $^{\text {( }}$
RF Power Input	$\mathrm{P}_{\text {in }}$	+5	dBm
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (TC $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	5	-	200	MHz
Gain Flatness (f $=\mathbf{5 - 2 0 0 ~ M H z}$ )	-	-	$\pm 0.5$	$\pm 1$	dB
Power Gain ( $\mathrm{f}=100 \mathrm{MHz}$ )	PG	33.5	34.5	35.5	dB
Noise Figure, Broadband ( $f=200 \mathrm{MHz}$ )	NF	-	4.7	5.5	dB
$\begin{aligned} & \text { Power Output }-1 \text { dB Compression } \\ & (f=5-200 \mathrm{MHz}) \end{aligned}$	Po 1dB	630	800	-	mW
Power Output - 1 dB Compression ( $f=\mathbf{5 - 2 0 0} \mathbf{~ M H z}, \mathrm{V}_{\mathrm{CC}}=\mathbf{2 8} \mathrm{V}$ )	Po 1dB	1000	1260	-	mW
Third Order Intercept (See Figure 11, $\mathrm{f}_{1}=\mathbf{2 0 0} \mathbf{~ M H z}$ )	$1 T 0$	44	46	-	dBm
Input/Output VSWR (f $=\mathbf{5 - 2 0 0} \mathbf{M H z}$ )	VSWR	-	1.5:1	2:1	-
Second Harmonic Distortion (Tone at $100 \mathrm{~mW}, \mathrm{f}_{2 \mathrm{H}}=150 \mathrm{MHz}$ )	$\mathrm{d}_{\text {so }}$	-	-60	-50	dB
Peak Envelope Power (Two Tone Distortion Test - See Figure 11) (f $=5-200 \mathrm{MHz} @-32 \mathrm{~dB}$ IMD)	PEP	600	800	-	mW
Supply Current	ICC	270	300	330	mA

## CA2830 CA2830H CA2833

```
34.5 dB 5-200 MHz 800 mWATT WIDEBAND LINEAR AMPLIFIERS
```



CASE 714F-01, STYLE 1
(CA) CA2830


CASE 826-01, STYLE 1
(SIP)
CA2830H

CASE 714G-01, STYLE [CA, LOW PROFILE] CA2833

TYPICAL CHARACTERISTICS


Figure 1. Power Gain versus Frequency


Figure 3. 1 dB Gain Compression versus Voltage


Figure 5. Third Order Intercept versus Voltage


Figure 2. Relative Power Gain versus Temperature


Figure 4. Noise Figure versus Voltage


Figure 6. Peak Envelope Power versus Voltage


Figure 7. Second Harmonic Distortion versus Voltage


Figure 8. Group Delay versus Frequency

Blased at 24 Volts							$T=25^{\circ} \mathrm{C} \quad 20=509$	
	\$11		S21		512		S22	
(M)	Mag	Ang	Mag	Ang	Mag	An:	Mag	Ang
5	$\cdot 18.3$	66.2	34.6	15.2	-47.0	17.7	-9.8	87.4
10	-19.3	45.5	34.6	-0.6	-47.0	2.3	-14.5	76.8
50	-15.6	35.0	34.2	-56.7	-47.5	. 30.3	-12.6	45.0
100	-13.2	34.4	33.9	-114	-47.9	-62.9	-10.8	10.7
200	-11.1	30.1	33.5	134	-48.3	.128	$\cdot 14.9$	. 42.6

Magnitude in dB, Phase Angto In degrees.
Figure 9. S-Parameters


Figure 10. Functional Schematic

$\mathrm{ITO}_{0}=P_{0}+\frac{10 \mathrm{ND}}{2}$ © $\mathrm{MDD}>600 \mathrm{~B}$
$P E P=4 \times P_{0} \oplus 1 M D=-326 B$

Figure 11. Intermodulation Test

## The RF Line <br> Wideband Linear Amplifiers

... designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ :

Frequency Range - 1 to 200 MHz
Output Power - 1580 mW Typ @ 1 dB Compression, $\mathrm{f}=200 \mathrm{MHz}$
Power Gain - 35.5 dB Typ @ $\mathrm{f}=100 \mathrm{MHz}$
PEP - 900 mW Typ @ -32 dB IMD
Noise Figure -6 dB Typ @ $\mathrm{f}=200 \mathrm{MHz}$
ITO - $47 \mathrm{dBm} @ \mathrm{f}=200 \mathrm{MHz}$

- All Gold Metallization for Improved Reliability
- Output Power-2 W @ $\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}$
- Unconditional Stability Under All Load Conditions


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	30	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	+5	dBm
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-40 to +90	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$



CASE 714F-01, STYLE 1
(CA)
CA2832


CASE 826-01, STYLE 1
(SIP)
CA2832H

ELECTRICAL CHARACTERISTICS ( $T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	1	-	200	MHz
Gain Flatness ( $\mathrm{f}=1$-200 MHz)	-	-	$\pm 0.5$	$\pm 1$	dB
Power Gain ( $\mathrm{f}=100 \mathrm{MHz}$ )	$\mathrm{P}_{\mathrm{G}}$	34	35.5	37	dB
Noise Figure, Broadband ( $f=200 \mathrm{MHz}$ )	NF	-	6	7	dB
Power Output - 1 dB Compression ( $f=1-200 \mathrm{MHz}$ )	$P_{0} 1 \mathrm{~dB}$	1260	1580	-	mW
Power Output - 1 dB Compression ( $f=150 \mathrm{MHz}$ )	$\mathrm{P}_{\mathrm{o}} 1 \mathrm{~dB}$	-	2000	-	mW
Third Order Intercept (See Figure 11, $\mathrm{f}_{1}=200 \mathrm{MHz}$ )	ITO	45	47	-	dBm
Input/Output VSWR ( $\mathrm{f}=1-200 \mathrm{MHz}$ )	VSWR	-	1.5:1	2:1	-
Second Harmonic Distortion (Tone at $100 \mathrm{~mW}, \mathrm{f}_{2} \mathrm{H}=150 \mathrm{MHz}$ )	$\mathrm{d}_{\text {so }}$	-	-70	-60	dB
Peak Envelope Power (Two Tone Distortion Test - See Figure 11) ( $\mathrm{f}=1-200 \mathrm{MHz} @-32 \mathrm{~dB}$ IMD)	PEP	-	900	-	mW
Supply Current	ICC	400	435	470	mA

TYPICAL CHARACTERISTICS


Figure 1. Power Gain versus Frequency


Figure 3. 1 dB Gain Compression versus Voltage


Figure 5. Third Order Intercept versus Voltage


Figure 2. Relative Power Gain versus Temperature


Figure 4. Noise Figure versus Voltage


Figure 6. Peak Envelope Power versus Voltage


Figure 7. Second Harmonic Distortion versus Voltage


Figure 8. Group Delay versus Frequency

Blased at 28 Volts

Froquency (MHz)	S11		S21		S12		S22	
	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
1	-17.6	79.3	35.2	23.5	. 48.0	28.1	-12.6	60.5
10	-19.7	31.2	35.7	-9.1	-47.3	-4.9	-16.4	25.0
50	-16.0	30.8	35.5	-63.6	-48.0	-37.7	-11.8	9.8
100	. 13.3	37.4	35.0	. 126	-48.7	. 75.0	-10.7	-34.2
200	-10.0	27.6	34.3	110	. 50.5	-154	-9.8	$\cdot 136$

Magnitude in dB, Phase Angle in degrees.
Figure 9. S-Parameters


Figure 10. Functional Schematic

$110=P_{0}+\frac{1 M D}{2}$ © WND $>6008$
$P E P=4 X P_{0}$ © IMD $=-32 d B$

Figure 11. Intermodulation Test

## The RF Line

## Wideband Linear Amplifiers

. . . designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at $V_{C C}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ :

Frequency Range - 30 to 300 MHz
Output Power - 1580 mW Typ @ 1 dB Compression, $\mathrm{f}=200 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}$
Power Gain - 22 dB Typ @ $\mathrm{f}=100 \mathrm{MHz}$
PEP - 650 mW Typ @ - 32 dB IMD
Noise Figure - 5 dB Typ @ $f=100 \mathrm{MHz}$ $\mathrm{ITO}-\mathbf{4 6} \mathrm{dBm} @ \mathrm{f}=\mathbf{3 0 0} \mathrm{MHz}$

- All Gold Metallization for Improved Reliability
- Unconditional Stability Under All Load Conditions


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$V_{\text {cc }}$	28	Vdc
RF Power Input	Pin	+14	dBm
Operating Case Temperature Range	Tc	-40 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$



ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}, \mathrm{V} C \mathrm{C}=24 \mathrm{~V}, 50 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	30	-	300	MHz
Gain Flatness ( $\mathbf{~ = ~ 3 0 - 3 0 0 ~ M H z ) ~}$	-	-	$\pm 0.5$	$\pm 1$	dB
Power Gain (f = 100 MHz )	PG	21	22	23	dB
Noise Figure, Broadband ( $f=\mathbf{1 0 0} \mathbf{~ M H z}$ )	NF	-	5	6	dB
$\begin{aligned} & \text { Power Output }-1 \mathrm{~dB} \text { Compression } \\ & \left(\mathrm{f}=30-200 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CC}}=28 \mathrm{~V}\right) \end{aligned}$	Po1 dB	1260	1580	-	mW
$\begin{aligned} & \text { Power Output }-1 \mathrm{~dB} \text { Compression } \\ & (\mathrm{f}=200-300 \mathrm{MHz}, \mathrm{VCC}=28 \mathrm{~V}) \end{aligned}$	$P_{01}$ dB	630	800	-	mW
Third Order Intercept (See Figure 10, $\mathrm{f}_{1}=\mathbf{3 0} \mathbf{- 3 0 0} \mathrm{MHz}$ )	ITO	43	46	-	dBm
Input/Output VSWR $(f=30-200 \mathrm{MHz})$   $(f)=200-300 \mathrm{MHz})$	vswr	二		$\begin{aligned} & 1.3: 1 \\ & 1.5: 1 \end{aligned}$	-
Second Harmonic Distortion (Tone at $\mathbf{1 0 0} \mathbf{m W}, \mathbf{f}_{\mathbf{2 H}} \mathbf{=} \mathbf{3 0 0} \mathbf{~ M H z}$ )	dso	-	-	-50	dB
Peak Envelope Power (Two Tone Distortion Test - See Figure 10) (f = 200 MHz @ -32 dB IMD)	PEP	550	650	-	mW
Supply Current	ICC	210	230	250	mA



Figure 1. Power Gain versus Frequency


Figure 3. 1 dB Gain Compression versus Voltage


Figure 5. Third Order Intercept versus Voltage


Figure 2. Relative Power Gain versus Temperature


Figure 4. Noise Figure versus Voltage


Figure 6. Peak Envelope Power versus Voltage


Figure 7. Second Harmonic Distortion versus Voltage


Figure 8. Group Delay versus Frequency

Blased at 24.Volts							$T=25^{\circ} \mathrm{C} \quad \mathrm{ZO}=509$	
	S11		\$21		S12		S22	
(1) Hz)	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
10	-15.9	34.4	21.0	10.9	-26.3	. 168	-18.9	39.0
50	-25.4	-11.8	21.2	. 33.1	-26.5	157	-24.2	13.4
100	-32.8	7.6	21.4	. 72.7	. 26.5	128	-34.7	-63.0
200	-19.7	97.7	21.4	. 148	-27.0	73.4	-19.4	85.0
300	-21.8	100	21.4	128	-28.7	12.5	-18.4	100

Magnitude in dB, Phase Angle in degrees.
Figure 9. S-Parameters


Figure 10. Intermodulation Test

## The RF Line <br> Wideband Linear Amplifiers

... designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=-19 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ :

Frequency Range - 40 to 100 MHz
Output Power - 320 mW Typ @ 1 dB Compression, $\mathrm{f}=100 \mathrm{MHz}$
Power Gain - 17.5 dB Typ @ $\mathrm{f}=100 \mathrm{MHz}$
PEP - 300 mW Typ @ - 32 dB IMD
Noise Figure - 4.5 dB Typ @ $\mathrm{f}=70 \mathrm{MHz}$

- All Gold Metallization for Improved Reliability
- Low Power Consumption - ICC $=125 \mathrm{~mA}$ Typ @ $\mathrm{V}_{\mathrm{CC}}=-19 \mathrm{~V}$

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	VCC	-28	Vdc
RF Power lnput	$P_{\text {in }}$	+14	dBm
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS TTC $^{2}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=-19 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	100	MHz
Gain Flatness ( $f=40-100 \mathrm{MHz}$ )	-	-	$\pm 0.1$	$\pm 0.2$	dB
Power Gain (f $=100 \mathrm{MHz}$ )	PG	17	17.5	18	dB
Noise Figure, Broadband ( $f=70 \mathrm{MHz}$ )	NF	-	4.5	5	dB
Power Output - 1 dB Compression $(f=40-100 \mathrm{MHz})$	Po 1dB	250	320	-	mW
Third Order Intercept (See Figure 10, $\mathrm{f}_{1}=70 \mathrm{MHz}$ )	ITO	37	. 40	-	dBm
Inpu*Output VSWR (f $=40-100 \mathrm{MHz}$ )	VSWR	-	1.2:1	1.3:1	-
Second Harmonic Distortion (Tone at $\mathbf{2 5 0 ~ m W}, \mathbf{f}_{2} \mathrm{H}=100 \mathrm{MHz}$ )	$\mathrm{d}_{\text {so }}$	-	-40	-	dB
Peak Envelope Power   (Two Tone Distortion Test - See Figure 10) (f = 40-100 MHz @-32 dB IMD)	PEP	250	300	-	mW
Supply Current	ICC	110	125	140	mA

CA2850R CA2851R

## 17.5 dB $40-100 \mathrm{MHz}$ 320 mWATT WIDEBAND LINEAR AMPLIFIERS



CASE 714H-01, STYLE 1
(CA) CA2850R


CASE 714L-01, STYLE 1 (CA, LOW PROFILE) CA2851R

TYPICAL CHARACTERISTICS


Figure 1. Power Gain versus Frequency


Figure 3. 1 dB Gain Compression versus Voltage


Figure 5. Third Order Intercept versus Voltage


Figure 2. Relative Power Gain versus Temperature


Figure 4. Noise Figure versus Voltage


Figure 6. Peak Envelope Power versus Voltage


Figure 7. Second Harmonic Distortion versus Voltage


Figure 8. Group Delay versus Frequency

Biased at - 19 Volts

Frequency (MHz)	S11		S21		S12		522	
	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
40	-33.7	-16.0	17.6	. 28.2	-23.7	161	-23.6	4.2
50	-35.8	. 8.8	17.6	$\cdot 35.0$	-23.8	158	. 24.1	3.2
70	-38.9	-16.8	17.6	-49.1	-23.8	149	-25.5	-7.5
90	-38.0	53.2	17.6	-63.3	. 23.8	141	. 27.0	-24.8
100	-36.9	63.5	17.6	. 70.2	. 23.9	136	-27.4	-31.5

Magnitude in dB, Phase Angle in degrees.
Figure 9. S-Parameters



Figure 11. Functional Schematic
$1 T_{0}=P_{0}+\frac{1 M D}{2} @ 1 M O>600 B$
$P E P=4 X P 0 @ \perp M D=-3208$
Figure 10. Intermodulation Test

## The RF Line

## Wideband Linear Amplifiers

CA2870 CA2870H
... designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

Two B+inputs, one for the preamplifier and one for the final stage, provide a convenient means of RF leveling by variation of the final stage $B+$ voltage. Although the uncorrected flatness of this module is superb ( $\pm 0.5 \mathrm{~dB}$ typical), the leveling provisions provide convenient means of correcting for the frequency response of succeeding stages and injection of AM modulation.

- Specified Characteristics at $\mathrm{V}_{C C}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ :

Frequency Range - 20 to 400 MHz
Output Power - 500 mW Typ @ 1 dB Compression, $\mathrm{f}=400 \mathrm{MHz}$
Power Gain - 34 dB Typ @ $\mathrm{f}=100 \mathrm{MHz}$
PEP - 500 mW Typ @ -32 dB IMD
Noise Figure -7.5 dB Typ @ $\mathrm{f}=400 \mathrm{MHz}$

- All Gold Metallization for Improved Reliability
- Amplitude Leveling Provision


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	28	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	+5	dBm
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	20	-	400	MHz
Gain Flatness ( $\mathrm{f}=20-400 \mathrm{MHz}$ )	-	-	$\pm 0.5$	$\pm 1$	dB
Power Gain ( $\mathrm{f}=100 \mathrm{MHz}$ )	$\mathrm{PG}_{\mathrm{G}}$	32.5	34	35.5	dB
Noise Figure, Broadband $f=30 \mathrm{MHz}$ $\mathrm{f}=400 \mathrm{MHz}$	NF		$\begin{aligned} & 4.5 \\ & 7.5 \end{aligned}$	$\begin{gathered} 6 \\ 8.5 \end{gathered}$	dB
Power Output - 1 dB Compression $\mathrm{f}=225 \mathrm{MHz}$ $f=400 \mathrm{MHz}$	$\mathrm{P}_{\mathrm{ol}} \mathrm{dB}$	$\begin{aligned} & 800 \\ & 400 \end{aligned}$	$\begin{aligned} & 850 \\ & 500 \end{aligned}$	-	mW
Third Order Intercept (See Figure 11, $\mathrm{f}_{1}=300 \mathrm{MHz}$ )	ITO	42	45	-	dBm
Input/Output VSWR ( $\mathrm{f}=20-400 \mathrm{MHz}$ ) $\begin{aligned} & \text { Input } \\ & \\ & \text { Output }\end{aligned}$	vSWR		$\begin{aligned} & 1.5: 1 \\ & 1.8: 1 \end{aligned}$	$\begin{aligned} & \text { 2:1 } \\ & 2: 1 \end{aligned}$	-
Second Harmonic Distortion (Tone at $100 \mathrm{~mW}, \mathrm{f}_{2 \mathrm{H}}=20-400 \mathrm{MHz}$ )	$\mathrm{d}_{\text {so }}$	-	-52	-45	dB
Reverse Isolation ( $f=20-400 \mathrm{MHz}$ )	-	45	48	-	dB
$\begin{aligned} & \text { Peak Envelope Power (Two Tone Distortion Test - See Figure 11) } \\ & (f=20-400 \mathrm{MHz} @-32 \mathrm{~dB} \text { IMD) } \end{aligned}$	PEP	400	500	-	mW
Supply Current	ICC	270	300	330	mA



Figure 1. Power Gain versus Frequency


Figure 3. 1 dB Gain Compression versus Voltage


Figure 5. Third Order Intercept versus Voltage


Figure 2. Relative Power Gain versus Temperature


Figure 4. Noise Figure versus Voltage


Figure 6. Peak Envelope Power versus Voltage


Figure 7. Second Harmonic Distortion versus Voltage


Figure 8. Group Delay versus Frequency

Blased at 24 Volts							$T=25^{\circ} \mathrm{C} \quad 20=508$	
Frequancy	511		S21		S12		522	
(MHz)	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
20	-29.0	99.8	34.0	. 4.3	. 47.9	6.0	$\cdot 14.6$	21.3
100	-18.0	76.2	34.3	$\cdot 107$	-47.6	. 53.5	-12.3	-5.9
200	-16.1	61.8	33.8	143	. 47.9	-115	$\cdot 11.6$	-35.3
300	$\cdot 13.9$	52.3	33.7	27.9	-47.9	172	-13.5	-89.0
400	-20.9	44.6	33.9	-110	-47.2	94.8	-18.5	95.2

Magnitude in dB, Phase Angle in degrees.
Figure 9. S-Parameters


Figure 10. Functional Schematic


Figure 12. External Connections

## The RF Line

## Wideband Linear Amplifier

... designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=-19 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ :

Frequency Range - 40 to 100 MHz
Output Power - 400 mW Typ @ 1 dB Compression, $\mathrm{f}=100 \mathrm{MHz}$
17.5 dB
$40-100 \mathrm{MHz}$
400 mWATT WIDEBAND LINEAR AMPLIFIER

Power Gain - 17.5 dB Typ @ $\mathrm{f}=100 \mathrm{MHz}$
PEP - 300 mW Typ @ -32 dB IMD
Noise Figure - 4.5 dB Typ @ $\mathrm{f}=70 \mathrm{MHz}$
$\mathrm{ITO}-43 \mathrm{dBm} @ f=70 \mathrm{MHz}$

- All Gold Metallization for Improved Reliability
- Specified for 75 Ohm Systems

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-28	$\mathrm{~V}_{\text {Vc }}$
RF Power Input	$\mathrm{P}_{\text {in }}$	+14	dBm
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$



ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=-19 \mathrm{~V}, 75 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	100	MHz
Gain Flatness ( $\mathrm{f}=40-100 \mathrm{MHz}$ )	-	-	$\pm 0.1$	$\pm 0.2$	dB
Power Gain (f = $\mathbf{1 0 0} \mathbf{~ M H z}$ )	PG	17	17.5	18	dB
Noise Flgure, Broadband (f $=70 \mathrm{MHz}$ )	NF	-	4.5	5	dB
Power Output - 1 dB Compression ( $f=40-100 \mathrm{MHz}$ )	Po1dB	315	400	-	mW
Third Order Intercept (See Figure 11, $\mathrm{f}_{1}=70 \mathrm{MHz}$ )	ITO	42	43	-	dBm
Input/Output VSWR (f $=\mathbf{4 0 - 1 0 0 ~ M H z )}$	VSWR	-	-	1.1:1	-
Second Harmonic Distortion (Tone at $\mathbf{2 5 0} \mathbf{~ m W , ~} \mathbf{f}_{\mathbf{2 H}}=\mathbf{1 0 0} \mathbf{~ M H z}$ )	$\mathrm{d}_{\text {so }}$	-	-40	-	d8
Peak Envelope Power (Two Tone Distortion Test - See Figure 11) ( $f=40-100 \mathrm{MHz}$ @ -32 dB IMD)	PEP	250	300	-	mW
Supply Current	ICC	140	155	170	mA



Figure 1. Power Gain versus Frequency


Figure 3. 1 dB Gain Compression versus Voltage


Figure 5. Third Order Intercept versus Voltage


Figure 2. Relative Power Gain versus Temperature


Figure 4. Noise Figure versus Voltage


Figure 6. Peak Envelope Power versus Voltage


Figure 7. Second Harmonic Distortion versus Voltage


Figure 8. Group Delay versus Frequency

Blased at -19 Volts							$\mathrm{T}=25^{\circ} \mathrm{C} \quad 20=750$	
Frequency	511		S21		S12		S22	
( $\mathrm{MHz}^{\text {c }}$	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
40	-32.1	14.8	17.6	-27.4	-24.2	161	-40.5	-31.1
50	-32.7	2.0	17.6	-34.3	-24.3	156	-39.4	-38.1
70	-33.4	-16.0	17.6	-48.1	-24.3	147	-36.0	. 57.2
90	-32.8	. 27.0	17.5	-60.9	-24.4	138	. 32.4	.76.7
100	-32.6	-34.0	17.5	-68.0	-24.5	133	-30.3	-87.7

Magnitude in dB, Phase Angle in degrees.
Figure 9. S-Parameters


Figure 10. Functional Schematic

$110=P_{0}+\frac{M M D}{2} @ \operatorname{IMD}>60 \mathrm{~dB}$
$P E P=4 X P_{0} @$ MMD $=-32 \mathrm{~dB}$

Figure 11. Intermodulation Test

## The RF Line Wideband Linear Amplifiers

... designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability

## CA4800 CA4800H

 with temperature and linear amplification as a result of the push-pull circuit design.17 dB $10-1000 \mathrm{MHz}$ 400 mWATT WIDEBAND LINEAR AMPLIFIERS

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ :

Frequency Range - 10 to 1000 MHz
Output Power - 400 mW Typ @ 1 dB Compression, $\mathrm{f}=500 \mathrm{MHz}$
Power Gain - 17 dB Typ @ $\mathrm{f}=100 \mathrm{MHz}$
PEP - 320 mW Typ @ -32 dB IMD
Noise Figure -6.5 dB Typ@ $f=500 \mathrm{MHz}$
ITO - 40 dBm Typ @ $\mathrm{f}=1000 \mathrm{MHz}$

- All Gold Metallization for Improved Reliability
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	28	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	14	dBm dB
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$



ELECTRICAL CHARACTERISTICS ( $T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	10	-	1000	MHz
Gain Flatness ( $\mathrm{f}=10-1000 \mathrm{MHz}$ )	-	-	$\pm 0.5$	$\pm 1$	dB
Power Gain ( $\mathrm{f}=100 \mathrm{MHz}$ )	PG	16	17	18	dB
Noise Figure, Broadband $f=500 \mathrm{MHz}$ $f=1000 \mathrm{MHz}$	NF	-	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 8 \\ & 9 \end{aligned}$	dB
Power Output - 1 dB Compression ( $\mathrm{f}=500 \mathrm{MHz}$ )	Po 1dB	300	400	-	mW
Third Order Intercept (See Figure 11, $\mathrm{f}_{1}=10-1000 \mathrm{MHz}$ )	ITO	38	40	-	dBm
Input/Output VSWR $f=40-860 \mathrm{MHz}$      $f=10-1000 \mathrm{MHz}$	vswR	-	二	$\begin{gathered} \hline 2: 1 \\ 2.5: 1 \end{gathered}$	-
Second Harmonic Distortion ( $\mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW}, \mathrm{f}_{2 \mathrm{H}}=1000 \mathrm{MHz}$ )	$\mathrm{d}_{\text {so }}$	-	-50	-40	dB
```Peak Envelope Power (Two Tone Distortion Test - See Figure 11) (f=500 MHz@-32 dB IMD)```	PEP	-	320	-	mW
Supply Current	${ }^{\text {ICC }}$	200	220	240	mA
```Intermodulation Distortion, 3 Tone (Vision Carrier \(=-8 \mathrm{~dB}\), Sound Carrier \(=-10 \mathrm{~dB}\), Sideband Signal \(=-17 \mathrm{~dB}\). See Figure 12. \(\mathrm{f}=860 \mathrm{MHz}\), PSYNC \(=200 \mathrm{~mW})\)```	IMD	-	-60	-	dB

## CA4800, CA4800H

TYPICAL CHARACTERISTICS


Figure 1. Frequency Response versus Voltage


Figure 3. Noise Figure versus Frequency


Figure 4. 1 dB Compression versus Frequency


Figure 6. Third Order Intercept versus Frequency


Figure 5. Peak Envelope Power versus Frequency


Figure 7. Intermodulation Distortion versus Frequency


Figure 8. Second Harmonic Distortion versus Frequency


Figure 9. Group Delay versus Frequency

Biased at 24 Volts 220 mA   $\mathbf{Z O}=50$ Ohms									
Frequency ( $\mathrm{MHz}^{\text {) }}$	$\mathbf{S 1 1}$		$\mathbf{S 2 1}$		S12		$\mathbf{S 2 2}$		$k$
10	- 25.26	116.3	16.71	13.8	-43.08	-34.0	- 12.00	95.3	9.766
110	-39.97	117.8	17.35	-47.1	-42.15	-8.6	- 18.41	33.7	8.596
210	-31.20	130.0	17.35	-92.1	-41.04	-99.1	- 17.27	22.1	7.534
310	- 27.75	117.0	17.29	- 138.1	- 39.80	- 18.4	- 16.91	9.4	6.568
410	-27.26	114.0	17.24	177.3	- 38.31	-28.4	- 17.64	-4.2 -197	5.588 4.547
510	- 25.39	125.3	17.14	132.2	-36.36	- 39.7	- 18.85	-19.7 -43.8	4.547 3.784
610	- 21.39	125.2	16.87	88.3	-34.46 -32.66	-56.3 -74.2	-19.92 -20.26	-43.8	3.784 3.146
710	- 18.22	104.8	16.66	44.3	-32.66 -30.48	-74.2 -940	-20.26 -18.80	-85.4 -137.1	3.146 2.488
810	- 16.08	71.8	16.50	1.4	- 30.48	-94.0	-18.80	$-137.1$	2.488
910 1040	- 12.87	29.5 -20.8	16.74 16.79	-42.7 -92.1	-28.03 -25.74	-117.4 -146.5	-15.81 -12.71		1.794 1.253
1010	-8.59	-20.8	16.79	-92.1	-25.74	- 146.5	- 12.71	104.8	1.253

Figure 10. S-Parameters


Figure 11. 2-Tone Intermodulation Test
ITO $=P_{0}+\frac{I M D}{2} @ I M D>60 d B$


Figure 12. 3-Tone TV Intermodulation Test $\mathrm{f}_{1}=$ Video
$\mathrm{f}_{2}=$ Sideband $f_{3}=$ Sound


Figure 13. External Connections

## The RF Line <br> Wideband Linear Amplifiers

... designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ :

Frequency Range - 10 to 1000 MHz
Output Power - 400 mW Typ @ 1 dB Compression, $\mathrm{f}=500 \mathrm{MHz}$
PEP - 320 mW Typ @ - 32 dB IMD
Noise Figure -6.5 dB Typ @ $f=500 \mathrm{MHz}$
ITO - $40 \mathrm{dBm} @ \mathrm{f}=1000 \mathrm{MHz}$

- All Gold Metallization for Improved Reliability
- Optimized for 12 Volt Operation


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	14	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	+14	dBm
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

17 dB $10-1000 \mathrm{MHz}$ 400 mWATT WIDEBAND LINEAR AMPLIFIERS


CASE 714P-01, STYLE 3 (CA) CA4812


CASE 826-01, STYLE 7
(SIP) CA4812H

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, 50 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	10	-	1000	MHz
Gain Flatness ( $\mathrm{f}=10-1000 \mathrm{MHz}$ )	-	-	$\pm 0.5$	$\pm 1$	dB
Power Gain ( $f=100 \mathrm{MHz}$ )	PG	16	17	18	dB
Noise Figure, Broadband$f=500 \mathrm{MHz}$   $f=1000 \mathrm{MHz}$	NF	-	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 8 \\ & 9 \end{aligned}$	dB
Power Output - 1 dB Compression ( $f=500 \mathrm{MHz}$ )	Po 1dB	300	400	-	mW
Third Order Intercept (See Figure 11, $\mathrm{f}_{1}=10-1000 \mathrm{MHz}$ )	ITO	38	40	-	dBm
$\text { Input/Output VSWR } \begin{aligned} f & =40-860 \mathrm{MHz} \\ & f=10-1000 \mathrm{MHz} \end{aligned}$	VSWR	-	-	$\begin{gathered} 2: 1 \\ 2.5: 1 \end{gathered}$	-
Second Harmonic Distortion ( $\mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW}, \mathrm{f}_{2} \mathrm{H}=1000 \mathrm{MHz}$ )	$\mathrm{d}_{\text {so }}$	-	-50	-40	dB
Peak Envelope Power (Two Tone Distortion Test - See Figure 11) ( $\mathrm{f}=500 \mathrm{MHz}$ @ -32 dB IMD)	PEP	-	320	-	mW
Supply Current	${ }^{1} \mathrm{CC}$	360	380	400	mA
```Intermodulation Distortion, 3 Tone (Vision Carrier = -8 dB, Sound Carrier = -10 dB, Sideband Signal = -17 dB. See Figure 12. f=860 MHz, P```	IMD	-	-60	-	dB

TYPICAL CHARACTERISTICS

Figure 1. Frequency Response versus Voltage

Figure 2. Frequency Response versus Temperature

Figure 3. Noise Figure versus Voltage

Figure 4. 1 dB Compression versus Voltage

Figure 5. Peak Envelope Power versus Voltage

Figure 6. Third Order Intercept versus Voltage

Figure 8. Second Harmonic Distortion versus Frequency

Figure 7. Intermodulation: TV Test

Figure 9. Group Delay versus Frequency

Biasad at 12 Valts

378 mA
$Z 0=500$ thms

Frequency (MHz)	S11	-	521		S12		S22		k
10	-26.45	120.1	16.50	14.2	-43.49	16.8	- 11.58	98.1	10.425
110	-39.42	132.5	17.24	-47.2	-42.25	-0.5	- 18.18	39.2	8.802
210	- 31.22	133.7	17.15	-92.3	-41.15	-4.7	- 16.72	29.3	7.787
310	-27.72	118.8	17.39	-138.6	-39.61	- 13.4	- 16.22	20.5	6.325
410	-27.24	119.2	17.33	176.2	- 37.91	-24.1	- 16.30	- 13.6	5.249
510.	-24.56	139.6	17.22	130.5	-36.08	- 38.2	- 16.64	-5.6	4.329
610	- 19.41	136.4	16.97	86.1	-34.27	-55.2	- 17.26	-6.6	3.622
710	- 15.98	113.6	16.76	41.6	- 32.16	- 74.7	- 19.19	-27.0	2.926
810	- 14.04	76.9	16.66	-1.7	- 30.01	-95.6	-25.19	-55.8	2.339
910	- 11.66	31.1	16.93	-46.4	-27.63	- 120.2	-25.82	119.3	1.728
1010	-7.98	-24.7	16.99	-97.3	-25.33	-150.7	- 13.13	66.2	1.208

Figure 10. S-Parameters

Figure 12. 3-Tone TV Intermodulation Test

Figure 13. External Connections

The RF Line
 Wideband Linear Amplifiers

CA4815 CA4815H

... designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$:

Frequency Range - 10 to 1000 MHz
17 dB $10-1000 \mathrm{MHz}$ 400 mWATT WIDEBAND LINEAR AMPLIFIERS
Output Power - 400 mW Typ @ 1 dB Compression, $\mathrm{f}=500 \mathrm{MHz}$
Power Gain - 17 dB Typ @ $\mathrm{f}=100 \mathrm{MHz}$
PEP - 320 mW Typ@ -32 dB IMD
Noise Figure -6.5 dB Typ @ $\mathrm{f}=500 \mathrm{MHz}$
ITO - 40 dBm Typ @ $\mathrm{f}=1000 \mathrm{MHz}$

- All Gold Metallization for Improved Reliability
- Optimized for 15 V Operation

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	V_{CC}	18	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	+14	dBm
Operating Case Temperature Range	T_{C}	-40 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	10	-	1000	MHz
Gain Flatness ($\mathrm{f}=10-1000 \mathrm{MHz}$)	-	-	± 0.5	± 1	dB
Power Gain ($f=100 \mathrm{MHz}$)	PG_{G}	16	17	18	dB
$\text { Noise Figure, Broadband } \begin{aligned} & f=500 \mathrm{MHz} \\ & \\ & f=1000 \mathrm{MHz} \end{aligned}$	NF	-	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 8 \\ & 9 \end{aligned}$	dB
Power Output - 1 dB Compression ($f=500 \mathrm{MHz}$)	Po1dB	300	400	-	mW
Third Order Intercept (See Figure 1, $\mathrm{f}_{1}=10-1000 \mathrm{MHz}$)	ITO	38	40	-	dBm
$\text { Input/Output VSWR } \begin{aligned} & f=40-860 \mathrm{MHz} \\ & \\ & \\ & f=10-1000 \mathrm{MHz} \end{aligned}$	vSWR	-	-	$\begin{gathered} 2: 1 \\ 2.5: 1 \end{gathered}$	-
Second Harmonic Distortion ($\mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW}, \mathrm{f}_{2} \mathrm{H}=1000 \mathrm{MHz}$)	$\mathrm{d}_{\text {So }}$	-	-50	-40	dB
$\begin{aligned} & \text { Peak Envelope Power (Two Tone Distortion Test - See Figure 1) } \\ & \text { (f =500 MHz@-32 dB IMD) } \end{aligned}$	PEP	-	320	-	mW
Supply Current	${ }^{\prime} \mathrm{CC}$	360	380	400	mA
```Intermodulation Distortion, 3 Tone (Vision Carrier = -8 dB, Sound Carrier = - 10 dB, Sideband Signal = -17 dB. See Figure 2. f=860 MHz, P```	IMD	-	-60	-	dB



Figure 1. 2-Tone Intermodulation Test


Figure 3. External Connections

## The RF Line <br> Wideband Linear Amplifiers

... designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ :

Frequency Range - 10 to 1000 MHz

> CA5800 CA5800H

Output Power-1 W Typ@ 1 dB Compression, $\mathrm{f}=500 \mathrm{MHz}$
15 dB
$10-1000 \mathrm{MHz}$ 800 mWATT WIDEBAND LINEAR AMPLIFIERS

Power Gain - 15 dB Typ @ $\mathrm{f}=100 \mathrm{MHz}$
PEP - 800 mW Typ @ -32 dB IMD
Noise Figure - 7.5 dB Type @ $\mathrm{f}=500 \mathrm{MHz}$
$\mathrm{ITO}-40.5 \mathrm{dBm} @ \mathrm{f}=1000 \mathrm{MHZ}$

- All Gold Metallization for Improved Reliability
- Optimized for 28 V Operation


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	32	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	+20	dBm
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$



ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, 50 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	10	-	1000	MHz
Gain Flatness ( $f=10-1000 \mathrm{MHz}$ )	-	-	$\pm 0.5$	$\pm 1$	dB
Power Gain ( $f=100 \mathrm{MHz}$ )	$\mathrm{PG}_{\text {G }}$	14	15	-	dB
$\text { Noise Figure, Broadband } \begin{aligned} & f=500 \mathrm{MHz} \\ & \\ & f=1000 \mathrm{MHz} \end{aligned}$	NF	-	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	dB
Power Output - 1 dB Compression ( $f=500 \mathrm{MHz}$ )	Po1dB	630	1000	-	mW
Third Order Intercept (See Figure 9, $\mathrm{f}_{1}=47 \mathrm{MHz}, \mathrm{f}_{2}=658 \mathrm{MHz}$ )	ITO	-	40.5	-	dBm
$\text { Input/Output VSWR } \begin{aligned} f & =40-860 \mathrm{MHz} \\ & f=10-1000 \mathrm{MHz} \end{aligned}$	VSWR	-	—	$\begin{gathered} 2: 1 \\ 2.5: 1 \end{gathered}$	-
Second Harmonic Distortion ( $\mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW}, \mathrm{f}_{2} \mathrm{H}=1000 \mathrm{MHz}$ )	$\mathrm{d}_{\text {So }}$	-	-55	-45	dB
Peak Envelope Power (Two Tone Distortion Test - See Figure 10) ( $\mathrm{f}=500 \mathrm{MHz} @-32 \mathrm{~dB}$ IMD)	PEP	-	800	-	mW
Supply Current	ICC	360	400	440	mA
```Intermodulation Distortion, 3 Tone (Vision Carrier = -8 dB, Sound Carrier = -10 dB, Sideband Signal = -17 dB. See Figure 11. f=860 MHz, P```	IMD	-	-58	-	dB
$\begin{aligned} & \text { Second Order IMD } \\ & \quad\left(P_{t}=2.75 \mathrm{dBm}, \mathrm{f}_{1}=373 \mathrm{MHz}, \mathrm{f}_{2}=450 \mathrm{MHz}\right. \text {, See Fig. 9) } \end{aligned}$	IM2		-65	-60	dB

TYPICAL CHARACTERISTICS

Figure 1. Frequency Response versus Temperature

Figure 3. Peak Envelope Power versus Frequency

Figure 2. 1 dB Compression versus Frequency

Figure 4. Third Order Intercept versus Frequency

Figure 5. Intermodulation Distortion versus Frequency

Figure 6. Second Harmonic Distortion versus Frequency

Figure 7. Group Delay versus Frequency

Figure 8. Noise Figure versus Frequency

$I T O=P_{0}+\frac{\mathrm{IM} 3}{2} @ \operatorname{IM} 3>60 \mathrm{~dB}$
Figure 9. 2-Tone Intermodulation, Test B

It: video
t2: Sideband
Figure 11. 3-Tone TV Intermodulation Test

$P E P=4 X P_{0}$ © $1 M D=-32 d B$
Figure 10. 2-Tone Intermodulation, Test A

$\mathrm{Cl}_{1}, 2.3 .4-0.1 \mathrm{mfd}$ (CHIP)
$\mathrm{RI}-90 \mathrm{OHM}, 2$ WATTS

Figure 12. External Connections

SEMICONDUCTOR

TECHNICAL DATA

The RF Line
 Wideband Linear Amplifiers

... designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$:

Frequency Range - 10 to 1000 MHz

CA5815 CA5815H

Output Power - 1 W Typ@ 1 dB Compression, $\mathrm{f}=500 \mathrm{MHz}$
Power Gain - 15 dB Typ @ $\mathrm{f}=100 \mathrm{MHz}$
PEP - 1 W Typ @ -32 dB IMD
Noise Figure -7.5 dB Typ @ $\mathrm{f}=500 \mathrm{MHz}$
ITO - 40.5 dBm Typ @ $\mathrm{f}=1000 \mathrm{MHz}$

- All Gold Metallization for Improved Reliability
- Optimized for 15 Volt Operation

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	V_{CC}	18	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	+20	dBm
Operating Case Temperature Range	T^{C}	-40 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

15 dB
 $10-1000 \mathrm{MHz}$ 1 WATT WIDEBAND LINEAR AMPLIFIERS

CASE 714P-01, STYLE 3 (CA) CA5815

CASE 826-01, STYLE 7
(SIP)
CA5815H

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=15 \mathrm{~V}, 50 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	10	-	1000	MHz
Gain Flatness ($f=10-1000 \mathrm{MHz}$)	-	-	± 0.5	± 1	dB
Power Gain ($f=100 \mathrm{MHz}$)	PG_{G}	14	15	-	dB
$\text { Noise Figure, Broadband } \begin{aligned} & f=500 \mathrm{MHz} \\ & \\ & f=1000 \mathrm{MHz} \end{aligned}$	NF	-	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	dB
Power Output - 1 dB Compression ($f=500 \mathrm{MHz}$)	Po 1dB	630	1000	-	mW
Third Order Intercept (See Figure 9, $\mathrm{f}_{1}=47 \mathrm{MHz} ; \mathrm{f}_{2}=658 \mathrm{MHz}$)	ITO	-	40.5	-	dBm
$\text { Input/Output VSWR } \begin{array}{ll} f & =40-860 \mathrm{MHz} \\ & f=10-1000 \mathrm{MHz} \end{array}$	VSWR	-	-	$\begin{gathered} 2: 1 \\ 2.5: 1 \end{gathered}$	-
Second Harmonic Distortion ($\mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW}, \mathrm{f}_{2} \mathrm{H}=1000 \mathrm{MHz}$)	$\mathrm{d}_{\text {SO }}$	-	-55	-45	dB
Peak Envelope Power (Two Tone Distortion Test - See Figure 10) ($f=500 \mathrm{MHz}$ @ -32 dB IMD)	PEP	-	1000	-	mW
Supply Current	${ }^{1} \mathrm{CC}$	660	700	800	mA
```Intermodulation Distortion, 3 Tone (Vision Carrier = - 8 dB, Sound Carrier = - 10 dB, Sideband Signal = -17 dB. See Figure 11. f=860 MHz, P```	IMD	-	-60	-	dB
Second Order IMD $\left(P_{0}=2.75 \mathrm{dBm}, \mathrm{f}_{1}=373 \mathrm{mHz}, \mathrm{f}_{2}=450 \mathrm{MHz}\right.$. See Figure 9.)	IM2	-	-65	-60	dB



Figure 1. Frequency Response versus Temperature


Figure 3. Peak Envelope Power versus Frequency

Figure 2. 1 dB Compression versus Frequency


Figure 4. Third Order Intercept versus Frequency


Figure 5. Intermodulation Distortion versus Frequency


Figure 6. Second Harmonic Distortion versus Frequency


Figure 7. Group Delay versus Frequency


Figure 8. Noise Figure versus Frequency

$\mathrm{ITO}=\mathrm{P}_{\mathrm{O}}+\frac{\mathrm{I} \mathrm{M}_{3}}{2} @ \mathrm{I} \mathrm{M}_{3}<60 \mathrm{~dB}$
Figure 9. 2-Tone Intermodulation, Test B


11: video
fi: sideband
13: soend
Figure 11. 3-Tone TV Intermodulation Test

$P E P=4 X P O$ IMD $=-32 d B$

Figure 10. 2-Tone Intermodulation, Test A


Figure 12. External Connections

## Advance Information The RF Line Wideband Linear Amplifier

## CA5900

...designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ :

Frequency Range - 10 to 1200 MHz
Output Power - 1.0 W Typ (a 1.0 dB Compression, $\mathrm{f}=500 \mathrm{MHz}$
Power Gain - 15 dB Typ ( $\mathrm{f}=100 \mathrm{MHz}$
PEP - 800 mW Typ ( $u-32 \mathrm{~dB}$ IMD
Noise Figure -7.5 dB Typ © $\mathrm{f}=500 \mathrm{MHz}$
ITO -41 dBm © $\mathrm{f}=752 \mathrm{MHz}$

- All Gold Metallization for Improved Reliability
- Optimized for 28 Volt Operation

15 dB
$10-1200 \mathrm{MHz}$ 800 mWATT WIDEBAND LINEAR AMPLIFIER


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	32	
RF Power Input	$\mathrm{P}_{\text {in }}$	Vdc	
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	+20	dBm
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-40 to +100	-55 to +125
${ }^{\circ} \mathrm{C}$			

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, 50 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current	${ }^{\prime} \mathrm{CC}$	360	400	440	mA
Frequency Range	BW	10	-	1200	MHz
Gain Flatness ( $f=10-1200 \mathrm{MHz}$ )	-	-	$\pm 0.5$	$\pm 1.0$	dB
Power Gain ( $\mathrm{f}=100 \mathrm{MHz}$ )	$\mathrm{PG}_{\mathrm{G}}$	14	15	-	dB
$\text { Noise Figure, Broadband } \begin{aligned} & f=500 \mathrm{MHz} \\ & f=1200 \mathrm{MHz} \end{aligned}$	NF	—	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	dB
Power Output - 1.0 dB Compression ( $f=500 \mathrm{MHz}$ )	Po1dB	630	1000	-	mW
Third Order Intercept (See Figure 4, $\mathrm{f}_{1}=47 \mathrm{MHz}, \mathrm{f}_{2}=658 \mathrm{MHz}$ )	ITO	-	41	-	dBm
$\begin{array}{ll} \text { Input/Output VSWR } & \begin{array}{l} \mathrm{f} \end{array}=40-1000 \mathrm{MHz} \\ & \mathrm{f}=10-1200 \mathrm{MHz} \end{array}$	VSWR	-	-	$\begin{gathered} 2: 1 \\ 2.6: 1 \end{gathered}$	-
Second Harmonic Distortion ( $\mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW}, \mathrm{f}_{2} \mathrm{H}=1200 \mathrm{MHz}$ )	$\mathrm{d}_{\text {So }}$	-	-50	-45	dB
Peak Envelope Power (Two Tone Distortion Test - See Figure 1) ( $f=500 \mathrm{MHz}$ ( ( -32 dB IMD)	PEP	-	800	-	mW
$\begin{aligned} & \text { Intermodulation Distortion, } 3 \text { Tone } \\ & \text { (Vision Carrier }=-8.0 \mathrm{~dB} \text {, Sound Carrier }=-10 \mathrm{~dB} \text {, } \\ & \text { Sideband Signal }=-17 \mathrm{~dB} \text {. See Figure 2, } \\ & \mathrm{f}=860 \mathrm{MHz}, \mathrm{P}_{\text {Sync }}=200 \mathrm{~mW} \text { ) } \end{aligned}$	IMD	-	$-58$	-	dB
Second Order Intermodulation Distortion $\left(P_{0}=2.75 \mathrm{dBm}, f_{1}=373 \mathrm{MHz}, f_{2}=450 \mathrm{MHz}\right. \text {, See Figure 4) }$	IM2	-	-65	$-60$	dB

[^5]
$P E P=4 X P O \subset 1 M D=-326 B$
Figure 1. 2-Tone Intermodulation, Test A

C. 2. 3. $4=0.1 \mathrm{mfd}$ (CHIP)

R1 - 90 OHMS. 2 WATTS

Figure 3. External Connections

f1: video
12: sideband
13: sound
Figure 2. 3-Tone TV Intermodulation Test

$\pi 0=P_{0}+\frac{I M 3}{2}$ (i) $1 M 3>60 d B$
Figure 4. 2-Tone intermodulation, Test $B$

## MOTOROLA

## SEMICONDUCTOR

TECHNICAL DATA

## Advance Information <br> The RF Line <br> Wideband Linear Amplifier

...designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ :

Frequency Range - 10 to 1200 MHz
Output Power - 1.0 W Typ @ 1.0 dB Compression, $\mathrm{f}=500 \mathrm{MHz}$
Power Gain - 15 dB Typ @ $\mathrm{f}=100 \mathrm{MHz}$
PEP - 1.0 mW Typ @ -32 dB IMD
Noise Figure -7.5 dB Typ @ $\mathrm{f}=500 \mathrm{MHz}$
ITO - $41 \mathrm{dBm} @ f=752 \mathrm{MHz}$

- All Gold Metallization for Improved Reliability
- Optimized for 15 Volt Operation


## CA5915

15 dB $10-1200 \mathrm{MHz}$ 1.0 WATT WIDEBAND LINEAR AMPLIFIER

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current	ICC	660	700	800	mA
Frequency Range	BW	10	-	1200	MHz
Gain Flatness ( $f=10-1200 \mathrm{MHz}$ )	-	-	$\pm 0.5$	$\pm 1.0$	dB
Power Gain ( $\mathrm{f}=100 \mathrm{MHz}$ )	$\mathrm{PG}_{\mathrm{G}}$	14	15	-	dB
$\text { Noise Figure, Broadband } \begin{aligned} & f=500 \mathrm{MHz} \\ & \\ & f=1200 \mathrm{MHz} \end{aligned}$	NF	-	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	dB
Power Output - 1.0 dB Compression ( $\mathrm{f}=500 \mathrm{MHz}$ )	Po 1dB	630	1000	-	mW
Third Order Intercept (See Figure 4, $\mathrm{f}_{1}=47 \mathrm{MHz}, \mathrm{f}_{2}=658 \mathrm{MHz}$ )	ITO	-	41	-	dBm
$\text { Input/Output VSWR } \begin{aligned} & f=40-1000 \mathrm{MHz} \\ & \\ & \\ & f=10-1200 \mathrm{MHz} \end{aligned}$	VSWR	-	-	$\begin{gathered} 2: 1 \\ 2.6: 1 \end{gathered}$	-
Second Harmonic Distortion ( $\mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW}, \mathrm{f}_{2} \mathrm{H}=1200 \mathrm{MHz}$ )	$\mathrm{d}_{\text {so }}$	-	-50	-45	dB
Peak Envelope Power (Two Tone Distortion Test - See Figure 1) $(\mathrm{f}=500 \mathrm{MHz} @-32 \mathrm{~dB} \text { IMD) }$	PEP	-	1000	-	mW
```Intermodulation Distortion, 3 Tone (Vision Carrier = - 8.0 dB, Sound Carrier = -10 dB, Sideband Signal = - 17 dB. See Figure 2, f=860 MHz, P```	IMD	-	$-60$	-	dB
Second Order Intermodulation Distortion $\left(P_{\mathrm{o}}=2.75 \mathrm{dBm}, \mathrm{f}_{1}=373 \mathrm{MHz}, \mathrm{f}_{2}=450 \mathrm{MHz}\right. \text {, See Figure 4) }$	IM2	-	-65	-60	dB

[^6]
$P E P=4 X P O$ 다 $\operatorname{IMD}=-320 B$
Figure 1. 2-Tone Intermodulation, Test A

Figure 3. External Connections

fi: viceo
12. sideband
fs. sound
Figure 2. 3-Tone TV Intermodulation Test

$\pi 0=P_{0}+\frac{\mathrm{IM} 3}{2}$ a $\cdot \mathrm{M} 3>60 \mathrm{~dB}$
Figure 4. 2-Tone Intermodulation, Test B

60-Channel (450 MHz) CATV Hi-Slope Trunk Amplifier

CA7901

... increased gain slope versus frequency effectively reduces the need for equalization external to the amplifier in CATV systems.

Designed for broadband applications requiring low-distortion amplification. Specifically intended for CATV market requirements. These amplifiers feature ion-implanted arsenic emitter transistors and an all gold metallization system.

- Specified Characteristics at $V_{C C}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$:

Frequency Range - 40 to 450 MHz
Power Gain - 15.4 dB Typ @f=50 MHz

- 20.5 dB Typ @ $\mathrm{f}=450 \mathrm{MHz}$

Noise Figure - $5.5 \mathrm{~dB} \operatorname{Typ} @ f=450 \mathrm{MHz}$
CTB - $-60 \mathrm{~dB} @ \mathrm{~V}_{\text {out }}=48 \mathrm{dBmV}$ with 5 dB cable slope.

- All Gold Metallization System for Improved Reliability

5-20 dB
$40-450 \mathrm{MHz}$ 60-CHANNEL

CATV TRUNK AMPLIFIER

CASE 714F-01, STYLE 1 [C.A (POS. SUPPLY)]

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$v_{\text {in }}$	60	dBmV
DC Supply Voltage	$\mathrm{V}_{\text {CC }}$	28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted)

Characteristic	Symbal	Min	Typ	Max	Unit
Frequency Range	BW	40	-	450	MHz
$\text { Power Gain } \begin{aligned} &-50 \mathrm{MHz} \\ &-450 \mathrm{MHz} \end{aligned}$	Gp	$\begin{gathered} 14.6 \\ 20 \end{gathered}$	$\begin{aligned} & 15.4 \\ & 20.5 \end{aligned}$	$\begin{gathered} 16.2 \\ 21 \end{gathered}$	dB
Gain Slope	S	4.7	5.1	5.5	d8
Gain Flatness (Note 1)	-	-	-	± 0.2	dB
Return Loss - InputOutput (f $=\mathbf{4 0 - 4 5 0 ~ M H z}$)	IRLOORL	18	20	-	dB
Composite Second Order Distortion (Vout $=+48 \mathrm{dBmV}$ (ft 450 MHz , Ch. H22, 60-Channel (it 5.0 dB Cable Upslope)	cso	-	-68	-61	dB
Cross Modulation Distortion ($V_{\text {out }}=+48 \mathrm{dBmV}$ (if 450 MHz , Ch. 2, 60-Channel (a 5.0 dB Cable Upslope)	XMD	-	-62	-60	dB
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+48 \mathrm{dBmV}$ (u 450 MHz , Ch. H22, 60-Channel (a 5.0 dB Cable Upslope)	ств	-	-60	-58	dB
$\begin{aligned} \text { Noise Figure } f & =50 \mathrm{MHz} \\ f & =450 \mathrm{MHz} \end{aligned}$	NF	-	$\begin{aligned} & 4.6 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	dB
DC Current	10 C	-	220	240	mA

Note: 1. Flatness calculation is based upon the following gain curve:
$G_{f}=G_{50}+\Delta G\left[x(f-50\}+\beta(f-50)^{2}+\gamma(f-50)^{3}\right]$
where: $\mathrm{G}_{50}=$ Gain at 50 MHz
$\mathbf{G}_{\mathrm{f}}=$ Gain at frequency $\mathrm{f} \mathrm{MHz}_{\mathbf{z}}$
$\Delta \mathrm{G}=\mathrm{Gsin}$ slopa between 50 MHz and 450 MHz
$\alpha=3.13210^{-3}$
$\alpha=3.13210{ }^{-6}$
$\beta=1.99310^{-6}$
$\gamma=-8.93410-9$

The RF Line

36-Channel (450 MHz) CATV Hi-Slope Input/Output Trunk Amplifier

... allows increased trunk length. Effectively reduces trunk distortion. 5.0 dB less output noise at low end.
Designed for broadband applications requiring low-distortion amplification. Specifically intended for CATV market requirements. These amplifiers feature ion-implanted arsenic emitter transistors and an all gold metallization system. The input amplifier is tuned for minimum noise figure while the output amplifier is tuned for minimum distortion.

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$:

Frequency Range - 40 to 450 MHz
Power Gain - 15.6 dB Typ @ $\mathrm{f}=\mathbf{5 0} \mathbf{~ M H z}$

$$
\text { - } 20.7 \text { dB Typ@ } f=450 \mathrm{MHz}
$$

Noise Figure - 5.7 dB Typ @ $\mathrm{f}=450 \mathrm{MHz}$
CTB - $-66 \mathrm{~dB} @ V_{\text {out }}=46 \mathrm{dBmV}$

- All Gold Metallization System for Improved Reliability

15-20 dB $40-450 \mathrm{MHz}$ 36-CHANNEL CATV INPUT/OUTPUT TRUNK AMPLIFIER

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$v_{\text {in }}$	69	dBmV
DC Supply Voltage	Vcc	28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS V $_{\text {CC }}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	450	MHz
$\begin{aligned} \text { Power Gain } & -50 \mathrm{MHz} \\ & -450 \mathrm{MHz} \end{aligned}$	Gp	$\begin{aligned} & 14.8 \\ & 20.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 15.6 \\ & 20.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 16.4 \\ & 21.2 \\ & \hline \end{aligned}$	dB
Gain Slope	S	4.7	5.1	5.5	dB
Gain Flatness (Note 1)	-	-	-	± 0.2	dB
$\begin{aligned} \text { Return Loss - InpuUOutput } & (f=40 \mathrm{MHz}) \\ & (f=50-80 \mathrm{MHz}) \\ & (f=80-160 \mathrm{MHz}) \\ & (f=160-450 \mathrm{MHz}) \end{aligned}$	IRLORL	$\begin{aligned} & 22 \\ & 20 \\ & 19 \\ & 18 \end{aligned}$	$\begin{aligned} & 26 \\ & 24 \\ & 22 \\ & 20 \end{aligned}$	二	dB
$\begin{aligned} & \text { Composite Second Order Distortion } \\ & \text { (Vout }^{2}=+46 \mathrm{dBmV} \text { per ch., Ch. H2O, 36-CH Flat) (Note 2) } \end{aligned}$	cso	-	-68	-65	dB
Cross Modulation Distortion ($V_{\text {out }}=+46 \mathrm{dBmV}$ per ch., Ch. 2, 36-CH Flat) (Note 2)	XMD	-	-66	-65	dB
Composite Triple Beat (Vout $=+46 \mathrm{dBmV}$ per ch., Ch. H20, 36-CH Flat) (Note 2)	Ств	-	-66	-65	dB
$\begin{aligned} \text { Noise Figure }(f=50 \mathrm{MHz}) \\ (f=450 \mathrm{MHz}) \end{aligned}$	NF	-	$\begin{aligned} & 4.6 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.8 \end{aligned}$	dB
DC Current	1 DC	-	220	240	mA

[^7]Note: 1. Flatness calculated is based upon the following gain curve: $\mathbf{G}_{\mathrm{f}}=\mathbf{G}_{50}+\Delta \mathrm{G}\left[\mathrm{x}(\mathrm{f}-50)+\beta(\mathrm{f}-50)^{2}+\gamma(\mathrm{f}-50)^{3}\right]$ where: $\mathbf{G}_{50}=\mathbf{G z i n}$ at 50 MHz

$\Delta G=$ Gain slope between 50 MHz and 450 MHz $a=3.132 * 10^{-3}$
$\beta=1.993 \cdot 10-6$
$\gamma=-8.934 \cdot 10^{-}$
$\boldsymbol{\gamma}=-8.934 \cdot 10^{-9}$

Note 2: The foltowing Channels are turned on for the CTB, XMOO and CSO measurement:

Channel *	Frequency ($\mathrm{MHz}_{\text {) }}$)	Channel \#	Frequency (MH_{2} \}	Channel *	Frequency ($\mathrm{MHz}^{\text {) }}$
1	55.25	13	235.25	25	325.25
2	61.25	14	247.25	26	337.25
3	133.25	15	253.25	27	349.25
4	139.25	16	259.25	28	361.25
5	145.25	17	265.25	29	367.25
6	151.25	18	271.25	30	373.25
7	163.25	19	283.25	31	385.25
8	175.25	20	289.25	32	391.25
9	187.25	21	295.25	33	409.25
10	205.25	22	301.25	34	415.25
11	217.25	23	313.25	35	421.25
12	229.25	24	319.25	36	433.25

Advance Information

The RF Line
High Frequency
Complementary Pair
Transistor Array

CR820

．．．designed for use as an output device in very fast video amplifier circuits．The CR820 transistor array is a complementary pair of silicon bipolar transistors connected as emit－ ter followers．Their primary application will be in black and white video monitors and other uses where discrete steps of brightness are required．
－High Voltage－V（BR）CBO $=70 \mathrm{~V}$ Min
－High Frequency－ $\mathrm{fT}=1000 \mathrm{MHz}$
－Low Output Capacitance $-\mathrm{C}_{\mathrm{cb}}=2.5 \mathrm{pF}$ Max $@ \mathrm{~V}_{\mathrm{CB}}=15 \mathrm{~V}$
－Gold Metallization
－Common－Base Common－Emitter Configuration

CASE 244D－01，STYLE 3

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector－Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	65	V
Collector－Base Voltage：	$\mathrm{V}_{\text {CBO }}$	70	V
Collector Current－Continuous	IC	400	mA
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to＋200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Thermal Resistance，Junction to Case	$\mathbf{R}_{\theta J \mathrm{JC}}$	-25	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS（TC $=25^{\circ} \mathrm{C}$ unless otherwise noted）

Characteristics	Pins	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
$\begin{array}{ll} \hline \text { Collector-Emitter Breakdown Voltage } & \left(\begin{array}{l} \left(\mathrm{C} C=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right) \\ \\ \text { (} \left.\mathrm{I} \mathrm{C}=-1 \mathrm{~mA}, I_{B}=0\right) \end{array}\right. \end{array}$	$\begin{aligned} & 4-3 \\ & 2-3 \end{aligned}$	$V_{\text {（BR）CEOT }}$ V（BR）CEO2	$\begin{gathered} 70 \\ -65 \\ \hline \end{gathered}$	二	二	V
	$\begin{aligned} & 4-1 \\ & 2-1 \end{aligned}$	$V_{\text {（BR）CBO1 }}$ $V_{\text {（BR）CBO2 }}$	$\begin{aligned} & 120 \\ & -80 \\ & \hline \end{aligned}$	二	二	V

ON CHARACTERISTICS

$\begin{aligned} \text { DC Current Gain } & \left(\mathrm{IC}=50 \mathrm{~mA}, \mathrm{~V}_{C E}=5 \mathrm{~V}\right) \\ & \left(\mathrm{IC}=-50 \mathrm{~mA}, \mathrm{~V}_{C E}=-5 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & 4-1 \cdot 3 \\ & 2 \cdot 1-3 \end{aligned}$	$\begin{aligned} & \mathrm{H}_{\mathrm{fe1}} \\ & \mathrm{H}_{\mathrm{fe} 2} \\ & \hline \end{aligned}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	二	60 60	－	
Base－Emitter Forward Voltage $\left.\\|^{\text {a }}=1 \mathrm{~mA},-1 \mathrm{~mA}\right)$	1－3	$\mathrm{V}_{\text {（BR）}}$	－	＋0．7，－0．7	－	V	

DYNAMIC CHARACTERISTICS

Collector－Base Capacitance	$\begin{aligned} & \left(V_{C B}=15 \mathrm{~V}\right) \\ & \left(V_{C B}=-15 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & 4-1 \\ & 2-1 \end{aligned}$	$\begin{aligned} & \mathrm{C}_{\mathrm{cb1}} \\ & \mathrm{C}_{\mathrm{cb} 2} \\ & \hline \end{aligned}$	－	－	2.5 2.5	pF
Cutoff Frequency $\begin{array}{ll}\text { IIC } \\ \text { IIC }\end{array}$	$\begin{aligned} & \mathrm{mA}, \mathrm{~V}_{\mathrm{CE}}=15 \mathrm{~V} \mathrm{~V} \\ & \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=15 \mathrm{VI} \end{aligned}$	$\begin{aligned} & 4-1-3 \\ & 2-1-3 \end{aligned}$	$\begin{aligned} & \mathbf{F}_{T 1} \\ & F_{T 2} \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & \hline \end{aligned}$	二	二	GHz

[^8]
The RF Line

Video Driver Hybrid Amplifiers

CR2424 CR2424H CR2425

... designed specifically for use as the video channel final stage in high resolution monitors.

- Typical 10-90\% Transition Times are 2.5 ns
- 130 MHz Minimum Bandwidth at $\mathbf{4 0} \mathrm{Vp}$-p Output
- Low Power Consumption
- Excellent Grey-Scale Linearity
- Unconditional Stability
- All Gold (Monometallic) Metallization System for the Ultimate in Reliability
- Also Available In Reverse Polarity Version (-60 V Supply) For Grid Drive Applications. Part Numbers Are CR2424R And CR2425R.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V $_{\text {CC }}$	70	Vdc $^{\text {Case Operating Temperature Range }}$
Carage Temperature Range	T_{C}	$-\mathbf{2 0}$ to +100	${ }^{\circ} \mathrm{C}$
Sto	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=60 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\text {Load }}=8.5 \mathrm{pF}, 40 \mathrm{~V}$ Peak-to-Peak output swing with $\mathbf{3 0} \mathrm{Vdc}$ offset; $\mathrm{R}_{1}=\mathbf{2 1 5} \mathbf{~ o h m s ,} \mathrm{C}_{1}=\mathbf{5 0} \mathrm{pF}$ typ.)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current (With Input Open Circuited)	ICC	39.5	43.5	47.5	mA
Input DC Voltage (With Input Open Circuited)	$V_{\text {in D }}$	1.15	1.4	1.65	V
Output DC Voltage (With Input Open Circuited)	$V_{\text {outDC }}$	26	30	34	V
Voltage Gain (1) (2)	AV	11.2	12.4	13.2	VN
Transient Response (2) —Rise Time (10% to 90%)	t_{r}	-	2.5	2.9	ns
-Overshoot	$\mathrm{V}_{\text {os, }}$	-	8.0	15	\%
- Fall Time (10\% to 90\%)	If	-	2.5	2.9	ns
- Overshoot	$\mathrm{V}_{\text {os, }}$	-	6.0	10	\%
Operating Supply Current (V $_{\text {out }}=40 \mathrm{~V}$ Peak-to-Peak, 50 MHz Square Wave with 30 V offset) (3)	ICC, max	-	-	100	mA
Linearity Error ($\mathrm{V}_{\text {out }}=+5.0 \mathrm{~V}$ to $\left.+55 \mathrm{~V}\right)$	-	-	-	5.0	\%

CR2424
(1) $A V=V_{\text {our }} N_{s}$
(2) Input Signal is nominally a 62.5 kHz square wave of 3.25 V peak-to-peak with 1.4 Vdc offset. Input $t_{r}, t_{f}<1.0 \mathrm{~ns}$.
(3) Output is not short circuit protected.

TYPICAL CHARACTERISTICS

Figure 1. Voltage Ratio at RF Input Port

Figure 3. Output Voltage versus Input Current

Figure 2. Voltage Ratio at Port 1

Figure 4. Frequency Response

Figure 5. CRT Driver Test Circuit

The RF Line

Video Driver Hybrid Amplifiers

- Designed Specifically for use as the Video Channel Final Stage in High Resolution Monitors
- Low Power Consumption
- Typical 10-90\% Transitions Times are 2.7 ns
- 115 MHz Minimum Bandwidth for 40 Vp-p Output Swing
- Excellent Grey Scale Linearity
- Unconditional Stability
- All Gold (Monometallic) Metallization System for the Ultimate in Reliability
- 80 Volt Supply Operation Provides Large DC Offset Range for Color Applications
- Also Available in Reverse Polarity Version (-80 V Supply) for Grid Drive Applications. Part Numbers are CR3424R and CR3425R.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	90	Vdc
Case Operating Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\operatorname{VCC}=80 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\text {Load }}=10 \mathrm{pF}, \mathrm{R}_{1}=287$ ohms, $C_{1}=60 \mathrm{pF}$ Typ., $\mathrm{V}_{\text {out }}=40 \mathrm{~V}$ Peak-to-Peak with 40 Vdc offset). See Figure 4 for test circuit.

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current (With Input Open Circuited)	ICC	41	45	49	mA
DC Input Voltage (With Input Open Circuited)	$V_{\text {inDC }}$	1.3	1.55	1.8	Vdc
DC Output Voltage (With Input Open Circuited)	$V_{\text {outDC }}$	36	40	44	Vdc
Voltage Gain (1) (2)	AV	11.5	12.7	13.5	VN
Transient Response (2) — Rise Time (10% to 90%)	t_{r}	-	2.7	3.1	ns
- Overshoot	$\mathrm{V}_{\mathrm{os}, \mathrm{r}}$	-	-	10	\%
- Fall Time (30\% to 10\%)	If	-	2.7	3.1	ns
- Overshoot	$\mathrm{V}_{\text {os, },}$	-	-	10	\%
Bandwidth (-3.0 dB Point),		115	-	-	MHz
Operating Supply Current (Vout $=40 \mathrm{~V}$ Peak-to-Peak, 50 MHz Square Wave with 40 V offset) (3)	ICC, max	-	-	100	mA
Linearity Error ($\mathrm{V}_{\text {out }}=+5.0 \mathrm{~V}$ to +55 V)	-	-	-	5.0	\%

NOTES:

${ }^{11} A v=V_{\text {out }} N_{s}$
(2) Signal source output signal (V_{S} in Figure 1) is nominally a 62.5 kHz square wave of 3.25 V peak-to-peak with 1.4 Vdc offset
(3) Output is not short circuit protected

CR3424 CR3424H CR3425

CR3424

CASE 714G-01, STYLE 1 (CA LP)

CR3424H

CASE 826-01, STYLE 1 (SIP)

CASE 714F-01, STYLE 1 (CA)

TYPICAL CHARACTERISTICS

Figure 1. $\mathrm{V}_{\text {in }}$ versus $\mathbf{V}_{\text {out }}$

Figure 2. In versus Vout

Figure 3. Frequency Response

Figure 4. Hybrid Amplifier Test Circuit

The RF Line

Linear Power Amplifier
.. . designed for wideband linear applications in the $1-200 \mathrm{MHz}$ frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of 28 volts.

- Specified $V_{C C}=28$ Volt and $T_{C}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - 1 to 200 MHz
Output Power - 4 W Typ @ 1 dB Gain Compression, $f=100 \mathrm{MHz}$
Power Gain - 35 dB Typ @ f=100 MHz
ITO - 53 dBm Typ @ $f=100 \mathrm{MHz}$
Noise Figure - 6 dB Typ @ $\mathrm{f}=\mathbf{2 0 0} \mathbf{~ M H z}$

- 500 Ohm InputOutput Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability
- Moisture Resistant, EMI Shielded Package

DHP02-36-40

DHP
CASE 389-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$V_{\text {CC }}$	30	Vdc
RF Power Input	Pin	+5	dBm
Operating Case Temperature Range	T_{C}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\mathbf{T T}^{2}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	1	-	200	MHz
Gain Flatness (Peak-to-Peak) (f = 1-200 MHz)	-	-	2	3	dB
Power Gain (f $=100 \mathrm{MHz}$)	PG_{G}	33.5	35	36.5	dB
$\begin{array}{ll} \text { Noise Figure, Broadband } & f=100 \mathrm{MHz} \\ & f=200 \mathrm{MHz} \end{array}$	NF	-	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	dB
$\text { Power Output -1 dB Compression } \begin{aligned} & f=100 \mathrm{MHz} \\ & \\ & f=200 \mathrm{MHz} \end{aligned}$	Po1dB	$\begin{aligned} & 35 \\ & 34 \end{aligned}$	$\begin{aligned} & 36 \\ & 35 \end{aligned}$	-	dBm
Third Order Intercept $f=100 \mathrm{MHz}$ (See Figure 1) $f=200 \mathrm{MHz}$	ITO	$\begin{aligned} & 51 \\ & 46 \\ & \hline \end{aligned}$	$\begin{aligned} & 53 \\ & 48 \end{aligned}$	-	dBm
Input/Output VSWR (f = 1-200 MHz)	VSWR	-	1.5:1	2:1	-
Supply Current	! CC	800	870	940	mA

Figure 1. 2-Tone Intermodulation Test

The RF Line

Linear Power Amplifier

．．．designed for wideband linear applications in the $\mathbf{3 0}$ to 500 MHz frequency range．This solid state，Class A amplifier incorporates microstrip circuit technology and high perfor－ mance，gold metallized transistors to provide a complete broadband，linear amplifier operating from a supply voltage of 24 volts．
－Specified Characteristics at $V_{C C}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ ：
Frequency Range－ 30 to 500 MHz
Output Power－2 W Typ＠ 1 dB Gain Compression，$f=500 \mathrm{MHz}$
Power Gain－ 18 dB Typ＠$f=50 \mathrm{MHz}$
ITO－51 dBm Typ＠f＝300 MHz
Noise Figure－ 5 dB Typ＠ $\mathbf{f}=\mathbf{3 0 0} \mathbf{M H z}$
－Designed for use in $\mathbf{5 0} \mathbf{0 h m}$ Systems
－Moisture Resistant，EMI Shielded Package

DHP
CASE 389－01，STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$V_{C C}$	28	Vdc
RF Power lnput	$P_{\text {in }}$	18	dBm
Operating Case Temperature Range	TC	-55 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS（TC $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}$ unless otherwise noted）

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current（VCC $=24 \mathrm{~V}$ ）	ICC	780	830	880	mA
Power Gain（f $=\mathbf{5 0} \mathbf{M H z}$ ）	Gp	17	18	19	dB
Bandwidth	BW	30	－	500	MHz
Gain Slope（ $\mathrm{f}=30-500 \mathrm{MHz}$ ）	5	0	0.7	1.6	dB
Gain Flatness（P．P around slope）（ $\mathrm{f}=30-500 \mathrm{MHz}$ ）	－	－	0.5	1	dB
InputOutput VSWR（ $\mathrm{f}=30-500 \mathrm{MHz}$ ）	－	－	1．2：1	1．5：1	－
Output Power＠ 1 dB Gain Compression$(f=300 \mathrm{MHz})$ $(f=500 \mathrm{MHz})$	Po1 dB	$\begin{aligned} & 33 \\ & 31 \end{aligned}$	$\begin{aligned} & 35 \\ & 33 \end{aligned}$	二	dBm
$\begin{array}{ll} \text { Third Order Intercept Point } \begin{array}{l} (f=300 \mathrm{MHz}) \\ \\ (f=500 \mathrm{MHz}) \end{array} \end{array}$	1 IO	$\begin{aligned} & 49 \\ & 43 \end{aligned}$	$\begin{aligned} & \hline 51 \\ & 45 \end{aligned}$	二	dBm
Noise Figure$(f=300 \mathrm{MHz})$ $(f=500 \mathrm{MHz})$	NF	二	$\begin{gathered} 5 \\ 6.5 \end{gathered}$	$\begin{gathered} 6 \\ 7.5 \end{gathered}$	dB

The RF Line

Linear Power Amplifier

DHP05－36－10

．．．designed for wideband linear applications in the 30 to 500 MHz frequency range．This solid state，Class A amplifier incorporates microstrip circuit technology and high perfor－ mance，gold metallized transistors to provide a complete broadband，linear amplifier operating from a supply voltage of 24 volts．
－Specified $V_{C C}=24$ Volt and $T_{C}=25^{\circ} \mathrm{C}$ Characteristics：
Frequency Range－ 30 to 500 MHz
Output Power－1 W Typ＠ 1 dB Gain Compression，$f=300 \mathrm{MHz}$
Power Gain－ 38.5 dB Typ＠ $\mathrm{f}=\mathbf{5 0} \mathrm{MHz}$
ITO－ 42 dBm Typ＠f＝500 MHz
Noise Figure－ 6 dB Typ＠f＝500 MHz
－ 50 Ohm Input／Output Impedance
－Heavy Duty Machined Housing
－Gold Metallized Transistors for Improved Reliability
－Moisture Resistant，EMI Shielded Package

DHP
CASE 389－01，STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$V_{\text {cc }}$	28	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	－3	dBm
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +100	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{C}	-40 to +85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega\right.$ system unless otherwise noted）

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current（VCC $=24 \mathrm{~V}$ ）	ICC	550	600	640	mA
Power Gain（f＝ $\mathbf{5 0} \mathbf{~ M H z}$ ）	Gp	35	36.5	38	dB
Bandwidth	BW	30	－	500	MHz
Gain Slope（f $=30-500 \mathrm{MHz}$ ）	S	0	1.5	3	dB
Gain Flatness（ P －P around slope）（ $\mathrm{f}=30-500 \mathrm{MHz}$ ）	－	－	0.5	1	dB
Input／Output VSWR（ $\mathrm{f}=\mathbf{3 0 - 5 0 0 ~ M H z}$ ）	－	－	1．2：1	1．5：1	－
Output Power＠ 1 dB Gain Compression$(f=300 \mathrm{MHz})$ $(f=500 \mathrm{MHz})$	Po1 dB	$\begin{aligned} & 31 \\ & 28 \end{aligned}$	$\begin{aligned} & 33 \\ & 30 \end{aligned}$	二	dBm
$\begin{aligned} \hline \text { Third Order Intercept Point } & (f=300 \mathrm{MHz}) \\ & (f=500 \mathrm{MHz}) \end{aligned}$	ITO	$\begin{aligned} & \hline 46 \\ & 39 \\ & \hline \end{aligned}$	$\begin{aligned} & 49 \\ & 42 \end{aligned}$	二	dBm
Noise Figure$(f=300 \mathrm{MHz})$ $(f=500 \mathrm{MHz})$	NF	二	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 7 \\ & \hline \end{aligned}$	dB

The RF Line
 Linear Power Amplifier

. . . designed for wideband linear applications in the 10 to 1000 MHz frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of $\mathbf{2 8}$ volts.

- Specified Characteristics $V_{C C}=28$ Volt and $T_{C}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - 10 to 1000 MHz
Output Power-1.6 W Typ @ 1 dB Gain Compression, $f=500 \mathrm{MHz}$
Power Gain - $\mathbf{1 5}$ dB Typ @ $f=100 \mathrm{MHz}$
1TO-44 dBm Typ @f=1000 MHz
Noise Figure - 8 dB Typ @ $\mathrm{f}=500 \mathrm{MHz}$

- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability
- Moisture Resistant, EMI Shielded Package
1.6 WATT $10-1000 \mathrm{MHz}$ LINEAR POWER AMPLIFIER
 CASE 389-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	32	Vdc
RF Power Input	$P_{\text {in }}$	23	dBm
Operating Case Temperature Range	TC	-55 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ${ }^{(T} C_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{C C}=28 \mathrm{~V}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current ($\left.\mathrm{V}_{\mathrm{CC}}=\mathbf{2 8} \mathrm{V}\right)$...	ICC	720	800	880	mA
Power Gain (f = $\mathbf{1 0 0} \mathbf{M H z}$)	Gp	14	15	16	dB
Bandwidth	BW	10	-	1000	MHz
Gain Flatness (P-P) (f $=10-1000 \mathrm{MHz}$)	-	-	± 0.8	± 1.5	dB
$\begin{array}{ll} \hline \text { Input/Output VSWR } & (f=40-900 \mathrm{MHz}) \\ & (f=10-1000 \mathrm{MHz}) \end{array}$	-		2:1	$\begin{gathered} 2: 1 \\ 2.5: 1 \end{gathered}$	-
Output Power @ 1 dB Gain Compression $(f=500 \mathrm{MHz})$ $(f=1000 \mathrm{MHz})$	Po1 dB	$\begin{aligned} & 31 \\ & 30 \end{aligned}$	$\begin{aligned} & 32 \\ & 31 \end{aligned}$	二	dBm
Third Order Intercept Point(f $=500 \mathrm{MHz}$) (f $=1000 \mathrm{MHz})$	ITO	$\begin{aligned} & \hline 43 \\ & 42 \end{aligned}$	$\begin{aligned} & 45 \\ & 44 \end{aligned}$	-	dBm
Noise Figure$(f=500 \mathrm{MHz})$ $(f=1000 \mathrm{MHz})$	NF	二	8	$\begin{gathered} 9 \\ 9 \\ 10 \end{gathered}$	dB

The RF Line

Linear Power Amplifier

. . . developed for medium power requirements in instrumentation, communications equipment and military applications; also cellular radio 900 MHz base stations. These packaged assemblies are in moisture resistant, EMI shielded cases and are matched for use in $\mathbf{5 0} \mathbf{~ o h m ~ s y s t e m s . ~}$

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, \mathrm{~T} \mathrm{C}=25^{\circ} \mathrm{C}$:

Frequency Range - 10 to 1000 MHz
DHP10-32-08

Output Power - 630 mW Typ @ 1 dB Gain Compression, $f=1000 \mathrm{MHz}$
Power Gain - 32 dB Typ @f=100 MHz
ITO - 42 dBm Typ @ f $=1000 \mathrm{MHz}$
Noise Figure - 7.5 dB Typ @ $\mathrm{f}=1000 \mathrm{MHz}$

- Designed for use in 50 Ohm Systems
- Moisture Resistant, EMI Shielded Package

DHP
CASE 389-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	VCC	32	Vdc
RF Power Input	Pin	3	dBm
Operating Case Temperature Range	T_{C}	-55 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	-40 to +85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS T $^{2} \mathrm{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}$ uniess otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current ($\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}$)	ICC	560	620	680	mA
Power Gain (f $=\mathbf{1 0 0 ~ M H z}$)	Gp	30	32	34	dB
Bandwidth	BW	10	-	1000	MHz
Gain Flatness (P -P) ($\mathrm{f}=10-1000 \mathrm{MHz}$)	-	-	± 1	± 1.5	dB
$\begin{array}{ll} \hline \text { InputOutput VSWR } \end{array} \begin{aligned} & (f=40-900 \mathrm{MHz}) \\ & (f=10-1000 \mathrm{MHz}) \end{aligned}$	-		$\overline{2: 1}$	$\begin{gathered} \text { 2:1 } \\ \text { 2.5:1 } \end{gathered}$	-
$\begin{array}{ll} \hline \text { Output Power @ } 1 \mathrm{~dB} \text { Gain Compression } \begin{array}{l} (f=500 \mathrm{MHz}) \\ (f=1000 \mathrm{MHz}) \end{array} \end{array}$	Po1 dB	$\begin{aligned} & 28 \\ & 27 \end{aligned}$	$\begin{aligned} & 29 \\ & 28 \end{aligned}$	-	dBm
$\begin{array}{ll} \text { Third Order Intercept Point } & (f=500 \mathrm{MHz}) \\ & \text { (f }=1000 \mathrm{MHz}) \end{array}$	ITO	$\begin{aligned} & 41 \\ & 40 \end{aligned}$	$\begin{aligned} & 43 \\ & 42 \end{aligned}$	二	dBm
Noise Figure $\begin{aligned} & \text { (f }=500 \mathrm{MHz} \text {) } \\ & \text { (f }=1000 \mathrm{MHz} \text {) }\end{aligned}$	NF	二	$\begin{aligned} & 6.5 \\ & 7.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8 \\ & 9 \end{aligned}$	dB

The RF Line
 450 MHz CATV Feedforward Amplifiers

．．．designed for broadband applications requiring low－distortion amplification．Specifi－ cally intended for CATV market requirements．Two hybrid amplifiers along with couplers and delay lines are packaged together to provide extremely low distortion products at conventional CATV amplifier output levels．
－Specifically Designed to Provide Improved Performance in 450 MHz CATV Applications
FF124 FF124B
－Distortion Components Reduced more than 20 dB from Conventional CATV Hybrid Amplifiers
－Specified for 60－Channel Performance
－Fully Shielded Metal Package
－Available in Bent Lead Option

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input（Single Tone）	$V_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	28	Vdc
Operating Case Temperature Range	T_{C}	$-\mathbf{2 0}$ to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\boldsymbol{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

24 dB
$40-450 \mathrm{MHz}$ 60－CHANNEL． CATV FEEDFORWARD AMPLIFIERS

CASE 825－03，STYLE 1 FF124

ELECTRICAL CHARACTERISTICS（VCC $=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=60^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted）

Frequency Range	BW	40	－	550	MHz
Power Gain－ 50 MHz	Gp	23.4	24	24.6	dB
Slope	S	＋0．2	－	＋ 1.4	dB
Gain Flatness	－	－	－	± 0.2	dB
Return Loss－Input（f $=\mathbf{4 0 - 4 5 0 ~ M H z}$ ）	IRL	18	－	－	dB
Return Loss－Output（ $f=40-450 \mathrm{MHz}$ ）	ORL	18	－	－	dB
Second Order Intermodulation Distortion （ $V_{\text {out }}=+50 \mathrm{dBmV}$ per ch．，ch．A，H2，H22）	IMD	－	－	－80	dB
$\begin{aligned} & \text { Cross Modulation Distortion } \\ & \begin{array}{c} V_{\text {out }}=46 \mathrm{dBmV} \text { per ch., ch. } 2,60 \text {-channels) } \\ \left(V_{\text {out }}=46 \mathrm{dBmV} \text { per ch., ch. } 2, \cdots, \mathrm{H} 22\right) \end{array} \end{aligned}$	XMD_{60}	二	－80	$-\overline{75}$	dB
$\begin{aligned} & \text { Composite Triple Beat } \\ & \begin{array}{l} \text { (Vout }=46 \mathrm{dBmV} \text { per ch., ch. } 2,60 \text {-channels) } \\ \left(V_{\text {out }}=46 \mathrm{dBmV} \text { per ch., ch. } 2, \cdots, \mathrm{H} 22\right) \end{array} \end{aligned}$	Ств	二		－79	dB
$\begin{array}{ll} \text { Noise Figure } & (f=50 \mathrm{MHz}) \\ \\ (f=450 \mathrm{MHz}) \end{array}$	NF	－	二	$\begin{gathered} \hline 9 \\ 10 \\ \hline \end{gathered}$	dB
DC Current	IDC	－	660	－	mA

PERFORMANCE DERATE versus TEMPERATURE (TYP)

Symbol	Characteristics	Test Conditions	$-\mathbf{2 0}+\mathbf{8 0}{ }^{\circ} \mathrm{C}$	$-\mathbf{2 0}+\mathbf{1 0 0 ^ { \circ }} \mathrm{C}$
G	Gain	50 MHz	$\pm 0.5 \mathrm{~dB}$	$\pm 0.6 \mathrm{~dB}$

CIRCUITRY BLOCK DIAGRAM

PERFORMANCE MEASUREMENT
Motorola test fixture: P/N FF124TF (For straight pins) and P/N FF124BTF (For bent pins) are necessary for accurate measurement.

The RF Line
 550 MHz CATV Feedforward Amplifiers

... designed for broadband applications requiring low-distortion amplification. Specifically intended for CATV market requirements. Two hybrid amplifiers along with couplers and delay lines are packaged together to provide extremely low distortion products at conventional CATV amplifier output levels.

- Specifically Designed to Provide Improved Performance in 550 MHz CATV Applications
- Distortion Components Reduced more than 20 dB from Conventional CATV Hybrid

FF224 FF224B

Amplifiers

- Specified for 77-Channel Performance
- Fully Shielded Metal Package
- Available in Bent Lead Option

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=60^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted)

Frequency Range	BW	40	-	550	MHz
Power Gain - 50 MHz	GP_{p}	23.4	24	24.6	dB
Slope	S	+0.2	-	+ 1.8	dB
Gain Flatness	-	-	-	± 0.25	dB
$\begin{array}{ll} \hline \text { Return Loss }- \text { Input } & (f=40-450 \mathrm{MHz}) \\ & (f=450-550 \mathrm{MHz}) \end{array}$	IRL	$\begin{aligned} & 18 \\ & 16 \\ & \hline \end{aligned}$	-		dB
Return Loss - Output ($\mathrm{f}=\mathbf{4 0 - 5 5 0 ~ M H z}$)	ORL	18	-	-	dB
Second Order Intermodulation Distortion $\left(V_{\text {out }}=+50 \mathrm{dBmV}\right.$ per ch., ch. A, H2, H22)	IMD	-	-	-80	dB
$\begin{aligned} & \text { Cross Modulation Distortion } \\ & \text { (Vout }=44 \mathrm{dBmV} \text { per ch., ch. 2, 77-channels) } \\ & \text { (Vout }=44 \mathrm{dBmV} \text { per ch., ch. } 2, \ldots, H 39) \end{aligned}$	XMD77	二	-80	-70	dB
$\begin{aligned} & \text { Composite Triple Beat } \\ & \text { (Vout }=44 \mathrm{dBmV} \text { per ch., ch. 2, 77-channels) } \\ & \text { (Vout }=44 \mathrm{dBmV} \text { per ch., ch. } 2,-1, H 39) \end{aligned}$	Ств	-	-85	-75	dB
$\text { Noise Figure } \begin{aligned} & (f=50 \mathrm{MHz}) \\ & \\ & (f=550 \mathrm{MHz}) \end{aligned}$	NF	二		9 11	dB
DC Current	IDC	-	660	-	mA

PERFORMANCE DERATE versus TEMPERATURE (TYP)

Symbol	Characteristics	Test Conditions	$\mathbf{- 2 0 + 8 0}{ }^{\circ} \mathrm{C}$	$-\mathbf{2 0}+\mathbf{1 0 0 ^ { \circ } \mathrm { C }}$
G	Gain	50 MHz	$\pm 0.5 \mathrm{~dB}$	$\pm 0.6 \mathrm{~dB}$

CIRCUITRY BLOCK DIAGRAM

PERFORMANCE MEASUREMENT
Motorola test fixture: P/N FF124TF (For straight pins) and P/N FF124BTF (For bent pins) are necessary for accurate measurement.

The RF Line

LOW DISTORTION WIDEBAND AMPLIFIER

...low-noise, high-gain, ultra-linear, thin-film hybrid. Designed for multi-purpose broadband 50 to 100 ohm system applications requiring superior gain and current stability with temperature.

- Supply Voltage $=24 \mathrm{~V}$ Nominal
- Broadband Power Gain -

$$
G_{p}=34 \mathrm{~dB}(T y p) @ f=10-400 \mathrm{MHz}
$$

- Broadband Noise Figure -

$$
\mathrm{NF}=3.5 \mathrm{~dB} \text { (Typ) @f=300 MHz }
$$

- Ideal for Low Level Wideband Linear Amplifiers and AM Modulators in VHF/UHF Communications Equipment and RF Instrumentation Applications

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{DC}	28	Vdc
Input Power	$\mathrm{P}_{\text {in }}$	5.0	dBm
Operating Case Temperature Range	T_{C}	-20 to +90	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(V_{D C}=24 \mathrm{Vdc}, Z_{0}=50 \Omega, T_{C}=25^{\circ} \mathrm{C}\right.$. All characteristics guaranteed over bandwidth listed under "Frequency Range", unless specified otherwise.)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	10	-	400	MHz
Power Gain	G_{p}	31.5	34	35.5	dB
Gain Flatness	F	-	-	± 1.5	dB
$\begin{aligned} & \text { Voltage Standing Wave Ratio, In/Out } \\ & (\mathrm{f}=10-300 \mathrm{MHz} \text {) } \\ & (\mathrm{f}=300-400 \mathrm{MHz}) \end{aligned}$	VSWR	-	$\begin{gathered} 1.5: 1 \\ 2: 1 \end{gathered}$	-	
$\begin{gathered} 1 \mathrm{~dB} \text { Compression } \\ (\mathrm{f}=10 \mathrm{MHz}) \\ (\mathrm{f}=200 \mathrm{MHz}) \\ (\mathrm{f}=400 \mathrm{MHz}) \end{gathered}$	P1	700	$\begin{aligned} & 800 \\ & 800 \\ & 300 \end{aligned}$	-	mW
Reverse Isolation	$\mathrm{P}_{\text {RI }}$	43	50	-	dB
2nd Harmonic $\left(P_{\text {out }}=10 \mathrm{~mW}\right)$	$\mathrm{d}_{\text {so }}$	-	-66	-	dB
Third Order Intercept	ITO	-	43	-	dBm
Peak Envelope Power for -32 dB Distortion	PEP	-	500	-	mW
Noise Figure $\begin{aligned} & (f=60 \mathrm{MHz}) \\ & (\mathrm{f}=300 \mathrm{MHz}) \end{aligned}$	NF	$-$	$\begin{aligned} & 4.0 \\ & 3.5 \end{aligned}$	5.5	dB
DC Voltage	$\mathrm{V}_{\text {DC }}$	-	24	28	\checkmark
DC Current	IDC	-	300	340	mA

FIGURE 1 - POWER GAIN AND RETURN LOSS versus FREQUENCY

FIGURE 3 - POWER GAIN vorsus SUPPLY VOLTAGE

FIGURE 5 - OUTPUT POWER versus INPUT POWER

FIGURE 2 - POWER GAIN versus FREQUENCY

FIGURE 4 - NOISE FIGURE versus SUPPLY VOLTAGE

FIGURE 6 - OUTPUT POWER versus INPUT POWER

FIGURE 7 - INTERMODULATION DISTORTION - THIRD ORDER versus OUTPUT POWER

FIGURE 9 - INTERMODULATION DISTORTION - THIRD ORDER versus OUTPUT POWER

FIGURE B - INTERMODULATION DISTORTION - FIFTH ORDER versus OUTPUT POWER

FIGURE 10 - INTERMODULATION DISTORTION - FIFTH ORDER varsus OUTPUT POWER

FIGURE 11 - DC CURRENT DRAIN versus SUPPLY VOLTAGE

The RF Line

LOW DISTORTION WIDEBAND AMPLIFIER

... low-noise, high-gain, ultra-linear, thin-film hybrid. Designed for multi-purpose broadband 50 to 100 ohm system applications requiring superior gain and current stability with temperature.

- Supply Voltage $=13.6 \mathrm{~V}$ Nominal
- Broadband Power Gain -

$$
\mathrm{G}_{\mathrm{p}}=36.5 \mathrm{~dB}(\text { Typ }) @ f=1-250 \mathrm{MHz}
$$

- Broadband Noise Figure -
$N F=3.7 \mathrm{~dB}$ (Typ) @ $f=30 \mathrm{MHz}$
- Ideal for Low Level Wideband Linear Amplifiers and AM Modulators in HF/SSB, VHF Communications Equipment and RF Instrumentation Applications

MAXIMUM RATINGS			
Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\text {DC }}$	16	Vdc
Input Power	$\mathrm{P}_{\text {in }}$	3.0	dBm
Operating Case Temperature Range	T_{C}	-20 to +90	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\mathrm{I}_{\mathrm{DC}}=13.6 \mathrm{Vdc}, \mathrm{Z}_{\mathrm{o}}=50 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$. All characteristics guaranteed over bandwidth listed under "Frequency Range", unless specified otherwise.)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	1.0	-	250	MHz
Power Gain	G_{p}	34.5	36.5	38	dB
Gain Flatness	F	-	-	± 1.5	dB
Voltage Standing Wave Ratio, In/Out $\begin{aligned} & (f=1.0-30 \mathrm{MHz}) \\ & (\mathrm{f}=30-250 \mathrm{MHz}) \end{aligned}$	vswR	-	$\begin{gathered} 1.5: 1 \\ 2: 1 \end{gathered}$	-	
$\begin{array}{\|c\|} \hline 1 \mathrm{~dB} \text { Compression } \\ \text { (f }=30 \mathrm{MHz}) \\ (\mathrm{f}=100 \mathrm{MHz}) \\ (\mathrm{f}=250 \mathrm{MHz}) \\ \hline \end{array}$	P1	$\begin{gathered} 650 \\ - \\ - \end{gathered}$	$\begin{aligned} & 800 \\ & 700 \\ & 250 \end{aligned}$	-	mW
$\begin{aligned} & \text { Peak Envelope Power } \\ & \text { (IMD3 }=-30 \mathrm{~dB}, \mathrm{f}=30 \mathrm{MHz} \\ & \text { (IMD3 }=-30 \mathrm{~dB}, \mathrm{f}=100 \mathrm{MHz} \\ & \text { (IMD3 }=-30 \mathrm{~dB}, \mathrm{f}=250 \mathrm{MHz} \text {) } \end{aligned}$	PEP	700	$\begin{aligned} & 850 \\ & 600 \\ & 300 \end{aligned}$	-	mW
$\begin{aligned} & \hline \text { Noise Figure } \\ & (f=30 \mathrm{MHz}) \\ & (f=100 \mathrm{MHz}) \\ & (f=250 \mathrm{MHz}) \\ & \hline \end{aligned}$	NF		$\begin{aligned} & 3.7 \\ & 3.7 \\ & 4.5 \\ & \hline \end{aligned}$	5.0	dB
DC Voltage	$\mathrm{V}_{\text {DC }}$	-	13.6	16	v
DC Current	IDC	-	300	340	mA

MHW591

CASE 714-04

FIGURE 1 - POWER GAIN vorsus FREQUENCY

FIGURE 3 - POWER GAIN versus SUPPLY VOLTAGE

FIGURE 5 - OUTPUT POWER vErsus INPUT POWER

FIGURE 2 - POWER GAIN varsus FREOUENCY

FIGURE 4 - NOISE FIGURE varsus SUPPLY VOLTAGE

FIGURE 6 - OUTPUT POWER verrus INPUT POWER

FIGURE 7 - INTERMODULATION DISTORTION versus OUTPUT POWER

FIGURE 8 - INTERMODULATION DISTORTION versus OUTPUT POWER

The RF Line

LOW DISTORTION WIDEBAND AMPLIFIER

...low-noise, high-gain, ultra-linear, thin-film hybrid. Designed for multi-purpose broadband 50 to 100 ohm system applications requiring superior gain and current stability with temperature.

- Supply Voltage $=24 \mathrm{~V}$ Nominal
- Broadband Power Gain -

$$
G_{p}=35 d B(\text { Typ }) @ f=1-250 \mathrm{MHz}
$$

- Broadband Noise Figure -

$$
N F=3.6 \mathrm{~dB}(\text { Typ }) @ f=30 \mathrm{MHz}
$$

- Ideal for Low Level Wideband Linear Amplifiers and AM Modulators in HF/SSB, VHF Communications Equipment and RF Instrumentation Applications

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{DC}	28	Vdc
Input Power	$\mathrm{P}_{\text {in }}$	5.0	dBm
Operating Case Temperature Range	T_{C}	-20 to +90	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DC}}=24 \mathrm{Vdc}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$. All characteristics guaranteed over bandwidth listed under "Frequency Range", unless specified otherwise.)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	1.0	-	250	MHz
Power Gain	G_{p}	33.5	35	36.5	dB
Gain Flatness	F	-	-	± 1.0	dB
$\begin{aligned} & \text { Voltage Standing Wave Ratio, In/Out } \\ & \text { (} f=1.0-30 \mathrm{MHz} \text {) } \\ & (\mathrm{f}=30-250 \mathrm{MHz} \text {) } \\ & \hline \end{aligned}$	VSWR	-	$\begin{gathered} 1.5: 1 \\ 2: 1 \end{gathered}$	-	
$\begin{gathered} 1 \mathrm{~dB} \text { Compression } \\ \text { (f }=30 \mathrm{MHz} \text {) } \\ (\mathrm{f}=100 \mathrm{MHz}) \\ (\mathrm{f}=250 \mathrm{MHz}) \end{gathered}$	P1	750	$\begin{aligned} & 900 \\ & 900 \\ & 750 \\ & \hline \end{aligned}$	-	mW
$\begin{aligned} & \text { Peak Envelope Power } \\ & \text { (IMD3 }=-30 \mathrm{~dB}, \mathrm{f}=30 \mathrm{MHz} \text {) } \\ & \text { (IMD3 }=-30 \mathrm{~dB}, \mathrm{f}=100 \mathrm{MHz} \text {) } \\ & \text { (IMD3 }=-30 \mathrm{~dB}, \mathrm{f}=250 \mathrm{MHz} \text {) } \end{aligned}$	PEP	$\begin{gathered} 700 \\ - \end{gathered}$	$\begin{aligned} & 850 \\ & 850 \\ & 600 \end{aligned}$	-	mW
$\begin{aligned} & \text { Noise Figure } \\ & (f=30 \mathrm{MHz}) \\ & (f=100 \mathrm{MHz}) \\ & (f=250 \mathrm{MHz}) \end{aligned}$	NF	$\begin{aligned} & - \\ & \text { - } \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.7 \\ & 3.9 \end{aligned}$	5.0	dB
DC Voltage	$V_{D C}$	-	24	28	V
DC Current	${ }^{\text {I DC }}$	-	300	340	mA

$1.0-250 \mathrm{MHz}$

HIGH GAIN AMPLIFIER

STYLE 1
PN 1 RE INPUT
2 GRDUND
NOTES:
${ }_{3}$ GROUND
4 DELETED
5 VDC
6 DEIETED
6 DELETED
1 GROUND
8 grouno
8 GROUND
9 RF OUTPUT

MHW592

FIGURE 1 - POWER GAIN versus FREQUENCY

FIGURE 3 - POWER GAIN versus SUPPLY VOLTAGE

FIGURE 5 - OUTPUT POWER versus INPUT POWER

FIGURE 2 - POWER GAIN versus FREQUENCY

FIGURE 4 - NOISE FIGURE versus SUPPLY VOLTAGE

FIGURE 6 - OUTPUT POWER versus INPUT POWER

MHW592

FIGURE 7 - INTERMODULATION DISTORTION versus OUTPUT POWER

FIGURE 8 - INTERMODULATION DISTORTION versus OUTPUT POWER

FIGURE 9 - DC CURRENT DRAIN versus SUPPLY VOLTAGE

The RF Line

LOW DISTORTION WIDEBAND AMPLIFIER

... low-noise, high-gain, ultra-linear, thin-film hybrid. Designed for multi-purpose broadband 50 to 100 ohm system applications requiring superior gain and current stability with temperature.

- Supply Voltage $=13.6 \mathrm{~V}$ Nominal
- Broadband Power Gain -

$$
G_{p}=34.5 \mathrm{~dB}(\text { Typ }) @ f=10-400 \mathrm{MHz}
$$

- Broadband Noise Figure -

$$
N F=4.0 \mathrm{~dB}(T y p) @ f=300 \mathrm{MHz}
$$

- Ideal for Low Level Wideband Linear Amplifiers and AM Modulators in VHF/UHF Communications Equipment and RF Instrumentation Applications

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{DC}	16	Vdc
Input Power	$\mathrm{P}_{\text {in }}$	3.0	dBm
Operating Case Temperature Range	T_{C}	-20 to +90	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DC}}=13.6 \mathrm{Vdc}, \mathrm{Z}_{\mathrm{o}}=50 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$. All characteristics guaranteed over bandwidth listed under "Frequency Range", unless specified otherwise.)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	10	-	400	MHz
Power Gain	G_{p}	33	34.5	36	dB
Gain Flatness	F	-	-	± 1.0	dB
Voltage Standing Wave Ratio, In/Out $\begin{aligned} & (\mathrm{f}=10-300 \mathrm{MHz}) \\ & (\mathrm{f}=300-400 \mathrm{MHz}) \end{aligned}$	VSWR		$\begin{gathered} 1.5: 1 \\ 2: 1 \end{gathered}$	-	
$\begin{gathered} 1 \mathrm{~dB} \text { Compression } \\ (\mathrm{f}=10 \mathrm{MHz}) \\ (\mathrm{f}=200 \mathrm{MHz}) \\ (\mathrm{f}=400 \mathrm{MHz}) \end{gathered}$	P1	$\overline{500}$	$\begin{aligned} & 600 \\ & 600 \\ & 200 \end{aligned}$	-	mW
Reverse Isolation	$\mathrm{P}_{\text {RI }}$	45	50	-	dB
2nd Harmonic $\left(P_{\text {out }}=10 \mathrm{~mW}\right)$	$\mathrm{d}_{\text {so }}$	-	-55	-	dB
Third Order Intercept	ITO	-	38	-	dBm
Peak Envelope Power for -32 dB Distortion	PEP	-	300	-	mW
$\begin{aligned} & \hline \text { Noise Figure } \\ & (f=60 \mathrm{MHz}) \\ & (f=300 \mathrm{MHz}) \end{aligned}$	NF	-	$\begin{aligned} & 3.7 \\ & 4.0 \end{aligned}$	5.5	dB
DC Voltage	V_{DC}	-	13.6	16	V
DC Current	IDC	-	300	340	mA

MHW593
$10-400 \mathrm{MHz}$
HIGH GAIN AMPLIFIER

	STME I:
	PN 1 AF DPUT
	2 Ground
NOTES:	3 GROUND
1. DIMENSIONING AND TOLERANCING PER ANSI	4 Deleted
Y145M, 1982.	5 VDC
2. CONTROLLNG DIMENSION: NNCH	6 DELETED
	7. GROUND
	8 GROUND
	9 RF OUTPU

DM	MLLIMETERS		INCHES	
	M ${ }^{\text {N }}$	MaX	MN	MAX
A	-	4508	-	1.775
8	26.42	2692	1.040	1.060
c	20.57	21.34	0810	084)
D	045	0.56	0018	0022
E	11.81	12.95	0455	0510
F	7.62	8.25	0300	0.325
6	254 BSC		0.100 BSC	
J	30\% BSC		0.156 BSC	
K	800	850	0315	0.355
1	2540 BSC		1.00 BSC	
N	419 BSC		0.165 BSC	
P	254 ESC		0.100 BSC	
0	376	4.27	0143	0.168
A	-	15.11	-	0595
S	38.10 ESC		1.500 BSC	
U	508 BSC		0200 BSC	
V	7.11 BSC		0280 BSC	
W	11.05	11.43	0435	0.450

CASE 714-04

FIGURE 1 - POWER GAIN AND RETURN LOSS versus FREQUENCY

FIGURE 3 - POWER GAIN versus SUPPLY VOLTAGE

FIGURE 5 - OUTPUT POWER versus INPUT POWER

FIGURE 2 - POWER GAIN versus FREQUENCY

FIGURE 4 - NOISE FIGURE vorsus SUPPLY VOLTAGE

FIGURE 11 - DC CURRENT DRAIN versus SUPPLY VOLTAGE

The RF Line VHF Power Amplifiers

... designed for 7.5 volt VHF power amplifier applications in industrial and commercial equipment primarily hand portable radios.

- MHW607-1: $136-154 \mathrm{MHz}$
- MHW607-2: $146-174 \mathrm{MHz}$
- Specified 7.5 Volt Characteristics:
- RF Input Power $=1.0 \mathrm{~mW}(0 \mathrm{dBm})$
- RF Output Power $=7.0$ Watts
- Minimum Gain (VControl $=7.0 \mathrm{~V}$) $=38.5 \mathrm{~dB}$
- Harmonics $=-40 \mathrm{dBc}$ Max@ $2.0 \mathrm{f}_{\mathrm{o}}$
- 50Ω Input/Output Impedance
- Guaranteed Stability and Ruggedness
- Epoxy Glass PCB Construction Gives Consistent Performance and Reliability
$7.0 \mathrm{~W}-136$ to 174 MHz
VHF POWER AMPLIFIERS

CASE 301K-02, STYLE 2

MAXIMUM RATINGS (Flange Temperature $=25^{\circ} \mathrm{C}$)

Rating	Symbol	Value	Unit
DC Supply Voltage (Pins 2, 4, 5)	$\mathrm{V}_{\mathrm{s} 1,2,3}$	9.0	Vdc
DC Control Voltage (Pin 3)	$\mathrm{V}_{\text {Cont }}$	9.0	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	5.0	mW
RF Output Power $\left(\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=9.0 \mathrm{~V}\right.$)	$\mathrm{P}_{\text {out }}$	W	
Operating Case Temperature Range	T_{C}	-30 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-30 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=7.5 \mathrm{Vdc}$, (Pins $2,4,5$), $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 50 \Omega$ System

Characteristic	Symbol	Min	Max	Unit
Frequency Range $\begin{aligned} & \text { MHW607-1 } \\ & \text { MHW607-2 }\end{aligned}$	-	$\begin{aligned} & 136 \\ & 146 \end{aligned}$	$\begin{aligned} & 154 \\ & 174 \end{aligned}$	MHz
Control Voltage ($\left.\mathrm{P}_{\text {out }}=7.0 \mathrm{~W}, \mathrm{P}_{\text {in }}=1.0 \mathrm{~mW}\right)^{(1)}$	$\mathrm{V}_{\text {Cont }}$	0	7.0	Vdc
Quiescent Current ($\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{S} 3}=7.5 \mathrm{Vdc}, \mathrm{V}_{\text {Cont }}=7.0 \mathrm{Vdc}$)	$\mathrm{I}_{\mathrm{s} 1(\mathrm{q})}+\mathrm{I}_{\mathrm{s} 2(\mathrm{q})}$	-	160	mA
Power Gain ($\mathrm{P}_{\text {out }}=7.0 \mathrm{~W}, \mathrm{~V}_{\text {Cont }}=7.0 \mathrm{Vdc}$)	G_{p}	38.5	-	dB
Efficiency ($\left.\mathrm{P}_{\text {out }}=7.0 \mathrm{~W}, \mathrm{P}_{\text {in }}=1.0 \mathrm{~mW}\right)^{(1)}$	η	40	-	\%
$\begin{array}{cc} \hline \text { Harmonics }\left(P_{\text {out }}=7.0 \mathrm{~W}\right)(1) & 2 \mathrm{f}_{\mathrm{o}} \\ \left(\mathrm{P}_{\text {in }}=1.0 \mathrm{~mW}\right) & 3 \mathrm{f}_{\mathrm{o}} \end{array}$	-	-	$\begin{aligned} & -40 \\ & -45 \end{aligned}$	dBc
Input VSWR ($P_{\text {out }}=7.0 \mathrm{~W}, \mathrm{P}_{\text {in }}=1.0 \mathrm{~mW}$), 50Ω Ref. (1)	-	-	2.0:1	-
Load Mismatch $\left(\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=9.0 \mathrm{Vdc}\right)$ VSWR $\left.=20: 1, \mathrm{P}_{\text {out }}=10 \mathrm{~W} . \mathrm{P}_{\text {in }}=5.0 \mathrm{~mW}\right)^{(1)}$		No Degradation in Power Output		
Stability ($\mathrm{P}_{\mathrm{in}}=1.0-3.0 \mathrm{~mW}, \mathrm{~V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{S} 3}=6.0-9.0 \mathrm{Vdc}$) $P_{\text {out }}$ between 1.0 W and $10 \mathrm{~W}^{(1)}$ Load VSWR $=8: 1$		All spurious outputs more than 60 dB below desired signal		

[^9]

Figure 1. Power Module Test
System Block Diagram

TYPICAL CHARACTERISTICS

Figure 2. Control Voltage, Efficiency and VSWR versus Frequency

Figure 3. Output Power versus Control Voltage

TYPICAL CHARACTERISTICS

Figure 4. Output Power versus Frequency

Figure 6. Output Power versus Case Temperature

Figure 5. Control Voltage versus Case Temperature

Figure 7. Output Power versus Case Temperature at Maximum Control Voltage

MHW607 Series

APPLICATIONS INFORMATION

NOMINAL OPERATION

All electrical specifications are based on the nominal conditions of $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=7.5 \mathrm{Vdc}$ (Pins 2, 4,5) and $P_{\text {out }}$ equal to 7.0 watts. With these conditions, maximum current density on any device is $1.5 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$ and maximum die temperature with $100^{\circ} \mathrm{C}$ case operating temperature is $165^{\circ} \mathrm{C}$. While the modules are designed to have excess gain margin with ruggedness, operation of these units outside the limits of published specifications is not recommended unless prior communications regarding intended use have been made with the factory representative.

GAIN CONTROL

The module output should be limited to 7.0 watts. The preferred method of power output control is to fix $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{S} 3}=7.5 \mathrm{Vdc}\left(\right.$ Pins 2, 4, 5), $\mathrm{P}_{\mathrm{in}}($ Pin 1) at 1.0 mW , and vary $\mathrm{V}_{\text {Cont }}(\mathrm{Pin} 3)$ voltage.

DECOUPLING

Due to the high gain of the three stages and the module size limitation, external decoupling networks require careful consideration. Pins 2,3,4 and 5 are internally bypassed with a $0.018 \mu \mathrm{~F}$ chip capacitor which is effective for frequencies from 5.0 MHz through 174 MHz . For bypassing frequencies below 5.0 MHz , networks equivalent to that shown in Figure 1 are recommended. Inadequate decoupling will result in spurious outputs at certain operating frequencies and certain phase angles of input and output VSWR.

Figure 8. Test Fixture Assembly

LOAD MISMATCH

During final test, each module is load mismatch tested in a fixture having the identical decoupling networks described in Figure 1. Electrical conditions are $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{S} 2}$ $=\mathrm{V}_{\mathrm{s} 3}$ equal to $9.0 \mathrm{Vdc}, \mathrm{VSWR}$ equal to $20: 1$, and output power equal to 8.0 watts.

Note: The Printed Circuit Board shown is 75% of the original.

Figure 9. Photomaster For Test Fixture

The RF Line

UHF Power Amplifier

... designed for 7.5 Volt UHF power amplifier applications in industrial and commercial equipment primarily hand portable radios.

- MHW703 $450-460 \mathrm{MHz}$
- Specified 7.5 Volt Characteristics

RF Input Power $=2.0 \mathrm{~mW}(3.0 \mathrm{dBm})$
RF Output Power $=2.3$ Watts
Minimum Gain ($\mathrm{V}_{\text {Control }}=5.8 \mathrm{~V}$) $=30.6 \mathrm{~dB}$
Harmonics $=-40 \mathrm{dBc}$ Max @ $2 \mathrm{f}_{\mathrm{o}}$

- 50Ω Input/Output Impedance
- Guaranteed Stability and Ruggedness
- Epoxy Glass PCB Construction Gives Consistent Performance and Reliability

2.3 W - 450 to 460 MHz

 UHF POWER AMPLIFIER

MAXIMUM RATINGS (Flange Temperature $=25^{\circ} \mathrm{C}$)

Rating	Symbol	Value	Unit
DC Supply Voltage (Pin 2)	$\mathrm{V}_{\mathrm{s} 1}$	5.7	Vdc
DC Supply Voltage (Pins 4,5,6)	$\mathrm{V}_{\mathrm{s} 2,3,4}$	9.0	Vdc
DC Control Voltage (Pin 3)	$\mathrm{V}_{\text {Cont }}$	5.8	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	4.0	mW
RF Output Power $\left(\mathrm{V}_{\mathrm{s} 1}=5.7 \mathrm{Vdc}, \mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=\mathrm{V}_{\mathrm{s} 4}=9.0 \mathrm{Vdc}\right)$	$\mathrm{P}_{\text {out }}$	3.0	W
Operating Case Temperature Range	T_{C}	-25 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-25 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{s} 1}=5.6 \mathrm{Vdc}$, (Pin 2), $\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=\mathrm{V}_{\mathrm{s} 4}=7.2 \mathrm{Vdc}$, (Pins $4,5,6$), $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 50 \Omega$ System

Characteristic	Symbol	Min	Max	Unit
Frequency Range MHW703	-	450	460	MHz
Control Voltage ($\left.\mathrm{P}_{\text {out }}=2.3 \mathrm{~W}, \mathrm{P}_{\text {in }}=2.0 \mathrm{~mW}\right)^{(1)}$	$\mathrm{V}_{\text {Cont }}$	0	5.8	Vdc
Leakage Current $\left(V_{\mathrm{s} 1}=V_{\mathrm{s} 2}=V_{\text {Cont }}=0, V_{\mathrm{s} 3}=V_{\mathrm{s} 4}=9.0 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}=0 \mathrm{~mW}\right)$		-	0.2	mA
Power Gain ($\mathrm{P}_{\text {out }}=2.3 \mathrm{~W}, \mathrm{~V}_{\text {Cont }}=5.8 \mathrm{Vdc}$)	G_{p}	30.6	-	dB
Efficiency ($\left.\mathrm{P}_{\text {out }}=2.3 \mathrm{~W}, \mathrm{P}_{\text {in }}=2.0 \mathrm{~mW}\right)^{(1)}$	η	38	-	\%
$\begin{aligned} & \text { Harmonics }\left(P_{\text {out }}=2.3 \mathrm{~W}(1) \quad 2 \mathrm{f}_{\mathrm{o}}\right. \\ & \\ & \left(\mathrm{P}_{\text {in }}=2.0 \mathrm{~mW}\right) \end{aligned}$	-	-	-40	dBc
Input VSWR (P ${ }_{\text {out }}=2.3 \mathrm{~W}, \mathrm{P}_{\text {in }}=2.0 \mathrm{~mW}$), 50Ω Ref.(1)	-	-	2.0:1	-
Control Current ($\left.\mathrm{V}_{\mathrm{s} 1}=5.7 \mathrm{Vdc}, \mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=\mathrm{V}_{\mathrm{s} 4}=7.2 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}=2.0 \mathrm{~mW}\right)^{(1)}$	-	-	65	mA
$\begin{aligned} & \text { Load Mismatch }\left(V_{s 1}=5.6 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=\mathrm{V}_{\mathrm{s} 4}=9.0 \mathrm{Vdc}\right) \\ & \text { VSWR }=\infty, \mathrm{P}_{\text {out }}=2.3 \mathrm{~W}, \mathrm{P}_{\text {in }}=3.0 \mathrm{~mW}(1) \end{aligned}$		No Degradation in Power Output		
Stability ($\mathrm{P}_{\mathrm{in}}=1.0-3.0 \mathrm{~mW}, \mathrm{~V}_{\mathrm{s} 1}=5.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=\mathrm{V}_{\mathrm{s} 4}=6.0-9.0 \mathrm{Vdc}$) Pout between 2.0 mW and $2.3 \mathrm{~W}^{(1)}$ Load VSWR $=6: 1$, All Phase Angles		All spurious outputs more than 60 dB below desired signal		
Regulated Supply First Stage Quiescent Current $\left(\mathrm{V}_{\mathrm{s} 1}=5.6 \mathrm{~V}\right)$	'SII(q)	-	40	mA

[^10]

TYPICAL CHARACTERISTICS

Figure 2. Control Voltage, Efficiency and VSWR versus Frequency

Figure 3. Output Powjer versus Control Voltage

MHW703

TYPICAL CHARACTERISTICS.

Figure 4. Output Power versus Frequency

Figure 6. Output Power versus Case Temperature

Figure 5. Control Voltage versus Case Temperature

Figure 7. Output Power versus Case Temperature at Maximum Control Voltage

APPLICATIONS INFORMATION

NOMINAL OPERATION

All electrical specifications are based on the nominal conditions of $\mathrm{V}_{\mathrm{s} 1}=5.6 \mathrm{Vdc}(\mathrm{Pin} 2), \mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=\mathrm{V}_{\mathrm{S} 4}=$ 7.2 Vdc (Pins 4,5,6) and Pout equal to 2.3 watts. With these conditions, maximum current density on any device is $1.5 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$. While the modules are designed to have excess gain margin with ruggedness, operation of these units outside the limits of published specifications is not recommended unless prior communications regarding intended use have been made with the factory representative.

GAIN CONTROL

The module output should be limited to 2.3 watts. The preferred method of power output control is to fix $\mathrm{V}_{\mathrm{s} 1}$ $=5.6 \mathrm{Vdc}($ Pin 2$), \mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=\mathrm{V}_{\mathrm{S} 4}=7.2 \mathrm{Vdc}$ (Pins 4, $5,6), P_{\text {in }}(\operatorname{Pin} 1)$ at 2.0 mW , and vary $V_{\text {cont }}(\mathrm{Pin} 3)$ voltage.

DECOUPLING

Due to the high gain of the four stages and the module size limitations, external decoupling networks require careful consideration. Pins 2, 3, 5 and 6 are internally bypassed with a $0.018 \mu \mathrm{~F}$ chip capacitor which is effective for frequencies from 5.0 MHz through 940 MHz . For bypassing frequencies below 5.0 MHz , networks equivalent to that shown in Figure 1 are recommended. Inadequate decoupling will result in spurious outputs at certain operating frequencies and certain phase angles of input and output VSWR.

Figure 8. Test Fixture Assembly

LOAD MISMATCH

During final test, each module is load mismatch tested in a fixture having the identical decoupling networks described in Figure 1. Electrical conditions are $\mathrm{V}_{\mathbf{s} 1}=$ $5.6 \mathrm{Vdc}, \mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=\mathrm{V}_{\mathrm{s} 4}$ equal to $9.0 \mathrm{Vdc}, \mathrm{VSWR}$ equal to ∞, and output power equal to 2.3 watts.

Figure 9. Photomaster For Test Fixture

The RF Line UHF Power Amplifiers

... designed for 7.5 Volt UHF power amplifier applications in industrial and commercial equipment primarily hand portable radios.

- MHW707-1 403-440 MHz
- MHW707-2 440-470 MHz
$7.0 \mathrm{~W}-403$ to 470 MHz UHF POWER AMPLIFIERS
- Specified 7.5 Volt Characteristics

RF Input Power $=1.0 \mathrm{~mW}(0 \mathrm{dBm})$
RF Output Power $=7.0$ Watts
Minimum Gain $\left(\mathrm{V}_{\text {Control }}=7.0 \mathrm{~V}\right)=38.5 \mathrm{~dB}$
Harmonics $=-40 \mathrm{dBc}$ Max @ $2 \mathrm{fo}_{\mathrm{o}}$

- 50Ω Input/Output Impedance
- Guaranteed Stability and Ruggedness
- Epoxy Glass PCB Construction Gives Consistent Performance and Reliability

MAXIMUM RATINGS (Flange Temperature $=25^{\circ} \mathrm{C}$)

Rating	Symbol	Value	Unit
DC Supply Voltage (Pins 2,4,5,6)	$\mathrm{V}_{\text {s1,2,3,4 }}$	9.0	Vdc
DC Control Voltage (Pin 3)	$\mathrm{V}_{\text {Cont }}$	7.0	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	3.0	mW
RF Output Power $\left(\mathrm{V}_{\mathbf{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathbf{s} 3}=\mathrm{V}_{\mathrm{S} 4}=9.0 \mathrm{Vdc}\right)$	$\mathrm{P}_{\text {out }}$	9.0	W
Operating Case Temperature Range	T_{C}	-30 to +80	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-30 to +80	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=\mathrm{V}_{\mathrm{s} 4}=7.5 \mathrm{Vdc}$, (Pins $2,4,5,6$), $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 50 \Omega$ System

Characteristic	Symbol	Min	Max	Unit
Frequency Range $\begin{aligned} & \text { MHW707-1 } \\ & \text { MHW707-2 }\end{aligned}$	-	$\begin{aligned} & 403 \\ & 440 \end{aligned}$	$\begin{aligned} & 440 \\ & 470 \end{aligned}$	MHz
Control Voltage ($\left.\mathrm{P}_{\text {out }}=7.0 \mathrm{~W}, \mathrm{P}_{\text {in }}=1.0 \mathrm{~mW}\right)^{(1)}$	$\mathrm{V}_{\text {Cont }}$	0	7.0	Vdc
Quiescent Current $\left(\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=\mathrm{V}_{\mathrm{s} 4}=7.5 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}=0 \mathrm{~mW}, \mathrm{~V}_{\text {Cont }}=0 \mathrm{Vdc}\right)$		-	150	mA
Power Gain ($\mathrm{P}_{\text {out }}=7.0 \mathrm{~W}, \mathrm{~V}_{\text {Cont }}=7.0 \mathrm{Vdc}$)	G_{p}	38.5	-	dB
Efficiency ($\left.\mathrm{P}_{\text {out }}=7.0 \mathrm{~W}, \mathrm{P}_{\text {in }}=1.0 \mathrm{~mW}\right)^{(1)}$	η	40	-	\%
$\begin{gathered} \text { Harmonics }\left(P_{\text {out }}=7.0 \mathrm{~W}\right)^{(1)} \quad 2 \mathrm{f}_{\mathrm{o}} \\ \left(\mathrm{P}_{\text {in }}=1.0 \mathrm{~mW}\right) \end{gathered}$	-	-	-40	dBc
Input VSWR ($\left.\mathrm{P}_{\text {out }}=7.0 \mathrm{~W}, \mathrm{P}_{\text {in }}=1.0 \mathrm{~mW}\right), 50 \Omega$ Ref. 11)	-	-	2.0:1	-
Control Current ($\left.\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=\mathrm{V}_{\mathrm{s} 4}=7.5 \mathrm{Vdc}, \mathrm{P}_{\text {in }}=1.0 \mathrm{~mW}\right)^{(1)}$	-	-	95	mA
Load Mismatch ($\left.\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{S} 3}=\mathrm{V}_{\mathrm{S} 4}=9.0 \mathrm{Vdc}\right)$ $V S W R=10: 1, P_{\text {out }}=9.0 \mathrm{~W}, \mathrm{P}_{\text {in }}=3.0 \mathrm{~mW}(1)$		No Degradation in Power Output		
Stability ($\mathrm{P}_{\mathrm{in}}=1.0-3.0 \mathrm{~mW}, \mathrm{~V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=\mathrm{V}_{\mathrm{s} 4}=6.0-9.0 \mathrm{Vdc}$) Pout between 1.0 W and $9.0 \mathrm{~W}^{(1)}$ Load VSWR $=8: 1$, All Phase Angles		All spurious outputs more than 60 dB below desired signal		

[^11]

Figure 1. Power Module Test System
Block Diagram

TYPICAL CHARACTERISTICS (MHW707-1)

Figure 2. Control Voltage, Efficiency and VSWR versus Frequency

Figure 3. Output Power versus Control Voltage

Figure 4. Output Power versus Frequency

Figure 6. Output Power versus Case Temperature

Figure 5. Control Voltage versus Case Temperature

Figure 7. Output Power versus Case Temperature at Maximum Control Voltage

TYPICAL CHARACTERISTICS
(MHW707-2)

Figure 8. Output Power versus Case Temperature at Maximum Control Voltage

Figure 9. Control Voltage, Efficiency and VSWR versus Frequency

Figure 10. Output Power versus Control Voltage

Figure 11. Output Power versus Frequency

Figure 13. Output Power versus Case Temperature

APPLICATIONS INFORMATION

NOMINAL OPERATION

All electrical specifications are based on the nominal conditions of $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=\mathrm{V}_{\mathrm{S} 4}=7.5 \mathrm{Vdc}$ (Pins $2,4,5,6$) and $P_{\text {out }}$ equal to 7.0 watts. With these conditions, maximum current density on any device is 1.5 $\times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$. While the modules are designed to have excess gain margin with ruggedness, operation of these units outside the limits of published specifications is not recommended unless prior communications regarding intended use have been made with the factory representative.

GAIN CONTROL

The module output should be limited to 7.0 watts. The preferred method of power output control is to fix $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=\mathrm{V}_{\mathrm{s} 4}=7.5 \mathrm{Vdc}$ (Pins 2, 4, 5, 6), $\mathrm{P}_{\text {in }}$ (Pin 1 1) at 1.0 mW , and vary $\mathrm{V}_{\text {cont }}$ (Pin 3) voltage.

DECOUPLING

Due to the high gain of the four stages and the module size limitation, external decoupling networks require careful consideration. Pins 2, 3, 5 and 6 are internally bypassed with a $0.018 \mu \mathrm{~F}$ chip capacitor which is effective for frequencies from 5.0 MHz through 940 MHz . For bypassing frequencies below 5.0 MHz , networks equivalent to that shown in Figure 1 are recommended. Inadequate decoupling will resuit in spurious outputs at certain operating frequencies and certain phase angles of input and output VSWR.

Figure 14. Test Fixture Assembly

LOAD MISMATCH

During final test, each module is load mismatch tested in a fixture having the identical decoupling networks described in Figure 1. Electrical conditions are $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}$ $\mathrm{V}_{\mathrm{s} 3}=\mathrm{V}_{\mathrm{S} 4}$ equal to $9.0 \mathrm{Vdc}, \mathrm{VSWR}$ equal to $20: 1$, and output power equal to 8.0 watts.

Note: The Printed Circuit Board shown is 75% of the original.

Figure 15. Photomaster For Test Fixture

MOTOROLA SEMICONDUCTOR TECHNICAL DATA

The RF Line

UHF POWER AMPLIFIERS

designed for 12.5 volt UHF power amplifier applications in industrial and commercial FM equipment operating from 400 to 512 MHz .

- Specified 12.5 Volt, UHF Characteristics -

Output Power $=7.5$ Watts
Minimum Gain $=18.8 \mathrm{~dB}$
Harmonics $=40 \mathrm{~dB}$

- 50Ω Input/Output Impedance
- Guaranteed Stability and Ruggedness
- Gain Control Pin for Manual or Automatic Output Level Control
- Thin-Film Hybrid Construction Gives Consistent Performance and Reliability
$7.5 \mathrm{~W}-400-512 \mathrm{MHz}$

RF POWER AMPLIFIERS

NOTES

1. MOUNTING HOLES WITHIN $0.13 M M$ (O.005I DLA OF TRUE POSITION AT SEATING PLANE AT MAXIMUM MATERIAL CONDITION.
2. DMENSIONNG AND TOLERANCING PER ANSI Y14.5M, 1962.
3. CONTROLIING DIMENSION: INCH.

DIM	MILIMETEAS		INCHES	
	MIN	MAX	MIN	MAX
A	67.06	67.56	2.640	2660
B	51.82	52.95	2040	2085
C	851	9.14	0335	0360
E	2.54	292	0.100	0.115
F	2.16	2.62	0.085	0.115
G	61.09 BSC		2405 BSC	
H	47.88	4364	1.885	1915
J	10.16	11.18	0.450	0.45
K	5.85	7.62	0.230	0.300
1	45.34	46.10	1.785	1.815
N	4026	41.02	1.585	1.615
0	3.45	370	0.136	0.148
R	2032	20.82	0.800	08.0
5	17.02	17.52	0.570	0.690
U	1232	1308	0485	0515
V	978	10.54	0305	0.415
W	470	5.45	0.185	0215
x	2.16	292	0.085	0.115

CASE 700.04

ELECTRICAL CHARACTERISTICS (V_{8} and V_{sc} set at $12.5 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
 Frequency Range MHW709-1 MHW709-2 MHW709-3	-	$\begin{aligned} & 400 \\ & 440 \\ & 470 \end{aligned}$	$\begin{aligned} & 440 \\ & 470 \\ & 512 \end{aligned}$	MHz
Input Power ($\mathrm{P}_{\text {out }}=7.5 \mathrm{~W}$)	Pin	-	100	mW
Power Gain	G_{p}	18.8	-	dB
Efficiency ($\mathrm{P}_{\text {out }}=7.5 \mathrm{~W}$)	η	35	-	\%
Harmonics (P ${ }_{\text {out }}=7.5 \mathrm{~W}$, Reference)	-	-	-40	dB
Input Impedance ($\mathrm{P}_{\text {out }}=7.5 \mathrm{~W}, 50 \Omega$ Reference)	$\mathrm{z}_{\text {in }}$	-	2:1	VSWR
```Power Degradation (Pout \(=\mathbf{7 . 5} \mathrm{W}, \mathrm{TC}=\mathbf{2 5}{ }^{\circ} \mathrm{C}\), Reference) ( \(\mathrm{T} \mathrm{C}=0^{\circ} \mathrm{C}\) to \(60^{\circ} \mathrm{C}\) ) ( \(T_{C}=-30^{\circ} \mathrm{C}\) to \(80^{\circ} \mathrm{C}\) )```	-	二	$\begin{aligned} & 0.3 \\ & 0.7 \end{aligned}$	dB
Load Mismatch $\text { (VSWR }=\infty, V_{S}=V_{\text {SC }}=15.5 \mathrm{Vdc}, P_{\text {out }}=10 \mathrm{~W} \text { ) }$	-	No degradation in Pout		
Stability    $\mathbf{V}_{\mathrm{B}}=\mathrm{V}_{\mathrm{sc}}=3.0$ to 15.5 Vdc$)$    Load Mismatch $=4: 1,50 \Omega$ Reference, note $V_{s c}{ }^{5} V_{S}$ )	-	All spurious outputs more than 70 dB below desired signal		
Standby Current ( $\mathrm{P}_{\text {in }}=0$ )	$\mathrm{I}_{\mathrm{sc}}(\mathrm{a})$	-	10	mA

FIGURE 1 - UHF POWER AMPLIFIER TEST SETUP


NOTE: No Internal D.C. blocking on input pin.

## TYPICAL PERFORMANCE CURVES

(MHW709-2)

FIGURE 2 - INPUT POWER, EFFICIENCY, AND VSWR versus FREQUENCY


FIGURE 4 - OUTPUT POWER versus VOLTAGE


FIGURE 6 - GAIN CONTROL CURRENT versus VOLTAGE


FIGURE 3 - OUTPUT POWER versus INPUT POWER


FIGURE 5 - OUTPUT POWER versus GAIN CONTROL VOLTAGE


FIGURE 7 - TEST CIRCUIT


# MHW709-1, (MHW709-2, MHW709-3 

## APPLICATIONS INFORMATION

## Nominal Operation

All electrical specifications are based on the nominal conditions of $\mathbf{V}_{\mathbf{s c}}$ (Pin 5) and $\mathbf{V}_{\mathbf{S}}$ (Pin 3) equal to $\mathbf{1 2 . 5}$ Vdc and with output power equaling 7.5 watts. With these conditions, maximum current density on any device is $1.5 \times 10^{5} \mathrm{~A} \mathrm{~cm}^{2}$ and maximum die temperature with $100^{\circ}$ base plate temperature is $165^{\circ}$. While the modules are designed to have excess gain margin with ruggedness, operation of these units outside the limits of published specifications is not recommended unless prior communications regarding intended use has been made with the factory representative.

## Gain Control

The intent of these gain control methods is to set the nominal $P_{\text {out }}$. Do not use them for wide range gain control.
In general, the module output power should be limited to 10 watts. The preferred method of power output control is to fix both $\mathrm{V}_{\mathbf{8 c}}$ and $\mathrm{V}_{\mathrm{S}}$ at 12.5 Vdc and vary the input RF drive level at Pin 7. The next method is to control $\mathrm{V}_{\text {sc }}$ through a stiff voltage source.
A third method of power output control is to control $V_{\text {sc }}$ through a current source or voltage source with series resistance. This mode of control creates a region of negative slope on the power gain profile curve and aggravates output power slump with temperature.

## Decoupling

Due to the high gain of the three stages and the module size limitation, external deccupling network requires careful consideration. Both Pins $\mathbf{3}$ and 5 are internally bypassed with a $0.018 \mu \mathrm{~F}$ chip capacitor effective for frequencies from 5 through 512 MHz . For bypassing frequencies below 5 MHz , networks equivalent to that shown in the test figure schematic are recommended. Inadequate decoupling will result in spurious outputs at certain operating frequencies and certain phase angles of input and output VSWR less than 3:1.

## Load Pull

During final test, each module is "load pull" tested in a fixture having the identical decoupling network described in Figure 1. Electrical conditions are $\mathrm{V}_{\mathbf{s}}$ and $\mathrm{V}_{\mathbf{s c}}$ equal 15.5 V output, VSWR infinite, output power equal to 10 watts.

## Mounting Considerations

To insure optimum heat transfer from the flange to heatsink, use standard 6-32 mounting screws and an adequate quantity of silicon thermal compound (e.g., Dow Corning 340). With both mounting screws finger tight, alternately torque down the screws to 4-6 inch pounds. The heatsink mounting surface directly beneath the module flange should be flat to within 0.005 inch to prevent fracturing of ceramic substrate material. For more information on module mounting, see EB-107.

FIGURE 8 - UHF POWER AMPLIFIER TEST FIXTURE PRINTED CIRCUIT BOARD


## MHW710-1 <br> MHW710-2 <br> MHW710-3

## The RF Line

MAXIMUM RATINGS (Flange Temperature $=25^{\circ} \mathrm{C}$ )

Rating	Symbol	Value	Unit
DC Supply Voltages	$\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\text {SC }}$	15.5	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	250	mW
RF Output Power (@ $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\text {SC }}=12.5 \mathrm{~V}$ )	$\mathrm{P}_{\text {out }}$	15	W
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-30 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS
( $\mathrm{V}_{\mathrm{S}}$ and $\mathrm{V}_{\mathrm{SC}}$ set at $12.5 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Frequency Range MHW710-1         MHW710-2      MHW710-3	-	$\begin{aligned} & 400 \\ & 440 \\ & 470 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 440 \\ & 470 \\ & 512 \\ & \hline \end{aligned}$	MHz
Input Power ( $\mathrm{P}_{\text {out }}=13 \mathrm{~W}$ )	$P_{\text {in }}$	-	150	mW
Power Gain	$\mathrm{G}_{\mathrm{p}}$	19.4	-	dB
Efficiency ( $\mathrm{P}_{\text {out }}=13 \mathrm{~W}$ )	$\eta$	35	-	\%
Harmonics ( $\mathrm{P}_{\text {out }}=13 \mathrm{~W}$, Reference)	-	-	-40	dB
Input Impedance ( $\mathrm{P}_{\text {out }}=13 \mathrm{~W}, 50 \Omega$ Reference)	$\mathrm{z}_{\text {in }}$	-	2:1	VSWR
```Power Degradation ( }\mp@subsup{P}{\mathrm{ out }}{}=13\textrm{W},\mp@subsup{\textrm{T}}{\textrm{C}}{}=2\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ , Reference) (T}\textrm{C}=\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }6\mp@subsup{0}{}{\circ}\textrm{C} (T}\textrm{C}=-3\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }8\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ )```	-	-	$\begin{aligned} & 0.3 \\ & 0.7 \end{aligned}$	dB
Load Mismatch $\left(\mathrm{VSWR}=\infty, \mathrm{V}_{\mathrm{S}}=15.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=16.5 \mathrm{~W}\right)$	-	No degradation in $\mathrm{P}_{\text {out }}$		
Stability 1. $\left(P_{\text {in }}=50\right.$ to 200 mW , Load Mismatch $=4: 1$, 50Ω reference, $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{Sc}}=8.0$ to 15.5 Vdc) 2. $\mathrm{V}_{\mathrm{S}}=12.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SC}}$ adjusted for $\mathrm{P}_{\text {out }}=5.0$ to $15 \mathrm{~W}, \mathrm{P}_{\text {in }}=150 \mathrm{~mW}$, Load Mismatch $=4: 1,50 \Omega$ reference, note $V_{S C} \leqslant V_{S}$)	-	All spurious outputs more than 70 dB below desired signal		

MHW710-1, MHW710-2, MHW710-3

APPLICATIONS INFORMATION

Nominal Operation

All electrical specifications are based on the nominal conditions of $\mathbf{V}_{\mathbf{s c}}\left(\right.$ Pin 5) and $\mathbf{V}_{\mathbf{S}}$ (Pin 3) equal to 12.5 Vdc and with output power equaling 13 watts. With these conditions, maximum current density on any device is $1.5 \times 10^{5} \mathrm{Acm}^{2}$ and maximum die temperature with 100° base plate temperature is 165°. While the modules are designed to have excess gain margin with ruggedness, operation of these units outside the limits of published specifications is not recommended unless prior communications regarding intended use has been made with the factory representative.

Gain Control

The intent of these gain control methods is to set the nominal Pout. Do not use them for wide range gain control.
In general, the module output power should be limited to 10 watts. The preferred mathod of power output control is to fix both $\mathrm{V}_{\mathbf{s c}}$ and $\mathrm{V}_{\mathbf{g}}$ at 12.5 Vdc and vary the input RF drive level at Pin 7. The next method is to control $\mathrm{V}_{\text {sc }}$ through a stiff voltage source.
A third method of power output control is to control \mathbf{V}_{sc} through a current source or voltage source with series resistance. This mode of control creates a region of negative slope on the power gain profile curve and aggravates output power slump with temperature.

Decoupling

Due to the high gain of the three stages and the module size limitation, external decoupling network requires careful consideration. Both Pins 3 and 5 are internally bypassed with a $0.018 \mu \mathrm{~F}$ chip capacitor effective for frequencies from 5 through 512 MHz . For bypassing frequencies below 5 MHz , networks equivalent to that shown in the test figure schematic are recommended. Inadequate decoupling will result in spurious outputs at certain operating frequencies and certain phase angles of input and output VSWR less than 3:1.

Load Pull

During final test, each module is "load pull" tested in a fixture having the identical decoupling network described in Figure 1. Electrical conditions are $\mathbf{V}_{\mathbf{s}}$ and $\mathrm{V}_{\mathbf{s c}}$ equal 15.5 V output, VSWR infinite, output power equal to 16.5 watts.

Mounting Considerations

To insure optimum heat transfer from the flange to heatsink, use standard 6-32 mounting screws and an adequate quantity of silicon thermal compound (e.g., Dow Corning 340). With both mounting screws finger tight, alternately torque down the screws to 4-6 inch pounds. The heatsink mounting surface directly beneath the module flange should be flat to within 0.005 inch to prevent fracturing of ceramic substrate material. For more information on module mounting, see EB-107.

FIGURE 1 - UHF POWER AMPLIFIER TEST SETUP

NOTE: No Internal D.C. blocking on input pin.

TYPICAL PERFORMANCE CURVES
(MHW710-2)

FIGURE 6 - GAIN CONTROL CURRENT versus VOLTAGE

MHW710-1, MHW710-2, MHW710-3

FIGURE 8 - UHF POWER AMPLIFIER TEST FIXTURE
PRINTED CIRCUIT BOARD

The RF Line

UHF POWER AMPLIFIERS

...designed for 12.5 volt UHF power amplifier applications in industrial and commercial FM equipment operating from 400 to 470 MHz .

- Specified 12.5 Volt, UHF Characteristics Output Power $=20$ Watts
Minimum Gain $=21 \mathrm{~dB}$
Harmonics $=40 \mathrm{~dB}$
- 50Ω Input/Output Impedance
- Guaranteed Stability and Ruggedness
- Gain Control Pin for Manual or Automatic Output Level Control
- Thin Film Hybrid Construction Gives Consistent

Performance and Reliability

MAXIMUM RATINGS (Flange Temperature $=25^{\circ} \mathrm{C}$)

Rating	Symbol	Value	Unit
DC Supply Voltages	$\mathrm{V}_{\mathrm{S}}, \mathrm{V}_{\text {sc }}$	15.5	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	250	mW
RF Output Power (@ $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{SC}}=12.5 \mathrm{~V}$)	$\mathrm{P}_{\text {out }}$	25	W
Operating Case Temperature Range	T_{C}	-30 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS
(V_{S} and V_{SC} set at $12.5 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Frequency Range $\begin{aligned} & \text { MHW720-1 } \\ & \text { MHW720-2 }\end{aligned}$	-	$\begin{aligned} & 400 \\ & 440 \end{aligned}$	$\begin{aligned} & 440 \\ & 470 \end{aligned}$	MHz
Input Power ($\mathrm{P}_{\text {out }}=20 \mathrm{~W}$)	Pin	-	150	mW
Power Gain	G_{p}	21	-	dB
Efficiency ($\mathrm{P}_{\text {out }}=20 \mathrm{~W}$)	η	35	-	\%
Harmonics (Pout $=20 \mathrm{~W}$, Reference)	-	-	-40	dB
Input Impedance ($\mathrm{P}_{\text {out }}=20 \mathrm{~W}, 50 \Omega$ Reference)	$z_{\text {in }}$	-	2:1	VSWR
```Power Degradation (Pout =20 W, T}\textrm{C}=2\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ , Reference) ( }\mp@subsup{T}{\textrm{C}}{}=0\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }6\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ ) (T}\mp@subsup{T}{\textrm{C}=}{}=-3\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }8\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ )```	-	-	$\begin{aligned} & 0.3 \\ & 0.7 \end{aligned}$	dB
Load Mismatch $\left(\mathrm{VSWR}=\infty, \mathrm{V}_{\mathrm{S}}=15.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}\right)$	-	No degradation in $\mathrm{P}_{\text {out }}$		
Stability   1. $\left(\mathrm{P}_{\text {in }}=50\right.$ to 200 mW , Load Mismatch $=2: 1$, $50 \Omega$ reference, $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{sc}}=8.0$ to 15.5 Vdc )   2. $\mathrm{V}_{\mathrm{S}}=12.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{sc}}$ adjusted for $\mathrm{P}_{\text {out }}=5.0$ to $20 \mathrm{~W}, \mathrm{P}_{\text {in }}=150 \mathrm{~mW}$, Load Mismatch $=2: 1,50 \Omega$ reference, note $V_{S C} \leqslant V_{S}$ )	-	All spurious outputs more than 70 dB below desired signal		

MHW720-1 MHW720-2

20 W 400-470 MHz
RF POWER AMPLIFIERS



## APPLICATIONS INFORMATION

## Nominal Operation

All electrical specifications are based on the nominal conditions of $\mathrm{V}_{\mathrm{Sc}}\left(\right.$ Pin 5 ) and $\mathrm{V}_{\mathrm{S}}$ (Pin 3) equal to 12.5 Vdc and with output power equaling 20 watts. With these conditions, maximum current density on any device is $1.5 \times 10^{5} \mathrm{~A} \mathrm{~cm}^{2}$ and maximum die temperature with $100^{\circ}$ base plate temperature is $165^{\circ}$. While the modules are designed to have excess gain margin with ruggedness, operation of these units outside the limits of published specifications is not recommended unless prior communications regarding intended use has been made with the factory representative.

## Gain Control

The intent of these gain control methods is to set the nominal Pout. Do not use them for wide range gain control.

In general, the module output power should be limited to 20 watts. The preferred method of power output control is to fix both $\mathrm{V}_{\mathrm{Sc}}$ and $\mathrm{V}_{\mathbf{S}}$ at 12.5 Vdc and vary the input RF drive level at Pin 7. The next method is to control $\mathrm{V}_{\text {sc }}$ through a stiff voltage source.

A third method of power output control is to control $\mathrm{V}_{\mathrm{sc}}$ through a current source or voltage source with series resistance. This mode of control creates a region of negative slope on the power gain profile curve and aggravates output power slump with temperature.

## Decoupling

Due to the high gain of the three stages and the module size limitation, external decoupling network requires careful consideration. Both Pins 3 and 5 are internally bypassed with a $0.018 \mu \mathrm{~F}$ chip capacitor effective for frequencies from 5 through 512 MHz . For bypassing frequencies below 5 MHz , networks equivalent to that shown in the test figure schematic are recommended. Inadequate decoupling will result in spurious outputs at certain operating frequencies and certain phase angles of input and output VSWR less than 3:1.

## Load Pull

During final test, each module is "load puil" tested in a fixture having the identical decoupling network described in Figure 1. Electrical conditions are $\mathbf{V}_{\mathbf{S}}$ and $\mathbf{V}_{\mathbf{s c}}$ equal 15.5 V output, VSWR infinite, output power equal to 30 watts.

## Mounting Considerations

To insure optimum heat transfer from the flange to heatsink, use standard 6-32 mounting screws and an adequate quantity of silicon thermal compound (e.g., Dow Corning 340). With both mounting screws finger tight, alternately torque down the screws to 4-6 inch pounds. The heatsink mounting surface directly beneath the module flange should be flat to within 0.005 inch to prevent fracturing of ceramic substrate material. For more information on module mounting, see EB-107.

FIGURE 1 - UHF POWER AMPLIFIER TEST SETUP


NOTE: No Internal D.C. blocking on input pin.

## MHW720-1, MHW720-2

TYPICAL PERFORMANCE CURVES (MHW720-2)


FIGURE 4 - OUTPUT POWER versus VOLTAGE


FIGURE 3 - OUTPUT POWER versus INPUT POWER


FIGURE 5 - OUTPUT POWER versus GAIN CONTROL VOLTAGE


FIGURE 6 - GAIN CONTROL CURRENT versus VOLTAGE



FIGURE 8 - UHF POWER AMPLIFIER TEST FIXTURE PRINTED CIRCUIT BOARD


## The RF Line

## UHF POWER AMPLIFIERS

... capable of wide power range control as encountered in UHF cellular telephone applications.

- MHW720A1 $400-440 \mathrm{MHz}$
- MHW720A2 $440-470 \mathrm{MHz}$
- Specified 12.5 Volt, UHF Characteristics -

Output Power $=20$ Watts
Minimum Gain $=21 \mathrm{~dB}$
Harmonics $=-40 \mathrm{~dB}$ (Max)

- $50 \Omega$ Input/Output Impedance
- Guaranteed Stability and Ruggedness
- Epoxy Glass PCB Construction Gives Consistent Performance and Reliability

MAXIMUM RATINGS (Flange Temperature $=25^{\circ} \mathrm{C}$ )

Rating	Symbol	Value	Unit
DC Supply Voltages	$\mathrm{V}_{\text {S } 1}, \mathrm{~V}_{\text {S2 }}$	15.5	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	250	mW
RF Output Power (@ $\mathrm{V}_{\text {S1 }}=\mathrm{V}_{\text {S2 }}=12.5 \mathrm{~V}$ )	$\mathrm{P}_{\text {out }}$	25	W
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-30 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

## ELECTRICAL CHARACTERISTICS

( $\mathrm{V}_{\mathrm{s} 1}$ and $\mathrm{V}_{\mathrm{s} 2}$ set at $12.5 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
$\begin{array}{ll}\text { Frequency Range } & \text { MHW720A1 } \\ \\ \text { MHW720A2 }\end{array}$	-	$\begin{aligned} & 400 \\ & 440 \end{aligned}$	$\begin{aligned} & 440 \\ & 470 \end{aligned}$	MHz
Input Power ( $\mathrm{P}_{\text {out }}=20 \mathrm{~W}$ )	$P_{\text {in }}$	-	150	mW
Power Gain ( $\mathrm{P}_{\text {out }}=20 \mathrm{~W}$ )	$\mathrm{G}_{\mathrm{p}}$	21	-	dB
Efficiency ( $\mathrm{P}_{\text {out }}=20 \mathrm{~W}$ )	$\eta$	35	-	\%
Harmonics ( $\mathrm{P}_{\text {out }}=20 \mathrm{~W}$, Reference)	-	-	-40	dB
Input Impedance ( $\mathrm{P}_{\text {out }}=20 \mathrm{~W}, 50 \Omega$ Reference)	$z_{\text {in }}$	-	2:1	VSWR
Gain Degradation (2) ( $\mathrm{P}_{\text {out }}=20 \mathrm{~W}$, Reference Gain @ $\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}$ ) $\begin{aligned} & \mathrm{T}_{\mathrm{C}}=-30^{\circ} \mathrm{C} \\ & \mathrm{~T}_{\mathrm{C}}=+80^{\circ} \mathrm{C} \end{aligned}$	-	-	$\begin{array}{r} -0.7 \\ -0.7 \\ \hline \end{array}$	dB
Load Mismatch $\begin{aligned} & \left(\mathrm{VSWR}=\infty, \mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{s} 2}=15.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=\right. \\ & 30 \mathrm{~W}) \end{aligned}$	-	No degradation in Pout		
Stability ( $\mathrm{P}_{\mathrm{in}}=0$ to $250 \mathrm{~mW}, \mathrm{~V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=10$ to 15.5 Vdc$)$   1. Load VSWR $=4: 1,50 \Omega$ Reference   2. Source VSWR $=2: 1,50 \Omega$ Reference	-	All spurious outputs more than 60 dB below desired signal		
Quiescent Current ( $\mathrm{I}_{\mathrm{s} 1}$ No RF Drive Applied)	$\mathrm{I}_{\mathrm{s} 1}(\mathrm{q})$	-	200	mA
(2) See Figure 5, Input Power versus Case Temperature				

20 W 400-470 MHz
RF POWER AMPLIFIERS


DM	MLUMETERS		INCHES	
	MN	max	MN	max
$A$	67.06	67.56	2840	2660
B	51.82	52.95	2040	2085
c	8.51	9.14	0.335	0.360
E	254	292	0.100	0.115
F	2.16	262	0085	0.115
G	61.09 BSC		2.505 BSC	
H	4788	4864	1885	1.915
$J$	10.16	11.18	0.400	0.440
K	585	7.62	0230	0.300
1	4534	4610	1.785	1815
N	4. 26	41.02	1585	1.615
0	3.45	370	0.136	0.146
R	2032	20.82	0.850	0820
s	17.02	1752	0.570	0,600
U	1232	1308	0.485	0515
v	978	10.54	0.335	0.415
w	470	546	0.185	0215
x	2.16	292	0.085	0.115

CASE 700-04

## APPLICATIONS INFORMATION

## Nominal Operation

All electrical specifications are based on the nominal conditions of $\mathbf{V}_{\mathbf{s} 1}$ (Pin 5) and $\mathrm{V}_{\mathbf{s} 2}$ (Pin 3) equal to 12.5 Vdc and with output power equaling 20 watts. With these conditions, maximum current density on any device is $1.5 \times 10^{5} \mathrm{~A} \mathrm{~cm}^{2}$ and maximum die temperature with $100^{\circ}$ base plate temperature is $165^{\circ}$. While the modules are designed to have excess gain margin with ruggedness, operation of these units outside the limits of published specifications is not recommended unless prior communications regarding intended use has been made with the factory representative.

## Gain Control

This module is designed for wide range Pout level control. The recommended method of power output control, as shown in Figure 3, is to fix $\mathrm{V}_{\mathrm{s} 1}$ and $\mathrm{V}_{\mathrm{s} 2}$ at 12.5 Vdc and vary the input RF drive level at Pin 7.

In all applications, the module oufput power should be limited to 20 watts.

## Decoupling

Due to the high gain of the three stages and the module size limitation, the external decoupling network requires careful consideration. Both Pins 3 and 5 are internally bypassed with a $0.018 \mu \mathrm{~F}$ chip capacitor effective
for frequencies from 5 through 470 MHz . For bypassing frequencies below 5 MHz , networks equivalent to that shown in the test fixture schematic are recommended. Inadequate decoupling will result in spurious outputs at certain operating frequencies and certain phase angles of input and output VSWR less than 4:1.

## Load Mismatch

During final test, each module is load mismatch tested in a fixture having the identical decoupling network described in Figure 1. Electrical conditions are $\mathrm{V}_{\mathrm{s} 1}$ and $V_{\mathbf{S} 2}$ equal 15.5 V , load VSWR infinite, and output power equal to 30 watts.

## Mounting Considerations

To insure optimum heat transfer from the flange to heatsink, use standard 6-32 mounting screws and an adequate quantity of silicon thermal compound (e.g., Dow Corning 340). With both mounting screws finger tight, alternately torque down the screws to 4-6 inch pounds. The heatsink mounting surface directly beneath the module flange should be flat to within 0.005 inch to prevent fracturing of ceramic substrate material. For more information on module mounting, see EB-107.

FIGURE 1 - UHF POWER AMPLIFIER TEST SETUP


NOTE: No Internal D.C. blocking on input pin.

## MHW720A1, MHW720A2



FIGURE 4 - OUTPUT POWER versus VOLTAGE


FGURE 3 - OUTPUT POWER vERSUS INPUT POWER


FIGURE 5 - INPUT POWER varsus CASE TEMPERATURE




FIGURE 8 - UHF POWER AMPLIFIER TEST FIXTURE PRINTED CIRCUIT BOARD


## The RF Line

## UHF Power Amplifiers

...capable of wide power range control as encountered in portable cellular
radio applications ( 30 dB typical).

- High Efficiency
- Smallest Size in Industry
$1.6 \mathrm{~W}-820-925 \mathrm{MHz}$ RF POWER AMPLIFIERS
- MHW801-1 and MHW851-1 820-850 MHz
- MHW801-2 and MHW851-2 870-905 MHz
- MHW801-3 and MHW851-3 890-915 MHz
- MHW801-4 and MHW851-4 915-925 MHz
- Specified 6.0 Volt Characteristics

RF Input Power $=1.0 \mathrm{~mW}(0 \mathrm{dBm})$
RF Output Power $=1.6$ Watts (MHW801-1,-2,-4 and MHW851-1,-2,-4)

$$
=2.0 \text { Watts (MHW801-3 and MHW851-3) }
$$

Minimum Gain ( $\mathrm{V}_{\text {Control }}=3.5 \mathrm{~V}$ ) $=32 \mathrm{~dB}(\mathrm{MHW} 801-1,-2,-4$ and MHW851-1,-2,-4)
$\left(\mathrm{V}_{\text {Control }}=3.5 \mathrm{~V}\right)=33 \mathrm{~dB}($ MHW801-3 and MHW851-3)
Harmonics $=-45 \mathrm{dBc} \operatorname{Max}$ (a $2.0 \mathrm{f}_{\mathrm{o}}$

- $50 \Omega$ Input/Output Impedance
- Guaranteed Stability and Ruggedness
- Epoxy Glass PCB Construction Gives Consistent Performance and Reliability

Rating	Symbol	Value	Unit
DC Supply Voltage (Pins 2, 3, 4)	$\mathrm{V}_{\mathrm{s} 1,2,3}$	7.5	Vdc
DC Control Voltage (Pin 1)	$\mathrm{V}_{\text {Cont }}$	4.0	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	3.0	mW
RF Output Power $\left(\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{S} 3}=7.5 \mathrm{~V}\right)$	$\mathrm{P}_{\text {out }}$	3.0	W
Operating Case Temperature Range	$\mathrm{T}^{\mathrm{C}}$	-30 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-30 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{S} 3}=6.0 \mathrm{Vdc}\right.$, (Pins 2, 3, 4), $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 50 \Omega$ System)

Characteristic	Symbol	Min	Max	Unit
Frequency Range MHW801-1 and MHW851-1   MHW801-2 and MHW851-2   MHW801-3 and MHW851-3   MHW801-4 and MHW851-4	-	$\begin{aligned} & 820 \\ & 870 \\ & 890 \\ & 915 \end{aligned}$	$\begin{aligned} & 850 \\ & 905 \\ & 915 \\ & 925 \end{aligned}$	MHz
Control Voltage ( $\left.\mathrm{P}_{\text {out }}=1.6 \mathrm{~W}, \mathrm{P}_{\text {in }}=1.0 \mathrm{~mW}\right)^{(1)(3)}$	$V_{\text {Cont }}$	0	3.5	Vdc
Quiescent Current ( $\mathrm{V}_{\text {S } 1}$. Pin $\left.2=6.0 \mathrm{Vdc}\right)^{(2)}$	$\mathrm{I}_{\text {S } 1(\mathrm{q})}$	-	65	mA
	$\mathrm{G}_{\mathrm{p}}$	$\begin{aligned} & 32 \\ & 33 \end{aligned}$	-	dB
Efficiency ( $\left.\mathrm{P}_{\text {out }}=1.6 \mathrm{~W}, \mathrm{P}_{\text {in }}=1.0 \mathrm{~mW}\right)^{(1)(3)}$	$\eta$	45	-	\%

(1) Adjust $V_{\text {cont }}$ for specified $P_{\text {out }}$
(continued)
(2) $\mathrm{V}_{\text {Cont }}=0 \mathrm{Vdc}$.
(3) $P_{\text {out }}=2.0$ watts for MHW801-3 and MHW851.3 only.

ELECTRICAL CHARACTERISTICS - continued $\left(\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=6.0 \mathrm{Vdc}\right.$, (Pins 2, 3, 4), $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 50 \Omega$ System)

Characteristic	Symbol	Min	Max	Unit
$\begin{array}{cc} \hline \text { Harmonics }\left(P_{\text {out }}=1.6 \mathrm{~W}\right)^{(1)(3)} & 2.0 \mathrm{f}_{\mathrm{o}} \\ \left(\mathrm{P}_{\mathrm{in}}=1.0 \mathrm{~mW}\right) & 3.0 \mathrm{f}_{\mathrm{o}} \end{array}$	-	-	$\begin{aligned} & -45 \\ & -55 \end{aligned}$	dBc
Input VSWR ( $\left.\mathrm{P}_{\text {out }}=1.6 \mathrm{~W}, \mathrm{P}_{\text {in }}=1.0 \mathrm{~mW}\right), 50 \mathrm{a}$ Ref. ${ }^{(1)}$ )(3)	-	-	2.0:1	-
Noise Power 30 kHz Bandwidth, 45 MHz , above $\mathrm{f}_{0}$ $\begin{array}{ll} \left(P_{\text {out }}=1.6 \mathrm{~W}\right)(1)(3) & T_{\mathrm{C}}=+25^{\circ} \mathrm{C} \\ \left(P_{\text {in }}=1.0 \mathrm{~mW}\right) & \mathrm{T}_{\mathrm{C}}=+100^{\circ} \mathrm{C} \end{array}$	-	-	$\begin{array}{r} -85 \\ -82 \\ \hline \end{array}$	dBm
$\begin{aligned} & \text { Load Mismatch }\left\langle V_{S 1}=V_{S 2}=V_{S 3}=7.5 \mathrm{Vdc}\right\rangle \\ & \left.V S W R=10: 1, P_{\text {out }}=3.0 \mathrm{~W}, P_{\text {in }}=3.0 \mathrm{~mW}\right)(1) \end{aligned}$		No Degradation in Power Output		
Stability $\left(P_{i n}=0.5-2.0 \mathrm{~mW}, V_{\mathrm{s} 1}=V_{\mathrm{s} 2}=V_{\mathrm{s} 3}=4.8-7.5 \mathrm{Vdc}\right.$ $P_{\text {out }}$ between 0 mW and $1.6 \mathrm{~W}(1)(3)$ Load VSWR $=6: 1$, Source VSWR $=3: 1$ )		All spurious outputs more than 60 dB below desired signal		

(1) Adjust $V_{\text {cont }}$ for specified $P_{\text {out }}$.
(2) $\mathrm{V}_{\text {Cont }}=0 \mathrm{Vdc}$.
(3) $\mathrm{P}_{\text {out }}=2.0$ watts for MHW801/851-3 only.


Figure 1. Power Module Test System Block Diagram

TYPICAL CHARACTERISTICS
MHW801/851-1 and MHW801/851-2


Figure 2. Control Voltage, Efficiency and Input VSWR versus Frequency


Figure 3. Output Power versus Control Voltage


Figure 5. Control Voltage versus Case Temperature


Figure 7. Output Power versus Case Temperature at Maximum Control Voltage

TYPICAL CHARACTERISTICS (continued)
MHW801/851-3 and MHW801/851-4


Figure 8. Control Voltage, Efficiency and VSWR versus Frequency


Figure 9. Output Power versus Control Voltage


Figure 11. Control Voltage versus Case Temperature


Figure 13. Output Power versus Case Temperature at Maximum Control Voltage

## APPLICATIONS INFORMATION

## NOMINAL OPERATION

All electrical specifications are based on the nominal conditions of $\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{S} 3}=6.0 \mathrm{Vdc}$ (Pins 2, 3, 4). With these conditions, maximum current density on any device is $1.5 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$ and maximum die temperature with $100^{\circ} \mathrm{C}$ case operating temperature is $165^{\circ} \mathrm{C}$. While the modules are designed to have excess gain margin with ruggedness, operation of these units outside the limits of published specifications is not recommended unless prior communications regarding intended use have been made with the factory representative.

## GAIN CONTROL

The module output should be limited to specified value. The preferred method of power output control is to fix $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=6.0 \mathrm{Vdc}\left(\right.$ Pins 2, 3, 4), $\mathrm{P}_{\text {in }}$ (Pin 1) at 1 mW , and vary $\mathrm{V}_{\text {Cont }}$ (Pin 1) voltage.

## DECOUPLING

Due to the high gain of the three stages and the module size limitation, external decoupling networks require careful consideration. Pins 2, 3 and 4 are internally bypassed with a $0.018 \mu \mathrm{~F}$ chip capacitor which is effective for frequencies from 5 MHz through 940 MHz . For bypassing frequencies below 5 MHz , networks equivalent to that shown in Figure 1 are recommended. Inadequate decoupling will result in spurious outputs at certain operating frequencies and certain phase angles of input and output VSWR.

## MOUNTING CONSIDERATIONS

For the MHW801 Series module, mounting is generally accomplished by soldering the flange to a suitable heat sink. This can be done with a low temperature solder such as $52 \% \mathrm{In}, 48 \% \mathrm{Sn}$ and type " R " Flux which liquifies below $150^{\circ} \mathrm{C}$. Under no circumstances should the MHW801 Series modules be heated to a temperature greater than $=165^{\circ} \mathrm{C}$. Internal construction of the module has been achieved using $36 \%$ Tin, $62 \%$ lead, $2 \%$ silver solder which liquifies at $179-180^{\circ} \mathrm{C}$.


Figure 14. Test Fixture Assembly

Also remember that the modules are NOT hermetic. Do not immerse a module in a flux cleaning solution or other liquids under any circumstances.

## LOAD MISMATCH

During final test, each module is load mismatch tested in a fixture having the identical decoupling networks described in Figure 1. Electrical conditions are $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{S} 2}$ $=\mathrm{V}_{\mathrm{S} 3}$ equal to 7.5 Vdc , VSWR equal to $10: 1$, and output power equal to 3 watts.


Figure 15. Photomaster For Test Fixture

## The RF Line

## UHF Power Amplifiers

... capable of wide power range control as encountered in portable cellular radio applications ( 30 dB typical).

- MHW803-1 820-850 MHz
- MHW803-2 806-870 MHz

MHW803 Series

- MHW803-3 870-905 MHz
- Specified 7.5 Volt Characteristics

RF Input Power $=1 \mathrm{~mW}(0 \mathrm{dBm})$
RF Output Power $=2$ Watts
Minimum Gain $\left(V_{\text {Control }}=4 \mathrm{~V}\right)=33 \mathrm{~dB}$
Harmonics $=-45 \mathrm{dBc}$ Max @ $2 \mathrm{f}_{\mathrm{o}}$

- $50 \Omega$ Input/Output Impedance
- Guaranteed Stability and Ruggedness
- Epoxy Glass PCB Construction Gives Consistent Performance and Reliability


## 2 W - 806 to 905 MHz UHF POWER AMPLIFIERS



CASE 301E-04, STYLE 1

MAXIMUM RATINGS (Flange Temperature $=25^{\circ} \mathrm{C}$ )

Rating	Symbol	Value	Unit
DC Supply Voltage (Pins 2,3,4)	$\mathrm{V}_{\mathrm{s} 1,2,3}$	10	Vdc
DC Control Voltage (Pin 1)	$\mathrm{V}_{\text {Cont }}$	4	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	3	mW
RF Output Power $\left(\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=10 \mathrm{~V}\right)$	$\mathrm{P}_{\text {out }}$	3	W
Operating Case Temperature Range	$\mathrm{T}^{\mathrm{C}} \mathrm{C}$	-30 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-30 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=7.5 \mathrm{Vdc}$, (Pins $2,3,4$ ), $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 50 \Omega$ System

Characteristic	Symbol	Min	Max	Unit
Frequency RangeMHW803-1   MHW803-2   MHW803-3	-	$\begin{aligned} & 820 \\ & 806 \\ & 870 \end{aligned}$	$\begin{aligned} & 850 \\ & 870 \\ & 905 \end{aligned}$	MHz
Control Voltage ( $\left.\mathrm{P}_{\text {out }}=2 \mathrm{~W}, \mathrm{P}_{\text {in }}=1 \mathrm{~mW}\right)^{(1)}$	$\mathrm{V}_{\text {Cont }}$	0	4	Vdc
Quiescent Current ( $\mathrm{V}_{\text {s } 1}$. Pin $\left.2=7.5 \mathrm{Vdc}\right)^{(2)}$	$\mathrm{I}_{\text {s1 }}(\mathrm{q})$	-	65	mA
Power Gain ( $\mathrm{P}_{\text {out }}=2 \mathrm{~W}, \mathrm{~V}_{\text {Cont }}=4 \mathrm{Vdc}$ )	$\mathrm{G}_{\mathrm{p}}$	33	-	dB
Efficiency ( $\left.\mathrm{P}_{\text {out }}=2 \mathrm{~W}, \mathrm{P}_{\text {in }}=1 \mathrm{~mW}\right)^{(1)}$	$\eta$	37	-	\%
Harmonics $\left(P_{\text {out }}=2 \mathrm{~W}\right)^{(1)}$ $2 \mathrm{f}_{\mathrm{o}}$   $\left(\mathrm{P}_{\text {in }}=1 \mathrm{~mW}\right)$ $3 \mathrm{f}_{\mathrm{o}}$	-	-	$\begin{aligned} & -45 \\ & -55 \end{aligned}$	dBc
Input VSWR ( $\left.\mathrm{P}_{\text {out }}=2 \mathrm{~W}, \mathrm{P}_{\text {in }}=1 \mathrm{~mW}\right), 50 \Omega$ Ref. (1)	-	-	2.0:1	-
Noise power 30 kHz Bandwidth, 45 MHz , above fo $\begin{aligned} & \left(\mathrm{P}_{\text {out }}=2 \mathrm{~W}\right)^{(1)} \quad \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} \\ & \left(\mathrm{P}_{\text {in }}=1 \mathrm{~mW}\right) \quad \mathrm{T}^{2} \mathrm{C}=+100^{\circ} \mathrm{C} \end{aligned}$	-	-	$\begin{aligned} & -85 \\ & -82 \end{aligned}$	dBm dBm
$\begin{aligned} & \text { Load Mismatch }\left(V_{S 1}=V_{S 2}=V_{S 3}=10 \mathrm{Vdc}\right) \\ & \left.V S W R=10: 1, P_{\text {out }}=3 \mathrm{~W}, P_{\text {in }}=3 \mathrm{~mW}\right)^{(1)} \end{aligned}$		No Degradation in Power Output		
```Stability ( \(\mathrm{P}_{\mathrm{in}}=0.5-2 \mathrm{~mW}, \mathrm{~V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=6-9 \mathrm{Vdc}\) ) Pout between 0 mW and \(2 \mathrm{~W}^{(1)}\) Load VSWR \(=6: 1\), Source VSWR \(=3: 1\) )```		All spurious outputs more than 60 dB below desired signal		

[^12]

Figure 1. Power Module Test System
Block Dlagram

TYPICAL CHARACTERISTICS
(MHW803-1,-2)

Figure 2. Control Voltage, Efficiency and VSWR versus Frequency

Figure 3. Output Power versus Control Voltage

MHW803 Series

TYPICAL CHARACTERISTICS
(MHW803-1,-2)

Figure 4. Output Power versus Frequency

Figure 6. Output Power versus Case Temperature

Figure 5. Control Voltage versus Case Temperature

Figure 7. Output Power versus Case Temperature at Maximum Control Voltage

TYPICAL CHARACTERISTICS
(MHW803-3)

Figure 8. Control Voltage, Efficiency and VSWR versus Frequency

Figure 9. Output Power versus Control Voltage

TYPICAL CHARACTERISTICS (MHW803-3)

Figure 10. Output Power versus Frequency

Figure 12. Output Power versus Case Temperature

Figure 11. Control Voltage versus Case Temperature

Figure 13. Output Power versus Case Temperature at Maximum Control Voltage

APPLICATIONS INFORMATION

NOMINAL OPERATION

All electrical specifications are based on the nominal conditions of $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}=7.5 \mathrm{Vdc}$ (Pins 2, 3, 4) and $P_{\text {out }}$ equal to 2 watts. With these conditions, maximum current density on any device is $1.5 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$ and maximum die temperature with $100^{\circ} \mathrm{C}$ case operating temperature is $165^{\circ} \mathrm{C}$. While the modules are designed to have excess gain margin with ruggedness, operation of these units outside the limits of published specifications is not recommended unless prior communications regarding intended use have been made with the factory representative.

GAIN CONTROL

The module output should be limited to 2 watts. The preferred method of power output control is to fix $\mathrm{V}_{\mathrm{s} 1}$ $=\mathrm{V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{S} 3}=7.5 \mathrm{Vdc}\left(\right.$ Pins 2, 3, 4), $\mathrm{P}_{\text {in }}($ Pin 1) at 1 mW , and vary $\mathrm{V}_{\text {Cont }}$ (Pin 1) voltage.

DECOUPLING

Due to the high gain of the three stages and the module size limitation, external decoupling networks require careful consideration. Pins 2, 3 and 4 are internally bypassed with a $0.018 \mu \mathrm{~F}$ chip capacitor which is effective for frequencies from 5 MHz through 905 MHz . For bypassing frequencies below 5 MHz , networks equivalent to that shown in Figure 1 are recommended. Inadequate decoupling will result in spurious outputs at certain operating frequencies and certain phase angles of input and output VSWR.

Figure 14. Test Fixture Assembly

LOAD MISMATCH

During final test, each module is load mismatch tested in a fixture having the identical decoupling networks described in Figure 1. Electrical conditions are $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}$ $=\mathrm{V}_{\mathrm{s} 3}$ equal to 10 Vdc , VSWR equal to $10: 1$, and output power equal to 3 watts.

NOTE: The Printed Circuit Board shown is 75% of the original.
Figure 15. Photomaster For Test Fixture

MOTOROLA

SEMICONDUCTOR

 TECHNICAL DATA
The RF Line

UHF Power Amplifiers

MHW806A SERIES

... designed for 12.5 Volt UHF power amplifier applications in industrial and commercial FM equipment operating from 806 to 950 MHz .

- MHW806A1 $820-850 \mathrm{MHz}$

MHW806A2 $\quad 806-870 \mathrm{MHz}$
MHW806A3 $890-915 \mathrm{MHz}$
MHW806A4 $870-950 \mathrm{MHz}$

- Specified 12.5 Volt, UHF Characteristics

$$
\begin{aligned}
\text { Output Power } & =6 \mathrm{Watts} \\
\text { Minimum Gain } & =23 \mathrm{~dB}(\text { MHW806A1,2 }) \\
& =21.7 \mathrm{~dB}(\text { MHW806A3,4) } \\
& =-42 \mathrm{dBc} \operatorname{Max}\left(2 \mathrm{f}_{\mathrm{O}}\right) \\
& =-60 \mathrm{dBc} \operatorname{Max}\left(3 f_{\mathrm{O}} \text { and Higher }\right)
\end{aligned}
$$

- 50Ω Input/Output Impedances
- Guaranteed Stability and Ruggedness
- Features Three Common-Emitter Gain Stages
- Epoxy Glass PCB Construction Gives Consistent Performance and Reliability
- Gold-Metallized and Silicon Nitride-Passivated Transistor Chips
- Controllable, Stable Performance Over More Than 35 dB Range in Output Power

HIGH GAIN RF POWER AMPLIFIERS 6 WATTS $806-950 \mathrm{MHz}$

CASE 301H-03, STYLE 2

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltages	$\mathrm{V}_{\text {S } 1}$	16	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	80	mW
RF Output Power	$\mathrm{P}_{\text {out }}$	7.5	W
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-30 to +100	${ }^{\circ} \mathrm{C}$
Operating Case Temperature Range	T_{C}	-30 to +100	${ }^{\circ} \mathrm{C}$
DC Control Voltage	$\mathrm{V}_{\text {Cont }}$	12.5	Vdc

ELECTRICAL CHARACTERISTICS (Flange Temperature $=25^{\circ} \mathrm{C}, 50 \Omega$ system, and $\mathrm{V}_{\mathrm{S} 1}=12.5 \mathrm{~V}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	$\begin{aligned} & \text { Unit } \\ & \hline \mathrm{MHz} \end{aligned}$
Frequency Range	BW	820	-	850	
		806	-	870	
		890	-	915	
		870	-	950	
Power Gain MHW806A1,2	G_{p}	23	24	-	dB
$\left(\mathrm{V}_{\text {Cont }}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=6 \mathrm{~W}\right) \quad$ MHW806A3,4					
$\begin{aligned} & \text { Efficiency (} 1 \text {) } \\ & \left(\text { Pout }^{2}=6 \mathrm{~W}\right) \end{aligned}$	η	30	35	-	\%
Harmonic Output (1) $2 \mathrm{f}_{0}$	-	-	-	-42	dBc
(Pout $=6 \mathrm{~W}$ Reference) $\quad 3 \mathrm{f}_{\mathrm{o}}$ and Higher		-	-	-60	
Input VSWR (1) (Pout $=6 \mathrm{~W}, 50 \Omega$ Reference, Reflected Signal Filtered to Eliminate Harmonic Content)	-	-	-	2:1	-

(1) $\mathrm{P}_{\mathrm{in}}=30 \mathrm{~mW}\left(\right.$ MHW806A1,2) or $\mathrm{P}_{\text {in }}=40 \mathrm{~mW}($ MHW806A3,4 $)$, adjust $\mathrm{V}_{\text {Cont }}$ for specified $\mathrm{P}_{\text {out }}$.
(continued)

MHW806A Series

ELECTRICAL CHARACTERISTICS - continued
(Flange Temperature $=25^{\circ} \mathrm{C}, 50 \Omega$ system, and $\mathrm{V}_{\mathbf{s} 1}=12.5 \mathrm{~V}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Power Degradation }\left(-30 \text { to }+80^{\circ} \mathrm{C}\right)(1) \\ & \text { (Reference } \left.P_{\text {out }}=6 \mathrm{~W} @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	-	-	-	1.7	dB
```Load Mismatch Stress (1) ( }\mp@subsup{V}{\mathbf{s1}}{}=16\textrm{Vdc},\mp@subsup{P}{\mathrm{ out }}{}=7.5\textrm{W},\textrm{VSWR}=30:1 ail phase angles)```	-	No degradation in Power Output			
Stability ( $\mathrm{P}_{\mathrm{in}}=0$ to 30 mW , [MHW806A1,2] or 0 to 40 mW [MHW806A3,4], $\mathrm{V}_{\mathbf{s} 1}=10$ to $16 \mathrm{Vdc}, \mathrm{V}_{\text {Cont }}=0$ to 12.5 Vdc , Load VSWR $=4: 1$, Pout Max $=7.5 \mathrm{~W}$ ) (2)		All spurious outputs $\geqslant 70 \mathrm{~dB}$ below desired output signal level			
Quiescent Current @ $\mathrm{V}_{\text {s1 }}=12.5 \mathrm{~V}, \mathrm{~V}_{\text {Cont }}=0 \mathrm{~V}$ (ICont with no RF drive applied)	$1 \mathrm{~s} 1(\mathrm{q})$	-	-	1	mA
	$V_{\text {Cont }}$	0	9	12.5	Vdc
Control Current $\quad P_{\text {out }}=6 \mathrm{~W} \quad V_{\text {Cont }}=12.5 \mathrm{~V}$	ICont	0	155	225	mA

(1) $P_{\text {in }}=30 \mathrm{~mW}$ (MHWB06A1,2) or $P_{\text {in }}=40 \mathrm{~mW}$ (MHWB06A3,4) adjust $V_{\text {Cont }}$ for specified $P_{\text {out }}$.
(2) Combination of $P_{i n}, V_{s 1}$, and $V_{C o n t}$ can not exceed max $P_{\text {out }}=7.5 \mathrm{~W}$.

*Module input power is forward power as sampled by the directional coupler and resd on the input power meter.

Figure 1. UHF Power Amplifier Test System Diagram

MHW806A1, A2


Figure 2. Output Power versus Input Power


Figure 4. Output Power versus Case Temperature


Figure 6. Gain Control Voltage, Input VSWR, Efficiency versus Frequency


Figure 3. Output Power versus Gain Control Voltage


Figure 5. Output Power versus Frequency


Figure 7. Gain Control Voltage versus Case Temperature


Figure 8. Output Power versus Input Power


Figure 10. Output Power versus Case Temperature


Figure 9. Output Power versus Gain Control Voltage


Figure 11. Output Power versus Frequency

Figure 12. Gain Control Voltage, Input VSWR, Efficiency versus Frequency



Figure 13. Gain Control Voltage versus Case Temperature

## APPLICATIONS INFORMATION

## Nominal Operation

All electrical specifications are based on the following nominal conditions: ( $\left.\mathrm{P}_{\text {out }}=6 \mathrm{~W}, \mathrm{~V}_{\mathrm{S} 1}=12.5 \mathrm{Vdc}\right)$. This module is designed to have excess gain margin with ruggedness, but operation outside the limits of the published specifications is not recommended unless prior communications regarding the intended use have been made with a factory representative.

## Gain Control

In general, the module output power should be limited to 7.5 watts. The preferred method of power output control is to fix $\mathrm{V}_{\mathrm{S} 1}$ at 12.5 volts, set RF drive level and vary the control voltage from 0 to 12.5 Volts. As designed, the module exhibits a gain control range greater than 35 dB using the method described above.

## Top View



Cross Section View


Bring capacitor leads through fiberglass board and solder to $\mathrm{V}_{\mathrm{s} 1}$ and $\mathrm{V}_{\text {Cont }}$ lines as close to module as possible.


Figure 14. Test Fixture Assembly

## Decoupling

Due to the high gain of each of the three stages and the module size limitation, external decoupling networks require careful consideration. Both Pins 2 and 3 are internally bypassed with a $0.018 \mu \mathrm{~F}$ chip capacitor which is effective for frequencies from 5 MHz through 960 MHz . For bypassing frequencies below 5 MHz , networks equivalent to that shown in the test fixture schematic are recommended. Inadequate decoupling will result in spurious outputs at specific operating frequencies and phase angles of input and output VSWR.

## Load Mismatch Stress

During final test, each module is load mismatch stress tested in a fixture having the identical decoupling network described in Figure 1. Electrical conditions are $\mathrm{V}_{\mathrm{s} 1}$ equal to 16 volts, load VSWR 30:1 and output power equal to 7.5 watts.

## Mounting Considerations

To insure optimum heat transfer from the flange to heatsink, use standard 6-32 mounting screws and an adequate quantity of silicone thermal compound (e.g., Dow Corning 340). With both mounting screws finger tight, alternately torque down the screws to 4-6 inch pounds. The heatsink mounting surface directly beneath the module flange should be flat to within 0.0015 inch. For more information on module mounting, see EB-107.

Figure 15. Test Fixture Construction

## The RF Line UHF Power Amplifiers

... designed specifically for mobile cellular radio applications. The MHW807 Series amplifiers are capable of wide power range control, operate from a 12 volt supply and require only 1.0 mW of RF input power.

- MHW807-1 820 to 850 MHz MHW807-2 870 to 905 MHz
- Specified 12.5 Volt Characteristics:

RF Input Power - $1.0 \mathrm{~mW}(0 \mathrm{dBm})$
RF Output Power - 6.0 W
Minimum Gain - 37.8 dB
Harmonics - -25 dBc Max (a $2.0 \mathrm{f}_{\mathrm{o}}$
-45 dBc Max (at $3.0 \mathrm{f}_{\mathrm{O}}$

- 50 Ohm Input/Output Impedances
- Guaranteed Stability and Ruggedness
- Controllable, Stable Performance Over More Than 35 dB Range in Output Power
- Gold-Metallized and Silicon Nitride-Passivated Transistor Chips


## MHW807 Series

```
6.0 W - 820 to 905 MHz
 HIGH GAIN
RF POWER AMPLIFIERS
```



CASE 301L-02, STYLE 2

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltages	$\begin{aligned} & V_{s 1} \\ & V_{s 3} \end{aligned}$	$\begin{aligned} & 9.0 \\ & 16 \end{aligned}$	Vdc
RF Input Power	$P_{\text {in }}$	3.0	mW
RF Output Power	$P_{\text {out }}$	7.5	W
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-30 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-30 to +100	${ }^{\circ} \mathrm{C}$
DC Control Voltage	$\mathrm{V}_{\text {Cont }}$	9.0	Vdc

ELECTRICAL CHARACTERISTICS $\left({ }^{( } \mathrm{C}=+25^{\circ} \mathrm{C}, 50\right.$ ohm system, unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range $\begin{aligned} & \text { MHW807-1 } \\ & \text { MHW807-2 }\end{aligned}$	BW	$\begin{aligned} & 820 \\ & 870 \end{aligned}$	-	$\begin{aligned} & 850 \\ & 905 \end{aligned}$	MHz
Power Gain (1) ( $\left.\mathrm{V}_{\mathrm{s} 1}=8.0 \mathrm{Vdc} ; \mathrm{V}_{\mathrm{S} 3}=12.5 \mathrm{Vdc}\right)$	$\mathrm{G}_{\mathrm{p}}$	37.8	38.5	-	dB
Efficiency (1) $\left(\mathrm{V}_{\mathrm{S} 1}=8.0 \mathrm{Vdc} ; \mathrm{V}_{\mathrm{S} 3}=12.5 \mathrm{Vdc} ; \mathrm{P}_{\text {out }}=6.0 \mathrm{~W}\right)$	$\eta$	35	38	-	\%
$\begin{array}{ll} \text { Harmonic Output (1) (Pout }=6.0 \mathrm{~W} \text { Reference) } & 2.0 \mathrm{f}_{\mathrm{O}} \\ & 3.0 \mathrm{f}_{\mathrm{O}} \end{array}$	-	-	-	$\begin{aligned} & -25 \\ & -45 \end{aligned}$	dBc
Input VSWR (1) ( $\mathrm{P}_{\text {out }}=6.0 \mathrm{~W}$, Harmonics Filtered From $\left.\mathrm{P}_{\text {ref }}\right)$	$V^{\prime} W_{\text {in }}$	-	-	2.5:1	-
Power Slump at Decreased Voltage (1) ( $\mathrm{T}_{\mathrm{C}}=80^{\circ} \mathrm{C}$ ) $\left(\mathrm{V}_{\mathrm{s} 1}=8.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{s} 3}=10 \mathrm{Vdc}, \mathrm{V}_{\text {Cont }}=0\right.$ to 9.0 Vdc$)$	-	3.0	-	-	W
Load Mismatch Stress (1) ( $\left.\mathrm{V}_{\mathrm{S} 1}=8.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{S} 3}=16 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=7.0 \mathrm{~W}\right)$	$\psi$	No Degradation in Output Power			
Stability (2) $\left(\mathrm{V}_{\mathrm{S} 1}=8.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{S} 3}=10\right.$ to $16 \mathrm{Vdc} ; \mathrm{P}_{\mathrm{in}}=0.5$ to 2.0 mW ; $P_{\text {out }}(\mathrm{Max})=7.5 \mathrm{~W}$; Load VSWR $=4: 1$, All Phase Angles	-	All spurious outputs more than 60 dB below desired signal			
Quiescent Current ( $I_{\mathrm{s} 3}$ With No Drive Applied) $\left(\mathrm{V}_{\mathrm{S} 3}=12.5 \mathrm{Vdc} ; \mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\text {Cont }}=0 \mathrm{Vdc}\right)$	$\mathrm{I}_{\mathrm{s} 3}$	-	-	1.0	mA
Control Voltage Slope $\left(\mathrm{V}_{\mathrm{S} 1}=8.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{s} 3}=12.5 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{Cont}}=0 \text { to } 9.0 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}=1.0 \mathrm{~mW}\right)$	-	-	-	5.0	$\mathrm{mV} / \mathrm{dB}$

(1) $P_{\text {in }}=1.0 \mathrm{~mW}$. Adjust $V_{\text {Cont }}$ for specified $P_{\text {out }}$ -
(2) Combination of $\mathrm{P}_{\text {in }}, \mathrm{V}_{\mathrm{S} 1}$ and $\mathrm{V}_{\text {Cont }}$ cannot exceed max $\mathrm{P}_{\text {out }}=7.5 \mathrm{~W}$.


Figure 1. UHF Power Module Test System Diagram

## TYPICAL CHARACTERISTICS

(MHW807-1)


Figure 2. Output Power versus Input Power


Figure 4. Output Power versus Case Temperature


Figure 6. Output Power versus Frequency


Figure 3. Gain Control Voltage versus Case Temperature


Figure 5. Gain Control Voltage, Input VSWR, Efficiency versus Frequency


Figure 7. Output Power versus Gain Control Voltage


Figure 8. Output Power versus Input Power


Figure 10. Output Power versus Case Temperature


Figure 12. Output Power versus Frequency


Figure 9. Gain Control Voltage versus Case Temperature


Figure 11. Gain Control Voltage, Input VSWR, Efficiency versus Frequency

Figure 13. Output Power versus Gain Control Voltage

## APPLICATIONS INFORMATION

## NOMINAL OPERATION

All electrical specifications are based on the following nominal conditions: ( $\mathrm{P}_{\text {out }}=6.0 \mathrm{~W}, \mathrm{~V}_{\mathrm{S} 1}=8.0 \mathrm{Vdc}$, $V_{\text {Cont }}=0-9.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{S} 3}=12.5 \mathrm{Vdc}, \mathrm{T}^{\mathrm{C}}=25^{\circ} \mathrm{C}$ ). This module is designed to have excess gain margin with ruggedness, but operation outside the limits of the published specifications is not recommended unless prior communications regarding the intended use have been made with a factory representative.

## GAIN CONTROL

In general, the module output power should be limited to 7.5 watts. The preferred method of power output control is to fix $\mathrm{V}_{\mathrm{S} 3}$ at $12.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{S}}$ at 8.0 Vdc , set RF drive level to 0 dBm and vary the control voltage from 0 to 9.0 Volts. As designed, the module exhibits a gain control range greater than 35 dB using the method described above.

## DECOUPLING

Due to the high gain of each of the five stages and the module size limitation, external decoupling networks require careful consideration. Pins 2,3 and 4 are internally bypassed with a $0.018 \mu \mathrm{~F}$ chip capacitor which is effective for frequencies from 5.0 MHz through 960 MHz . For bypassing frequencies below 5.0 MHz , networks equivalent to that shown in the test fixture schematic are recommended. Inadequate decoupling will result in spurious outputs at specific operating frequencies and phase angles of input and output VSWR.

## LOAD MISMATCH STRESS

During final test, each module is load mismatch stress tested in a fixture having the identical decoupling networks described in Figure 1. Electrical conditions are $\mathrm{V}_{\mathrm{S} 3}=16$ volts, $\mathrm{V}_{\mathrm{S} 1}=8.0$ volts, output power equal to 7.0 watts, load VSWR greater than 30:1.


Figure 14. Test Fixture Assembly

## MOUNTING CONSIDERATIONS

To insure optimum heat transfer from the flange to heatsink, use standard $4-40$ mounting screws and an adequate quantity of silicone thermal compound (e.g., Dow Corning 340). With both mounting screws finger tight, alternately torque down the screws to $4-6$ inch pounds. The heatsink mounting surface directly beneath the module flange should be flat to within 0.0015 inch. For more information on module mounting, see EB107/D.


Figure 15. Photomaster For Test Fixture

The RF Line

## UHF Power Amplifier

... designed for 13 Volt UHF power amplifier applications in industrial and commercial FM equipment operating from 890 to 915 MHz .

- Specified 13 Volt, UHF Characteristics

Output Power $=12$ Watts
Minimum Gain $=20.8 \mathrm{~dB}$
Harmonics $\quad=-42 \mathrm{dBc} \operatorname{Max}\left(2 \mathrm{f}_{\mathrm{o}}\right)$
-60 dBc Max ( $3 \mathrm{f}_{\mathrm{o}}$ and Higher)

- $50 \Omega$ Input/Output Impedances
- Guaranteed Stability and Ruggedness
- Features Three Common-Emitter Gain Stages
- Epoxy Glass PCB Construction Gives Consistent Performance and Reliability
- Gold-Metallized and Silicon Nitride-Passivated Transistor Chips
- Controllable, Stable Performance Over More Than 35 dB Range in Output Power

MHW812A3

AMPLIFIERS
12 WATTS
$890-915 \mathrm{MHz}$

CASE 301H-03, STYLE 2

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltages	$\mathrm{V}_{\text {s1 }}$	16	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	200	mW
RF Output Power	$\mathrm{P}_{\text {out }}$	15	W
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	${ }^{\circ} \mathrm{C}$	
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-30 to +100	${ }^{\circ} \mathrm{C}$
DC Control Voltage	$\mathrm{V}_{\text {Cont }}$	-30 to +100	Vdc

ELECTRICAL CHARACTERISTICS (Flange Temperature $=25^{\circ} \mathrm{C}, 50 \Omega$ system, and $\mathrm{V}_{\mathrm{s} 1}=13 \mathrm{~V}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	870	-	950	MHz
Power Gain $\left(\mathrm{V}_{\text {Cont }}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=12 \mathrm{~W}\right)$	$\mathrm{G}_{\mathrm{p}}$	20.8	21.5	-	dB
$\begin{aligned} & \text { Efficiency (1) } \\ & \quad\left(P_{\text {out }}=12 \mathrm{~W}\right) \end{aligned}$	$\eta$	40	45	-	\%
Harmonic Output (1) $2 f_{\mathrm{o}}$   $\left(\mathrm{P}_{\text {out }}=12 \mathrm{~W}\right.$ Reference $)$ $3 \mathrm{f}_{\mathrm{o}}$ and Higher	-	-	-	$\begin{aligned} & -42 \\ & -60 \end{aligned}$	dBc
Input VSWR (1)   (Pout $=12 \mathrm{~W}, 50 \Omega$ Reference, Reflected Signal Filtered to Eliminate Harmonic Content)	-	-	-	2:1	-

[^13](continued)

## MHW812A3

ELECTRICAL CHARACTERISTICS - continued
(Flange Temperature $=25^{\circ} \mathrm{C}, 50 \Omega$ system, and $\mathrm{V}_{\mathbf{S} 1}=13 \mathrm{~V}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Power Degradation }\left(-30 \text { to }+80^{\circ} \mathrm{C}\right)(1) \\ & \text { (Reference } \left.P_{\text {out }}=12 \mathrm{~W} @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	-	-	-	1.7	dB
```Load Mismatch Stress (1) (V) all phase angles)```	-	No degradation in Power Output			
Stability ($P_{\text {in }}=0$ to $200 \mathrm{~mW}, \mathrm{~V}_{\mathrm{s} 1}=10$ to 16 Vdc . $V_{\text {Cont }}=0$ to 12.5 Vdc, Load VSWR $=4: 1$. $P_{\text {out }}$ Max $=13$ W) (2)		All spurious outputs $\geqslant 70 \mathrm{~dB}$ below desired output signal level			
Quiescent Current @ $\mathrm{V}_{\text {Cont }}=12.5 \mathrm{~V}$ (ICont with no RF drive applied)	ICont	-	-	225	mA
Control Voltage $P_{\text {in }}=100 \mathrm{~mW}$	$V_{\text {Cont }}$	0	9	12.5	Vdc
Control Current $\quad P_{\text {out }}=12 \mathrm{~W} \mathrm{~V}_{\text {Cont }}=12.5 \mathrm{~V}$	ICont	0	155	225	mA

(1) $P_{\text {in }}=100 \mathrm{~mW}$; adjust $V_{\text {Cont }}$ for specified $P_{\text {out. }}$
(2) Combination of $P_{i n}, V_{s 1}$, and $V_{\text {Cont }}$ can not exceed max $P_{\text {out }}=15 \mathrm{~W}$.

Figure 1. UHF Power Amplifier Test System Diagram

TYPICAL CHARACTERISTICS

Figure 2. Control Voltage, Efficiency and VSWR versus Frequency

Figure 4. Output Power versus Control Voitage

Figure 6. Control Voltage versus Case Temperature

Figure 3. Output Power versus Input Power

Figure 5. Output Power versus Frequency

Figure 7. Output Power versus Case Temperature

APPLICATIONS INFORMATION

Nominal Operation

All electrical specifications are based on the following nominal conditions: ($\left.P_{\text {out }}=12 \mathrm{~W}, \mathrm{~V}_{\mathrm{s} 1}=13 \mathrm{Vdc}\right)$. This module is designed to have excess gain margin with ruggedness, but operation outside the limits of the published specifications is not recommended unless prior communications regarding the intended use have been made with a factory representative.

Gain Control

In general, the module output power should be limited to 13 watts. The preferred method of power output control is to fix $\mathrm{V}_{\mathrm{s} 1}$ at 13 volts, set RF drive level and vary the control voltage from 0 to 12.5 Volts. As designed, the module exhibits a gain control range greater than 35 dB using the method described above.

Cross Section View
$0.0625^{\prime \prime}$ THICK

Bring capacitor leads through fiberglass board and solder to $\mathrm{V}_{\mathrm{s} 1}$ and $\mathrm{V}_{\text {Cont }}$ lines as close to module as possible.

Figure 8. Test Fixture Assembly

Decoupling

Due to the high gain of each of the three stages and the module size limitation, external decoupling networks require careful consideration. Both Pins 2 and 3 are internally bypassed with a $0.018 \mu \mathrm{~F}$ chip capacitor which is effective for frequencies from 5 MHz through 960 MHz . For bypassing frequencies below 5 MHz , networks equivalent to that shown in the test fixture schematic are recommended. Inadequate decoupling will result in spurious outputs at specific operating frequencies and phase angles of input and output VSWR.

Load Mismatch Stress

During final test, each module is load mismatch stress tested in a fixture having the identical decoupling network described in Figure 1. Electrical conditions are $\mathrm{V}_{\mathrm{s} 1}$ equal to 16 volts, load VSWR $30: 1$ and output power equal to 13 watts.

Mounting Considerations

To insure optimum heat transfer from the flange to heatsink, use standard 6-32 mounting screws and an adequate quantity of silicone thermal compound (e.g., Dow Corning 340). With both mounting screws finger tight, alternately torque down the screws to $4-6$ inch pounds. The heatsink mounting surface directly beneath the module flange should be flat to within 0.0015 inch. For more information on module mounting, see EB-107.

Figure 9. Test Fixture Construction

The RF Line

UHF POWER AMPLIFIERS

...designed for 12.5 volt UHF power amplifier applications in industrial and commercial FM equipment operating from 806 to 950 MHz .
$\begin{array}{ll}\text { - MHW820-1 } & 806-870 \mathrm{MHz} \\ \text { MHW820-2 } & 806-890 \mathrm{MHz} \\ \text { MHW820-3 } & 870-950 \mathrm{MHz}\end{array}$

- Specified 12.5 Volt, UHF Characteristics

Output Power $=20$ Watts (MHW820-1,2)
$=18$ Watts (MHW820-3)
Minimum Gain $=19 \mathrm{~dB}($ MHW820-1,2)
$=17.1 \mathrm{~dB}$ (MHW820-3)
Harmonics $=-58 \mathrm{dBc}$ Max

- 50Ω Input/Output Impedances
- Guaranteed Stability and Ruggedness
- Features Three Common-Emitter Gain Stages
- Thin-Film Hybrid Construction Gives Consistent Performance and Reliability
- Gold-Metallized and Silicon Nitride-Passivated Transistor Chips
- Controllable, Stable Performance Over More Than 30 dB Range in Output Power

18/20 W - 806-950 MHz
RF POWER AMPLIFIERS

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION F TO CENTER OF LEADS.

DIM	MILIMETERS		INCHES	
	MIN	MAX	M	MAX
A	55.63	56.13	2.190	2210
B	35.44	35.94	1.395	1.415
C	8.89	9.55	0.350	0.376
0	0.46	0.55	0.018	0.022
E	305	3.42	0.120	0.135
F	4.06 BSC		0.160 BSC	
G	48.26 BSC		1.900 BSC	
H	40.64 BSC		1.600 BSC	
J	8.77	9.77	0.345	0.385
K	5.72	-	0.225	-
L	35.56 BSC		1.400 BSC	
N	38.10 BSC		1.500 BSC	
P	0.21	0.30	0008	0.012
0	3.81	405	0.150	0.160
R	17.53	19.55	0.690	0.770
S	15.12	15.49	0.595	0.610
V	17.78 BSC		0.700 BSC	
X	12.70 BSC		0.500 BSC	

CASE 301G-03

MHW820-1, MHW820-2, MHW820-3

ELECTRICAL CHARACTERISTICS (Flange Temperature $=25^{\circ} \mathrm{C}, 50 \Omega$ system, and $\mathrm{V}_{\mathbf{8} 1}=\mathrm{V}_{\mathrm{s} 2}=12.5 \mathrm{~V}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{array}{ll}\text { Frequency Range } & \text { MHW820-1 } \\ \\ \text { MHW820-2 } \\ \\ \text { MHW820-3 }\end{array}$	BW	$\begin{aligned} & 806 \\ & 806 \\ & 870 \end{aligned}$	二	$\begin{aligned} & \hline 870 \\ & 850 \\ & 950 \\ & \hline \end{aligned}$	MHz
Input Power $\left(P_{\text {out }}=20 \mathrm{~W}\right)$ MHW820-1, 2 $($ Pout $=18 \mathrm{~W})$ MHW820.3	Pin		$\begin{aligned} & 200 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & 250 \\ & 350 \\ & \hline \end{aligned}$	mW
Power Gain (Pout $=20 \mathrm{~W})$ $\left(P_{\text {out }}\right.$ $=18 \mathrm{~W})$	G_{p}	$\begin{gathered} 19 \\ 17.1 \end{gathered}$	$\begin{gathered} 20 \\ 17.8 \\ \hline \end{gathered}$	-	dB
Efficiency $\left(P_{\text {out }}=20 \mathrm{~W}\right)$ MHW820-1, 2 $\left(P_{\text {out }}=18 \mathrm{~W}\right)$ MHW820-3	η	$\begin{aligned} & 28 \\ & 26 \\ & \hline \end{aligned}$	$\begin{aligned} & 32 \\ & 30 \\ & \hline \end{aligned}$	-	\%
$\begin{gathered} \text { Harmonic Output } \\ \left(\text { Pout }_{\text {Reference }}=\text { Rated } P_{\text {out }}\right) \\ \hline \end{gathered}$	-	-	-	-58	dBc
Input VSWR (Pout $=$ Rated $P_{\text {out }}, 50 \Omega$ Reference)	-	-	-	2:1	-
$\begin{aligned} & \text { Power Degradation (}-30 \text { to }+80^{\circ} \mathrm{C} \text {) } \\ & \text { (Reference } \mathrm{P}_{\text {out }}=\text { Rated } \mathrm{P}_{\text {out }} @ \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C} \text {) } \end{aligned}$	-	-	1.2	1.7	dB
Load Mismatch Stress $\begin{aligned} & \left(V_{s 1}=V_{s 2}=V_{s 3}=16 \mathrm{Vdc}, P_{\text {out }}=25 \mathrm{~W}, \mathrm{VSWR}=30: 1,\right. \\ & \text { all phase angles) } \end{aligned}$	-	No degradation in Power Output			
Stability ($\mathrm{P}_{\text {in }}=\mathbf{0}$ to 250 mW , (MHW820-1, 2] or 350 mW [MHW820-3] consistent with max, $\mathrm{P}_{\text {out }}=25 \mathrm{~W}, \mathrm{~V}_{\mathbf{s} 1}=$ $\mathrm{V}_{\mathbf{3 2}}=\mathrm{V}_{\mathbf{3} 3}=10$ to 16 Vdc , Load VSWR $=4: 1$)	All non-harmonic related spurious outputs $\geqslant 70 \mathrm{~dB}$ below the desired output signal level				
Quiescent Current (I_{81} with no RF drive applied)	$1 \mathbf{1} 1$ (q)	-	-	125	mA

FIGURE 1 - 806-950 MHz TEST SYSTEM DIAGRAM

TYPICAL PERFORMANCE CURVES
(MHW820-1, 2)

FIGURE 4 - OUTPUT POWER versus SUPPLY VOLTAGE

FIGURE 6 - OUTPUT POWER versus SUPPLY VOLTAGE TO FIRST STAGE ($\mathbf{V}_{\mathbf{s} 1)}$

FIGURE 3 - OUTPUT POWER varsus INPUT POWER

FIGURE 5 - EFFICIENCY versus SUPPLY VOLTAGE

FIGURE 7 - INPUT POWER versus CASE TEMPERATURE

FIGURE 10 - OUTPUT POWER versus SUPPLY VOLTAGE

FIGURE 9 - OUTPUT POWER versus INPUT POWER

FIGURE 11 - EFFICIENCY versus SUPPLY VOLTAGE

MHW820-1, MHW820-2, MHW820-3

APPLICATIONS INFORMATION

Nominal Operation

All electrical specifications are based on the following nominal conditions: ($\mathrm{P}_{\text {out }}=$ Rated, $\mathrm{V}_{\mathrm{s} 1}=\mathrm{V}_{\mathrm{s} 2}=\mathrm{V}_{\mathrm{s} 3}$ $=12.5 \mathrm{Vdc})$. This module is designed to have excess gain margin with ruggedness, but operation outside the limits of the published specifications is not recommended unless prior communications regarding the intended use has been made with a factory representative.

Gain Control

This module is designed for wide range $P_{\text {out }}$ level control. The recommended method of power output control, as shown in Figure 3 and 9 , is to fix $\mathrm{V}_{\mathrm{s} 1}, \mathrm{~V}_{\mathrm{s} 2}$ and $\mathrm{V}_{\mathrm{s} 3}$ at 12.5 Vdc and vary the input RF drive level at Pin 1.
A second method of output control is to adjust the supply voltage $\left(\mathrm{V}_{\mathrm{S} 1}\right.$ independently or $\mathrm{V}_{\mathrm{S} 1}, \mathrm{~V}_{\mathrm{s} 2}$, and $\mathrm{V}_{\mathrm{s} 3}$ simultaneously). However, if any of these voltages fall out of the range from 10 to 16 volts module stability cannot be guaranteed. Typical ranges of power output control using this method are shown in Figures 4, 6, and 10.
In all applications, the module output power should be limited to 25 watts.

FIGURE 12 - TEST FIXTURE ASSEMBLY

Decoupling

Due to the high gain of each of the two stages and the module size limitation, external decoupling networks require careful consideration. Pins 2,3 and 4 are internally bypassed with $0.018 \mu \mathrm{~F}$ chip capacitors which are effective for frequencies from 5 MHz through 950 MHz . For bypassing frequencies below 5 MHz , networks equivalent to that shown in the test fixture schematic are recommended. Inadequate decoupling will result in spurious
outputs at specific operating frequencies and phase angles of input and output VSWR.

FIGURE 13 - TEST FIXTURE CONSTRUCTION

C1, C2, C4, C5, C7, C8
Bring capacitor leads through fiberglass board and solder to $\mathrm{V}_{\mathrm{s} 1}$. $\mathrm{V}_{\mathrm{S} 2}$, and $\mathrm{V}_{\mathrm{S} 3}$ lines as close to module as possible.
To insure optimum heat transfer from flange to heatsink, use standard 6-32 mounting screws and an adequate quantity of silicon thermal compound (e.g., Dow Corning 340). With both mounting screws finger tight, alternately torque down the screws to 4-6 inch pounds.

Load Pull

During final test, each module is "load pull" tested in a fixture having the identical decoupling network described in Figure 1. Electrical conditions are $\mathrm{V}_{\mathrm{S} 1}, \mathrm{~V}_{\mathrm{S} 2}$ and $\mathrm{V}_{\mathrm{S} 3}$ equal to 16 volts output, VSWR $30: 1$ and output power equal to 25 watts.

Mounting Considerations

To insure optimum heat transfer from the flange to heatsink, use standard 6-32 mounting screws and an adequate quantity of silicon thermal compound (e.g., Dow Corning 340). With both mounting screws finger tight, alternately torque down the screws to 4-6 inch pounds. The heatsink mounting surface directly beneath the module flange should be flat to within 0.002 inch to prevent fracturing of ceramic substrate material. For more information on module mounting, see EB-107.

The RF Line

LOW DISTORTION WIDEBAND AMPLIFIERS

... designed specifically for broadband applications requiring low distortion characteristics. Specified for use as return amplifiers for mid-split and high-split 2-way cable TV systems. Features all gold metallization system.

- Guaranteed Broadband Power Gain @ $f=5.0-200 \mathrm{MHz}$
- Guaranteed Broadband Noise Figure @ $f=5.0-175 \mathrm{MHz}$
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- All Ion-Implanted Arsenic Emitter Transistor Chips with 7.0 GHz ${ }^{\prime} \mathrm{f}^{\prime}$'s
- Circuit Design Optimized for Good RF Stability Under High VSWR Load Conditions
- Transformers Designed to Insure Good Low Frequency Gain Stability versus Temperature

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+65	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T^{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\operatorname{V} \mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega$ system)

Characteristic	Symbol	MHW1134	MHW1184	MHW1224	MHW1244	Units
Power Gain @ 10 MHz	Gp	13.0 ± 0.5	18.5 ± 0.5	22.0 ± 0.5	24.0 ± 0.5	dB
Frequency Range (Response/Return Loss) Note 1	BW	5.0-200				MHz
Cable Slope Equivalent ($5.0-200 \mathrm{MHz}$)	S	-0.2 Min/+ 0.8 Max				dB
Gain Flatness ($5.0-200 \mathrm{MHz}$)	F	± 0.2 Max				dB
InpuvOutput Return Loss (5.0-200 MHz) Note 1	IRLORL	18.0 Min				dB
Cross Modulation Distortion @ +50 dBmV per ch. 12-Channel FLAT (5.0-120 MHz) 22-Channel FLAT ($5.0-175 \mathrm{MHz}$) Notes 2 and 3 26-Channe! FLAT (5.0-200 MHz)	XM_{12} XM 22 XM26	$\begin{aligned} & -70 \mathrm{Typ} \\ & -65 \mathrm{Max} \\ & -65 \mathrm{Typ} \end{aligned}$	-68 Typ -64 Max -64 Тур	-67 Typ - 62 Max -62 Тур	-66 Typ -61 Max -61 Typ	$\begin{aligned} & d B \\ & d B \\ & d B \end{aligned}$
Composite Triple Beat Distortion @ +50 dBmV per ch. 22-Channel FLAT ($5.0-175 \mathrm{MHz}$) 26-Channel FLAT ($5.0-200 \mathrm{MHz}$) Notes 2 and 3	$\begin{aligned} & \mathrm{CTB}_{22} \\ & \mathrm{CTB}_{26} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { - } 73 \text { Max } \\ & -71 \text { Typ } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { - } 72 \mathrm{Max} \\ & -70 \text { Typ } \\ & \hline \end{aligned}$	$\begin{array}{r} -71 \text { Max } \\ -68.5 \text { Typ } \\ \hline \end{array}$	$\begin{aligned} & \text {-70 Max } \\ & -67.5 \mathrm{Typ} \\ & \hline \end{aligned}$	$\begin{gathered} d B \\ d B \end{gathered}$
Individual Triple Beat Distortion @ +50 dBmV per ch. Mid-Split (5.0-120 MHz) T11, T12 and CH2 @ $123.25 \mathrm{MHz}^{2}$ High-Split ($5.0-175 \mathrm{MHz}$) T13, CH2 and CH5 @ 175.5 MHz	$\begin{aligned} & \mathrm{TB}_{3} \\ & \mathrm{~TB}_{3} \end{aligned}$	$\begin{aligned} & \text { - } 90 \text { Typ } \\ & -87 \text { Typ } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { - } 88 \text { Typ } \\ & -85 \text { Typ } \\ & \hline \end{aligned}$	$\begin{aligned} & \text {-88 Typ } \\ & -85 \text { Typ } \\ & \hline \end{aligned}$	$\begin{aligned} & \text {-87 Typ } \\ & -84 \text { Typ } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} \end{gathered}$
Second Order Distortion @ +50 dBmV per ch. High-Split (5.0-175 MHz) CH2, CHA @ 176.5 MHz	IMD	-72 Max	-72 Max	-72 Max	-72 Max	dB
Noise Figure High-Split (5.0-175 MHz) Note 2	NF	7.0 Max	5.5 Max	5.5 Max	5.0 Max	dB
DC Current	IDC		210 Typ/	240 Max		mAdc

1. Response and return loss charecteristics are tested and guaranteed for the full $\mathbf{5 . 0 - 2 0 0} \mathbf{M H z}$ frequency range.
2. Motorola 100% distortion and noise figure testing is performed over the $5.0-175 \mathrm{MHz}$ frequency range. Cross modulation and composite triple beat testing are with 22-channel loading; Video carriers used are:

T7-T13	7.0-43.0 MHz	7-Channels
$2-6$	$55.25-83.25 \mathrm{MHz}$	5-Channels
A-7	$121.25-175.25 \mathrm{MHz}$	10-Channels

3. Video carriers used for 12-Channel typical performances are T7-6; For 26-Channel typical performance, Channels 8, 9, 10 and 11 are added to tho 22-Channel carriers listed above.

The RF Line VHF Power Amplifier

... designed specifically for 15 volt Sonobouy applications in the frequency region of 135 to 175 MHz .

- Specified 15 Volt, VHF Characteristics:

Output Power - 1.0 Watt Min
Gain - 27 dB Min @ $\mathrm{P}_{\mathrm{in}}=2.0 \mathrm{~mW}$
Harmonics - -38 dBc Max ($2.0 \mathrm{f}_{\mathrm{o}}$)

- 50Ω Input/Output Impedances

- Guaranteed Stability and Ruggedness
- Automated Surface Mount Construction Gives Consistent Performance and Reliability
- Gain Control Pin for Manual or Automatic Output Level Control

CASE 297C-02, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	VCC	18	Vdc
RF Input Power	$P_{\text {in }}$	8.0	mW
RF Output Power	$P_{\text {out }}$	2.0	W
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +80	${ }^{\circ} \mathrm{C}$
Operating Case Temperature	T_{C}	-20 to +80	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\mathrm{IV}_{\mathrm{CC}}=\mathrm{V}_{\text {DRIVE }}=15 \mathrm{~V} ; \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$. All characteristics guaranteed over bandwidth specified under "Frequency Range" unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	135	-	175	MHz
Gain @ $\mathrm{P}_{\text {in }}=2.0 \mathrm{~mW}$ (Note 1)	G_{p}	27	29	33	dB
Input VSWR @ $\mathrm{P}_{\text {in }}=2.0 \mathrm{~mW}$	vSWR ${ }_{\text {in }}$	-	-	2.5:1	-
Efficiency @ $P_{\text {in }}=2.0 \mathrm{~mW}$	η	40	45	-	\%
Harmonics @ $P_{0}=1.5 \mathrm{~W}$	-	-	-45	-38	dBc
$\begin{aligned} & \text { Stability @ } P_{\text {in }}=0 \text { to } 4.0 \mathrm{~mW} \\ & V_{C C}=V_{\text {dr }}=12 \text { to } 16 \mathrm{~V} \\ & \text { Source and Load VSWR }=4: 1 \end{aligned}$	-	All spurious outputs more than 60 dB below desired signal level			
$\begin{aligned} & \text { Load Mismatch @ Load VSWR }=4: 1 \\ & V_{c C}=V_{d r}=16 \mathrm{~V} \\ & P_{\text {out }}=1.5 \mathrm{~W} \end{aligned}$	-	No degradation in output power after return to initial operating conditions			
Standby Current @ $\mathrm{P}_{\text {in }}=0 \mathrm{~mW}$	I_{s}	-	47	55	mA

[^14]
DECOUPLING

Pins 2 and 4 are internally bypassed with a $0.018 \mu \mathrm{~F}$ chip capacitor which is effective for frequencies from 5.0 MHz to 175 MHz . For bypassing frequencies below
5.0 MHz , networks equivalent to that shown in Figure 1 are recommended. Inadequate decoupling may result in spurious outputs at certain operating frequencies and certain phase angles of input and output VSWR.
$\mathrm{L} 1=\mathrm{L} 2=0.2 \mu \mathrm{H}$ (ferrite loaded)
$\mathrm{C}_{1}=\mathrm{C}_{2}=0.1 \mu \mathrm{~F}$
$C 3=C 4=1 \mu \mathrm{~F}$ Tantalum

Figure 1. Decoupling Networks

The RF Line

450 MHz CATV AMPLIFIER

... designed for broadband applications requiring low distortion characteristics. Specified for use as a CATV trunk-line amplifier. Features ion-implanted arsenic emitter transistors with 7.0 GHz f , and all an gold metallization system.

- Specified for 53- and 60-Channel Performance
- Broadband Power Gain - @ $\mathrm{f}=40-450 \mathrm{MHz}$ $\mathrm{G}_{\mathrm{p}}=12.5 \mathrm{~dB}$ (Typ)
- Broadband Power Gain - @ $f=40-450 \mathrm{MHz}$ $\mathrm{G}_{\mathrm{p}}=12.5 \mathrm{~dB}$ (Typ)
- Broadband Noise Figure - @ $f=450 \mathrm{MHz}$ $\mathrm{NF}=7.0 \mathrm{~dB}$ (Typ)
- Superior Gain, Return Loss and DC Current Stability with Temperature

MHW5122A

DIM	MILIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	-	4508	-	1.775
B	26.4	2692	1040	1.060
C	20.57	21.34	0.810	0.840
0	046	0.56	0018	0.022
E	11.81	1295	0.465	0.510
F	7.62	8.25	0.300	0325
G	254 BSC		0.100 BSC	
J	3.96 BSC		0.156 BSC	
K	800	850	0315	0355
1	25.40 BSC		1.00 BSC	
N	419 BSC		0.165 BSC	
P	254 BSC		0.700 BSC	
0	376	4.27	0.148	0168
R	38.10 BSC		1.500 BSC	
S				
U	508 BSC		0.200 BSC	
V	7.11 BSC		0.280 BSC	
W	11.05	11.43	0.435	0.450

CASE 714-04

ELECTRICAL CHARACTERISTICS $\operatorname{V} \mathbf{V C C}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted)

Characteristic		Symbal	Min	Typ	Max	Unit
Frequency Range		BW	40	-	450	MHz
Power Gain - 50 MHz		G_{p}	12	12.5	13	dB
Slope		S	+0.2	+0.7	+1.5	dB
Gain Flatness (Peak To Valley)		-	-	0.2	0.4	dB
Return Loss - Input/Output $\left(Z_{0}=750 \mathrm{hms}\right)$	40-450 MHz	IRLORL	18	-	-	dB
Second Order Intermodulation Distortion ($\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ per ch., Ch 2, M6, M15) ($\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ per ch., Ch2, M13, M22)		IMD	-	-78	$\overline{-72}$	dB
Cross Modulation Distortion ($\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ per ch.)	53-Channel FLAT 60-Channel FLAT	$\begin{aligned} & X_{M D_{53}} \\ & X^{\prime} M D_{60} \end{aligned}$		$\begin{array}{r} -63 \\ -63 \\ \hline \end{array}$	-61	dB
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ per ch.)	53-Channel FLAT 60-Channel FLAT	$\begin{aligned} & \text { CTB } 53 \\ & \text { CTB }_{60} \\ & \hline \end{aligned}$		$\begin{aligned} & -63 \\ & -61 \\ & \hline \end{aligned}$	-58	dB
```DIN (European Applications Only)* \(300 \mathrm{MHz}-(\mathrm{CH} \mathrm{V}+\mathrm{O}-\mathrm{P}\) @ \(\mathbf{W})\) 400 MHz - (CH M8 + M15 - M9 @ M14) 450 MHz - (CH M20 + M23 - M22 (@ M21)```		DIN1   DiN2   DIN3	二	$\begin{aligned} & 125 \\ & 124 \\ & 123 \end{aligned}$	-	$\mathrm{dB} \mu \mathrm{V}{ }^{* *}$
$\begin{aligned} & \text { Noise Figure } \\ & \quad(\mathrm{f}=450 \mathrm{MHz}) \end{aligned}$		NF	-	7.0	8.0	dB
DC Current		IDC	-	200	240	mA

-DIN (European Applications Only)

NCTA Channel   Designation	Frequency   (MH2)	DiN Output Level   (dBmV)" (Typ)	DIN Beat Level   dB Relative to Ref. Ch.
P	253.25	+59	
Q	259.25	+59	$\leqslant-60$
V (Ref.)	289.25	+65	
M8	295.25	+65	
M9	361.25	+58	
M14 (Ref.)	367.25	+68	
M15	397.25	+64	
M20	403.25	+63	
M21 (Ref.)	433.25	+63	
M22	439.25	+57	
M23	445.25	+57	

-•DIN ( $\mathrm{dB} \mu \mathrm{V}$ ) $=$ Reference Channol Level ( dBmV ) $+\mathbf{6 0} \mathrm{dB}$

## The RF Line

## 450 MHz CATV AMPLIFIERS

... designed specifically for 450 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 7.0 GHz fT and an all gold metallization system.

- Specified for 60-Channel Performance
- Broadband Power Gain - @ $f=40-450 \mathrm{MHz}$
$\mathrm{G}_{\mathrm{p}}=14 \mathrm{~dB}$ (Typ)@50 MHz
$14.5 \mathrm{~dB}(\mathrm{Min}) @ 450 \mathrm{MHz}$
- Broadband Noise Figure @ 450 MHz

$$
\mathrm{NF}=7.0 \mathrm{~dB}(\mathrm{Max}) \mathrm{MHW} 5141 \mathrm{~A}
$$

7.0 dB (max) MHW5142A

- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz Ion-Implanted Transistors

ABSOLUTE MAXIMUM RATINGS			
Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$V_{\text {in }}$	+70	dBmV
DC Supply Voltage	$V_{C C}$	+28	$V_{\text {V dc }}$
Operating Case Temperature Range	$T_{C}$	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$T_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$



ELECTRICAL CHARACTERISTICS（VCC $=24 \mathrm{Vdc}, \mathrm{T} \mathrm{C}=+30^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted）

Characteristic	Symbol	MHW5141A			MHW5142A			Unit
		Min	Typ	Max	Min	Typ	Max	
Frequency Range	BW	40	－	450	40	－	450	MHz
Power Gain－ 50 MHz	$\mathrm{G}_{\mathrm{p}}$	13.5	14	14.5	13.5	14	14.5	dB
Power Gain－ 450 MHz	$\mathrm{G}_{\mathrm{p}}$	14.0	－	15.5	14.0	－	15.5	dB
Slope	S	0.2	－	1.5	0.2	－	1.5	dB
Gain Flatness（Peak To Valley）	－	－	0.2	0.4	－	0.2	0.4	dB
Return Loss－Input／Output   $\left(Z_{0}=750 \mathrm{hms}\right)$ $40-450 \mathrm{MHz}$	IRLORL	18	－	－	18	－	－	dB
```Second Order Intermodulation Distortion ( \(\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}\) per ch., Ch 2, M6, M15) ( \(\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}\) per ch., Ch 2, M13, M22)```	IMD	二	－78	－72	二	－78	－74	dB
Cross Modulation Distortion $\begin{array}{ll}\left(V_{\text {out }}=+46 \mathrm{dBmV} \text { per ch．}\right) & \text { 53－Channel FLAT } \\ & \text { 60－Channel FLAT }\end{array}$	$\begin{array}{r} \mathrm{XMD}_{53} \\ \mathrm{XMD}_{60} \\ \hline \end{array}$		$\begin{array}{r} -61 \\ -60 \\ \hline \end{array}$	-59	－	$\begin{aligned} & -63 \\ & -63 \end{aligned}$	-62	dB
Composite Triple Beat （Vout $=+46 \mathrm{dBmV}$ per ch．） 53－Channel FLAT 60－Channel FLAT	CTB53 CTB 60	二	$\begin{array}{r} -61 \\ -59 \\ \hline \end{array}$	-58	二	$\begin{array}{r} -63 \\ -62 \\ \hline \end{array}$	-61	dB
```DIN (European Applications Only)* 300 MHz-(CH V + O-P@ W) 400 MHz - (CH M8 + M15 - M9 (@. M14) 450 MHz - (CH M20 + M23 - M22 @ M21)```	DIN1   DiN2   DIN3	－	$\begin{aligned} & 125 \\ & 124 \\ & 123 \end{aligned}$	－	二	$\begin{aligned} & 127 \\ & 126 \\ & 125 \\ & \hline \end{aligned}$	二	$\mathrm{dB} \mu \mathrm{V} *$
Noise Figure $(f=450 \mathrm{MHz})$	NF	－	－	7.0	－	6.0	7.0	${ }^{\circ} \mathrm{B}$
DC Current	loc	－	180	200	－	210	240	mA

－DIN（European Applications Only）

NCTA Channel Designation	Frequency （MHz）	DIN Output Level （dBmV）＂＊（Typ）		DIN Beat Level dB Relative to Ref．Ch．
		MHW5181A	MHW5182A	
P	253.25	＋59	＋61	
0	259.25	＋59	＋61	$\leqslant-60$
$v$	289.25	＋65	＋67	$\leqslant-60$
W（Ref．）	295.25	＋65	$+67$	
M8	361.25	＋58	＋60	
M9	367.25	＋58	＋60	＜－60
M14（Ref．）	397.25	＋64	＋66	
M15	403.25	＋64	＋66	
M20	433.25	＋63	＋65	
M21（Ref．）	439.25	＋63	＋65	－-60
M22	445.25	＋57	＋59	
M23	451.25	＋57	＋59	

＊＊OIN（dB $\mu \mathrm{V}$ ）＝Reference Channel Level（ dBmV ）+60 dB

## The RF Line

## 450 MHz CATV AMPLIFIER

... designed for broadband applications requiring lowdistortion characteristics. Specified for use as a CATV trunk-line amplifier. Features ion-implanted arsenic emitter transistors with 7.0 GHz fT and an all gold metallization system.

- Specified for 53 - and 60-Channel Performance
- Broadband Power Gain - @ $f=40-450 \mathrm{MHz}$

$$
\mathrm{G}_{\mathrm{p}}=16.4 \mathrm{~dB} \text { (Typ) }
$$

- Broadband Noise Figure - @ $f=450 \mathrm{MHz}$

$$
\mathrm{NF}=6.5 \mathrm{~dB} \text { (Typ) }
$$

- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz Ion-Implanted Transistors

ABSOLUTE MAXIMUM RATINGS			
Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$V_{\text {in }}$	+ 70	dBmV
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	+28	Vdc
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$



## MHW5162A

ELECTRICAL CHARACTERISTICS (VCC $=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	450	MHz
Power Gain - 50 MHz	$\mathrm{G}_{\mathrm{p}}$	15.9	16.4	16.9	dB
Slope	S	+ 0.2	+0.7	+1.5	dB
Gain Flatness (Peak To Valley)	-	-	0.2	0.4	dB
$\begin{aligned} & \text { Return Loss - InpuvOutput } \\ & \left(Z_{0}=75 \text { Ohms }\right) \end{aligned}$	IRLORL	18	-	-	dB
Second Order Intermodulation Distortion ( $V_{\text {out }}=+46 \mathrm{dBmV}$ per ch., Ch 2, M6, M15)   ( $V_{\text {out }}=+46 \mathrm{dBmV}$ per ch., Ch 2, M13, M22)	IMD	-	-	$\begin{aligned} & -74 \\ & -72 \end{aligned}$	dB
Cross Modulation Distortion 53-Channel FLAT   (V ${ }_{\text {out }}=+46 \mathrm{dBmV}$ per ch. $)$ 60-Channel FLAT	$\begin{aligned} & X_{M D_{53}} \\ & X^{2} D_{60} \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline-63 \\ & -63 \\ & \hline \end{aligned}$	$-61$	dB
Composite Triple Beat 53-Channel FLAT   V $_{\text {out }}=+46 \mathrm{dBmV}$ per ch. $)$ 60-Channel FLAT	CTB53 CTB 60		$\begin{aligned} & -62 \\ & -59 \\ & \hline \end{aligned}$	$\begin{array}{r} -61 \\ -58 \\ \hline \end{array}$	${ }^{\text {dB }}$
```DIN (European Applications Only)* \(300 \mathrm{MHz}-(\mathrm{CHV}+\mathrm{O}-\mathrm{P}\) @ W) 400 MHz - (CH M8 + M15 - M9 (a M14) 450 MHz - (CH M20 + M23 - M22 (a. M21)```	$\begin{aligned} & \text { DIN1 } \\ & \text { DIN2 } \\ & \text { DIN3 } \end{aligned}$	二	$\begin{aligned} & 127 \\ & 125 \\ & 124 \end{aligned}$	-	$\mathrm{dB}^{\mathrm{L}} \mathrm{V}^{* *}$
Noise Figure $(f=450 \mathrm{MHz})$	NF	-	6.0	7.0	dB
DC Current	IDC	-	200	220	mA

-DIN (European Applications OnIy)

NCTA Channel Designation	$\begin{gathered} \text { Frequency } \\ (\mathrm{MHz}) \end{gathered}$	DIN Output Level (dBmV)" ${ }^{(T y p)}$	DIN Beat Level dB Relative to Ref. Ch.
		MHW5162A	$\leqslant-60$
P	253.25	61	
0	259.25	61	
v	289.25	67	
W (Ref.)	295.25	67	
M8	361.25	59	$\leqslant-60$
M9	367.25	59	
M14 (Ref.)	397.25	65	
M15	403.25	65	
M20	433.25	64	$\leqslant-60$
M21 (Ref.)		64	
M22		58	
M23		58	

[^15]
The RF Line

450 MHz CATV AMPLIFIERS

... designed specifically for 450 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 7.0 GHz f丁 and an all gold metallization system.

- Specified for 53- and 60-Channel Performance
- Broadband Power Gain - @ $f=40-450 \mathrm{MHz}$

$$
\mathrm{G}_{\mathrm{p}}=17.4 \mathrm{~dB} \text { (Typ) }
$$

- Broadband Noise Figure
$\mathrm{NF}=7.0 \mathrm{~dB}$ (Max) MHW5171A
7.0 dB (Max) MHW5172A
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz Ion-Implanted Transistors

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+70	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS（VCC $=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted）

Characteristic	Symbol	MHW5171A			MHW5172A			Unit
		Min	Typ	Max	Min	Typ	Max	
Frequency Range	BW	40	－	450	40	－	450	MHz
Power Gain－ 50 MHz	G_{p}	16.8	17.4	17.8	16.8	17.4	17.8	dB
Power Gain－ 450 MHz	G_{p}	17.4	18.4	19.0	17.4	18.4	19.0	dB
Slope	S	0.3	0.5	1.5	0.3	0.5	1.5	dB
Gain Flatness（Peak To Valley）	－	－	0.2	0.4	－	0.2	0.4	dB
Return Loss－Input／Output $\left(Z_{0}=750 \mathrm{hms}\right)$$\quad 40-450 \mathrm{MHz}$	IRLORL	18	－	－	18	－	－	dB
Second Order Intermodulation Distortion （ $V_{\text {out }}=+50 \mathrm{dBmV}$ per ch．，Ch 2，M6，M15） （ $\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ per ch．，Ch 2，M13，M22）	IMD	－	－78	－72	－	－78	$\overline{-74}$	dB
Cross Modulation Distortion 53－Channel FLAT （Vout $=+46 \mathrm{dBmV}$ per ch．） 60－Channel FLAT	$\begin{aligned} & \mathrm{XMD}_{53} \\ & \mathrm{XMD}_{60} \end{aligned}$	二	$\begin{array}{r} -60 \\ -60 \\ \hline \end{array}$	-59	－	$\begin{aligned} & -65 \\ & -64 \\ & \hline \end{aligned}$	－62	dB
Composite Triple Beat 53－Channel FLAT （Vout $=+46 \mathrm{dBmV}$ per ch．） 60－Channel FLAT	$\begin{aligned} & \text { CTB }_{53} \\ & \text { CTB }_{60} \\ & \hline \end{aligned}$	二	$\begin{array}{r} -61 \\ -58 \\ \hline \end{array}$	-58	二	$\begin{aligned} & -63 \\ & -61 \\ & \hline \end{aligned}$	-60	dB
```DIN (European Applications Only)* 300 MHz - (CHV+O-P@W) 400 MHz - (CH M8 + M15 - M9 @ M14) 450 MHz - (CH M2O + M23 - M22 @ M21)```	DIN1   DIN2   DIN3	二	$\begin{aligned} & 125 \\ & 124 \\ & 123 \end{aligned}$	二	二	$\begin{aligned} & 127 \\ & 126 \\ & 125 \end{aligned}$	－	$\mathrm{dB}^{2} \mathrm{~V}^{* *}$
Noise Figure（ $\mathrm{f}=\mathbf{4 5 0} \mathbf{M H z}$ ）	NF	－	－	7.0	－	6.0	7.0	dB
DC Current	${ }^{\text {l }}$ C	－	180	200	－	210	240	mA

－DIN（European Applications Onily）

NCTA Channel   Designation	Frequency   （MHz）	DIN Output Level   （dBmV）＂（Typ）		DIN Beat Level   dB Relative to Ref．Ch．
			MHW5171A	MHW5172A

＊${ }^{\text {DIN }}(\mathrm{dB} \mu \mathrm{V})=$ Reference Channel Level（dBmV）＋ 60 dB

## The RF Line

## 450 MHz CATV AMPLIFIERS

... designed specifically for 450 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 7.0 GHz fT and an all gold metallization system.

- Specified for 53- and 60-Channel Performance
- Broadband Power Gain - @ $f=40-450 \mathrm{MHz}$
$\mathrm{G}_{\mathrm{p}}=18.2 \mathrm{~dB}$ (Typ) @ 50 MHz
19.0 dB (Typ) @ 450 MHz
- Broadband Noise Figure
$\mathrm{NF}=6.0 \mathrm{~dB}$ (Max) MHW5181A
6.5 dB (Max) MHW5182A
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz lon-Implanted Transistors


18 dB GAIN
450 MHz
60-CHANNEL
CATV INPUT/OUTPUT
TRUNK AMPLIFIERS



ELECTRICAL CHARACTERISTICS（VCC $=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted）

Characteristic	Symbol	MHW5181A			MHW5182A			Unit
		Min	Typ	Max	Min	Typ	Max	
Frequency Range	BW	40	－	450	40	－	450	MHz
Power Gain－ 50 MHz	$\mathrm{G}_{\mathrm{p}}$	17.8	18.2	18.8	17.8	18.2	18.8	dB
Power Gain－ 450 MHz	$\mathrm{G}_{\mathrm{p}}$	18.5	19	20	18.5	19	20	dB
Slope	S	0.3	－	1.5	0.3	－	1.5	dB
Gain Flatness（Peak To Valley）	－	－	0.2	0.4	－	0.2	0.4	dB
Return Loss－InputVOutput   $\left(Z_{0}=75\right.$ Ohms） $40-450 \mathrm{MHz}$	IRLOORL	18	－	－	18	－	－	dB
Second Order Intermodulation Distortion （ $V_{\text {out }}=+46 \mathrm{dBmV}$ per ch．，Ch 2，M6，M15） （ $\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ per ch．，Ch 2，M13，M22）	IMD	－	$\begin{aligned} & -85 \\ & -80 \end{aligned}$	$-72$	二	$\begin{array}{r} -85 \\ -80 \\ \hline \end{array}$	$\overline{-72}$	dB
Cross Modulation Distortion 53－Channel FLAT   $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right.$ per ch．$)$ 60－Channel FLAT	$\begin{aligned} & X_{M D_{53}} \\ & X_{M D} \end{aligned}$	二	$\begin{array}{r} -59 \\ -58 \\ \hline \end{array}$	$-56$	－	$\begin{aligned} & \hline-62 \\ & -61 \\ & \hline \end{aligned}$	$-\overline{-59}$	dB
Composite Triple Beat 53－Channel FLAT   $\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ per ch．$)$ 60－Channel FLAT	$\mathrm{CTB}_{53}$ $\text { Ств }_{60}$	二	$\begin{array}{r} \hline-61 \\ -58 \\ \hline \end{array}$	$-57$	二	$\begin{aligned} & \hline-64 \\ & -62 \\ & \hline \end{aligned}$	－61	dB
```DIN (European Applications Only)* \(300 \mathrm{MHz}^{-(\mathrm{CHV}+\mathbf{O}-\mathrm{P} \text { @ } \mathrm{W}) ~}\) 400 MHz - (CH M8 + M15 - M9 (ii M14) 450 MHz - (CH M20 + M23-M22 (ii M21)```	DIN1   DIN2   DIN3	二	$\begin{aligned} & 124 \\ & 124 \\ & 123 \end{aligned}$	－	－	$\begin{aligned} & 126 \\ & 126 \\ & 125 \end{aligned}$	－	$\mathrm{dB}^{2} \mathrm{~V} * *$
Noise Figure（ $\mathrm{f}=450 \mathrm{MHz}$ ）	NF	－	5.5	6.5	－	5.5	6.5	dB
DC Current	${ }^{\text {IDC }}$	－	180	200	－	210	240	mA

－DIN（European Applications Only）

NCTA Channel Designation	Frequency (MHz)	DIN Output Level （dBmV）＊＊（Typ）		DIN Beat Level dB Relative to Ref．Ch．
		MHW5181A	MHW5182A	
P	253.25	＋58	＋60	
0	259.25	＋58	＋60	
V	289.25	＋64	＋66	－-60
W（Ref．）	295.25	＋64	＋66	
M8	361.25	＋58	＋60	
M9	367.25	＋58	＋60	
M14（Ref．）	397.25	＋64	＋66	$\leqslant-60$
M15	403.25	＋64	＋66	
M20	433.25	＋63	＋65	
M21（Ref．）	439.25	＋63	＋65	
M22	445.25	＋57	＋59	$\leqslant-60$
M23	451.25	＋57	＋59	

＊DIN（ $\mathrm{dB} \mu \mathrm{V}$ ）$=$ Reference Channel Level（ dBmV ）＋ 60 dB

The RF Line
High Output Doubler 450/550 MMz CATV Amplifiers

MHW5185 MHW6185

... designed specifically for $450 / 550 \mathrm{MHz}$ CATV applications. Features ion-implanted arsenic emitter transistors with 6 to $8 \mathrm{GHz} \mathrm{f}_{\mathrm{T}}$ and an all gold metallization system.

- 4th Generation Die Technology
- Specified for 60/77-Channel Performance
- Broadband Power Gain - @ $f=40-550 \mathrm{MHz}$

> 18 dB GAIN 450/550 MHz 60/77-CHANNEL CATV AMPLIFIERS

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+70	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range	MHW5185 MHW6185	BW	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	-	$\begin{aligned} & 450 \\ & 550 \end{aligned}$	MHz
Power Gain	50 MHz 450 MHz 550 MHz	G_{p}	$\begin{gathered} \hline 18 \\ 18.5 \\ 18.8 \end{gathered}$	-	$\begin{gathered} \hline 19 \\ 19.7 \\ 20.3 \end{gathered}$	dB
Slope		S	0.5	-	2.0	dB
Gain Flatness (Peak To Valley)		-	-	0.2	0.4	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75 \mathrm{Ohms}$)	$40-550 \mathrm{MHz}$	IRLOORL	18	-	8	dB
$\begin{aligned} & \text { Second Order Intermodulation Distortion } \\ & \text { (V out }=+46 \mathrm{dBmV}, \mathrm{Ch} 2, \text { M13, M22) } \\ & \left(V_{\text {out }}=+46 \mathrm{dBmV}, \mathrm{Ch} 2, M 30, M 39\right) \end{aligned}$	MHW5185 MHW6185	IMD	-	-	$\begin{aligned} & -74 \\ & -71 \end{aligned}$	dB
$\begin{aligned} & \text { Cross Modulation Distortion } \\ & \left(V_{\text {out }}=+46 \mathrm{dBmV}\right) \\ & \left(V_{\text {out }}=+44 \mathrm{dBmV}\right) \end{aligned}$	60-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \mathrm{XMD}_{60} \\ & \mathrm{XMD}_{77} \end{aligned}$	$-$	$\begin{aligned} & -68 \\ & -66 \end{aligned}$	$\begin{aligned} & -66 \\ & -63 \end{aligned}$	dB
Composite Triple Beat $\left(\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}\right)$ ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}$)	60-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \text { CTB }_{60} \\ & \text { CTB }_{77} \end{aligned}$	-	$\begin{aligned} & -67 \\ & -65 \end{aligned}$	$\begin{aligned} & -65 \\ & -63 \end{aligned}$	dB
```DIN (European Applications Only) \(300 \mathrm{MHz}-(\mathrm{CHV}+\mathrm{O}-\mathrm{P}\) (a) W\()\) 400 MHz - (CH M8 + M15-M9 @ M14) 450 MHz - (CH M2O + M23 - M22 @ M21)```	MHW5185	DIN1 DIN2 DIN3	-	$\begin{aligned} & 129 \\ & 128 \\ & 126 \end{aligned}$	-	$\mathrm{dB} \mu \mathrm{V}$
Noise Figure	$\begin{aligned} & 450 \mathrm{MHz} \\ & 550 \mathrm{MHz} \end{aligned}$	NF	-	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	dB
DC Current		1 DC	-	385	435	mA

MHW5185, MHW6185
*DIN (European Applications Only)

NCTA Channel Designation	Frequency (MHz)	DIN Output Level (dBmV)**(Typ)	DIN Beat Level dB Relative to Ref. Ch.
		MHW5185	
P	253.25	+63	
0	259.25	+63	$\leqslant-60$
v	289.25	+69	$\leqslant-60$
W (Ref.)	295.25	+69	
M8	361.25	+62	
M9	367.25	+62	$\leqslant-60$
M14 (Ref.)	397.25	$+68$	<-60
M15	403.25	+68	
M20	433.25	+66	
M21 (Ref.)	439.25	+66	
M22	445.25	+60	$4 \div 60$
M23	451.25	+60	

**DIN $(\mathrm{dB} \mu \mathrm{V})=$ Reference Channel Level ( dBmV$)+60 \mathrm{~dB}$


Figure 1. CTB versus Output Power


Figure 3. CTB versus Frequency/Channels


Figure 2. CTB versus Output Power


Figure 4. CTB versus Frequency/Output Power


Flgure 5. CTB versus Frequency/Channels


Figure 7. CTB versus Frequency/Tilt


Figure 6. NF versus Frequency


Figure 8. CTB versus Frequency/Tilt

Table 1. Functional Performance versus Temperature*

Parameter	Condition	Symbol	$\begin{gathered} \mathrm{T1} \\ -20^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \text { T2 } \\ 35^{\circ} \mathrm{C} \end{gathered}$	$\begin{gathered} \mathrm{T3} \\ 80^{\circ} \mathrm{C} \end{gathered}$	Units
Power Gain	50 MHz	$\mathrm{G}_{\mathrm{pl}}$	17.70	17.63	17.54	dB
Power Gain	450 MHz	$\mathrm{G}_{\mathrm{p} 2}$	18.34	18.22	18.14	dB
Power Gain	550 MHz	$\mathrm{G}_{\mathrm{p} 3}$	18.63	18.40	18.24	dB
Composite Triple Beat	$\begin{gathered} \mathrm{V}_{\text {out }}=+46 \mathrm{dBmV} \\ \text { 60-Ch FLAT } \end{gathered}$	$\mathrm{CTB}_{60}$	-66.1	-64.9	-62.9	dB
Composite Triple Beat	$\begin{gathered} V_{\text {out }}=+46 \mathrm{dBmV} \\ 77-\mathrm{Ch} \text { FLAT } \end{gathered}$	CTB77	-59.3	-57.7	-56.5	dB
DC Current	$V_{D C}=24 \mathrm{~V}$	IDC	370	401	419	mA

${ }^{\bullet}$ Data in Table 1 is the aversge value of several parts and is only intended to show zypical trends in performance as a function of temperature.
Absolute velues of specific parameters will comply with limits specified under "ELECTRICAL CHARACTERISTICS."

## The RF Line

## 450 MHz CATV AMPLIFIER

... designed for broadband applications requiring low distortion characteristics. Specifically intended for CATV market requirements. Features ion-implanted arsenic emitter transistors with 7.0 GHz fT , and all an gold metallization system.

- Broadband Power Gain - @ $f=40-450 \mathrm{MHz}$ $G_{p}=22 d B$ (Typ)
- Broadband Noise Figure - @ $f=450 \mathrm{MHz}$ $\mathrm{NF}=4.5 \mathrm{~dB}$ (Typ)
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz lon-Implanted Transistors

ABSOLUTE MAXIMUM RATINGS	Symbol	Value	Unit
Rating	$\mathrm{V}_{\text {in }}$	+70	dBmV
RF Voltage Input (Single Tone)	$\mathrm{V}_{\mathrm{CC}}$	+28	Vdc
DC Supply Voltage	$\mathrm{T}_{\mathrm{C}}$	-20 to +100	${ }^{\circ} \mathrm{C}$
Operating Case Temperature Range	$\mathrm{T}_{\text {Stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range			


The RF Line



22 dB GAIN
450 MHz
60-CHANNEL
CATV TRUNK AMPLIFIER



踥


ELECTRICAL CHARACTERISTICS $\operatorname{V} V_{C C}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	450	MHz
Power Gein - 50 MHz		$\mathrm{G}_{\mathrm{p}}$	21.4	22	22.6	dB
Power Gain - 450 MHz		$\mathrm{G}_{\mathrm{p}}$	22.0	22.9	23.5	dB
Slope		S	0.2	0.5	1.5	dB
Gain Flatness (Peak To Valley)		-	-	0.2	0.4	dB
Return Loss - Input/Output $\left(Z_{0}=750 \mathrm{mms}\right)$	40-450 MHz	IRLORL	18	-	-	dB
Second Order Intermodulation Distortion ( $V_{\text {out }}=+46 \mathrm{dBmV}, \mathrm{Ch} 2, \mathrm{M} 6, \mathrm{M} 15$ )   ( $V_{\text {out }}=+44 \mathrm{dBmV}, \mathrm{Ch} 2, \mathrm{M} 13, \mathrm{M} 22$ )		IMD		$\begin{aligned} & -80 \\ & -78 \end{aligned}$	$-72$	dB
Cross Modulation Distortion ( $\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ )	53-Channel FLAT 60-Channel FLAT	$\begin{array}{r} \mathrm{XMD}_{53} \\ \times M \mathrm{C}_{60} \\ \hline \end{array}$	-	$\begin{aligned} & \hline-60 \\ & -60 \\ & \hline \end{aligned}$	$-\overline{-59}$	dB
Composite Triple Beat ( $\mathrm{V}_{\text {Out }}=+46 \mathrm{dBmV}$ )	53-Channel FLAT 60-Channel FLAT	$\mathrm{CTB}_{53}$ $\mathrm{CTB}_{60}$	-	$\begin{aligned} & \hline-63 \\ & -61 \\ & \hline \end{aligned}$	$-6$	dB
```DIN (European Applications Only) \(300 \mathrm{MHz}-(\mathrm{CHV}+\mathbf{O}-\mathrm{P}\) @ W\()\) 400 MHz - (CH M8 + M15 - M9 (a) M14) 450 MHz - (CH M20 + M23 - M22 @ M21)```		DIN1   DIN2   DIN3	二	$\begin{gathered} 125.5 \\ 125 \\ 124 \end{gathered}$	二	$\mathrm{dB} \mu \mathrm{V}$
Noise Figure $(\mathrm{f}=450 \mathrm{MHz})$		NF	-	4.5	5.0	dB
DC Current		$\mathrm{l} C \mathrm{C}$	-	210	240	mA

*DIN (European Applications Only)

NCTA Channel Designation	Frequency (MHz)	DiN Output Level (dBmV)" (Typ)	DIN Beat Level dB Relative to Ref. Ch.
\mathbf{P}	253.25	+59.5	
\mathbf{Q}	259.25	+59.5	
V	289.25	+65.5	
W (Ref.)	295.25	+65.5	
M8	361.25	+59	
M9	367.25	+69	
M14 (Ref.)	397.25	+65	
M15	403.25	+64	
M20	433.25	+64	
M21 (Ref.)	439.25	+58	
M22	445.25		
M23	451.25		

**DIN $(\mathrm{dB} \mu \mathrm{V})=$ Reference Channel Level (dBmV) $+\mathbf{6 0 ~} \mathrm{dB}$

MOTOROLA

SEMICONDUCTOR

TECHNICAL DATA

The RF Line

High Output Doubler 450 MHz CATV Amplifiers
... designed specifically for 450 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 6.0 to $8.0 \mathrm{GHz} \mathrm{f}_{\mathrm{T}}$ and an all gold metallization system.

- Both +24 V (MHW5225) and -24 V (MHW5225R) Supply Voltage
- 4th Generation Die Technology
- Specified for 60-Channel Performance
- Broadband Power Gain - (a $f=40-450 \mathrm{MHz}$

$$
\mathrm{G}_{\mathrm{p}}=22 \mathrm{~dB} \text { (Typ) }(50 \mathrm{MHz}
$$

23 dB (Typ) @ 450 MHz

- Broadband Noise Figure $\mathrm{NF}=4.5 \mathrm{~dB}$ (Тур)
- Improvement in Distortion Over Conventional Hybrids
- Allows Higher Output Level Operation

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit	
RF Voltage Input (Single Tone)	MHW5225	V_{in}	+70	dBmV
DC Supply Voltage	MHW5225R	+28	Vdc	
		-28		
Operating Case Temperature Range		T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$	

MHW5225 MHW5225R

CASE 714-04, STYLE 1 MHW5225

CASE 714C-04, STYLE 1 MHW5225R

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}(\mathrm{MHW5225})\right.$ or -24 V (MHW5225R), $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	450	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 450 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{aligned} & 21.4 \\ & 22.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 22.0 \\ & 23.0 \end{aligned}$	$\begin{aligned} & 22.6 \\ & 23.7 \end{aligned}$	dB
Slope		S	0.3	1.0	1.8	dB
Gain Flatness (Peak To Valley)		-	-	. 25	. 5	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75 \mathrm{Ohms}$)	$40-450 \mathrm{MHz}$	IRLOORL	18	-	-	dB
Second Order Intermodulation Distortion ($\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ per ch., Ch 2, M13, M22)		IMD	-	-74	-69	dB
Cross Modulation Distortion $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right.$ per ch.)	60-Channel FLAT	XMD_{60}	-	-67	-60	dB
$\begin{aligned} & \text { Composite Triple Beat } \\ & \text { (Vout }=+46 \mathrm{dBmV} \text { per ch.) } \end{aligned}$	60-Channel FLAT	CTB $_{60}$	-	-65	-62	dB
Noise Figure	450 MHz	NF	-	4.5	6.0	dB
DC Current	$\begin{aligned} & \text { MHW5225 } \\ & \text { MHW5225R } \end{aligned}$	${ }^{\text {I D C }}$	$-$	$\begin{aligned} & 415 \\ & 415 \end{aligned}$	$\begin{aligned} & 440 \\ & 440 \end{aligned}$	mA

The RF Line

450 MHz CATV AMPLIFIER

... designed specifically for 450 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 7.0 GHz fT and an all gold metallization system.

- Specified for 53- and 60-Channel Performance
- Broadband Power Gain - @ $f=40-450 \mathrm{MHz}$
$\mathrm{G}_{\mathrm{p}}=27 \mathrm{~dB}$ (Typ)
- Broadband Noise Figure
$\mathrm{NF}=5.0 \mathrm{~dB}$ (Typ)
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz lon-Implanted Transistors

ELECTRICAL CHARACTERISTICS (VCC $=\mathbf{2 4} \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	450	MHz
Power Gain - 50 MHz		G_{p}	26.2	27	27.8	dB
Power Gain - 450 MHz		G_{p}	27.0	28.0	29.0	dB
Slope		S	0	+1.0	+2.5	dB
Gain Flatness (Peak To Valley)		-	-	0.4	0.6	dB
$\begin{aligned} & \text { Return Loss - Input/Output } \\ & \left(Z_{0}=75 \mathrm{Ohms}\right) \end{aligned}$	$40-450 \mathrm{MHz}$	IRLORL	18	-	-	dB
$\begin{aligned} & \text { Second Order Intermodulation Distortion } \\ & \text { V }_{\text {out }}=+46 \mathrm{dBmV} \text { per ch., Ch 2, M 6, M15) } \\ & \text { V }_{\text {out }}=+46 \mathrm{dBmV} \text { per ch., Ch 2, M13, M22) } \end{aligned}$		IMD	-	$\begin{aligned} & -78 \\ & -76 \end{aligned}$	$\overline{-68}$	dB
Cross Modulation Distortion ($\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$)	53-Channel FLAT 60-Channel FLAT	$\begin{array}{r} \mathrm{XMD}_{53} \\ \text { XMD }_{60} \\ \hline \end{array}$		$\begin{aligned} & \hline-63 \\ & -63 \\ & \hline \end{aligned}$	-60	dB
Composite Triple Beat $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right)$	53-Channel FLAT 60-Channel FLAT	CTB_{53} $\text { СТВ } 60$		$\begin{array}{r} \hline-63 \\ -61 \\ \hline \end{array}$	-59	dB
```DIN (European Applications Oniy) 300 MHz - (CH.V + Q - P @W) 400 MHz - (CH M8 + M15 - M9 @ M14) 450 MHz - (CH M20 + M23 - M22 @ M21)```		DIN1   DIN2   DIN3	二	$\begin{aligned} & 126 \\ & 125 \\ & 124 \end{aligned}$	-	$\mathrm{dB} \mu \mathrm{V}$
Noise Figure $(f=450 \mathrm{MHz})$		NF	-	5.0	6.0	${ }_{\text {dB }}$
DC Current		IDC	-	310	340	mA

*DIN (European Applications Only)

NCTA Channel   Designation	Frequency   (MHz)	DiN Output Level   (dBmV)**(Typ)	DiN Beat Level   dB Relative to Ref. Ch.
P	253.25	+60	
Q	259.25	+60	
W (Ref.)	289.25	+66	
M8	295.25	+66	
M9	361.25	+59	
M14 (Ref.)	367.25	+59	
M15	397.25	+65	
M20	403.25	+65	
M21 (Ref.)	433.25	+64	
M22	439.25	+64	
M23	445.25	+58	

${ }^{* *} \mathrm{DIN}(\mathrm{dB} \mu \mathrm{V})=$ Reference Channel Level ( dBmV ) +60 dB

## The RF Line



ABSOLUTE MAXIMUM RATINGS			
Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$v_{\text {in }}$	+55	dBmV
DC Supply Voltage	$\mathrm{v}_{\mathrm{CC}}$	+28	Vdc
Operating Case Temperature Range	TC	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$



ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted）

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	－	450	MHz
Power Gain－ 50 MHz	$\mathrm{G}_{\mathrm{p}}$	32	33	34	dB
Slope	S	0	＋1．0	2.0	dB
Gain Flatness（Peak To Valley）	－	－	0.4	0.8	dB
Return Loss－Input／Output   $\left(Z_{0}=75 \mathrm{Ohms}\right)$ $40-450 \mathrm{MHz}$	IRLOORL	20	－	－	dB
Second Order Intermodulation Distortion   （ $\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ Ch 2，M6，M15）   （ $\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ ，Ch 2，M13，M22）	IMD	二	$\begin{aligned} & -80 \\ & -78 \end{aligned}$	$-70$	dB
Cross Modulation Distortion 53－Channel FLAT   $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right)$ 60－Channel FLAT	$\begin{aligned} & X_{M D} \mathrm{KD}_{53} \\ & \text { XMD }^{2} \end{aligned}$	－	$\begin{aligned} & \hline-63 \\ & -61 \\ & \hline \end{aligned}$	$-59$	dB
Composite Triple Beat 53－Channel FLAT   $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right)$ 60－Channel FLAT	$\text { Ств }{ }_{53}$ $\text { CTB }_{60}$	二	$\begin{aligned} & \hline-63 \\ & -61 \\ & \hline \end{aligned}$	$-60$	dB
```DIN (European Applications Only)* 300 MHz - (CH V + O - P @ W) 400 MHz - (CH M8 + M15-M9 @ M14) 450 MHz - (CH M20 + M23 - M22 @ M21)```	DIN1 DIN2 DIN3	二	$\begin{aligned} & 126 \\ & 125 \\ & 124 \end{aligned}$	－	$\mathrm{dB} \mu \mathrm{V} \cdot{ }^{\circ}$
Noise Figure $(f=450 \mathrm{MHz})$	NF	－	5.0	6.0	dB
DC Current	1 DC	－	310	340	mA

＊DIN（European Applications Oniy）

NCTA Channel Designation	Frequency （MHz）	DiN Output Level （dBmV）＊＊（Typ）	DIN Beat Level dB Relative to Ref．Ch．
\mathbf{P}	253.25	+60	
\mathbf{Q}	259.25	+60	
\mathbf{V}	289.25	+66	
W（Ref．）	295.25	+66	
MB	361.25	+59	
M9	367.25	+65	
M14（Ref．）	397.25	+65	
M15	403.25	+64	
M20	433.25	+64	
M21（Ref．）	439.25	+58	
M22	445.25	+58	
M23	451.25		

${ }^{\bullet}$ DIN $(\mathrm{dB} \mu \mathrm{V})=$ Reference Channel Level（dBmV）+60 dB

The RF Line

450 MHz CATV AMPLIFIER

... designed specifically for 450 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 7.0 GHz f 个 and an all gold metallization system.

- Specified for 53- and 60-Channel Performance
- Broadband Power Gain - @ $f=40-450 \mathrm{MHz}$ $\mathrm{G}_{\mathrm{p}}=34 \mathrm{~dB}$ (Typ)
- Broadband Noise Figure
$\mathrm{NF}=5.0 \mathrm{~dB}$ (Typ)
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz Ion-Implanted Transistors

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

STYLE 1 PS RE WOUT 2 GROUND 3 GROUND 5 VDC 6 Otietto 7 GROUND 3 GROUND 9. RF OUTPUT

DIM	MLLIMETERS		INCHES	
	MIN	MAX	MiN	Max
A	-	45.08	-	1.775
8	26.42	2692	1.040	1.060
C	20.57	21.34	0.810	0.840
0	0.46	0.56	0.018	0.022
E	11.81	12.95	0465	0.510
F	7.62	825	0300	0.325
G	2.54 BSC		0.100 ESC	
J	3.95 BSC		0.150 ESC	
K	800	850	0.315	0.355
L	25.40 BSC		1.00 BSC	
N	419 BSC		0.165 BSC	
P	2.54 BSC		0.100 BSC	
0	3.76	4.27	0.148	0.168
R	-	15.11	-	0.595
S	38.10 BSC		1.500 BSC	
U	508 BSC		0200 ESC	
V	7.11 BSC		0760 BSC	
W	1105	11.43	0.435	0.450

CASE 714-04

ELECTRICAL CHARACTERISTICS ($\mathrm{V} C \mathrm{C}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	450	MHz
Power Gain - 50 MHz		G_{p}	33.5	34.5	35.5	dB
Power Gain - 450 MHz		G_{p}	34.5	35.5	37	dB
Slope		S	0	+1.0	+2.5	dB
Grin Flatness (Peak To Valley)		-	-	0.3	0.6	dB
Return Loss - InputOutput $\left(Z_{0}=75 \mathrm{Ohms}\right)$	$40-450 \mathrm{MHz}$	IRLORL	18	-	-	dB
Second Order Intermodulation Distortion $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right.$ per ch., Ch 2, M6, M15) ($\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ per ch., Ch 2, M13, M22)		IMD	二	$\begin{aligned} & -78 \\ & -74 \end{aligned}$	-68	dB
Cross Modulation Distortion $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right)$	53-Channel FLAT 60-Channel FLAT	$\begin{array}{r} \mathrm{XMD}_{53} \\ \mathrm{XMD}_{60} \\ \hline \end{array}$		$\begin{array}{r} \hline-63 \\ -63 \\ \hline \end{array}$	-59	dB
Composite Triple Beat $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right)$	53-Channel FLAT 60-Channel FLAT	CTB_{53} $\text { CTB }_{60}$		$\begin{aligned} & \hline-63 \\ & -62 \\ & \hline \end{aligned}$	-59	dB
```DIN (European Applications Only) 300 MHz-(CH V + O-P (a)W) 400 MHz - (CH M8 + M15 - M9 (a) M14) 450 MHz - (CH M2O + M23 - M22 @ M21)```		$\begin{aligned} & \text { DIN1 } \\ & \text { DIN2 } \\ & \text { DIN3 } \end{aligned}$	二	$\begin{aligned} & 126 \\ & 125 \\ & 124 \end{aligned}$	-	$\mathrm{dB} \mu \mathrm{V}$
Noise Figure $(f=450 \mathrm{MHz})$		NF	-	5.0	5.5	dB
DC Current		IDC	-	310	340	mA

*DIN (European Applications Only)

NCTA Channel   Dosignation	Frequency   (MH2)	D(N Output Level   (dBmV)**(Typ)	DIN Beat Level   dB Relative to Ref. Ch.
$\mathbf{P}$	253.25	+60	
$\mathbf{0}$	259.25	+60	
$\mathbf{V}$	289.25	+66	+60
W (Ref.)	295.25	+59	
M8	361.25	+59	
M9	367.25	+65	
M14 (Ref.)	397.25	+65	
M15	403.25	+64	
M20	433.25	+64	
M21 (Ref.)	439.25	+58	
M22	445.25	+58	
M23	451.25		

[^16]
## The RF Line

## 450 MHz CATV AMPLIFIER

. . . designed specifically for 450 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 7.0 GHz f and an all gold metallization system.

- Specified for 53- and 60-Channel Performance
- Broadband Power Gain - @ $f=40-450 \mathrm{MHz}$

$$
\mathrm{G}_{\mathrm{p}}=38 \mathrm{~dB}(Т \mathrm{Ty})
$$

- Broadband Noise Figure

$$
\mathrm{NF}=4.0 \mathrm{~dB}(\text { Typ })
$$

- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz Ion-Implanted Transistors

ABSOLUTE MAXIMUM RATINGS	Rating	Symbol	Value	
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV	
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	+28	Vdc	
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-20 to +100	${ }^{\circ} \mathrm{C}$	
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$	



ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted）

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	－	450	MHz
Power Gain－ 50 MHz		$\mathrm{G}_{\mathrm{p}}$	37	38	39.5	dB
Power Gain－ 450 MHz		$\mathrm{G}_{\mathrm{p}}$	38.0	39.0	40.0	dB
Slope		S	0	＋1．0	＋2．5	dB
Gain Flatness（Peak To Valley）		－	－	0.3	0.6	dB
Return Loss－Input／Output $\left(Z_{0}=75 \mathrm{Ohms}\right)$	40－450 MHz	IRLJORL	18	－	－	dB
$\begin{gathered} \text { Second Order Intermodulation Distortion } \\ \left(V_{\text {out }}=+46 \mathrm{dBmV}\right. \text { per ch., Ch 2, M6, M15) } \\ \left(V_{\text {out }}=+46 \mathrm{dBmV}\right. \text { per ch., Ch 2, M13, M22) } \end{gathered}$		IMD	二	$\begin{aligned} & -78 \\ & -72 \end{aligned}$	$-64$	dB
Cross Modulation Distortion $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right)$	53－Channel FLAT   60－Channe！FLAT	$\begin{array}{r} X M D_{53} \\ \times M D_{60} \\ \hline \end{array}$		$\begin{aligned} & -63 \\ & -61 \end{aligned}$	－59	dB
Composite Triple Beat $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right)$	53－Channel FLAT   60－Channel FLAT	$\begin{aligned} & { }^{\text {CTB }} 53 \\ & \text { CTB }_{60} \\ & \hline \end{aligned}$	－	$\begin{aligned} & \hline-63 \\ & -60 \\ & \hline \end{aligned}$	$\overline{-59}$	dB
```DIN (European Applications Only) 300 MHz-(CH V + O-P@ @) 400 MHz - (CH M8 + M15 - M9 @ M14) 450 MHz - (CH M2O + M23 - M22 (i) M21)```		DIN1 DIN2   DIN3	二	$\begin{aligned} & 125 \\ & 124 \\ & 122 \end{aligned}$	二	$\mathrm{dB}^{\mathrm{L}} \mathrm{V}$
Noise Figure $(f=450 \mathrm{MHz})$		NF	－	4.0	5.0	dB
DC Current		IDC	二	310	340	mA

＊DIN（European Applications Only）

NCTA Channel Designation	Frequency （MHz）	DiN Output Level （dBmV）＊（Typ）	DiN Beat Level dB Relative to Ref．Ch．
P	253.25	+59	
Q	259.25	+59	
V（Ref．）	289.25	+65	+65

＊＂DIN $(\mathrm{dB} \mu \mathrm{V})=$ Raference Channel Level $\{\mathrm{dBmV}$ ）$+60 \mathrm{~dB}$

The RF Line

550 MHz CATV AMPLIFIER

... designed specifically for 550 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 7.0 GHz fT and an all gold metallization system.

- Specified for 77-Channel Performance
- Broadband Power Gain - @ $f=40-550 \mathrm{MHz}$
$\mathrm{G}_{\mathrm{p}}=12.5 \mathrm{~dB}$ (Typ) @ 50 MHz
$13 \mathrm{~dB}(\mathrm{Min}) @ 550 \mathrm{MHz}$
- Broadband Noise Figure @ 550 MHz
$\mathrm{NF}=8.5 \mathrm{~dB}$ (Max) MHW6122
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz Ion-Implanted Transistors

ABSOLUTE MAXIMUM RATINGS			
Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$V_{\text {in }}$	$+70$	dBmV
DC Supply Voltage	$V_{\text {CC }}$	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (VCC $=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	550	MHz
Power Gain - 50 MHz		G_{p}	12	12.5	13	dB
Power Gain - 550 MHz		G_{p}	12.5	-	-	dB
Slope		S	0.2	-	1.5	dB
Gain Flatness (Peak To Valley)		-	-	0.2	0.4	dB
Return Loss - Input/Output $\left(Z_{0}=750 \mathrm{hms}\right)$	40-550 MHz	IRL/ORL	18	-	-	dB
$\begin{aligned} & \text { Second Order Intermodulation Distortion } \\ & \text { (}{ }_{\text {out }}=+46 \mathrm{dBmV}, \text { Ch 2, M13, M22) } \\ & \text { V }_{\text {out }}=+44 \mathrm{dBmV} \text {, Ch 2, M30, M39) } \end{aligned}$		IMD	-	-	$\begin{aligned} & -72 \\ & -72 \end{aligned}$	dB
$\begin{aligned} & \text { Cross Modulation Distortion } \\ & \left(V_{\text {out }}=+46 \mathrm{dBmV}\right) \\ & \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}\right) \end{aligned}$	60-Channel FLAT 77-Channel FLAT	$\begin{array}{r} X_{M D_{60}} \\ \text { XMD }_{77} \\ \hline \end{array}$	-	$\begin{aligned} & -63 \\ & -65 \end{aligned}$	-62	dB
Composite Triple Beat $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right)$ $\left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}\right.$)	60-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \text { CTB60 } \\ & \text { СTB } \end{aligned}$		$\begin{aligned} & -62 \\ & -58 \end{aligned}$	-56	dB
Noise Figure $\text { (f }=550 \mathrm{MHz} \text {) }$		NF	-	7.0	8.5	dB
DC Current		IDC	-	210	240	mA

The RF Line

550 MHz CATV AMPLIFIERS

. . . designed specifically for 550 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 7.0 GHz fT and an all gold metallization system.

- Specified for >77 Channel Performance
- Broadband Power Gain - @ $f=40-550 \mathrm{MHz}$
$\mathrm{G}_{\mathrm{p}}=14 \mathrm{~dB}$ (Typ) @ 50 MHz
14.5 dB (Min) @ 550 MHz
- Broadband Noise Figure

NF $=7.5 \mathrm{~dB}$ (Max) MHW6141
7.5 dB (Max) MHW6142

- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz Ion-Implanted Transistors
ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+70	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (VCC $=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted)

Characteristic	Symbol	MHW6141			MHW6142			Unit
		Min	Typ	Max	Min	Typ	Max	
Frequency Range	BW	40	-	550	40	-	550	M Hz
Power Gain - 50 MHz	G_{p}	13.5	14	14.5	13.5	14	14.5	dB
Power Gain - 550 MHz	G_{p}	14.5	-	-	14.5	-	-	dB
Slope	S	0.2	-	1.5	0.2	-	1.5	dB
Gain Flatness (Peak To Vailey)	-	-	0.2	0.4	-	0.2	0.4	dB
$\begin{array}{ll} \begin{array}{l} \text { Return Loss - Input/Output } \\ \left(Z_{0}=750 \mathrm{hms}\right) \end{array} & 40-550 \mathrm{MHz} \\ \hline \end{array}$	IRLORL	18	-	-	18	-	-	dB
Second Order Intermodulation Distortion ($V_{\text {out }}=+46 \mathrm{dBmV}$ per ch., Ch 2, M13, M22) ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}$ per ch., Ch 2, M30, M39)	IMD	二	$\begin{array}{r} -75 \\ -73 \\ \hline \end{array}$	-70	-	$\begin{aligned} & -78 \\ & -75 \\ & \hline \end{aligned}$	-72	dB
Cross Modulation Distortion (Vout $=+46 \mathrm{dBmV}$ per ch.) 60-Channel FLAT (Vout $=+44 \mathrm{dBmV}$ per ch.) 77-Channel FLAT	$\begin{aligned} & \mathrm{XMD}_{60} \\ & \text { XMD }_{77} \end{aligned}$		$\begin{aligned} & -61 \\ & -62 \end{aligned}$	-59	-	$\begin{aligned} & -64 \\ & -65 \end{aligned}$	$-\overline{-62}$	dB
Composite Triple Beat (Vout $=+46, \mathrm{dBmV}$ per ch. $)$ 60-Channel FLAT (Vout $=+44 \mathrm{dBmV}$ per ch.) 77-Channel FLAT	$\begin{aligned} & \text { CTB }_{60} \\ & \text { CTB }_{77} \end{aligned}$		$\begin{aligned} & -59 \\ & -58 \end{aligned}$	-56	-	$\begin{aligned} & -62 \\ & -65 \end{aligned}$	-59	dB
Noise Figure $\text { (f }=550 \mathrm{MHz} \text {) }$	NF	-	-	7.5	-	6.5	7.5	dB
DC Current	1 DC	-	180	200	-	210	240	mA

The RF Line
 77-Channel (550 MHz) CATV Input/Output Trunk Amplifiers

MHW6171
 MHW6172

... designed specifically for 550 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 7 GHz f丁 and an all gold metallization system.

- Specified for 77-Channel Performance
- Broadband Power Gain - @ $\mathrm{f}=40-550 \mathrm{MHz}$ $\mathrm{G}_{\mathrm{p}}=17.2 \mathrm{~dB}$ (Typ)
- Broadband Noise Figure - @ $f=550 \mathrm{MHz}$ $\mathrm{NF}=6 \mathrm{~dB}$ (Typ)
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7 GHz Ion-Implanted Transistors

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+70	dBmV
DC Supply Voltage	V_{CC}	+28	$\mathrm{Vdc}_{\mathrm{dc}}$
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

Characteristic	Symbol	MHW6171			MHW6172			Unit
		Min	Typ	Max	Min	Typ	Max	
Frequency Range	BW	40	-	550	40	-	550	MHz
Power Gain 50 MHz	G_{p}	16.8	17.2	17.8	16.8	17.2	17.8	dB
Slope	S	0	$+0.5$	+1.5	0	+0.5	+1.5	dB
Gain Flatness (Peak To Valley)	-	-	0.2	0.4	-	0.2	0.4	dB
$\begin{aligned} & \text { Return Loss - Input/Output } \quad 40-550 \mathrm{MHz} \\ & \quad\left(\mathrm{Z}_{\mathrm{O}}=75 \mathrm{Ohms}\right) \end{aligned}$	IRL/ORL	18	-	-	18	-	-	dB
$\begin{aligned} & \text { Second Order Intermodulation } \\ & \left(V_{\text {out }}=+46 \mathrm{dBmV}\right. \text { per ch., Ch 2, M13, M22) } \\ & \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}\right. \text { per ch., Ch 2, M30, M39) } \end{aligned}$	IMD	-	$\begin{aligned} & -80 \\ & -76 \end{aligned}$	$\overline{-}$	-	$\begin{aligned} & -80 \\ & -78 \end{aligned}$	$\overline{-70}$	dB
Cross Modulation Distortion (V $\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ per ch.) 60-Channel FLAT $\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}$ per ch.) 77-Channel FLAT	$\begin{aligned} & \mathrm{XMD}_{60} \\ & \mathrm{XMD}_{77} \\ & \hline \end{aligned}$	-	$\begin{aligned} & -60 \\ & -62 \end{aligned}$	$\begin{gathered} - \\ -59 \\ \hline \end{gathered}$	-	$\begin{aligned} & -63 \\ & -65 \\ & \hline \end{aligned}$	$\overline{-62}$	dB
Composite Triple Beat Noise (Vout $=+46 \mathrm{dBmV}$ per ch.) 60-Channel FLAT (V out $=+44 \mathrm{dBmV}$ per ch.) 77-Channel FLAT	$\begin{aligned} & \text { CTB }_{60} \\ & \text { CTB }_{77} \\ & \hline \end{aligned}$	-	$\begin{array}{r} -60 \\ -58 \\ \hline \end{array}$	$\overline{-56}$	-	$\begin{aligned} & -62 \\ & -60 \\ & \hline \end{aligned}$	$\begin{gathered} - \\ -59 \end{gathered}$	dB
Noise Figure $\begin{array}{ll} \\ & 450 \mathrm{MHz} \\ & 550 \mathrm{MHz}\end{array}$	NF	-	$\begin{gathered} 5.5 \\ 6 \\ \hline \end{gathered}$	$\overline{7}$	-	$\begin{gathered} 5.5 \\ 6 \\ \hline \end{gathered}$	$\overline{7}$	dB
DC Current	${ }^{\prime} \mathrm{DC}$	-	180	200	-	210	240	mA

MHW6181
 MHW6182

The RF Line

550 MHz CATV AMPLIFIERS

... designed specifically for 550 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 7.0 GHz fT and an all gold metallization system

- Specified for >77 Channel Performance
- Broadband Power Gain - @ $\mathrm{f}=40-550 \mathrm{MHz}$
$\mathrm{G}_{\mathrm{p}}=18.2 \mathrm{~dB}$ (Typ) @ 50 MHz
$18.8 \mathrm{~dB}(\mathrm{Min})$ @ 550 MHz
- Broadband Noise Figure @ 550 MHz
$\mathrm{NF}=7.0 \mathrm{~dB}$ (Max) MHW6181
7.0 dB (Max) MHW6182
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz lon-Implanted Transistors

ELECTRICAL CHARACTERISTICS ($\mathrm{VCC}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted)

Characteristic	Symbol	MHW6181			MHW6182			Unit
		Min	Typ	Max	Min	Typ	Max	
Frequency Range	BW	40	-	550	40	-	550	MHz
Power Gain - 50 MHz	G_{p}	17.7	18.2	18.7	17.7	18.2	18.7	dB
Power Gain - 550 MHz	G_{p}	18.8	19.2	20	18.8	19.2	20	dB
Slope	S	0.5	-	2.0	0.5	-	2.0	dB
Gain Flatness (Peak To Valley)	-	-	0.2	0.4	-	0.2	0.4	dB
Return Loss - Input/Output $40-550 \mathrm{MHz}$ $\left(Z_{0}=750 \mathrm{hms}\right)$	[RL/ORL	18	-	-	18	-	-	dB
```Second Order Intermodulation Distortion (V Out = +46 dBmV per ch., Ch 2, M13, M22) (V Vut = +44 dBmV per ch., Ch 2, M30, M39)```	IMD	-	$\begin{aligned} & -83 \\ & -78 \end{aligned}$	$\begin{array}{r} -70 \\ -70 \\ \hline \end{array}$	-	$\begin{aligned} & -85 \\ & -80 \\ & \hline \end{aligned}$	$\overline{-72}$	dB
Cross Modulation Distortion    (Vout $=+46 \mathrm{dBmV}$ per ch.) 60-Channel FLAT   (Vout $=+44 \mathrm{dBmV}$ per ch.) 77-Channel FLAT	$X_{M D} 60$   XMD77	-	$\begin{aligned} & -58 \\ & -62 \\ & \hline \end{aligned}$	$\begin{gathered} - \\ -59 \\ \hline \end{gathered}$	-	$\begin{array}{r} -61 \\ -64 \\ \hline \end{array}$	$\begin{gathered} - \\ -62 \\ \hline \end{gathered}$	dB
$\begin{array}{ll} \text { Composite Triple Beat } \\ \left(V_{\text {out }}=+46 \mathrm{dBmV} \text { per ch. }\right) & \text { 60-Channel FLAT } \\ \text { V } \left._{\text {out }}=+44 \mathrm{dBmV} \text { per ch. }\right) & \text { 77-Channel FLAT } \\ \hline \end{array}$	$\begin{aligned} & \text { CTB }_{60} \\ & \text { CTB }_{77} \end{aligned}$	-	$\begin{aligned} & -58 \\ & -58 \end{aligned}$	-56	-	$\begin{aligned} & -62 \\ & -60 \end{aligned}$	-58	dB
$\begin{aligned} & \text { Noise Figure } \\ & \quad(f=550 \mathrm{MHz}) \end{aligned}$	NF	-	-	7.0	-	-	7.0	dB
DC Current	IDC	-	180	200	-	210	240	mA

## MHW6222



The RF Line
... designed specifically for 550 MHz CATV applications. Features ion-implanted arsenic emitter transistors with $7.0 \mathrm{GHz} \mathrm{f}_{\mathrm{T}}$ and an all gold metallization system.

- Specified for 77-Channel Performance
- Broadband Power Gain - ( $\mathrm{f}=40-550 \mathrm{MHz}$

$$
\begin{aligned}
\mathrm{G}_{\mathrm{p}}= & 22 \mathrm{~dB}(\text { Typ) @ } 50 \mathrm{MHz} \\
& 22 \mathrm{~dB}(\mathrm{Min}) @ 550 \mathrm{MHz}
\end{aligned}
$$

22 dB (Min) @ 550 MHz

- Broadband Noise Figure @ 550 MHz

$$
\mathrm{NF}=6.0 \mathrm{~dB}(\mathrm{Max})
$$

- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz Ion-Implanted Transistors


## 550 MHz CATV AMPLIFIER

CASE 714-04

DIM	MILIMMETERS		INCHES	
	MIN	MAX	MiN	MAX
A	-	4508	-	1.775
B	26.42	26.92	1040	1050
C	2057	21.34	0810	0.840
D	0.46	0.56	0018	0022
E	11.81	12.55	0455	0510
F	7.62	8.5	0.300	0372
G	254 BSC		0.100 BSC	
$J$	396 ESC		0.156 BSC	
K	800	850	0315	0.355
1	25.40 BSC		1.00 BSC	
N	4.19 BSC		0.165 BSC	
P	2.54 BSC		0.100 BSC	
0	3.76	427	0.148	0.168
R	-	1511	-	0.595
5	38.10 BSC		1500 BSC	
U	508 BSC		0200 BSC	
v	7118 BSC		0.280 BSC	
W	11.05	11.43	0435	0.450

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+60	dBmV
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	+28	Vdc
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\operatorname{V} \mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	550	MHz
Power Gain - 50 MHz	$\mathrm{G}_{\mathrm{p}}$	21.4	22	22.6	dB
Power Gain - 550 MHz	$\mathrm{G}_{\mathrm{p}}$	22	-	-	dB
Slope	S	0.2	-	1.5	d8
Gain Flatness (Peak To Valley)	-	-	0.2	0.4	dB
Return Loss - input/Output   $\left(Z_{0}=750 \mathrm{hms}\right)$ $40-550 \mathrm{MHz}$	IRLORL	18	-	-	dB
$\begin{aligned} & \text { Second Order Intermodulation Distortion } \\ & \text { (Vout }=+46 \mathrm{dBmV} \text { per ch., Ch 2, M13, M22) } \\ & \text { (Vout }=+46 \mathrm{dBmV} \text { per ch., Ch 2, M30, M39) } \end{aligned}$	IMD	$-$	$\begin{array}{r} -80 \\ -72 \\ \hline \end{array}$	$-66$	dB
Cross Modulation Distortion    (Vout $=+46 \mathrm{dBmV}$ per ch.)    V Vout $^{\text {( }}=+44 \mathrm{dBmV}$ per ch.) 60-Channel FLAT   C 77-Channel FLAT	$\begin{aligned} & \mathrm{XMD}_{60} \\ & \mathrm{XMD}_{77} \end{aligned}$	-	$\begin{aligned} & -60 \\ & -60 \end{aligned}$	$-57$	dB
Composite Triple Beat    (Vout $=+46 \mathrm{dBmV}$ per ch.)    $\left(V_{\text {out }}=+44 \mathrm{dBmV}\right.$ per ch.) 60-Channe! FLAT	$\begin{aligned} & \text { CTB }_{60} \\ & \text { СТВ } 77 \\ & \hline \end{aligned}$	-	$\begin{array}{r} -61 \\ -59 \\ \hline \end{array}$	$-57$	dB
Noise Figure $(f=550 \mathrm{MHz})$	NF	-	5.0	6.0	dB
DC Current	1 lc	-	210	240	mA

## The RF Line

## 77-Channel ( 550 MHz ) CATV Line Extender Amplifier

- Specified for 60- and 77-Channel Performance
- Broadband Power Gain - @ $\mathrm{f}=40-550 \mathrm{MHz}$ $\mathrm{G}_{\mathrm{p}}=27 \mathrm{~dB}$ (Тур)
- Broadband Noise Figure $\mathrm{NF}=6 \mathrm{~dB}(\mathrm{Typ}) @ 550 \mathrm{MHz}$
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7 GHz fT Ion-Implanted Transistors


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	+28	Vdc
Operating Case Temperature Range	$\mathrm{T}^{\mathrm{C}}$	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

## MHW6272

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	550	MHz
Power Gain	50 MHz	$\mathrm{G}_{\mathrm{p}}$	26.2	27	27.8

The RF Line

## 77-Channel (550 MHz) CATV Amplifier

## MHW6342

. . . designed specifically for 550 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 7 GHz fT and an all gold metallization system.

- Specified for 77-Channel Performance
- Broadband Power Gain - @ $\mathrm{f}=40-550 \mathrm{MHz}$

$$
\mathrm{G}_{\mathrm{p}}=34.5 \mathrm{~dB} \text { (Typ)@ } 00 \mathrm{MHz}
$$

35 dB (Min) @ 550 MHz

- Broadband Noise Figure @ 550 MHz
$N F=6 \mathrm{~dB}$ (Typ)
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7 GHz Ion-Implanted Transistors
34 dB GAIN
550 MHz
77-CHANNEL
CATV AMPLIFIER


CASE 714-04, STYLE 1

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	+28	$V_{d c \mid}$
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	550	MHz
Power Gain 50 MHz	$\mathrm{G}_{\mathrm{p}}$	33.5	34.5	35.5	dB
Power Gain 550 MHz	$\mathrm{G}_{\mathrm{p}}$	35	-	-	dB
Slope	S	0	+1	2	dB
Gain Flatness (Peak To Valley)	-	-	0.4	0.8	dB
Return Loss - Input/Output $40-550 \mathrm{MHz}$   $\left(\mathrm{Z}_{\mathrm{O}}=75 \mathrm{Ohms}\right)$ $450-550 \mathrm{MHz}$	IRL/ORL	$\begin{aligned} & 18 \\ & 16 \end{aligned}$	-	-	dB
$\begin{aligned} & \text { Second Order Intermodulation Distortion } \\ & \quad\left(V_{\text {out }}=+46 \mathrm{dBmV}\right. \text { per ch., Ch 2, M13, M22) } \\ & \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}\right. \text { per ch., Ch 2, M30, M39) } \end{aligned}$	IMD	-	$\begin{aligned} & -75 \\ & -70 \end{aligned}$	$\overline{-64}$	dB
Cross Modulation Distortion    $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right.$ per ch.) 60-Channel FLAT   $\left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}\right.$ per ch.) 77-Channel FLAT	$\begin{aligned} & \mathrm{XMD}_{60} \\ & \mathrm{XMD}_{77} \\ & \hline \end{aligned}$	-	$\begin{aligned} & -61 \\ & -59 \end{aligned}$	$\frac{-}{-57}$	dB
Composite Triple Beat    $\left(\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}\right.$ per ch.) 60-Channel FLAT   $\left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}\right.$ per ch.) 77-Channel FLAT	$\begin{aligned} & \text { CTB }_{60} \\ & \text { CTB }_{77} \end{aligned}$	-	$\begin{array}{r} -60 \\ -58 \\ \hline \end{array}$	$\frac{-}{-57}$	dB
Noise Figure $\quad 550 \mathrm{MHz}$	NF	-	5.5	6.5	dB
DC Current	${ }^{\prime} \mathrm{DC}$	-	310	340	mA

## Broadband RF Amplifier

 For IBM PC Network and IEEE 802.7 Modem Applications- IBM PC Network and Broadband LAN Compatible
- Extremely Small Size $-<8 \ln ^{2}$
- 2 Mbps Data Rate
- High Selectivity
- High Spectral Purity
- RUGGED - Continuous operation into any load. Can withstand input signals to +65 dBmV
- Low Power Consumption ( $<300 \mathrm{~mA}$ @ 12 V )
- Standard CATV Channels

MHW10000	T-14, J
MHW10001	2', O
MHW10002	3 3', P
MHW10003	T-14, M

## GENERAL DESCRIPTION

The MHW10000 Series RF Module is designed to provide the RF functions needed for implementation of a complete modem compatible with the IBM PC Network, and IEEE 802.7 broadband specifications. It is a full duplex, continuous phase frequency shift keyed (CPFSK) transceiver. The design is such that the module operation is completely compatible with a broadband coaxial cable environment such as a fully loaded 60 channel CATV distribution system. The transmitter occupied bandwidth and the receiver selectivity and overload characteristics have been controlled so that the module operation is completely transparent to the cable system operation.
The module transmitter operates at a carrier frequency of 50.75 to 62.75 MHz (See Table 1) with a total frequency deviation of 2 MHz . Transmitter occupied bandwidth is controlled by a SAW filter along with careful attention to the switching characteristics of the circuitry.

A companion receiver operates at a center frequency of 219 to 255 MHz (See Table 1). The circuitry is capable of operating with center frequency offsets up to $\pm 500$ kHz . RF and IF selectivity in the receiver is sufficient to allow normal operation in the presence of a fully loaded cable environment with no performance degradation. The receiver RF selectivity is provided by a two resonator bandpass filter at the RF amplifier input and a two resonator filter between the RF amplifier and the mixer. Receiver noise bandwidth control and adjacent channel selectivity is provided by two cascaded SAW filters in the IF circuitry.
Transmitter output and receiver input circuitry along with an input transformer provide the necessary duplexing function in addition to control of the return loss presented to the cable network in both "on" and "off" conditions. The input transformer also provides protection against voltage surges sometimes found on large cable systems.

## MHW10000 Series



Conversion of the analog RF data to the digital data stream is provided by a Motorola MC13055 data IC. This IC provides the final IF amplification and limiting, the quadrature detector, data carrier detect (squelch) and data shaper functions. Careful design attention was paid to optimizing receiver performance in the presence of frequency offsets, transmitter frequency deviation variations, mark-space tilt, system noise and limit case data flag patterns.

Three on board voltage regulators stabilize the module operation in the presence of supply voltage variations and noise. Shielding is also provided to allow normal operation in strong RF fields as well as the electrically noisy environment sometimes found in computing equipment.
Surface mount construction is used to provide an automated, highly repeatable assembly process. The basic card occupies about 8 square inches ( $2.5 \times 3 \times 0.4 \mathrm{in}$.) excluding the " $F$ " connector. Input power and data interface lines for the supporting modem circuitry are accessible thru an 18 pin edge connector. Block diagrams of both the receiver and transmitter functions are shown in Figures 1 and 2.

## MHW10000 Series

## MECHANICAL AND ENVIRONMENTAL SPECIFICATIONS

## GENERAL

Characteristics	Specifications
RF Connector	F, Femalo
Characteristic Impedance, Nominal	75 Ohms
Return Loss   Channel T-14 (Tx on)   Channel T-14 (Tx off)   Channel J   Out-of-channel ( $10-890 \mathrm{MHz}$ )	$\begin{aligned} & \geqslant 16 \mathrm{~dB} \\ & \geqslant 14 \mathrm{~dB} \\ & \geqslant 12 \mathrm{~dB} \\ & \geqslant 6 \mathrm{~dB} \end{aligned}$
Spurious Output Levels Tx off ( $10-108 \mathrm{MHz}$ ) Tx on (10-108 MHz) Tx on/off ( $108-890 \mathrm{MHz}$ )	$\begin{aligned} & \leqslant-26 \mathrm{dBmV} \\ & s-12 \mathrm{dBmV} \\ & \leqslant-18 \mathrm{dBmV} \end{aligned}$
Load   The AF modem is capable of oper short or open circuit without dam withstanding input signal levels a	ting continuously into a ge, and is capable of high as $\mathbf{6 5 ~ d B m V}$.
Power	$+12 \mathrm{Vdc}, \pm 10 \%$   300 mA Max   Max. ripple of 150 mV at frequencias of $\leqslant 50 \mathrm{kHz}$
Size (Nominal, exclusive of " $F$ "' conn.)	$2.5^{\prime \prime} \times 3^{\prime \prime} \times 0.4^{-}$

## TRANSMITTER

Center Frequency Range	$\mathrm{f}_{\mathrm{c}} \dagger \pm 300 \mathrm{kHz}$
Mark Frequency, $\mathrm{f}_{\mathrm{m}}$, (nominal)	$\mathrm{f}_{\mathrm{c}}+1 \mathrm{MHz}$
Space Frequency, $f_{\text {S }}$, (nominal)	$\mathrm{fc}_{\mathrm{c}}-1 \mathrm{MHz}$
Output Level @ 75 Ohms	$54 \mathrm{dBmV} \pm 4 \mathrm{~dB}$
Modulation Technique	Continuous Phase Frequency Shift Koying (CPFSK)
FSK Shift	$2 \mathrm{MHz} \pm 150 \mathrm{kHz}$
Carrier-to-hum	$>43 \mathrm{~dB}$
Carrier-to-noise in 4.2 MHz bandwidth within $\mathrm{f}_{\mathrm{c}} \pm 8 \mathrm{MHz}$	$>50 \mathrm{~dB}$
```Modulated Spectrum Shape* 3 dB Bandwidth (nominal) Down > 56 dB Down > 66 dB Down > 72 dB```	$\begin{aligned} & 3 \mathrm{MHz} \\ & \pm 3 \mathrm{MHz} \text { from } \mathrm{f}_{\mathrm{c}} \\ & \pm 4 \mathrm{MHz} \text { from } \mathrm{f}_{\mathrm{c}} \\ & \pm 6 \mathrm{MHz} \text { from } \mathrm{f}_{\mathrm{c}} \end{aligned}$
Transmitter, Quiet (RTS Off)	$\leqslant-30 \mathrm{dBmV}$
RTS Delay ("On" or "Off')	6 ± 1 micro-sec.

TXD driven by pseudo-random NRZI data at 2 Mbps rate. RTS kayed on/off by $5.8 \mathrm{kHz}, 10 \%$ duty cycle squaro wave.

ENVIRONMENTAL

Operating Temperature Range	$10^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$
Storage Temperature Range	$-40^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$
Operating Humidity Range	8% to 80%
	(non-condensing)
Storage Humidity Range	5% to 100%
	(non-condensing)

RECEIVER

Characteristics	Specifications
Center Frequency, f_{c}	†
Center Frequency Acceptance Range (Min.)	$\mathrm{f}_{\mathrm{c}} \pm 400 \mathrm{kHz}$
Bandwidth (3 dB, nominal)	4 MHz
Loca! Oscillator Frequency Stability	0.01% \{after 10 min . warmup)
Selectivity (at 6 MHz)	$\geqslant 50 \mathrm{~dB}$
Input Level (nominat)	8.5 dBmV
Operating Level Range	-7 to 24 dBmV
Carrier Detect Threshold	$-15 \mathrm{dBmV} \pm 4 \mathrm{~dB}$
Carrier Detect Delay	$<7 \mu$ s from application of input signal of $-7 \mathrm{dBmV}$
Data Edge Jitter	を ± 150 nano-seconds
Data Symmetry	$\begin{aligned} & \text { Better than } \pm 150 \mathrm{~ns} ; \\ & -7 \mathrm{dBmV} \text { to } \div 24 \\ & \mathrm{dBmV}, \mathrm{f}_{\mathrm{c}} \pm 400 \mathrm{kHz} \end{aligned}$
Data Symmetry Settling Time	12 bits, $6 \mu \mathrm{~s}$
Data Output Polarity	High Frequency Input = Mark
Data Output Level	TTL Compatible
Bit Error Rate	1E-9 or better with an input level of -7 dBmV and S / N of 33 dB (4.2 MHz bandwidth)

Table 1. Transmit/Recelve Frequencies

Part Number	Transmitter Center Frequency	Receiver Center Frequency
MHW10000	50.75 MHz	219 MHz
MHW10001	56.75 MHz	249 MHz
MHW10002	62.75 MHz	255 MHz
MHW10003	50.75 MHz	243 MHz

t See Table 1

MHW10000 Sęries

Figure 1. Transmitter Block Diagram

Figure 2. Receiver Block Diagram

Monolithic Microwave Integrated Circuit

... designed for narrow or wideband IF and RF applications in industrial and commercial systems up to 3 GHz .

- 12 dB Gain at 1000 MHz (Typ)
- Fully Cascadable
- 50Ω Input and Output Impedance
- Choice of Package Types

```
MONOLITHIC MICROWAVE INTEGRATED CIRCUIT
```

- Low Cost
- Surface Mount
- Hermetic
- Tape and Reel Package Options
- $4.0 \mathrm{dBm} \mathrm{P}_{\mathrm{o}} 1 \mathrm{~dB}$, at 500 MHz (Typ)
- Unconditionally stable

ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Parameters	Symbol	Ratings	Unit	
Circuit Current	I_{CC}	40	mAdc	
Input Power, RF	$\mathrm{P}_{\text {in }}$	+16	dBm	
Bias Voltage	V_{CC}	6	Vdc	
Storage Temperature	$0204 / 0211 \mathrm{~L}$ 0270	$\mathrm{~T}_{\text {stg }}$	-65 to +150 -65 to +200	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Parameters	Symbol	Ratings	Unit
Operating Current	I_{CC}	25	mA
Source Impedance	Z_{S}	50 to 75	Ω
Load Impedance	Z_{L}	50 to 75	Ω

THERMAL CHARACTERISTICS

Thermal Resistance, Die to Case	MWA0204 MWA0211L	R $_{\theta \mathrm{JC}}$	150	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	MWA0270		200	

DEVICE MARKING

MWA0211,L $=06$
ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{I}_{\mathrm{C}} \mathrm{CC}=25 \mathrm{~mA}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega\right.$, unless specified otherwise)

MWA0204, MWA02114, MWA0270

TYPICAL CHARACTERISTICS

Figure 1. Gain versus Frequency

Figure 3. Input VSWR versus Frequency

Figure 5. Reverse Isolation versus Frequency

Figure 2. Noise Figure versus Frequency

Figure 4. Output VSWR versus Frequency

Figure 6. Output Power versus Power

Figure 7. Blas Currrent versus Bias Voltage

Figure 8. Output power at 1 dB Gain Compression versus Blas Current

Table 1 - Typical S-Parameters and Stability Factor K MWA0204

$\begin{gathered} l_{C C} \\ (m A) \end{gathered}$	$\begin{gathered} \mathbf{f} \\ (\mathrm{MHz}) \end{gathered}$	\mathbf{S}_{11}		\mathbf{S}_{21}			S_{12}		\mathbf{S}_{22}		K	
		\|S ${ }_{11} \mid$	$\angle \phi$	S_{21} (dB)	$\left\|\mathbf{S}_{21}\right\|$	$\angle \phi$	[S12]	$\angle \phi$	\|S22		$\angle \phi$	
25	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 0.106 \\ & 0.107 \end{aligned}$	174.2 164.4	$\begin{aligned} & 12.48 \\ & 12.46 \end{aligned}$	$\begin{gathered} 4.21 \\ 4.2 \end{gathered}$	$\begin{aligned} & 173.1 \\ & 166.5 \end{aligned}$	$\begin{aligned} & 0.121 \\ & 0.121 \end{aligned}$	$\begin{aligned} & 2.3 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 0.132 \\ & 0.131 \end{aligned}$	$\begin{aligned} & -13.5 \\ & -23.3 \end{aligned}$	$\begin{aligned} & 1.195 \\ & 1.196 \end{aligned}$	
	$\begin{aligned} & 400 \\ & 600 \\ & 800 \end{aligned}$	$\begin{gathered} 0.093 \\ 0.07 \\ 0.051 \end{gathered}$	$\begin{gathered} 149.5 \\ 126.3 \\ 88.2 \end{gathered}$	$\begin{aligned} & 12.25 \\ & 11.98 \\ & 11.63 \end{aligned}$	$\begin{gathered} 4.1 \\ 3.97 \\ 3.81 \end{gathered}$	$\begin{aligned} & 153.7 \\ & 141.2 \\ & 129.4 \end{aligned}$	$\begin{aligned} & 0.124 \\ & 0.127 \\ & 0.134 \end{aligned}$	$\begin{gathered} 5.8 \\ 9.9 \\ 11.1 \end{gathered}$	$\begin{gathered} \hline 0.149 \\ 0.168 \\ 0.19 \\ \hline \end{gathered}$	$\begin{aligned} & \hline-41.1 \\ & -56.4 \\ & -66.9 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.199 \\ 1.208 \\ 1.2 \\ \hline \end{gathered}$	
	$\begin{aligned} & 1000 \\ & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 0.052 \\ & 0.116 \\ & 0.156 \end{aligned}$	41.2 -20.3 -45.7	$\begin{gathered} 11.23 \\ 10.15 \\ 9.04 \end{gathered}$	$\begin{aligned} & \hline 3.64 \\ & 3.22 \\ & 2.83 \\ & \hline \end{aligned}$	$\begin{aligned} & 118 \\ & 92.3 \\ & 69.3 \end{aligned}$	$\begin{gathered} 0.139 \\ 0.16 \\ 0.182 \end{gathered}$	$\begin{gathered} 13.3 \\ 15.2 \\ 14 \end{gathered}$	$\begin{aligned} & 0.201 \\ & 0.228 \\ & 0.235 \end{aligned}$	$\begin{gathered} \hline-74 \\ -85.1 \\ -95.8 \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.208 \\ 1.19 \\ 1.177 \\ \hline \end{gathered}$	
	$\begin{aligned} & 2500 \\ & 3000 \\ & 3500 \end{aligned}$	$\begin{aligned} & 0.145 \\ & 0.083 \\ & 0.043 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-64.4 \\ & -89.6 \\ & 143.7 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 8.05 \\ & 7.06 \\ & 6.29 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.53 \\ & 2.25 \\ & 2.06 \\ & \hline \end{aligned}$	$\begin{aligned} & 48.7 \\ & 28.8 \\ & 10.3 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.207 \\ & 0.229 \\ & 0.249 \end{aligned}$	$\begin{gathered} \hline 9.9 \\ 5.4 \\ -0.9 \\ \hline \end{gathered}$	$\begin{gathered} 0.23 \\ 0.225 \\ 0.224 \end{gathered}$	- 107.8 -123.3 -143.5	$\begin{gathered} 1.17 \\ 1.179 \\ 1.17 \end{gathered}$	
	$\begin{array}{r} 4000 \\ 5000 \\ 6000 \\ \hline \end{array}$	0.153 0.421 0.644	$\begin{aligned} & 96.5 \\ & 66.5 \\ & 49.2 \\ & \hline \end{aligned}$	$\begin{gathered} 5.31 \\ 2.89 \\ -0.14 \\ \hline \end{gathered}$	$\begin{aligned} & 1.84 \\ & 1.39 \\ & 0.98 \\ & \hline \end{aligned}$	$\begin{gathered} -8.1 \\ -41.5 \\ -68.6 \\ \hline \end{gathered}$	$\begin{aligned} & 0.262 \\ & 0.278 \\ & 0.277 \end{aligned}$	$\begin{array}{r} -7.6 \\ -18.8 \\ -29.8 \\ \hline \end{array}$	$\begin{aligned} & 0.221 \\ & 0.238 \\ & 0.318 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline-160.7 \\ 162 \\ 123.8 \\ \hline \end{array}$	$\begin{aligned} & 1.181 \\ & 1.163 \\ & 1.096 \\ & \hline \end{aligned}$	

Table 2 - Typical S-Parameters and Stability Factor K MWA0211L

$\begin{aligned} & \text { ICC } \\ & \text { (mA) } \end{aligned}$	$\stackrel{f}{\left(\mathrm{MHz}^{\prime}\right)}$	S_{11}		\mathbf{S}_{21}			S_{12}		S_{22}		K
		$\left\|S_{11}\right\|$	$\angle \phi$	S_{21} (dB)	$\left\|\mathbf{S}_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	$\left\|S_{22}\right\|$	$\angle \phi$	
25	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{aligned} & 0.093 \\ & 0.093 \end{aligned}$	$\begin{aligned} & 172.7 \\ & 167.3 \end{aligned}$	$\begin{gathered} 12.7 \\ 12.66 \end{gathered}$	$\begin{gathered} 4.31 \\ 4.3 \end{gathered}$	$\begin{gathered} 173.8 \\ 167 \end{gathered}$	$\begin{aligned} & 0.121 \\ & 0.122 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 0.142 \\ & 0.144 \end{aligned}$	$\begin{aligned} & -11.7 \\ & -23.2 \end{aligned}$	$\begin{aligned} & 1.179 \\ & 1.178 \end{aligned}$
	$\begin{aligned} & 400 \\ & 600 \\ & 800 \end{aligned}$	$\begin{aligned} & 0.083 \\ & 0.082 \\ & 0.071 \end{aligned}$	$\begin{aligned} & 151.7 \\ & 142.5 \\ & 137.1 \end{aligned}$	$\begin{aligned} & 12.48 \\ & 12.26 \\ & 11.97 \end{aligned}$	$\begin{gathered} 4.21 \\ 4.1 \\ 3.97 \end{gathered}$	$\begin{aligned} & 153.8 \\ & 141.4 \\ & 129.5 \end{aligned}$	$\begin{aligned} & 0.125 \\ & 0.128 \\ & 0.136 \end{aligned}$	$\begin{gathered} 7.2 \\ 10.1 \\ 13 \end{gathered}$	$\begin{aligned} & 0.158 \\ & 0.171 \\ & 0.186 \end{aligned}$	$\begin{aligned} & -47.7 \\ & -69.6 \\ & -86.4 \end{aligned}$	$\begin{aligned} & 1.196 \\ & 1.178 \\ & 1.161 \end{aligned}$
	$\begin{aligned} & 1000 \\ & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 0.066 \\ & 0.036 \\ & 0.069 \end{aligned}$	$\begin{aligned} & 127.2 \\ & 140.1 \\ & 151.9 \end{aligned}$	$\begin{gathered} 11.57 \\ 10.52 \\ 9.28 \end{gathered}$	$\begin{aligned} & 3.79 \\ & 3.36 \\ & 2.91 \end{aligned}$	$\begin{gathered} 117.4 \\ 90.7 \\ 66.6 \end{gathered}$	$\begin{aligned} & 0.141 \\ & 0.166 \\ & 0.191 \end{aligned}$	$\begin{aligned} & 12.9 \\ & 16.3 \\ & 14.8 \end{aligned}$	$\begin{aligned} & 0.206 \\ & 0.233 \\ & 0.248 \end{aligned}$	$\begin{aligned} & -103.3 \\ & -127.8 \\ & -153.8 \end{aligned}$	$\begin{aligned} & 1.163 \\ & 1.126 \\ & 1.116 \end{aligned}$
	$\begin{aligned} & 2500 \\ & 3000 \\ & 3500 \end{aligned}$	$\begin{gathered} 0.11 \\ 0.179 \\ 0.289 \end{gathered}$	$\begin{gathered} 173.4 \\ 153.5 \\ 146 \\ \hline \end{gathered}$	$\begin{aligned} & 8.08 \\ & 6.84 \\ & 5.56 \\ & \hline \end{aligned}$	$\begin{array}{r} 2.54 \\ 2.2 \\ 1.9 \\ \hline \end{array}$	$\begin{aligned} & 57.3 \\ & 37.9 \\ & 20.1 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.214 \\ & 0.231 \\ & 0.237 \end{aligned}$	$\begin{gathered} 20.8 \\ 15.3 \\ 7.9 \end{gathered}$	$\begin{aligned} & 0.265 \\ & 0.228 \\ & 0.224 \end{aligned}$	$\begin{gathered} -156.4 \\ -167 \\ -173.6 \end{gathered}$	$\begin{aligned} & 1.105 \\ & 1.142 \\ & 1.155 \end{aligned}$
	$\begin{aligned} & 4000 \\ & 5000 \\ & 6000 \end{aligned}$	$\begin{aligned} & 0.342 \\ & 0.487 \\ & 0.573 \end{aligned}$	$\begin{gathered} 132.4 \\ 107.5 \\ 89.7 \end{gathered}$	$\begin{gathered} 4.37 \\ 1.86 \\ -0.74 \end{gathered}$	$\begin{aligned} & 1.65 \\ & 1.24 \\ & 0.92 \end{aligned}$	$\begin{gathered} 4.6 \\ -22.8 \\ -44.5 \end{gathered}$	$\begin{gathered} 0.252 \\ 0.259 \\ 0.26 \end{gathered}$	$\begin{gathered} 2.6 \\ -6.2 \\ -14.8 \end{gathered}$	$\begin{aligned} & 0.194 \\ & 0.237 \\ & 0.356 \end{aligned}$	$\begin{gathered} -171.1 \\ 177 \\ 159.2 \end{gathered}$	$\begin{aligned} & 1.183 \\ & 1.205 \\ & 1.222 \end{aligned}$

Table 3 - Typical S-Parameters and Stability Factor K MWA0270

$\begin{aligned} & \mathrm{ICC} \\ & (\mathrm{~mA}) \end{aligned}$	$\stackrel{f}{(M H z)}$	\mathbf{S}_{11}		S_{21}			S_{12}		\mathbf{S}_{22}		K
		$\left\|S_{11}\right\|$	$\angle \phi$	S_{21} (dB)	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	[S22]	$\angle \phi$	
25	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	$\begin{gathered} 0.111 \\ 0.1 \end{gathered}$	$\begin{gathered} 179 \\ 177.4 \end{gathered}$	$\begin{gathered} 12.6 \\ 12.56 \end{gathered}$	$\begin{aligned} & 4.27 \\ & 4.25 \end{aligned}$	$\begin{aligned} & 175.2 \\ & 170.4 \end{aligned}$	$\begin{aligned} & 0.121 \\ & 0.122 \end{aligned}$	$\begin{gathered} 1.3 \\ 2 \end{gathered}$	$\begin{aligned} & 0.146 \\ & 0.147 \end{aligned}$	$\begin{aligned} & -10.6 \\ & -19.6 \end{aligned}$	$\begin{gathered} 1.178 \\ 1.18 \end{gathered}$
	$\begin{aligned} & 400 \\ & 600 \\ & 800 \end{aligned}$	$\begin{aligned} & 0.087 \\ & 0.072 \\ & 0.065 \end{aligned}$	$\begin{aligned} & 176.4 \\ & 179.7 \\ & -171 \end{aligned}$	$\begin{aligned} & 12.49 \\ & 12.46 \\ & 12.36 \end{aligned}$	$\begin{gathered} 4.21 \\ 4.2 \\ 4.15 \\ \hline \end{gathered}$	161.2 152 142.7	$\begin{aligned} & 0.122 \\ & 0.125 \\ & 0.128 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 5.6 \\ & 7.1 \end{aligned}$	$\begin{aligned} & 0.154 \\ & 0.171 \\ & 0.183 \\ & \hline \end{aligned}$	$\begin{aligned} & -36.9 \\ & -54.3 \\ & -66.3 \end{aligned}$	$\begin{aligned} & 1.187 \\ & 1.172 \\ & 1.161 \\ & \hline \end{aligned}$
	$\begin{aligned} & 1000 \\ & 1500 \\ & 2000 \end{aligned}$	$\begin{aligned} & 0.061 \\ & 0.116 \\ & 0.205 \end{aligned}$	- 151.1 - 119.9 - 126.9	$\begin{aligned} & 12.28 \\ & 11.82 \\ & 10.99 \end{aligned}$	$\begin{gathered} \hline 4.11 \\ 3.9 \\ 3.55 \\ \hline \end{gathered}$	$\begin{gathered} 133.5 \\ 109.9 \\ 86.8 \\ \hline \end{gathered}$	$\begin{aligned} & 0.132 \\ & 0.145 \\ & 0.159 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 10 \\ & 8.7 \end{aligned}$	0.195 0.211 0.208	$\begin{gathered} -77.6 \\ -99 \\ -111 \end{gathered}$	$\begin{aligned} & 1.145 \\ & 1.093 \\ & 1.057 \end{aligned}$
	$\begin{aligned} & 2500 \\ & 3000 \\ & 3500 \end{aligned}$	$\begin{gathered} 0.276 \\ 0.33 \\ 0.364 \end{gathered}$	$\begin{aligned} & -141.9 \\ & -157.6 \\ & -171.1 \end{aligned}$	$\begin{aligned} & 9.86 \\ & 8.53 \\ & 7.11 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.11 \\ & 2.67 \\ & 2.27 \\ & \hline \end{aligned}$	$\begin{array}{r} \hline 65.6 \\ 47.3 \\ 31.1 \\ \hline \end{array}$	$\begin{aligned} & 0.17 \\ & 0.177 \\ & 0.183 \end{aligned}$	$\begin{gathered} 5.7 \\ 2.1 \\ -0.4 \end{gathered}$	0.186 0.188 0.206	$\begin{array}{r} -118.7 \\ -116.5 \\ -116.1 \end{array}$	$\begin{aligned} & 1.063 \\ & 1.096 \\ & 1.154 \end{aligned}$
	$\begin{aligned} & 4000 \\ & 5000 \\ & 6000 \end{aligned}$	$\begin{aligned} & 0.382 \\ & 0.401 \\ & 0.407 \end{aligned}$	$\begin{gathered} 176.8 \\ 156 \\ 138.1 \end{gathered}$	$\begin{aligned} & 5.76 \\ & 3.39 \\ & 1.35 \end{aligned}$	$\begin{aligned} & 1.94 \\ & 1.48 \\ & 1.17 \end{aligned}$	$\begin{gathered} 17.5 \\ -5 \\ -23.6 \\ \hline \end{gathered}$	$\begin{gathered} 0.186 \\ 0.19 \\ 0.196 \end{gathered}$	$\begin{gathered} -3.7 \\ -8 \\ -11.7 \end{gathered}$	$\begin{aligned} & 0.237 \\ & 0.321 \\ & 0.422 \end{aligned}$	$\begin{array}{r} -120.5 \\ -135.4 \\ -149.2 \\ \hline \end{array}$	$\begin{aligned} & 1.229 \\ & 1.373 \\ & 1.456 \end{aligned}$

TYPICAL CHARACTERISTICS (MWA0270 ONLY)

Figure 9. Gain versus Bias Current

Figure 10. Output Power at 1 dB Gain Compression Noise Figure and Gain versus Temperature

MMIC AMPLIFIER APPLICATIONS INFORMATION

Figure 11. Typical Biasing Configuration

Operation

Operation of the Monolithic Microwave Integrated Circuit as an amplifier is achieved by simply connecting it to 50 ohm driving source and load impedances with dc blocking capacitors at both input and output.

DC Bias
A positive current must be supplied to the device output terminal. Power supply decoupling elements must include resistive current limiting. Device output voltage at the recommended operating current of 25 mA is typically 5 Vdc , see Fig. 7, Rbias (Figure 9) is selected to permit the device to draw 25 mA . For example, when operating with a 12 Vdc supply:

$$
R_{\text {bias }}=\frac{(12-5)}{0.025}=280 \text { ohms }
$$

The nearest standard value of $\mathbf{2 7 0}$ ohms would suffice.

External Decoupling Impedance

In all cases the external bias (decoupling elements) must present an impedance which is large compared to
the 50Ω load impedance to minimize RF gain reduction. The loss in gain due to the decoupling impedance is given by the equation:

$$
\text { Loss }=-20 \log \frac{Z_{D}}{Z_{D}+25} d B
$$

where $Z_{D}=$ decoupling impedance in ohms. For example, if $Z_{D}=1 \mathrm{k} \Omega$, Loss $=0.214 \mathrm{~dB}$.
The RF choke is not mandatory, but including it improves gain by raising the dc supply voltage decoubling impedance. 4 turns of \#26 AWG enameled wire wound on a ferrite bead is suggested for the choke.

Low Frequency Response

The value of the blocking capacitors determines the low frequency response of the amplifier. The following expression is used to determine the blocking capacitor value to yield a desired 3 dB low frequency corner (fLFC).

$$
\mathrm{C}_{\text {Block }}(\text { Farads })=\frac{1}{100 \pi \mathrm{fLFC}(\mathrm{~Hz})}
$$

Monolithic Microwave Integrated Circuit

... designed for narrow or wideband IF and RF applications in industrial and commercial systems up to 3 GHz .

- 12 dB Gain at 500 MHz (Typ)
- Fully Cascadable
- 50Ω Input and Output Impedance

MONOLITHIC MICROWAVE INTEGRATED CIRCUIT

- Choice of Package Types
- Low Cost
- Surface Mount
- Hermetic
- Available In Both Standard Profile (MWA0311) and Low Profile (MWA0311L)
- Tape and Reel Packaging Options
- 10.5 dBm Po 1 dB at 500 MHz (Typ)
- Unconditionally Stable

ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right)$

Parameters	Symbol	Ratings	Unit	
Circuit Current (Note 1)	I^{CC}	40	mAdc	
Input Power, RF	$\mathrm{P}_{\text {in }}$	+16	dBm	
Bias Voltage	V_{CC}	6	Vdc	
Storage Temperature	$0304 / 0311 \mathrm{~L}$	$\mathrm{~T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
	0370		-65 to +200	
Junction Temperature	$0304 / 0311 \mathrm{~L}$	$\mathrm{~T}^{\prime}$	150	${ }^{\circ} \mathrm{C}$
	0370		200	

RECOMMENDED OPERATING CONDITIONS

Parameters	Symbol	Ratings	Unit
Operating Current	I_{CC}	35	mA
Source Impedance	Z_{S}	50 to 75	Ω
Load Impedance	Z_{L}	50 to 75	Ω

THERMAL CHARACTERISTICS

Thermal Resistance, Die to Case	MWA0304	R $_{\theta \text { IC }}$	150	${ }^{\circ} \mathrm{C} / \mathrm{W}$
	MWA0311L		200	
	MWA0370		130	

DEVICE MARKING

MWA0311L $=14$
ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, I_{C C}=35 \mathrm{~mA}, \mathrm{Z}_{\mathrm{S}}=\mathrm{Z}_{\mathrm{L}}=50 \Omega\right.$, unless specified otherwise)

[^17]

Figure 1. Gain versus Frequency

Figure 2. Noise Figure versus Frequency

MWA0304

Frequency (MHz)	\mathbf{S}_{11} (mag)	\mathbf{S}_{11} (ang)	\mathbf{S}_{21} (dB)	\mathbf{S}_{21} (mag)	\mathbf{S}_{21} (ang)	\mathbf{S}_{12} (mag)	\mathbf{S}_{12} (ang)	\mathbf{S}_{22} (mag)	\mathbf{S}_{22} (ang)	K
100	0.059	168.5	12.61	4.27	172.9	0.123	3.2	0.169	-10.3	1.18
200	0.052	156.9	12.57	4.25	166.3	0.124	2.9	0.173	-18.8	1.18
400	0.044	125.1	12.35	4.15	153.3	0.124	6.1	0.183	-35.6	1.19
600	0.034	72.6	12.11	4.03	140.7	0.131	9.2	0.199	-49	1.18
800	0.052	19.1	11.75	3.87	128.5	0.134	11.5	0.21	-58.2	1.19
1000	0.08	-4.8	11.37	3.7	116.9	0.144	13.2	0.219	-66.9	1.17
1500	0.155	-41.1	10.23	3.25	90.3	0.162	14.8	0.243	-78	1.16
2000	0.185	-61.7	9.08	2.84	67.2	0.185	13	0.244	-87.9	1.16
2500	0.153	-83	8.03	2.52	45.9	0.207	10.1	0.235	-100.1	1.16
3000	0.085	-122	7.03	2.25	25.9	0.229	5.4	0.23	-114.1	1.17
3500	0.077	140.5	6.09	2.01	7.25	0.243	-1	0.231	-133	1.19
4000	0.186	93.7	5.08	1.79	-11	0.258	-6.7	0.23	-149.4	1.19
5000	0.443	62.4	2.7	1.36	-43.7	0.279	-17.4	0.236	173.2	1.14
6000	0.648	44.6	-0.22	0.97	-70.7	0.287	-31	0.274	127.6	1.09

Figure 3. Typical S S-Parameters and Stability Factor K

MWA0304, MWA0311L, MWA0370

Figure 4. Input VSWR versus Frequency

Figure 5. Output VSWR versus Frequency

MWA0311L

Frequency (MHz)	\mathbf{S}_{11} (mag)	\mathbf{S}_{11} (ang)	\mathbf{S}_{21} $(\mathrm{~dB})$	\mathbf{S}_{21} (mag)	\mathbf{S}_{21} (ang)	\mathbf{S}_{12} (mag)	\mathbf{S}_{12} (ang)	\mathbf{S}_{22} (mag)	\mathbf{S}_{22} (ang)	K
100	0.092	173.7	12.8	4.37	174.3	0.119	1.5	0.134	-12.8	1.19
200	0.089	166.7	12.77	4.35	168.8	0.119	5	0.139	-21.3	1.19
400	0.078	155.4	12.62	4.27	158.3	0.127	7.3	0.149	-42	1.16
600	0.074	143.6	12.47	4.2	147.9	0.129	13.4	0.165	-58.5	1.16
800	0.06	135.7	12.19	4.07	137.9	0.132	16.6	0.176	-72	1.17
1000	0.05	133.2	11.85	3.91	128.5	0.139	19.1	0.192	-84.9	1.16
1500	0.035	176.3	10.97	3.53	105.4	0.162	24.1	0.221	-107.3	1.12
2000	0.083	-159.1	9.88	3.12	84.4	0.184	25.9	0.209	-127	1.1
2500	0.15	-171.1	8.64	2.7	66.3	0.198	26	0.199	-139.8	1.12
3000	0.214	173.4	7.38	2.34	50.2	0.22	23.5	0.215	-146.9	1.11
3500	0.276	161.7	6.1	2.02	36.8	0.233	22.7	0.226	-148.7	1.13
4000	0.334	150.7	4.9	1.76	24.7	0.238	22.3	0.234	-145.3	1.16
5000	0.414	131.5	2.64	1.36	5.24	0.259	19.6	0.277	-140.5	1.17
6000	0.5	113.2	0.56	1.07	-10.5	0.284	17.3	0.327	-151.2	1.14

Figure 6. Typical S-Parameters and Stability Factor K

Figure 7. Reverse Isolation versus Frequency

Figure 8. Output Power At 1 dB Gain Compression versus Bias Current

MWA0370

Frequency (MHz)	\mathbf{S}_{11} (mag)	S11 (ang)	S_{21} (dB)	$\begin{gathered} S_{21} \\ \text { (mag) } \end{gathered}$	S_{21} (ang)	$\begin{gathered} \mathrm{S}_{12} \\ \text { (mag) } \end{gathered}$	S_{12} (ang)	$\begin{gathered} \mathrm{S}_{22} \\ \text { (mag) } \end{gathered}$	$\begin{gathered} \mathrm{S}_{22} \\ \text { (ang) } \end{gathered}$	K
100	0.046	-178.6	12.84	4.39	175.2	0.12	1.1	0.181	-8.8	1.17
200	0.045	- 178.4	12.84	4.38	170.5	0.121	2.2	0.178	-15.6	1.17
400	0.037	- 174.5	12.8	4.37	161.3	0.122	4.6	0.185	-29.7	1.17
600	0.028	-156.5	12.76	4.34	151.9	0.125	6.7	0.191	-44	1.15
800	0.031	-125.5	12.68	4.31	142.7	0.129	8.4	0.198	-56.9	1.14
1000	0.047	- 104.5	12.59	4.26	133.2	0.133	10.4	0.205	-68.5	1.12
1500	0.122	-99.6	12.11	4.03	109.5	0.147	12.1	0.216	-92.8	1.07
2000	0.201	-114.8	11.24	3.65	86.8	0.162	11	0.213	109.7	1.04
2500	0.27	-134	10.09	3.2	65.5	0.176	8.4	0.203	-117.5	1.03
3000	0.32	-151.4	8.73	2.73	47.4	0.185	5.3	0.2	-117.6	1.06
3500	0.354	-166.1	7.34	2.33	31.2	0.19	1.9	0.221	-116.8	1.11
4000	0.366	- 179.6	6.02	2	18.2	0.196	-0.4	0.256	-118.1	1.16
5000	0.389	158.3	3.68	1.53	-3.4	0.205	-5.1	0.335	-126.2	1.26
6000	0.394	137.8	1.73	1.22	-21.9	0.214	-9.2	0.414	- 137.1	1.33

Figure 9. Typical S-Parameters and Stability Factor K

Figure 10. Power Gain versus Blas Current

Figure 12. Output Power at 1 dB Gain Compression, Noise Figure and Gain versus Temperature

Figure 11. Bias Current versus Bias Voltage

Figure 13. Output Power versus input Power

MMIC AMPLIFIER APPLICATIONS INFORMATION

Figure 14. Typical Blasing Configuration

Operation

Operation of the Monolithic Microwave Integrated Circuit as an amplifier is achieved by simply connecting it to 50 ohm driving source and load impedances with dc blocking capacitors at both input and output.

DC Bias

A positive current must be supplied to the device output terminal. Power supply decoupling elements must include resistive current limiting. Device output voltage at the recommended operating current of 35 mA is typicaily 5 Vdc (see Fig. 11) Rbias (Figure 9) is selected to permit the device to draw 35 mA . For example, when operating with a 12 Vdc supply:

$$
R_{\text {bias }}=\frac{(12-5)}{0.035}=200 \mathrm{ohms}
$$

External Decoupling Impedance

In all cases the external bias (decoupling elements) must present an impedance which is large compared to the 50Ω load impedance to minimize RF gain reduction.

The loss in gain due to the decoupling impedance is given by the equation:

$$
\text { Loss }=-20 \log \frac{Z_{D}}{Z_{D}+25} d B
$$

Where $Z_{D}=$ decoupling impedance in ohms. For example, if $Z_{D}=1 \mathrm{k}$, Loss $=0.214 \mathrm{~dB}$.
The RF choke is not mandatory, but including it improves gain by raising the dc supply voltage decoupling impedance. 4 turns of \#26 AWG enameled wire would on a ferrite bead is suggested for the choke.

Low Frequency Response

The value of the blocking capacitors determines the low frequency response of the amplifier. The following expression is used to determine the blocking capacitor value to yield a desired $\mathbf{3 d B}$ low frequency corner (fLFC).

$$
C_{\text {Block }}(\text { Farads })=\frac{1}{100 \tau \mathrm{fLFC}(\mathrm{~Hz})}
$$

The RF Line

DC-400 MHz WIDEBAND GENERAL-PURPOSE HYBRID AMPLIFIERS
. . . single stage amplifiers designed for broadband linear applications up to 400 MHz .

- Low-Cost TO-39 Type Package
- Gain 14 dB Typ
- 50Ω Input and Output Impedance
- Fully Cascadable for Any Gain
- Thin Film Construction
- Hermetic Package
- Guaranteed Performance from $-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

MAXIMUM RATINGS

Rating	Symbol	Value			Unit
		MWA110	MWA120	MWA130	
RF Input Power	$P_{\text {in }}$	$\longrightarrow 100 \longrightarrow$			mW
DC Supply Current	ID	25	55	100	mA
Maximum Case Temperature	TC	$\longrightarrow 125 \longrightarrow$			${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	$\longrightarrow-65$ to $+200 \longrightarrow$			${ }^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Device Voltage	V_{D}	2.9	5.0	5.5	Vdc
Device Current	ID_{D}	10	25	60	mAdc
Decoupling Impedance	Z_{D}	620	620	240	Ω

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R $_{\text {日JC }}$	110	${ }^{\circ} \mathrm{C} / \mathrm{W}$

MWA110, MWA120, MWA130

ELECTRICAL CHARACTERISTICS ${ }^{(T}{ }_{C}=-25$ to $+125^{\circ} \mathrm{C}, 50 \Omega$ system and specified operating conditions)

\begin{tabular}{|c|c|c|c|c|c|}
\hline Characteristic \& Symbol \& Min \& Typ \& Max \& Unit \\
\hline Frequency Range \& BW \& 0.1 \& - \& 400 \& M \({ }^{2}\) \\
\hline Power Gain (f = 100 MHz) \& \(\mathrm{G}_{\mathrm{p}}\) \& 13 \& 14 \& - \& dB \\
\hline Response Flatness \& F \& - \& 0 \& \(\pm 1.0\) \& dB \\
\hline \begin{tabular}{rr}
Input VSWR \& MWA110/120 \\
MWA130
\end{tabular} \& - \& - \& - \& \[
\begin{gathered}
\text { 2.5:1 } \\
3: 1
\end{gathered}
\] \& - \\
\hline Output VSWR MWA110/120/130 \& - \& - \& - \& 2.5:1 \& - \\
\hline Output @ 1 dB Gain Compression

MWA110
MWA 120

MWA130 \& \& - \& $$
\begin{aligned}
& -2.5 \\
& +8.2 \\
& +18
\end{aligned}
$$ \& - \& dBm

\hline | Noise Figure |
| :--- |
| MWA1 10 |
| MWA120 |
| MWA130 | \& NF \& - \& \[

$$
\begin{aligned}
& 4.0 \\
& 5.5 \\
& 7.0
\end{aligned}
$$
\] \& - \& dB

\hline Reverse Isolation $\begin{array}{ll}\text { MWA110 } \\ \\ \\ \text { MWA120 } \\ \text { MWA130 }\end{array}$ \& $\mathbf{P}_{\mathbf{R I}}$ \& - \& $$
\begin{aligned}
& 18.8 \\
& 19.2 \\
& 16.8
\end{aligned}
$$ \& - \& dB

\hline Harmonic Output

$$
\begin{array}{r}
\text { MWA } 110\left(P_{\text {out }}=-9 \mathrm{dBm}\right) \\
\text { MWA120 }\left(P_{\text {out }}=0 \mathrm{dBm}\right) \\
\text { MWA130 }\left(P_{\text {out }}=+10 \mathrm{dBm}\right)
\end{array}
$$ \& $\mathrm{d}_{\text {so }}$ \& - \& \[

$$
\begin{aligned}
& -24 \\
& -34 \\
& -35
\end{aligned}
$$
\] \& - \& dB

\hline
\end{tabular}

FIGURE 1 - DEVICE VOLTAGE versus DEVICE CURRENT

FIGURE 3 - POWER GAIN versus FREQUENCY

FIGURE 2 - DEVICE CURRENT versus CASE TEMPERATURE

FIGURE 4 - POWER GAIN versus DEVICE CURRENT $f=\mathbf{4 0 0} \mathbf{~ M H z}$

FIGURE 9 - VSWR versus FREQUENCY
MWA130

FIGURE 12 - INPUT AND OUTPUT IMPEDANCE
versus FREQUENCY versus FREQUENCY

FIGURE 11 - INPUT AND OUTPUT IMPEDANCE versus FREQUENCY MNA120

FIGURE 13-1.0 dB GAIN COMPRESSION versus FREQUENCY

FIGURE 14 - 1.0 dB GAIN COMPRESSION versus DEVICE CURRENT $\mathbf{f = 4 0 0} \mathbf{~ M H z}$

FIGURE 16 - NOISE FIGURE versus FREQUENCY

FIGURE 18 - SECOND HARMONIC OUTPUT versus FREQUENCY

FIGURE 15 - 1.0 dB GAIN COMPRESSION versus CASE TEMPERATURE $\mathrm{f}=\mathbf{4 0 0} \mathbf{~ M H z}$

FIGURE 17 - REVERSE ISOLATION versus FREQUENCY

FIGURE 19 - SECOND AND THIRD ORDER INTERCEPT MWA110

MWA110, MWA120, MWA130

FIGURE 20 - SECOND AND THIRD ORDER INTERCEPT MWA120

FIGURE 22 - INTERMODULATION DISTORTION versus POWER OUTPUT

MWA110

FIGURE 24 - INTERMODULATION DISTORTION versus POWER OUTPUT

NWA 130

FIGURE 21 - SECOND AND THIRD ORDER INTERCEPT MWA130

FIGURE 23 - INTERMODULATION DISTORTION versus POWER OUTPUT

MWA120

FIGURE 25 - GROUP DELAY versus frequency

The MWA series hybrid amplifiers are designed for wideband general purpose applications in 50Ω systems. Fully cascadable for any gain combination, operable at voltages as low as 3 Vdc , and external control of the low frequency corner make the MWA amplifiers extremely versatile gain blocks.

Basic Circuit Configuration

Figure 26 shows the basic internal circuit. It is important to note that the specified operating conditions of voltage, current, and external decoupling impedance must be applied to the units in order to achieve the published electrical characteristics.

FIGURE 26-INTERNAL CIRCUIT

Amplifier Application

The circuit schematic for a simple amplifier design is shown in Figure 27. External to the MWA hybrid amplifier the only components required are:
$\begin{aligned} & \text { Decoupling elements }- \text { Bypass Capacitor } \\ & \text { Decoupling Impedance } \\ & \text { (resistor/inductor) }\end{aligned}$
DC Blocking Capacitors at the RF input and output.

External Decoupling Impedance

In all cases the external bias (decoupling elements) must present an impedance which is large compared to the 50Ω load impedance to minimize RF gain reduction. The loss in gain due to the decoupling impedance is given by the equation:

$$
\text { Loss }=20 \log \frac{Z_{D}}{Z_{D}+25} d B
$$

where $Z_{D}=$ decoupling impedance in ohms. For example, if $Z_{D}=1 \mathrm{k} \Omega$, Loss $=0.214 \mathrm{~dB}$.

FIGURE 27 - AMPLIFIER SCHEMATIC DIAGRAM

Supply Voltage

The value of the external decoupling resistive impedance (R_{D}) determines the supply voltage ($+\mathrm{V}_{\mathrm{CC}}$) and is determined by the following equation:

$$
v_{C C}=R_{D} \times I_{D}+v_{D}
$$

where I_{D} and V_{D} are the device current and voltage stated in the data sheet. For example, for MWA110.

$$
\begin{aligned}
& I_{D}=10 \mathrm{~mA} \\
& V_{D}=2.9 \mathrm{~V}
\end{aligned}
$$

and, if $R_{D}=330 \mathrm{~S} 2$, then

$$
v_{C C}=6.2 \mathrm{~V}
$$

More commonly $V_{C C}$ is predetermined and R_{D} may be calculated from:

$$
R_{D}=\frac{V_{C C}-V_{D}}{I_{D}}
$$

An RF choke is not recommended for use as a decoupling impedance without also using a resistor having an appropriate value.

Low Frequency Response

The value of the blocking capacitors determines the low frequency response of the amplifier. The following expression is used to determine the blocking capacitor value to yield a desired 3 dB low frequency corner (fLFC).

$$
C_{B l o c k}(\text { Farads })=\frac{1}{100 \pi \mathrm{fLFC}^{(H z)}}
$$

Bypass Capacitor

The reactive impedance of the bypass capacitor should be small compared to the impedance of the decoupling element at the lowest frequency of operation.

MWA110, MWA120, MWA130

Note: The circuitry incicated is on the underside of the printed circuit board with sockats tor the amplifier pins. The case of the amplifier should contact the printed circuit board top surface to ensuro eftective RF grounding.

Text Fixture

The 50Ω input/output impedance levels of the MWA hybrids are most easily preserved on a circuit board by using 50Ω microstrip transmission lines. Figure 28 is an example of a circuit board layout which utilizes microstrip transmission lines in conjunction with other sound RF construction techniques.

The characteristic impedance and corresponding line width of the microstrip are a function of the circuit board dielectric constant and thickness. The table lists appropriate line widths for $50 \Omega 2$ microstrip lines on commonly used circuit board materials.

MATERIAL TYPE	DIELECTRIC CONSTANT	DIELECTRIC THICKNESS INCHES	LINE WIDTH INCHES
Toflon	2.5	0.03125	0.090
Fiberglass		0.0625	0.180
Fiborglass	5.0	0.0625	0.100
Epoxy			

As in all good RF circuit designs, care should be taken to minimize parasitic lead inductances and to provide adequate grounding.

FIGURE 29 - TYPICAL CASCADE

The dc isolation components shown are critical in maintaining good stability in multi-stage designs. Keep Pin \#3 (Ground) as short as possible preferably soldering the case to the ground plane for best gain flatness to $\mathbf{1 0 0 0} \mathbf{~ M H z}$.

Cl - For operation to $400 \mathrm{MHz}, 1000 \mathrm{pF}, 50 \mathrm{mil}$ Chip Capacitor ATC 50 mil Case (5.0 MHz L.F.)
C1 - For operation to $1000 \mathrm{MHz}, 0.018 \mathrm{mF}$. Chip Capacitor for 0.25 MHz L.F. Cut-Off

C2 - Feedthru Capacitor Centralab SFT-102, 1000 pF or Metuchen 54-794002-681M, 680 pF
C3-0.1 μ F Sprague 3CZ5U104X0050C5-50 Vott
L1 - Ferroxcube Shielding Bead 56-590-65/4A - Single Wire
L2 - Ferroxcube Shielding Bead 56-530-65/4A - 2 Turns \#26 AWG

Cascading

The inherent stability of the MWA hybrid modules makes possible the cascading of two or more units with no oscillatory problems. Figure 29 shows a typical 3 hybrid cascade with measured data for 400 MHz and 1000 MHz hybrids.

	Cascado 1	Cascade 2
Fraquancy Range	0.25 to 400 MHz	5.0 to 1000 MHz
Gain	43.5 dB	20.5 dB
Gain Flatnoss	$\pm 1.0 \mathrm{~dB}$	$=0.75 \mathrm{~dB}$
Input VSWR	$2.0: 1$	$2.4: 1$
Output VSWR	$1.2: 1$	$2.1: 1$
VCc Supply	12 Vdc	33 Vdc
1 Supply	44 mAde	150 mAdc
MWA \#1	MWA110	MWA320
MWA \#2	MWA110	MWA330
MWA \#3	MWA120	MWA330
R1	1000Ω	1000Ω
R2	1000Ω	500Ω
R3	300Ω	500Ω

The RF Line
 Wideband Hybrid Amplifier

MWA131

... single stage amplifiers designed for broadband linear applications up to 400 MHz .

- Low-Cost TO-39 Type Package

DC-400 MHz WIDEBAND GENERAL-PURPOSE HYBRID AMPLIFIER

Gain 15 dB Typ @f = 100 MHz

- 50Ω Input and Output Impedance
- Fully Cascadable for Any Gain
- Thin Film Construction
- Hermetic Package
- Guaranteed Performance from $-25^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
- $20 \mathrm{dBm} \mathrm{P}_{\mathrm{o}} 1.0 \mathrm{~dB}$ Typ (100 MHz)

CASE 31A-03, STYLE 2

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Input Power	$\mathrm{P}_{\text {in }}$	$\mathbf{1 0 0}$	mW
DC Supply Current	I_{D}	$\mathbf{1 2 0}$	mA
Maximum Case Temperature	T^{C}	$\mathbf{1 2 5}$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to $+\mathbf{2 0 0}$	${ }^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Device Voitage	V_{D}	$\mathbf{5 . 5}$	Vdc
Device Current	I_{D}	$\mathbf{9 0}$	mAdc
Decoupling Impedance	Z_{D}	$\mathbf{2 4 0}$	$\boldsymbol{\Omega}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\boldsymbol{\theta J C}}$	60	${ }^{\circ} \mathrm{C} \mathbf{W}$

ELECTRICAL CHARACTERISTICS ($T_{C}=-25$ to $+125^{\circ} \mathrm{C}, 50 \Omega$ system and specified operating conditions)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	0.1	-	400	M Hz
Power Gain (f = $\mathbf{1 0 0} \mathbf{~ M H z}$)	G_{p}	13	14	-	dB
Response Flatness	F	-	0	± 1.0	dB
input VSWR ($\mathrm{f}=\mathbf{4 0 0 ~ M H z}$)	-	-	-	3:1	-
Output VSWR (f $=400 \mathrm{MHz}$)	-	-	-	2:1	-
$\begin{aligned} \hline \text { Output @ } 1.0 \mathrm{~dB} \text { Gain Compression }(f=100 \mathrm{MHz}) \\ (f=400 \mathrm{MHz}) \end{aligned}$		-	$\begin{aligned} & 20 \\ & 19 \end{aligned}$	-	dBm
Noise Figure ($f=400 \mathrm{MHz}$)	NF	-	5.0	-	dB
Reverse Isolation (f $=400 \mathrm{MHz}$)	$\mathrm{P}_{\text {RI }}$	-	18	-	dB
Harmonic Output - 2nd Order ($f=400 \mathrm{MHz}, \mathrm{P}_{\text {out }}=+10 \mathrm{dBm}$)	$\mathrm{d}_{\text {so }}$	-	-35	-	dBc
Second Order Intercept $\mathrm{P}_{\mathrm{o}}\left(\mathrm{f}_{1}=380 \mathrm{MHz}, \mathrm{f}_{\mathbf{2}}=\mathbf{4 0 0} \mathrm{MHz}\right)$	ISO	-	50	-	dBm
Third Order Intercept $\mathrm{P}_{\mathrm{O}}\left(\mathrm{f}_{1}=380 \mathrm{MHz}, \mathrm{f}_{2}=400 \mathrm{MHz}\right)$	ITO	-	30	-	dBm

Figure 1. Device Voltage versus Device Current

Figure 3. Power Gain versus Frequency

Figure 2. Device Current versus Case Temperature

Figure 4. Power Gain versus Device Current $f=\mathbf{4 0 0} \mathbf{M H z}$

Figure 5. Power Gain versus Case Temperature

Figure 6. VSWR versus Frequency

Figure 7. \mathbf{S}_{11} and $\mathbf{S}_{\mathbf{2 2}}$ versus Frequency

Figure 8. Output Power at 1.0 dB Gain Compression versus Frequency

Figure 10. Output Power at 1.0 dB Gain Compression versus Case Temperature $f=400 \mathrm{MHz}$

Figure 12. Noise Figure versus Temperature $f=400 \mathrm{MHz}$

Figure 9. Output Power at 1.0 dB Gain Compression versus Device Current

Figure 11. Noise Figure versus Frequency

Figure 13. Reverse Isolation versus Frequency

Figure 14. Second Harmonic Output versus Frequency $0 \mathrm{dBc}=+10 \mathrm{dBm}$

Figure 15. Group Delay versus Frequency

Frequency (MHz)	\mathbf{S}_{11} (mag)	\mathbf{S}_{11} (ang)	\mathbf{S}_{21} (dB)	\mathbf{S}_{21} (mag)	\mathbf{S}_{21} (ang)	\mathbf{S}_{12} (mag)	\mathbf{S}_{12} (ang)	\mathbf{S}_{22} (mag)	\mathbf{S}_{22} (ang)	\mathbf{K}
100	0.146	-152.1	15.07	5.67	160.0	0.077	8.90	0.071	-86.20	1.33
200	0.202	-137.9	14.88	5.55	140.2	0.085	13.6	0.121	-116.9	1.22
300	0.292	-132.4	14.62	5.38	120.3	0.098	15.2	0.149	-142.1	1.09
400	0.403	-134.6	14.29	5.18	100.4	0.112	12.9	0.163	-173.1	0.96
500	0.527	-142.9	13.83	4.91	79.5	0.122	6.60	0.178	146.4	0.87
600	0.649	-156.5	13.06	4.50	57.8	0.129	-1.50	0.224	106.2	0.81
700	0.733	-173.3	11.93	3.95	36.5	0.125	-11.6	0.305	75.9	0.79
800	0.759	167.9	10.41	3.32	16.7	0.112	-19.3	0.384	54.3	0.88
900	0.753	148.3	8.64	2.70	-1.60	0.096	-26.4	0.453	39.8	1.07
1000	0.711	127.8	6.71	2.17	-17.7	0.079	-29.7	0.498	28.2	1.50
1100	0.668	107.4	4.71	1.72	-32.2	0.060	-27.6	0.525	20.1	2.34
1200	0.641	89.3	2.54	1.34	-44.9	0.051	-20.3	0.542	12.8	3.43
1300	0.620	72.3	0.43	1.05	-55.5	0.043	-7.40	0.543	5.9	5.08
1400	0.611	57.8	-1.67	0.83	-65.9	0.044	5.40	0.543	-1.4	6.31
1500	0.605	45.2	-3.79	0.65	-74.6	0.049	15.9	0.551	-10.5	7.05

Table 1. S-Parameters

MWA SERIES HYBRID AMPLIFIER APPLICATIONS INFORMATION

The MWA series hybrid amplifiers are designed for wideband general purpose applications in 50Ω systems. Fully cascadable for any gain combination, operable at voltages as low as 3 Vdc , and external control of the low frequency corner make the MWA amplifiers extremely versatile gain blocks.

Basic Circuit Configuration

Figure $\mathbf{2 6}$ shows the basic internal circuit. It is important to note that the specified operating conditions of voltage, current, and external decoupling impedance must be applied to the units in order to achieve the published electrical characteristics.

FIGURE 26 - INTERNAL CIRCUIT

Amplifier Application

The circuit schematic for a simple amplifier design is shown in Figure 27. External to the MWA hybrid amplifier the only components required are:

Decoupling elements - Bypass Capacitor Decoupling Impedance (resistor/inductor)
DC Blocking Capacitors at the RF input and output.

External Decoupling Impedance

In all cases the external bias (decoupling elements) must present an impedance which is large compared to the 50Ω load impedance to minimize RF gain reduction. The loss in gain due to the decoupling impedance is given by the equation:

$$
\text { Loss }=-20 \log \frac{Z_{D}}{Z_{D}+25} d B
$$

where $Z_{D}=$ decoupling impedance in ohms. For example. if $Z_{D}=1 \mathrm{k} \Omega$, Loss $=0.214 \mathrm{~dB}$.

FIGURE 27 - AMPLIFIER SCHEMATIC DIAGRAM

Supply Voltage

The value of the external decoupling resistive impedance (R_{D}) determines the supply voltage $\left(+V_{C C}\right)$ and is determined by the following equation:

$$
V_{C C}=R_{D} \times I_{D}+V_{D}
$$

where ID and VD are the device current and voltage stated in the data sheet. For example, for MWA110.

$$
\begin{aligned}
& I_{D}=10 \mathrm{~mA} \\
& V_{D}=2.9 \mathrm{~V}
\end{aligned}
$$

and, if $R_{D}=330 \Omega 2$, then

$$
v_{C C}=6.2 \mathrm{~V}
$$

More commonly $V_{C C}$ is predetermined and R_{D} may be calculated from:

$$
R_{D}=\frac{v_{C C}-v_{D}}{I_{D}}
$$

Low Frequency Response

The value of the blocking capacitors determines the low frequency response of the amplifier. The following expression is used to determine the blocking capacitor value to yield a desired 3 dB low frequency corner (flFC).

$$
\mathrm{C}_{\text {Block }}(\text { Farads })=\frac{1}{100 \pi \mathrm{f} \mathrm{LFC}(\mathrm{~Hz})}
$$

Bypass Capacitor

The reactive impedance of the bypass capacitor should be small compared to the impedance of the decoupling element at the lowest frequency of operation.

Note. The curcuitry indicated is on the undersude of the printed circuit board with sockets tor the amplifier pins. The case of the amplifier should contact the printed circuit board top surface to ensure elfective RF grounding

Text Fixture

The 50Ω input/output impedance levels of the MWA hybrids are most easily preserved on a circuit board by using $50 \Omega 2$ microstrip transmission lines. Figure 28 is an example of a circuit board layout which utilizes microstrip transmission lines in conjunction with other sound RF construction techniques.

The characteristic impedance and corresponding line width of the microstrip are a function of the circuit board dielectric constant and thickness. The table lists appropriate line widths for $50 \Omega 2$ microstrip lines on commonly used circuit board materials.

MATERIAL TYPE	DIELECTRIC CONSTANT	DIELECTRIC THICKNESS INCHES	LINE WIDTH INCHES
Teflon.	2.5	0.03125	0.090
Fiberglass		0.0625	0.180
Fiberglass	5.0	0.0625	0.100
Epoxy			

As in all good RF circuit designs, care should be taken to minimize parasitic lead inductances and to provide adequate grounding.

FIGURE 29 - TYPICAL CASCADE

The dc isolation components shown are critical in maintaining good stability in multi-stage designs. Keep Pin \#3 (Ground) as short as possible preferably soldering the case to the ground plane for best gain flatness to 1000 MHz .

C1 - For operation to 400 MHz .1000 pF .50 mil Chip Capacitor ATC 50 mil Case (5.0 MHz L.F.)
C1 - For operation to $1000 \mathrm{MHz}, 0.018 \mathrm{mF}$. Chip Capacitor for 0.25 MHz L.F. Cut-Off

C2 - Feedthru Capacitor Centralab SFT-102, 1000 pF or Metuchen 54.794002-681M. 680 pF

C3 - 0.1μ F Sprague 3CZ5U104X0050C5 - 50 Volt
L1 - Ferroxcube Shielding Bead 56-590-65/4A - Single Wire
L2 - Ferroxcube Shielding Bead 56-530-65/4A - 2 Turns \#26 AWG

Cascading

The inherent stability of the MWA hybrid modules makes possible the cascading of two or more units with no oscillatory problems. Figure 29 shows a typical 3 hybrid cascade with measured data for 400 MHz and 1000 MHz hybrids.

	Cascade 1	Cascade 2
Froquency Range	0.25 to 400 MHz	5.0 to 1000 MHz
Gain	43.5 dB	20.5 dB
Gain Ftorness	$\pm 1.0 \mathrm{~dB}$	$\pm 0.75 \mathrm{~dB}$
Inpur VSWR	$2.0: 1$	$2.4: 1$
Output VSWR	$1.2: 9$	$2.1: 1$
VCc Supply	12 Vdc	33 Vdc
ISupply	44 mAdc	150 mAdc
MWA\#:	MWA110	MWA320
MWA \#2	MWA110	MWA330
MWA \#3	MWA120	MWA330
R1	1000Ω	1000Ω
R2	1000Ω	500Ω
R3	300Ω	500Ω

The RF Line

WIDEBAND HYBRID AMPLIFIERS

... single stage amplifiers designed for broadband linear applications up to 600 MHz .

- Low.Cost TO-39 Type Package
- Gain 10 dB Typ
- 50Ω Input and Output Impedance
- Fully Cascadable for Any Gain
- Thin Film Construction
- Hermetic Package
- Guaranteed Performance from $-25^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$

MAXIMUM RATINGS

Rating	Symbol	Value			Unit
		MWA210	MWA220	MWA230	
RF Input Power	Pin	$\xrightarrow{\longrightarrow} 100 \longrightarrow$			mW
DC Supply Current	$1{ }^{\text {d }}$	25	55	100	mA
Maximum Case Temperature	T_{C}	\longleftrightarrow			${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	$\longrightarrow-65$ to $+200 \longrightarrow$			${ }^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Device Voltage	V_{D}	1.75	3.2	4.4	Vdc
Device Current	ID_{D}	10	25	60	mAdc
Decoupling Impedance	Z_{D}	620	620	240	Ω

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R $_{\theta \mathrm{JC}}$	110	${ }^{\circ} \mathrm{CNW}$

DC-600 MHz WIDEBAND GENERAL-PURPOSE HYBRID AMPLIFIERS

STME 2: PN 1. INPUT 2. QUTPUT 3. GROUND

NOTES:

1. DIMENSIONMMG AND TOLERANCING PER ANST YH454, 1382.
2. CONTROUNG DAKENSION: WNCH.

CASE 31A-03

ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{C}} \mathbf{C}=-25$ to $+100^{\circ} \mathrm{C}, 50 \Omega$ system and specified operating conditions)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	0.1	-	600	MHz
Power Gain ($\mathrm{f}=100 \mathrm{MHz}$)	G_{p}	9.0	10	-	dB
Response Flatness	F	-	0	± 1.0	dB
Input VSWR MWA210/220 MWA230		-		$\begin{gathered} 2.5: 1 \\ 3: 1 \end{gathered}$	
Output VSWR MWA210/220/230	-	-	-	2.5:1	-
Output @ 1 dB Gain Compression MWA210 MWA220 MWA230		-	$\begin{gathered} +1.5 \\ +10.5 \\ +18.5 \end{gathered}$	-	dBm
Noise Figure MWA210 MWA220 MWA230	NF	-	$\begin{aligned} & 6.0 \\ & 6.5 \\ & 7.5 \end{aligned}$	-	dB
Reverse Isolation $\begin{array}{ll} \\ \\ \text { MWA210 } \\ \\ \text { MWA220 } \\ \text { MWA230 }\end{array}$	$\mathbf{P r I}$	-	$\begin{aligned} & 13.5 \\ & 14.5 \\ & 12.9 \end{aligned}$	-	dB
Harmonic Output $\begin{aligned} & \text { MWA210 }\left(P_{\text {out }}=-9.0 \mathrm{dBm}\right) \\ & \text { MWA220 }\left(P_{\text {out }}=0 \mathrm{dBm}\right) \\ & \text { MWA230 }\left(P_{\text {out }}=+10 \mathrm{dBm}\right) \end{aligned}$	$\mathrm{d}_{\text {so }}$	-	$\begin{aligned} & -29 \\ & -36 \\ & -36 \end{aligned}$	-	d8

FIGURE 1 - DEVICE VOLTAGE versus DEVICE CURRENT

FIGURE 3 - POWER GAIN versus FREQUENCY

FIGURE 2 - DEVICE CURRENT varsus CASE TEMPERATURE

FIGURE 4 - POWER GAIN versus DEVICE CURRENT $\mathbf{f = 6 0 0} \mathbf{~ M H z}$

FIGURE 5 - POWER GAIN versus CASE TEMPERATURE $f=100 \mathrm{MHz}$

FIGURE 7 - VSWR versus FREQUENCY
MWA210

FIGURE 6 - POWER GAIN versus CASE TEMPERATURE $f=600 \mathrm{MHz}$

FIGURE 8 - VSWR versus FREQUENCY
MWA220

FIGURE 9 - VSWR versus FREQUENCY
MWA230

FIGURE 10 - INPUT AND OUTPUT TMPEDANCE versus FREQUENCY MWA210

FIGURE 12 - INPUT AND OUTPUT IMPEDANCE versus FREQUENCY MWA230

FIGURE 11 - INPUT AND OUTPUT IMPEDANCE versus FREQUENCY MWA220

FIGURE 13 - 1.0 dB GAIN COMPRESSION versus FREQUENCY

FIGURE 16 - NOISE FIGURE versus FREQUENCY

FIGURE 18 - SECOND HARMONIC OUTPUT versus FREQUENCY

FIGURE 16-1.0 dB GAIN COMPRESSION versus CASE TEMPERATURE $\mathbf{f} \mathbf{= 6 0 0} \mathbf{~ M H z}$

FIGURE 17 - REVERSE ISOLATION versus FREQUENCY

FIGURE 19 - SECOND AND THIRD ORDER INTERCEPT MWA210

FIGURE 20 - SECOND AND THIRD ORDER INTERCEPT MWA220

FIGURE 22 - INTERMODULATION DISTORTION versus POWER OUTPUT MWA210

FIGURE 24 - INTERMODULATION DISTORTION versus POWER OUTPUT MWA230

FIGURE 21 - SECOND AND THIRD ORDER INTERCEPT MWA230

FIGURE 23 - INTERMODULATION DISTORTION varsus POWER OUTPUT MWA220

FIGURE 25 - GROUP DELAY versus FREQUENCY

The MWA series hybrid amplifiers are designed for wideband general purpose applications in 50Ω systems. Fully cascadable for any gain combination, operable at voltages as low as 3 Vdc , and external control of the low frequency corner make the MWA amplifiers extremely versatile gain blocks.

Basic Circuit Configuration

Figure $\mathbf{2 6}$ shows the basic internal circuit. It is important to note that the specified operating conditions of voltage, current, and external decoupling impedance must be applied to the units in order to achieve the published electrical characteristics.

FIGURE 26 - INTERNAL CIRCUIT

Amplifier Application

The circuit schematic for a simple amplifier design is shown in Figure 27. External to the MWA hybrid amplifier the only components required are:

Decoupling elements - Bypass Capacitor
Decoupling Impedance (resistor/inductor)
DC Blocking Capacitors at the RF input and output.

External Decoupling Impedance

In all cases the external bias (decoupling elements) must present an impedance which is large compared to the 50Ω load impedance to minimize RF gain reduction. The loss in gain due to the decoupling impedance is given by the equation:

$$
\text { Loss }=20 \log \frac{Z_{D}}{Z_{D}+25} d B
$$

where $Z_{D}=$ decoupling impedance in ohms. For example, if $Z_{D}=1 \mathrm{k} \Omega$, Loss $=0.214 \mathrm{~dB}$.

FIGURE 27 - AMPLIFIER SCHEMATIC DIAGRAM

Supply Voltage
The value of the external decoupling resistive impedance (R_{D}) determines the supply voltage ($+V_{C C}$) and is determined by the following equation:

$$
V_{C C}=R_{D} \times I_{D}+V_{D}
$$

where I_{D} and V_{D} are the device current and voltage stated in the data sheet. For example, for MWA110.

$$
\begin{aligned}
& I_{D}=10 \mathrm{~mA} \\
& V_{D}=2.9 \mathrm{~V}
\end{aligned}
$$

and. if $R_{D}=330 \mathrm{~S} 2$, then

$$
V_{C C}=6.2 \mathrm{~V}
$$

More commonly $V_{C C}$ is predetermined and R_{D} may be calculated from:

$$
R_{D}=\frac{V_{C C}-V_{D}}{I_{D}}
$$

An RF choke is not recommended for use as a decoupling impedance without also using a resistor having an appropriate value.

Low Frequency Response

The value of the blocking capacitors determines the low frequency response of the amplifier. The following expression is used to determine the blocking capacitor value to yield a desired 3 dB low frequency corner (flFC).

$$
C_{\text {Block }}(\text { Farads })=\frac{1}{100 \pi f L F C\left(H_{z}^{\prime}\right)}
$$

Bypass Capacitor

The reactive impedance of the bypass capacitor should be small compared to the impedance of the decoupling element at the lowest frequency of operation.

Noto. The circuitry indicated is on the underside of the printed circuit board with sockets for the amplifier pins. The case of the amplifier should contact the printed circuit board top surface to ensure effective RF grounding

Text Fixture

The 50Ω input/output impedance levels of the MWA hybrids are most easily preserved on a circuit board by using 50Ω microstrip transmission lines. Figure 28 is an example of a circuit board layout which utilizes microstrip transmission lines in conjunction with other sound RF construction techniques.

The characteristic impedance and corresponding line width of the microstrip are a function of the circuit board dielectric constant and thickness. The table lists appropriate line widths for 50Ω microstrip lines on commonly used circuit board materials.

MATERIAL TYPE	DIELECTRIC CONSTANT	DIELECTRIC THICKNESS INCHES	LINE WIDTH INCHES
Toflon- fibarglass	2.5	0.03125	0.090
		0.0625	0.180

FIGURE 29 - TYPICAL CASCADE

As in all good RF circuit designs, care should be taken to minimize parasitic lead inductances and to provide adequate grounding.

The dc isolation components shown are critical in maintaining good stability in multi-stage designs. Keep Pin \#3 (Ground) as short as possible preferably soldering the case to the ground plane for best gain flatness to $1000 \mathbf{~ M H z}$.

C1 - For operation to $400 \mathrm{MHz}, 1000$ pF, 50 mil Chip Capacitor -
ATC 50 mis Case (5.0 MHz L.F.)
C1 - For operation to $1000 \mathrm{MHz}, 0.018 \mathrm{mF}$. Chip Capacitor for 0.25 MHz L.F. Cut-Off

C2 - Feedthru Capacitor Centralab SFT-102, 1000 pF or Metuchen 54-794002-681M, 680 pF
C3 - 0.1μ F Sprague 3CZ5U104X0050C5-50 Volt
L1 - Ferroxcube Shielding Bead 56-590-65/4A - Single Wire
L2 - Ferroxcube Shielding Bead 56-590-65/4A - 2 Turns \#26 AWG

Cascading

The inherent stability of the MWA hybrid modules makes possible the cascading of two or more units with no oscillatory problems. Figure 29 shows a typical 3 hybrid cascade with measured data for 400 MHz and 1000 MHz hybrids.

	Cascade 1	Cascada 2
Frequency Rango	0.25 to 400 MHz	B.0 to 1000 MHz
Gain	43.5 dB	20.5 dB
Goin flatness	$\pm 1.0 \mathrm{~dB}$	$\pm 0.75 \mathrm{~dB}$
Inpur VSWR	$2.0: 1$	$2.4: 1$
Output VSWR	$1.2: 1$	$2.1: 1$
VCC Supply	12 Vdc	33 Vdc
I Supply	44 mAdc	160 mAdc
MWA \#1	MWA110	MWA320
MWA \#2	MWA110	MWA330
MWA \#3	MWA120	MWA330
R1	1000Ω	1000Ω
R2	1000Ω	500Ω
R3	300Ω	500Ω

MOTOROLA
 SEMICONDUCTOR TECHNICAL DATA

The RF Line

WIDEBAND HYBRID AMPLIFIERS

. . . single stage amplifiers designed for broadband linear applications up to 1000 MHz .

- Low-Cost TO-39 Type Package
- Gain - 8.0 dB Typ MWA310/320
-6.2 dB Typ MWA330
- 50Ω Input and Output Impedance
- Fully Cascadable for Any Gain
- Thin Film Construction
- Hermetic Package
- Guaranteed Performance from $-25^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$

MAXIMUM RATINGS

Rating	Symbol	Value			Unit
		MWA310	MWA320	MWA330	
RF Input Power	$P_{\text {in }}$	$\longrightarrow \longrightarrow$			mW
DC Supply Current	1 D	25	55	100	mA
Maximum Case Temperature	TC	\longrightarrow			${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	$\longrightarrow-65$ to $+200 \longrightarrow$			${ }^{\circ} \mathrm{C}$

OPERATING CONDITIONS

Device Voltage	V_{D}	1.6	2.9	4.0	Vdc
Device Current	I_{D}	10	25	60	mAdc
Decoupling Impedance	Z_{D}	620	620	240	Ω

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R $_{\text {JJC }}$	110	${ }^{\circ} \mathrm{CN}$

DC-1000 MHz WIDEBAND GENERAL-PURPOSE HYBRID AMPLIFIERS

STYE 2:

NOTES:

1. OIMENSIONING AND TOLERANCING PER ANS: Y14.5M, 1532.
2. CONTROLLING OIMENSION: INCH.

Dom	MMLIMEIERS		WCHES	
	Mind	Max	MEN	M $4 \times$
A	8.51	9339	0.335	0.370
8	7.75	8.50	0.305	0.335
C	3.81	4.57	0.165	0.185
0	0.41	0.48	0.016	0.019
0	5.08 ESC		0.200 ESC	
H	0.72	0.86	0.028	0.004
J	0.74	1.14	0.029	0.045
K	12.70	-	0.500	-
M	45° BSC		$45^{\circ} \mathrm{BSC}$	
H	2.54 BSC		0.100 BSC	

CASE 31A-03

ELECTRICAL CHARACTERISTICS $\left(T_{C}=-25\right.$ to $+80^{\circ} \mathrm{C}, 50 \Omega$ system and specified operating conditions)

Charactaristic	Symbol	Min	Typ	Max	Unit
Frequency Renge	BW	0.1	-	1000	MHz
Power Gain MWA310/320 MWA330	G_{p}	7.0	$\begin{aligned} & \hline 8.0 \\ & 6.2 \end{aligned}$	-	dB
Response Flatness	F	-	0	± 1.0	d8
Input VSWR	-	-	-	3:1	-
Output VSWR	-	-	-	3:1	-
$\begin{array}{ll}\text { Output © } 1 \text { d8 Gsin Compression } \\ & \text { MWA310 } \\ \\ \text { MWA320 } \\ \text { MWA330 }\end{array}$		-	$\begin{array}{r} +3.5 \\ +11.5 \\ +15.2 \end{array}$	-	dBm
$\begin{array}{ll}\text { Noise Figure } & \text { MWA310 } \\ \\ \\ \\ \\ \text { MWA320 } \\ \text { MWA330 }\end{array}$	NF	-	$\begin{aligned} & 6.5 \\ & 6.7 \\ & 9.0 \end{aligned}$	-	dB
$\begin{array}{ll}\text { Reverse Isolation } \\ & \text { MWA310 } \\ \\ \text { MWA320 } \\ \text { MWA330 }\end{array}$	$\mathbf{P}_{\mathbf{R I}}$	-	$\begin{gathered} 10.4 \\ 10.4 \\ 9.0 \end{gathered}$	-	dB
Harmonic Output $\begin{array}{r} \text { MWA310 (P } \left.P_{\text {out }}=-9 \mathrm{dBm}\right) \\ \text { MWA320 (P } \left.P_{\text {out }}=0 \mathrm{dBm}\right) \\ \text { MWA330 }\left(P_{\text {out }}=+10 \mathrm{dBm}\right) \end{array}$	$d_{s o}$	-	$\begin{aligned} & -30 \\ & -38 \\ & -35 \end{aligned}$	-	dB

FIGURE 1 - DEVICE VOLTAGE versus DEVICE CURRENT

FIGURE 3 - POWER GAIN versus FREQUENCY

FIGURE 2 - DEVICE CURRENT vorsus CASE TEMPERATURE

FIGURE 4 - POWER GAIN versus DEVICE CURRENT $f=1000 \mathrm{MHz}$

FIGURE 5 - POWER GAIN versus CASE TEMPERATURE $\mathrm{f}=\mathbf{1 0 0} \mathbf{~ M H z}$

FIGURE 7 - VSWR versus FREQUENCY MWA310

FIGURE 9 - VSWR versus FREQUENCY MWA330

FIGURE 6 - POWER GAIN versus CASE TEMPERATURE $f=\mathbf{1 0 0 0} \mathbf{~ M H z}$

FIGURE 8 - VSWR versus FREQUENCY MWA320

FIGURE 10 - INPUT IMPEDANCE versus FREQUENCY
MWA310

FIGURE 11 - OUTPUT IMPEDANCE verus FREOUENCY

FIGURE 13 - OUTPUT IMPEDANCE versus FREQUENCY

FIGURE 15 - OUTPUT IMPEDANCE verzus FREQUENCY coces in Ohms

FIGURE 12 - INPUT IMPEDANCE veraus FREOUENCY

FIGURE 14 - INPUT IMPEDANCE versus FREQUENCY NWA330

FIGURE 16 - 1.0 dB GAIN COMPRESSION varsus FREQUENCY

MWA310, MWA320, MWA330

FIGURE 17'- 1.0 dB GAIN COMPRESSION vorsus DEVICE CURRENT $f=1000 \mathrm{MHz}$

FIGURE 19 - NOISE FIGURE versus FREQUENCY

FIGURE 21 - SECOND HARMONIC OUTPUT versus FREQUENCY

FIGURE 18-1.0 dB' GAIN COMPRESSION versus CASE TEMPERATURE $\mathbf{f - 1 0 0 0} \mathbf{~ M H z}$

FIGURE 20 - REVERSE ISOLATION versus FREQUENCY

FIGURE 22 - SECOND AND THIRD ORDER INTERCEPT MWA310

MWA310, MWA320, MWA330

FIGURE 23 - SECOND AND THIRD ORDER INTERCEPT MWA320

FIGURE 25 - INTERMODULATION DISTORTION versus POWER OUTPUT

MWAS10

FIGURE 27 - INTERMODULATION DISTORTION versus POWER OUTPUT

NWA330

FIGURE 24 - SECOND AND THIRD ORDER INTERCEPT MNA330

FIGURE 26 - INTERMODULATION DISTORTION versus POWER OUTPUT MWA320

FIGURE 28 - GROUP DELAY versus FREQUENCY MWA310/MWA320/MWA330

MWA SERIES HYBRID AMPLIFIER APPLICATIONS INFORMATION

The MWA series hybrid amplifiers are designed for wideband general purpose applications in 50Ω systems. Fully cascadable for any gain combination, operable at , voltages as low as 3 Vdc , and external control of the low frequency corner make the MWA amplifiers extremely versatile gain blocks.

Basic Circuit Configuration

Figure 29 shows the basic internal circuit. It is important to note that the specified operating conditions of voltage, current, and external decoupling impedance must be applied to the units in order to achieve the published electrical characteristics.

FIGURE 29 - INTERNAL CIRCUIT

Amplifier Application

The circuit schematic for a simple amplifier design is shown in Figure 30. External to the MWA hybrid amplifier the only components required are:

Decoupling elements - Bypass Capacitor Decoupling Impedance (resistor/inductor)
DC Blocking Capacitors at the RF input and output.

External Decoupling Impedance

In all cases the external bias (decoupling elements) must present an impedance which is large compared to the 50Ω load impedance to minimize RF gain reduction. The loss in gain due to the decoupling impedance is given by the equation:

$$
\text { Loss }=20 \log \frac{Z_{D}}{Z_{D}+25} d B
$$

where $Z_{D}=$ decoupling impedance in ohms. For example, if $Z_{D}=1 \mathrm{k} \Omega$, Loss $=0.214 \mathrm{~dB}$.

FIGURE 30 - AMPLIFIER SCHEMATIC DIAGRAM

Supply Voltage
The value of the external decoupling resistive impedance (R_{D}) determines the supply voltage ($+V_{C C}$) and is determined by the following equation:

$$
V_{C C}=R_{D} \times I_{D}+V_{D}
$$

where I_{D} and V_{D} are the device current and voltage stated in the data sheet. For example, for MWA110,

$$
\begin{aligned}
& I_{D}=10 \mathrm{~mA} \\
& V_{D}=2.9 \mathrm{~V}
\end{aligned}
$$

and, if $R_{D}=330 \Omega$, then

$$
V_{C C}=6.2 \mathrm{~V}
$$

More commonly V_{CC} is predetermined and R_{D} may be calculated from:

$$
R_{D}=\frac{V_{C C}-V_{D}}{I_{D}}
$$

An RF choke is not recommended for use as a decoupling impedance without also using a resistor having an appropriate value.

Low Frequency Response

The value of the blocking capacitors determines the low frequency response of the amplifier. The following expression is used to determine the blocking capacitor value to yield a desired 3 dB low frequency corner (flFC).

$$
C_{\text {Block(Farads) }}=\frac{1}{100 \pi f \mathrm{LFC}(\mathrm{~Hz})}
$$

Bypass Capacitor

The reactive impedance of the bypass capacitor should be small compared to the impedance of the decoupling element at the lowest frequency of operation.

Note: The circuitry indicated is on the underside of tho printed circuit board with sockets for the amplifiar pins. The case of the amplifier should contact the printed circuit board top surface to ensure offectiva RF grounding.

Text Fixture

The 50Ω input/output impedance levels of the MWA hybrids are most easily preserved on a circuit board by using 50Ω microstrip transmission lines. Figure 31 is an example of a circuit board layout which utilizes microstrip transmission lines in conjunction with other

MATERIAL TYPE	DIELECTRIC CONSTANT	DIELECTRIC THICKNESS INCHES	LINE WIDTH INCHES
Toflon- Fiberglass	2.5	0.03125	0.090

The characteristic' impedance and corresponding line width of the microstrip are a function of the circuit board dielectric constant and thickness. The table lists appropriate line widths for 50Ω microstrip lines on commonly used circuit board materials.

As in all good RF circuit designs, care should be taken to minimize parasitic lead inductances and to provide adequate grounding.

The dc isolation components shown are critical in maintaining good stability in multi-stage designs. Keep Pin \#3 (Ground) as short as possible preferably soldering the case to the ground plane for best gain flatness to $1000 \mathbf{M H z}$.

C1 - For operation to $400 \mathrm{MHz}, 1000 \mathrm{pF}, 50$ mil Chip Capacitor ATC 50 mil Case (5.0 MHz L.F.)
C1 - For operation to $1000 \mathrm{MHz}, 0.018 \mathrm{mF}$, Chip Capacitor for 0.25 MHz L.F. Cut-Off

C2 - Feedthru Capacitor Centralab SFT-102, 1000 pF or Metuchen 54.794002 -681M, 680 pF

C3-0.1 μ F Sprague 3C25U104×0050C5-60 Volt
L1 - Ferroxcube Shielding Bead 56-590-65/4A - Single Wire
L2 - Ferroxcube Shielding Bead 56-590-65/4A - 2 Turns \#26 AWG

Cascading

The inherent stability of the MWA hybrid modules makes possible the cascading of two or more units with no oscillatory problems. Figure 32 shows a typical 3 hybrid cascade with measured data for $\mathbf{4 0 0} \mathbf{~ M H z}$ and 1000 MHz hybrids.

	Cascade 1	Cascade 2
Froquency Pange	0.25 to 400 MHz	5.0 to 1000 MHz
Gain	43.5 dB	20.5 dB
Gain Flatness	$\pm 1.0 \mathrm{~dB}$	$\pm 0.75 \mathrm{~dB}$
Inpur VSWR	2.0:1	2.4:1
Output VSWR	1.2:1	2.1:1
$V_{\text {CC }}$ Supply	12 Vde	33 Vdc
1 Supply	44 madc	150 mAde
MWA \# 1	MWA110	MWA320
MWA \#2	MWA1to	MWA330
MWA \#3	MWA120	MWA330
R1	1000Ω	1000Ω
R2	1000Ω	500Ω
R3	300Ω	500Ω

The RF Line
 UHF Power Amplifiers

. . . designed for wide power range control as encountered in UHF celtular radio applications.

- MX20-1 $400-440 \mathrm{MHz}$

MX20-2 $\quad 440-470 \mathrm{MHz}$

- Specified 12.5 V, UHF Characteristics -

Output Power - 20 W
Minimum Gain - 21 dB
Harmonics - -40 dBc Max

- 50 Ohm Input/Output Impedances
- Guaranteed Stability and Ruggedness

CASE 830-01, STYLE 1 (MVM)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltages	$\mathrm{VCC}^{1} \mathrm{~V} \mathrm{VC} 2$	15.6	Vdc
Operating Case Temperature Range	TC	-30 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Typ	Unit
Thermal Resistance, Junction to Flange	$\mathbf{R}_{\text {BJF }}$	4	${ }^{\circ} \mathrm{CW}$

ELECTRICAL. CHARACTERISTICS (VCC1 and $V_{C C 2}$ set at $12.5 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 50 \Omega$ system unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range $\begin{aligned} & M \times 20.1 \\ & M \times 20-2\end{aligned}$	-	$\begin{aligned} & 400 \\ & 440 \end{aligned}$	二	$\begin{aligned} & 440 \\ & 470 \end{aligned}$	MHz
Input Power ($\mathrm{P}_{0}=20 \mathrm{~W}$)	$P_{\text {in }}$	-	-	150	mW
Power Gain ($\mathrm{P}_{0}=20 \mathrm{~W}$)	Gp	21	-	-	dB
Efficiency ($\mathrm{P}_{0}=20 \mathrm{~W}$)	η	35	40	-	\%
Harmonics ($\mathrm{P}_{\mathrm{O}}=20 \mathrm{~W}$, Reference)	-	-	-	-40	dBc
Input Return Loss	IIN	10	-	-	dB
$\begin{aligned} & \text { Power Derating } \\ & \left(P_{0}=20 \mathrm{~W}, \mathrm{~T}^{\mathrm{C}}=25^{\circ} \mathrm{C} \text { Ref. }\right) \\ & -30^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \end{aligned}$	-	-	-	1	dB
Load Mismatch $\mathrm{V}_{\mathrm{CC}}=15.6 \mathrm{~V}, \mathrm{P}_{\mathrm{O}} \leqslant 30 \mathrm{~W}, \mathrm{P}_{\text {in }} \leqslant 200 \mathrm{~mW}$, Load VSWR 20:1, All Phase Angles)	ψ	No change in Pout Before and After Test			
Stability ($\mathrm{P}_{\text {in }}$ - 0 to 200 mW ; Load Mismatch 4:1; $\mathrm{V}_{\mathrm{CC}}=0$ to 15.6 Vdc ; $V_{C C 1}$ adjusted to keep $\mathrm{P}_{\mathrm{o}} \leqslant 20 \mathrm{~W}$)	-	All spurious outputs more then $\mathbf{7 0 ~ d B}$ below desired signal			
Gain Control Range	-	30	-	-	dB

MX20-1, MX20-2

L1, L2 FERROXCUBE VK200 (IF NECESSARY)

Figure 1. UHF Module Test Setup

Figure 2. Output Power Variation versus Temperature

Figure 3. Output Power Variation versus Voltage

Figure 4. Output Power versus Input Power

Figure 5. Output Power versus Control Voltage

The RF Line

Integrated VHF-UHF Linear Power Amplifier
... designed for wideband linear applications in the $\mathbf{1 0 0}$ to 500 MHz frequency range. Motorola class A high-power transistors provide excellent ITOs, high gain, and wide dynamic range. Designed for high reliability with such standard features as a highquality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD heavy
6.0 WATT $100-500 \mathrm{MHz}$ LINEAR POWER AMPLIFIER ASSEMBLY duty components. Each unit undergoes 24-hour burn-in prior to final test and Q/A.

- All Class " A "
- Operates from 115 Vac Power Source
- Frequency Range - 100 to 500 MHz
- Output Power - 6.0 Watts Minimum
- Gain - 31 dB
- Linearity - +48.5 dBm Typ ITO
- Noise Figure - 6.0 dB Typ @ $f=500 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing with Dip Brazed Plenum Assembly
- Forced Air Cooling

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
SSG	Small Signal Gain	$\mathrm{f}=100-500 \mathrm{MHz}$	29	31		dB
f_{r}	Frequency Response	$f=100-500 \mathrm{MHz}, \mathrm{P}_{0}=6.0 \mathrm{~W}$		± 1.5	± 2.0	dB
Po	Power Output	$\mathrm{f}=100-500 \mathrm{MHz}$	6.0	8.0		W
NF	Noise Figure	$\mathrm{f}=100-500 \mathrm{MHz}$		6.0	7.0	dB
ITO	Third Order Intercept Point	$f=100-500 \mathrm{MHz}$	+47.5	+48.5		dBm
DSO	Second Harmonic Attenuation	$f=200-1000 \mathrm{MHz}$	-15	-20		dB
$\mathrm{P}_{\text {sat }}$	Saturated Power	$\mathrm{f}=100-500 \mathrm{MHz}$	8.0	10		w
VSWR	Input (Ref = $50 \mathrm{\Omega}$) Output (Ref $=\mathbf{5 0} \Omega$)	$\begin{aligned} & f=100-500 \mathrm{MHz} \\ & f=100-500 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 3.0: 1 \\ & 2.0: 1 \end{aligned}$	$\begin{aligned} & \text { 3.5:1 } \\ & 3.0: 1 \end{aligned}$	
VSWR Load	VSWR Survival	$\begin{aligned} & P_{0}=6.0 \mathrm{~W} \mathrm{CW} \\ & f=100-500 \mathrm{MHz} \end{aligned}$			$\infty: 1$	
$\mathrm{P}_{\text {in }}$	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi_{\text {¢ }} 60 \mathrm{~Hz}$		85	100	W

The RF Line

Integrated VHF-UHF Linear Power Amplifier

... designed for wideband linear applications in the 100 to 500 MHz frequency range. Motorola class A high-power transistors provide excellent ITOs, high gain, and wide dynamic range. Designed for high reliability with such standard features as a highquality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD heavy
 duty components. Each unit undergoes 24 -hour burn-in prior to final test and $0 / A$.

- All Class " A "
- Operates from 115 Vac Power Source
- Frequency Range - 100 to 500 MHz
- Output Power - 25 Watts Minimum
- Gain - 47 dB
- Linearity - + 53 dBm Typ ITO
- Noise Figure - 5.0 dB Typ @ $\mathrm{f}=500 \mathrm{MHz}$
- 50 Ohm InpuvOutput Impedance
- Heavy Duty Machined Housing with Dip Brazed Plenum Assembly
- Forced Air Cooling

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
SSG	Small Signal Gain	$f=100-500 \mathrm{MHz}$	45	47		dB
fr_{r}	Frequency Response	$\mathrm{t}=100-500 \mathrm{MHz}$		± 2.0	± 2.5	dB
P_{0}	Power Output	$\mathrm{f}=100-500 \mathrm{MHz}$	25	30		W
NF	Noise Figure	$f=100-500 \mathrm{MHz}$		5.0	6.5	dB
ITO	Third Order Intercept Point	$f=100-500 \mathrm{MHz}$	+52	+53		dBm
dso	Second Harmonic Attenuation	$f=0.2-1.0 \mathrm{GHz}$	20	33		dB
VSWR	$\begin{aligned} & \text { Input }(\text { Ref }=50 \Omega) \\ & \text { Output }(\text { Ref }=50 \Omega \text {) } \end{aligned}$	$\begin{aligned} & f=100-500 \mathrm{MHz} \\ & f=100-500 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & \text { 1.5:1 } \\ & \text { 3.0:1 } \end{aligned}$	2.0:1	
VSWR Load	VSWR Survival	$\begin{aligned} & P_{0}=25 \mathrm{WCW} \\ & f=100-500 \mathrm{MHz} \end{aligned}$			$\infty: 1$	
$\mathrm{P}_{\text {in }}$	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$		270	325	w

SEMICONDUCTOR

The RF Line

Integrated VHF-UHF Linear Power Amplifier

PAA0105-50-50LAS
... designed for wideband linear applications in the 100 to 500 MHz frequency range. Motorola class A high-power transistors provide excellent ITOs, high gain, and wide dynamic range. Designed for high reliability with such standard features as a highquality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD heavy duty components. Each unit undergoes 24 -hour burn-in prior to final test and O / A.

- All Class " A "
- Operates from 115 Vac Power Source
- Frequency Range - $\mathbf{1 0 0}$ to $\mathbf{5 0 0} \mathbf{~ M H z}$
- Output Power - 50 Watts Minimum
- Gain - 52 dB
- Linearity - +56.5 dBm Typ ITO
- Noise Figure - 7.5 dB Typ @ $\mathrm{f}=500 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing with Dip Brazed Plenum Assembly
- Forced Air Cooling
- Built-In System DC Voltmeter

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
SSG	Small Signal Gain	$\mathrm{f}=100-500 \mathrm{MHz}$	50	52		dB
fr_{r}	Frequency Response	$\mathrm{f}=100-500 \mathrm{MHz}$		± 2.0	± 2.5	dB
P_{0}	Power Output	$\mathrm{f}=100-500 \mathrm{MHz}$	50	60		W
NF	Noise Figure	$\mathrm{f}=100-500 \mathrm{MHz}$		7.5	8.5	dB
ITO	Third Order Intercept Point	$f=100-500 \mathrm{MHz}$	+ 55	+56.5		dBm
DSO	Second Harmonic Attenuation	$\mathrm{f}=0.2-1.0 \mathrm{GHz}$	35	45		dB
VSWR	Input (Ref = $\mathbf{5 0}$) Output (Ref = $\mathbf{5 0 ~ \Omega}$)	$\begin{aligned} & f=100-500 \mathrm{MHz} \\ & f=100-500 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 1.25: 1 \\ & 1.35: 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 1.5:1 } \\ & \text { 1.75:1 } \end{aligned}$	
VSWR Load	VSWR Survival	$\begin{aligned} & P_{\mathrm{o}}=50 \mathrm{WCW} \\ & \mathrm{f}=100-500 \mathrm{MHz} \end{aligned}$			$\infty: 1$	
Pin	AC Input	$\mathrm{V}_{\mathrm{in}}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$		700	750	W

The RF Line Integrated Power Amplifier
... designed for wideband linear applications in the 1.0 to 200 MHz frequency range. Contains an all hybrid amplifier module - Motorola's own proven reliable circuitry, used in millions of operating units over twenty years - utilizing Motorola's class A transistors. Designed for high reliability with such standard features as a high-quality power

PAA0200-34-1.5L supply, EMI/RFI filter, stainless steel hardware and many MIL-STD components. Each unit undergoes 24 -hour burn-in prior to final test and Q / A.

- All Class " A "
- Operates from 115 Vac Power Source
- Frequency Range - 1.0 to 200 MHz
- Output Power - 1.5 Watts Minimum
- Gain - 36 dB Typ
- Linearity - +51 dBm Typ ITO
- Noise Figure - 4.5 dB Typ (a $\mathrm{f}=100 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Forced Air Cooling
- Thermally Protected
- 220 Vac Model Available, P/N PAE0200-34-1.5L
2.0 WATTS
$1.0-200 \mathrm{MHz}$ LINEAR POWER AMPLIFIER

CASE 388R-01, STYLE 1
ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
P_{g}	Power Gain	$\mathrm{f}=100 \mathrm{MHz}$	34	36	37	dB
f_{r}	Frequency Response	$\mathrm{f}=1.0-200 \mathrm{MHz}$	-	± 0.5	± 1.25	dB
Poldg	Power Output, 1.0 dB Compression	$\begin{aligned} & f=100 \mathrm{MHz} \\ & \mathbf{f}=200 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.5 \end{aligned}$	-	W
NF	Noise Figure	$\begin{aligned} & f=100 \mathrm{MHz} \\ & \mathbf{f}=200 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	dB
ITO	Third Order Intercept Point	$\begin{aligned} & \mathrm{f}=100 \mathrm{MHz} \\ & \mathrm{f}=200 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & +49 \\ & +44 \end{aligned}$	$\begin{array}{r} +51 \\ +55 \end{array}$	二	dBm
VSWR	$\begin{aligned} & \text { Input (Ref. }=50 \Omega) \\ & \text { Output (Ref. }=50 \Omega) \end{aligned}$	$\begin{aligned} & f=1.0-200 \mathrm{MHz} \\ & f=1.0-200 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & 1.5: 1 \\ & 1.5: 1 \end{aligned}$	$\begin{aligned} & 2.0: 1 \\ & 2.0: 1 \end{aligned}$	-
VSWR Load	VSWR Survival	$\begin{aligned} & P_{0}=1.5 \mathrm{~W} \\ & f=1.0-200 \mathrm{MHz} \end{aligned}$	-	-	30:1	-
Pin	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$	二	27	37	w

The RF Line
PAA0200-34-3.1L

Integrated

Power Amplifier

... designed for wideband linear applications in the 1.0 to 200 MHz frequency range. Contains an all hybrid amplifier module - Motorola's own proven reliable circuitry, used in millions of operating units over twenty years - utilizing Motorola's class A transistors. Designed for high reliability with such standard features as a high-quality power
 supply, EMI/RFI filter, stainless steel hardware and many MIL-STD components. Each unit undergoes $\mathbf{2 4}$-hour burn-in prior to final test and \mathbf{Q} / \mathbf{A}.

- All Class " A "
- Operates from 115 Vac Power Source
- Frequency Range - 1.0 to 200 MHz
- Output Power - 3.1 Watts Minimum
- Gain - 35 dB Typ
- Linearity - + 53 dBm Typ ITO
- Noise Figure - 5.0 dB Typ (a f $=100 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Forced Air Cooling
- Thermally Protected
- 220 Vac Model Available, P/N PAE0200-34-3.1L

CASE 389R-01, STYLE 1
ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
Pg	Power Gain	$f=100 \mathrm{MHz}$	33.5	35	36.5	dB
f_{F}	Frequency Response	$\mathrm{f}=1.0-200 \mathrm{MHz}$	-	± 1.0	± 1.5	dB
PoldB	Power Output, 1.0 dB Compression	$\begin{aligned} & f=100 \mathrm{MHz} \\ & f=200 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 3.1 \\ & 2.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.1 \end{aligned}$	二	W
NF	Noise Figure	$\begin{aligned} & f=100 \mathrm{MHz} \\ & f=200 \mathrm{MHz} \end{aligned}$	Z	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \\ & \hline \end{aligned}$	dB
ITO	Third Order Intercept Point	$\begin{aligned} & f=100 \mathrm{MHz} \\ & f=200 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & +51 \\ & +46 \end{aligned}$	$\begin{aligned} & +53 \\ & +48 \end{aligned}$	-	dBm
VSWR	$\begin{aligned} & \text { Input (Ref. }=50 \Omega) \\ & \text { Output }(\text { Ref. }=50 \Omega) \end{aligned}$	$\begin{aligned} & f=1.0-200 \mathrm{MHz} \\ & f=1.0-200 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & 1.5: 1 \\ & 1.5: 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 2.0:1 } \\ & 2.0: 1 \\ & \hline \end{aligned}$	-
VSWR L.oad	vSWR Survival	$\begin{aligned} & P_{0}=3.0 \mathrm{~W} \\ & f=1.0-200 \mathrm{MHz} \end{aligned}$	-	-	30:1	-
$P_{\text {in }}$	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$	-	50	60	W

The RF Line
Integrated VHF Linear
Power Amplifier
... designed for television service applications in the 172 to 225 MHz frequency range. Motorola class A high-power transistors provide low noise, high gain, and wide dynamic range. Designed for high reliability with such standard features as a high-quality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD heavy duty compo-

PAA225-42-10L nents. Each unit undergoes $\mathbf{2 4}$-hour burn-in prior to final test and $0 / A$.

- All Class " A "
- Operates from 115 Vac Power Source
- Frequency Range - 172 to 225 MHz
- Output Power - 10 Watts, Peak Sync.
- Gain - 45 dB
- Linearity - - $58 \mathrm{~dB}, 3$ Tone IMD
- Noise Figure - $\mathbf{5 . 0} \mathbf{d B}$ Typ @ $\mathbf{f}=\mathbf{2 2 5} \mathbf{~ M H z}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing with Dip Brazed Plenum Assembly
- Forced Air Cooling

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Power Input	$\mathbf{P}_{\text {in }}$	+5.0	dBm
Operating Base Plate Temperature Range	T_{C}	-40 to +90	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C} \cdot$

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
SSG	Small Signal Gain	$\mathrm{f}=172-225 \mathrm{MHz}$	42	46	51	dB
f_{r}	Frequency Response	$f=172-225 \mathrm{MHz}$		± 0.5	± 1.0	dB
Pol1)	$\begin{aligned} & \text { IMD } 3 \text { Tone }=-58 \mathrm{~dB} \\ & \text { Vision Carrier }=-8.0 \mathrm{~dB} \text { Reference } \\ & \text { Sound Carrier }=-10 \mathrm{~dB} \text { Reference } \\ & \text { Sideband Carrier }=-16 \mathrm{~dB} \text { Reference } \end{aligned}$	$\mathrm{f}=172-225 \mathrm{MHz}$	10	.		W
$\mathrm{P}_{0}(2)$	$\begin{aligned} & \text { IMD } 3 \text { Tone }=-55 \mathrm{~dB} \\ & \text { Vision Carrier }=-8.0 \mathrm{~dB} \text { Reference } \\ & \text { Sound Carrier }=-7.0 \mathrm{~dB} \text { Reference } \\ & \text { Sideband Carrier }=-16 \mathrm{~dB} \text { Reference } \end{aligned}$	$\mathrm{f}=172-225 \mathrm{MHz}$	10			w
NF	Noise Figure	$\mathrm{f}=172-225 \mathrm{MHz}$		5.0		dB
VSWR	Input (50 Ω) Output (50 Ω)	$\begin{aligned} & f=172-225 \mathrm{MHz} \\ & \mathrm{f}=172-225 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 1.5: 1 \\ & 2.0: 1 \end{aligned}$	$\begin{aligned} & 2.0: 1 \\ & 2.5: 1 \end{aligned}$	$\begin{aligned} & N / A \\ & N / A \end{aligned}$
vSWR Load	VSWR Survival	$\begin{aligned} & P_{0}=10 \mathrm{WCW} \\ & f=172 \mathrm{MHz} \end{aligned}$			∞ :1	N/A
$\mathrm{P}_{\text {in }}$	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$		135	150	W

The RF Line
 Integrated Power Amplifier

PAA0450-33-0.4L
... designed for wideband linear applications in the 30 to 450 MHz frequency range. Contains an all hybrid amplifier module - Motorola's own proven reliable circuitry, used in millions of operating units over twenty years - utilizing Motorola's class A transistors. Designed for high reliability with such standard features as a high-quality power supply, EMI/RFI filter, stainless steel hardware and many MiL-STD components. Each unit undergoes 24 -hour burn-in prior to final test and $0 / A$.

- All Class " A "
- Operates from 115 Vac Power Source
- Frequency Range - 30 to 450 MHz
- Output Power - 0.6 Watts Minimum
- Gain - 34 dB Typ
- Linearity - + 45 dBm Typ ITO
- Noise Figure - 5.0 dB Typ (a $f=300 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Forced Air Cooling
- Thermally Protected
- 220 Vac Model Available, P/N PAE0450-33-0.4L
1.0 WATT 30-450 MHz LINEAR POWER AMPLIFIER

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
P_{g}	Power Gain	$\mathrm{f}=50 \mathrm{MHz}$	33	34	35	dB
fr_{r}	Frequency Response	$\mathrm{f}=30-450 \mathrm{MHz}$	-	± 0.75	± 1.5	dB
Po1dB	Power Output, 1.0 dB Compression	$\begin{aligned} & \mathbf{f}=300 \mathrm{MHz} \\ & \mathbf{f}=450 \mathrm{MHz} \end{aligned}$	$\begin{gathered} 0.6 \\ 0.25 \end{gathered}$	$\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$	-	W
NF	Noise Figure	$\begin{aligned} & f=300 \mathrm{MHz} \\ & f=450 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	dB
ITO	Third Order Intercept Point	$\begin{aligned} & f=300 \mathrm{MHz}_{2} \\ & \mathbf{f}=450 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & +42 \\ & +36 \end{aligned}$	$\begin{array}{r} +45 \\ +38 \\ \hline \end{array}$	-	dBm
vSWR	$\begin{aligned} & \text { Input }\langle\text { Ref. }=50 \Omega\rangle \\ & \text { Output (Ref. }=50 \Omega) \end{aligned}$	$\begin{aligned} & f=30-450 \mathrm{MHz} \\ & f=30-450 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 1.2: 1 \\ & \text { 1.2:1 } \end{aligned}$	$\begin{aligned} & 1.5: 1 \\ & 1.5: 1 \\ & \hline \end{aligned}$	-
VSWR Load	VSWR Survival	$\begin{aligned} & P_{0}=0.4 \mathrm{~W} \\ & \mathrm{f}=30-450 \mathrm{MHz} \end{aligned}$	-	-	30:1	-
Pin	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.06,60 \mathrm{~Hz}$	-	19	30	W

The RF Line
 Integrated
 Power Amplifier

... designed for wideband linear applications in the 30 to 500 MHz frequency range. Contains an all hybrid amplifier module - Motorola's own proven reliable circuitry, used in millions of operating units over twenty years - utilizing Motorola's class A transistors. Designed for high reliability with such standard features as a high-quality power
2.0 WATTS
$30-500 \mathrm{MHz}$ LINEAR POWER AMPLIFIER supply, EMI/RFI filter, stainless steel hardware and many MIL-STD components. Each unit undergoes 24 -hour burn-in prior to final test and Q / A.

- All Class "A"
- Operates from 115 Vac Power Source
- Frequency Range - 30 to 500 MHz
- Outpu: Power - 1.25 Watts Minimum
- Gain - 18 dB Typ
- Linearity - + 49 dBm Typ ITO
- Noise Figure - $4.5 \mathrm{~dB} \operatorname{Typ}$ ($1 \mathrm{f}=300 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Forced Air Cooling
- Thermally Protected
- 220 Vac Model Available, P/N PAE0500-17-1.0L

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
P_{g}	Power Gain	$f=50 \mathrm{MHz}$	17	18	21	dB
fr_{r}	Frequency Response	$f=30-500 \mathrm{MHz}$	-	± 0.75	± 1.5	dB
Po1dB	Power Output, 1.0 dB Compression	$\begin{aligned} & f=300 \mathrm{MHz} \\ & f=500 \mathrm{MHz} \end{aligned}$	$\begin{gathered} 1.25 \\ 0.6 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	-	W
NF	Noise Figure	$\begin{aligned} & \mathbf{f}=300 \mathrm{MHz} \\ & \mathbf{f}=500 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & 4.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	dB
ITO	Third Order Intercept Point	$\begin{aligned} & f=300 \mathrm{MHz} \\ & f=500 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & +47 \\ & +40 \end{aligned}$	$\begin{aligned} & +49 \\ & +42 \end{aligned}$	-	dBm
VSWR	$\begin{aligned} & \text { Input (Ref. }=50 \Omega) \\ & \text { Output (Ref. }=50 \Omega) \end{aligned}$	$\begin{aligned} & f=30-500 \mathrm{MHz} \\ & f=30-500 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & 1.2: 1 \\ & 1.2: 1 \end{aligned}$	$\begin{aligned} & 1.5: 1 \\ & 1.5: 1 \end{aligned}$	-
VSWR Load	VSWR Survival	$\begin{aligned} & P_{\mathrm{o}}=1.0 \mathrm{~W} \\ & f=30-500 \mathrm{MHz} \end{aligned}$	-	-	30:1	-
$P_{\text {in }}$	AC Input	$V_{\text {in }}=115 \mathrm{Vac}, 1.04,60 \mathrm{~Hz}$	-	23	33	W

SEMICONDUCTOR

 TECHNICAL DATA
The RF Line
 Integrated
 Power Amplifier

PAA0500-17-2.0L
... designed for wideband linear applications in the 30 to 500 MHz frequency range. Contains an all hybrid amplifier module - Motorola's own proven reliable circuitry, used in millions of operating units over twenty years - utilizing Motorola's class A transistors. Designed for high reliability with such standard features as a high-quality power
3.1 WATTS $30-500 \mathrm{MHz}$ LINEAR POWER AMPLIFIER supply, EMI/RFI filter, stainless steel hardware and many MIL-STD components. Each unit undergoes 24 -hour burn-in prior to final test and Q / A.

- All Class "A"
- Operates from 115 Vac Power Source
- Frequency Range - 30 to 500 MHz
- Output Power - 2.0 Watts Minimum
- Gain - 18 dB Typ
- Linearity - + 51 dBm Typ ITO
- Noise Figure - 5.0 dB Typ (i $f=\mathbf{3 0 0} \mathbf{~ M H z}$
- 50 Ohm Inpuv/Output Impedance
- Heavy Duty Machined Housing
- Forced Air Cooling
- Thermally Protected
- 220 Vac Model Available, P/N PAE0500-17-2.0L

CASE 389R-01, STYLE 1
ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
P_{g}	Power Gain	$\mathrm{f}=50 \mathrm{MHz}$	17	18	19	dB
f_{r}	Frequency Response	$f=30-500 \mathrm{MHz}$	-	± 0.75	± 1.5	dB
PoldB	Power Output, 1.0 dB Compression	$\begin{aligned} & \mathbf{f}=300 \mathrm{MHz} \\ & \mathbf{f}=500 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 2.0 \\ & 1.3 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 2.0 \end{aligned}$	-	w
NF	Noise Figure	$\begin{aligned} & f=300 \mathrm{MHz} \\ & f=500 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.5 \\ & \hline \end{aligned}$	dB
ITO	Third Order Intercept Point	$\begin{aligned} & \mathrm{f}=300 \mathrm{MHz} \\ & \mathrm{f}=500 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & +49 \\ & +31 \end{aligned}$	$\begin{aligned} & +51 \\ & +33 \end{aligned}$	-	dBm
VSWR	$\begin{aligned} & \text { Input (Ref. }=50 \Omega) \\ & \text { Output }(\text { Ref. }=50 \mathrm{\Omega}) \end{aligned}$	$\begin{aligned} & f=30-500 \mathrm{MHz} \\ & f=30-500 \mathrm{MHz} \end{aligned}$	二	$\begin{aligned} & 1.2: 1 \\ & 1.2: 1 \end{aligned}$	$\begin{aligned} & 1.5: 1 \\ & 1.5: 1 \end{aligned}$	-
VSWR Load	vSWR Survival	$\begin{aligned} & P_{0}=2.0 \mathrm{~W} \\ & f=30-500 \mathrm{MHz} \end{aligned}$	-	-	30:1	-
Pin	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$	-	40	50	w

SEMICONDUCTOR

 TECHNICAL DATA
The RF Line
 Integrated Power Amplifier

... designed for wideband linear applications in the 30 to 500 MHz frequency range. Contains an all hybrid amplifier module - Motorola's own proven reliable circuitry, used in millions of operating units over twenty years - utilizing Motorola's class A transistors. Designed for high reliability with such standard features as a high-quality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD components. Each unit undergoes 24 -hour burn-in prior to final test and $0 / A$.

- All Class " A "
- Operates from 115 Vac Power Source
- Frequency Range - $\mathbf{3 0}$ to 500 MHz
- Output Power - 1.25 Watts Minimum
- Gain - 36.5 dB Typ
- Linearity - + 49 dBm Typ ITO
- Noise Figure - 5.0 dB Typ (ii $f=300 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Forced Air Cooling
- Thermally Protected
- 220 Vac Model Available, P/N PAE0500-35-1.0L
2.0 WATTS $30-500 \mathrm{MHz}$ LINEAR POWER AMPLIFIER

CASE 383R-01, STYLE 1

ELECTRICAL CHARACTERISTICS

Symbal	Characteristics	Test Conditions	Min	TYp	Max	Unit
Pg_{g}	Power Gain	$f=50 \mathrm{MHz}$	35	36.5	38	dB
fr_{r}	Frequency Response	$f=30-500 \mathrm{MHz}$	-	± 1.0	± 2.0	dB
Po1dB	Power Output, 1.0 dB Compression	$\begin{aligned} & f=300 \mathrm{MHz} \\ & f=500 \mathrm{MHz} \end{aligned}$	$\begin{gathered} 1.25 \\ 0.6 \end{gathered}$	$\begin{aligned} & 2.0 \\ & 1.0 \end{aligned}$	-	W
NF	Noise Figure	$\begin{aligned} & f=300 \mathrm{MHz} \\ & f=500 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	dB
ITO	Third Order Intercept Point	$\begin{aligned} & f=300 \mathrm{MHz} \\ & f=500 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & +46 \\ & +39 \end{aligned}$	$\begin{aligned} & +49 \\ & +42 \end{aligned}$	-	dBm
VSWR	$\begin{aligned} & \text { Input (Ref. }=50 \Omega) \\ & \text { Output }(\text { Ref. }=50 \Omega) \end{aligned}$	$\begin{aligned} & \mathbf{f}=30-500 \mathrm{MHz} \\ & \mathbf{f}=30-500 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & 1.2: 1 \\ & 1.2: 1 \end{aligned}$	$\begin{aligned} & 1.5: 1 \\ & 1.5: 1 \end{aligned}$	-
VSWR Load	VSWR Survival	$\begin{aligned} & P_{0}=1.0 \mathrm{~W} \\ & f=30-500 \mathrm{MHz} \end{aligned}$	-	-	30:1	-
Pin	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$	-	30	40	W

The RF Line Integrated UHF Linear Power Amplifier

... designed for wideband linear applications in the 500 to 1000 MHz frequency range. Motorola class A high-power transistors provide excellent ITOs, high gain, and wide dynamic range. Designed for high reliability with such standard features as a highquality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD heavy
6.0 WATTS
$500-1000 \mathrm{MHz}$
LINEAR POWER AMPLIFIER ASSEMBLY duty components. Each unit undergoes 24 -hour burn-in prior to final test and O/A.

- All Class "A"
- Operates from 115 Vac Power Source
- Frequency Range - $\mathbf{5 0 0}$ to 1000 MHz
- Output Power - 7.0 Watts Typical
- Gain - 27 dB
- Linearity - +48.5 dBm Typ ITO
- Noise Figure - 8.0 dB Typ (a $\mathrm{f}=1000 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing with Dip Brazed Plenum Assembly
- Forced Air Cooling

CASE 389F-01, STYLE 1

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
SSG	Small Signal Gain	$f=500-1000 \mathrm{MHz}$	25	27		dB
f_{r}	Frequency Response	$\mathrm{f}=500-1000 \mathrm{MHz}$		± 1.0	± 1.5	dB
P_{0}	Power Output	$\mathrm{f}=500-1000 \mathrm{MHz}$	6.0	7.0		W
NF	Noise Figure	$\mathrm{f}=500-1000 \mathrm{MHz}$		8.0	9.5	dB
ITO	Third Order Intercept Point	$\mathfrak{f}=500-1000 \mathrm{MHz}$	+ 47.5	+ 48.5		dBm
dso	Second Harmonic Attenuation	$f=1.0-2.0 \mathrm{GHz}$	25	35		dB
VSWR	Input (Ref $=50 \Omega$) Output $($ Ref $=50 \Omega$)	$\begin{aligned} & f=500-1000 \mathrm{MHz} \\ & f=500-1000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 2.0: 1 \\ & 2.5: 1 \end{aligned}$	2.5:1	
VSWR Load	VSWR Survival	$\begin{aligned} & P_{0}=6.0 \mathrm{WCW} \\ & f=500-1000 \mathrm{MHz} \end{aligned}$			30:1	
$\mathrm{P}_{\text {in }}$	AC Input	$\mathrm{V}_{\mathrm{in}}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$		85	100	w

SEMICONDUCTOR TECHNICAL DATA

The RF Line

Integrated UHF Linear
 Power Amplifier

... designed for wideband linear applications in the 800 to 1000 MHz frequency range. Motorola class A high-power transistors provide excellent ITOs, high gain, and wide dynamic range. Designed for high reliability with such standard features as a highquality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD heavy
5.0 WATT
$\mathbf{8 0 0}-1000 \mathrm{MHz}$ LINEAR POWER AMPLIFIER ASSEMBLY duty components. Each unit undergoes 24 -hour burn-in prior to final test and Q/A.

- All Class " A "
- Operates from 115 Vac Power Source
- Frequency Range - 800 to 1000 MHz
- Output Power - 5.0 Watts Typical
- Gain - 26 dB
- Linearity - + 47.5 dBm Typ ITO
- Noise Figure - 8.0 dB Typ @ $\mathbf{f}=1000 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing with Dip Brazed Plenum Assembly
- Forced Air Cooling

CASE 389F-01, STYLE 1
ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
SSG	Small Signal Gain	$\mathrm{f}=800-1000 \mathrm{MHz}$	24	26		dB
f_{r}	Frequency Response	$\mathbf{f}=800-1000 \mathrm{MHz}$		± 0.5	± 1.0	dB
P_{0}	Power Output	$\mathrm{f}=800-1000 \mathrm{MHz}^{\text {d }}$	4.5	5.0		W
NF	Noise Figure	$f=800-1000 \mathrm{MHz}$		8.0	9.5	dB
ITO	Third Order Intercept Point	$\mathrm{f}=800-1000 \mathrm{MHz}$	+46.5	+47.5		dBm
dso	Second Harmonic Attenuation	$\mathrm{f}=1.6-2.0 \mathrm{GHz}$	25	35		dB
vSWR	Input (Ref $=50 \Omega$) Output (Ref = 50Ω)	$\begin{aligned} & f=800-1000 \mathrm{MHz} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 2.0: 1 \\ & 2.5: 1 \end{aligned}$	2.5:1	
VSWR Load	VSWR Survival	$\begin{aligned} & P_{0}=5.0 \mathrm{WCW} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$			$\infty: 1$	
$P_{\text {in }}$	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$		85	100	W

The RF Line
PAA0810-31-25L

Integrated UHF Linear
 Power Amplifier

... designed for wideband linear applications in the $\mathbf{8 0 0}$ to 1000 MHz frequency range. Motorola class A high-power transistors provide excellent ITOs, high gain, and wide dynamic range. Designed for high reliability with such standard features as a highquality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD heavy duty components. Each unit undergoes $\mathbf{2 4}$-hour burn-in prior to final test and \mathbf{Q} / A.

- All Class "A"
- Operates from 115 Vac Power Source
- Frequency Range - $\mathbf{8 0 0}$ to $\mathbf{1 0 0 0} \mathbf{~ M H z}$
- Output Power - 25 Watts Minimum
- Gain - 33 dB
- Linearity - + 55 dBm Typ ITO
- Noise Figure - 8.0 dB Typ @ $f=1000 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing with Dip Brazed Plenum Assembly
- Forced Air Cooling

CASE 389F-01, STYLE 1

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
SSG	Small Signal Gain	$\mathrm{f}=800-1000 \mathrm{MHz}$	31	33		dB
f_{r}	Frequency Response	$f=800-1000 \mathrm{MHz}$		± 0.75	± 1.0	dB
Po	Power Output	$\mathrm{f}=800-1000 \mathrm{MHz}$	25	30		W
NF	Noise Figure	$\mathrm{f}=800-1000 \mathrm{MHz}$		8.0	9.0	dB
ITO	Third Order Intercept Point	$\mathrm{f}=800-1000 \mathrm{MHz}$	+54	+55		dBm
dso	Second Harmonic Attenuation	$\mathrm{f}=1.6-2.0 \mathrm{GHz}$	35	40		dB
VSWR	Input (Ref $=\mathbf{5 0} \mathbf{\Omega}$) Output (Ref $=50 \Omega$)	$\begin{aligned} & f=800-1000 \mathrm{MHz} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & \hline 2.0: 1 \\ & 1.5: 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.5: 1 \\ & 2.0: 1 \\ & \hline \end{aligned}$	
VSWR Load	VSWR Survival	$\begin{aligned} & P_{0}=25 \mathrm{WCW} \\ & \mathrm{f}=800-1000 \mathrm{MHz} \end{aligned}$			∞ :1	
Pin	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$		270	300	w

The RF Line
Integrated UHF Linear Power Amplifier

PAA0810-32-10L
... designed for wideband linear applications in the 800 to 1000 MHz frequency range. Motorola class A high-power transistors provide excellent ITOs, high gain, and wide dynamic range. Designed for high reliability with such standard features as a highquality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD heavy duty components. Each unit undergoes $\mathbf{2 4}$-hour burn-in prior to final test and \mathbf{Q} / A.

- All Class "A"
- Operates from 115 Vac Power Source
- Frequency Range - 800 to 1000 MHz
- Output Power - 10 Watts Minimum
- Gain - $\mathbf{3 5} \mathrm{dB}$
- Linearity - + 56 dBm Typ ITO
- Noise Figure - 8.0 dB Typ @ $f=1000 \mathrm{MHz}$
- 50 Ohm InpuvOutput Impedance
- Heavy Duty Machined Housing with Dip Brazed Plenum Assembly
- Forced Air Cooling

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
SSG	Small Signal Gain	$\mathrm{f}=800-1000 \mathrm{MHz}$	32	35		dB
f_{r}	Frequency Response	$\mathrm{f}=800-1000 \mathrm{MHz}$		± 0.75	± 1.0	dB
P_{0}	Power Output	$\mathrm{f}=800-1000 \mathrm{MHz}$	10	12		W
NF	Noise Figure	$\mathrm{f}=800-1000 \mathrm{MHz}$		8.0	9.0	dB
ITO	Third Order Intercept Point	$\mathrm{f}=800-1000 \mathrm{MHz}$	+48.5	+ 50		dBm
dso	Second Harmonic Attenuation	$\mathrm{f}=1.6-2.0 \mathrm{GHz}$	35	40		dB
VSWR	Input (Ref = $\mathbf{5 0} \Omega$) Output (Ref = 50Ω)	$\begin{aligned} & f=800-1000 \mathrm{MHz} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & 1.5: 1 \\ & 1.5: 1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.0: 1 \\ & 2.0: 1 \end{aligned}$	
VSWR Lord	VSWR Survival	$\begin{aligned} & P_{0}=10 \mathrm{WCW} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$			$\infty: 1$	
Pin	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$		180	200	w

SEMICONDUCTOR TECHNICAL DATA

The RF Line
 Integrated UHF Linear Power Amplifier

... designed for wideband linear applications in the 800 to 1000 MHz frequency range. Motorola class A high-power transistors provide excellent ITOs, high gain, and wide dynamic range. Designed for high reliability with such standard features as a high-

PAA0810-38-5LAS quality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD heavy
5.0 WATT

800-1000 MHz
LINEAR POWER AMPLIFIER ASSEMBLY duty components. Each unit undergoes 24 -hour burn-in prior to final test and \mathbf{Q} / A.

- All Class " A "
- Operates from 115 Vac Power Source
- Frequency Range - $\mathbf{8 0 0}$ to 1000 MHz
- Output Power - 5.0 Watts Typical
- Gain - 42 dB
- Linearity - + 47.5 dBm Typ ITO
- Noise Figure - 8.0 dB Typ @ $\mathbf{f}=1000 \mathrm{MHz}$
- 50 Ohm InputOutput Impedance
- Heavy Duty Machined Housing with Dip Brazed Plenum Assembly
- Forced Air Cooling

CASE 389F-01, STYLE 1

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
SSG	Small Signal Gain	$\mathrm{f}=800-1000 \mathrm{MHz}$	38	42		dB
f_{r}	Frequency Response	$\mathrm{f}=800-1000 \mathrm{MHz}$		± 0.75	± 1.0	dB
P_{0}	Power Output	$\mathrm{f}=800-1000 \mathrm{MHz}$	4.5	5.0		W
NF	Noise Figure	$\mathrm{f}=800-1000 \mathrm{MHz}$		8.0	9.0	dB
ITO	Third Order Intercept Point	$\mathrm{f}=800-1000 \mathrm{MHz}$	+46.5	+47.5		dBm
dso	Second Harmonic Attenuation	$\mathrm{f}=1.6-2.0 \mathrm{GHz}$	25	35		dB
VSWR	Input (Ref = 50Ω) Output (Ref $=\mathbf{5 0} \Omega$)	$\begin{aligned} & f=800-1000 \mathrm{MHz} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & \text { 2.0:1 } \\ & 2.5: 1 \end{aligned}$	2.5:1	
vSWR Load	VSWR Survival	$\begin{aligned} & P_{0}=5.0 \mathrm{~W} \mathrm{CW} \\ & \mathrm{f}=800-1000 \mathrm{MHz} \end{aligned}$			∞ :1	
Pin	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$		100	125	w

The RF Line

Integrated UHF Linear Power Amplifier

PAA0810-38-100AB
... designed for wideband linear applications in the 800 to 1000 MHz frequency range. Motorola high-power transistors provide high gain and wide dynamic range. Designed for high reliability with such standard features as a high-quality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD heavy duty components. Each unit undergoes 24 -hour burn-in prior to final test and $0 / A$.

- All Class "A" Driver Stages, Class "AB" Final Amplifier
- Operates from 115 Vac Power Source
- Frequency Range - 800 to 1000 MHz
- Output Power - 100 Watts Minimum
- Gain - 38 dB Typ
- Infinite VSWR Load Capability, Circulator Protected
- Noise Figure - 8.0 dB Typ @ $\mathrm{f}=1000 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing with Dip Brazed Plenum Assembly
- Forced Air Cooling
- Built-In System DC Voltmeter
- 220 Vac Model Available, P/N PAE0810-38-100AB

100 WATTS
$800-1000 \mathrm{MHz}$ LINEAR POWER AMPLIFIER

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
P_{g}	Power Gain	$\mathrm{f}=800-1000 \mathrm{MHz}, \mathrm{P}_{\mathrm{O}}=100 \mathrm{~W}$	37	38	-	d8
f_{r}	Frequency Response	$\mathrm{f}=800-1000 \mathrm{MHz}$	-	± 1.0	± 1.25	dB
P_{0}	Power Output	$\mathrm{f}=800-1000 \mathrm{MHz}$	100	120	-	W
NF	Noise Figure	$\mathrm{f}=800-1000 \mathrm{MHz}$	-	8.0	9.5	dB
dso	Second Harmonic Attenuation	$\mathrm{f}=1.6-2.0 \mathrm{GHz}$	25	40	-	dB
vSWR	$\begin{aligned} & \text { Input }(\text { Ref. }=50 \Omega) \\ & \text { Output }(\text { Ref. }=50 \Omega) \end{aligned}$	$\begin{aligned} & f=800-1000 \mathrm{MHz} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$		$\begin{gathered} 2.0: 1 \\ 1.25: 1 \end{gathered}$	$\begin{aligned} & 2.5: 1 \\ & 1.5: 1 \end{aligned}$	-
VSWR Load	VSWR Survival	$\begin{aligned} & P_{0}=100 \mathrm{WCW} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$	-	-	$x: 1$	-
PAC-IN	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$	-	700	825	w

SEMICONDUCTOR TECHNICAL DATA

The RF Line

Integrated UHF Linear Power Amplifier Motorola class A high-power transistors provide excellent ITOs, high gain, and wide dynamic range. Designed for high reliability with such standard features as a highquality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD heavy duty components. Each unit undergoes 24 -hour burn-in prior to final test and \mathbf{O} / A.

- All Class " A "
- Operates from 115 Vac Power Source
- Frequency Range - 800 to 1000 MHz
- Output Power - 50 Watts Minimum
- Gain - 42 dB
- Linearity - + 56 dBm Typ ITO
- Noise Figure - 8.0 dB Typ @ $\mathrm{f}=1000 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing with Dip Brazed Plenum Assembly
- Forced Air Cooling
- Built-In System DC Voltmeter

CASE 389G-01, STYLE 1

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
SSG	Small Signal Gain	$\mathrm{f}=800-1000 \mathrm{MHz}$	40	42		dB
f_{r}	Frequency Response	$\mathrm{f}=800-1000 \mathrm{MHz}$.	± 0.75	± 1.0	dB
P_{0}	Power Output	$f=800-1000 \mathrm{MHz}$	50	55		W
NF	Noise Figure	$\mathrm{f}=800-1000 \mathrm{MHz}$		8.0	9.0	dB
ITO	Third Order Intercept Point	$f=800-1000 \mathrm{MHz}$	+55	+56.5		dBm
dso	Second Harmonic Attenuation	$\mathrm{f}=1.6-2.0 \mathrm{GHz}$	40	50		dB
vSWR	Input (Ref = $\mathbf{5 0} \mathbf{\Omega}$) Output (Ref $=50 \Omega$)	$\begin{aligned} & f=800-1000 \mathrm{MHz} \\ & \mathrm{f}=800-1000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & \text { 2.0:1 } \\ & \text { 1.25:1 } \end{aligned}$	$\begin{aligned} & 2.5: 1 \\ & 1.5: 1 \end{aligned}$	
VSWR Load	vSWR Survival	$\begin{aligned} & P_{0}=50 \mathrm{WCW} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$			∞ :1	
$P_{\text {in }}$	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$		560	600	w

The RF Line
Integrated UHF Linear Power Amplifier

50 WATT

800-1000 MHz LINEAR POWER AMPLIFIER Motorola class A high-power transistors provide excellent ITOs, high gain, and wide dynamic range. Designed for high reliability with such standard features as a highquality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD heavy duty components. Each unit undergoes 24 -hour burn-in prior to final test and Q / A.

- All Class " A "
- Operates from 115 Vac Power Source
- Frequency Range - 800 to 1000 MHz
- Output Power - 50 Watts Minimum
- Gain - 42 dB
- Linearity - + 56 dBm Typ ITO
- Noise Figure - 8.0 dB Typ @ $\mathrm{f}=1000 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing with Dip Brazed Plenum Assembly
- Forced Air Cooling
- Built-In RF Wattmeter
- Built-In Low Pass Filter and Directional Coupler

CASE 389G-01, STYLE 1
ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
SSG	Small Signal Gain	$\mathrm{f}=800-1000 \mathrm{MHz}$	40	42		dB
f_{r}	Frequency Response	$\mathrm{f}=800-1000 \mathrm{MHz}$		± 0.75	± 1.0	dB
P_{0}	Power Output	$\mathrm{f}=800-1000 \mathrm{MHz}$	50	55		W
NF	Noise Figure	$\mathrm{f}=800-1000 \mathrm{MHz}$		8.0	9.0	dB
ITO	Third Order Intercept Point	$\mathrm{f}=800-1000 \mathrm{MHz}$	+55	+56		dBm
dso	Second Harmonic Attenuation	$\mathrm{f}=1.6-2.0 \mathrm{GHz}$	40	50		dB
VSWR	Input (Ref $=50 \Omega$) Output (Ref = 50Ω)	$\begin{aligned} & f=800-1000 \mathrm{MHz} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & \text { 2.0:1 } \\ & \text { 1.25:1 } \end{aligned}$	$\begin{aligned} & \text { 2.5:1 } \\ & \text { 1.5:1 } \\ & \hline \end{aligned}$	
VSWR Load	VSWR Survival	$\begin{aligned} & P_{0}=50 \mathrm{WCW} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$			$\infty: 1$	
Sample Level	Directional Coupler Output	$\mathrm{f}=800-1000 \mathrm{MHz}$		-30		dBc
$\mathrm{P}_{\text {in }}$	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$		560	600	W
P_{0} Scale	RF Wattmeter Range Power Output	$\mathrm{f}=\mathbf{8 0 0} \mathbf{- 1 0 0 0 ~ M H z}$			100	W
P_{r}	RF Wattmeter Range Reflected Power	$\mathbf{f}=\mathbf{8 0 0} \mathbf{- 1 0 0 0 ~ M H z}$			25	W

The RF Line

Integrated UHF Linear Power Amplifier

PAA0810-52-100AB
... designed for wideband linear applications in the 800 to 1000 MHz frequency range. Motorola high-power transistors provide high gain and wide dynamic range. Designed for high reliability with such standard features as a high-quality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD heavy duty components. Each unit undergoes 24 -hour burn-in prior to final test and Q / A.

100 WATTS $800-1000 \mathrm{MHz}$ LINEAR POWER AMPLIFIER

- All Class "A" Driver Stages, Class "AB" Final Amplifier
- Operates from 115 Vac Power Source
- Frequency Range - 800 to 1000 MHz
- Output Power - 100 Watts Minimum
- Gain - 52 dB Typ
- Infinite VSWR Load Capability, Circulator Protected
- Noise Figure - 9.0 dB Typ (a $\mathrm{f}=1000 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing with Dip Brazed Plenum Assembly
- Forced Air Cooling
- Built-In System DC Voltmeter
- 220 Vac Model Available, P/N PAE0810-52-100AB

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
P_{g}	Power Gain	$f=800-1000 \mathrm{MHz}, \mathrm{P}_{\mathrm{O}}=100 \mathrm{~W}$	50	52	-	dB
f_{r}	Frequency Response	$\mathrm{f}=800-1000 \mathrm{MHz}$	-	± 1.0	± 1.25	dB
P_{0}	Power Output	$\mathrm{f}=800-1000 \mathrm{MHz}$	100	120	-	W
NF	Noise Figure	$\mathrm{f}=800-1000 \mathrm{MHz}$	-	9.0	10	dB
dso	Second Harmonic Attenuation	$f=1.6-2.0 \mathrm{GHz}$	25	40	-	dB
VSWR	$\begin{aligned} & \text { Input (Ref. }=50 \mathrm{\Omega}) \\ & \text { Output (Ref. }=50 \mathrm{\Omega}) \end{aligned}$	$\begin{aligned} & f=800-1000 \mathrm{MHz} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$		$\begin{gathered} 2.0: 1 \\ 1.25: 1 \\ \hline \end{gathered}$	$\begin{aligned} & \text { 2.5:1 } \\ & 1.5: 1 \\ & \hline \end{aligned}$	-
vSWR Load	vSWR Survival	$\begin{aligned} & P_{0}=100 \mathrm{~W} \mathrm{CW} \\ & \mathrm{f}=800-1000 \mathrm{MHz} \end{aligned}$	-	-	$\infty: 1$	-
PAC-IN	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$	-	700	825	w

The RF Line

Integrated UHF Linear
 Power Amplifier

.. . designed for wideband linear applications in the 800 to 1000 MHz frequency range. Motorola high-power transistors provide high gain and wide dynamic range. Designed for high reliability with such standard features as a high-quality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD heavy duty components. Each unit undergoes 24 -hour burn-in prior to final test and $0 / A$.

- All Class " A " Driver Stages, Class "AB" Final Amplifier
- Operates from 115 Vac Power Source
- Frequency Range - 800 to 1000 MHz
- Output Power - 100 Watts Minimum
- Gain - 52 dB
- Infinite VSWR Load Capability, Circulator Protected
- Noise Figure - 8.0 dB Typ @ $\mathrm{f}=1000 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing with Dip Brazed Plenum Assembly
- Forced Air Cooling
- Built-In RF Wattmeter and Directional Coupler
- 220 Vac Model Available, P/N PAE0810-52-100AM

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
P_{g}	Power Gain	$f=800-1000 \mathrm{MHz}, \mathrm{P}_{0}=100 \mathrm{~W}$	51	52	-	dB
f_{r}	Frequency Response	$f=800 \sim 1000 \mathrm{MHz}$	-	± 1.0	± 1.25	dB
P_{0}	Power Output	$\mathrm{f}=800-1000 \mathrm{MHz}$	100	120	-	W
NF	Noise Figure	$f=800-1000 \mathrm{MHz}$	-	8.0	9.5	dB
dso	Second Harmonic Attenuation	$f=1.6-2.0 \mathrm{CHz}$	25	40	-	dB
VSWR	$\begin{aligned} & \text { Input (Ref. }=50 \Omega) \\ & \text { Output }(\text { Ref. }=50 \Omega) \end{aligned}$	$\begin{aligned} & f=800-1000 \mathrm{MHz} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$	-	$\begin{gathered} 2.0: 1 \\ 1.25: 1 \end{gathered}$	$\begin{aligned} & 2.5: 1 \\ & 1.5: 1 \end{aligned}$	-
VSWR Load	VSWR Survival	$\begin{aligned} & P_{\mathrm{O}}=100 \mathrm{WCW} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$	-	-	x : 1	-
PAC-IN	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1 \phi, 60 \mathrm{~Hz}$	-	700	825	W
Sample Level	Directional Coupler Output	$f=800-1000 \mathrm{MHz}$	-	-30	-	dBc
P_{0} Scale	RF Wattmeter Range Power Output	$f=800-1000 \mathrm{MHz}$	-	-	250	W
Pr	RF Wattmeter Range Reflected Power	$f=800-1000 \mathrm{MHz}$	-	-	50	W

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

The RF Line

Integrated UHF Linear Power Amplifier
... designed for wideband linear applications in the 800 to 1000 MHz frequency range Motorola class A high-power transistors provide excellent ITOs, high gain, and wide dynamic range. Designed for high reliability with such standard features as a highquality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD heavy duty components. Each unit undergoes $\mathbf{2 4}$-hour burn-in prior to final test and $0 / A$.

- All Class "A"
- Operates from 115 Vac Power Source
- Frequency Range - 800 to 1000 MHz
- Output Power - 50 Watts Minimum
- Gain - 56 dB
- Linearity - + 56 dBm Typ ITO
- Noise Figure - 8.0 dB Typ @ $\mathbf{f}=1000 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housings with Dip Brazed Plenum Assembly
- Forced Air Cooling
- Built-In System DC Voltmeter

50 WATT
$800-1000 \mathrm{MHz}$ LINEAR POWER AMPLIFIER

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
SSG	Small Signal Gain	$f=800-1000 \mathrm{MHz}$	54	56		dB
f_{r}	Frequency Response	$\mathrm{f}=800-1000 \mathrm{MHz}$		± 0.75	± 1.0	dB
P_{0}	Power Output	$\mathbf{f}=\mathbf{8 0 0} \mathbf{- 1 0 0 0 ~ M H z}$	50	55		W
NF	Noise Figure	$\mathbf{f}=800-1000 \mathrm{MHz}$		8.0	9.0	dB
ITO	Third Order Intercept Point	$\mathrm{f}=800-1000 \mathrm{MHz}$	+55	+56.5		dBm
dso	Second Harmonic Attenuation	$\mathrm{f}=1.6-2.0 \mathrm{GHz}$	40	50		dB
VSWR	Input (Ref $=\mathbf{5 0} \mathbf{\Omega}$) Output (Ref = $\mathbf{5 0 ~ \Omega}$)	$\begin{aligned} & f=800-1000 \mathrm{MHz} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$		$\begin{gathered} 2.0: 1 \\ 1.25: 1 \end{gathered}$	$\begin{aligned} & \hline 2.5: 1 \\ & 1.5: 1 \end{aligned}$	
VSWR Load	VSWR Surviva!	$\begin{aligned} & P_{0}=50 \mathrm{WCW} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$			$\infty: 1$	
Pin	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$		560	600	w

The RF Line
 Integrated UHF Linear
 Power Amplifier

... designed for wideband linear applications in the 800 to 1000 MHz frequency range. Motorola class A high-power transistors provide excellent ITOs, high gain, and wide dynamic range. Designed for high reliability with such standard features as a highquality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD heavy
 duty components. Each unit undergoes $\mathbf{2 4}$-hour burn-in prior to final test and $0 / A$.

- All Class " A "
- Operates from 115 Vac Power Source
- Frequency Range - $\mathbf{8 0 0}$ to 1000 MHz
- Output Power - 50 Watts Minimum
- Gain - 56 dB
- Linearity - +56 dBm Typ ITO
- Noise Figure - 8.0 dB Typ @ $f=1000 \mathrm{MHz}$
- 50 Ohm InputOutput Impedance
- Heavy Duty Machined Housing with Dip Brazed Plenum Assembly
- Forced Air Cooling
- Built-In RF Wattmeter
- Built-In Low Pass Filter and Directional Coupler

CASE 389G-01, STYLE 1
ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
SSG	Small Signal Gain	$f=800-1000 \mathrm{MHz}$	54	56		dB
f_{r}	Frequency Response	$f=800-1000 \mathrm{MHz}$		± 0.75	± 1.0	dB
P_{0}	Power Output	$\mathrm{f}=800-1000 \mathrm{MHz}$	50	55		W
NF	Noise Figure	$f=800-1000 \mathrm{MHz}$		8.0	9.0	d8
ITO	Third Order Intercept Point	$\mathrm{f}=800-1000 \mathrm{MHz}$	+55	+56		dBm
dso	Second Harmonic Attenuation	$\mathrm{f}=1.6-2.0 \mathrm{GHz}$	40	50		dB
vSWR	$\begin{aligned} & \text { Input }(\text { Ref }=50 \Omega) \\ & \text { Output }(\text { Ref }=50 \Omega) \end{aligned}$	$\begin{aligned} & f=800-1000 \mathrm{MHz} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$		$\begin{aligned} & \text { 2.0:1 } \\ & 1.25: 1 \end{aligned}$	$\begin{aligned} & \hline 2.5: 1 \\ & 1.5: 1 \end{aligned}$	
vSWR Load	VSWR Survival	$\begin{aligned} & P_{0}=50 \mathrm{WCW} \\ & f=800-1000 \mathrm{MHz} \end{aligned}$			$\infty: 1$	
Sample Level	Directional Coupler Output	$\mathrm{f}=\mathbf{8 0 0} \mathbf{- 1 0 0 0 ~ M H z}$		-30		dBc
$P_{\text {in }}$	AC input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$		560	600	W
P_{0} Scale	RF Wattmeter Range Power Output	$f=800-1000 \mathrm{MHz}$			100	w
Pr	RF Wattmeter Range Reflected Power	$f=800-1000 \mathrm{MHz}$			25	w

The RF Line
Integrated
Power Amplifier
PAA1000-14-0.6L
... designed for wideband linear applications in the 10 to 1000 MHz frequency range. Contains an all hybrid amplifier module - Motorola's own proven reliable circuitry, used in millions of operating units over twenty years - utilizing Motorola's class A transistors. Designed for high reliability with such standard features as a high-quality power supply, EMI/RFI filter, stainless steel hardware and many MIL-STD components. Each unit undergoes 24 -hour burn-in prior to final test and O / A.

- All Class "A"
- Operates from 115 Vac Power Source
- Frequency Range - 10 to 1000 MHz
- Output Power - 0.6 Watt Minimum
- Gain - 15 dB Typ
- Linearity - + 43 dBm Typ ITO
- Noise Figure - $\mathbf{7 . 5} \mathrm{dB}$ Typ (a $\mathrm{f}=\mathbf{5 0 0} \mathbf{~ M H z}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Forced Air Cooling
- Thermally Protected
- 220 Vac Model Available, P/N PAE1000-14-0.6L

CASE 383R-01, STYLE 1
ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
Pg_{g}	Power Gain	$f=100 \mathrm{MHz}$	14	15	16	dB
f_{r}	Frequency Response	$\mathrm{f}=\mathbf{1 0 - 1 0 0 0 ~ M H z}$	-	± 0.5	± 1.0	dB
PoldB	Power Output, 1.0 dB Compression	$\begin{aligned} & f=500 \mathrm{MHz} \\ & f=1000 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	-	w
NF	Noise Figure	$\begin{aligned} & f=500 \mathrm{MHz} \\ & f=1000 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \\ & \hline \end{aligned}$	dB
ITO	Third Order Intercept Point	$\begin{aligned} & f=500 \mathrm{MHz} \\ & f=1000 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & +41 \\ & +40 \end{aligned}$	$\begin{aligned} & +43 \\ & +42 \end{aligned}$	-	dBm
VSWR	Input (Ref. $=50 \Omega$) Output (Ref. $=50 \Omega$)	$\begin{aligned} & f=10-1000 \mathrm{MHz} \\ & f=10-1000 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & 2.0: 1 \\ & 2.0: 1 \end{aligned}$	$\begin{aligned} & 2.5: 1 \\ & \text { 2.5:1 } \end{aligned}$	-
VSWR Load	vSWR Survival	$\begin{aligned} & P_{0}=0.6 \mathrm{~W} \\ & f=10-1000 \mathrm{MHz} \end{aligned}$	-	-	30:1	-
$\mathrm{P}_{\text {in }}$	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$	-	25	35	w

The RF Line
Integrated
Power Amplifier
PAA1000-14-1.3L
... designed for wideband linear applications in the 10 to 1000 MHz frequency range. Contains an all hybrid amplifier module - Motorola's own proven reliable circuitry, used in millions of operating units over twenty years - utilizing Motorola's class A transistors. Designed for high reliability with such standard features as a high-quality power
 supply, EMI/RFI filter, stainless steel hardware and many MIL-STD components. Each unit undergoes $\mathbf{2 4}$-hour burn-in prior to final test and Q / A.

- All Class " A "
- Operates from 115 Vac Power Source
- Frequency Range - 10 to 1000 MHz
- Output Power =1.3 Watts Minimum
- Gain - 15 dB Typ
- Linearity - +45dBm'Typ ITO
- Noise Figure - 8.0 dB TYp © $f=500 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Heusing
- Forcèd Air Cooling
- Thermally Protected
- 220 Vac Model Available, P/N PAE1000-14-1.3L

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
P_{g}	Power Gain	$\mathrm{f}=100 \mathrm{MHz}$	14	15	16	d8
fr_{r}-.	Frequency Response	$\mathrm{f}=10-1000 \mathrm{MHz}$	-	± 0.8	± 1.5	dB
PoldB	Power Output, 1.0 dB Compression	$\begin{aligned} & f=500 \mathrm{MHz} \\ & f=1000 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.3 \end{aligned}$	-	W
NF	Noise Figure	$\begin{aligned} & f=500 \mathrm{MHz} \\ & f=1000 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & \hline 8.0 \\ & 9.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 9.0 \\ & 10 \end{aligned}$	dB
ITO	Third Order Intercept Point	$\begin{aligned} & f=500 \mathrm{MHz} \\ & f=1000 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & +43 \\ & +42 \end{aligned}$	$\begin{aligned} & +45 \\ & +44 \end{aligned}$	-	dBm
vSWR	$\begin{aligned} & \text { Input (Ref. }=50 \Omega) \\ & \text { Output }(\text { Ref. }=50 \Omega) \end{aligned}$	$\begin{aligned} & f=10-1000 \mathrm{MHz} \\ & f=10-1000 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & 2.0: 1 \\ & 2.0: 1 \end{aligned}$	$\begin{aligned} & 2.5: 1 \\ & 2.5: 1 \\ & \hline \end{aligned}$	-
VSWR Load	VSWR Survival	$\begin{aligned} & P_{0}=1.3 \mathrm{~W} \\ & f=10-1000 \mathrm{MHz} \end{aligned}$	-	-	30:1	-
Pin	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$	-	45	55	W

The RF Line
Integrated
Power Amplifier
... designed for wideband linear applications in the 10 to 1000 MHz frequency range. Contains an all hybrid amplifier module - Motorola's own proven reliable circuitry, used in millions of operating units over twenty years - utilizing Motorola's class A transistors. Designed for high reliability with such standard features as a high-quality power

PAA1000-30-0.6L supply, EMI/RFI filter, stainless steel hardware and many MIL-STD components. Each unit undergoes 24 -hour burn-in prior to final test and O / A.

- All Class " A "
- Operates from 115 Vac Power Source
- Frequency Range - 10 to 1000 MHz
- Output Power - 0.6 Watt Minimum
- Gain - 32 dB Typ
- Linearity - + 43 dBm Typ ITO
- Noise Figure - 6.5 dB Typ (a $\mathrm{f}=500 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Forced Air Cooling
- Thermally Protected
- 220 Vac Model Available, P/N PAE $1000-30-0.6 \mathrm{~L}$
0.8 WATT
$10-1000 \mathrm{MHz}$
LINEAR POWER AMPLIFIER

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
$\mathrm{P}_{\mathrm{g}} \quad \rightarrow$	Power Gain	$\mathrm{f}=100 \mathrm{MHz}$	30	32	34	dB
f_{r}	Frequency Response	$\mathrm{f}=10-1000 \mathrm{MHz}$	-	± 1.0	± 1.5	dB
PoldB	Power Output, 1.0 dB Compression	$\begin{aligned} & f=500 \mathrm{MHz} \\ & \mathbf{f}=1000 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 0.6 \end{aligned}$	-	w
NF	Noise Figure	$\begin{aligned} & f=500 \mathrm{MHz} \\ & f=1000 \mathrm{MHz} \end{aligned}$	二	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	dB
ITO	Third Order Intercept Point	$\begin{aligned} & f=500 \mathrm{MHz} \\ & f=1000 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & +41 \\ & +40 \end{aligned}$	$\begin{aligned} & +43 \\ & +42 \\ & \hline \end{aligned}$	-	dBm
vSWR	$\begin{aligned} & \text { Input (Ref. }=50 \Omega) \\ & \text { Output (Ref. }=50 \Omega) \end{aligned}$	$\begin{aligned} & f=10-1000 \mathrm{MHz} \\ & \mathbf{f}=10-1000 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & 2.0: 1 \\ & 2.0: 1 \end{aligned}$	$\begin{aligned} & 2.5: 1 \\ & 2.5: 1 \end{aligned}$	-
VSWR Load	VSWR Survival	$\begin{aligned} & P_{\mathrm{O}}=0.6 \mathrm{~W} \\ & f=10-1000 \mathrm{MHz} \end{aligned}$	-	-	30:1	-
$\mathrm{P}_{\text {in }}$	AC Input	$\mathrm{V}_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$	-	35	45	w

SEMICONDUCTOR

TECHNICAL DATA

The RF Line

Ultrawide Band Linear Power Amplifier

.. . designed for wideband linear applications in the 25 to 1000 MHz frequency range. Motorola class A hybrid amplifiers provide excellent ITOs, high gain, and wide dynamic range. Designed for high reliability with such standard features as a high-quality power
5.0 WATTS

25-1000 MHz LINEAR POWER AMPLIFIER ASSEMBLY supply, EMI/RFI filter, stainless steel hardware and many MIL-STD heavy duty components. Each unit undergoes $\mathbf{2 4}$-hour burn-in prior to final test and $0 / A$.

- All Class " A "
- All Hybrid RF Amplifier Circuitry
- Operates from 115 Vac Power Source
- Frequency Range - $\mathbf{2 5}$ to 1000 MHz
- Output Power - 5.0 Watts Minimum
- Gaìn - 42 dB
- Linearity - + 46.5 dBm Typ ITO
- Noise Figure - 7.5 dB Typ @ $\mathrm{f}=1000 \mathrm{MHz}$
- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing with Dip Brazed Plenum Assembly
- Forced Air Cooling
- 220 Vac Model Available, P/N PAE1000-42-5L

ELECTRICAL CHARACTERISTICS

Symbol	Characteristics	Test Conditions	Min	Typ	Max	Unit
SSG	Small Signal Gain	$f=25-1000 \mathrm{MHz}$	40	42	-	dB
f_{T}	Frequency Response	$f=25-1000 \mathrm{MHz}$	-	± 1.5	± 2.5	dB
P_{0}	Power Output	$\mathrm{f}=25-1000 \mathrm{MHz}$	5.0	6.0	-	W
NF	Noise Figure	$\mathrm{f}=\mathbf{2 5 - 1 0 0 0 ~ M H z}$	-	7.5	8.5	dB
ITO	Third Order Intercept Point	$f=25-1000 \mathrm{MHz}$	+45.5	$+46.5$	-	dBm
dso	Second Harmonic Attenuation	$f=0.05-2.0 \mathrm{GHz}$	25	35	-	dB
VSWR	$\begin{aligned} & \text { Input (Ref. }=50 \Omega \text {) } \\ & \text { Output (Ref. }=50 \Omega \text {) } \end{aligned}$	$\begin{aligned} & f=25-1000 \mathrm{MHz} \\ & f=25-1000 \mathrm{MHz} \end{aligned}$	-	$\begin{aligned} & 2.0: 1 \\ & 1.5: 1 \end{aligned}$	$\begin{aligned} & 2.5: 1 \\ & 2.5: 1 \\ & \hline \end{aligned}$	-
VSWR Load	VSWR Survival	$\begin{aligned} & P_{0}=5.0 \mathrm{WCW} \\ & f=25-1000 \mathrm{MHz} \end{aligned}$	-	-	∞ :1	-
$P_{\text {in }}$	AC Input	$V_{\text {in }}=115 \mathrm{Vac}, 1.0 \phi, 60 \mathrm{~Hz}$	-	200	225	w

The RF Line

Linear Power Amplifier

PAM0105-6-50L
.. . designed for wideband linear applications in the $100-500 \mathrm{MHz}$ frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of $\mathbf{2 4}$ volts.

- Specified $V_{C C}=\mathbf{2 4}$ Volt and $T_{C}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - 100 to 500 MHz
Output Power - 55 W (Typ), $100-500 \mathrm{MHz}$
Power Gain - 7.0 dB Typ @ $\mathrm{f}=500 \mathrm{MHz}$
1TO - 56.5 dBm Typ @ $f=500 \mathrm{MHz}$

- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability
- 28 VCC Model Available, P/N PAM0105-6-50LA

> 55 WATTS 100-500 MHz LNEAR RF POWER AMPLIFIER

CASE 388C-01, STYLE 1 (PAM)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$\mathbf{V C C}_{\text {C }}$	25	Vdc
RF Power Input	$\mathbf{P}_{\text {in }}$	25	\mathbf{W}°
Storage Temperature Range	$\mathbf{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	$\mathbf{T}_{\mathbf{C}}$	-40 to +70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{C}} \mathbf{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current (VCC $=24 \mathrm{~V}$)	ICC	-	12	-	A
Power Gain (f = 100-500 MHz)	PG_{G}	6.0	7.0	-	dB
Bandwidth	BW	100	-	500	MHz
Gain Flatness ($f=\mathbf{1 0 0 - 5 0 0 ~ M H z}$)	-	-	± 1.0	± 1.5	dB
Input VSWR ($\mathrm{f}=100-500 \mathrm{MHz}$)	$V^{\text {S }}$ WR ${ }_{\text {in }}$	-	1.35:1	1.75:1	-
Output VSWR ($f=100-500 \mathrm{MHz}$)	$\mathrm{VSWR}_{\text {out }}$	-	1.35:1	1.75:1	-
Third Order Intercept Point ($\mathbf{f}=\mathbf{1 0 0} \mathbf{- 5 0 0} \mathbf{M H z}$) (See Figure 1)	1 IO	+55	+ 56.5	-	dBm
Load Mismatch ($\mathrm{P}_{\mathrm{O}}=50 \mathrm{~W}, \mathrm{f}=100 \mathrm{MHz}$, Load VSWR $=\infty$: 1)	ψ	No Damage or Degradation in Performance			
Saturated Output Power (Single Tone) $(f=100-500 \mathrm{MHz})$	$P_{\text {sat }}$	60	70	-	w
Power Output	Pout	50	55	-	W
Second Harmonic Suppression ($\mathrm{P}_{\text {Out }}=\mathbf{5 0} \mathrm{W}, \mathrm{CW}, \mathrm{f}_{\mathbf{2} \mathrm{h}}=\mathbf{2 0 0} \mathbf{~ M H z}$)	$\mathrm{d}_{\text {so }}$	25	35	-	dB

PAM0105-6-50L

Figure 1. 2-Tone Intermodulation Test

The RF Line

PAM0105-7-25L

Linear Power Amplifier

... designed for wideband linear applications in the $100-500 \mathrm{MHz}$ frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of 24 volts.

- Specified $V_{C C}=24$ Volt and $T_{C}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - 100 to 500 MHz
Output Power - 30 W (Typ), $100-500 \mathrm{MHz}$ $100-500 \mathrm{MHz}$ LINEAR

Power Gain - 7.5 dB Typ @ $\mathrm{f}=500 \mathrm{MHz}$
ITO - 53.5 dBm Typ @ $\mathbf{f}=500 \mathrm{MHz}$

- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability
- 28 VCC Model Available, P/N PAM0105-7-25LA

CASE 389E-01, STYLE 1 (PAM)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Vottage	V_{CC}	25	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	$\mathbf{1 2}$	$\mathbf{W}^{\mathbf{W}}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{C}	-40 to +70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T C=25^{\circ} C, V_{C C}=24 \mathrm{~V}, 50 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current ($\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}$)	ICC	-	6.0	-	A
Power Gain ($\mathrm{f}=\mathbf{1 0 0 - 5 0 0} \mathrm{MHz}$)	PG	6.0	7.5	-	dB
Bandwidth	BW	100	-	500	MHz
Gain Flatness ($\mathrm{f}=100-500 \mathrm{MHz}$)	-	-	± 1.5	± 1.75	dB
Input VSWR ($f=100-500 \mathrm{MHz}$)	VSWR ${ }_{\text {in }}$	-	3.0:1	-	-
Output VSWR ($\mathrm{f}=100-500 \mathrm{MHz}$)	vSWR ${ }_{\text {out }}$	-	3.0:1	-	-
Third Order Intercept Point (f $=\mathbf{1 0 0 - 5 0 0} \mathbf{~ M H z}$) (See Figure 1)	ITO	+52.5	+53.5	-	dBm
Noise Figure ($f=100-500 \mathrm{MHz}$)	NF	-	10	11.5	dB
Load Mismatch ($\mathrm{P}_{\mathrm{O}}=25 \mathrm{~W}, \mathrm{f}=100 \mathrm{MHz}$, Load VSWR $=\infty: 1$)	ψ	No Damage or Degradation in Performance			
Saturated Output Power (Single Tone) $(f=100-500 \mathrm{MHz})$	$\mathrm{P}_{\text {sat }}$	30	35	-	w
Power Output	Pout	25	30	-	W
Second Harmonic Suppression ($\mathrm{P}_{\text {out }}=25 \mathrm{~W}, \mathrm{CW}, \mathrm{f}_{2 \mathrm{~h}}=0.2-1.0 \mathrm{GHz}$)	d_{30}	20	33	-	dB

PAM0105-7-25L

$$
\begin{aligned}
& T T O=P_{0}+\frac{M M D}{2} @ I M D>60 \mathrm{~dB} \\
& P E P=4 \times P_{0} @ I M D=-32 d B
\end{aligned}
$$

Figure 1. 2-Tone Intermodulation Test

The RF Line

Linear Power Amplifier

... designed for wideband linear applications in the $100-500 \mathrm{MHz}$ frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of 24 volts.

- Specified $V_{C C}=24$ Volt and $T_{C}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - 100 to 500 MHz
Output Power - 8.0 W (Typ), $100-500 \mathrm{MHz}$

PAM0105-29-6L

Power Gain, Small-Signal - 31 dB Typ @ $\mathrm{f}=\mathbf{5 0 0} \mathbf{M H z}$

- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability
- 28 VCC Model Available, P/N PAM0105-29-6LA
8.0 WATTS $100-500 \mathrm{MHz}$ LINEAR RF POWER AMPLIFIER

CASE 389C-01, STYLE 1 (PAM)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$V_{C C}$	26	Vdc
RF Power Input	$P_{\text {in }}$	15	dBm
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{C}	-40 to +90	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ${ }^{(T} C=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}}=24 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current (VCC $=24 \mathrm{~V}$)	Icc	-	1800	1950	mAdc
Small-Signal Gain (f $=100-500 \mathrm{MHz}$)	Gss	29	31	-	dB
Bandwidth	BW	100	-	500	MHz
Gain Flatness ($\mathrm{f}=100-500 \mathrm{MHz}$)	-	-	± 1.5	± 2.0	dB
Input VSWR ($f=100-500 \mathrm{MHz}$)	$\mathrm{VSWR}_{\text {in }}$	-	3.0:1	3.5:1	-
Output VSWR ($\mathrm{f}=100-500 \mathrm{MHz}$)	VSWR ${ }_{\text {out }}$	-	2.0:1	3.0:1	-
Third Order Intercept Point ($f=100-500 \mathrm{MHz}$) (See Figure 1)	ITO	+47.5	+48.5	-	dBm
Noise Figure ($\mathrm{f}=100-500 \mathrm{MHz}$)	NF	-	6.5	7.5	dB
Load Mismatch ($\mathrm{P}_{\mathrm{O}}=6.0 \mathrm{~W}, \mathrm{f}=100 \mathrm{MHz}$, Load VSWR $\left.=\infty: 1\right)$	ψ	No Damage or Degradation in Performance			
Saturated Output Power (Single Tone) $\text { (f }=100-500 \mathrm{MHz} \text {) }$	$\mathrm{P}_{\text {sat }}$	8.0	10	-	w
Power Output	Pout	6.0	8.0	-	W
Second Harmonic Suppression ($\mathrm{P}_{\text {out }}=\mathbf{6 . 0} \mathbf{~ W ~ C W , ~} \mathrm{f}_{\mathbf{2}} \mathbf{=} \mathbf{2 0 0 ~ M H z}$)	$\mathrm{d}_{\text {so }}$	15	20	-	dB

PAM0105-29-6L

Figure 1. 2-Tone Intermodutation Test

The RF Line
Linear Power Amplifier
PAM225-42-10LA
... designed for wideband linear applications in the VHF frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of 28 volts.

- Specified VCC $=28$ Volt and $T_{C}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - 172 to 225 MHz
Output Power - 10 W Peak Sync Output
Power Gain, Small-Signal - 46 dB Typ @ $f=225 \mathrm{MHz}$
Noise Figure - 5.0 dB Typ @ $\mathbf{f}=\mathbf{2 2 5} \mathrm{MHz}$

- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability

10 WATTS 172-225 MHz LINEAR RF POWER AMPLIFIER

CASE 369C-01 (PAM)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$V_{C C}$	29	Vdc
RF Power Input	Pin	5.0	dBm
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{C}	-40 to +90	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (TC $=\mathbf{2 5}{ }^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathbf{2 8} \mathrm{V}, 50 \Omega$ system unless otherwise noted)

Charecteristic	Symbol	Min	Typ	Max	Unit
Supply Current (VCC $=28 \mathrm{~V}$)	ICC	-	3.4	-	Adc
Small-Signa! Gain ($f=172-225 \mathrm{MHz}$)	GSS	42	46	51	dB
Bandwidth	BW	172	-	225	MHz
Gain Flatness (f = 172-225 MHz)	-	-	± 0.5	± 1.0	dB
Input VSWR (f $=172-225 \mathrm{MHz}$)	$V S W R_{\text {in }}$	-	1.5:1	2.0:1	-
Output VSWR (f = 172-225 MHz)	VSWR ${ }_{\text {out }}$	-	2.0:1	2.5:1	-
Noise Figure ($\mathrm{f}=\mathbf{1 7 2 - 2 2 5 ~ M H z}$)	NF	5.0	5.0	-	dB
Load Mismatch ($\mathrm{P}_{\mathrm{O}}=10 \mathrm{~W}, \mathrm{f}=172 \mathrm{MHz}$, Load VSWR $=\infty$: 1)	ψ	No Damage or Degradation in Performance			
Power Output (See Figure 1) @ IMD 3-Tone = -58 dB, Vision Carrier $=-8.0 \mathrm{~dB}$ Reference, Sound Carrier $=-10 \mathrm{~dB}$ Reference, Sideband Carrier $=-16 \mathrm{~dB}$ Reference	Pout(1)	10	-	-	W
Power Output @ IMD 3-Tone $=-55 \mathrm{~dB}$, Vision Carrier $=-8.0 \mathrm{~dB}$ Reference, Sound Carrier $=-7.0 \mathrm{~dB}$ Reference, Sideband Carrier $=-16 \mathrm{~dB}$ Reference	Pout(2)	10	-	-	w

fi VDEO
i_{2} SIDEBAND ${ }_{4}{ }_{3}$ SOUND

Figure 1. 3-Tone TV Intermodulation Test

The RF Line

Linear Power Amplifier

... designed for wideband linear applications in the $500-1000 \mathrm{MHz}$ frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of $\mathbf{2 4}$ volts.

- Specified $V_{C C}=24$ Volt and $T_{C}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - 500 to 1000 MHz
Output Power - 7.0 W (Typ)
Gain, Small-Signal - 27 dB Typ $(i$ if $=1000 \mathrm{MHz}$
PAM0510-25-6L

ITO - + 48.5 dBm Typ@ $\mathrm{f}=1000 \mathrm{MHz}$

- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability
- 28 VCC Model Available, P/N PAM0510-25-6LA
6.0 WATTS $500-1000 \mathrm{MHz}$ LINEAR RF POWER AMPLIFIER

CASE 389C-01, STYLE 1 (PAM)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	25	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	+20	dBm
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{C}	-40 to +70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\mathrm{IT}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \mathrm{n}$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current (VCC $=24 \mathrm{~V}$)	ICC	-	1600	1750	mAdc
Small-Signal Gain (f $=500-1000 \mathrm{MHz}$)	Gss	25	27	-	dB
Bandwidth	BW	500	-	1000	MHz
Gain Flatness ($f=500-1000 \mathrm{MHz}$)	-	-	± 1.0	± 1.5	dB
Input VSWR (f $=500-1000 \mathrm{MHz}$)	$\mathrm{VSWR}_{\text {in }}$	-	-	2.5:1	-
Output VSWR (f $=500-1000 \mathrm{MHz}$)	VSWR ${ }_{\text {out }}$	-	2.5:1	-	-
Third Order Intercept Point (f $=\mathbf{5 0 0}-1000 \mathrm{MHz}$) (See Figure 1)	ITO	+47.5	+48.5	-	dBm
Noise Figure ($\mathrm{f}=\mathbf{5 0 0 - 1 0 0 0 ~ M H z}$)	NF	-	8.0	9.5	dB
Load Mismatch ($\mathrm{P}_{\mathrm{O}}=6.0 \mathrm{~W}, \mathrm{f}=500 \mathrm{MHz}$, Load VSWR $=x: 1$)	ψ	No Damage or Degradation in Performance			
Saturated Output Power (Single Tone) ($f=500-1000 \mathrm{MHz}$)	$\mathrm{P}_{\text {sat }}$	7.0	8.0	-	w
Power Output ($f=500-1000 \mathrm{MHz}$)	P_{0}	6.0	7.0	-	W
Second Harmonic Suppression ($\mathrm{P}_{\text {Out }}=6.0 \mathrm{~W} \mathrm{CW}, \mathrm{f}_{\mathbf{2}} \mathrm{h}=1.0 \mathrm{GHz}$)	$\mathrm{d}_{\text {so }}$	25	35	-	dB

PAM0510-25-6L

Figure 1. 2-Tone Intermodulation Test

The RF Line

Linear Power Amplifier

PAM0810-6-50L

... designed for wideband linear applications in the $800-1000 \mathrm{MHz}$ frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of $\mathbf{2 4}$ volts.

- Specified $V_{C C}=24$ Volt and $T_{C}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - 800 to 1000 MHz
Output Power - 50 W (Typ), $800-1000 \mathrm{MHz}$
60 WATTS 800-1000 MHz

LINEAR RF POWER AMPLIFIER

Power Gain - 7.0 dB Typ @ $\mathrm{f}=1000 \mathrm{MHz}$
ITO - 56.5 dBm Typ @ $\mathrm{f}=1000 \mathrm{MHz}$

- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability
- 28 VCC Model Available, P/N PAM0810-6-50LA

CASE 389D-01, STYLE 1 (PAM)

MAXIMUM RATINGS

Rating	Symbal	Value	Unit
Supply Voltage	$V_{\text {cc }}$	25	Vdc
RF Power Input	$P_{\text {in }}$	20	W
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{C}	-40 to +70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ${ }^{(T} C=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current (VCC $=28 \mathrm{~V}$)	Icc	-	9.6	-	Adc
Power Gain (f $=800-1000 \mathrm{MHz}$)	Gp	6.0	7.0	-	dB
Bandwidth	BW	800	-	1000	M $\mathrm{Hz}^{\text {c }}$
Gain Flatness ($\mathrm{f}=800-1000 \mathrm{MHz}$)	-	-	± 0.5	± 0.75	dB
Input VSWR (f $=800-1000 \mathrm{MHz}$)	$\mathrm{VSWR}_{\text {in }}$	-	-	1.5:1	-
Output VSWR ($\mathrm{f}=800-1000 \mathrm{MHz}$)	VSWR ${ }_{\text {out }}$	-	-	1.5:1	-
Third Order Intercept Point ($\mathrm{f}=\mathbf{8 0 0} \mathbf{- 1 0 0 0} \mathbf{~ M H z}$) (See Figure 1)	ITO	56	56.5	-	dBm
Load Mismatch ($\mathrm{P}_{\mathrm{O}}=50 \mathrm{~W}, \mathrm{f}=800 \mathrm{MHz}$, Load VSWR $=\infty: 1$)	ψ	No Damage or Degradation in Performance			
Saturated Output Power (Single Tone) ($f=\mathbf{8 0 0} \mathbf{- 1 0 0 0} \mathrm{MHz}$)	$\mathrm{P}_{\text {sat }}$	60	70	-	w
Power Output	Pout	50	60	-	W
Second Harmonic Suppression ($\mathrm{P}_{\text {out }}=50 \mathrm{WCW}, \mathrm{f}_{\mathbf{2}} \mathrm{h}=1.6 \mathrm{GHz}$)	$\mathrm{d}_{\text {so }}$	35	45	-	dB

PAM0810-6-50L

Figure 1. 2-Tone Intermodulation Test

The RF Line Linear Power Amplifier

... designed for wideband linear applications in the $800-1000 \mathrm{MHz}$ frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of 24 volts.

- Specified $V_{C C}=24$ Volt and $T_{C}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - 800 to 1000 MHz
Output Power - 30 W (Typ) @ 1.0 dB Compression
30 WATTS 800-1000 MHz

LINEAR RF POWER AMPLIFIER

Power Gain, Small-Signal - 8.0 dB Typ @ $\mathbf{f}=\mathbf{1 0 0 0} \mathbf{~ M H z}$
ITO - 55 dBm Typ @ f = 1000 MHz

- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability
- 28 VCC Model Available, P/N PAM0810-7-25LA

CASE 389E-01, STYLE 1 (PAM)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$V_{\text {CC }}$	25	Vdc
RF Power Input	Pin	10	W
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{C}	-40 to +70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (TC $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current (VCC $=24 \mathrm{~V}$)	Icc	-	4.8	-	Adc
Small-Signal Gain ($\mathrm{f}=800-1000 \mathrm{MHz}$)	GSS	7.0	8.0	-	dB
Bandwidth	BW	800	-	1000	MHz
Gain Flatness ($\mathrm{f}=800-1000 \mathrm{MHz}$)	-	-	± 0.5	± 0.75	dB
Input VSWR ($\mathrm{f}=800-1000 \mathrm{MHz}$)	VSWR ${ }_{\text {in }}$	-	1.5:1	2.0:1	-
Output VSWR ($\mathrm{f}=\mathbf{8 0 0} \mathbf{- 1 0 0 0 ~ M H z}$)	VSWR ${ }_{\text {out }}$	-	1.5:1	2.0:1	-
Third Order Intercept Point ($\mathrm{f}=\mathbf{8 0 0 - 1 0 0 0 ~ M H z}$) (See Figure 1)	170	54	55	-	dBm
Noise Figure ($\mathrm{f}=800-1000 \mathrm{MHz}$)	NF	-	11	12.5	dB
Load Mismatch ($\mathrm{P}_{0}=25 \mathrm{~W}, \mathrm{f}=800 \mathrm{MHz}$, Load VSWR $=\infty$: 1)	ψ	No Damage or Degradation in Performance			
Saturated Output Power (Single Tone) ($f=800-1000 \mathrm{MHz}$)	$\mathrm{P}_{\text {sat }}$	35	40	-	w
Power Output @ 1.0 dB Compression Point	$\mathrm{P}_{1} \mathrm{~dB}$	25	30	-	W
Second Harmonic Suppression ($\mathrm{P}_{\text {out }}=\mathbf{2 5 ~ W ~ C W , ~} \mathbf{f}_{\mathbf{h}} \mathbf{~}=-2.0 \mathrm{GHz}$)	$\mathrm{d}_{\text {so }}$	35	45	-	dB

Figure 1. 2-Tone Intermodulation Test

The RF Line
 Linear Power Amplifier

... designed for wideband linear applications in the $800-1000 \mathrm{MHz}$ frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of 24 volts.

- Specified $V_{C C}=24$ Volt and $T_{C}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - 800 to 1000 MHz
Output Power - 12 W (Typ), 800-1000 MHz
Power Gain, Small-Signal - 10 dB Typ @ $\mathrm{f}=1000 \mathrm{MHz}$
ITO-50 dBm Typ @ $\mathrm{f}=1000 \mathrm{MHz}$

- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability
- 28 VCC Model Available, P/N PAM0810-8-10LA

12 WATTS
$800-1000 \mathrm{MHz}$
LINEAR
RF POWER
AMPLIFIER

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$V_{C C}$	25	Vdc
RF Power Input	$P_{\text {in }}$	6.0	\mathbf{W}°
Storage Temperature Range	$T_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{C}	-40 to +70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current (VCC $=24 \mathrm{~V}$)	ICC	-	2.4	-	A
Small-Signal Gain (f $=800-1000 \mathrm{MHz}$)	GSS	8.0	10	-	dB
Bandwidth	BW	800	-	1000	MHz
Gain Flatness ($f=800-1000 \mathrm{MHz}$)	-	-	± 0.5	± 0.75	dB
Input VSWR ($\mathrm{f}=800-1000 \mathrm{MHz}$)	VSWR ${ }_{\text {in }}$	-	1.5:1	2.0:1	-
Output VSWR ($f=800-1000 \mathrm{MHz}$)	$\mathrm{VSWR}_{\text {out }}$	-	1.5:1	2.0:1	-
Third Order Intercept Point ($\mathbf{f}=\mathbf{8 0 0} \mathbf{- 1 0 0 0} \mathbf{~ M H z}$) (See Figure 1)	ITO	+48.5	+50	-	dBm
Noise Figure ($f=800-1000 \mathrm{MHz}$)	NF	-	10	11.5	dB
Load Mismatch ($\mathrm{P}_{\mathrm{O}}=10 \mathrm{~W}, \mathrm{f}=800 \mathrm{MHz}$, Load VSWR $\left.=\infty: 1\right)$	ψ	No Damage or Degradation in Performance			
Saturated Output Power (Single Tone) ($f=800-1000 \mathrm{MHz}$)	$\mathrm{P}_{\text {sat }}$	12	15	-	w
Power Output	Pout	10	12	-	w
Second Harmonic Suppression (Pout $=10 \mathrm{~W}, \mathrm{CW}, \mathrm{f}_{2 \mathrm{~h}}=1.6-2.0 \mathrm{GHz}$)	$\mathrm{d}_{\text {so }}$	35	45	-	dB

PAM0810-8-10L

Figure 1. 2-Tone Intermodulation Test

SEMICONDUCTOR

TECHNICAL DATA

The RF Line
 Linear Power Amplifier

... designed for wideband linear applications in the 800 to 1000 MHz frequency range. This solid state, class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of 24 volts.

- Specified $\mathrm{V}_{\mathrm{CC}}=24$ Volts and $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - 800 to 1000 MHz
Output Power - 3.2 W (Typ) @-32dB IMD
Power Gain, Small-Signal -26 dB Typ @ $\mathrm{f}=1000 \mathrm{MHz}$
ITO - 45 dBm Typ @ $\mathrm{f}=1000 \mathrm{MHz}$

- 50 Ohm Inpuv/Output Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability
- 28 VCC Model Available, P/N PAM0810-24-3LA

> 3.2 WATTS 800-1000 MHz LINEAR RF POWER AMPLIFER

CASE 389C-01, STYLE 1 (PAM)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\text {CC }}$	26	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	20	dBm°
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{C}	-40 to +70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ${ }^{(T} \mathrm{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current (VCC $=24 \mathrm{~V}$)	ICC	-	950	1050	mAdc
Small-Signal Gain (f $=\mathbf{8 0 0 - 1 0 0 0 ~ M H z}$)	GSS	24	26	-	dB
Bandwidth	BW	800	-	1000	MHz
Gain Flatness ($\mathrm{f}=800-1000 \mathrm{MHz}$)	-	-	± 0.5	± 1.0	dB
Input VSWR (f $=800-1000 \mathrm{MHz}$)	$\mathrm{VSWR}_{\text {in }}$	-	-	2.5:1	-
Output VSWR ($\mathrm{f}=\mathbf{8 0 0 - 1 0 0 0 ~ M H z)}$	$\mathrm{VSWR}_{\text {out }}$	-	2.0:1	-	-
Third Order Intercept Point ($\mathrm{f}=\mathbf{8 0 0} \mathbf{- 1 0 0 0} \mathbf{~ M H z}$) (See Figure 1)	ITO	44.5	45	-	dBm
Noise Figure ($\mathrm{f}=800-1000 \mathrm{MHz}$)	NF	-	8.0	9.5	dB
Load Mismatch ($\mathrm{P}_{\mathbf{O}}=3.0 \mathrm{~W}, \mathrm{f}=800 \mathrm{MHz}$, Load VSWR $=\infty: 1$)	ψ	No Damage or Degradation in Performance			
Saturated Output Power (Single Tone) $(f=800-1000 \mathrm{MHz})$	$\mathrm{P}_{\text {sat }}$	4.0	5.0	-	w
Peak Envelope Power for Two Tone Distortion Test (f = 800-1000 MHz @ - $\mathbf{3 2} \mathbf{~ d B ~ I M D) ~ (S e e ~ F i g u r e ~ 1) ~}$	Pout	2.8	3.2	-	w
Second Harmonic Suppression ($\mathrm{P}_{\text {out }}=3.0 \mathrm{~W} \mathrm{CW}, \mathrm{f}_{2 \mathrm{~h}}=1.6 \mathrm{GHz}$)	dso	25	35	-	dB

PAM0810-24-3L

Figure 1. 2-Tone Intermodulation Test

SEMICONDUCTOR

The RF Line Linear Power Amplifier

PAM0810-24-5LA

... designed for wideband linear applications in the $800-1000 \mathrm{MHz}$ frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of $\mathbf{2 8}$ volts.

- Specified $V_{C C}=28$ Volt and $T_{C}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - 800 to 1000 MHz
Output Power - 5.0 W (Typ) @ -30 dB IMD
Power Gain, Small-Signal - 26 dB Typ @ $f=1000 \mathrm{MHz}$
ITO - 47.5 dBm Typ @ $f=1000 \mathrm{MHz}$

- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability
- 24 VCC Model Available, P/N PAM0810-24-5L

CASE 383C-01, STYLE 1 (PAM)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Vottage	$V_{C C}$	29	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	20	dBm
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to + 125	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{C}	-40 to +70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (TC $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current (VCC $=28 \mathrm{~V}$)	ICC	-	1600	1750	mAdc
Small-Signal Gain (f $=\mathbf{8 0 0}-1000 \mathrm{MHz}$)	GSS	24	26	-	dB
Bandwidth	BW	800	-	1000	MHz
Gain Flatness ($\mathrm{f}=\mathbf{8 0 0 - 1 0 0 0 ~ M H z}$)	-	-	± 0.5	± 1.0	dB
Input VSWR ($\mathrm{f}=\mathbf{8 0 0} \mathbf{- 1 0 0 0 ~ M H z}$)	$\mathrm{VSWR}_{\text {in }}$	-	-	2.5:1	-
Output VSWR (f $=800-1000 \mathrm{MHz}$)	$\mathrm{VSWR}_{\text {out }}$	-	2.5:1	-	-
Third Order Intercept Point ($\mathrm{f}=\mathbf{8 0 0} \mathbf{- 1 0 0 0} \mathbf{~ M H z}$) (See Figure 1)	ITO	46.5	47.5	-	dBm
Noise Figure ($f=800-1000 \mathrm{MHz}$)	NF	-	8.0	9.5	dB
Load Mismatch ($\mathrm{P}_{\mathrm{O}}=5.0 \mathrm{~W}, \mathrm{f}=800 \mathrm{MHz}$, Load VSWR $\left.=\infty: 1\right)$	ψ	No Damage or Degradation in Performance			
Saturated Output Power (Single Tone) ($\mathrm{f}=800-1000 \mathrm{MHz}$)	$\mathrm{P}_{\text {sat }}$	7.0	8.0	-	W
Power Output (-30 dB IMD, Two Tone)	$\mathrm{P}_{\text {out }}$	4.5	5.0	-	w
Second Harmonic Suppression ($\mathrm{P}_{\text {out }}=5.0 \mathrm{WCW}, \mathrm{f}_{2 \mathrm{~h}}=1.6 \mathrm{GHz}$)	$\mathrm{d}_{\text {so }}$	25	35	-	dB

Figure 1. 2-Tone Intermodulation Test

The RF Line

Linear Power Amplifier

. . . designed for wideband linear applications in the 1 to 200 MHz frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of 28 volts.

- Specified VCC $=28$ Volt and $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - 1 to 200 MHz
Output Power - 2 W Typ @ 1 dB Gain Compression, $f=100 \mathrm{MHz}$
Power Gain - $\mathbf{3 6} \mathrm{dB}$ Typ @ $f=100 \mathrm{MHz}$
ITO - 51 dBm Typ @ $\mathrm{f}=100 \mathrm{MHz}$

- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability

CASE 369A-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$V_{\text {cc }}$	30	Vdc
RF Power Input	Pin	5	dBm
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +100	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	TC	-40 to +65	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (TC $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current (VCC $=28 \mathrm{~V}$)	ICC	400	435	470	mA
Power Gain ($\mathrm{f}=\mathbf{1 0 0 ~ M H z}$)	Gp	34	36	37	dB
Bandwidth	BW	1	-	200	MHz
Gain Flatness ($\mathrm{P}-\mathrm{P}$) ($\mathrm{f}=1 \mathrm{l} \mathbf{- 2 0 0} \mathrm{MHz}$)	-	-	1	2.5	dB
InputOutput VSWR (f $=1-200 \mathrm{MHz}$)	-	-	1.5:1	2:1	-
$\begin{array}{ll} \hline \text { Output Power @ } 1 \mathrm{~dB} \text { Gain Compression } \begin{array}{l} (f=100 \mathrm{MHz}) \\ (f=200 \mathrm{MHz}) \end{array} \end{array}$	$\mathrm{P}_{\mathrm{O}} 1 \mathrm{~dB}$	$\begin{aligned} & 32 \\ & 31 \\ & \hline \end{aligned}$	$\begin{aligned} & 33 \\ & 32 \end{aligned}$	二	dBm
Third Order Intercept Point$(f=100 \mathrm{MHz})$ $(f=200 \mathrm{MHz})$	ITO	$\begin{aligned} & 49 \\ & 44 \end{aligned}$	$\begin{aligned} & 51 \\ & 45 \\ & \hline \end{aligned}$	-	dBm
Noise Figure $\begin{aligned} & (f=100 \mathrm{MHz}) \\ & (f=200 \mathrm{MHz})\end{aligned}$	NF	二	$\begin{aligned} & \hline 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	6 7	dB

The RF Line

Linear Power Amplifier

. . . designed for wideband linear applications in the 30 to 500 MHz frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of 24 volts.

- Specified $V_{C C}=24$ Volt and $T_{C}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - $\mathbf{3 0}$ to 500 MHz
Output Power - 1 W Typ @ 1 dB Gain Compression, $\mathrm{f}=100 \mathrm{MHz}$
Power Gain - 20 dB Typ @ f=50 MHz
ITO - 49 dBm Typ @ $\mathrm{f}=300 \mathrm{MHz}$
Noise Figure -6 dB Typ @f $=500 \mathrm{MHz}$

- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability
- Moisture Resistant, EMI Shielded Package

SHP
CASE 389A-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	$V_{C C}$	28	Vdc
RF Power Input	Pin	15	dBm
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +100	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	TC	-40 to +85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=\mathbf{2 5} 5^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current (VCC $=24 \mathrm{~V}$)	ICC	390	415	440	mA
Power Gain (f = $50 \mathbf{M H z}$)	Gp	19	20	21	dB
Bandwidth	BW	30	-	500	M ${ }^{\text {Hz }}$
Gain Slope ($f=30-500 \mathrm{MHz}$)	S	0	0.6	1.6	dB
Gain Flatness (P-P around slope) ($f=30-500 \mathrm{MHz}$)	-	-	0.5	1	dB
Inpu\%/Output VSWR (f $=30-500 \mathrm{MHz}$)	-	-	1.2:1	1.5:1	-
Output Power @1 dB Gain Compression (f $=300 \mathrm{MHz}$) (f $=500 \mathrm{MHz}$)	Po 1dB	$\begin{aligned} & 31 \\ & 28 \end{aligned}$	$\begin{aligned} & 33 \\ & 30 \end{aligned}$	-	dBm
Third Order Intercept Point $(f=300 \mathrm{MHz})$ $(f=500 \mathrm{MHz})$	ITO	$\begin{aligned} & 47 \\ & 40 \end{aligned}$	$\begin{aligned} & 49 \\ & 42 \end{aligned}$	-	dBm
$\begin{array}{ll} \text { Noise Figure } & (f=300 \mathrm{MHz}) \\ & (f=500 \mathrm{MHz}) \end{array}$	NF	-	$\begin{gathered} 4.5 \\ 6 \end{gathered}$	$\begin{gathered} 5.5 \\ 7 \end{gathered}$	dB

The RF Line
 Linear Power Amplifier

. . . designed for wideband linear applications in the $30-450 \mathrm{MHz}$ frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of 24 volts.

- Specified $\mathrm{V}_{\mathrm{CC}}=\mathbf{2 4}$ Volt and $\vec{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - $\mathbf{3 0}$ to 450 MHz
SHP05-22-04

Output Power - 1.2 W Typ @ 1 dB Gain Compression, $f=300 \mathrm{MHz}$
Power Gain - 22 dB Typ @ $\mathbf{f}=50 \mathrm{MHz}$
ITO - 39 dBm Typ @ $\mathrm{f}=\mathbf{4 5 0} \mathrm{MHz}$
Noise Figure - 6 dB Typ @ $\mathrm{f}=450 \mathrm{MHz}$

- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability
- Moisture Resistant, EMI Shielded Package

SHP
CASE 389A-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\text {CC }}$	28	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	+15	dBm
Operating Case Temperature Range	T_{C}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	30	-	450	MHz
Gain Flatness (Peak-to-Peak) ($f=\mathbf{3 0 - 4 5 0 ~ M H z}$)	-	-	0.5	1	dB
Power Gain (f = $\mathbf{5 0} \mathbf{M H z}$)	PG	21.2	21.9	22.4	dB
$\begin{array}{ll}\text { Noise Figure, Brosdband } & (f=300 \mathrm{MHz}) \\ & (f=450 \mathrm{MHz})\end{array}$	NF	一	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \end{aligned}$	dB
$\begin{array}{ll} \text { Power Output - } 1 \mathrm{~dB} \text { Compression } & (f=300 \mathrm{MHz}) \\ & (f=450 \mathrm{MHz}) \end{array}$	Po1dB	$\begin{aligned} & 30 \\ & 26 \end{aligned}$	$\begin{aligned} & 31 \\ & 27 \end{aligned}$	-	dBm
Third Order Intercept (f $=\mathbf{3 0 0} \mathrm{MHz}$) (See Figure 1) (f $=\mathbf{4 5 0} \mathrm{MHz}$)	1 IO	$\begin{aligned} & 42 \\ & 37 \end{aligned}$	$\begin{aligned} & 44 \\ & 39 \end{aligned}$	-	dBm
Input/Output VSWR (f $=30-450 \mathrm{MHz}$)	VSWR	-	1.2:1	1.5:1	-
Supply Current	ICC	175	220	250	mA
Gain Slope ($f=30-450 \mathrm{MHz}$)	S	0	1	2	dB

$150-B+\frac{1 M D}{2}$ Q INO 10008
PEP = $4 X A_{0} Q 1$ IMO $=-32 C B$
Figure 1. Tone Intermodulation Test

The RF Line
 Linear Power Amplifier

. . . designed for wideband linear applications in the 30 to 450 MHz frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of 24 volts.

- Specified $V_{C C}=24$ Volt and $T C=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - $\mathbf{3 0}$ to 450 MHz
Output Power - 1 W Typ @ 1 dB Gain Compression, $f=300 \mathrm{MHz}$
Power Gain - 34 dB Typ @ $\mathrm{f}=50 \mathrm{MHz}$
ITO - 38 dBm Typ @ $f=450 \mathrm{MHz}$
Noise Figure - 6 dB Typ @ $f=450 \mathbf{~ M H z}$

- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability
- Moisture Resistant, EMI Shielded Package

1 WATT
$30-450 \mathrm{MHz}$
LINEAR
POWER
AMPLIFIER

SHP
CASE 389A-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Velue	Unit
Supply Voltage	$V_{\text {CC }}$	28	Vde
RF Power Input	$P_{\text {in }}$	0	dBm
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +100	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	TC	-40 to +85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\mathbf{T}^{(T C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current (VCC $=24 \mathrm{~V}$)	ICC	280	315	345	mA
Power Gain (f = $\mathbf{5 0} \mathbf{M H z}$)	Gp	33	34	35	dB
Bandwidth	BW	30	-	450	MHz
Gain Slope (f $=30-450 \mathrm{MHz}$)	S	0	1	2	dB
Gain Flatness (P-P around slope) ($\mathrm{f}=30-450 \mathrm{MHz}$)	-	0	0.5	1	dB
Input/Output VSWR (f = $30-450 \mathrm{MHz}$)	-	-	1.2:1	1.5:1	-
Output Power @1 1 dB Gain Compression$(f=300 \mathrm{MHz})$ $(f=450 \mathrm{MHz})$	Po 1dB	$\begin{aligned} & 28 \\ & 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 30 \\ & 26 \\ & \hline \end{aligned}$	-	dBm
Third Order Intercept Point $\begin{aligned} & (f=300 \mathrm{MHz}) \\ & (f=450 \mathrm{MHz})\end{aligned}$	ITO	$\begin{aligned} & 42 \\ & 36 \end{aligned}$	$\begin{aligned} & 45 \\ & 38 \end{aligned}$	-	dBm
Noise Figure$(f=300 \mathrm{MHz})$ $(f=450 \mathrm{MHz})$	NF	二	$\begin{aligned} & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & 6 \\ & 7 \\ & \hline \end{aligned}$	dB

The RF Line

Linear Power Amplifier

... designed for wideband linear applications in the $30-550 \mathrm{MHz}$ frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of 24 volts.

- Specified $V_{C C}=24$ Volt and $T_{C}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - $\mathbf{3 0}$ to 550 MHz
Output Power - 1.2 W Typ @ 1 dB Gain Compression, $f=300 \mathrm{MHz}$
Power Gain - 18 dB Typ @ $\mathrm{f}=50 \mathrm{MHz}$
ITO - 45 dBm Typ @ $\mathrm{f}=\mathbf{3 0 0} \mathbf{~ M H z}$
Noise Figure - 7.5 dB Typ @ $\mathrm{f}=\mathbf{5 5 0} \mathbf{~ M H z}$

- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability
- Moisture Resistant, EMI Shielded Package
1.2 WATT 30 TO 550 MHz LINEAR POWER AMPLIFIER

SHP
CASE 389A-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbal	Value	Unit
DC Supply Voltage	$V_{\text {cc }}$	28	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	+ 15	dBm
Operating Case Temperature Range	$\mathrm{T}^{\text {c }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	30	-	550	MHz
Gain Flatness (Peak-to-Peak) (f $=30-550 \mathrm{MHz}$)	-	-	0.5	1	dB
Power Gain ($\mathrm{f}=\mathbf{5 0} \mathbf{~ M H z}$)	PG	17.5	18	18.5	dB
Noise Figure, Broadband $(f=300 \mathrm{MHz})$ $(f=550 \mathrm{MHz})$	NF	-	$\begin{gathered} 6 \\ 7.5 \end{gathered}$	$\begin{gathered} 7 \\ 8.5 \\ \hline \end{gathered}$	dB
Power Output - 1 dB Compression$(f=300 \mathrm{MHz})$ $(f=550 \mathrm{MHz})$	Po1dB	$\begin{aligned} & 29 \\ & 26 \\ & \hline \end{aligned}$	$\begin{aligned} & 31 \\ & 28 \\ & \hline \end{aligned}$	二	dBm
	ITO	$\begin{aligned} & 43 \\ & 38 \end{aligned}$	$\begin{aligned} & 45 \\ & 40 \\ & \hline \end{aligned}$	-	dBm
Input/Output VSWR ($\mathrm{f}=3 \mathbf{3 0 - 6 5 0 ~ M H z}$)	VSWR	-	1.2:1	1.5:1	-
Supply Current	ICC	180	220	250	mA
Gain Slope (f $=30-550 \mathrm{MHz}$)	S	0	1	2	dB

$1 \pi 0=A_{0}+\frac{140}{2}$ O IND >6008
PEP $=4 X \mathrm{PO}_{\mathrm{C}}{ }^{140}$ - -32 CB
Figure 1. Tone Intermodulation Test

The RF Line

Linear Power Amplifier

... designed for wideband linear applications in the 10 to 1000 MHz frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of 28 volts.

- Specified VCC $=28$ Volt and $T_{C}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - 10 to 1000 MHz
Output Power - 0.8 W Typ @ 1 dB Gain Compression, $f=500 \mathrm{MHz}$
Power Gain - 15 dB Typ @ $\mathrm{f}=100 \mathrm{MHz}$
ITO - 42 dBm Typ @ $\mathrm{f}=1000 \mathrm{MHz}$
Noise Figure - 8.5 dB Typ @ $\mathrm{f}=1000 \mathrm{MHz}$

- 50 Ohm Input/Output Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability
- Moisture Resistant, EMI Shielded Package

SHP
CASE 389A-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V $_{\text {CC }}$		$\mathbf{3 2}$
RF Power Input	$P_{\text {in }}$	Vdc	
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	$\mathbf{2 0}$	dBm
Operating Temperature Range	$\mathrm{T}_{\mathbf{C}}$	-55 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (TC $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=\mathbf{2 8} \mathrm{V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current (VCC $=28 \mathrm{~V}$)	ICC	360	400	440	mA
Power Gain ($\mathrm{f}=\mathbf{1 0 0} \mathbf{~ M H z}$)	Gp	14	15	16	dB
Bandwidth	BW	10	-	1000	MHz
Gain Flatness ($\mathrm{P}-\mathrm{P}$) ($\mathrm{f}=10-1000 \mathrm{MHz}$)	-	-	. ± 0.5	± 1	dB
$\begin{array}{ll} \hline \text { Input/Output VSWR } & \begin{array}{l} (f=40-900 \mathrm{MHz}) \\ (f=10-1000 \mathrm{MHz}) \end{array} \end{array}$	-	-	$\overline{2: 1}$	$\begin{gathered} \hline 2: 1 \\ 2.5: 1 \end{gathered}$	-
Output Power @ 1 dB Gain Compression $\begin{aligned} & (f=500 \mathrm{MHz} \text {) } \\ & \text { (f }=\mathbf{1 0 0 0} \mathrm{MHz}\end{aligned}$	Po 1dB	$\begin{aligned} & 28 \\ & 27 \end{aligned}$	$\begin{aligned} & 29 \\ & 28 \end{aligned}$	-	dBm
Third Order Intercept Point(f $=500 \mathrm{MHz}$) (f $=1000 \mathrm{MHz}$)	ITO	$\begin{aligned} & 41 \\ & 40 \end{aligned}$	$\begin{aligned} & 43 \\ & 42 \end{aligned}$	二	dBm
$\begin{array}{ll}\text { Noise Figure } & (f=500 \mathrm{MHz}) \\ (f=1000 \mathrm{MHz})\end{array}$	NF	二	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	dB

The RF Line

Linear Power Amplifier

．．．designed for wideband linear applications in the $10-1000 \mathrm{MHz}$ frequency range．This solid state，Class A amplifier incorporates microstrip circuit technology and high perfor－ mance，gold metallized transistors to provide a complate broadband，linear amplifier operating from a supply voltage of 15 volts．
－Specified $V_{C C}=15$ Volt and $T_{C}=25^{\circ} \mathrm{C}$ Characteristics：
Frequency Range－ 10 to 1000 MHz
Output Power－800 mW Typ＠ 1 dB Gain Compression，$f=500 \mathrm{MHz}$
Power Gain－ 15 dB Typ＠ $\mathrm{f}=100 \mathrm{MHz}$
ITO－ 43 dBm Typ＠$f=500 \mathrm{MHz}$
Noise Figure－ $8.5 \mathrm{~dB} \operatorname{Typ} @ f=1000 \mathrm{MHz}$
－ 50 Ohm Input／Output Impedance
－Heavy Duty Machined Housing
－Gold Metallized Transistors for Improved Reliability
－Moisture Resistant，EMI Shielded Package

SHP
CASE 389A－01，STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	VCC	18	Vdc
RF Power Input	$P_{\text {in }}$	＋20	dBm
Operating Case Temperature Range	T_{C}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to＋100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS（ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, 50 \Omega$ system unless otherwise noted）

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	10	－	1000	MHz
Gain Flatness（Peak－to－Peak）（ $f=10-1000 \mathrm{MHz}$ ）	－	－	± 0.5	± 1	dB
Power Gain（f＝ $\mathbf{1 0 0} \mathbf{M H z}$ ）	PG	14	15	16	dB
$\begin{array}{ll}\text { Noise Figure，Broadband } & \left.\left.\begin{array}{l}(f)=500 \mathrm{MHz}) \\ (f)\end{array}\right)=1000 \mathrm{MHz}\right)\end{array}$	NF		$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	dB
Power Output－ 1 dB Compression$(f=500 \mathrm{MHz})$ $(f=1000 \mathrm{MHz})$	Po 1dB	$\begin{aligned} & 28 \\ & 27 \end{aligned}$	$\begin{aligned} & 29 \\ & 28 \end{aligned}$	二	dBm
Third Order Intercept $(f=500 \mathrm{MHz})$ （See Figure 1） $(f=1000 \mathrm{MHz})$	ITO	$\begin{aligned} & 41 \\ & 40 \\ & \hline \end{aligned}$	$\begin{aligned} & 43 \\ & 42 \end{aligned}$	二	dBm
InpuVOutput VSWR$(f=40-900 \mathrm{MHz})$ $(f=10-1000 \mathrm{MHz})$	vSWR	二	$\overline{2: 1}$	$\begin{gathered} 2: 1 \\ 2.5: 1 \end{gathered}$	－
Supply Current	ICC	640	700	810	mA

$1 r_{0}=P_{0}+\frac{140}{2}$－ $12120>6008$

Figure 1．Tone Intermodulation Test

SHP10-17-04

The RF Line

Linear Power Amplifier
... designed for wideband linear applications in the $10-1000 \mathrm{MHz}$ frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high performance, gold metallized transistors to provide a complete broadband, linear amplifier operating from a supply voltage of 24 volts.

- Specified VCC $=\mathbf{2 4}$ Volt and $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - 10 to 1000 MHz
0.4 WATT 10 TO 1000 MHz LINEAR
POWER AMPLIFIER

SHP
CASE 389A-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$V_{\text {cc }}$	28	Vdc
RF Power Input	$P_{\text {in }}$	$+20$	dBm
Operating Case Temperature Range	TC	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (TC $=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	10	-	1000	MHz
Gain Flatness (Peak-to-Peak) (f $=10-1000 \mathrm{MHz}$)	-	-	± 0.5	± 1	dB.
Power Gain (f = $\mathbf{1 0 0} \mathbf{M H z}$)	$\mathrm{PG}_{\mathbf{G}}$	15.9	17	18.1	dB
$\begin{aligned} & \text { Noise Figure, Broadband }(f=500 \mathrm{MHz}) \\ &(f)=1000 \mathrm{MHz})\end{aligned}$	NF	二	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	dB
Power Output - 1 dB Compression$\left(f=500 \mathrm{MHz}_{2}\right.$ $(f=1000 \mathrm{MHz})$	Po 1dB	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \end{aligned}$	-	dBm
Third Order Intercept $(f=500 \mathrm{MHz})$ (See Figure 1) $(f=1000 \mathrm{MHz})$	ITO	$\begin{aligned} & 38 \\ & 37 \end{aligned}$	$\begin{aligned} & 40 \\ & 39 \end{aligned}$	-	dBm
$\begin{aligned} \text { Input/Output VSWR. } & (f=40-300 \mathrm{MHz} \\ : & \text { (f }=10-1000 \mathrm{MHz}) \end{aligned}$	vSWR	-	$\overline{2: 1}$	$\begin{gathered} 2: 1 \\ 2.5: 1 \end{gathered}$	-
Supply Current	ICC	190	220	245	mA

$\mathrm{PEP} \cdot \mathrm{AXPO} \mathrm{Q}_{\mathrm{o}} \mathrm{IMO}=-3268$
Figure 1. Tone Intermodulation Test

\section*{The RF Line}
 Linear Power Amplifier

... designed for wideband linear applications in the $10-1000 \mathrm{MHz}$ frequency range. This solid state, Class A amplifier incorporates microstrip circuit technology and high perforsolid state, Class A amplifier incorporates microstrip circuit technology and high perf operating from a supply voltage of 15 volts.

- Specified $V_{C C}=15$ Volt and $T_{C}=25^{\circ} \mathrm{C}$ Characteristics:

Frequency Range - 10 to 1000 MHz
Output Power - 400 mW Typ @ 1 dB Gain Compression, $\mathrm{f}=1 \mathrm{GHz}$
Power Gain - 17 dB Typ @ $\mathrm{f}=100 \mathrm{MHz}$
ITO - 40 dBm Typ @ $f=500 \mathrm{MHz}$
Noise Figure-7.5 dB Typ @f=1 GHz

- 50 Ohm InputOutput Impedance
- Heavy Duty Machined Housing
- Gold Metallized Transistors for Improved Reliability
- Moisture Resistant, EMI Shielded Package

SHP10-17-04-15

0.4 WATT 10 TO $1000 \mathbf{M H z}$ LINEAR POWER AMPLIFIER

SHP
CASE 389A-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	V_{CC}	18	Vdc
RF Power Input	$P_{\text {in }}$	+20	dBm
Operating Case Temperature Range	TC	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ${ }^{(T C} C=25^{\circ} \mathrm{C}, \mathrm{VCC}=15 \mathrm{~V}, 50 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	10	-	1000	MHz
Gain Flatness (Peak-to-Peak) (f $=10-1000 \mathrm{MHz}$)	-	-	± 0.5	± 1	dB
Power Gain (f $=100 \mathrm{MHz}$)	PG	15.9	17	18.1	dB
Noise Figure, Broadband$(f=500 \mathrm{MHz})$ $(f=1000 \mathrm{MHz})$	NF		$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.5 \end{aligned}$	dB
Power Output - 1 dB Compression$(f=500 \mathrm{MHz})$ $(\mathrm{f}=\mathbf{1 0 0 0} \mathrm{MHz})$	Po 1dB	$\begin{aligned} & 25 \\ & 25 \end{aligned}$	$\begin{aligned} & 26 \\ & 26 \end{aligned}$	-	dBm
Third Order Intercept (f $=\mathbf{5 0 0} \mathrm{MHz}$) (See Figure 1) (f $=\mathbf{1 0 0 0} \mathbf{~ M H z)}$	ITO	$\begin{aligned} & 38 \\ & 37 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 40 \\ & 39 \end{aligned}$	二	dBm
Input/Output VSWR $(f=\mathbf{4 0 - 9 0 0} \mathrm{MHz})$ $(f=10-1000 \mathrm{MHz})$	VSWR	-	$\overline{2: 1}$	$\begin{gathered} \text { 2:1 } \\ \text { 2.5:1 } \end{gathered}$	-
Supply Current	ICC	340	400	420	mA

$110=\infty \quad \frac{1 M D}{2} \bigcirc 140>60003$
PAP $=4 X P_{0}$ O IMO $=-32 C B$
Figure 1. Tone Intermodulation Test

Volume II

Tuning, Hot Carrier and
PIN Diode Data Sheets

SILICON EPICAP DIODES

. . . designed for electronic tuning and harmonic-generation applications, and providing solid-state reliability to replace mechanical tuning methods.

- Guaranteed High-Frequency 0
- Guaranteed Wide Tuning Range
- Guaranteed Temperature Coefficient
- Standard 10\% Capacitance Tolerance
- Complete Typical Design Curves

6.8-47 pF EPICAP VOLTAGE-VARIABLE CAPACITANCE DIODES

SLICON EPITAXIAL PASSIVATED

NOTES:

1. PACKAGE CONTOUR OPTIONAL WITHIN DIA B AND LENGTH A. HEAT SLUES, IF ANY, SHALL EE INCLUDED WITHIN TMIS CYLIMDEA, BUT SMALL NOT BE SUBEETT TO THE MIN LTMIT OF DIA B.
2. LEAD CIA NOT CONTROLLED IM ZOMES F. TO ALLOW FOR FLASH, LEAD FIKISH GUILDUP, AND MIMOR thregulahities other than heat slugs.

AII JEDEC dimeasions and notes moply

1N5139 thru 1N5148, 1N5139A thru 1N5148A

ELECTRICAL CHARACTERISTICS (TA $=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic - All Types	Text Conditions	Symbot	Min	TYp	Max	Unit
Reverse Breakdown Voltage	$\mathrm{IR}=10 \mu \mathrm{Adc}$	BVR	60	70	-	Vdc
Reverse Voltage Leakage Current	$\begin{aligned} & V R=55 \mathrm{Vdc}, \mathrm{TA}_{A}=25^{\circ} \mathrm{C} \\ & V R=55 \mathrm{Vdc}, T_{A}=150^{\circ} \mathrm{C} \end{aligned}$	- IR	-	-	$\begin{gathered} 0.02 \\ 20 \end{gathered}$	HAdc
Series Inductance	$f=250 \mathrm{MHz}, \mathrm{L}=1 / 16^{\prime \prime}$	LS	-	4	-	nH
Case Capacitance	$f=1 \mathrm{MHz}, \mathrm{L} \Rightarrow 1 / 16^{*}$	CC	-	0.17	-	pF
Diode Capacitance Temperature Coefficient.	$\mathrm{VR}=4 \mathrm{Vdc}, \mathrm{f}=1 \mathrm{MHz}$	TCC	-	200	-	ppm/ ${ }^{\circ} \mathrm{C}$

	CT, Diode Capacttanco $\mathbf{V R}=4 \mathrm{Vdc}, \mathrm{f}=1 \mathrm{MHz}$ pF			Q. Figure of Mert $\mathrm{VR}=4 \mathrm{Vdc}$, $f=50 \mathrm{MHz}$	$\mathrm{VR}=4 \mathrm{Vdc}, \mathrm{f}=1 \mathrm{MHz}$		TR, Tuning Ratio $\mathrm{C}_{4} / \mathrm{C}_{60}$$f=1 \mathrm{MHz}$	
Device	Min	TYp	Max	Min	Min	Typ	Min	Typ
$\begin{aligned} & \text { IN5139 } \\ & \text { 1N5139A } \\ & \text { 1N5140 } \\ & \text { 1N5140A } \end{aligned}$	$\begin{aligned} & 6.1 \\ & 6.5 \\ & 9.0 \\ & 9.5 \end{aligned}$	$\begin{array}{r} 6.8 \\ 6.8 \\ 10.0 \\ 10.0 \end{array}$	$\begin{array}{r} 7.5 \\ 7.1 \\ 11.0 \\ 10.5 \end{array}$	$\begin{aligned} & 350 \\ & 350 \\ & 300 \\ & 300 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.37 \\ & 0.37 \\ & 0.38 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.40 \\ & 0.41 \\ & 0.41 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 2.7 \\ & 2.8 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 2.9 \\ & 3.0 \\ & 3.0 \end{aligned}$
$\begin{aligned} & \text { 1N5141 } \\ & \text { 1N5141A } \\ & \text { 1N5142 } \\ & \text { 1N5142A } \end{aligned}$	$\begin{aligned} & 10.8 \\ & 11.4 \\ & 13.5 \\ & 14.3 \end{aligned}$	$\begin{aligned} & 12.0 \\ & 12.0 \\ & 15.0 \\ & 15.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 13.2 \\ & 12.6 \\ & 16.5 \\ & 15.7 \end{aligned}$	$\begin{aligned} & 300 \\ & 300 \\ & 250 \\ & 250 \end{aligned}$	$\begin{aligned} & 0.38 \\ & 0.38 \\ & 0.38 \\ & 0.38 \end{aligned}$	$\begin{aligned} & 0.41 \\ & 0.41 \\ & 0.41 \\ & 0.41 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \\ & 2.8 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.0 \\ & 3.0 \end{aligned}$
$\begin{aligned} & \text { IN5143 } \\ & \text { 1N5143A } \\ & \text { 1N5144 } \\ & \text { 1N5144A } \end{aligned}$	$\begin{aligned} & 16.2 \\ & 17.1 \\ & 19.8 \\ & 20.9 \end{aligned}$	$\begin{aligned} & 18.0 \\ & 18.0 \\ & 22.0 \\ & 22.0 \end{aligned}$	$\begin{aligned} & 19.8 \\ & 18.9 \\ & 24.2 \\ & 23.1 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 0.38 \\ & 0.38 \\ & 0.43 \\ & 0.43 \end{aligned}$	$\begin{aligned} & 0.41 \\ & 0.41 \\ & 0.45 \\ & 0.45 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 2.8 \\ & 3.2 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \\ & 3.4 \\ & 3.4 \end{aligned}$
$\begin{aligned} & \text { 1N5145 } \\ & \text { 1N5145A } \\ & \text { 1N5146 } \\ & \text { 1N5146A } \end{aligned}$	$\begin{aligned} & 24.3 \\ & 25.7 \\ & 29.7 \\ & 31.4 \end{aligned}$	$\begin{aligned} & 27.0 \\ & 27.0 \\ & 33.0 \\ & 33.0 \end{aligned}$	$\begin{aligned} & 29.7 \\ & 28.3 \\ & 36.3 \\ & 34.6 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.43 \\ & 0.43 \\ & 0.43 \\ & 0.43 \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.45 \\ & 0.45 \\ & 0.45 \end{aligned}$	$\begin{aligned} & \hline 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.4 \\ & 3.4 \\ & 3.4 \end{aligned}$
$\begin{aligned} & \text { 1N5147 } \\ & \text { 1N5147A } \\ & \text { 1N5148 } \\ & \text { iN5148A } \end{aligned}$	$\begin{aligned} & 36.1 \\ & 37.1 \\ & 42.3 \\ & 44.7 \end{aligned}$	$\begin{aligned} & 39.0 \\ & 39.0 \\ & 47.0 \\ & 47.0 \end{aligned}$	$\begin{aligned} & 42.9 \\ & 40.9 \\ & 51.7 \\ & 49.3 \end{aligned}$	$\begin{aligned} & 200 \\ & 200 \\ & 200 \\ & 200 \end{aligned}$	$\begin{aligned} & 0.43 \\ & 0.43 \\ & 0.43 \\ & 0.43 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.45 \\ & 0.45 \\ & 0.45 \\ & 0.45 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.4 \\ & 3.4 \\ & 3.4 \\ & 3.4 \\ & \hline \end{aligned}$

PARAMETER TEST METHODS

1. L_{50} SERIES INDUCTANCE
L_{s} is measured on a shorted package at 250 MHz using an impedance bridge (Boonton Radio Model 250A RX Meter). $L=$ lead length.
2. Co, CASE CAPACITANCE
C_{c} is measured on an open package at 1 MHz using a capacitance bridge (Boonton Electronics Model 75A or equivalent).
3. C_{T} DIDDE CAPACHANCE
($C_{T}=C_{C}+C_{f}$). C_{r} is measured at 1 MHz using a capacitance bridge (Boonton Electronics Model 75A or equivalent).
4. TR, TUNING RATIO

TR is the ratio of C_{r} measured at 4 Vdc divided by C_{r} measured at 60 Vdc .
5. Q, FIGURE OF MERIT
Q is calculated by taking the G and C readings of an admit-
tance bridge at the specified frequency and substituting in the following equations:

$$
Q=\frac{2 \pi f C}{G}
$$

(Boonton Electronics Model 33AS8).
8. α, DIODE CAPACITANCE REVERSE YOLTAGE SLOPE

The diode capacitance, C_{7} (as measured at $V_{8}=4 \mathrm{Vdc}$,
$f=1 \mathrm{MHz}$) is compared to C_{7} (as measured at $V_{\mathrm{a}}=60 \mathrm{Vdc}$,
$f=1 \mathrm{MHz}$) by the following equation which defines a.

$$
\alpha=\frac{\log \mathrm{C}_{1}(4)-\log \mathrm{C}_{1}(60)}{\log 60-\log 4}
$$

Note that a C_{r} versus V_{a} law is assumed as shown in the following equation where C_{c} is included.

$$
C_{r}=\frac{K}{V_{a}}
$$

7. TC, DIODE CAPACITANEE TEMPERATURE EOEFFIEIENT
$T C_{c}$ is guaranteed by comparing C_{T} at $V_{n}=4 \mathrm{Vdc}, f=$ $1 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=-65^{\circ} \mathrm{C}$ with C_{r} at $\mathrm{V}_{\mathrm{a}}=4 \mathrm{Vdc}, \mathrm{f}=1 \mathrm{MHz}$ $\mathrm{T}_{A}=+85^{\circ} \mathrm{C}$ in the following equation which defines TC_{c} : $T C_{C}=\left|\frac{\mathrm{C}_{\mathrm{T}}\left(+85^{\circ} \mathrm{C}\right)-\mathrm{C}_{\mathrm{r}}\left(-65^{\circ} \mathrm{C}\right)}{85+65}\right| \cdot \frac{10^{\circ}}{\mathrm{C}_{\mathrm{r}}\left(25^{\circ} \mathrm{C}\right)}$

\square
VVC \rightarrow

SILICON EPICAP DIODES

. . . epitaxial passivated abrupt junction tuning diodes designed for electronic tuning, FM, AFC and harmonic-generation applications in AM through UHF ranges, providing solid-state reliability to replace mechanical tuning methods.

- Excellent \mathbf{Q} Factor at High Frequencies
- Guaranteed Capacitance Change - 2.0 to $\mathbf{3 0} \mathrm{V}$
- Guaranteed Temperature Coefficient
- Capacitance Tolerance - 10% and 5.0%
- Complete Typical Design Curves
* MAXIMUM RATINGS

-Indicates JEDEC Regiatered Data.

1N5441A，B thru 1N5456A，B

＊ELECTRICAL CHARACTERISTICS （ $T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted）

Characteristic－All Types	Test Conditions	Symbol	Min	Typ	Max	Unit
Reverse Breakdown Voltage	$\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{Adc}$	$V_{\text {（BR）}}$	30	－	－	Vdc
Reverse Voltage Leakage Current	$\begin{aligned} & V_{R}=25 \mathrm{Vdc}, T_{A}=25^{\circ} \mathrm{C} \\ & V_{A}=25 \mathrm{Vdc}, T_{A}=150^{\circ} \mathrm{C} \end{aligned}$	IR	二	二	$\begin{gathered} 0.02 \\ 20 \end{gathered}$	$\mu \mathrm{Adc}$
Series tnductance	$f=250 \mathrm{MHz}$ ，lead length $\sim 1 / 16^{\prime \prime}$	15	－	4.0	－	nH
Case Capacitance	$f=1.0 \mathrm{MHz}$ ，lead length $=1 / 16^{\circ}$	c_{C}	－	0.17	－	pF
Diode Capacitance Temperature Coefficient（Note 6）	$\mathrm{V}_{\mathrm{R}}=4.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}$	TC_{c}	－	300	－	ppm／$/ \mathrm{C}$

Device	CT，Diode Capacitance（1） $\mathbf{V}_{\mathbf{R}}=\mathbf{4 . 0} \mathrm{Vde}, \mathrm{f}=1.0 \mathrm{MHz}$ pF			$\begin{gathered} \text { TR, Tuning Ratio } \\ \mathrm{C}_{2} / \mathrm{C}_{30} \\ f=1.0 \mathrm{MHz} \end{gathered}$		Q．Figure of Merit $\mathrm{V}_{\mathrm{R}}=4.0 \mathrm{Vdc}$ $\mathrm{f}=50 \mathrm{MHz}$
	$\begin{gathered} \text { Minn } \\ \text { (Nom - } 10 \% \text {) } \\ \hline \end{gathered}$	Nom	$\begin{gathered} \text { Max } \\ \text { (Nom }+10 \% \text {) } \\ \hline \end{gathered}$	Min	Max	Min
1N5441A	6.1	6.8	7.5	2.5	3.2	450
1N5443A	9.0	10.0	11.0	2.6	3.2	400
1N5444A	10.8	12.0	13.2	2.6	3.2	400
1N5445A	13.5	15.0	16.5	2.6	3.2	400
1N5446A	16.2	18.0	19.8	2.6	3.2	350
1N5448A	19.8	22.0	24.2	2.6	3.2	350
1N5449A	24.3	27.0	29.7	2.6	3.2	350
1N5450A	29.7	33.0	36.3	2.6	3.2	350
1N5451A	35.1	39.0	42.9	2.6	3.2	300
1N5452A	42.3	47.0	51.7	2.6	3.2	250
1N5453A	50.4	56.0	61.6	2.6	3.3	200
1N5455A	73.8	82.0	90.2	2.7	3.3	175
1 55456 A	90.0	100.0	110.0	2.7	3.3	175

（1）To order devices with CT Nom $\pm 5.0 \%$ add Suffix B ． －Indicates JEDEC Registered Date．

1．Ls，Series Inductance
Ls is measured on a shorted packege at 250 MHz using an impedance bridge（Boonton Radio Model 250A RX Meter or equivalentl．
2．CC，Case Capacitance
C_{C} is measured on an open package at 1.0 MHz using a capacitance bridge（Boonton Electronics Model 75A of equivalentl．
3． C_{T} ．Diode Capacitance
$\left(C_{T}=C_{C}+C_{\jmath}\right) . C_{T}$ is measured at 1.0 MHz using e capacitance bridge（Boonton Elec－ rronics Modal 75A or equivalentl．
4．TR，Tuning Ratio
TR is the retio of C_{T} meazured at 2.0 Voc divided by $\mathrm{C}_{\boldsymbol{T}}$ measured at 30 Voc．
5．Q．Figure of Merit
O is catculated by teking the \mathbf{G} and \mathbf{C} read－ ings of an admittance bridge at the apecified frequency and substituting in the following equations：

$$
a=\frac{2 \pi f c}{G}
$$

（Boonton Electronicts Model 33AS日 or equivatent）．

PARAMETER TEST METHODS

6． TC_{c} ，Diode Capacitance Temperature Confficient
TC C_{c} is querantead by comparing C_{T} at $V_{A}=$ $4.0 \mathrm{Vac}, \mathrm{i}=1.0 \mathrm{MHz} . \mathrm{T}_{\mathrm{A}}=-65^{\circ} \mathrm{C}$ with C_{T} at $V_{R}=4.0 \mathrm{Vdc}, f=1.0 \mathrm{MHz}, \mathrm{T}_{A}=+85^{\circ} \mathrm{C}$
in the following equation，which cofines $\mathbf{T C}_{\mathbf{c}}$ ：
$T C_{C}=\left|\frac{C_{T}\left(+85^{\circ} \mathrm{C}\right)-C_{T}\left(-65^{\circ} \mathrm{C}\right)}{85+65}\right| \frac{10^{6}}{C_{T}\left(25^{\circ} \mathrm{C}\right)}$
Accuracy limitad by $\mathrm{C}_{\boldsymbol{T}}$ measurement to $\pm 0.1 \mathrm{pF}$ ．
fIGURE 1 －NORMALIZED DIODE CAPACITANCE versus JUNCTION TEMPERATURE

1N5441A,B thru 1N5456A,B

TYPICAL DEVICE PERFORMANCE

FIGURE 2 - DIODE CAPACITANCE versus REVERSE VOLTAGE

FIGURE 3 - FIGURE OF MERIT versus REVERSE VOLTAGE

FIGURE 5 - REVERSE CURRENT

FIGURE 6 - FORWARD VOLTAGE.

ELECTRICAL CHARACTERISTICS (T ${ }_{\text {A }}=25^{\circ} \mathrm{C}$ unless otherwise noted)					
Charseteristic	Symbol	Min	Typ	Max	Unit
Reverse Breakdown Voltage $\left(I_{R}=10 \mu A\right)$	$V_{(B R) R}$	4.0	5.0	-	Volts
Diode Capacitance $\left(V_{R}=0, f=1.0 \mathrm{MHz} \text {, Note } 1\right)$	$\mathrm{C}_{\boldsymbol{T}}$	-	0.88	1.0	pF
Forward Voltage (1) $\left(I_{F}=10 \mathrm{~mA}\right)$	V_{F}	-	0.50	0.60	Volts
Noise Figure (f =1.0 GHz, Note 2)	NF	-	6.0	-	dB
Reverso Leakage $\left(V_{R}=3.0 \mathrm{~V}\right)$	I^{\prime}	-	0.02	0.25	$\mu \mathrm{A}$

SILICON HOT-CARRIER DIODES (SCHOTTKY BARRIER DIODES)

. . . designed primarily for UHF mixer applications but suitable also for use in detector and ultra-fast switching circuits. Supplied in an inexpensive plastic package for low-cost, high-volume consumer requirements. Also available in Surface Mount package.

- The Rugged Schottky Barrier Construction Provides Stable Characteristics by Eliminating the "Cat-Whisker" Contact
- Low Noise Figure - 6.0 dB Typ @ 1.0 GHz
- Very Low Capacitance - Less Than 1.0 pF @ Zero Volts
- High Forward Conductance - 0.50 Volts (Typ) @ $I_{F}=10 \mathrm{~mA}$

MAXIMUM RATINGS				
		MBD101	MMBD10tL	
Rating	Symbol	Value		Unit
Reverse Voltage	V_{R}	4.0		Volts
Forward Power Dissipation @ $T_{A}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PF	$\begin{aligned} & 280 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{array}{r} 200 \\ 2.0 \\ \hline \end{array}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \\ \hline \end{gathered}$
Junction Temperature	TJ	+125		${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathbf{s t g}}$	-55 to +150		${ }^{\circ} \mathrm{C}$

DEVICE MARKING
MMBD101 $=4 \mathrm{M}$

sture
STME B:

1. NO CONNECTION 3. CATHOOE

CASE 318-07 TO-236AB SOT-23

MBD101, MMBD101L

TYPICAL CHARACTERISTICS
($T_{A}=25^{\circ} \mathrm{C}$ unless noted)

FIGURE 3 - CAPACITANCE

FIGURE 5 - NOISE FIGURE TEST CIRCUIT

FIGURE 2 - FORWARD VOLTAGE

FIGURE 4 - NOISE FIGURE

Note 1 - $\mathbf{C}_{\mathbf{C}}$ and C_{T} ere measured using a capacitence bridge (Boonton Eloctronics Model 75A or equivalent).

Note 2 - Noise figure measured with diode under test in tuned diode mount using UHF noise source and tocal oscilletor (LO) frequency of 1.0 GHz . The LO power is adjusted for 1.0 mW . IF amplifier $\mathrm{NF}=1.5 \mathrm{~dB}, f=30 \mathrm{MHz}$, see Figure 5.

Note 3 - LS is messured on o pockage having a short instesd of o dia, using an impedance bridge (Boonton Redio Model 250A RX Moterl.
$\square \mathrm{O}$

SILICON HOT-CARRIER DIODES (SCHOTTKY BARRIER DIODES)

. . . designed primarily for high-efficiency UHF and VHF detector applications. Readily adaptable to many other fast switching RF and digital applications. Supplied in an inexpensive plastic package for low-cost, high-volume consumer and industrial/commercial requirements. Also available in Surface Mount package.

- The Schottky Barrier Construction Provides Ultra-Stable Characteristics By Eliminating the "Cat-Whisker" or "S-Bend" Contact
- Extremely Low Minority Carrier Lifetime - 15 ps (Typ)
- Very Low Capacitance - 1.5 pF (Max) @ $\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V}$
- Low Reverse Leakage - $\mathrm{I}_{\mathrm{R}}=13$ nAdc (Typ) MBD301, MMBD301L

MAXIMUM RATINGS $\left(T_{\mathrm{J}}=125^{\circ} \mathrm{C}\right.$ unless otherwise noted)

		MBD301	MMBD301L	
Rating	Symbol	Value		Unit
Reverse Voltage MBD301, MMBD301L	$V_{\text {R }}$	30		Volts
Forward Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{F}	$\begin{aligned} & 280 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{mW} \\ \mathrm{~mW} \mathrm{C} \\ \hline \end{array}$
Operating Junction Temperature Range	T_{J}	-55 to +125		${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150		${ }^{\circ} \mathrm{C}$

DEVICE MARKING
MMBD301L $=4 \mathrm{~T}$
ELECTRICAL CHARACTERISTICS $\mathbf{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Reverse Breakdown Voltage $\left(U_{\mathrm{R}}=10 \mu \mathrm{Adc}\right) \quad \text { MBD301, MMBD301L }$	V(BR)R	30	-	-	Volts
Total Capacitance, Figure 1 $\left(\mathrm{V}_{\mathrm{R}}=15\right.$ Volts, $\mathrm{f}=1.0 \mathrm{MHz}$)	$\mathrm{C}_{\text {T }}$	-	0.9	1.5	pF
Minority Carrier Lifetime, Figure 2 ($I_{F}=5.0 \mathrm{~mA}$, Krakauer Method)	τ	-	15	-	ps
$\begin{array}{\|c} \begin{array}{c} \text { Reverse Leakage, Figure 3 } \\ \left(V_{\mathrm{R}}=25 \mathrm{~V}\right) \end{array} \quad \text { MBD301, MMBD301L } \\ \hline \end{array}$	I_{R}	-	13	200	nAdc
Forward Voltage, Figure 4 ($\mathrm{I}_{\mathrm{F}}=\mathbf{1 0} \mathrm{mAdc}$)	V_{F}	-	0.5	0.6	Vdc

MBD301, MMBD301L

TYPICAL ELECTRICAL CHARACTERISTICS

FIGURE 1 - TOTAL CAPACITANCE

FIGURE 3 - REVERSE LEAKAGE

FIGURE 2 - MINORITY'CARRIER LIFETIME

FIGURE 4 - FORWARD VOLTAGE

KRAKAUER METHOD OF MEASURING LIFE TIME

SILICON HOT-CARRIER DIODES (SCHOTTKY BARRIER DIODES)

. . . designed primarily for high-efficiency UHF and VHF detector applications. Readily adaptable to many other fast switching RF and digital applications. Supplied in an inexpensive plastic package for low-cost, high-volume consumer and industrial/commercial requirements. Also available in Surface Mount package.

- The Schottky Barrier Construction Provides Ultra-Stable Characteristics by Eliminating the "Cat-Whisker" or "S-Bend" Contact
- Extremely Low Minority Carrier Lifetime - 15 ps (Typ)
- Very Low Capacitance - $1.0 \mathrm{pF} @ \mathrm{~V}_{\mathrm{R}}=20 \mathrm{~V}$
- High Reverse Voltage - to 70 Volts
- Low Reverse Leakage - $\mathbf{2 0 0}$ nA (Max)

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{J}}=125^{\circ} \mathrm{C}$ unless otherwise noted)

		MBD701	MMBD701L	
Rating	Symbol	Value		Unit
Reverse Voltage MBD701, MMBD701L	V_{R}	70		Volts
Forward Power Dissipation @ $\mathbf{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{F}	$\begin{aligned} & 280 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 200 \\ & 2.0 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} / \mathrm{C} \\ \hline \end{gathered}$
Operating Junction Temperature Range	TJ	-55 to +125		${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150		${ }^{\circ} \mathrm{C}$

DEVICE MARKING
MMBD701L $=5 \mathrm{H}$
ELECTRICAL CHARACTERISTICS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Reverse Breakdown Voltage $\left(I_{\mathbf{R}}=10 \mu \mathrm{Adc}\right) \quad \text { MBD701, MMBD701L }$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}}$	70	-	-	Volts
Total Capacitance, Figure 1 $\left(V_{R}=20\right.$ Volts, $f=1.0 \mathrm{MHz}$)	CT	-	0.5	1.0	pF
Minority Carrier Lifetime, Figure 2 ($\mathrm{I}_{\mathrm{F}}=5.0 \mathrm{~mA}$, Krakauer Method)	τ	-	15	-	ps
Reverse Leakage, Figure 3 $\left(V_{R}=35 \mathrm{~V}\right) \quad \text { MBD701, MMBD701L }$	IR	-	9.0	200	nAdc
Forward Voltage, Figure 4 ($\mathrm{IF}_{\mathrm{F}}=10 \mathrm{mAdc}$)	V_{F}	-	1.0	1.2	Vdc

MBD701, MMBD701L

KRAKAUER METHOD OF MEASURING LIFE TIME

TYPICAL ELECTRICAL CHARACTERISTICS

FIGURE 1 - TOTAL CAPACITANCE

figure 3 - Reverse leakage

FIGURE 2 - MINORITY CARRIER LIFETIME

FIGURE 4 - FORWARD VOLTAGE

Dual Hot Carrier
 Mixer Diodes

MMMBD352L MMBD353L

DUAL HOT CARRIER MIXER DIODES

CASE 318-07 SOT-23 (TO-236AB)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Continuous Reverse Voltage	V_{R}	4.0	$\mathrm{~V}_{\mathrm{CC}}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation FR-5 Board,* $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 225 \\ & 1.8 \\ & \hline \end{aligned}$	mW $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Thermal Resistance Junction to Ambient	$\mathrm{R}_{\theta J A}$	556	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Total Device Dissipation Alumina Substrate,** $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{array}{r} 300 \\ 2.4 \\ \hline \end{array}$	mW $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Thermal Resistance Junction to Ambient	$\mathrm{R}_{\text {日JA }}$	417	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction and Storage Temperature	TJ, $\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

${ }^{*}$ FR- $5=1.0 \times 0.75 \times 0.062 \mathrm{in}$.
*Alumina $=0.4 \times 0.3 \times 0.024 \mathrm{in} .99 .5 \%$ alumina.

DEVICE MARKING

MMBD352L $=$ M5G; MMBD353L $=$ M4F
ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Min	Max	Unit

OFF CHARACTERISTICS

Forward Voltage $\left(I_{F}=10 \mathrm{~mA}\right)$	V_{F}	-	0.6
Reverse Voltage Leakage Current $\left(\mathrm{V}_{\mathrm{R}}=3 \mathrm{~V}\right)$ $\left(\mathrm{V}_{\mathrm{R}}=4 \mathrm{~V}\right)$	I_{R}	V	
Capacitance $\left(\mathrm{V}_{\mathrm{R}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\right)$	C	-	0.25

. . . designed in the Surface Mount package for general frequency control and tuning applications; providing solid-state reliability in replacement of mechanical tuning methods.

- Controlled and Uniform Tuning Ratio

MMBV105GL

VOLTAGE VARIABLE CAPACITANCE DIODE

30 VOLTS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	$\mathrm{V}_{\mathbf{R}}$	30	Volts
Forward Current	I_{F}	200	mA
Device Dissipation a $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$	PD_{D}	200	mW
Derate above $25^{\circ} \mathrm{C}$		2.0	$\mathrm{~mW} / \mathrm{C}$
Junction Temperature	T_{J}	+125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

MMBV105GL $=$ M4E

FIGURE 1 - DIODE CAPACITANCE

ELECTRICAL CHARACTERISTICS ${ }^{1}{ }^{\prime} A=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic-All Types	Symbal	Min	Max	Unit
Reverse Breakdown Voltage I $_{R}=10 \mu$ Adc $)$	$V_{(B R) R}$	30	-	
Reverse Voltage Leakage Current (VR $=28 \mathrm{~V})$	I_{R}	-	50.0	nAdc

Device Type	$\begin{gathered} \mathrm{CT}_{\mathrm{T}} \\ \mathrm{~V}_{\mathrm{R}}=\mathbf{2 5} \mathrm{Vde} \\ \mathrm{pF} \end{gathered}$		$\begin{gathered} 0 \\ \mathrm{f}=100 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{R}}=3.0 \mathrm{~V} \end{gathered}$	$\mathrm{C}_{3} / \mathrm{C}_{25}$	
	Min	Max	Typ	Min	Max
MMBV105GL	1.8	2.8	150	4.0	6

FIGURE 2 - FIGURE OF MERIT

FIGURE 3 - DIODE CAPACITANCE

SILICON EPICAP DIODES

...designed for general frequency control and tuning applications; providing solid-state reliability in replacement of mechanical tuning methods.

- High Q with Guaranteed Minimum Values at VHF Frequencies
- Controlled and Uniform Tuning Ratio
- Available in Surface Mount Package

MAXIMUM RATINGS

		MV209	MMBV109L	
Rating	Symbol		alue	Unit
Reverse Voltage	V_{R}		30	Volts
Forward Current	${ }_{\text {I }}$		200	mA
Forward Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 280 \\ & 2.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 200 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{array}{\|c} \mathrm{mW} \\ \mathrm{~mW} / \mathrm{C} \end{array}$
Junction Temperature	TJ		+125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55	to +150	${ }^{\circ} \mathrm{C}$
DEVICE MARKING				
MMBV109L $=$ M4A				

FIGURE 1 - DIODE CAPACITANCE

ELECTRICAL CHARACTERISTICS $1 T_{A}=25^{\circ} \mathrm{C}$ unlocs otherwise noted.)

Charsecteritaic - All Types	Symbol	Min	Typ	Max	Unit
Reverse Breakdown Voltago ($I_{R}=10 \mu \mathrm{Adc}$)	$V_{(B R) R}$	30	-	-	Vde
Reverso Voltego Leaksgo Current $\left(V_{R}=25 \mathrm{Vdc}\right)$	I_{R}	-	-	0.1	$\mu \mathrm{Adc}$
Diode Capecitance Temperature Coefficient $\left(\mathrm{V}_{\mathrm{R}}=3.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	TCC	-	300	-	ppm $/{ }^{\circ} \mathrm{C}$

\cdots	C_{t}, Diode Capseitance 			$\begin{gathered} \text { Q. Figure of Merit } \\ \mathrm{V}_{\mathrm{R}}=3.0 \mathrm{Vdec} \\ \mathrm{a} 80 \mathrm{MHz} \\ \text { (Note } 1 \text {) } \end{gathered}$		
Device	Min	Nom	Max	Min	Min	Max
MMBV109L, MV209	26	29	32	200	5.0	6.5

FIGURE 2 - FIGURE OF MERIT

FIGURE 4 - DIODE CAPACITANCE

FIGURE 3 - LEAKAGE CURRENT

NOTES ON TESTING AND SPECIFICATIONS

1. \mathbf{Q} is calculated by taking the \mathbf{G} and \mathbf{C} readings of an admittance bridge, such as Boonton Electronics Model 33AS8, at the specified frequency and substituting in the following equation:

$$
Q=\frac{2 \pi f C}{G}
$$

2. C_{R} is the ratio of C_{t} meosured at 3.0 Vde divided by C_{t} measured at $\mathbf{2 5 V d c}$.

Silicon Epicap Diodes

... designed for general frequency control and tuning applications; providing solid-state reliability in replacement of mechanical tuning methods.

- High Q with Guaranteed Minimum Values at VHF Frequencies
- Controlled and Uniform Tuning Ratio
- Available in Surface Mount Package

MMBV409L MV409

VOLTAGE VARIABLE CAPACITANCE DIODES

26-32 pF

CASE 182.02, STYLE 1 (TO-226AC) MV409

CASE 318-07, STYLE 8 (TO-236AB) SOT-23 MMBV409L

	C. Diode Capacitance $\mathbf{V}_{\mathbf{R}}=\mathbf{3} \mathbf{V d c}, \mathbf{f}=\mathbf{1} \mathbf{M H z}$ pF			Q, Figure of Merit $\begin{gathered} V_{\mathbf{R}}=3 \mathrm{Vdc} \\ \mathrm{f}=50 \mathrm{MHz} \\ \text { (Note 1) } \end{gathered}$	$\begin{gathered} \mathbf{C}_{\mathbf{R}} \text {. Capacitance Ratio } \\ \mathbf{C}_{3} / \mathrm{C}_{8} \\ =1 \mathrm{MHz} \\ (\text { Note 2) } \end{gathered}$	
Device	Min	Nom	Max	Min	Min	Max
MMBV409L/MV409	26	29	32	200	1.5	1.9

NOTES ON TESTING AND SPECIFICATIONS
(1) \mathbf{Q} is calculated by taking the \mathbf{G} and C readings of an admittance bridge, such as Boonton Electronics Model 33AS8, at the specified frequency and substituting in the following equation:
$0=\frac{2 \pi+C}{G}$
(2) C_{R} is the ratio of C_{t} measured at 3 Vdc divided by C_{t} measured at 8 Vdc .

Figure 1. Diode Capacitance

Figure 3. Leakage Current

Figure 2. Figure of Merit

Figure 4. Diode Capacitance

Silicon Epicap Diode

. . . designed for FM tuning, general frequency control and tuning, or any top-of-the-line application requiring back-to-back diode configuration for minimum signal distortion and detuning. This device is supplied in the SOT-23 plastic package for high volume, pick and place assembly requirements.

- High Figure of Merit $-\mathrm{Q}=150$ (Typ) @ $\mathrm{V}_{\mathrm{R}}=2 \mathrm{Vdc}, \mathrm{f}=50 \mathrm{MHz}$
- Guaranteed Capacitance Range

MMBV432L

- Dual Diodes - Save Space and Reduce Cost
- Surface Mount Package
- Available in 8 mm Tape and Reel
- Monolithic Chip Provides Improved Matching - Guaranteed $\pm 1 \%$ (Max) Over Specified Tuning Range

DUAL

VOLTAGE-VARIABLE CAPACITANCE DIODE

MAXIMUM RATINGS (Each Diode)

Rating	Symbol	Value	Unit
Reverse Voltage	V_{R}	14	Volts
Forward Current	If	200	mA
Total Power Dissipation $\& \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{aligned} & 350 \\ & 2.8 \\ & \hline \end{aligned}$	$\underset{\mathrm{mW} / \mathrm{C}}{\mathrm{~mW}}$
Junction Temperature	TJ	+125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

DEVICE MARKING
MMBV432L $=$ M4B
ELECTRICAL CHARACTERISTICS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Reverse Breakdown Voltage $\left(I_{\mathrm{R}}=10 \mu \mathrm{Adc}\right)$	$V_{\text {(bR)R }}$	14	-	-	Vdc
Reverse Voltage Leakage Current $\left(V_{R}=9 \mathrm{Vdc}\right)$	I_{R}	-	-	100	nAdc
Diode Capacitance $\left\langle V_{R}=2 \mathrm{Vdc}, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {T }}$	43	-	48.1	pF
Capacitance Ratio C2/C8 $(f=1 \mathrm{MHz})$	C_{R}	1.5	-	2	-
Figure of Merit* $\left(\mathrm{V}_{\mathrm{R}}=2 \mathrm{Vdc}, \mathrm{f}=50 \mathrm{MHz}\right)$	0	100	150	-	-

- $\mathrm{a}=\frac{1}{2 \pi^{f} \mathrm{C}_{\mathrm{T}} \mathrm{R}_{\mathrm{S}}}$

TYPICAL CHARACTERISTICS

Figure 1. Diode Capacitance

Figure 3. Figure of Merit versus Frequency

Figure 2. Figure of Merit versus Voltage

Figure 4. Diode Capacitance versus Temperature

Figure 5. Reverse Current versus Reverse Voltage

Silicon Epicap Diode

... designed for FM tuning, general frequency control and tuning, or any top-of-the-line application requiring back-to-back diode configuration for minimum signal distortion and detuning. This device is supplied in the SOT-23 plastic package for high volume, pick and place assembly requirements.

- High Figure of Merit $-\mathrm{Q}=350$ (Typ) @ $\mathrm{V}_{\mathrm{R}}=3.0 \mathrm{Vdc}, \mathrm{f}=50 \mathrm{MHz}$
- Guaranteed Capacitance Range
- Dual Diodes - Save Space and Reduce Cost
- Surface Mount Package
- Available in 8 mm Tape and Reel
- Monolithic Chip Provides Improved Matching
- Hyper Abrupt Junction Process Provides High Tuning Ratio

DEVICE MARKING $=5 \mathrm{~L}$

MMBV609L

DUAL

VOLTAGE-VARIABLE CAPACITANCE DIODE

CASE 318-07, STYLE 9 (TO-236AB) SOT-23

MAXIMUM RATINGS (Each Diode)

Rating	Symbol	Value	Unit
Reverse Voltage ${ }^{\text {a }}$	V_{R}	20	Volts
Forward Current	IF	100	mA
Total Power Dissipation @ $T_{A}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{gathered} 225 \\ 1.8 \end{gathered}$	$\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{~mW}}$
Junction Temperature	TJ	$+125$	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Reverse Breakdown Voltage $\left(I_{R}=10 \mu \mathrm{Adc}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}}$	20	-	-	Vdc^{\prime}
Reverse Voltage Leakage Current $\left(\mathrm{V}_{\mathrm{R}}=15 \mathrm{Vdc}\right)$	I_{R}	-	-	10	nAdc
Diode Capacitance $\left(\mathrm{V}_{\mathrm{R}}=3.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{T}	26	-	32	pF
Capacitance Ratio $\mathrm{C} 3 / \mathrm{C} 8(\mathrm{f}=1.0 \mathrm{MHz})$	C_{R}	1.8	-	2.4	-
Figure of Merit $\left(\mathrm{V}_{\mathrm{R}}=3.0 \mathrm{Vdc}, \mathrm{f}=50 \mathrm{MHz}\right)$	Q	250	350	-	-

Figure 1. Diode Capacitance

Silicon Epicap Diode

... designed for 900 MHz frequency control and tuning applications; providing solidstate reliability in replacement of mechanical tuning methods.

- Controlled and Uniform Tuning Ratio
- Available in Surface Mount Package
- Available in 8 mm Tape and Reel

DEVICE MARKING: 5K
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	V_{R}	20	Volts
Forward Current	I_{F}	20	mA
Forward Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{gathered} 225^{*} \\ 1.8 \end{gathered}$	$\underset{m W / c}{m W}$
Junction Temperature	TJ	+ 125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathbf{s t g}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

$$
\text { FR5 Board } 1.0 \times 0.75 \times 0.62 \text { in. }
$$

ELECTRICAL CHARACTERISTICS ($T_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic-All Types	Symbol	Min	Typ	Max	Unit
Reverse Breakdown Voltage ($\left.\mathrm{l}_{\mathrm{R}}=10 \mu \mathrm{Adc}\right)$	$\mathrm{V}_{(\text {BRIR }}$	20	-	-	Vdc
Reverse Voltage Leakage Current $\left(\mathrm{V}_{\mathrm{R}}=15 \mathrm{Vdc}\right)$	I_{R}	-	-	50	nAdc

MMBV809L

Voltage variable CAPACITANCE DIODE 4.5-6.1 pF

	C_{1}. Diode Capacitance $V_{R}=2.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}$ pF			Q, Figure of Merit $\begin{gathered} \mathbf{V}_{\mathbf{R}}=3.0 \mathrm{Vdc} \\ \mathrm{f}=50 \mathrm{MHz} \\ \text { (Note 1) } \end{gathered}$	$\begin{gathered} \mathrm{C}_{\mathrm{R}} \text { Capacitance Ratio } \\ \mathrm{C}_{2} / \mathrm{C}_{8} \\ =1.0 \mathrm{MHz} \\ \text { (Note 2) } \end{gathered}$	
Device	Min	Typ	Max	Min	Min	Max
MMBV809L	4.5	5.3	6.1	300	1.8	2.6

NOTES ON TESTING AND SPECIFICATIONS
(1) \mathbf{Q} is calculated by taking the G and C readings of an admittance bridge, such as Boonton Electronics Model 33AS8, at the specifiod frequency and substituting in the following equation:

$$
0=\frac{2 \pi f C}{G}
$$

(2) C_{R} is the ratio of C_{t} messured at 2.0 Vdc divided by C_{t} measured at 8.0 Vdc .

Figure 1. Diode Capacitance

MOTOROLA

SEMIICONDUCTOR

 TECHNICAL DATA

SILICON EPICAP DIODES

... designed in the popular PLASTIC PACKAGE for high volume requirements of FM Radio and TV tuning and AFC, general frequency control and tuning applications; providing solid-state reliability in replacement of mechanical tuning methods.
Also available in Surface Mount package up to 33 pF .

- High Q with Guaranteed Minimum Values
- Controlled and Uniform Tuning Ratio
- Standard Capacitance Tolerance - 10\%
- Complete Typical Design Curves

MAXIMUM RATINGS

		MV2101 thru MV211	$\begin{gathered} \text { MMBV2101L } \\ \text { thru } \\ \text { MMBV2109L } \end{gathered}$	
Rating	Symbol	Value		Unit
Reverse Voltage	V_{R}	30		Volts
Forward Current	IF	200		mA
Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{array}{r} 280 \\ 2.8 \end{array}$	$\begin{aligned} & 200 \\ & 2.0 \end{aligned}$	$\underset{\mathrm{mW} / \mathrm{C}}{\mathrm{~mW}}$
Junction Temperature	TJ	+125		${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150		${ }^{\circ} \mathrm{C}$

DEVICE MARKING

[^18]

STME 8 :
PIN 1. ANODE 2. NO CONNECTION 3. CATHODE

CASE 318-07 TO-236AB SOT-23

ELECTRICAL CHARACTERISTICS T $_{A}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic - All Types	Symbol	Min	Typ	Max	Unit
Reverse Breakdown Voltage $\left(I_{R}=10 \mu \mathrm{Adc}\right)$	$V_{(B R) R}$	30	-	-	Vdc
Reverse Voltage Leakage Current $\left(\mathrm{V}_{\mathrm{R}}=25 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	IR	-	-	0.1	$\mu \mathrm{Adc}$
Diode Capacitance Temperature Coefficient $\left(\mathrm{V}_{\mathrm{f}}=4.0 \mathrm{Vdc}, f=1.0 \mathrm{MHz}\right)$	TC_{C}	-	280	-	ppm/ ${ }^{\circ} \mathrm{C}$

Device	CT, Diode Capactiance $V_{R}=4.0 \mathrm{Vdc}_{\mathrm{pF}} \mathrm{f}=1.0 \mathrm{MHz}$			Q. Figure of Merit $V_{R}=4.0 \mathrm{Vdc}$, $\mathrm{f}=50 \mathrm{MHz}$	$\begin{gathered} \text { TR, Tuning Ratio } \\ C_{2} / C_{30} \\ f=1.0 \mathrm{MHz} \end{gathered}$		
	Min	Nom	Max	Typ	Min	Typ	Max
MMBV2101L MV2101	6.1	6.8	7.5	450	2.5	2.7	3.2
MMBV2103L MV2103	9.0	10.0	11.0	400	2.5	2.9	3.2
MMBV2104L MV2104	10.8	12.0	13.2	400	2.5	2.9	3.2
MMBV2105L MV2105	13.5	15.0	16.5	400	2.5	2.9	3.2
MMBV2106L MV2106	16.2	18.0	19.8	350	2.5	2.9	3.2
MMBV2107L MV2107	19.8	22.0	24.2	350	2.5	2.9	3.2
MMBV2108L /MV2108	24.3	27.0	29.7	300	2.5	3.0	3.2
MMBV210SL /MV2109	29.7	33.0	36.3	200	2.5	3.0	3.2
MV2111	42.3	47.0	51.7	150	2.5	3.0	3.2
MV2113	61.2	68.0	74.8	150	2.6	3.0	3.3
MV2114	73.8	82.0	90.2	100	2.6	3.0	3.3
MV2115	90.0	100.0	110.0	100	2.6	3.0	3.3

PARAMETER TEST METHODS

1. $\mathrm{C}_{\text {t. }}$ DIODE CAPACItance
$\left(C_{T}=C_{C}+C_{j}\right) . C_{T}$ is measured at 1.0 MHz using a capecitance bridge (8oonton Electronics Modsl 75A or equivalent).
2. TR, TUNING RATIO

TR is the ratio of C_{T} measured at 2.0 Vdc divided by C_{T} measured at 30 Vdc .
3. Q, FIGURE OF MERIT
\mathbf{Q} is calculated by taking the \mathbf{G} and C readings of an admittance bridge at the spocified frequency and substituting in the following equations:

$$
Q=\frac{2 \pi f C}{G}
$$

(Boonton Electronics Model 33AS8). Uzo Lead Length $\approx \mathbf{1 / 1 6 "}$.
4. TCC. DIODE CAPACITANCE TEMPERATURE COEFFICIENT $T C_{C}$ is guaranteed by compering C_{T} at $V_{R}=4.0 \mathrm{Vdc}, f=1.0$ $\mathrm{MHz}, T_{A}=-65^{\circ} \mathrm{C}$ with C_{T} at $\mathrm{V}_{\mathrm{R}}=4.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{A}=$ $+85^{\circ} \mathrm{C}$ in the following equation which defines TCC:

$$
T C_{C}=\frac{C_{T}\left(+85^{\circ} \mathrm{C}\right)-C_{T}\left(-65^{\circ} \mathrm{C}\right)}{85+65} \cdot \frac{10^{6}}{C_{R}\left(25^{\circ} \mathrm{C}\right)}
$$

Accuracy limited by measurement of C_{T} to $\pm 0.1 \mathrm{pF}$.

MMBV2101L thru MMBV2109L • MV2101 thru MV2115

TYPICAL DEVICE PERFORMANCE

FIGURE 1 - DIODE CAPACITANCE varsus REVERSE VOLTAGE

FIGURE 2 - NORMALIZED DIODE CAPACITANCE versus JUNCTION TEMPERATURE

FIGURE 4 - FIGURE OF MERIT vgrsus REVERSE VOLTAGE

FIGURE 3 - REVERSE CURRENT
versus REVERSE BIAS VOLTAGE

FIGURE 5 - FIGURE OF MERIT versus FREQUENCY

MOTOROLA SEMIICONDUCTOR TECHNICAL DATA

MMBV3102L

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	V_{R}	30	Volts
Forward Current	I_{F}	200	mA
Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	200	mW
Derate above $25^{\circ} \mathrm{C}$		2.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	+125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

DEVICE MARKING

MMBV3102L $=$ M4C

MMBV3102L

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic-All Typos	Symbol	Min	Typ	Max	Unit
Reverse Breakdown Voltage $\left(I_{R}=10 \mu \mathrm{Adc}\right)$	$V(B R) R$	30	-	-	Vdc
Reverse Voltage Leakage Current $\left(\mathrm{V}_{R}=25 \mathrm{Vdc} . \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	I_{R}	-	-	0.1	μ Adc
Diode Capscitance Temperature Coefficient $\left(V_{R}=3.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	TCC	-	300	-	ppm/ ${ }^{\circ} \mathrm{C}$

	Ct, Diode Capacitance$\begin{gathered} V_{R}=3.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz} \\ \mathrm{pF} \end{gathered}$			Q, Figure of Merit $V_{R}=3.0 \mathrm{Vdc}$ $f=50 \mathrm{MHz}$	$\begin{gathered} \mathrm{C}_{\mathrm{R}} \text {. Capacitance Ratio } \\ \mathrm{C}_{3} / \mathrm{C}_{25} \\ i=1.0 \mathrm{MHz} \end{gathered}$	
Devico	Min	Nom	Max	Min	Min	Typ
MMBV3102L	20	22	25	200	4.5	4.8

FIGURE 2 - FIGURE OF MERIT

FIGURE 3 - LEAKAGE CURRENT

NOTES ON TESTING AND SPECIFICATIONS

1. LS is measured on a package having a short instead of a die, using an impedance bridge (Boonton Radio Model 250A RX Meter).
2. C_{C} is measured on a package without a die, using a capacitance bridge (Boonton Electronics Model 75A or equivalent).
3. Q is calculated by taking the G and C readings of an admittance bridge. such as Boonton Electronics Model 33AS8, at the specified frequency and substituting in the following equation:

$$
Q=\frac{2 \pi f C}{G}
$$

4. C_{R} is the ratio of C_{T} measured at 3.0 Vdc divided by C_{T} measured at 25 Vdc .

... designed primarily for VHF band switching applications but also suitable for use in general-purpose switching and attenuator circuits. Supplied in a Surface Mount package.

- Rugged PIN Structure Coupled with Wirebond Construction for Optimum Reliability
- Low Capacitance - 0.7 pF Typ at $\mathrm{V}_{\mathrm{R}}=20 \mathrm{~V}$
- Very Low Series Resistance at $100 \mathrm{MHz}-0.34$ Ohms (Typ) (a) $\mathrm{I}_{\mathrm{F}}=10 \mathrm{mAdc}$

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	V_{R}	20	Volts
Forward Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{F}	200	mW
Derate above $25^{\circ} \mathrm{C}$		2.8	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	+125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

DEVICE MARKING

MMBV3401L $=4 \mathrm{D}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Reverse Breakdown Voltage $\left(I_{\mathrm{R}}=10 \mu \mathrm{~A}\right)$	$V_{(B R) R}$	35	-	-	Volts
Diode Capacitance $V_{R}=20 \mathrm{~V}$	$\mathrm{C}_{\text {T }}$	-	-	1.0	pF
Series Resistance (Figure 5) $\left(\mathrm{IF}_{\mathrm{F}}=10 \mathrm{~mA}\right) \quad \mathrm{f}=100 \mathrm{MHz}$	R_{S}	-	-	0.7	Ohms
Reverse Leakage Current $\left(\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}\right)$	IR	-	-	0.1	$\mu \mathrm{A}$

NOTES:

1. DIMENSIONNG AND TOLERANCNG PER ANSI Y14.5M, 1982.
2. CONTROLLING DMENSION: INCH.
3. MAXMMM LEAD THCXNESS INCLUDES LEAD Finish thickness. MINMUM LEAD THICKNESS IS THE MNMUM THCOMESS OF BASE MATERLAL

STYEE 8:
PIN ANODE 2. NO CONNECHON 3. CATHODE

DIM	MLIMETERS		INCHES	
	MN	max	MiN	max
A	280	304	0.1102	0.1197
8	120	1.40	0.472	0.0551
c	089	1.11	0.0350	0045
D	037	0.50	00150	0.0200
6	1.78	2.04	00701	00807
H	0013	0.100	0.0005	00040
J	0085	0.17	0.0034	00070
K	0.45	0.50	0.0180	0.0236
1	089	1.02	0.0350	00401
s	2.10	2.50	00830	0.0884
v	0.45	0.60	0017	0.0236

FIGURE 5 - FORWARD SERIES RESISTANCE TEST METHOD

To measure series resistance, a 10 pF capacitor is used to reduce the forward capacitance of the circuit and to prevent shorting of the external power supply through the bridge. The small signal from the bridge is prevented from shorting through the power supply by the 500 ohm resistor. The resistance of the 10 pF capacitor can be considered negligible for this measurement.

1. The RF Admittance Bridge (Boonton 33A or B) must be initially balanced, with the test circuit connected to the bridge test terminals. The conductance scale will be set at zero and the cepacitance scale will be set at 120 pF , as required when using the 100 MHz test coil.
2. Use a short length of wire to short the test circuit from point " A " to " B ". Then connect the power supply providing 10 mA of bias current to the test circuit.
3. Adjust the capacitance scale arm of the bridge and the " G " zero control for a minimum null on the "null meter". The nult occurs at approximately 130 pF .
4. Replace the wire short with the device to be tested. Bias the device to a forward conductance state of 10 mA .
5. Obtain a minimum null on the "null meter", with the capacitance and conductance scale adjustment arms.
6. Read conductance (G) direct from the scale. Now read the capacitance value from the scale $(\approx \mathbf{1 3 0} \mathrm{pF}$) and subtract 120 pF which yields capacitance (C). The forward resistance (R_{S}) can now be calculated from:

$$
\mathrm{R}_{\mathrm{S}}=\frac{2.533 \mathrm{G}}{\mathrm{C}^{2}}
$$

Where:
G - in micromhos,
C-in pF.
R_{S} - in ohms

... designed primarily for VHF band switching applications but also suitable for use in general-purpose switching and attenuator circuits. Supplied in a cost effective plastic package for economical, high-volume consumer and industrial requirements.

- Long Reverse Recovery Time

$$
t_{r r}=300 \mathrm{~ns} \text { (Typ) }
$$

- Rugged PIN Structure Coupled with Wirebond Construction for Optimum Reliability
- Low Series Resistance @ 100 MHz -

$$
R_{S}=0.7 \text { Ohms (Typ) @ } I_{F}=10 \mathrm{mAdc}
$$

- Reverse Breakdown Voltage $=200 \mathrm{~V}$ (Min)

MAXIMUM RATINGS

Rating	Symbol	MPN3700	MMBV3700L	
		Value		Unit
Reverse Voltage	V_{R}	200		Volts
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 280 \\ & 2.8 \end{aligned}$	$\begin{aligned} & 200 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{mW} \\ \mathrm{~mW} / \mathrm{C} \\ \hline \end{array}$
Junction Temperature	TJ	+125		${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathbf{s t g}}$	-55 to +150		${ }^{\circ} \mathrm{C}$

DEVICE MARKING
MMBV3700L $=4 R$
ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Reverse Breakdown Voltage $\left(I_{R}=10 \mu A\right)$	$V_{(B R) R}$	200	-	-	Volts
Diode Capacitance $\left(V_{R}=20\right.$ Vdc, $\left.f=1.0 \mathrm{MHz}\right)$	$\mathbf{C}_{\mathbf{T}}$	-	-	1.0	$\mathbf{p F}$
Series Resistance (Figure 5$)$ $\left(I_{F}=10 \mathrm{~mA}\right)$	$\mathbf{R}_{\mathbf{S}}$	-	0.7	1.0	Ohms
Reverse Leakage Current $\left(V_{R}=150\right.$ Vdc)	$\mathrm{I}_{\mathbf{R}}$	-	-	0.1	$\mu \mathrm{~A}$
Reverse Recovery Time $\left(I_{F}=I_{R}=10 \mathrm{~mA}\right)$	$\mathrm{t}_{\mathbf{r r}}$	-	300	-	ns

MMBV3700L MPN3700

STME 8:
PIN I. ANOOE 2. NO CONLECTION 3. CATHODE

CASE 318-07 TO-236AB SOT-23

TYPICAL ELECTRICAL CHARACTERISTICS

FIGURE 5 - FORWARD SERIES RESISTANCE TEST METHOD

To measure series resistance, a 10 pF capacitor is used to reduce the forward capacitance of the circuit and to prevent shorting of the external power supply through the bridge. The small signal from the bridge is prevented from shorting through the power supply by the $\mathbf{5 0 0}$-ohm resistor. The resistance of the 10 pF capacitor can be considered negligible for this measurement.

1. The RF Admittance Bridge (Boonton 33A or B) must be initially balanced, with the test circuit connected to the bridge test terminals. The conductance scale will be set at zero and the capacitance scale will be set at 120 pF , as required when using the 100 MHz test coil.
2. Use a short length of wire to short the test circuit from point " A " to " B ". Then connect the power supply providing 10 mA of bias current to the test circuit.
3. Adjust the capacitance scale arm of the bridge and the " G " zero control for a minimum null on the "null meter". The null occurs at approximately 130 pF .
4. Replace the wire short with the device to be tested. Bias the device to a forward conductance state of 10 mA .
5. Obtain a minimum null on the "null meter", with the capacitance and conductance scale adjustment arms.
6. Read conductance (G) direct from the scale. Now read the capacitance value from the scale ($\sim 130 \mathrm{pF}$) and subtract 120 pF which yields capacitance (C). The forward resistance (Ris) can now be calculated from:

$$
\mathrm{R}_{\mathrm{S}}=\frac{2.533 \mathrm{G}}{\mathrm{c}^{2}}
$$

Where:
G - in micromhos.
C - in pF .
$\mathrm{R}_{\mathbf{S}}$ - in ohms

MPN3404

MAXIMUM RATINGS

Rating	Symbot '	Value	Unit
Reverse Voltage	$V_{\text {R }}$	20	Volts
Forward Power Dissipation @ $T_{A}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{F}	$\begin{aligned} & 400 \\ & 4.0 \end{aligned}$	$\underset{\operatorname{mw}}{\mathrm{mW}^{\circ} \mathrm{C}}$
Junction Temperature	TJ	+125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (TA $=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Reverse Breakdown Voltage $\left(I_{R}=10 \mu A\right)$	$V_{\text {(br) }}$	20	-	-	Volts
$\begin{aligned} & \text { Diode Capacitance } \\ & \left(V_{R}=15 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right) \end{aligned}$	$\mathrm{C}_{\text {T }}$	-	1.3	2.0	pF
Series Resistance (f igure 5) ($\left.I_{F}=10 \mathrm{~mA}\right)$	${ }^{\text {Ps }}$	-	0.7	0.85	Ohms
Reverse Leakage Current $\left(\mathrm{V}_{\mathrm{R}}=15 \mathrm{Vdc}\right)$	IR	-	-	0.1	$\mu \mathrm{A}$

notes:

1. CONTOUR OF PACCAGE BEYOND ZONE PIS uncontroued.
2. DMENSION F APPUES BETMEEN H ANOL DIMENSON D AND S APPILES BETWEEN LANO
12.70.mm (O.57 frou Seanmg Puake. LEAD DMEESSON IS UNCONTROLED IN H AND BEYOKD 12.7 Om (0.57 FROM SEATNG PLANE

OM,	M M M A A Pras		HCNES	
	N010	MMX	LSM	Hux
A	432	5.33	0.170	0.210
B	4.45	5.21	0.175	0.205
C	3.18	4.19	0.125	0.105
D	Q4)	0.56	0.016	0.022
F	0.407	0.492	0.016	0.019
G	1.77 BSC		O.OSO BSC	
H	-	1.27	-	0.050
J	2.54 BSC		0.100 BSC	
K	12.70	-	0.500	-
1	635	-	0750	-
N	2.88	2.66	0.080	0.105
P	289	-	0.195	-
R	3.43	-	0.135	-
S	0.38	0.41	0.014	0.016

CASE 182-02

TYPICAL ELECTRICAL CHARACTERISTICS

FIGURE 1 - SERIES RESISTANCE

FIGURE 3 - DIODE CAPACITANCE

FIGURE 2 - FORWARD VOLTAGE

FIGURE 4 - LEAKAGE CURRENT

FIGURE 5 - FORWARD SERIES RESISTANCE TEST METHCD

To measure series resistance, a 10 pF capacitor is used to reduce the forward capacitance of the circuit and to prevent shorting of the external power supply through the bridge. The small signal from the bridge is prevented from shorting through the power supply by the 500 -ohm resistor. The resistance of the 10 pF copacitor can be considered negligible for this measurement.

1. The RF Admittance Bridge (Boonton 33A or B) must be initially balancad, with the test circuit connected to the bridge test terminals. The conductance scale will be set at zero and the capacitance scale will be set at 120 pF , as required when using the 100 MHz test coil.
2. Use a short length of wire to short the test circuit from point " A " to " B ". Then connect the power supply providing 10 mA of bias current to the test circuit.
3. Adjust the capacitance scale arm of the bridge and the " G " zero control for a minimum null on the "null meter". The null occurs at epproximately 130 pF .
4. Replace the wire short with the device to be tested. Bias the device to a forward conductance state of 10 mA .
5. Obtain a minimum null on the "null meter", with the capacitance and conductance scale adjustment arms.
6. Read conductance (G) direct from the scale. Now read the capacitance value from the scale ($\approx 130 \mathrm{pF}$) and subtract 120 pF which yietds capacitance (C). The forward resistance ($R_{\mathbf{S}}$) can now be calculated from:

$$
R_{S}=\frac{2.533 G}{c^{2}}
$$

Where:
G - in micromhos,
C-in pF,
R_{S} - in ohms
VVCC \rightarrow

SILICON EPICAP DIODE

. . . designed for FM tuning, general frequency control and tuning, or any top-of-the-line application requiring back-to-back diode configurations for minimum signal distortion and detuning. This device is supplied in the popular TO.92 plastic package for high volume, economical requirements of consumer and industrial applications.

- High Figure of Merit -
$Q=140$ (Typ) @ $V_{R}=3.0 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{MHz}$
- Guaranteed Capacitance Range

$$
37-42 \mathrm{pF} @ V_{R}=3.0 \mathrm{Vdc}(\mathrm{MV} 104)
$$

- Dual Diodes - Save Space and Reduce Cost
- TO. 92 Package for Easy Handling and Mounting
- Monolithic Chip Provides Near Perfect Matching - Guaranteed $\pm 1 \%$ (Max) Over Specified Tuning Range.

Rating	Symbol	V atue	Unit
Reverso Voltage	V_{R}	32	Volts
Forward Current	If	200	mA
Total gower Dissipation $@_{0} T_{A}=$ $25{ }^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{0}	$\begin{aligned} & 280 \\ & 2.8 \end{aligned}$	$\underset{m W /{ }^{\circ} \mathrm{C}}{\mathrm{~mW}}$
Sunction Temperature	TJ	+125	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	-55 to +150	${ }^{\circ} \mathrm{C}$

MV104

ELECTRICAL CHARACTERISTICS (TA: $25^{\circ} \mathrm{C}$ unless otherwise noted, Each Device)

Characteristic-All Types	Symbol	Min	Typ	Max	Unit
Reverse Broakdown Voltage $\left(I_{R}=10 \mu \mathrm{Adc}\right)$	$V_{(B R) R}$	32	-	-	Voc
Reverse Voltage Leakage Curtent $\mathrm{T}_{A}=25^{\circ} \mathrm{C}$ $\left(\mathrm{V}_{\mathrm{A}}=30 \mathrm{Vdc}\right)$ $\mathrm{T}_{\mathrm{A}}=60^{\circ} \mathrm{C}$	IR	$\begin{aligned} & - \\ & - \end{aligned}$	-	$\begin{gathered} 50 \\ 500 \end{gathered}$	nAdc
Diode Capacitance Temperature Coefficient $\left(\mathrm{V}_{\mathrm{R}}=4.0 \mathrm{Vdc}, \mathrm{I}=1.0 \mathrm{MHz}\right)$	TC_{C}	-	280	-	ppm $/{ }^{\circ} \mathrm{C}$

	C_{T}. Diode Capacitanco $V_{R}=3.0 \mathrm{Vdc}, f=1.0 \mathrm{MHz}$ pF		$\begin{aligned} & \text { Q. Figure of Merit } \\ & V_{R}=3.0 \mathrm{Vde} \\ & \mathrm{f}=100 \mathrm{MHz} \end{aligned}$		$\begin{gathered} \text { CR. Capacitanco Ratio }^{C_{3} / C_{30}} \\ f=1.0 \mathrm{MHz} \end{gathered}$	
Device	Min	Max	Min	Typ	Min	Max
MV104	37	42	100	140	2.5	2.8

TYPICAL CHARACTERISTICS (Each Device)

FIGURE 2 - FIGURE OF MERIT versus VOLTAGE

FIGURE 4 - DIODE CAPACITANCE versus TEMPERATURE

FIGURE 3 - FIGURE OF MERIT versus FREQUENCY

FIGURE 5-REVERSE CURRENT versus REVERSE VOLTAGE

Tuning Diodes

SILICON HYPER-ABRUPT TUNING DIODES

. . . designed with high capacitance and a capacitance change of greater than TEN TIMES for a bias change from 2 to 10 volts. Provides tuning over broad frequency ranges; tunes AM radio broadcast band, general AFC and tuning applications in lower RF frequencies.

- High Capacitance: 120-550 pF
- Large Capacitance Change with Small Bias Change
- Guaranteed High O
- Available in Standard Axial Glass Packages
- H Suffix Devices with 100\% Screening

HIGH TUNING RATIO VOLTAGE-VARIABLE CAPACITANCE DIODES

```
120-650 pF 12 VOLTS
```


100\% SCREENING FOR HIGH RELIABILITY

MV1401H, MV1403H, MV1404H, MV1405H are screened with the following tests:

Internal Visual Inspection
per 12M53957B (MIL-STD-750 METHOD 2073 PARAGRAPH 3.3
AND METHOD 2074 PARAGRAPH 3.1.3)
High Temperature Storage
$\mathrm{T}_{\mathrm{A}}=200^{\circ} \mathrm{C}, \mathrm{t} \geqslant 48$ hours
Thermal Shock (Temperature Cycling)
MIL-STD-202, Method 107. Condition C except 10 cycles
continuously performed
\boldsymbol{t} (extremes) $=\mathbf{1 5}$ minutes
Constant Acceleration
MIL-STD-750, Method 2006
20,000 G's (Y1 axis only)
Hermetic Seal
MIL-STD-750, Method 1071
Fine Leak - Condition G
Gross Leak - Condition D

Electrical Test

I_{R} and C_{T}
High Temperature Reverse Blas
$T_{A}=120^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}, \mathrm{t} \geqslant 96$ hours
$V_{R}=80 \%$ of $V_{(B R) R}$ MIN
Lower temperature till $T_{A}=30 \pm 5^{\circ} \mathrm{C}$.
Maintain this temperature prior to removal of Reverse Bias Voltage. Perform Electrical Test within $\mathbf{2 4}$ hours following bias removal.
Electrical Test I_{R} and C_{T}

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage	$\mathrm{V}_{\mathbf{R}}$	12	Volts
Forward Current	I_{F}	250	mA
Device Dissipation @ $\mathrm{T}_{\mathbf{A}}=25^{\circ} \mathrm{C}$	P_{D}	400	mW
Derate above $25^{\circ} \mathrm{C}$		2.67	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	+175	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathbf{S t g}}$	-65 to +200	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ untess otherwise noted)

Characteristic - All Types	Symbol	Min	Typ	Max	Unit
Reverse Breakdown Voltage $\left(I_{R}=10 \mu \mathrm{Adc}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}}$	12	-	-	Vdc
Leakage Current at Reverse Voltage $\left(V_{R}=10\right.$ Vdc, $\left.\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	I_{R}	-	-	0.10	$\mu \mathrm{Adc}$
Series Inductance $\left(f=250 \mathrm{MHz}\right.$, Lead Length $\left.\approx 1 / 16^{\prime \prime}\right)$	LS	-	5.0	-	nH
Case Capscitance $\left(f=1.0 \mathrm{MHz}\right.$, Lead Length $\left.\approx 1 / 16^{\prime \prime}\right)$	C_{C}	-	0.25	-	pF

	$\mathrm{C}_{\text {T, }}$ Diode Capacitance						Q. Figure of Merit	TR, Tuning Ratio	
	$\begin{gathered} V_{\mathrm{R}}=1.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz} \\ \mathrm{pF} \end{gathered}$			$\mathrm{V}_{\mathrm{R}}=2.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}$			$\begin{gathered} V_{R}=2.0 \mathrm{Vdc}, \\ f=1.0 \mathrm{MHz} \end{gathered}$	$\begin{gathered} C_{1} / C_{10} \\ f=1.0 \mathrm{MHz} \end{gathered}$	$\begin{gathered} \mathrm{C}_{2} / \mathrm{C}_{10} \\ \mathrm{f}=1.0 \mathrm{MHz} \end{gathered}$
Device	Min	Nom	Max	Min	Nom	Max	Min	Min	Min
MV1401, H	468	550	633	-	-	-	200	14	-
MV1403. H	-	-	-	140	175	210	200	-	10
MV1404, H	-	-	-	96	120	144	200	-	10
MV1405, H	-	-	-	200	250	300	200	-	10

PARAMETER TEST METHODS

1. Ls. SERIES INDUCTANCE
L_{S} is measured on a shorted package at 250 MHz using an impedence bridge (Boonton Radio Model 250A RX Meter).
2. CC. CASE CAPACITANCE
C_{C} is measured on an open package at 1.0 MHz using a capacitance bridge (Boonton Electronics Model 75A or equivalent).
3. Ст, DIODE CAPACITANCE
$\left(C_{T}=C_{C}+C_{j}\right) C_{T}$ is measured at 1.0 MHz using a capacitance bridge (Boonton Electronics Model 75A or equivalent).
4. TR, TUNING RATIO

TR is the ratio of C_{T} measured at $2.0 \mathrm{Vdc}(1.0 \mathrm{Vdc}$ for MV1401) divided by C_{T} measured at 10 Vdc .
5. Q. FIGURE OF MERIT
\mathbf{Q} is catculated by taking the \mathbf{G} and \mathbf{C} readings of an admittance bridge at the specified frequency and substituting in the following equation:

$$
Q=\frac{2 \pi \mathrm{fC}}{G}
$$

FIGURE 1 - DIODE CAPACITANCE versus REVERSE VOLTAGE

(Boonton Electronics Model 33AS8). Use Lead Length $\approx 1 / 16^{\circ}$.

Silicon Epicap Diodes

... epitaxial passivated tuning diodes designed for AFC applications in radio, TV, and general electronic-tuning.

- Maximum Working Voltage of 20 V
- Excellent \mathbf{Q} Factor at High Frequencies
- Solid-State Reliability to Replace Mechanical Tuning Methods

VOLTAGE-VARIANCE CAPACITANCE DIODES 6.8-100 pF 20 VOLTS

MAXIMUM RATINGS ($^{2} \mathrm{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Rating	Unit
Reverse Voltage	V_{R}	20	Volts
Forward Current	I_{F}	250	mA
Device Dissipation $(11$ Derate above $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}{ }^{\circ} \mathrm{C}$	400	mW
Junction Temperature		2.67	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	T_{J}	+175	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic - All Types	Symbol	Min	Typ	Max	Unit
Reverse Breakdown Voltage ($\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{Adc}$)	$V_{\text {(BR)R }}$	20	-	-	Vdc
Reverse Voltage Leakage Current ($\mathrm{V}_{\mathrm{R}}=15 \mathrm{Vdc}$)	I_{R}	-	-	0.1	$\mu \mathrm{Adc}$
Series inductance ($f=250 \mathrm{MHz}$, lead length $\approx 1 / 16^{\text { }}$)	Ls	-	4.0	-	nH
Case Capacitance ($\mathrm{f}=1.0 \mathrm{MHz}$, lead length $\approx 1 / 16^{\prime \prime}$)	C_{C}	-	0.17	-	pF

Device	C_{T}, Diode Capacitance $\mathbf{V}_{\mathbf{R}}=\mathbf{4 . 0} \mathrm{Vdc}, \mathrm{f}=\mathbf{1 . 0} \mathbf{~ M H z}$ pF			$\begin{aligned} & \text { Q, Figure of Merit } \\ & V_{R}=4.0 \mathrm{Vdc}, \\ & f=50 \mathrm{MHz} \end{aligned}$	TR, Tuning Ratio $\mathrm{C}_{2} / \mathrm{C}_{20}$ $\mathrm{f}=1.0 \mathrm{MHz}$	
	Min	Nom	Max	Min	Min	Max
MV1620	6.1	6.8	7.5	300	2.0	3.2
MV1624	9.0	10.0	11.0	300	2.0	3.2
MV1626	10.8	12.0	13.2	300	2.0	3.2
MV1628	13.5	15.0	16.5	250	2.0	3.2
MV1630	16.2	18.0	19.8	250	2.0	3.2
MV1634	19.8	22.0	24.2	250	2.0	3.2
MV1636	24.3	27.0	29.7	200	2.0	3.2
MV1638	29.7	33.0	36.3	200	2.0	3.2
MV1640	35.1	39.0	42.9	200	2.0	3.2
MV1642	42.3	47.0	51.7	200	2.0	3.2
MV1644	50.4	56.0	61.6	150	2.0	3.2
MV1648	73.8	82.0	90.2	150	2.0	3.2
MV1650	90.0	100.0	110.0	150	2.0	3.2

TR. Tuning Ratio, is the ratio of C_{T} measured at 2.0 Vdc divided by C_{T} measured at 20 Vdc .

MOTOROLA

SEMICONDUCTOR TECHNICAL DATA

Silicon Epicap Diodes

MV7005T1 MV7005T3

... designed for high-capacitance, high-tuning ratio applications.

- Guaranteed Capacitance Range
- Surface Mount Package
- Available in 12 mm Tape and Reel
- Hyper Abrupt Junction Process Provides High Tuning Ratio
- T1 is Tape and Reel 7", 1000 Units
- T3 is Tape and Reel $13^{\prime \prime}, 4000$ Units

DEVICE MARKING $=$ V7005
MAXIMUM RATINGS (Each Diode)

Rating	Symbol	Value	Unit
Reverse Voltage	V_{R}	15	Volts
Forward Current	I_{F}	50	mA
Total Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	280	mW
Junction Temperature	TJ_{J}	+125	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +125	${ }^{\circ} \mathrm{C}$

HIGH CAPACITANCE VOLTAGE-VARIABLE DIODES

CASE 318E-04, STYLE 2 SOT-223

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Reverse Breakdown Voltage $\left(I_{R}=10 \mu \mathrm{Adc}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{R}}$	15	-	Vdc
Reverse Voltage Leakage Current $\left(\mathrm{V}_{\mathrm{R}}=9.0\right.$ Vdc)	I_{R}	-	100	nAdc
Diode Capacitance $\left(\mathrm{V}_{\mathrm{R}}=1.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{T}	400	520	pF
Capacitance Ratio $\mathrm{C} 1 / \mathrm{C9}$ $(\mathrm{f}=1.0 \mathrm{MHz})$	C_{R}	12	-	-
Figure of Merit $\left(\mathrm{V}_{\mathrm{R}}=1.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	Q	150	-	-

MV7005T1, MV7005T3

Figure 1. Diode Capacitance versus Reverse Voltage

Figure 2. Diode Capacitance versus Ambient Temperature

Figure 3. Figure of Merit

SILICON TUNING DIODE

... designed for electronic tuning of AM receivers and high capacitance, high tuning ratio applications.

- High Capacitance Ratio - $\mathrm{C}_{\mathrm{R}}=\mathbf{1 5}$ (Min). MVAM 108, 115, 125
- Guaranteed Diode Capacitance - $\mathrm{C}_{\mathrm{t}}=440 \mathrm{pF}(\mathrm{Min})$ -

560 pF (Max) @ $\mathrm{V}_{\mathrm{R}}=1.0 \mathrm{Vdc} . \mathrm{f}=1.0 \mathrm{MHz}$.
MVAM108, MVAM115, MVAM125

- Guaranteed Figure of Merit -
$Q=150(\mathrm{Min}) @ V_{R}=1.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}$.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Reverse Voltage MVAM108 MVAM109 MVAM115 MVAM125	$V_{\text {R }}$	$\begin{aligned} & 12 \\ & 15 \\ & 18 \\ & 28 \end{aligned}$	Volts
Forward Current	${ }^{\prime}$	50	mA
Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate Above $\mathbf{2 5}{ }^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 280 \\ & 2.8 \end{aligned}$	$\begin{gathered} m W \\ m W /{ }^{\circ} \mathrm{C} \end{gathered}$
Operating and Storage Junction Temperature Range	\mathbf{T} J. $\mathbf{T}_{\mathbf{s t g}}$	-55 to +125	${ }^{\circ} \mathrm{C}$

TUNING DIODES
WITH VERY HIGH
CAPACITANCE RATIO

STVE t:

- PIN 1. ANODE 2 CATHOOE

D0M	M Munclatis.		Diches	
	Mend	MAX	Im	Max
A	4.32	5.33	0.170	0.210
B	4.45	5.21	0.175	0.205
C	3.18	4.19	0.125	0.165
D	0.41	0.56	0.015	0.02
F	0.407	0.482	0.015	0.019
6	1.27 BSC		0.050 OSC	
H	-	1.27	$=$	0.050
J	$254 B S C$		Q 100 BSC	
K	12.70	-	0.500	-
1	6.35	-	0.650	-
N	2.0	2.66	0.00	0.105
P	289	-	0.115	-
8	143	-	0.135	-
5	0.38	0.49	0.024	0.018

CASE 182-02

MVAM108, MVAM109, MVAM115, MVAM125
ELECTRICAL CHARACTERISTICS $\boldsymbol{T}_{\mathbf{A},}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ unless otherwise noted, Each Device)

Characteristic - All Types		Symbol	Min	Typ	Max	Unit
Breakdown Voltage $\left(I_{R}=10 \mu \mathrm{Adc}\right)$	MVAM108 MVAM109 MVAM115 MVAM125	$V_{(B R) R}$	$\begin{aligned} & 12 \\ & 15 \\ & 18 \\ & 28 \end{aligned}$	-	- - -	Vdc
Reverse Current $\begin{aligned} & \left(\mathrm{V}_{\mathrm{R}}=8.0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{R}}=9.0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{R}}=15 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\mathrm{R}}=25 \mathrm{~V}\right) \end{aligned}$	MVAM108 MVAM109 MVAM115 MVAM125	$\mathbf{I R}_{\mathbf{R}}$	-	-	$\begin{aligned} & 100 \\ & 100 \\ & 100 \\ & 100 \end{aligned}$	nAdc
Diode Capacitance Temperature Coefficient (1) $\left(V_{R}=1.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}\right.$ to $+85^{\circ}$)		TC_{C}	-	435	-	ppm $/{ }^{\circ} \mathrm{C}$
Case Capacitance$\left(f=1.0 \mathrm{MHz}\right.$, Lead Length $1 / 16^{\prime \prime}$)		C_{C}	-	0.18	-	pF
Diode Capacitance (2) $\left(\mathrm{V}_{\mathrm{R}}=1.0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$ MVAM108, 115,125 MVAM109		c_{1}	$\begin{aligned} & 440 \\ & 400 \end{aligned}$	$\begin{aligned} & 500 \\ & 460 \end{aligned}$	$\begin{aligned} & 560 \\ & 520 \end{aligned}$	pF
Figure of Merit ($f=1.0 \mathrm{MHz}$, Lead Length $1 / 16^{n}, \mathrm{~V}_{\mathrm{R}}=1.0 \mathrm{Vdc}$)		0	150	-	-	-
Capacitance Ratio (f $=1.0 \mathrm{MHz}$)	MVAM108 MVAM109 MVAM115 MVAM125	$\begin{aligned} & \mathrm{C} 1 / \mathrm{CB} \\ & \mathrm{C} 1 / \mathrm{C} 9 \\ & \mathrm{C} 1 / \mathrm{C} 15 \\ & \mathrm{C} 1 / \mathrm{C} 25 \end{aligned}$	$\begin{aligned} & 15 \\ & 12 \\ & 15 \\ & 15 \end{aligned}$	-	-	-

Notes:
(1) The effect of increasing temperature $1.0^{\circ} \mathrm{C}$. at any operating point, is equivalent to lowering the effective tuning voltage 1.25 mV . The percent change of capacitance per ${ }^{\circ} \mathrm{C}$ is nearly constant from $-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$.
(2) Upon request, diodes are available in matched sets. All diodes in a set can be matched for capacitance to $\mathbf{3 \%}$ or $\mathbf{2 . 0} \mathrm{pF}$ (whichever is greater) at all points along the specified tuning range.

MVAM108
Figure 2. Capacitance versus Reverse Voltage

MVAM115
Figure 4. Capacitance versus Reverse Voltage

MVAM109
Figure 3. Capacitance versus Reverse Voltage

MVAM 125
Figure 5. Capacitance versus Reverse Voltage

Volume II

Technical Information

APPLICATIONS INFORMATION

AN211A Field Effect Transistors in Theory and Practice. 7.6
AN215A RF Small-Signal Design Using Two-Part Parameters 7-17
AN267 Matching Network Designs with Computer Solutions 7-29
AN282A Systemizing RF Power Amplifier Design 7-40
AN419 UHF Amplifier Design Using Data Sheet Design Curves 7-44
AN548A Microstrip Design Techniques for UHF Amplifiers 7-51
AN551 Tuning Diode Design Techniques $7-56$
AN555 Mounting Stripline-Opposed-Emitter (SOE)
Transistors. 7-65
AN593 Broadband Linear Power Amplifiers Using Push-Pull Transistors. $7-71$
AN721 Impedance Matching Networks Applied to RF Power Transistors 7-82
AN749 Broadband Transformers and Power Combining Techniques for RF 7.98
AN758 A Two-Stage 1 kW Solid-State Linear Amplifier 7-107
AN762 Linear Amplifiers for Mobile Operation 7-122
AN779 Low-Distribution 1.6 to 30 MHz SSB Driver Designs. 7-131
AN790 Thermal Rating of RF Power Transistors 7-139
AN791 A Simplified Approach to VHF Power Amplifier Design 7-147
AN793 A 15 Watt AM Aircraft Transmitter Power Amplifier Using Low-Cost Plastic Transistors. 7-157
AN860 Power MOSFETs versus Bipolar Transistors. $7 \cdot 165$
AN878 VHF MOS Power Applications $7 \cdot 170$
AN923 800 MHz Test Fixture Design 7-174
AN938 Mounting Techniques for PowerMacro Transistor 7-180
AN955 A Cost Effective VHF Amplifier for Land Mobile Radios 7-186
AN1020 A High-Performance Video Amplifier for High Resolution CRT Applications.AN1021 A Hybrid Video Amplifier for High ResolutionCRT Applications7-194
AN1022 Mechanical and Thermal Considerations in Using RF Linear Hybrid Amplifiers 7-198
AN1023 Mounting Techniques for RF Hermetic Packages 7-202
AN1024 RF Linear Hybrid Amplifiers 7-204
AN1025 Reliability Considerations in Design and Use of RF Integrated Circuits 7-208
AN1026 Extending the Range of an Intermodulation Distortion Test 7.214
AN1027 Reliability/Performance Aspects of CATV Amplifier Design $7-215$
AN1028 35/50 Watt Broadband ($160-240 \mathrm{MHz}$) Push-Pull TV Amplifier Band III 7.222

AN1029	TV Transposers Band IV and V, $P_{0}=.5 \mathrm{~W} / 1.0 \mathrm{~W} \ldots . .$	-
AN1030	1 W/2 W Broadband TV Amplifier	
	Band IV a	7-238
AN1032	How Load VSWR Affects Non-L	
	Circuits	-246
AN1033	Match Impedances in Microwave Amplifiers	-249
AN1034	Three Balun Designs for Push-Pull Amplifiers	7-255
AN1037	Solid-State Power Amplifier 300 Watt, FM.	
AN1038	$1.2 \mathrm{~V}, 40-900 \mathrm{MHz}$ Broadband Amplifier with the TP3400 Transistor.	7-264
AN1039	$\begin{gathered} 470-860 \mathrm{MHz} \text { - Broadband Amplifier - } \\ 5 \mathrm{~W} \end{gathered}$	7-270
AN1040	Mounting Considerations for Power Semiconductors	7-275
AN1041	Mounting Procedures for Very High Power RF Transistors.	7-295
AR141	Applying Power MOSFETs in Class D/E RF Power Amplifier Design	7-296
AR164	Good RF Construction Practices and Techniques	22
AR165S	RF Power MOSFETs	7-305
AR176	New MOSFETs Simplify High Power RF Amplifier Design	7-309
AR305	Building Push-Puil, Multioctave, VHF Power Amplifiers	-315
AR313	Wideband RF Power Amplifier	1
EB8	How to Apply the MHW709/MHW710 UHF Power Modules.	$7 \cdot 326$
EB19	Controlled - Q RF Technology - What it Means, How li's Done	7-329
EB27A	Get 300 Watts PEP Linear Across 2 to 30 MHz from this Push-Pull Amplifier	7.331
EB29	The Common Emitter TO-39 and Its Advantages	7-335
EB37	Amplifier Gains 10 dB Over Nine Octaves	7-337
EB38	Measuring the Intermodulation Disortion of Linear Amplifiers.	7-339
EB63	140 W (PEP) Amateur Radio Linear Amplifier 2-30 MHz	7.342
EB74	A 10 Watt, 225-400 MHz Amplifier MRF331	7-348
EB77	A 60-Watt, 225-400 MHz Amplifier 2N6439.	7-352
E889	A 1-Watt, 2.3 GHz Ampllitier	7-356
EB90	Low-Cost VHF Amplifier Has Broadband Performance	7-360
EB93	60 Watt VHF Amplifier Uses Splitting/ Combining Techniques.	7-366
EB104	Get 600 Watts RF from Four Power FETs	7-371
EB105	A 30 Watt, 800 MHz Amplifier Design	-379
EB107	Mounting Considerations for Motorola RF Power Modules.	7-383
EB109	Low Cost UHF Device Gives Broadband Performance at 3.0 Watts Output.	7-386

RF TRANSISTOR DESIGN

Class C Power

The primary concern of the RF transistor designer is meeting the requirements for output power, gain, and ruggedness at the specified frequency and supply voltage.

Most RF applications typically require 12.5 or 28 volt operation of a power device in a mobile transmitter, base station, or avionics application. This choice dictates the epitaxial layer resistivity. Low resistivity, about $1 \mathrm{ohm} / \mathrm{cm}$, is used for mobile devices, while 28 V base station and avionics devices are usually built using epi with $2 \mathrm{ohm} / \mathrm{cm}$ resistivity. Epi resistivity controls collector breakdown voltage, since the resistivity value determines the maximum possible breakdown voltage. Typically, a particular device rarely achieves this bulk breakdown value because of junction curvature and surface effects. When high voltages are present in an amplifier, high breakdown voltages are needed if the transistor is to survive. High voltage breakdowns are usually obtained by such added features as collector depletion rings, or by a high voltage diffusion surrounding the relatively shallow RF base diffusion. Voltages in excess of 150 volts are easily obtained this way.

Output power is determined primarily by the "electrical size" of the chip. Two common methods of sizing are emitter diffusion periphery and base diffusion area. Emitter periphery sizing is based on the premise that there is some optimum current which should be injected for each mil of emitter periphery. The base area sizing is based on an optimum power density. Both of these techniques are oversimplifications which make it impossible to apply them to widely varying device geometries and applications. Motorola uses a different method of sizing based on each geometry's Current Factor. Current Factor values are obtained by considering both emitter periphery effects and power density. Proper weighting of both factors makes this technique of sizing widely applicable. No matter what sizing technique is chosen, the end result is that greater power-handling capability requires larger chips. Small-signal devices, with only a few milliwatts of output power, and large devices with 100. watts output, range from current factors of only 1 to nearly 2000.

An alternative approach to high output power is to use several smaller chips in parallel. Unless extreme care is taken, this approach can result in unequal current and power sharing. Single large chips are
also susceptible to this sharing problem unless specific steps are taken to ensure even current distribution. The primary method of handling this problem is by the use of well-designed emitter resistor layouts. The lowest value of emitter resistance on a chip is chosen to prevent thermal runaway up to the highest temperatures the device may encounter, possibly up to $300^{\circ} \mathrm{C}$ during output impedance mismatch conditions. An appropriate matrix of emitter resistance values is constructed so that the overall current distribution among the many parallel emitter sites results in an even thermal distribution. Verification of thermal balance is obtained by precise infrared microscope measurements across the entire chip.

The thermal balance of larger chips is also improved considerably by "cell spreading." In this techique the base diffusion area is broken up into smaller areas, or cells, and each cell is sufficiently removed from those adjacent to eliminate thermal interaction. The net effect is to achieve lower thermal resistance. This is exceedingly important in large devices where high power dissipation levels can cause excessive junction temperature when thermal resistance is not minimized. Some symptoms of excessively high temperature operation are low efficiency, power slump, and, frequently, total device failure.

The overall ruggedness of a transistor is enhanced by many techniques. All of them are aimed at preventing two things: junction breakdown due to excessive voltages and failure due to hot-spotting. Here again, epitaxial layer resistivity and thickness are used to alter breakdown voltages and saturated output power. Thermal balancing by base cell spreading and using emitter resistors also has a strong effect on ruggedness. These techniques are commonly referred to as collector and emitter ballasting. Ballasting of either type can improve ruggedness for a fixed geometry size (current factor), but there is a definite trade-off with gain. Usually increasing ruggedness requires decreasing gain unless one is willing to pay the penalty of the cost of larger die.

Large die can also adversely affect gain, since it is a practical fact that gain decreases by 2 dB for each doubling in current factor. To offset this gain decrease, the designer has another technique available-increase the packing denisty within the chip. The most common method of measuring packing density is with the figure of merit obtained
from the ratio of emitter periphery (E_{p}) to base. area (B_{A}) of the chip. Higher $\mathrm{E}_{\mathrm{p}} / \mathrm{B}_{\mathrm{A}}$ ratios result in higher gain. Typically, $\mathrm{Ep}_{\mathrm{p}} \mathrm{B}_{\mathrm{A}}$ ratios are as shown in the table.

Ep/BA	FREQUENCY	GEOMETRY TYPE
$0.5-1.5$ $1.5-3.5$	$3-30 \mathrm{MHz}$	VHF
$3.5-4.5$	UHF	Interdigitated Interdigitated or Spine (Overlay) Spine (Overlay) or Mesh (Network) Mesh
$5.5-6.5$	$800-900 \mathrm{MHz}$	

Higher Ep/BA ratios generally mean greater processing, difficulties. These difficulties are somewhat offset by the choice of geometry type. Fundamentally, the interdigitated geometry requires narrow spacing between emitter and base fingers and narrow finger widths. The maximum $\mathrm{Ep}_{\mathrm{p}} / \mathrm{BA}_{\mathrm{A}}$ ratio obtainable with an interdigitated structure of uniform spacing " S " is given by

$$
\left(E_{P} / B_{A}\right) M A X=\frac{0.45}{S}
$$

Spacings of 0.08 mil are the minimum easily obtainable with current technology, giving a maximum figure of merit of 5.6. Actual devices with this spacing are usually about 4.5. Building a large power device using this geometry calls for a great many narrow metallization fingers.

Enlargement of this "interdigitated" geometry shows emitter resistors that have been added to balance the current throughout the chip.

This approach increases the probability of a metallization defect linking adjoining fingers and
enhances failures due to metal migration. The spine or mesh geometries used for higher figure of merit do not completely relieve the tight spacing requirements. In both cases, tight metal spacing is relieved while diffusion spacings are not. For example, 4.5 is the maximum E_{P} / B_{A} ratio for a 0.1 mil spacing with an interdigitated device. Motorola's family of UHF power devices MRF641 (15 watt), MRF644 (25 watt), MRF646 (45 watt), and MRF648 (60 watt) are constructed using a split mesh (adjoining emitter fingers are not interconnected). All four devices have an E_{P} / B_{A} ratio of 4 and are built with a 0.1 mil spacing between adjacent emitter and P+ diffusion areas. Similar tight spacing is required in the mesh geometry used for the $800-900 \mathrm{MHz} 7,20,30$, and 40 watt devices. Here the spacing is reduced to 0.06 mil, using a mesh geometry. Without tight spacing of emitter to P+ such as these devices have, high $\mathrm{E}_{\mathrm{p}} / \mathrm{B}_{\mathrm{A}}$ ratios will not produce good gain. The introduction of the $P+$ is required to maintain full utilization of all elements of the emitter periphery. Introducing undulations in the shape of the emitter to increase the periphery without a closely spaced $\mathrm{P}+$ will cause some elements of the periphery to be debiased due to uneven base voltage drops.

The metal migration failure rate as measured by MTBF (Mean Time Before Failure) depends on current density, metallization cross-sectional area, and activation energy. Activation energy may be varied by the choice of metallization with gold and aluminum being the two most common choices. Motorola uses gold metallization for both avionics and 28 volt base station devices where continuous operation is anticipated. Mobile devices are usually constructed of aluminum. In either case, devices are designed for a minimum of 10 years MTBF.

Linear Power

Linear operation is usually accomplished by building the same type of transistor structure as used in Class C operation. The major difference is the linearity requirements force the use of devices with larger current factors. They are also usually fabricated with slightly lower collector resistivity. The combination of these factors allows the device to maintain good linearity with high power output levels. Motorola has led the industry with its family of SSB large-chip transistors, MRF421, MRF422, MRF428. These chips are large, 140×250 mils, and have Current Factors approaching 2000. The higher voltage devices are built using a combination of both depletion rings and deep $\mathrm{P}+$ high voltage diffusions. All feature thermal ballasting through emitter resistor matrices.

Overlay Structure. Individual emitter cell blocks are diffused into a common base region. Emitter interconnection runs are made over a passivating silicon dioxide layer, reducing the need for critically thin interdigitated metal fingers.

Network Emitter Structure. This structure maximizes emitter periphery to base area ratio but pays for it with increased production difficulty and increased contact resistance.

Motorola employs a thin nichrome barrier (not shown) between the silicon and the aluminum metalization in most network emitter and overlay devices to prevent aluminum metal migration thus improving long-term reliability.

Small Signal

Small-signal devices are constructed from the same types of geometries as used for power devices except on a much smaller scale of Current Factor. The small geometries do not suffer from the gain reduction due to size, allowing the use of lower E_{p} / B_{A} ratios for equivalent gain.

Quite commonly, small-signal transistors are not only required to have a minimum gain, but also a minimum f_{t}. This parameter is a measure of the total emitter-to-collector transit time. As the collector current is increased, the value of f_{t} increases initially, peaks, and then finally decreases. The peak value is determined by the base and emitter region transit times. This parameter is controlled by both the base junction depth and the emitter doping species. Using conventional diffusion processes with a single base and emitter diffusion, maximum achievable f_{t} for NPN transistors is about $3-4 \mathrm{GHz}$ without severely degrading the normally desirable dc characteristics, namely $B V_{\text {CEO }}$ and $h_{F E}$.

The logical solution is to use arsenic as the emitter dopant species. Arsenic has an advantage over the more commonly used phosphorus diffusion source. The concentration dependent diffusivity of arsenic causes a very abrupt emitter profile. The increased profile gradient reduces the storage of free carriers in the emitter space charge layer, reducing the layer transit time, and increasing f_{t}. Unfortunately, arsenic diffusion technology is difficult at best.

The simplest method for using arsenic as a dopant species is to implant it. Motorola has recently introduced transistors with implanted arsenic emitters. These devices have typical f_{t} of 8 GHz without sacrificing dc characteristics.

A family of low noise devices has also been fabricated using similar processes. Low noise figure (NF) places additional requirements on both f_{t}, the doping density of the base under the emitter, and the emitter diffusion width. Through special controlled processing, excellent NF values are obtained in the 1 to 2 GHz region. This performance requires high f_{t}, low base spreading resistance, and 0.05 mil wide arsenic implanted emitters.

FIELD EFFECT TRANSISTORS IN THEORY AND PRACTICE

INTRODUCTION

There are two types of field-effect transistors, the Junction Field-Effect Transistor (JFET) and the "MetalOxide Semiconductor" Field-Effect Transistor (MOSFET), or Insulated-Gate Field-Effect Transistor (IGFET). The principles on which these devices operate (current controlled by an electric field) are very similar - the primary difference being in the methods by which the control element is made. This difference, however, results in a considerable difference in device characteristics and necessitates variances in circuit design, which are discussed in this note.

JUNCTION FIELD-EFFECT TRANSISTOR (JFET)

In its simplest form the junction field-effect transistor starts with nothing more than a bar of doped silicon that behaves as a resistor (Figure 1a). By convention, the terminal into which current is injected is called the source terminal, since, as far as the FET is concerned, current originates from this terminal. The other terminal is called the drain terminal. Current flow between source and drain is related to the drain-source voltage by the resistance of the intervening material. In Figure 1b, p-type regions have been diffused into the n-type substrate of Figure la leaving an n-type channel between the source and drain. (A complementary p-type device is made by reversing all of the material types.) These p-type regions will be used to control the current flow between the source and the drain and are thus called gate regions.

As with any $\mathrm{p}-\mathrm{n}$ junction, a depletion region surrounds the $p-n$ junctions when the junctions are reverse biased (Figure 1c). As the reverse voltage is increased, the depletion regions spread into the channel until they meet, creating an almost infinite resistance between the source and the drain.

If an external voltage is applied between source and drain (Figure 1d) with zero gate voltage, drain current flow in the channel sets up a reverse bias along the surface of the gate, parallel to the channel. As the drain-source voltage increases, the depletion regions again spread into the channel because of the voltage drop in the channel which reverse biases the junctions. As $V_{D S}$ is increased, the depletion regions grow until they meet, whereby any further
increase in voltage is counterbalanced by an increase in the depletion region toward the drain. There is an effective increase in channel resistance that prevents any further increase in drain current. The drain-source voltage that causes this current limiting condition is called the "pinchoff" voltage (V_{p}). A further increase in drain-source voltage produces only a slight increase in drain current.

The variation in drain current (I_{D}) with drain-source voltage (V_{DS}) at zero gate-source voltage $\left(\mathrm{V}_{\mathrm{GS}}\right)$ is shown in Figure 2a. In the low-current region, the drain current is linearly related to VDS. As ID increases, the "channel" begins to deplete and the slope of the I_{D} curve decreases. When the $V_{D S}$ is equal to V_{p}, I_{D} "saturates" and stays relatively constant until drain-to-gate avalanche, V_{BR} (DSS) is reached. If a reverse voltage is applied to the gates, channel pinch-off occurs at a lower I_{D} level (Figure 2b) because the depletion region spread caused by the reverse-

biased gates adds to that produced by $V_{\text {DS }}$. Thus reducing the maximum current for any value of V_{DS}.

Due to the difficulty of diffusing impurities into both sides of a semiconductor wafer, a single ended geometry is normally used instead of the two-sided structure discussed above. Diffusion for this geometry (Figure 3) is from one side only. The substrate is of p-type material onto which an n-type channel is grown epitaxially. A p-type gate is then diffused into the n-type epitaxial channel. Contact metalization completes the structure.

The substrate, which functions as Gate 2 of Figure 1, is of relatively low resistivity material to maximize gain. For the same purpose, Gate 1 is of very low resistivity material, allowing the depletion region to spread mostly into the n-type channel. In most cases the gates are internally connected together. A tetrode device can be realized by not making this internal connection.

MOS FIELD-EFFECT TRANSISTORS (MOSFET)

The metal-oxide-semiconductor (MOSFET) operates with a slightly different control mechanism than the JFET. Figure 4 shows the development. The substrate may be high resistivity p-type material, as for the 2 N 4351 . This time two separate low-resistivity n-type regions (source and drain) are diffused into the substrate as shown in Figure 4b. Next, the surface of the structure is covered with an insulating oxide layer and a nitride layer. The oxide layer serves as a protective coating for the FET surface and to insulate the channel from the gate. However the oxide is subject to contamination by sodium ions which are found in varying quantities in all environments. Such contamination results in long term instability and changes in device characteristics. Silicon nitride is impervious to sodium ions and thus is used to shield the oxide layer from contamination. Holes are cut into the oxide and nitride layers allowing metallic contact to the source and drain. Then, the gate metal area is overlayed on the insulation, covering the entire channel region and, simultaneously, metal contacts to the drain and source are made as shown in Figure 4 d . The contact to the metal area covering the channel is the gate terminal. Note that there is no physical penetration of the metal through the oxide and nitride into the substrate. Since the drain and source are isolated by the substrate, any drain-to-source current in the absence of gate voltage is extremely low because the structure is analogous to two diodes connected back to back.

The metal area of the gate forms a capacitor with the insulating layers and the semiconductor channel. The metal
area is the top plate; the substrate material and channel are the bottom plate.

For the structure of Figure 4, consider a positive gate potential (see Figure 5). Positive charges at the metal side of the metal-oxide capacitor induce a corresponding negative charge at the semiconductor side. As the positive charge at the gate is increased, the negative charge "induced" in the semiconductor increases until the region beneath the oxide effectively becomes an n-type semiconductor region, and current can flow between drain and source through the "induced" channel. In other words, drain current flow is "enhanced" by the gate potential. Thus drain current flow can be modulated by the gate voltage; i.e. the channel resistance is directly related to the gate voltage. The n-channel structure may be changed to a pchannel device by reversing the material types.

An equivalent circuit for the MOSFET is shown in Figure 6. Here, $\mathrm{C}_{\mathrm{g}(\mathrm{ch})}$ is the distributed gate-to-channel

FIGURE 3 - Junction FET with Single-Ended Geometry

FIGURE 4 - Development of Enhancement-Mode N-Channel MOSFET

FIGURE 5 - Channel Enhancement. Application of Positive Gate Voltage Causes Redistribution of Minority Carriers in the Substrate and Results in the Formation of a Conductive Channel Between Source and Drain
capacitance representing the nitride-oxide capacitance. C_{gs} is the gate-source capacitance of the metal gate area overlapping the source, while C_{gd} is the gate-drain capacitance of the metal gate area overlapping the drain. C_{d} (sub) and C_{S} (sub) are junction capacitances from drain to substrate and source to substrate. Y_{fs} is the transadmittance between drain current and gate-source voltage. The modulated channel resistance is $\mathrm{r}_{\mathrm{ds}} . \mathrm{R}_{\mathrm{D}}$ and R_{S} are the bulk resistances of the drain and source.

The input resistance of the MOSFET is exceptionally high because the gate behaves as a capacitor with very low leakage ($\mathrm{r}_{\mathrm{in}} \approx 10^{14} \Omega$). The output impedance is a function of r_{ds} (which is related to the gate voltage) and the drain and source bulk resistances (R_{D} and R_{S}).

To turn the MOSFET "on", the gate-channel capacitance, $\mathrm{C}_{\mathrm{g}}(\mathrm{ch})$, and the Miller capacitance, C_{gd}, must be charged. In turning "on", the drain-substrate capacitance, $\mathrm{C}_{\mathrm{d}(\mathrm{sub})}$, must be discharged. The resistance of the substrate determines the peak discharge current for this capacitance.

The FET just described is called an enhancement-type MOSFET. A depletion-type MOSFET can be made in the following manner: Starting with the basic structure of Figure 4, a moderate resistivity n-channel is diffused between the source and drain so that drain current can flow when the gate potential is at zero volts (Figure 7). In this manner, the MOSFET can be made to exhibit depletion characteristics. For positive gate voltages, the structure enhances in the same manner as the device of Figure 4. With negative gate voltage, the enhancement process is reversed and the channel begins to deplete of carriers as seen in Figure 8. As with the JFET, drain-current flow depletes the channel area nearest the drain first.

The structure of Figure 7, therefore, is both a depletionmode and an enhancement-mode device.

MODES OF OPERATION

There are two basic modes of operation of FET's - depletion and enhancement. Depletion mode, as previously mentioned, refers to the decrease of carriers in the channel due to variation in gate voltage. Enhancement mode refers to the increase of carriers in the channel due to application of gate voltage. A third type of FET that can operate in both the depletion and the enhancement modes has also been described.
The basic differences between these modes can most easily be understood by examining the transfer characteristics of Figure 9. The depletion-mode device has considerable drain-current flow for zero gate voltage. Drain current is reduced by applying a reverse voltage to the gate terminal. The depletion-type FET is not characterized with forward gate voltage.

The depletion/enhancement mode type device also has considerable drain current with zero gate voltage. This type device is defined in the forward region and may have usable forward characteristics for quite large gate voltages. Notice that for the junction FET, drain current may be enhanced by forward gate voltage only until the gate-
source p-n junction becomes forward biased.
The third type of FET operates only in the enhancement mode. This FET has extremely low drain current flow for zero gate-source voltage. Drain current conduction occurs for a V_{GS} greater than some threshold value, $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$. For gate voltages greater than the threshold, the transfer characteristics are similar to the depletion/ enhancement mode FET.

FIGURE 6 - Equivalent Circuit of EnhancementMode MOSFET

FIGURE 7 - Depletion Mode MOSFET Structure. This Type of Device may be Designed to Operate in Both the Enhancement and Depletion Modes

FIGURE 8 - Channel Depletion Phenomenon. Application of Negative Gate Voltage Causes Redistribution of Minority Carriers in Diffused Channel and Reduces Effective Channel Thickness. This Results in Increased Channel Resistance

AN211A

FIGURE 9 - Transfer Characteristics and Associated Scope Traces for the Three FET Types

ELECTRICAL CHARACTERISTICS

Because the basic mode of operation for field-effect devices differs greatly from that of conventional junction transistors, the terminology and specifications are necessarily different. An understanding of FET terminology and characteristics are necessary to evaluate their comparative merits from data-sheet specifications.

Static Characteristics

Static characteristics define the operation of an active device under the influence of applied dc operating conditions. Of primary interest are those specifications that indicate the effect of a control signal on the output current. The $\mathrm{V}_{\mathrm{GS}}{ }^{-\mathrm{I}} \mathrm{D}$ transfer characteristics curves are illustrated in Figure 9 for the three types of FETs. Figure 10 lists the data-sheet specifications normally employed to describe these curves, as well as the test circuits that yield the indicated specifications.

Of additional interest is the special case of tetrodeconnected devices in which the two gates are separately
accessible for the application of a control signal. The pertinent specifications for a junction tetrode are those which define drain-current cutoff when one of the gates is connected to the source and the bias voltage is applied to the second gate. These are usually specified as V_{G} IS (off), Gate 1 - source cutoff voltage (with Gate 2 connected to source), and $\mathrm{V}_{\mathrm{G} 2 \mathrm{~S} \text { (off) }}$, Gate 2 - source cutoff voltage (with Gate 1 connected to source). The gate voltage required for drain current cutoff with one of the gates con- triode-connected case where both gates are tied together.
Reach-through voltage is another specification uniquely applicable to tetrode-connected devices. This defines the amount of difference voltage that may be applied to the two gates before the depletion region of one spreads into the junction of the other - causing an increase in gate current to some small specified value. Obviously, reachthrough is an undesirable condition since it causes a decrease in input resistance as a result of an increased gate current, and large amounts of reach-through current can destroy the FET.

Gate Leakage Current

Of interest to circuit designers is the input resistance of an active component. For FETs, this characteristic is specified in the form of IGSS - the reverse-bias gate-tosource current with the drain shorted to the source (Figure 11). As might be expected, because the leakage current across a reverse-biased $p-n$ junction (in the case of a JFET) and across a capacitor (in the case of a MOSFET) is very small, the input resistance is extremely high. At a temperature of $25^{\circ} \mathrm{C}$, the JFET input resistance is hundreds of megohms while that of a MOSFET is even greater. For junction devices, however, input resistance may decrease by several orders of magnitude as temperature is raised to $150^{\circ} \mathrm{C}$. Such devices, therefore, have gate-leakage current specified at two temperatures. Insulated-gate FETs are not drasticaily affected by temperature, and their input resistance remains extremely high even at elevated temperatures.

Gate leakage current may also be specified as IGDO (leakage between gate and drain with the source open), or as IGSO (leakage between gate and source with the drain open). These usually result in lower values of leakage current and do not represent worst-case conditions. The IGSS specification, therefore, is usually preferred by the user.

Voltage Breakdown

A variety of specifications can be used to indicate the maximum voltage that may be applied to various elements of a FET. Among those in common use are the following:

$$
\begin{aligned}
\mathrm{V}_{(\mathrm{BR}) \mathrm{GSS}}= & \text { Gate-to-source breakdown voltage } \\
\mathrm{V}_{(B R) D G O}= & \text { Drain-to-gate breakdown voltage } \\
\mathrm{V}_{(\mathrm{BR})} \mathrm{DSX} & =\text { Drain-to-source breakdown voltage } \\
& \text { (normally used only for MOSFETs) }
\end{aligned}
$$

In addition, there may be ratings and specifications indicating the maximum voltages that may be applied between the individual gates and the drain and source (for tetrodeconnected devices). Obviously, not all of these specifications are found on every data sheet since some of them provide the same information in somewhat different form. By understanding the various breakdown mechanisms, however, the reader should be able to interpret the intent of each specification and rating. For example:

In junction FETs, the maximum voltage that may be applied between any two terminals is the lowest voltage that will lead to breakdown or avalanche of the gate junction. To measure V(BR)GSS (Figure 12a), an increasingly higher reverse voltage is applied between the gate and the source. Junction breakdown is indicated by an increase in gate current (beyond IGSS) which signals the beginning of avalanche.

Some reflection will reveal that for junction FETs, the $V_{(B R) D G O}$ specification really provides the same information as $V_{(B R) G S S}$. For this measurement, an increasing voltage is applied between drain and gate. When this applied voltage becomes high enough, the drain-gate junction will go into avalanche, indicated either by a significant increase in drain current or by an increase in gate current
(beyond IDGO). For both $\mathrm{V}_{(B R) D G O}$ and $\mathrm{V}_{(\mathrm{BR}) \mathrm{GSS}}$ specifications, breakdown should normally occur at the same voltage value.

From Figure 2 it is seen that avalanche occurs at a lower value of VDS when the gate is reverse biased than for the zero-bias condition. This is caused by the fact that the reverse-bias gate voltage adds to the drain voltage, thereby increasing the effective voltage across the junction. The maximum amount of drain-source voltage that may be applied $V_{D S}(\max)$ is, therefore, equal to $\mathrm{V}_{(B R) D G O}$ minus V_{GS}, which indicates avalanche with reverse bias gate voltage applied.

For MOSFETs, the breakdown mechanism is somewhat different. Consider, for example, the enhancement-mode structure of Figure 5. Here, the gate is completely insulated from the drain, source, and channel by an oxide-nitride layer. The breakdown voltage between the gate and any of the other elements, therefore, is dependent on the thickness and purity of this insulating layer, and represents the voltage that will physically puncture the layer. Consequently, the voltage must be specified separately.

The drain-to-source breakdown is a different matter. For enhancement mode devices, with the gate connected to the source (the cutoff condition) and the substrate floating, there is no effective channel between drain and source and the applied drain-source voltage appears across two opposed series diodes, represented by the source-to-substrate and substrate-to-drain junctions. Drain current remains at a very low level (picoamperes) as drain voltage is increased until the drain voltage reaches a value that causes reverse (avalanche) breakdown of the diodes. This particular condition, represented by $V_{(B R) D S S}$, is indicated by an increase in ID above the IDSS level, as shown in Figure 12b.

For depletion/enhancement mode devices, the $V_{(B R) D S S}$ symbol is sometimes replaced by $V_{(B R)}$ DSX. Note that the principal difference between the two symbols is the replacement of the last subscript s with the subscript x. Whereas the s normally indicates that the gate is shorted to the source, the x indicates that the gate is biased to cutoff or beyond. To achieve cutoff in these devices, a depleting bias voltage must be applied to the gate, Figure 12b.

An important static characteristic for switching FETs is the "on" drain-source voltage VDS(on). This characteristic for the MOSFETs is a function of $V_{G S}$, and resembles the $\mathrm{V}_{\mathrm{CE}}(\mathrm{sat})$ versus I_{B} characteristics of junction transistors. The curve for these characteristics can be used as a design guide to determine the minimum gate voltage necessary to achieve a specified output logic level.

Dynamic Characteristics

Unlike the static characteristics, the dynamic characteristics of field-effect transistors apply equally to all FETs. The conditions and presentation of the dynamic characteristics, however, depend largely upon the intended application. For example, the following table indicates the dynamic characteristics needed to adequately describe

FIGURE 10 - Static Charactaristies for the Three FET Types are Defined by, the Above Curves, Tables, and Test Circuits

FIGURE 11 - Test Circult for Leakege Current

Figure 12a $-V_{(B R)}$ ess Tent Cireuit

TYPE C

TYPE B

FIGURE 12b- $V_{\text {(BR)DSS }}$ and $V_{\text {(BR) }}$ DSX Test Circuit (Usually Used for MOSFET: Only).

Audio	RF-IF	Switching	Chopper
$y_{10}(1 \mathrm{kHz})$	$y_{11}(1 \mathrm{kHz})$		
$\mathrm{C}_{\text {in }}$	$\mathrm{C}_{\text {int }}$	$\mathrm{C}_{\text {in }}$	$\mathrm{C}_{\text {in }}$
C_{m}	$\mathrm{C}_{\text {me }}$	C_{m}	$\mathrm{C}_{\text {ru }}$
$y_{01}(1 \mathrm{kHz})$	GP	$\mathrm{Cd}_{\text {(ub) }}$	$\mathrm{Cd}_{(1, b)}$
NF	Re(y_{4}) (HF)	$\mathrm{P}_{\text {ditm) }}$	$\mathrm{ram}_{\text {(m) }}$
	$\mathrm{Re}\left(\mathrm{y}_{01}\right)$ (MF)	$t_{\text {dil }}, t_{\text {d }}$	
	NF	$t_{\text {, }}, t_{1}$	

a FET for various applications.
$\mathrm{yfs}_{\mathrm{f}}$ The forward transadmittance is a key dynamic characteristic for fieldeffect transistors. It serves as a basic design parameter in audio and rf circuits and is a widely accepted figure of merit for devices.

Because field-effect transistors have many characteristics similar to those of vacuum tubes, and because many engineers still are more comfortable with tube parameters, the symbol gm used for tube transconductance is often specified instead of $y \mathrm{fs}$. To further confuse things, the " g " school also uses a variety of subscripts. In addition to gm , some data sheets show gfs while otherseven showg21-

Regardless of the symbol used, yfs defines the relation between an input signal voltage and an output signal current:

$$
\mathrm{yfs}_{\mathrm{fs}}=\Delta \mathrm{I}_{\mathrm{D}} /\left.\Delta \mathrm{V}_{\mathrm{GS}}\right|_{\mathrm{V}_{\mathrm{DS}}=\mathrm{K}}
$$

The unit is the mho - current divided by voltage. Figure 13 is a typical yfs test circuit for a junction FET.

As a characteristic of all field-effect devices, yfs is specified at 1 kHz with a V_{DS} the same as that for which ID(on) or IDSS is characterized. Since yfs has both real and imaginary components, but is dominated by the real component at low frequency, the 1 kHz characteristic is given as an absolute magnitude and indicated as lyfsl.

It is interesting to note that yfs varies considerably with ID due to nonlinearity in the $I_{D}-V_{G S}$ characteristics. This variation, for a typical n-channel, JFET is illustrated in Figure 14. Obviously, the operating point must be carefully selected to provide the desired yfs and signal swing.

For tetrode-connected FETs, three yfs measurements are usually specified on data-sheet tables. One of these, with the two gates tied together, provides a yfs value for the condition where a signal is applied to both gates simultaneously; the others provide the yfs for the two gates individually. Generally, with the two gates tied together, yfs is higher and more gain may be realized in a given circuit. Because of the increased capacitance, however, gain-bandwidth product is much lower.

For If field-effect transistors, an additional value of yfs is sometimes specified at or near the highest frequency of operation. This value should also be measured at the same voltage conditions as those used for I D (on) or IDSS. Because of the importance of the imaginary component at radio frequencies, the high-frequency y fs specification should be a complex representation, and should be given
either in the specifications table or by means of curves showing typical variations, as in Figure 15 for the MPF102 JFET.

The real portion of this high-frequency $\mathrm{yfs}, \operatorname{Re}(\mathrm{yfs})$ or G_{21}, is usually considered a significant figure of merit.
Yos Another FET parameter that offers a direct vacuum tube analogy is $y_{o s}$, the output admittance:

$$
y_{\mathrm{OS}}=\Delta \mathrm{I}_{\mathrm{D}} /\left.\Delta \mathrm{V}_{\mathrm{DS}}\right|_{\mathrm{V}_{\mathrm{GS}}=\mathrm{K}}
$$

In this case, the analogous tube parameter is r_{p}-i.c., $y_{o s}=1 / r_{p}$. For depletion mode devices, $y_{o s}$ is measured with gate and source grounded (see Figure 16). For enhancement mode units, it is measured at some specified V_{GS} that permits substantial drain-current flow.

As with yfs, many expressions are used for yos. In

FIGURE 13 - Typleal yfs Test Circuit

FIGURE 14 - Forward Transfer Admittance versus
Drain Current for Typical JFETs
addition to the obvious parallels such as y 22 , gos, and g22, it is also sometimes specified as r_{d}, where $r_{d}=1 / y_{o s}$.

Voltages and frequencies for measuring yos should be exactly the same as those for measuring yfs. Like yfs, it is a complex number and should be specified as a magnitude at 1 kHz and in complex form at high frequencies.
$\mu \quad$ Closely related to yos and y_{fs} is the amplification factor, μ :

$$
\mu=\Delta \mathrm{V}_{\mathrm{DS}} /\left.\Delta \mathrm{V}_{\mathrm{GS}}\right|_{\mathrm{I}_{\mathrm{D}}=\mathrm{K}}
$$

The amplification factor does not appear on the fieldeffect transistor registration format but can be calculated as $y_{\mathrm{fs}} / \mathrm{y}_{\mathrm{os}}$. For most small-signal applications, μ has little circuit significance. It does, however, serve as a general

FIGURE 15 - Forward Transfer Admittance versus Frequency

indication of the quality of the field-effect manufacturing process.
$\mathrm{C}_{\text {iss }}$ The common-source-circuit input capacitance, $\mathrm{C}_{\text {iss }}$, takes the place of $y_{\text {is }}$ in low-frequency field-effect transistors. This is because $y_{\text {is }}$ is entirely capacitive at low frequencies. $\mathrm{C}_{\text {iss }}$ is conveniently measured in the circuit of Figure 17 for the tetrode JFET. As with yfs, two measurements are necessary for tetrode-connected devices.

At very high frequencies, the real component of $y_{\text {is }}$ becomes important so that rf field-effect transistors should have y is specified as a complex number at the same conditions as other high-frequency parameters. For tetrodeconnected rf FETs, reading of both Gate 2 to source and Gate 1 tied to Gate 2 are necessary.

In switching applications $\mathrm{C}_{\text {iss }}$ is of major importance since a large voltage swing at the gate must appear across $\mathrm{C}_{\text {iss }}$. Thus, $\mathrm{C}_{\text {iss }}$ must be charged by the input voltage before turn-on effectively begins.
Crss Reverse transfer admittance (y_{rs}) does not appear on FET data sheets. Instead $\mathrm{C}_{\text {rss }}$, the reverse transfer capacitance, is specified at low frequency. Since $y_{r s}$ for a fieldeffect transistor remains almost completely capacitive and relatively constant over the entire usable FET frequency spectrum, the low-frequency capacitance is an adequate specification. $\mathrm{C}_{\text {ISs }}$ is measured by the circuit of Figure 18. For tetrode FETs, values should be specified for Gate 1 and for both gates tied together.

FIGURE 16 - Yos Measurement Circult for Depletion FETs.

FIGURE 17 - Ciss Measurement Circuit

Again, for switching applications $\mathrm{C}_{\text {rss }}$ is a critical characteristic. Similar to the C_{ob} of a junction transistor, $\mathrm{C}_{\text {rss }}$ must be charged and discharged during the switching interval. For a chopper application, $\mathrm{C}_{\text {rss }}$ is the feedthrough capacitance for the chopper drive.
$\mathrm{C}_{\mathrm{d} \text { (sub) }}$ For the MOSFET, the drain-substrate junction capacitance becomes an important characteristic affecting the switching behavior. $\mathrm{C}_{\mathrm{d}(\mathrm{sub})}$ appears in parallel with the load in a switching circuit and must be charged and discharged between the two logic levels during the switching interval.

Noise Figure (NF) Like all other active components, fieldeffect transistors generate a certain amount of noise. The noise figure for fieldeffect transistors is normally specified on the data sheet as "spot noise", referring to the noise at a particular frequency. The noise figure will vary with frequency and also with the resistance at the input of the device. Typical graphs of such variations are illustrated in Figure 19 for the 2N5458. From graphs of this kind the designer can anticipate the noise level inherent in his design.
$\mathbf{r d s}_{\mathbf{d}}(\mathrm{on})$. Channel resistance describes the bulk resistance of the channel in series with the drain and source. From an applications standpoint, it is important primarily for switching and chopper circuits since it affects the switching speed and determines the output level. To complete the confusion of multiple symbols for FET parameters, channel resistance is sometimes indicated as $\mathrm{rd}(\mathrm{on})$ and also as rDS and r_{ds}. In either case, however, it is measured, for JFETs, by tying the gates to the source, setting all terminals equal to 0 Vdc , and applying an ac voltage from drain to source (see Figure 20). The magnitude of the ac voltage should be kept low so that there will be no pinchoff in the channel. Insulated-gate FETs may be measured with dc gate bias in the enhancement mode.

APPLICATIONS

Device Selection

Obviously, different applications call for special emphasis on specific characteristics so that a simple figure of merit that compares devices for all potential uses would be hard to formulate. Nevertheless, an attempt to pinpoint the characteristics that are most significant for various applications has been made* to permit a rapid, first-order evaluation of competitive devices.

The most important single FET parameter, one that applies for any amplifier application, is $y \mathrm{fs}$. This parameter, or one of its many variations, is specified on most data

[^19]

FIGURE 18 - Recommended Crisi Test Círult

FIGURE 19 - Typical Variations of FET Noise Flgure with Frequency and Source Resistance

FIGURE 20 - Cireult for Measuring JFET Channel Resistance
sheets, yet some evaluation is required to come up with a reasonable comparison. For example, in the table of electrical characteristics on most JFET data sheets, $y \mathrm{fs}$ is specified at IDSS ($V_{G S}=0$) where, for JFETs devices, $\mathrm{yfs}_{\mathrm{s}}$ is maximum. This is illustrated in Figure 14, where typical variations of $\mathrm{yfs}_{\mathrm{f}}$ as a function of ID_{D} are plotted. For some small-signal applications, the IDSS $\left(\mathrm{V}_{\mathrm{GS}}=0\right)$ point can actually be used as a dc operating point because small-signal excursions into the forward bias region will not actually cause the gate-source junction to become forward-biased. However, in most practical uses, some bias is necessary to allow for the anticipated signal swing; and it must be recognized the $y f s$ goes down as the bias is increased.

It is seen, also, that maximum yfs increases as IDSS increases so that, where maximum $\mathrm{yfs}_{\mathrm{f}}$ is important, a device with a high IDSS specification is normally desirable.

On the other hand, where power dissipation is a factor to be considered, the figure of merit $\mathrm{yfs}_{\mathrm{S}} / \mathrm{V}_{\mathrm{GS}}$ (off) $I_{D S S}$ has been proposed. This term factors in not only IDSS, which should be low if power dissipation is to be low, but also $V_{G S}$ (off), which indicates maximum input voltage swing. Since the signal peaks are represented by $\mathrm{V}_{\mathrm{GS}}=$ V_{GS} (off) and $\mathrm{V}_{\mathrm{GS}}=0$, the lower V_{GS} (off), the higher the figure of merit. And, for amplifier applications requiring a large signal swing, $\mathrm{V}_{(\mathrm{BR}) \mathrm{GSS}} / \mathrm{V}_{\mathrm{GS}}$ (off) (assuming that $\mathrm{VGS}_{\mathrm{GS}}$ (off) is the "pinch-off" voltage) is a satisfactory merit figure because it indicates the ratio of maximum and minimum drain voltages.

For high-frequency circuits, the input capacitance ($\mathrm{C}_{\mathrm{iss}}$)

FIGURE 21 - RF Stage of Broadcast Auto Radio
and the Miller-effect capacitance ($\mathrm{C}_{\mathrm{rss}}$) become important, so $\mathrm{yfs}_{\mathrm{f}} /\left(\mathrm{C}_{\mathrm{iss}}+\mathrm{C}_{\mathrm{rss}}\right)$ indicates a relative measure of device performance. For switching and chopper circuits, a figure of merit is not of ten useful. Here the magnitudes of $\mathrm{C}_{\text {iss }}$, $\mathrm{C}_{\mathrm{rss}}, \mathrm{C}_{\mathrm{d}(\mathrm{sub})}$ and r_{ds} are of primary interest.

Circuits

The types of circuits that can utilize FETs are practically unlimited. In fact, many circuits designed to utilize smallsignal pentode tubes can utilize FETs with only minor modifications. For example, the circuit in Figure 21 shows a typical if stage for a broadcast-band auto radio. In this circuit, a MPF 102 n-channel JFET has replaced the 12BL6 pentode normally employed. The specifications for the two devices, including the AGC characteristics, are similar enough to perform adequately in the circuit of Figure 21.

In an audio application, a field-effect transistor such as the 2 N 5460 can be combined with a high voltage bipolar transistor to make a simple line-operated phonograph amplifier such as that shown in Figure 22. The ceramic pickup is connected through a potentiometer volume control to the field-effect transistor. Collector current of the transistor, in turn, is set by the potentiometer in the source of the FET. With the proper bipolar output transistor, the circuit can be driven directly from the rectified line voltage, while the low voltage for the FET can be derived from a voltage divider in the power supply line.

Figure 23 shows three basic chopper circuits. The advantage of the more complex series-shunt circuit (24c) is that it balances out the leakage currents of the FETs in order to reduce voltage error and is used to attain high chopping frequencies. From an applications standpoint, the FET circuit is superior to a junction transistor circuit in that there is no offset voltage with the FET turned on. On the minus side, however, the fieldeffect-transistor chopper generally has a higher series resistance ($\mathrm{rds}(\mathrm{on})$) than the junction transistor.

As newer and better FETs are introduced and as a larger number of designers learn to use them, the range of applications of FETs should broaden considerably.

With its high input impedance, the field-effect transistor will play an important role in input circuitry for instrumentation and audio applications where low-impedance junction transistors have generally been least successful.

Figure 23 - FET Chopper Circuits

[^20]
RF SMALL SIGNAL DESIGN USING TWO-PORT PARAMETERS

Prepared by:
 Roy Hejhall

INTRODUCTION

Design of the solid-state, small-signal RF amplifier using two-port parameters is a systematic, mathematical procedure, with an exact solution (free from approximation) available for the complete design problem. The only sources of error in the final design are parameter variations resulting from transistor parameter distributions and strays in the physical circuit. Parameter distributions result from limits in measurement and random variations among identically designed transistors.

The purpose of this paper is to provide, in a single working reference, the important relationships necessary for the complete solution of the RF small-signal design problem using two-port parameters.

The major portion of the report presents design equations in terms of admittance parameters. A section on design with scattering parameters is also included.

This paper is based on work by Linvilll 1 , Stern ${ }^{2}$, and others. Those who may wish to consider the derivations of some of the expressions should refer to the bibliography.

This report assumes that the reader is familiar with the two-port parameter method of describing a linear active network. Several references are available on this subject. $1,2,6,8,11,12$

It has also been assumed that a suitable transistor or other active device for the task at hand has been selected, and that two-port parameters are available for the frequency and bias point which will be used. Device selection will not be covered as a separate topic in this report; rather, a thorough understanding of the material in the report should provide the designer with the tools he needs to select transistors for a particular small-signal application.

The equations given in the text of this report are applicable to the common-emitter, common-base, or common-collector configuration, if the applicable set of parameters (common-emitter, common-base, or commoncollector parameters) is used. Equations for the conversion of the admittance or hybrid parameters of any configuration to either of the other two configurations of the same parameter set are given in the appendix.

While directed primarily toward circuit design with conventional bipolar transistors, two-port network theory has the advantage of being applicable to any linear active network (LAN). The same design approach and equations may therefore be used with field effect transistors 7,9 , integrated circuits 10 , or any other device which may be
described as a linear active two-port network.
Finally, various parameter interrelationships and other data are given in the Appendix.

GENERAL DESIGN CONSIDERATIONS

Design of the RF small-signal tuned amplifier is usually based on a requirement for a specified power gain at a given frequency. Other design goals may include bandwidth, stability, input-output isolation, and low noise performance. After a basic circuit type is selected, the applicable design equations can be solved.

Circuits may be categorized according to feedback (neutralization, unilateralization, or no feedback), and matching at transistor terminals (circuit admittances either matched or mismatched to transistor input and output admittances). Each of these circuit categories will be discussed, including the applicable design equations and the considerations leading to the selection of a particular configuration.

STABILITY

A major factor in the overall design is the potential stability of the transistor. This may be determined by computing the Linvill stability factor ${ }^{1} \mathrm{C}$ using the following expression: \dagger

$$
\begin{equation*}
c=\frac{\left|y_{12} y_{21}\right|}{2 \varepsilon_{11} \mathbb{E}_{22}-\text { Re }\left(y_{12} y_{21}\right)} \tag{1}
\end{equation*}
$$

When C is less than 1 , the transistor is unconditionally stable. When \mathbf{C} is greater than 1, the transistor is potentially unstable.

The C factor is a test for stability under a hypothetical worst case condition; that is, with both input and output transistor terminals open circuited. With no external feedback, an unconditionally stable transistor will not oscillate with any combination of source and load. If a transistor is potentially unstable, certain source and load combinations will produce oscillations.

Although the C factor may be used to determine the potential stability of a transistor, the conditions of open circuited source and load which are assumed in the C factor test are not applicable to a practical amplifier.
$\dagger \operatorname{Re}\left(\mathrm{Y}_{12} \mathrm{Y}_{21}\right)=$ Real part of $\left(\mathrm{Y}_{12} \mathrm{Y}_{21}\right)$

Consequently it is also desirable to compute the relative stability of actual amplifier circuits, and Stern ${ }^{2}$ has defined a stability factor k for this purpose. The k factor is similar to the \mathbf{C} factor except that it also takes into account finite source and load admittances connected to the transistor. The expression for k is:

$$
\begin{equation*}
k=\frac{2\left(g_{11} \cdot G_{s}\right)\left(\varepsilon_{22} \cdot G_{L}\right)}{\left|y_{12} y_{21}\right| \cdot R_{e}\left(y_{12} y_{21}\right)} \tag{2}
\end{equation*}
$$

If k is greater than one, the circuit will be stable. If k is less than one, the circuit will be potentially unstable and will very likely oscillate at some frequency.

Note that the C factor simply predicts potential stability of a transistor with an open circuited source and load, while the k factor provides a stability computation for a specific circuit.

Stability considerations will be discussed further in the descriptions of each basic circuit type to follow.

GENERAL DESIGN EQUATIONS

There are a number of design equations which are applicable to most types of amplifiers. These equations will be discussed first. Descriptions of specific amplifier types will then follow, and each will contain additional design equations applicable to that particular amplifier.

POWER GAIN

The general expression for power gain is:

$$
G * \frac{\left|y_{21}\right|^{2} \operatorname{Re}\left(Y_{\mathrm{L}}\right)}{\left|Y_{\mathrm{L}}+y_{22}\right|^{2} \operatorname{Re}\left(y_{11}-\frac{y_{12} y_{21}}{y_{22} \cdot Y_{L}}\right)}
$$

Equation 3 applies to circuits with no external feedback. It can also be used with circuits which have external feedback if the composite y parameters of both the fransistor and the feedback network are substituted for the transistor y parameters in the equation. The composite y parameters are determined by considering the transistor and the feedback network to be two "black boxes" in parallel:

For example, the above combination of transistor and
feedback network may be characterized as a single "black box" by the following equations: \dagger

$$
\begin{align*}
& y_{11 c}=y_{11 t}+y_{11 t} \\
& y_{12 c}=y_{12 t}+y_{12 t} \tag{4}\\
& y_{21 c}=y_{21 t}+y_{214} \\
& y_{22 c}=y_{22 t}=y_{22 t}
\end{align*}
$$

Where:
$y_{11 c}, y_{12 c}, y_{21 c}, y_{22}$ are the composite y parameters of the parallel combination of transistor and feedback network.
$y_{11}, y_{12 t} y_{21 t} y_{22 t}$ are the y parameters of the transistor.
$y_{11 f} y_{12 f}, y_{21 f}, y_{22 f}$ are the y parameters of the feedback network.
Note that, since this approach treats the transistor and feedback network combination as a single "black box" with $y_{11 c}, y_{12 c}, y_{21 c}$, and $y_{22} c$ as its y parameters, the composite y parameters may therefore be substituted in any of the design equations applicable to a linear, active two-port analysis.

The neutralized and unilateralized amplifiers are special cases of this general concept, and equations associated with those special cases will be given later.

Equation 3 provides a solution for power gain of the linear active network (transistor) only. Input and output networks are considered to be part of the source and load, respectively. Two important points should therefore be kept in mind:
(1) Power gain computed from equation 3 will not take into account network losses. Input network loss reduces power delivered to the transistor. Power lost in the output network is computed as useful power output, since the load admittance Y_{L} is the combination of the output network and its load.
(2) Power gain is independent of source admittance. An input mismatch results in less input power being delivered to the transistor. Accordingly, note that equation 3 does not contain the term Y_{s}.
The power gain of a transistor together with its associated input and output networks may be computed by measuring the input and output network losses, and subtracting them from the power gain computed with equation 3.

In some cases it may be desirable to include the effects of input matching in power gain computations. A convenient term is transducer gain GT, defined as output power delivered to a load by the transistor, divided by the

[^21]maximum input power available from the source.
The equation for transducer gain is:
$$
G_{T}=\frac{4 \operatorname{Re}\left(Y_{z}\right) \operatorname{Re}\left(Y_{L}\right)\left|Y_{21}\right|^{2}}{\left|\left(Y_{11} \cdot Y_{s}\right)\left(y_{22} \cdot Y_{L}\right) \cdot y_{12} y_{21}\right|^{2}}
$$

In this equation, Y_{L} is the composite transistor load admittance-composed of both output network and its load, and Y_{S} is the composite transistor source admit-tance-composed of both input network and its source. Therefore, transducer gain includes the effects of the degree of admittance match at the transistor input terminals but does not take into account input and output network losses.

As in equation 3, the composite y parameters of a transistor feedback network combination may be substituted for the transistor y parameters when such a combination is used.

The Maximum Available Gain MAG is an often used transistor figure-of-merit. The MAG is the theoretical power gain of a transistor with its reverse transfer admittance y_{12} set equal to zero, and its source and load admittances conjugately matched to y_{11} and y_{22}, respec. tively.

If $y_{12}=0$, the transistor exhibits an input admittance equal to y_{11} and an output admittance equal to $y 22 . t$ The equation for MAG is, therefore, obtained by solving the general power gain expression, equation 3, with the conditions

$$
\begin{aligned}
y_{12} & =0 \\
y_{L} & =y_{22} . \\
\text { and } y_{z} & =y_{11} .
\end{aligned}
$$

where * denotes conjugate
which yields:

$$
\begin{equation*}
\operatorname{MAG} \cdot \frac{\left|y_{21}\right|^{2}}{4 \operatorname{Re}\left(y_{11}\right) \operatorname{Re}\left(y_{22}\right)} \tag{6}
\end{equation*}
$$

MAG is a figure of merit only, since it is physically impossible to reduce y_{12} to zero without changing the other parameters of the transistor. An external feedback network may be used to achieve a composite y_{12} of zero, but then the other composite parameters will also be modified according to the relationships given in the discussion of the composite transistor - feedback network "black box."
†Obtained by solving the equations for transistor $\mathrm{Y}_{\text {IN }}$ and YOUT with y_{12} equal to zero. These equations are given later in the report.

CASCADED LAN'S

Design calculations for cascaded LAN's may be performed by first computing composite two-port parameters as was done in the case of the parallel LAN's.

For the following cascaded LAN's

The composite y parameters are:

$$
\begin{align*}
& y_{11 c}=y_{11 a}=\frac{y_{12 a} y_{21 a}}{y_{22 a} \cdot y_{11 b}} \\
& y_{22 c}=y_{22 b}-\frac{y_{12 b} y_{21 b}}{y_{22 a} \cdot y_{11 b}} \tag{7}\\
& y_{21 c}=\quad-\frac{y_{21 a} y_{21 b}}{y_{22 a}+y_{11 b}} \\
& y_{12 c}=\quad-\frac{y_{12 a} y_{12 b}}{y_{22 a}+y_{11 b}}
\end{align*}
$$

where y11c, $y_{22} c, y_{21 c}, y_{12}$ c are the composite y parameters of the cascaded LAN's.

TRANSISTOR INPUT AND OUTPUT ADMITTANCES

The expression for the input admittance of a transistor is:

$$
\begin{equation*}
Y_{I N}=y_{11}-\frac{y_{12} y_{21}}{y_{22} \cdot Y_{L}} \tag{8}
\end{equation*}
$$

The expression for the output admittance of a transistor is:

$$
\begin{equation*}
y_{\text {OUT }}=y_{22} \cdot \frac{y_{12} y_{21}}{y_{11} \cdot r_{1}} \tag{9}
\end{equation*}
$$

When the feedback parameter y_{12} is not zero, $Y_{1 N}$ is source admittance.

AMPLIFIER STABILITY

One of the major considerations in RF amplifier design is stability. The stability of a final design can be assured by including stability computations and considering stability in all design decisions relating to feedback and transistor source and load admittances.

The potential stability of the transistor should first be computed using equation 1 .

The various alternatives concerning input - output matching and neutralization - unilateralization will now be discussed for both the unconditionally stable transistor and the potentially unstable transistor.

THE UNCONDITIONALLY STABLE TRANSISTOR

When the Linvill stability factor of the transistor as determined by equation 1 is less than one, the transistor is unconditionally stable. Oscillations will not occur using any combination of source and load admittances without external feedback. Stability is therefore eliminated as a factor in the remainder of the design, and complete freedom is possible with regard to matching and neutralization to optimize the amplifier for other performance requirements.

AMPLIFIERS WITHOUT FEEDBACK

The amplifier with no feedback is a logical choice for the unconditionally stable transistor in many applications since it may offer the advantages of fewer components and a simple tuning procedure.

Source and load admittances may be selected for maximum gain and/or any number of other requirements. Power gain and transducer gain may be computed using equations 3 and 5, respectively; input and output admittances may be computed using equations 8 and 9 , respectively.

The amplifier stability factor may be computed using equation 2. While amplifier stability was assured from the beginning by the use of an unconditionally stable transistor, the designer may still wish to perform this computation to provide some insight into danger of instability under adverse environmental conditions, source and load variations, etc.

$\mathbf{G}_{\text {max }}$

$\mathrm{G}_{\text {max }}$, the highest transducer gain possible without external feedback, forms a special case of the no feedback amplifier.

The source and load admittances required to achieve $\mathrm{G}_{\max }$ may be computed from the following:

$$
\begin{gather*}
G_{3}=\left.\left.\frac{1}{2 \operatorname{Re}\left(y_{22}\right)}| | 2 \operatorname{Re}\left(y_{11}\right) \operatorname{Re}\left(y_{22}\right) \cdot \operatorname{Re}\left(y_{12} y_{21}\right)\right|^{2} \cdot\left|y_{12} y_{21}\right|^{2}\right|^{3} \tag{10}\\
B_{8}=\operatorname{tm}\left(G_{11}\right) \cdot \frac{\operatorname{Im}\left(y_{21} y_{12}\right)}{2 \operatorname{Re}\left(G_{22}\right)} \tag{11}\\
\left.G_{L}=\left.\frac{1}{2 \operatorname{Re}\left(y_{11}\right)}| | 2 \operatorname{Re}\left(y_{11}\right) \operatorname{Re}\left(y_{22}\right) \cdot \operatorname{Re}\left(y_{12^{y}} y_{21}\right)\right|^{2} \cdot\left|y_{12} y_{21}\right|^{2} \right\rvert\,! \tag{12}\\
B_{L}=\cdots \operatorname{Im}\left(y_{22}\right) \cdot \frac{\operatorname{Im}\left(y_{21} y_{12}\right)}{2 \operatorname{Re}\left(y_{12}\right)} \tag{13}
\end{gather*}
$$

Therefore, if the maximum possible power gain without feedback is desired for an amplifier, equations 10,11 12 , and 13 are used to compute Y_{S} and Y_{L}.

The magnitude of $\mathrm{G}_{\max }$ may be computed from the following expressions:

$$
\begin{aligned}
& \mathrm{G}_{\text {max }} \text { : } \\
& \frac{\left|y_{21}\right|^{2}}{2 \operatorname{Re}\left(y_{11}\right) \operatorname{Re}\left(y_{22}\right) \cdot \operatorname{Re}\left(y_{12} y_{21}\right) \cdot\left|\mid 2 \operatorname{Re}\left(y_{11}\right)^{\operatorname{Re}\left(y_{22}\right)} \operatorname{Re}\left(\left.\left.y_{12} y_{21}\right|^{2} \cdot\left|y_{12} y_{21}\right|^{2}\right|^{t(14)}\right.\right.}
\end{aligned}
$$

Equations 10, 11, 12, and 13 can be obtained by differentiating equation 5 with respect to G_{S}, B_{S}, G_{L}, and B_{L}, and setting the four derivatives equal to zero. The G_{S}, $\mathrm{B}_{\mathrm{s}}, \mathrm{G}_{\mathrm{L}}$, and B_{L} thus computed can then be substituted in equation 5 to obtain the expression for $G_{\text {max }}$, equation 14.

THE LINVILL METHOD

The amplifier without feedback design problem may also be solved graphically using a technique developed by J. G. Linvill. \dagger Linvill's technique is very useful for a certain class of problems. Since it is so fully discussed in many good references, we will not go into it further here. An advantage of the Linvill technique is that it provides a reasonably rapid graphic solution relating gain, bandwidth, and stability. A disadvantage is its scope of usefulness, since the standard Linvill solution applies only to an amplifier with no external feedback and the Y_{s} conjugately matched to the transistor input admittance, Yin.

THE UNILATERALIZED AMPLIFIER

Unilateralization consists of employing an external feedback network to achieve a composite y_{12} of zero.

While unilateralization is perhaps most often used to achieve stability with a potentially unstable transistor, other circuit considerations may also warrant the use of unilateralization with the unconditionally stable transistor. For example, the input-output isolation afforded by unilateralization may be desirable in a particular design.

Design equations for the unilateralized case are obtained by first computing the composite y parameters of the transistor - feedback network combination and then substituting the composite parameters in the general equations.

Referring to the discussion on composite y parameters and setting up the basic condition that $y_{12 c} \mathrm{c}$ must equal zero, the other composite y parameters can be computed. Assuming that a passive feedback network is being used, then

$$
\begin{aligned}
& y_{11 t}=y_{22 I}=-y_{12 t}=-y_{2 I I} \\
& \text { and stince } y_{12 c}=0, y_{122} * y_{12}=0 \\
& \text { then } y_{12 t}=-y_{121} \text {, } \\
& \text { and } y_{121} *-y_{121}=y_{1 L!} * y_{24} *-y_{2 u t}
\end{aligned}
$$

[^22]Substituting the above results in equations 4 yields the following:

$$
\begin{aligned}
& y_{11 c}=y_{11 t}+y_{12 t} \\
& y_{22 c}=y_{22 t}+y_{12 t} \\
& y_{12 c}=y_{12 t}-y_{12 t}=0 \\
& y_{21 c}=y_{21 t}-y_{12 t}
\end{aligned}
$$

Substituting these complete y parameters in equations 8, 9, 3, 7, and 5 respectively, yields equations $15,16,17$
18, and 19 respectively for the unilateralized case.
Unilateralized input admittance

$$
\begin{equation*}
\mathbf{x}_{1 \mathrm{~N}}=y_{11}+y_{12} \tag{15}
\end{equation*}
$$

Unilateralized output admittance

$$
\begin{equation*}
y_{\text {our }}=y_{22} * y_{12} \tag{16}
\end{equation*}
$$

Unilateralized power gain, general expression:

$$
\begin{equation*}
G_{P U}=\frac{\left|y_{21} \cdot y_{12}\right|^{2} \operatorname{Re}\left(Y_{L}\right)}{\left|Y_{L} \cdot y_{22} \cdot y_{12}\right|^{2} R e\left(y_{11}\right)} \tag{17}
\end{equation*}
$$

Unilateralized power gain with Y_{L} conjugately matched to YOUT:

$$
\begin{equation*}
G_{u}=\frac{\left|y_{21}-y_{12}\right|^{2}}{4 \operatorname{Re}\left(y_{11}+y_{12}\right) \operatorname{Re}\left(y_{22} \cdot y_{12}\right)} \tag{18}
\end{equation*}
$$

Unilateralized transducer gain:

$$
\begin{equation*}
G_{\mathrm{TU}}=\frac{\left\{\operatorname{Re}\left(\gamma_{s}\right) \operatorname{Re}\left(\gamma_{L}\right)\left|y_{21}-y_{12}\right|^{2}\right.}{\left|\left(y_{11}+y_{12}+Y_{s}\right)\left(y_{22}+y_{12}+Y_{L}\right)^{2}\right|^{2}} \tag{19}
\end{equation*}
$$

Note that equations $15,16,17,18$ and 19, are given entirely in terms of the transistor y parameters, not those of the feedback network or the composite.

Another benefit of unilateralization is input - output isolation. As can be seen in equations 15 and $16, \mathrm{Y}_{\text {IN }}$ is completely independent of Y_{L}, and $\mathrm{Y}_{\text {OUT }}$ is similarly independent of $\mathrm{Y}_{\mathbf{s}}$. In a practical sense, this means that in a single or multi-stage amplifier using unilateralized stages, tuning of any one network will not affect tuning in other parts of the circuit. Thus, the troublesome task of having to re-peak an entire amplifier following a change in tuning at a single point can be eliminated.

NEUTRALIZATION

Neutralization consists of employing a feedback network to reduce y_{12} to some value other than zero. Neutralization is generally used for the same purposes as unilateralization, but provides something less than the ideal cancellation of the transistor feedback parameter which unilateralization achieves. A typical example of neutralization might be a feedback network which provides a composite b_{12} of zero while having only a negligible effect on the transistor g 12 .

The equations for a particular neutralized case would be developed in the same manner as those for the unilateralized case. Since there are an infinite number of possibilities, no specific equations will be given here.

This completes the discussion of design with the unconditionally stable transistor. The potentially unstable transistor will now be considered.

THE POTENTIALLY UNSTABLE TRANSISTOR

When the Linvill stability factor of the transistor as determined by equation 1 is greater than one, the transistor is potentially unstable. Certain combinations of source and load admittances will cause oscillations if no feedback is used. In designing with the potentially unstable transistor, steps must be taken to insure that the amplifier will be stable.

Stability is usually achieved by one or both of two methods:
(1) Using a feedback network which reduces the composite y_{12} to a value which insures stability.
(2) Choosing a source and load admittance combination which provides stability.
A discussion of these basic methods is given below.

USING FEEDBACK TO ACHIEVE STABILITY

Either unilateralization or neutralization may be used to achieve stability. If unilateralization is used, the transistor-feedback network combination will be unconditionally stable. This may be verified by computing the Linvill stability factor of the combination. Since $y_{12 c}=0$, the numerator in equation I would be zero.

With stability thus assured, the remainder of the design may then be done to satisfy other requirements placed on the amplifier. After unilateralization has converted the potentially unstable transistor to an unconditionally stable combination, all other aspects of the design are identical to the unilateralized case with the unconditionally stable transistor. Power gains and input and output admittances may be computed using equations 15 through 19.

If neutralization is used to achieve stability, the Linvill stability factor can be used to compute the potential stability of any transistor - neutralization network combination. Since in this case $y_{12 c} \neq 0, C$ will have a value other than zero.

After unconditional stability of the transistor-neutralization network combination has been achieved, the design may then be completed by treating the combination as an unconditionally stable transistor, and proceeding with the case of the unconditionally stable transistor in an amplifier without feedback. Power gains, input and output admittances, and the circuit stability factor may be computed by using the composite parameters of the combination in equations $2,3,5,8$, and 9 .

STABILITY WITHOUT FEEDBACK

A stable design with the potentially unstable transistor is possible without external feedback by proper choice of
souce and load admittances. This can be seen by inspection of equation $2 ; \mathrm{G}_{\mathrm{s}}$ and/or G_{L} can be made large enough to yield a stable circuit regardless of the degree of potential instability of the transistor.

This suggests a relatively simple way to achieve a stable design with a potentially unstable transistor. A circuit stability factor k is selected, and equation 2 is used to arrive at values of G_{s} and G_{L} which will provide the desired k . In achieving a particular circuit stability factor, the designer may choose any of the following combinations of matching or mismatching of G_{S} and G_{L} to the transistor input and output conductances, respectively:
(1) G_{S} matched and G_{L} mismatched
(2) G_{L} matched and G_{S} mismatched
(3) Both G_{s} and G_{L} mismatched

Often a decision on which combination to use will be dictated by other performance requirements or practical considerations.

Once G_{s} and G_{L} have been chosen, the remainder of the design may be completed using the relationships which apply to the amplifier without feedback. Power gain and input and output admittances may be computed using equations $3,5,8$, and 9 .

Although the above procedure may be adequate in many cases, a more systematic method of source and load admittance determination is desirable for designs which demand maximum power gain per degree of circuit stability. Stern has analyzed this problem and developed equations for computing the conductance and susceptance of both Y_{S} and Y_{L} for maximum power gain for a particular circuit stability factor. 2,4 These equations are given here:

$$
\begin{align*}
& G_{3}=\sqrt{\left.\frac{k\left[\left|y_{12} z_{21}\right| \cdot \operatorname{Re}\left(g_{12} y_{21}\right]\right.}{2}\right]} \cdot \sqrt{\frac{g_{11}}{g_{22}}}-g_{11} \tag{20}\\
& G_{L}=\sqrt{\frac{k\left[\left|y_{12} y_{21}\right| \cdot \operatorname{Re}\left(y_{12} y_{21}\right)\right.}{2}} \cdot \sqrt{\frac{\mathrm{~g}_{22}}{g_{11}}}-\varepsilon_{22} \tag{21}
\end{align*}
$$

$$
\begin{equation*}
B_{s}=\frac{\left(G_{8}+g_{11}\right)^{z_{0}}}{\sqrt{k| | y_{12^{y}}{ }_{21}\left|\cdot \operatorname{Re}\left(y_{12_{21}}\right)\right|}} \quad b_{11} \tag{22}
\end{equation*}
$$

$$
B_{L} \cdot \frac{\left(G_{L}+g_{22}\right)^{2}}{\sqrt{k| | y_{12} y_{21} \mid} \cdot \operatorname{Re}\left(y_{12} y_{21}\right) \mid}-b_{22}
$$

Where,

$$
\begin{aligned}
& r=\frac{\left(B_{3}+b_{11}\right)\left(G_{L}+g_{22}\right)+\left(B_{L}+b_{22}\right) k(L+M) / 2\left(G_{L}+C_{22}\right)}{\sqrt{k(L-M 1)}} \\
& L=\left|y_{12} y_{21}\right| \\
& M=\operatorname{Re}\left(y_{12} y_{21}\right)
\end{aligned}
$$

Defining \mathbf{D} as the demoninator in equation 5 yields:
$D=\frac{z^{4}}{4}+\frac{[k(L+M)+2 M] z^{2}}{2} \cdot 2 N Z \sqrt{k(L+M)}+A^{2}+N^{2}(27)$
where,

$$
\begin{align*}
& A=\frac{k(2 \cdot M)}{2}-M, \tag{28}\\
& N=\ln \left(y_{12^{y}}{ }_{21}\right),
\end{align*}
$$ (29)

and,
$Z_{0}=$ that real value of Z which results in the smallest minimum of D, found by setting,

$$
\begin{equation*}
\frac{d D}{d Z} \cdot z^{3} \cdot|k(L \cdot M)+2 M| z \cdot 2 N \sqrt{k(L \cdot M)} \tag{30}
\end{equation*}
$$

equal to zero.
Computation of Y_{S} and Y_{L} using equations 20 through 30 is a bit tedious to be done very frequently, and this may have discouraged wide usage of the complete Stern solution. However, examination of Stern's work suggests some interesting shortcuts:
(A) COMPUTATION OF G_{s} AND G_{L} ONLY, USING EQUATIONS 20 AND 21. If a value equal to $-b_{22}$ is then chosen for B_{L}, the resulting Y_{L} will be very close to the true Y_{L} for maximum gain. The transistor $Y_{I N}$ can then be computed from Y_{L} using equation 8 , and B_{S} can be set equal to ${ }^{-1} \mathrm{~m}\left(\mathrm{Y}_{\mathrm{lN}}\right)$.

Computation of B_{S} and B_{L} comprise by far the more complex portion of the Stern solution. This alternate method therefore permits the designer to closely approximate the exact Stern solution for Y_{S} and Y_{L} while avoiding that portion of the computations which are the most complex and time consuming. Further, the circuit can be designed with tuning adjustments for varying B_{S} and B_{L}, thereby creating the possibility of experimentally achieving the true B_{S} and B_{L} for maximum gain as accurately as if all the Stern equations had been solved.
(B) MISMATCHING G_{S} TO g11 AND GL TO g22 BY AN EQUAL RATIO YIELDS A TRUE STERN SOLUTION FOR GS AND GL. This can be derived from equations 20 and 21 , which lead to the following result:

$$
\begin{equation*}
\frac{G_{L}}{G_{22}}=\frac{G_{5}}{G_{11}} \tag{31}
\end{equation*}
$$

If a mismatch ratio, R, is defined as follows,

$$
\begin{equation*}
R=\frac{G_{L}}{E_{22}}=\frac{G_{3}}{E_{11}} \tag{32}
\end{equation*}
$$

then R may be computed for any particular circuit stability factor using the equation:

$$
\begin{equation*}
(1+R)^{2}=k\left[\frac{\left|y_{21} y_{12}\right|+\operatorname{Re}\left(y_{12} y_{21}\right)}{2 g_{11} g_{22}}\right] \tag{33}
\end{equation*}
$$

Equation 33 was derived from equation 2 and 32. Having thus determined R, G_{S} and G_{L} can be quickly found using equation 32 .
B_{S} and B_{L} can then be determined in the
manner described above in alternate method (A).
This alternate method may be advantageous if source and load admittances and power gains for several different values of k are desired. Once the \mathbf{R} for a particular k has been determined, the \mathbf{R} for any other k may be quickly found from the equation

$$
\begin{equation*}
\frac{\left(1+R_{1}\right)^{2}}{\left(1-R_{2}\right)^{2}}=\frac{k_{1}}{k_{2}} \tag{34}
\end{equation*}
$$

where R_{1} and R_{2} are values of R corresponding to k_{1} and k_{2}, respectively.
(C) COMPUTER DESIGN. The complete Stern design problem may be programmed into a computer. Power gain, circuit stability factor, Y_{S} and Y_{L} can be obtained from the computer for any value of k . MAG, GU_{U}, and the Linvill stability factor of the transistor may also be included in the program.
After employing either the complete Stern solution or an alternate method to obtain Y_{S} and Y_{L} for the potentially unstable transistor in an amplifier without feedback, power gains and input and output admittances may be obtained using equations $3,5,8$, and 9 .

SENSITIVITY

In all but the unilateralized amplifier, $\mathrm{Y}_{1 \mathrm{~N}}$ is a function of load admittance. Thus Y_{IN} changes with output circuit tuning, and this can be troublesome. Consequently, it is sometimes desirable to compute the extent of variation of $Y_{\text {IN }}$ with changes in Y_{L}. A term, sensitivity S, has been defined to provide a measure of this characteristic, and is equal to per cent change in YIN divided by per cent change in Y_{L}. The equation for sensitivity is:

$$
\begin{equation*}
0 \cdot\left|\frac{Y_{L}}{y_{22}+Y_{L}}\right| \cdot\left|\frac{\varepsilon_{11}}{y_{11}}\right| \cdot \frac{\kappa}{\left|\frac{y_{22}+Y_{L}}{g_{22}} \cdot \frac{g_{11}}{y_{11}} \kappa e^{j \theta}\right|} \tag{13}
\end{equation*}
$$

where,

$$
\begin{aligned}
& K=\left\lvert\, \begin{array}{ll}
y_{21} & y_{12} \\
\left.\begin{array}{ll}
g_{11} & g_{22}
\end{array} \right\rvert\,
\end{array}\right. \\
& \theta=\arg \left(-y_{12} y_{21}\right) \text {. } \\
& K e^{j \theta} \cdot K(\cos 0+j \tan 0)
\end{aligned}
$$

A more complete discussion of sensitivity is given in reference 6.

DESIGN WITH SCATTERING PARAMETERS

Scattering, or s parameters have greatly increased in popularity since the late 1960 's, largely due to the appearance of sophisticated new equipment for performing s parameter measurements.

A summary of s parameter design equations is given below.

Power gain:

$$
\begin{equation*}
G \cdot \frac{\left|s_{21}\right|^{2}\left(1-\left|r_{L}\right|^{2}\right.}{\left(1-\left|s_{11}\right|^{2}+\left|r_{L}\right|^{2}\left(\left|s_{22}\right|^{2}-\left.\left.\right|_{\Delta S}\right|^{2}\right)-2 \operatorname{Re}\left(r_{L} M\right)\right.} \tag{56}
\end{equation*}
$$

$$
\begin{aligned}
& 1 S=S_{11} S_{22}-S_{12} S_{21} \\
& N=S_{22}-D S_{11}^{*}
\end{aligned}
$$

Transducer gain:

$$
\begin{equation*}
G_{T}=\frac{\left|s_{21}\right|^{2}\left(1-\mid r_{S}{ }^{2}{ }^{2}\left(1-\left|v_{L}\right|^{2}\right.\right.}{\mid 1-s_{11} r_{S^{\prime}}\left(1-s_{22}{ }^{\prime}{ }_{2}^{\prime}\right)-s_{12} s_{21} r_{L} r_{\mathrm{s}}{ }^{2}} \tag{37}
\end{equation*}
$$

Input reflection coefficient:

$$
\begin{equation*}
s_{11}^{\prime}=s_{11} \cdot \frac{s_{12} s_{21} r_{L}}{1-s_{22} r_{L}} \tag{38}
\end{equation*}
$$

Output reflection coefficient:

$$
\begin{equation*}
s_{22}^{\prime}=s_{22} \cdot \frac{s_{12} s_{21} r_{s}}{1-s_{11} r_{s}} \tag{39}
\end{equation*}
$$

Linvill stability factor:

$$
\begin{align*}
& C=K^{-1} \\
& K=\frac{\left.1 \cdot\left|\Delta S_{1}^{2}-\left|s_{11}\right|^{2}-\right] s_{22}\right|^{2}}{2\left|S_{12} S_{21}\right|} \tag{40}\\
& \Delta S=S_{11} S_{22}-S_{12} S_{21}
\end{align*}
$$

Equation 40 which gives K , the reciprocal of C , is presented in this form because it is the s parameter stability expression most often seen in the literature. K in equation 40 must not be confused with Stern stability factor k given in equation 2.

Maximum unneutralized transducer gain, unconditionally stable LAN:

$$
\begin{align*}
\mathbf{G}_{\max } & =\left|\frac{S_{21}}{\mathrm{~S}_{12}}\left(\mathrm{~K} \pm \sqrt{\mathrm{K}^{2}-1}\right)\right| \tag{41}\\
K & =\mathrm{C}^{-1} \\
\mathrm{C} & =\text { Linvill Stability Factor }
\end{align*}
$$

Source and load reflection coefficients for a conjugate match of the unconditionally stable LAN in an amplifier without feedback:

$$
\begin{align*}
& r_{m S}=M \cdot\left[\frac{B_{1}:\left.\sqrt{B_{1}^{2}-4 \mid M}\right|^{2}}{2|M|^{2}}\right] \tag{42}\\
& r_{\mathrm{mLL}}=\mathrm{N}^{*}\left[\frac{\mathrm{~B}_{2} \pm \sqrt{\mathrm{B}_{2}{ }^{2}-4 \mid \mathrm{N}} \mathrm{~m}^{2}}{2 \mid \mathrm{N}^{2}}\right] \tag{43}\\
& \text { Where } \mathrm{B}_{1}=1+\left|\mathrm{s}_{11}\right|^{2} \cdot\left|\mathrm{~s}_{22}\right|^{2}-\mid \Delta s^{2} \\
& \mathrm{~B}_{2}=1+\left|\mathrm{s}_{22}\right|^{2}-\left|\mathrm{s}_{11}\right|^{2}-|\Delta \mathrm{s}|^{2} \\
& \mathrm{M}=\mathrm{S}_{11}{ }^{-\left(\Delta \Delta_{\mathrm{S}}\right)} \mathrm{S}_{22^{*}} \text {. } \\
& \mathrm{N}=\mathrm{S}_{22}-\left(\Delta_{\mathrm{S}}\right)\left(\mathrm{S}_{11}{ }^{-1}\right)
\end{align*}
$$

A more comprehensive treatment of amplifier design with s parameters is given in references 8,11 , and 12 .

One cautionary note is in order.
Several papers have been published on the subject of simplifying the s parameter design procedure by making the assumption that the reverse transfer parameter, s_{12}, is equal to zero. This procedure totally ignores the entire
problem of amplifier stability.
Modern high gain solid-state RF devices will readily oscillate under a wide variety of circuit conditions. Stability problems are encountered even with extremely low feedback devices such as Linear IC's and dual gate MOSFETS. Therefore, amplifier design calculations which do not include device and circuit feedback are only an approximation which will yield either an inaccurate solution or possibly even an oscillator when the design is tested in the laboratory. Reference 13 provides more detail on the shortcomings of this procedure, including an amplifier design example which did turn out to be an oscillator.

SUMMARY OF DESIGN PROCEDURE

A summary of the amplifier design procedure using two-port parameters is given below.
I. Determine the potential instability of the active device.
2. If the device is not unconditionally stable, decide on a course of action to insure circuit stability.
3. Determine whether or not feedback is to be used.
4. Determine source and load admittances.
5. Design appropriate networks to provide the desired source and load admittances.

Stability (Steps 1 and 2 above)

A stability computation for the worst case conditions of open circuit source and load is provided by Linvill's stability factor \mathbf{C}. If the \mathbf{C} factor indicates unconditional stability, no combination of passive terminations can cause oscillations.

Stability calculations should include the total feedback of the amplifier. In the case of extremely low feedback devices such as dual gate MOSFET's and Linear IC's, external circuit feedback often eclipses the internal device feedback. In such a case, the designer should measure the external circuit feedback and include it in the design calculations. To accomplish this, see the earlier section of this note on the composite parameters of two-port LAN's in parallel.

If the device is unconditionally stable, the design may proceed to fulfill other objectives without fear of oscillations. If the device is potentially unstable, steps must be taken to prevent oscillations in the final design. Stability is achieved by proper selection of source and load admittances, by the use of feedback, or both.

Feedback (Step 3)

Feedback may be employed in the tuned high frequency amplifier to achieve stability, input-output isolation, or to alter the gain and terminal admittances of the active device. A decision to employ feedback would be based on whether or not its use was the optimum way to
accomplish one of the foregoing objectives in a particular application.

If feedback is employed, the device parameters may be modified to include the feedback network in accordance with standard two-port network theory. The remainder of the design may then proceed by treating the transistorfeedback network combination as a single, new two-port linear active network.

Source and Load Admittances (Step 4)

Source and load admittance determination is dependent upon gain and stability considerations, together with practical circuit limitations.

If the device is either unconditionally stable itself or has been made stable with feedback, stability need not be a major factor in the determination of source and load. If the device is potentially unstable and feedback is not employed, then a source and load which will guarantee a certain degree of circuit stability must be used. Also, it is a good idea to check the circuit stability factor during this step even when an unconditionally stable device is used.

Finally, practical limitations in matching networks and components may also play an important part of source and load admittance determination.

Network Design (Step 5)

The final step consists of network synthesis to achieve the desired source and load admittances computed in step 4.

Sometimes, it will be difficult to achieve a desired source and load due to tuning range limitations, excess network losses, component limitations, etc. In such cases, the source and load admittances will be a compromise between desired performance and practical limitations.

SUMMARY

The small signal amplifier performance of a transistor is completely described by two-port admittance parameters. Based on these parameters, equations for computing the stability, gain, and optimum source and load admittances for the unilateralized, neutralized, and no-feedback amplifier cases have been discussed.

The unconditionally stable transistor will not oscillate with any combination of source and load admittances, and circuits using a stable transistor may be optimized for other performance requirements without fear of oscillations.

The potentially unstable transistor requires that steps be taken to guarantee a stable design. Stability is usually achieved by unilateralization, neutralization, or selection of source and load admittances which result in a stable amplifier.

Unilateralization and neutralization reduce the composite reverse transfer admittance. They may be used to achieve stability, input - output isolation, or both.

Maximum power gain per degree of circuit stability without feedback may be achieved using Stern's equations.

The degree of input - output isolation is described by the term sensitivity, which makes it possible to compute changes in input admittance for any change in load admittance.

The theory and design equations in this report are applicable to any linear active device which may be characterized as a two-port network. Therefore, the term "transistor" used herein refers generally to all such devices, including FETs and integrated circuits.

BIBLIOGRAPHY

1. "Transistors and Active Circuits," by Linvill and Gibbons, McGraw-Hill, 1961.
2. "Stability and Power Gain of Tuned Transistor Amplifiers," by Arthur P. Stern, Proc. IRE, March, 1957.
3. "Using Linvill Techniques for R. F. Amplifiers," Motorola Semiconductor Products, Inc., Application Note 166.
4. "High-Gain, High-Frequency Amplifiers," by Peter M. Norris, Electro-Technology, January, 1966.
5. "Linvill Technique Speeds High Frequency Amplifier Design," by John Lauchner and Marvin Silverstein, Electronic Design, April, 12, 1966.
6. "The Design of Alignable Transistor Amplifiers," by J. F. Gibbons, Stanford University Technical Report No. 106, May 7, 1956.
7. "Field Effect Transistor R. F. Amplifier Design Techniques," Motorola Semiconductor Products Inc., Application Note 423.
8. "Circuit Design and Characterization of Transistors by Means of Threc-Part Scattering Parameters" by George E. Bodway, the Microwave Journal, May, 1968.
9. "Smail-Signal RF Design with Dual-Gate MOSFET's" Motorola Semiconductor Products, Inc. Application Note 478A.
10. "A High Gain Integrated Circuit RF-IF Amplifier with Wide Range AGC", Motorola Semiconductor Products, Inc. Application Note 513.
11. "S Parameter Design", Hewlett-Packard Company, Palo Alto, California, Application Note 154.
12. "S Parameters", Hewlett-Packard Company, Palo Alto, California, Application Note 95.
13. "Staying Stable with S Parameters", by Roy Hejhall, Motorola Monitor, Vol. 7, No. 2.

GLOSSARY

C = Linvill's stability factor
k $=$ Stern's stability factor
$\mathrm{G}_{\mathrm{s}}=$ Real part of the source admittance
$G_{L}=$ Real part of the load admittance
$B_{S} \quad=$ Imaginary part of the source admittance
$B_{L} \quad=$ Imaginary part of the load admittance
$g_{11}=$ Real part of y_{11}

g 22	$=$ Real part of y22
G	$=$ Generalized power gain
Y_{L}	$=$ Complex load admittance
Y_{S}	$=$ Complex source admittance
$\mathrm{GT}_{\mathbf{T}}$	$=$ Transducer gain
MAG	$=$ Maximum available gain
$*$	$=$ Conjugate
$\mathrm{Y}_{I N}$	$=$ Input admittance
$\mathrm{Y}_{O U T}$	$=$ Output admittance
$\mathrm{G}_{\text {max }}$	$=$ Maximum gain without feedback
G_{U}	$=$ Unilateralized gain
G_{TU}	$=$ Unilateralized transducer gain
δ	$=$ Sensitivity
\mathbf{s}_{11}	$=$ Input reflection coefficient
$\mathrm{s}^{\prime} 22$	$=$ Output reflection coefficient
Γ_{L}	$=$ Load reflection coefficient
Γ_{S}	$=$ Source reflection coefficient
K	$=$ Scattering parameter stability factor

APPENDIX I

A. Conversions among parameter types for y, z, h, and g parameters.
h toy

$$
\begin{aligned}
& y_{11}=\frac{1}{h_{11}} \quad y_{12}=\frac{-h_{12}}{h_{11}} \quad y_{21}=\frac{h_{21}}{h_{11}} \quad y_{22}=\frac{\Delta h}{h_{11}} \\
& \text { where } \Delta h=h_{11} h_{22}-h_{12} h_{21}
\end{aligned}
$$

y to h

$$
\begin{gathered}
h_{11}=\frac{1}{y_{11}} \quad h_{12}=\frac{-y_{12}}{y_{11}} \quad h_{21}=\frac{y_{21}}{y_{11}} \quad h_{22}=\frac{\Delta y}{y_{11}} \\
\text { where } \Delta y=y_{11} y_{22}-y_{12} y_{21}
\end{gathered}
$$

h to z
$z_{11}=\frac{\Delta h}{h_{22}} \quad z_{12}=\frac{h_{12}}{h_{22}} \quad z_{21}=\frac{-h_{21}}{h_{22}} \quad z_{22}=\frac{1}{h_{22}}$
zto h
$h_{11}=\frac{\Delta z}{z_{22}} \quad \begin{aligned} & h_{12}=\frac{z_{12}}{z_{22}} \quad h_{21}=\frac{-z_{21}}{z_{22}} \\ & \text { where } \Delta_{2}=z_{11} z_{22}-z_{12} z_{21}\end{aligned} \quad h_{22}=\frac{1}{z_{22}}$
h to g
$g_{11}=\frac{h_{22}}{\Delta h} \quad g_{12}=\frac{-h_{12}}{\Delta h} \quad g_{21}=\frac{-h_{21}}{\Delta h} \quad g_{22}=\frac{h_{11}}{\Delta h}$
where $\Delta h=h_{11} h_{22}-h_{12} h_{21}$
g to h

$$
\begin{gathered}
\mathrm{h}_{11}=\frac{\mathrm{g}_{22}}{\Delta_{\mathrm{B}}} \quad \mathrm{~h}_{12}=\frac{-\mathrm{g}_{12}}{\Delta_{\mathrm{g}}} \quad \mathrm{~h}_{21}=\frac{-\mathrm{g}_{21}}{\Delta_{\mathrm{g}}} \quad \mathrm{~h}_{22}=\frac{\mathrm{g}_{11}}{\Delta_{\mathrm{g}}} \\
\text { where } \Delta \mathrm{g}=\mathrm{g}_{11} \mathrm{~g}_{22}-\mathrm{g}_{12} \mathrm{~g}_{21}
\end{gathered}
$$

z to y
$y_{11}=\frac{z_{22}}{\Delta z} \quad y_{12}=\frac{-z_{12}}{\Delta z} \quad y_{21}=\frac{-z_{21}}{\Delta z} \quad y_{22}=\frac{z_{11}}{\Delta z}$
where $\Delta z=z_{11} z_{22}-z_{12} z_{21}$
y to z
$z_{11}=\frac{y_{22}}{\Delta y} \quad z_{12}=\frac{-y_{12}}{\Delta y} \quad z_{21}=\frac{-y_{21}}{\Delta y} \quad z_{22}=\frac{y_{11}}{\Delta y}$
where $\Delta y=y_{11} y_{22}-y_{12} y_{21}$

2 to g
$g_{11}=\frac{1}{z_{11}} \quad g_{12}=\frac{-z_{12}}{z_{11}} \quad g_{21}=\frac{z_{21}}{z_{11}} \quad g_{22}=\frac{\Delta z}{z_{11}}$
where $\Delta z=z_{11} z_{22}-z_{12} z_{21}$
g to 2
$z_{11}=\frac{1}{g_{11}} \quad z_{12}=\frac{-g_{12}}{g_{11}} \quad z_{21}=\frac{g_{21}}{g_{11}} \quad z_{22}=\frac{\Delta g}{g_{11}}$
where $\Delta \mathrm{g}=\mathrm{g}_{11} \mathrm{~g}_{22}-\mathrm{g}_{12} \mathrm{~g}_{21}$
g to y
$y_{11}=\frac{\Delta g}{g_{22}} \quad y_{12}=\frac{g_{12}}{g_{22}} \quad y_{21}=\frac{-g_{21}}{g_{22}} \quad y_{22}=\frac{1}{g_{22}}$
where $\Delta \mathrm{g}=\mathrm{g}_{11} \mathrm{~g}_{22} \cdot \mathrm{~g}_{12} \mathrm{~g}_{21}$
y to g
$g_{11}=\frac{\Delta y}{y_{22}}$

$$
\begin{aligned}
& g_{12}=\frac{y_{12}}{y_{22}} \quad g_{21}=\frac{-y_{21}}{y_{22}} \\
& \text { where } \Delta y=y_{11} y_{22}-y_{12} y_{21}
\end{aligned}
$$

$$
g_{22}=\frac{1}{y_{22}}
$$

B. Conversions among common emitter, common base, and common collector parameters of the same type for y,
and h parameters.
Common emitter y parameters in terms of common base and common collector y parameters.

$$
\begin{aligned}
& y_{11 e}=y_{11 b}+y_{12 b}+y_{21 b}+y_{22 b}=y_{11 c} \\
& y_{12 c}=-\left(y_{12 b}+y_{22 b}\right)=-\left(y_{11 c}+y_{12 c}\right) \\
& y_{21 e}=-\left(y_{21 b}+y_{22 b}\right)=-\left(y_{11 c}+y_{21 c}\right) \\
& y_{22 e}=y_{22 b}=y_{11 c}+y_{12 c}+y_{21 c}+y_{22 c}
\end{aligned}
$$

Common base y parameters in terms of common emitter and common collector y parameters.

$$
\begin{aligned}
& y_{11 b}=y_{11 e}+y_{12 e}+y_{21 e}+y_{22 e}=y_{22 c} \\
& y_{12 b}=-\left(y_{12 e}+y_{22 e}\right)=-\left(y_{21 c}+y_{22 c}\right) \\
& y_{21 b}=-\left(y_{21 e}+y_{22 e}\right)=-\left(y_{12 c}+y_{22 c}\right) \\
& y_{22 b}=y_{22 e}=y_{11 c}+y_{12 c}+y_{21 c}+y_{22 c}
\end{aligned}
$$

Common collector y parameters in terms of common emitter and common base y parameters.

$$
\begin{aligned}
& y_{11 c}=y_{11 e}=y_{11 b}+y_{12 b}+y_{21 b}+y_{22 b} \\
& y_{12 c}=-\left(y_{11 e}+y_{12 e}\right)=-\left(y_{11 b}+y_{21 b}\right) \\
& y_{21 c}=-\left(y_{11 e}+y_{21 e}\right)=-\left(y_{11 b}+y_{12 b}\right) \\
& y_{22 c}=y_{11 e}+y_{12 e}+y_{21 e}+y_{22 e}=y_{11 b}
\end{aligned}
$$

Common emitter h parameters in terms of common base and common collector h parameters.
$h_{11 e}=\frac{h_{11 b}}{\left(1+h_{21 b}\right)\left(1-h_{12 b}\right)+h_{22 b} h_{11 b}}=\frac{h_{11 b}}{1+h_{21 b}}=h_{11 c}$
$h_{12 \mathrm{c}}=\frac{h_{115} n_{220}-h_{120}\left(1+h_{25 b}\right)}{\left(1+h_{215}\right)\left(1-h_{120}\right)+h_{225} n_{11 b}}=\frac{n_{115} n_{220}}{1+h_{21 b}}=n_{120}=1-h_{12 c}$
$h_{210}=\frac{-h_{21 b}\left(1-h_{120}\right)-h_{225 b} h_{11 b}}{\left(1+h_{21 b}\right)\left(1-h_{12 b}\right)+h_{25 b} h_{11 b}} * \frac{-h_{2 i b}}{1+h_{21 b}}=-\left(1+h_{21 c}\right)$
$h_{22 e}=\frac{h_{22 b}}{\left(1+h_{21 b}\right)\left(1-h_{12 b}\right)+h_{220} h_{11 b}} \approx \frac{h_{22 b}}{1+h_{21 b}}=h_{22 c}$
Common has h parameters in terms of common emitter and common collector h parameters.

$$
\begin{aligned}
h_{11 b} & =\frac{h_{11 e}}{\left(1+h_{21 e}\right)\left(1-h_{12 e}\right)+h_{11 e} h_{22 e}} \approx \frac{h_{11 e}}{1+h_{21 e}} \\
& =\frac{h_{11 c}}{h_{11 c} h_{22 c}-h_{21 c} h_{12 c}} \approx \frac{h_{11 c}}{h_{21 c}}
\end{aligned}
$$

$$
\begin{aligned}
h_{12 b} & =\frac{h_{11 e} h_{22 e}-h_{12 e}\left(1-h_{21 e}\right)}{\left(1+h_{21 e}\right)\left(1-h_{12 e}\right) \cdot h_{11 e} h_{22 e}}=\frac{h_{11 e} h_{22 c}}{1+h_{21 e}} \cdot h_{12 e} \\
& =\frac{h_{21 c}\left(1-h_{12 c}\right)+h_{11 c} h_{22 c}}{h_{11 c} h_{22 c}-h_{21 c} h_{12 c}}=\left(h_{12 c}-1\right)-\frac{h_{11 c} h_{22 c}}{h_{21 c}} \\
h_{21 b} & =\frac{-h_{21 c}\left(1-h_{12 e}\right)-h_{11 e} h_{22 e}}{\left(1+h_{21 e}\right)\left(1-h_{12 e}\right)+h_{11 e} h_{22 c}} \approx \frac{-h_{21 e}}{1+h_{21 e}} \\
& =\frac{h_{12 c}\left(1+h_{21 c}\right)-h_{11 c} h_{22 c}}{h_{11 c} h_{22 c}-h_{21 c} h_{12 c}} \approx \frac{-\left(1+h_{21 c}\right)}{h_{22 e}} \\
h_{22 b} & =\frac{h_{21 c}}{\left(1+h_{21 e}\right)\left(1-h_{12 e}\right)+h_{11 e} h_{22 e}} \approx \frac{h_{22 e}}{1+h_{21 e}} \\
& =\frac{h_{22 c}}{h_{21 c} h_{22 c}-h_{21 c} h_{12 c}}
\end{aligned}
$$

Common collector h parameters in terms of common base and common emitter h parameters.
$h_{11 c}=\frac{h_{11 b}}{\left(1-h_{21 b}\right)\left(1-h_{12 b}\right)+h_{22 b} h_{11 b}}=\frac{h_{11 b}}{1+h_{21 b}}=h_{11 e}$
$h_{12 c}=\frac{1+h_{21 b}}{\left(1+h_{21 b}\right)\left(1-h_{12 b}\right)+h_{22 b} h_{11 b}} \Rightarrow 1=1-h_{12 e}$
$h_{21 c}=\frac{h_{12 b}-1}{\left(1+h_{21 b}\right)\left(1+h_{12 b}\right)+h_{22 b} h_{11 b}} \approx \frac{-1}{1+h_{21 b}}=-\left(1+h_{21 e}\right)$
$h_{22 c}=\frac{h_{22 b}}{\left(1+h_{21 b}\right)\left(1-h_{12 b}\right)+h_{22 b} h_{11 b}}=\frac{h_{22 b}}{1+h_{21 b}}=h_{22 e}$
Expressions for voltage gain, current gain, input impedance, and output impedance in terms of y, z, h, and g parameters.
Voltage Gain

$$
A_{V}=\frac{z_{2 i} z_{L}}{\Delta z+z_{11} z_{L}}=\frac{-y_{21}}{y_{22}+y_{L}}=\frac{-h_{21} z_{L}}{h_{11}+\Delta h z_{L}}=\frac{g_{21} z_{L}}{g_{22}+z_{L}}
$$

$$
=\frac{S_{21}\left(1+r_{L}\right)}{\left(1-S_{22} \Gamma_{L}^{\prime\left(1+S_{11}^{\prime}\right)}\right.}
$$

Current Gain

$$
A_{I}=\frac{-z_{21}}{z_{22}+z_{L}}=\frac{-y_{21} Y_{L}}{\Delta y+y_{11} Y_{L}}=\frac{h_{21} Y_{L}}{h_{22}+Y_{L}}=\frac{-g_{21}}{\Delta g+g_{11} z_{L}}
$$

Input Impedance

$$
\begin{aligned}
Z_{I N} & =\frac{\Delta z+z_{11} Z_{L}}{z_{22}+Z_{L}}=\frac{y_{22}+Y_{L}}{\Delta y+y_{11} Y_{L}}=\frac{\Delta h+h_{11} Y_{L}}{h_{22}+Y_{L}} \\
& =\frac{g_{22}+Z_{L}}{\Delta g+g_{11} z_{L}}
\end{aligned}
$$

Output Impedance

$$
\begin{aligned}
Z_{\text {OUT }} & =\frac{\Delta z+z_{22} Z_{s}}{z_{11}+Z_{s}}=\frac{y_{11}+Y_{s}}{\Delta y+y_{22} Y_{s}}=\frac{h_{11}+Z_{s}}{\Delta h+h_{22} Z_{s}} \\
& =\frac{\Delta g+g_{22} Y_{s}}{G_{11}+Y_{s}}
\end{aligned}
$$

Conversion between y parameters and s (scattering) parameters:

$$
\begin{aligned}
& s_{11}=\frac{\left(1-y_{11}\right)\left(1+y_{22}\right)+y_{12} y_{21}}{\left(1+y_{11}\right)\left(1+y_{22}\right)-y_{12} y_{21}} \dagger \\
& s_{12}=\frac{-2 y_{12}}{\left(1+y_{11}\right)\left(1+y_{22}\right)-y_{12} y_{21}} \dagger \\
& s_{21}=\frac{-2 y_{21}}{\left(1+y_{11}\right)\left(1+y_{22}\right)-y_{12} y_{21}} \dagger \\
& s_{22}=\frac{\left(1+y_{11}\right)\left(1-y_{22}\right)+y_{21} y_{12}}{\left(1+y_{11}\right)\left(1+y_{22}\right)-y_{12} y_{21}} \dagger \\
& y_{11}=\left[\frac{\left(1+s_{22}\right)\left(1-s_{11}\right)+s_{12} s_{21}}{\left(1+s_{11}\right)\left(1+s_{22}\right)-s_{12} s_{21}}\right] \frac{1}{z_{0}} \\
& y_{12}=\left[\frac{-2 s_{12}}{\left(1+s_{11}\right)\left(1+s_{22}\right)-s_{12} s_{21}}\right] \frac{1}{Z_{0}} \\
& y_{21}=\left[\frac{-2 s_{21}}{\left(1+s_{11}\right)\left(1+s_{22}\right)-s_{12} s_{21}}\right] \frac{1}{Z_{0}} \\
& y_{22}=\left[\frac{\left(1+s_{11}\right)\left(1-s_{22}\right)+s_{12} s_{21}}{\left(1+s_{22}\right)\left(1+s_{11}\right)-s_{12} s_{21}}\right] \frac{1}{Z_{0}}
\end{aligned}
$$

where $Z_{o}=$ the characteristic impedance of the transmission lines used in the scattering parameter system, usually 50 ohms.

Conversion between h parameters and s parameters:

$$
\begin{aligned}
& s_{11}=\frac{\left(h_{11}-1\right)\left(h_{22}+1\right)-h_{12} h_{21}}{\left(h_{11}+1\right)\left(h_{22}+1\right)-h_{12} h_{21}} t \dagger \\
& s_{12}=\frac{2 h_{12}}{\left(h_{11}+1\right)\left(h_{22}+1\right)-h_{12} h_{21}} \dagger \dagger \\
& s_{21}=\frac{-2 h_{21}}{\left(h_{11}+1\right)\left(h_{22}+1\right)-h_{12} h_{21}} \dagger \dagger \\
& s_{22}=\frac{\left(1+h_{11}\right)\left(1-h_{22}\right)+h_{12} h_{21}}{\left(h_{11}+1\right)\left(h_{22}+1\right)-h_{12} h_{21}} t \dagger \\
& h_{11}=\left[\frac{\left(1+s_{11}\right)\left(1+s_{22}\right)-s_{12} s_{21}}{\left(1-s_{11}\right)\left(1+s_{22}\right)+s_{12} s_{21}}\right] z_{0}
\end{aligned}
$$

AN215A

$$
\begin{aligned}
& h_{12}=\frac{2 s_{12}}{\left(1-s_{11}\right)\left(1+s_{22}\right)+s_{12} s_{21}} \\
& h_{21}=\frac{-2 s_{21}}{\left(1-s_{11}\right)\left(1+s_{22}\right)+s_{12} s_{21}} \\
& h_{22}=\left[\frac{\left(1-s_{22}\right)\left(1-s_{11}\right)-s_{12} s_{21}}{\left(1-s_{11}\right)\left(1+s_{22}\right)+s_{12} s_{21}}\right] \frac{1}{z_{0}}
\end{aligned}
$$

\dagger In converting from y to s parameters, the y parameters must first be multiplied by \mathbf{Z}_{0}, and then substituted in the equations for conversion to s parameters.
$\dagger \dagger$ In converting from h to s parameters, the h parameters must first be normalized to Z_{o} in the following manner and then substituted in the equations for conversion to s parameters:

Parameter	To Normalize
h_{11}	divide by Z_{o}
h_{12}	use as is
h_{21}	use as is
h_{22}	multiply by Z_{0}

Conversion between \mathbf{z} parameters and sparameters:

$$
\begin{aligned}
& z_{11}=\left[\frac{\left(1+s_{11}\right)\left(1-s_{22}\right)-s_{12} s_{21}}{\left(1-s_{11}\right)\left(1-s_{22}\right)-s_{12} s_{21}}\right] z_{0} \\
& z_{12}=\left[\frac{2 s_{12}}{\left(1-s_{11}\right)\left(1-s_{22}\right)-s_{12} s_{21}}\right] z_{0} \\
& z_{21}=\left[\frac{2 s_{21}}{\left(1-s_{11}\right)\left(1-s_{22}\right)-s_{12} s_{21}}\right] z_{0} \\
& z_{22}=\left[\frac{\left(1+s_{22}\right)\left(1-s_{11}\right)+s_{12} s_{21}}{\left(1-s_{11}\right)\left(1-s_{22}\right)-s_{12} s_{21}}\right] z_{0} \\
& s_{11}=\frac{\left(z_{11}-1\right)\left(z_{22}+1\right)-z_{12} z_{21}}{\left(z_{11}+1\right)\left(z_{22}+1\right)-z_{12} z_{21}} \dagger \dagger \dagger \\
& s_{12}=\frac{2 z_{12}}{\left(z_{11}+1\right)\left(z_{22}+1\right)-z_{12} z_{21}} \quad \dagger \dagger \dagger \\
& s_{21}=\frac{2 z_{21}}{\left(z_{11}+1\right)\left(z_{22}+1\right)-z_{12} z_{21}} \quad \dagger \dagger \dagger \\
& s_{22}=\frac{\left(z_{11}+1\right)\left(z_{22}-1\right)-z_{12} z_{21}}{\left(z_{11}+1\right)\left(z_{22}+1\right)-z_{12} z_{21}} \dagger \dagger \dagger
\end{aligned}
$$

$\dagger \dagger \dagger$ In converting from z to s parameters, the \mathbf{z} parameters must first be divided by Z_{0}, and then substituted in the equations for conversion to s parameters.

MATCHING NETWORK DESIGNS WITH COMPUTER SOLUTIONS

Prepared by:
Frank Davis

INTRODUCTION

One of the problems facing the circuit design engineer is the design of high-frequency matching networks. Careful design of a network that will accomplish the required matching, harmonic attenuation, bandwidth, etc., and yield components of practical size can result in many hours spent with pencil and slide rule.

The design of matching networks for high frequency circuits involves an infinite number of possibilities, and a complete tabulation of possible network solutions would be virtually impossible. However, it is often necessary to design matching networks with a $50+\mathrm{j} 0 \mathrm{ohm}$ impedance at one port. This, combined with a restricted range of impedance values to be matched, imposed by network and device limitations, makes practical a tabulation of some of the more commonly used networks. These design solutions are given in this report.

The network solutions included in this report have the limitation that one terminating impedance must be $50+\mathrm{j} 0 \mathrm{ohms}$. These networks are often used for matching in transistor RF power amplifier circuits that have a 50 -ohm source or load. When the network does not have a 50 -ohm termination at either port, the mathematical procedure given for each network in Appendix I can be used for the solution.

COMPONENT CONSIDERATIONS

Four networks are presented in this report with solutions in the form of computer tabulations. Each network has its own limitations. Although the network configuration is normally up to the discretion of the design engineer, it is sometimes necessary to use one configuration in preference to another in order to obtain component values that are more realistic from a practical standpoint.

Component selection in the UHF and VHF irequency ranges becomes a major problem, and the network configuration to obtain realistic component values is of vital importance to the design engineer. Design calculations for matching networks can become completely meaningless unless the components for the network are measured at the operating frequency.

For example, a 100 pF silver mica capacitor that meets all specifications at 1 MHz can have as much capacitance as 300 pF at 100 MHz . At some frequency, the capacitor's series lead inductance will finally tune out the capacitance, thus leaving the capacitor net inductive.

Values of inductance in the low nanohenry range are alsodifficult to obtain, since the inductance of a oneinch straight piece of $\# 20$ solid tinned wire is approximately 20 nH .

Component tolerances have no meaning at VHF frequencies and above unless they are specified at the operating frequency. It cannot be over-emphasized that components must be measured at the operating frequency. NETWORK SOLUTIONS

The resistor and capacitor shown in the box labeled "device to be matched"represent the complex input
or output impedance of a transistor. These complex impedances have been represented in series form in some cases and parallel form in others, depending on which form is most convenient for network calculation. The resultant impedance of the network, when terminated with $50+\mathrm{j} 0$ ohms, must be equal to the conjugate of the impedance in the box. The computer tabulations provide this solution.

Network A (see Figure 1) is applicable only when the "device to be matched" has a series real part of less than 50 ohms. As we can see from the computer tabulation, as the series real part approaches 50 ohms, the reactance of C_{1} approaches infinity. However, in RF power amplifiers, we normally find that the series real part of both the input and the output is less than 50 ohms , making this matching network applicable to most RF power amplifier stages. Where the terminating impedance is other than 50 ohms, the mathematical procedure for the network solution is given in Appendix I.

Network B (see Figure 2) is the Pi network widely used in vacuum tube transmitters. As is apparent from the computer tabulation, this network is often impractical for use where R_{1} is small. For values of R_{1} less than 50 ohms , the inductance of L becomes impractically small while the capacitance of both C_{1} and C_{2} become very large. Where the Pi network configuration must be used to match low values of impedance, a double Pi network, in which the Q of the first section is very low, can be utilized to yield practical components.

Network C has been solved in two forms (see Figure 3). Both of these networks have the limitation that R_{1} must be less than 50 ohms. However, it must be stressed that this network configuration quite often yields the most practical components where low values of \mathbf{R}_{1} must be matched.

Network D (see Figure 4) is a "Tee" network. This network is useful for matching impedance less than or greater than 50 ohms. It has been observed in laboratory tests that this network configuration also yields very high collector efficiencies when used for output matching in transistor RF power amplifier stages.

FIGURE 1 - NETWORK A

FIGURE 2 - NETWORK B

FIGURE 3

FIGURE 4 - NETWORK D
SUMMARY
Four computer-solved networks have been presented. The mathematical procedure for the solution of each network has been given in Appendix I.* Although the networks have found major use in matching solid-state RF power amplifier stages, they are also applicable to any circuit where the individual network's limitations are fulfilled.
*For the derivation of the equations used, refer to Electronic Circuit Analysis, Volume 1, 'Passive Networks,' Philip Cutler.

APPENDIX

To convert a parallel resistance and reactance combination to series

$$
\begin{gathered}
R_{s}=\frac{R_{P}}{1+\left(R_{P} / X_{P}\right)^{2}} \\
X_{s}=R_{s} \frac{R_{P}}{X_{P}}
\end{gathered}
$$

Toconvert a series resistance and reactance combination to parallel:

$$
\begin{gathered}
R_{P}=R_{B}\left[l+\left(X_{s} / R_{s}\right)^{2}\right] \\
X_{P}=\frac{R_{P}}{X_{B} / R_{S}}
\end{gathered}
$$

To solve network A:

1. Select $2 \mathbf{Q}$

$$
\begin{aligned}
X_{L 1} & =Q R_{1}+X_{C \text { out }} \\
X_{C 2} & =A R_{L} \\
X_{C 1} & =\frac{(B / A)(B / Q)}{(B / A)-(B / Q)}=\frac{B}{Q-A} \\
\text { where } A & =\sqrt{\left[\frac{R_{1}\left(1+Q^{2}\right)}{R_{L}}\right]-1}
\end{aligned}
$$

$$
B=R_{1}\left(1+Q^{2}\right)
$$

To solve network B:

1. Select $2 Q$

$$
\begin{aligned}
& X_{C 1}=R_{1} / Q \\
& x_{C 2}=R_{L} \sqrt{\frac{R_{1} / R_{L}}{\left(Q^{2}+1\right)-\left(R_{1} / R_{L}\right)}} \\
& x_{L}=\frac{Q R_{1}+\left(R_{1} R_{L} / X_{C 2}\right)}{Q^{2}+1}
\end{aligned}
$$

To solve network C_{1} :

1. Select $2 \mathbf{Q}$

$$
\begin{aligned}
& X_{L 1}=X_{C \text { out }} \\
& X_{C 1}=Q_{1} \\
& X_{C 2}=R_{L} \sqrt{\frac{R_{1}}{R_{L}-R_{1}}} \\
& X_{L 2}=X_{C 1}+\left(\frac{R_{1} R_{L}}{X_{C 2}}\right)
\end{aligned}
$$

To solve network C_{2} :

1. Select $2 \mathbf{Q}$
2. L_{1} is not used in this network

$$
X_{C 1}=Q R_{1}
$$

$$
x_{C 2}=R_{L} \sqrt{\frac{R_{1}}{R_{L}-R_{1}}}
$$

$$
x_{L 2}=X_{C 1}+\left(\frac{R_{1} R_{L}}{X_{C 2}}\right)+X_{C \text { out }}
$$

To solve network D :

1. Select $2 \mathbf{Q}$

$$
\begin{aligned}
& X_{L 1}=\left(R_{1} Q\right)+X_{C \text { out }} \\
& X_{L 2}=R_{L} B \\
& X_{C 1}=\frac{(A / Q)(A / B)}{(A / Q)+(A / B)}=\frac{A}{Q+B}
\end{aligned}
$$

where $A=R_{1}\left(1+Q^{2}\right)$
$B=\sqrt{\left(\frac{A}{R_{L}}\right)-1}$

Q	$\mathrm{X}_{\mathrm{L} 1}$	$\mathrm{X}_{\mathrm{Cl} 1}$	$\mathrm{X}_{\mathbf{C} 2}$	R_{1}
1	26	65	10	26
1	27	75.3	14. 14	27
1	28	85.68	17.32	28
1	29	96.66	20	29
1	30	108.5	22.36	30
1	32	136	26.46	32
1	34	170	30	34
1	36	213.8	33.16	36
1	38	272.5	36.05	38
1	40	355	38.7	40
1	42	479	41.23	42
1	44	686.32	43.59	44
1	46	1102	45.83	46
1	48	2351	48	48
2	22	32.7	15.8	11
2	24	38.6	22.4	12
2	26	45	27.4	13
2	28	51.2	31.6	14
2	30	58	35.4	15
2	32	65.3	38.7	16
2	34	73.1	41.8	17
2	36	81.4	44.7	18
2	38	90.3	47.4	19
2	40	100	50	20
2	42	110.4	52.4	21
2	44	122	55	22
2	46	134	57	23
2	48	147	59	24
2	50	161	61	25
2	52	177	63	26
2	54	194	65	27
2	56	213	67	28
2	58	233	69	29
2	60	256	71	30
2	64	310	74	32
2	68	377	77	34
2	72	464	81	36
2	76	582	84	38
2	80	746	87	40
2	84	995	89	42
2	88	1409	92	44
2	92	2241	95	46
2	96	4739	97	48
3	18	23.5	22.3	6
3	21	29.6	31.6	7
3	24	35.9	38.7	8
3	27	42.7	44.7	9
3	30	50	50	10
3	33	57.8	54.8	11
3	36	66	59	12
3	39	75	63.2	13

Q	$\mathrm{X}_{\mathrm{L} 1}$	$\mathrm{X}_{\mathrm{Cl} 1}$	$\mathrm{X}_{\mathbf{C 2}}$	R_{1}
3	42	84	67	14
3	45	95	71	15
3	48	105	74	16
3	51	117	77	17
3	54	130	81	18
3	57	143	84	19
3	60	158	87	20
3	63	173	89	21
3	66	190	92	22
3	69	209	95	23
3	72.	228	97	24
3	75	250	100	25
3.	78	274	102	26
3	81	299	105	27
3	84	327	107	28
3	87	358	110	29
3	90	393	112	30
3	96	473	116	32
3	102	575	120	34
3	108	706	124	36
3	114	882	128	38
3	120	1129	132	40
3	126	1502	136	42
3	132	2124	140	44
3	138	3372	143	46
3	144	7119	146	48
4	12	13.2	7.1	3
4	16	20	30	4
4	20	26.9	41.8	5
4	24	34.2	51	6
4	28	42.1	58.7	7
4	32	50.6	66	8
4	36	60	72	9
4	40	69	77	10
4	44	80	83	11
4	48	91	88	12
4	52	103	92	13
4	56	115	97	14
4	60	129	101	15
4	64	144	105	16
4	68	159	109	17
4	72	176	113	18
4	76	194	117	19
4	80	214	120	20
4	84	235	124	21
4	88	257	127	22
4	92	282	131	23
4	96	308	134	24
4	100	337	137	25
4	104	368	140	26
4	108	403	143	27

Q	$\mathbf{X}_{\mathrm{L} 1}$	$\mathrm{X}_{\mathrm{C} 1}$	$\mathrm{X}_{\mathbf{C 2}}$	R_{1}
4	112	440	146	28
4	116	482	149	29
4	120	527	152	30
4	128	635	157	32
4	136	770	162	34
4	144	945	168	36
4	152	1180	173	38
4	160	1510	177	40
4	168	2007	182	42
4	176	2837	187	44
4	184	4500	191	46
4	192	9497	196	48
5	10	10.8	10	2
5	15	18.3	37.4	3
5	20	26.3	52	4
5	25	34.8	63.2	5
5	30	44	73	6
5	35	54	81	7
5	40	65	89	8
5	45	76	96	9
5	50	88	102	10
5	55	101	108	11
5	60	115	114	12
5	65	130	120	13
5	70	146	125	14
5	75	163	130	15
5	80	181	135	16
5	85	201	140	17
5	90	222	145	18
5	95	245	149	19
5	100	269	153	20
5	105	295	157	21
5	110	323	162	22
5	115	354	166	23
5	120	387	169	24
5	125	423	173	25
5	130	462	177	26
5	135	505	181	27
5	140	553	184	28
5	145	604	188	29
5	150	662	191	30
5	160	796	198	32
5	170	965	204	34
5	180	1184	210	36
5	190	1477	217	38
5	200	1890	222	40
5	210	2510	228	42
5	220	3548	234	44
5	230	5628	239	46
5	240	11874	245	48

Q	$\mathrm{X}_{\mathrm{L} 1}$	$\mathrm{X}_{\mathbf{C l} 1}$	$\mathrm{X}_{\mathrm{C} 2}$	R_{1}	Q	$\mathrm{X}_{\mathrm{L} 1}$	X_{Cl}	$\mathrm{X}_{\mathrm{C} 2}$	R_{1}	Q	$\mathrm{X}_{\mathrm{L} 1}$	$\mathrm{X}_{\mathrm{C} 1}$	$\mathrm{X}_{\mathbf{C} 2}$	R_{1}
6	12	13.9	34.6	2	7	189	710	255	27	9	108	210	216	12
6	18	22.7	55.2	3	7	196	776	260	28	9	117	237	225	13
6	24	32.2	70	4	7	203	849	265	29	9	126	266	234	14
6	30	42.5	82	5	7	210	929	269	30	9	135	297	243	15
6	36	53.6	93	6	7	224	1117	278	32	9	144	330	251	16
6	42	65.5	102	7	7	238	1354	287	34	9	153	365	259	17
6	48	78	110	8	7	252	1661	296	36	9	162	403	267	18
6	54	92	119	9	7	266	2071	304	38	9	171	444	275	19
6	60	107	126	10	7	280	2649	312	40	9	180	488	282	20
6	66	122	133	11	7	294	3518	320	42	9	189	535	289	21
6	72	139	140	12	7	308	4971	328	44	9	198	586	296	22
6	78	157	147	13	7	322	7882	335	46	9	207	641	303	23
6	84	176	153	14	7	336	16626	343	48	9	216	701	310	24
6	90	197	159	15						9	225	766	316	25
6	96	219	165	16	8	8	8.7	27.4	1	9	234	837	323	26
6	102	242	170	17	8	16	19.3	63.2	2	9	243	914	329	27
6	108	267	175	18	8	24	31	85	3	9	252	999	335	28
6	114	295	181	19	8	32	43.6	102	4	9	261	1092	341	29
6	120	324	186	20	8	40	57.4	117	5	9	270	1196	347	30
6	126	355	191	21	8	48	72	130	6	9	288	1438	359	32
6	132	389	195	22	8	56	88	142	7	9	306	1743	370	34
6	138	426	200	23	8	64	105	153	8	9	324	2137	381	36
6	144	466	205	24	8	72	124	164	9	9	342	2665	391	38
6	150	509	209	25	8	80	143	173	10	9	360	3407	402	40
6	156	556	214	26	8	88	164	182	11	9	378	4525	412	42
6	162	608	218	27	8	96	187	191	12	9	396	6393	422	44
6	168	664	222	28	8	104	211	199	13					
6	174	727	226	29	8	112	236	207	14	10	10	11.2	50.5	1
6	180	795	230	30	8	120	264	215	15	10	20 30	24.5 39	87 112	2
6	192	957	238	32	8	128	293	222	16	10	30 40	39 55	112	3
6	204	1160	246	34	8	136	324	230	17	10	50	72	151	4 5
6	216	1422	253	36	8	144	358	237	18	10	50 60	72 91	167	6
6	228	1775	260	38	8	152	394	243	19	10	70	111	181	7
6	240	2270	267	40	8	160	433	250	20	10	70	111	181	7
6	252	3015	274	42	8	168	475	256	21	10	80	132	195	8
6	264	4260	281	44	8	176	521	263	22	10	90	155	207	9
6	276	6755	287	46	8	184	570	269	23	10	100	180	219 230	10
6	288	14250	294	48	8	192	623	275	24	10 10	120	206	241	12
7	14	16.7	50	2	8	200	681	281	25	10	130	264	251	13
7	21	26.8	71	3	8	208	744	286	26	10	140	296	261	14
7	28	38	87	4	8	216	812	292	27	10	150	330	271	15
7	35	50	100	5	8	224 232	888 971	297 303	28 29	10	160	367	280	16
7	42	63	112	6	8	232 240	971 1062	303 308	29 30	10	170	406	289	17
7	49	77	122	7	8	256	1277	318	32	10	180	448	297	18
7	56	92	132	8	8	256	1277	318 329	32 34	10	190	494	306	19
7	63	108	141	9	8	288	1899	338	34	10	200	543	314	20
7	70	125	150	10	8	304	2368	348	38	10	210	595	322	21
7	77	143	158	11	8	320	3028	357	40	10	220	652	330	22
7	84	163	166	12	8	336	4022	366	42	10	230	713	337	23
7	91	184	173	13	8	338 352	4022 5682	366 375	42	10	240	780	345	24
7	98	206	180	14	8	368	9009	383	46	10	250	852	352	25
7	105	230	187	15	8	368	9009	383	46	10	260	930	359	26
7	112	256	193	16	9	9	10	40	1	10	270	1016	366	27
7	119	283	200	17	9	18	21.9	76	2	10	280	1111	373	28
7	126	313	206	18	9	27	35	99	3	10	290	1214	379	29
7	133	344	212	19	9	36	49.4	118	4	10	300	1329	383	30
7	140	379	218	20	9	45	65	134	5	10	320	1598	399	32
7	147	415	224	21	9	54	82	149	6	10	340	1937	411	34
7	154	455	229	22	9	63	100	162	7	10	360	2375	423	36
7	161	498	234	23	9	72	119	174	8	10	380	2961	435	38
7	168	544	239	24	9	81	139	185	9	10	400	3787	446	40
7	175	595	245	25	9	90	162	196	10	10	420	5029	458	42
7	182	650	250	26	9	99	185	206	11	10	440	7104	469	44

NETWORK B
The following is a computer solution for the Pi network when R_{L} equals 50 ohms.

TO DESIGN A NETWORK USING THE TABLES

1. Define Q, in column one, as $R_{1} / X_{C 1}$.
2. C_{1} actual is equal to $C_{1}-$ parallel $C_{\text {out }}$ of device to be matched.
3. This completes the network.

Q	$\mathrm{X}_{\mathrm{C} 1}$	$\mathrm{X}_{C 2}$	X_{L}	R_{1}	Q	${ }^{X_{C 1}}$	$\mathrm{X}_{\mathrm{C} 2}$	X_{L}	R_{1}	Q	$\mathrm{X}_{\mathrm{C} 1}$	${ }^{X_{C 2}}$	X_{L}	R_{1}
1	1	5.03	5.47	1	3	0.33	2.24	2.53	1	5	20	14.43	32.55	100
1	2	7.14	8	2	3	0.67	3.17	3.76	2	5	25	16.31	38.78	125
1	3	8.79	10.03	3	3	1	3.88	4.76	3	5	30	18.06	44.82	150
1	4	10.21	11.8	4	3	1.33	4.49	5.65	4	5	35	19.72	50.72	175
1	5	11.47	13.4	5	3	1.67	5.03	6.47	5	5	40	21.32	56.5	200
1	10	16.67	20	10	3	3.33	7.14	10	10	5	45	22.87	62.18	225
1	15	21	25.35	15	3	5	8.79	13.03	15	5	50	24.4	67.78	250
1	20	25	30	20	3	6.67	10.21	15.8	20	5	60	27.39	78.76	300
1	25	28.87	34.15	25	3	8.33	11.47	18.4	25	5	80	33.33	100	400
1	30	32.73	37.91	30	3	10	12.63	20.87	30	5	100	39.53	120.48	500
1	35	36.69	41.35	35	3	11.67	13.72	23.26	35	5	120	46.29	140.31	600
1	40	40.82	44.49	40	3	13.33	14.74	25.56	40	5	140	54.01	159.54	700
1	45	45.23	47.37	45	3	15	15.72	27.81	45	5	160	63.25	178.17	800
1	50	50	50	50	3	16.67	16.67	30	50	5	180	75	196.15	900
1	55	55.28	52.37	55	3	18.33	17.58	32.14	55	5	200	91.29	213.37	1000
1	60	61.24	54.49	60	3	20	18.46	34.25	60	5	220	117.26	229.58	1100
1	65	68.14	56.35	65	3	21.67	19.33	36.32	65	5	240	173.21	244.09	1200
1	70	76.38	57.91	70	3	23.33	20.17	38.35	70					
1	75	86.6	59.15	75	3	25	21	40.35	75	6	0.17	1. 16	1.32	1
1	80	100	60	80	3	26.67	21.82	42.33	80	6	4.17	5.85	9.83	25
1	85	119.02	60.35	85	3	28.33	22.63	44.28	85	6	8.33	8.33	16.22	50
1	80	150	60	90	3	30	23.43	46.21	90	6	12.5	10.28	22.02	75
2	0.5	3.17	3.56	1	3	31.67 33.33	24.22	48.12	95	6	16.67	11.95	27.52	100
2	1	4.49	5.25	2	3	33.33	25	50	100	6	20.83	13.46	32.82	125
2	1.5	5.51	6.64	3	3 3	41.6 50	28.87 32.73	67. 91	125	6	25	14.85	37.97	150
2	2	6.38	7.87	4	3	58.33	36.69	76.35	175	6	29.17 33.33	16.16 17.41	43.01 47.96	175
2	2.5	7.14	9	5	3	66.67	40.82	84.49	200	6	37.5	18.61	52.83	225
2	5	10.21	13.8	10	3	75	45.23	92.37	225	6	41.67	19.76	57.63	250
2	7.5	12.63	17.87	15	3	83.33	50	100	250	6	50	22	67.08	300
2	10	14.74	21.56	20						6	66.67	26.26	85.45	400
2	12.5	16.67	25	25	4	6.25	8.7	14.33	25	6	83.33	30.43	103.29	500
2	15 17.5	18.46	28.25 31.35	30 35	4	12.5	12.5	23.53	50	6	100	34.64	120.7	600
2	17.5	20.17 21.82	31.35 34.33	35	4	18.75	15.55	31.83	75	6	116.67	39.01	137.76	700
2	22.5	21.82 23.43	34.33 37.21	40	4	25	18.26	39.64	100	6	133.33	43.64	154.5	800
2	25	25	40	50	4	31.25	20.76	47.12	125	6	150	48.67	170.94	900
2	27.5	26.55	42.71	55	4	37.5	23.15	54.36	150	6	166.67	54.23	187.08	1000
2	30	28.1	45.35	60	4	43.75	25.46	61.39	175	6	183.33	60.55	202.93	1100
2	32.5	29.64	47.93	65	4	50	27.74	68.27	200	6	200	67.94	218.46	1200
2	35	31.18	50.45	70	4	56.25 62.5	30.1	75.61	225	6	216.67 233.33	76.87 88.19	233.66 248.48	1300 1400
2	37.5	32.73	52.91	75	4	75	32.27 36.93	81.61 94.48	300	6	250	103.51	262.83	1500
2	40	34.3 35.89	55.32 57.69	80	4	100	36.93 47.14	119.07	400	6	266. 67	126.49	276.55	1600
2	42.5	35.89	57.69	85	4	125	59.76	142.25	500	6	283.33	168.33	289.32	1700
2	45 475	37.5 39.14	60.	90	4	150	77.46	163.96	600	6	300	300	300	1800
2	47.5 50	39.14 40.82	62.27 64.49	- 100	4	175	108.01	183.77	700	7	0.14	1	1.14	1
2	62.5	50	75	125	4	200	200	200	800	7	3.57	5.03	8.47	25
2	75	61.24	84.49	150	5	0.2	1.39	1.58	1	7	7.14	7.14	14	50
2	87.5	76.38	92.91	175	5	5	7	11.67	25	7	10.71	8.79	19.03	75
2	100	100	100	200	5	10	10	19.23	50	7	14.29	10.21	23.8	100
2	112.5	150	105	225	5	15	12.37	26.08	75	7	17.86	11.47	28.4	125

Q	x_{Cl}	$\mathrm{x}_{\mathrm{C} 2}$	x_{L}	R_{1}	Q	$\mathrm{x}_{\mathrm{C} 1}$	$\mathrm{x}_{\mathbf{C} 2}$	X_{L}	R_{1}	Q	$\mathrm{x}_{\mathrm{C} 1}$	$\mathrm{x}_{\mathbf{C} 2}$	x_{L}	R_{1}
7	21.43	12.63	32.87	150	10	0.1	0.7	0.8	1	16	18.75	7.73	26.23	300
7	25	13.72	37.26	175	10	5	5	9.9	50	16	25	8.96	33.59	400
7	28.57	14. 74	41.56	200	10	10	7.11	16.87	100	16	31.25	10.06	40.8	500
7	32.14	15.72	45.81	225	10	15	8.75	23.34	150	16	37.5	11.07	47.9	600
7	35.71	16.67	50	250	10	20	10.15	29.55	200	16	43.75	12	54.93	700
7	42.86	18.46	58.25	300	10	25	11.41	35.6	250	16	50	12.88	61.89	800
7	57.14	21.82	74.33	400	10	30	12.57	41.52	300	16	56.25	13. 72	68.79	300
7	71.43	25	90	500	10	40	14.66	53.11	400	16	62.5	14.52	75.65	1000
7	85.71	28.1	105.35	600	10	50	16.57	64.44	500	16	75	16.05	89.26	1200
7	100	31. 18	120.45	700	10	60	18.36	75.58	600	16	87.5	17.48	102.74	1400
7	114.29	34.3	135.32	800	10	70	20.06	86.58	700	16	100	18.86	116.12	1600
7	128.57	37.5	150	900	10	80	21.69	97.46	800	16	112.5	20.18	129.42	1800
7	142.86	40.82	164.49	1000	10	90	23.28	108.24	900	16	125	21.47	142.64	2000
7	171.43	48.04	192.98	1200	10	100	24.85	118.94	1000	16	137.5	22.73	155.8	2200
7	200	56.41	220.82	1400	10	120	27.91	140.09	1200	16	150	23.96	168.9	2400
7	228.57	66.67	248	1600	10	140	30.97	161	1400	16	162.5	25.18	181.95	2600
7	257. 14	80.18	274.45	1800	10	160	34.05	181.68	1600	16	175	26.39	194.96	2800
7	285.71	100	300	2000	10	180	37.21	202.17	1800	16	187.5	27.59	207.92	3000
7	314.29	135.4	324.25	2200	10	200	40.49	222.47	2000	16	218.75	30.59	240.16	3500
7	342.86	244.95	345.8	2400	10	220	43.93	242.61	2200	16	250	33.61	272.18	4000
					10	240	47.58	262.59	2400	16	281.25	36.71	304.01	4500
										16	312.5	39.9	335.66	5000
8	0.13	0.88	1	1						16	343.75	43.25	367.15	5500
8	3.13	4.4	7.45	25	12	25	10.39	34.79	300	16	375	46.8	398.49	6000
8	6.25	6.25	12.31	50	12	33.33	12.08	44.52	400					
8	9.38	7.68	16.74	75	12	41.67	13.61	54.05	500	18 18	16.67 22.22	6.86 7.94	23.35 29.9	300 400
8	12.5	8.91	20.94	100	12	50	15.02	63.43	600	18 18	22.22 27.78	7.94 8.91	29.9 36.33	500
8	15.63	10	25	125	12	58.33	16.35	72.7	700	18 18	27.78 33.33	8.91 9.79	36.33 42.66	500 600
8	18.75	11.	28.95 32.82	175	12	66.67	17.61	81.87	800	18	38.39 38.89	9.79 10.61	48.62 48.92	700
8	21.88	11.93	32.82	175	12	75	18.82	90.97	900	18	44.44	11.38	55. 13	800
8	25.13	12.8 13.64	36.63 40.38	225	12	83.33	20	100	1000	18	50	12.11	61.28	900
8	31.25	14.43	44.09	250	12	100	22.27 24.46	117.89	1200	18	55.56	12.8	67.4	1000
8	37.5	15.94	51.4	300	12	${ }_{133.33}$	24.46 26.61	135.6 153.15	1400	18	66.67	14. 12	79.54	1200
8	50	18.73	65.66	400	$\cdot 12$	150	28.73	170.57	1800	18	77. 78	15.35	91.57	1400
8	62.5	21.32	79.58	500	12	166.67	30.86	187. 86	2000	18	88.89	16.52	103.51	1600
8	75	23.79	93.25	600	12	183.33	33			18	100	17.65	115.38	1800
8	87.5	26.2	106.71	700	12	200	35.17	222.15	2400	18	111.11	18.73	127.2	2000
8	100	28.57	120	800	12	216.67	37.39	239.16	2600	18	122.22	19.79	138.95	2200
8	112.5	30.94	133.14	900	12	233.33	39.66	256.07	2800	18	133.33	20.81	150.66	2400
8	125	33.33	146.15	1000	12	250	42.01	272.9	3000	18	144.44	21.82	162.33	2600
8	150	38.25	171.82	1200	12	291.67	48.3	314.64	3500	18	155.56	22.81	173.96	2800
8	175	43.5	197.07	1400	12	333.33	55.47	355.9	4000	18	166.67	23.79	185.55	3000
8	200	49.24	221.92	1600	12	375	63.86	396.67	4500	18	194.44	26.2	214.4 243	3500
8	225	55. 71	246.39	1800	12	416.67	74.54	436.92	5000	18 18	250	28.57 30.94	243.08 271.6	4000 4500
8	$\begin{aligned} & 250 \\ & 275 \end{aligned}$	63.25 72.37	$\left\lvert\, \begin{aligned} & 270.48 \\ & 294.15 \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & 2000 \\ & 2200 \end{aligned}\right.$	12	458.33	88.64	476.57	5500	18	277.78	33.33	300	4500 5000
8	300	84.02	317.36	$\begin{aligned} & 2200 \\ & 2400 \end{aligned}$	12	500	109.54	515.44	6000	18	305.56	35.76	328.27	5500
										18	333.33	38.25	356.44	6000
					14	21.43	8.86	29.91	300	20	15	6.16	21.03	300
9	8.33	6.83	14.93	75	14	28.57	10.29	38.3	400	20	20	7.13	26.94	400
9	11.11	7.91	18.69	100	14	35.71	11.56	46.51	500	20	25		32.73	500
9	13.89	8.87	22.32	125	14	42.86	12.73	54.6	600	20	30	8.78	38.44	600
9	16.67	9.74	25.85	150	14	50	13.83	62.59	700	20	35	9.51	44.09	700
9	19.44	10.56	29.31	175	14	57.14	14.87	70.51	800	20	40	10.19	49.69	800
9	22.22	11.32	32.72	200	14	64.29	15.86	78.37	900	20	45	10.84	55.24	500
9	25	12.05	36.08	225	14	71.43	16.81	86.17	1000	20	50	11.46	60.76	1000
9	27.78	12.74	39.4	250	14	85.71	18.62	101.63	1200	20	60	12.62	71.71	1200
9	33.33	14.05	45.95	300	14	100	20.35	116.95	1400	20	70	13.7	82.57	1400
9	44.44	16.44	58.74	400	14	114.29	22.02	132.15	1600	20	80	14.72	93.35	1600
9	55.56	18.63	71.24	500	14	128.57	23.64	147.24	1800	20	90	15.7	104.07	1800
9	66.67	20.7	83.53	600	14	142.88	25.24	162.25	2000	20	100	16.64	114.73	2000
9	77.78	22.69	95.64	700	14	157.14	26.81	177. 17	2200	20	110	17.55	125.35	2200
9	88.89	24.62	107.62	800	14	171.43	28.38	192.02	2400	20	120	18.44	135.93	2400
$9 \cdot$	100	26.52	119.48	900	14	185.71	29.94	206.81	2600	20	130	19.3	146.47	2600
9	111.11	28.4	131.23	1000	14	200	31.51	221.54	2800	20	140	20.14	156.88	2800
9	133.33	32.16	154.46	1200	14	214.29	33.09	236.21	3000	20	150	20.97	167.46	3000
9	155.56	36	177.37	1400	14	250	37.12	272.66	3500	20	175	22.99	193.54	3500
9	177.78	40	200	1600	14	285.71	41.34	308. 82	4000	20	200	24.96	219.48	4000
9	200	44.23	222.37	1800	14	321.43	45.86	344.7	4500	20	225	26.9	245.3	4500
9	222.22	48.8	244.5	2000	14	357.14	50.77	380.33	5000	20	250	28.82	271.01	5000
9	244.44	53.8	266.4	2200	14	382.88	56.22	415.69	5500	20	275	30.74	286.62	5500
9	266.67	59.41	288.05	2400	14	428.57	62.42	450.79	6000	20	300	32.67	322.15	6000

AN267

NETWORK C_{1}

The following is a computer solution for an RF matching network. This computer solution is applicable for two forms of matching networks.

TO DESIGN A NETWORK USING THE TABLES

1. $X_{L 1}=X_{C \text { out }}$
2. Define Q, in column one, as $X_{C 1} / R_{1}$.
3. All network values can now be read from the charts in terms of reactance.
4. This completes network C_{1}.

NETWORK C_{2}

		$\xrightarrow[c_{\text {out }}]{\longrightarrow}$						to design a network using the tables 1. L_{1} is not used in this network. 2. Transform the impedance of the device to be matched to series form ($R_{1}+j X_{C \text { out }}$). 3. Define Q. in column one, as $X_{C 1} / R_{1}$. 4. For a desired Q, find the R_{s} to be matched in the R_{1} column and read the reactive value of the components. 5. $X_{L 2}$ is equal to the quantity $X_{L 2}$ obtained from the tables plus $\left\|X_{C_{o u t}}\right\|$. 6. This completes network C_{2}.						
Q	$\mathrm{x}_{\mathrm{C} 1}$	$\mathrm{x}_{\mathbf{C 2}}$	$\mathrm{X}_{\mathrm{L} 2}$	R_{1}	Q	$\mathrm{x}_{\mathrm{C} 1}$	$\mathrm{X}_{\mathrm{C} 2}$	$\mathrm{X}_{\mathrm{L} 2}$	R_{1}	Q	$\mathrm{x}_{\mathrm{C} 1}$	$\mathrm{X}_{\mathrm{C} 2}$	$\mathrm{X}_{\mathrm{L} 2}$	R_{1}
	1	7.14	8	1	1	38	88.98	59.35	38	2	54	54.17	78.92	27
1	2	10.21	11.8	2	1	40	100	60	40	2	56	56.41	80.82	28
1	3	12.63	14.87	3	1	42	114.56	60.33	42	2	58	58.76	82.68	29
1	4	14.74	17.56	4	1	44	135.4	60.25	44	2	60	61.24	84.49	30
1	5	16.67	20	5	1	46	169.56	59.56	46	2	64	66.67	88	32
1	6	18.46	22.25	6	1	48	244.95	57.8	48	2	68	72.89	91.32	34
1	7	20.17	24.35	7						2	72	80.18	94.45	36
1	8	21.82	26.33	8	2	2	7.14	9	1	2	76	88.98	97.35	38
1	9	23.43	28.21	9	2	4	10.21	13.8	2	2	80	100	100	40
1	10	25	30	10	2	6	12.63	17.87	3	2	84	114.56	102.33	42
1	11	26.55	31.81	11	2	8	14.74	21.56	4	2	88	135.4	104.25	44
1	12	28.1	33.35	12	2	10	16.67	25	5	2	92	169.56	105.56	46
1	13	29.64	34.93	13	2	12	18.46	28.25	6	2	96	244.95	105.8	48
	14	31.13	36.45	14	2	14	20.17	31.35	7					
1	15	32.73	37.91	15	2	16	21.82	34.33	8	3	3	7.14	10	1
1	16	34.3	39.32	16	2	18	23.43	37.21	9	3	6	10.21	15.8	2
1	17	35.89	40.69	17	2	20	25	40	10	3	9	12.63	20.87	3
1	18	37.5	42	18	2	22	26.55	42.71	11	3	12	14.74	25.56	4
1	19	39.14	43.27	19	2	24	28.1	45.35	12	3	15	16.67		5
1	20	40.82	44.49	20	2	26	29.64	47.93	13	3	18	18.46	34.25	6
1	21	42.55	45.68	21	2	28	31. 18	50.45	14	3	21	20.17	38.35	7
1	22	44.32	46.82	22	2	30	32.73	52.91	15	3	24	21.82	42.33	8
1	23	46.15	47.92	23	2	32	34.3	55.32	16	3	27	23.43	46.21	9
1	24	48.04	48.98	24	2	34	35.89	57.69	17	3	30	25		10
1	25	50	50	25	2	36	37.5	60	18	3	33	26.55	53.71	11
1	26	52.04	50.98	26	2	38	39.14	62.27	19	3	36	28.1	57.35	12
1	27	54.17	51.92	27	2	40	40.82	64.49	20	3	39	29.64	60.98	13
1	28	56.41	52.82	28	2	42	42.55	66.68	21	3	42	31.18	64.45	14
1	29	58.76	53.68	29	2	44	44.32	68.82	22	3	45	32.73.	67.91	15
1	30	61.24	54.49	30	2	46	46. 15	70.82	23	3	48	34.3	71.32	16
1	32	66.67	56	32	2	48	48.04	72.98	24	3	51	35.89	74.69	17
1	34	72.89	57.32	34	2	50	50	75	25	3	54	37.5	78	18
1	36	80.18	58.45	36	2	52	52.04	76.98	26	3	57	39.14	81.27	19

Q	$\mathrm{X}_{\mathrm{Cl} 1}$	$\mathrm{X}_{\mathrm{C} 2}$	$\mathrm{X}_{\mathrm{L} 2}$	R_{1}	Q	$\mathrm{X}_{\mathrm{C} 1}$	$\mathrm{X}_{\mathrm{C} 2}$	$\mathrm{X}_{\mathrm{L} 2}$	R_{1}	Q	$\mathrm{X}_{\mathrm{Cl} 1}$	$\mathrm{X}_{\mathrm{C} 2}$	$\mathrm{X}_{\mathrm{L} 2}$	R_{1}
3	60	40.82	84.49	20	5	60	28.1	81.35	12	7	28	14.74	41.56	4
3	63	42.55	87.68	21	5	65	29.64	86.93	13	7	35	16.67	50	5
3	66	44.32	90.82	22	5	70	31. 18	92.45	14	7	42	18.46	58.25	6
3	69	46.15	93.93	23	5	75	32.73	97.91	15	7	49	20.17	66.35	7
3	72	48.04	96.98	24	5	80	34.3	103.32	16	7	56	21.82	74.33	8
3	75	50	100	25	5	85	35.89	108.69	17	7	63	23.43	82.21	9
3	78	52.04	102.98	26	5	90	37.5	114	18	7	70	25	90	10
3	81	54.17	105.92	27	5	95	39.14	119.27	19	7	77	26.55	97.71	11
3	84	56.41	108.82	28	5	100	40.82	124.49	20	7	84	28.1	105.35	12
3	87	58.76	111.68	29	5	105	42.55	129.68	21	7	91	29.64	112.93	13
3	90	61.24	114.49	30	5	110	44.32	134.82	22	7	98	31.18	120.45	14
3	96	66.67	120	32	5	115	46.15	139.92	23	7	105	32.73	127.91	15
3	102	72.89	125.32	34	5	120	48.04	144.98	24	7	112	34.3	135.32	16
3	108	80.18	130.45	36	5	125	50	150	25	7	119	35.89	142.69	17
3	114	88.98	135.35	38	5	130	52.04	154.98	26	7	126	37.5	150	18
3	120	100	140	40	5	135	54.17	159.92	27	7	133	39.14	157.27	19
3	126	114.56	144.33	42	5	140	56.41	164.82	28	7	140	40.82	164.49	20
3	132	135.4	148.25	44	5	145	58.76	169.68	29	7	147	42.55	171.68	21
3	138	169.56	151.56	46	5	150	61.24	174.49	30	7	154	44.32	178.82	22
3	144	244.95	153.8	48	5	160	66.67	184	32	7	161	46.15	185.92	23
4	4	7.14	11	1	5	170	72.89	193.32	34	7	168	48.04	192.98	24
4	8	10.21	17.8	2	5	180	80.18	202.45	36	7	175	50	200	25
4	12	12.63	23.87	3	5	190	88.98	211.35	38	7	182	52.04	206.98	26
4	16	14.74	29.56	4	5	200	100	220	40	7	189	54.17	213.92	27
4	20	16.67	35	5	5	210	114.56	228.33	42	7	196	56.41	220.82	28
4	24	18.46	40.25	6	5	220	135.4	236.25	44	7	203	58.76	227.68	29
4	28	20.17	45.35	7	5	230	169.56	243.56	46	7	210	61.24	234.49	30
4	32	21.82	50.33	8	5	240	244.95	249.8	48	7	224	66.67	248	32
4	36	23.43	55.21	9	6	6	7.14	13	1	7	238	72.89	261.32	34
4	40	25	60	10	6	12	10.21	21.8	2	7	252	80.18	274.45	36
4	44	26.55	64.71	11	6	18	12.63	29.87	3	7	266	88.98	287.35	38
4	48	28.1	69.35	12	6	24	14.74	37.56	4	7	280	100	300 312.33	40
4	52	29.64	73.93	13	6	30	16.67	45	5	7	308	135.4	324.25	44
4	56	31.18	78.45	14	6	36	18.46	52.25	6	7	308 322	135.4 169.56	324.25 335.56	44 46
4	60	32.73	82.91	15	6	42	20.17	59.35	7	7	336	244.95	345.8	48
4	64	34.3	87.32	16	6	48	21.82	66.33	8	7	33			
4	68	35.89	91.69	17	6	54	23.43	73.21	9	8	8	7.14	15	1
4	72	37.5	96	18	6	60	25	80	10	8	16	10.21	25.8	2
4	76	39.14	100.27	19	6	66	26.55	86.71	11	8	24	12.63	35.87	3
4	80	40.82	104. 49	20	6	72	28.1	93.35	12	8	32	14. 74	45.56	4
4	84	42.55	108.68	21	6	78	29.64	99.93	13	8	40	16.67	55	5
4	88	44.32	112.82	22	6	84	31.18	106.45	14	8	48	18.46	64.25	6
4	92	46.15	116.92	23	6	90	32.73	112.91	15	8	56	20. 17	73.35	7
4	86	48.04	120.98	24	6	86	34.3	119.32	16	8	64	21.82	82.33	8
4	100	50	125	25	6	102	35.89	125.69	17	8	72	23.43	91.21	9
4	104	52.04	128.98	26	6	108	37.5	132	18	8	80	25	100	10
4	108	54.17	132.92	27	6	114	39.14	138.27	19	8	88	26.55	108.71	11
4	112	56.41	136.82	28	6	120	40.82	144.49	20	8	96	28.1	117.35	12
4	116	58.76	140.68	29	6	126	42.55	150.68	21	8	104	29.64	125.93	13
4	120	61.24	144.49	30	6	132	44.32	156.82	22	8	112	31.18	134.45	14
4	128	66.67	152	32	6	138	46.15	162.92	23	8	120	32.73	142.91	15
4	136	72.89	159.32	34	6	144	48.04	168.98	24	8	128	34.3	151.32	16
4	144	80.18	166.45	36	6	150	50	175	25	8	136	35.89	159.69	17
4	152	88.98	173.35	38	6	156	52.04	180.98	26	8	144	37.5	168	18
4	160	100	180	40	6	162	54.17	186.92	27	8	152	39. 14	176.27	19
4	168	114.56	186.33	42	6	168	56.41	182.82	28	8	160	40.82	184.49	20
4	176	135.4	192.25	44	6	174	58.76	198.68	29	8	168	42.55	192.68	21
4	184	169.56	197.56	46	6	180	61.24	204.49	30	8	176	44.32	200.82	22
4	192	244.95	201.8	48	6	192	66.67	216	32	8	184	46.15	208. 92	23
5	5	7.14	12	1	6	204	72.89	227.32	34	8	192	48.04	216.98	24
5	10	10.21	19.8	2	6	216	80.18	238.45	36	8	200	50	225	25
5	15	12.63	26.87	3	6	228	88.98	249.35	38	8	208	52.04	232.98	26
5	20	14.74	33.56	4	6	240	100	260	40	8	216	54.17	240.92	27
5	25	16.67	40	5	6	252	114.56 135.4	270.33 280.25	42	8	224	56.41 58.76	248.82 256.68	28 29
5	30	18.46	46.25	6	6	276	169.56	289.56	46	8	240	61.24	264.49	30
5	35	20.17	52.35	7	6	288	244.95	297.8	48	8	256	66.67	280	32
5	40	21.82	58.33	8						8	272	72.89	295.32	34
5	45	23.43	64.21	9	7	7	7.14 10.21		1	8	288	80.18	310.45	36
5	50	25	70	10	7	14	10.21	23.8	2 3	8	304	88.98	325.35	38
5	55	26.55	75.71	11	7	21	12.63	32.87	3					

Q	$\mathrm{X}_{C 1}$	$\mathrm{X}_{\mathrm{C} 2}$	$\mathrm{X}_{\mathrm{L} 2}$	R_{1}	Q	$\mathrm{X}_{\mathrm{C} 1}$	$\mathrm{X}_{\mathrm{C} 2}$	${ }^{\mathrm{X}} \mathrm{L} 2$	R_{1}	Q	$\mathrm{X}_{\mathrm{Cl} 1}$	${ }^{X_{C 2}}$	$\mathrm{X}_{\mathrm{L} 2}$	R_{1}
8	320	100	340	40	9	414	169.56	427.56	46	10	120	28.1	141.35	12
8	336	114.56	354.33	42	9	432	244.95	141.8	48	10	130	29.64	151.93	13
8	352	135.4	368.25	44	9	216	48.04	240.98	24	10	140	31.18	162.45	14
8	368	169.56	381.56	46	9	225	50	250	25	10	150	32.73	172.91	15
8	384	244.95	393.8	48	9	234	52.04	258.98	26	10	160	34.3	183.32	16
9	9	7.14	16	1	9	243	54.17	267.92	27	10	170	35.89	193.69	17
9	18	10.21	27.8	2	9	252	56.41	276.82	28	10	180	37.5	204	18
9	27	12.63	38.87	3	9	261	58.76	285.88	29	10	190	39.14	214.27	19
9	36	14.74	49.56	4	9	270	61.24	294.49	30	10	200	40.82	224.49	20
9	45	16.67	60	5	9	288	66.67	312	32	10	210	42.55	234.68	21
9	54	18.46	70.25	6	9	306	72.89	329.32	34	10	220	44.32	244.82	22
9	63	20.17	80.35	7	9	324	80.18	346.45	36	10	230	46.15	254.92	23
9	72	21.82	90.33	8	9	342	88.98	363.35	38	10	240	48.04	204.98	24
9	81	23.43	100.21	9	9	360	100	380	40	10	250	50	275	25
9	90	25	110	10	9	378	114.56	396.33	42	10	260	52.04	284.98	26
9	99	26.55	119.71	11	8	396	135.4	412.25	44	10	270	54.17	294.92	27
9	108	28.1	129.35	12						10	280	56.41	304.82	28
9	117	29.64	138.93	13	10	10	7.14	17	1	10	290	58.76	314.68	29
9	126	31.18	148.45	14	10	20	10.21	29.8	2	10	300	61.24	324.49	30
9	135	32.73	157.91	15	10	30	12.63	41.87	3	10	320	66.67	344	32
9	144	34.3	167.32	16	10	4 C	14.74	53.56	4	10	340	72.89	363.32	34
9	153	35.89	176.69	17	10	50	16.67	65	5	10	360	80.18	382.45 401.35	36 38
9	162	37.5	186	18	10	60	18.46	76.25	6	10	380 400	88.98 100	401.35 420	38 40
9	171	39.17	195.27	19	10	70	20.17	87.35	7	10	400 420	100 114.56	420.33	40
9	180	40.82	204.49	20	10	80	21.82	38.33	8	10	440	135.4	456.25	44
9	189	42.55	213.68	21	10	90	23.43	109.21	9	10	460	169.56	473.56	46
9	198	44.32	222.82	22	10	100	25		10	10	480	244.95	489.8	48
9	207	46. 15	231.92	23	10	110	26.55	130.71	11	10	460	244.95	489.6	48

NETWORK D

The following is a computer solution for an RF "Tee" matching network.
Tuning is accomplished by using a variable capacitor for
C_{1}. Variable matching may aiso be accomplished by increasing $X_{L 2}$ and adding an equal amount of X_{C} in series in the form of a variable capacitor.

TO DESIGN A NETWORK USING THE TABLES

1. Define Q, in column one, as $X_{L 1} / R_{1}$.
2. For an R_{1} to be matched and a desired Q, read the reactances of the network components from the charts.
3. $\mathrm{X}_{\mathrm{L} 1}{ }^{\text {i }}$ is equal to the quantity $\mathrm{X}_{\mathrm{L} 1}$ obtained from the tables plus $\left|X_{C_{\text {out }}}\right|$.
4. This completes the network.

Q	X_{LI}	$\mathrm{X}_{\underline{L} 2}$	$\mathrm{X}_{\mathbf{C l}}$	\mathbf{R}_{1}	Q	$\mathrm{X}_{\mathrm{L} 1}$	$\mathrm{X}_{\mathrm{L} 2}$	$\mathrm{X}_{\mathbf{C l} 1}$	R_{1}	Q	$\mathrm{X}_{\mathrm{L} 1}$	$\mathrm{X}_{\mathrm{L} 2}$	$\mathrm{X}_{\mathrm{Cl} 1}$	R_{1}
1	26	10	43.33	26	1	175	122.47	101. 46	175	2	68	77.46	47.9	34
1	27	14.14	42.09	27	1	200	132.29	109.72	200	2	72	80.62	49.83	36
1	28	17.32	41.59	28	1	225	141.42	117.54	225	2	76	33.67	51.72	38
1	29	20	41.43	29	1	250	150	125	250	2	80	36.6	53.58	40
1	30	22.36	41.46	30	1	275	158. 11	132.14	275	2	84	89.44	55.43	42
1	32	26.46	41.85	32	1	300	165.83	139	300	2	88	92.2	57.23	44
1	34	30	42.5	34	2	22	15.81	23.75	11	2	92	94.87	59.01	46
1	36	33.17	43.29	36	2	24	22.36	24.52	12	2	96	97.47	60.77	48
1	38	36.06	44.16	38	2	26	27.39	25.51	13	2	100	100	62.5	50
1	40	38.75	45.08	40	2	28	31.62	26.59	14	2	110	106.07	66.73	55
. 1	42	41.23	46.04	42	2	30	35.36	27.7	15	2	120	111.8	70.82	60
1	44	43.59	47.01	44	2	32	38.73	28.83	16	2	130	117.26	74.8	65
1	46	45.83	48	46	2	34	41.83	29.95	17	2	140	122.47	78.66	70
1	48	47.96	49	48	2	36	44. 72	31.09	18	2	150	127.48	82.43	75
1	50	50	50	50	2	38	47.43	32.22	19	2	160	132.29	86.1	80
1	55	54.77	52.48	55	2	40	50	33.33	20	2	170	136.93	89.69	85
1	60	59, 16	54.96	60	2	42	52.44	34.44	21	2	180	141.42	93.2	90
1	65	63.25	57.4	65	2	44	54,77	35.54	22	2	190	145.77	96.63	95
1	70	67.08	69.79	70	2	46	57. 01	36.62	23	2	200	150	100	100
1	75	70.71	62. 13	75	2	48	59, 16	37.7	24	2	250	169.56	115.93	125
1	80	74. 16	64.43	80	2	50	61.24	38.76	25	2	300	187.08	130.62	150
1	85	77.46	66.69	85	2	52	63.25	39.32	26	2	350	203.1	144.34	175
1	90	80.62	68.9	90	2	54	65.19	40.86	27	2	400	217.94	157.28	200
1	95	83.67	71.07	95	2	56	67.08	41.9	28	2	450	231.84	169.51	225
1	100	86.6	73.21	100	2	58	68.92	42.92	29	2	500	244.95	181.19	250
1	125	100	89.35	125	2	60	70.71	43.93	30	2	550	257.39	192.37	275
1	150	111.8	28.71	150	2	64	74, 16	45,93	32	2	600	269.26	203. 11	300

Q	$\mathrm{X}_{\mathrm{L} 1}$	$\mathrm{X}_{\mathrm{L} 2}$	$\mathrm{X}_{\mathrm{Cl} 1}$	R_{1}	Q	$\mathrm{X}_{\mathbf{L 1}}$	$\mathrm{X}_{\mathrm{L} 2}$	$\mathrm{X}_{\mathrm{C} 1}$	R_{1}	Q	$\mathrm{X}_{\mathrm{L} 1}$	X_{12}	$\mathrm{X}_{\mathrm{C} 1}$	R_{1}
3	18	22.36	17.41	6	4	112	145.95	68.8	28	5	625	400	250	125
3	21	31.62	19.27	7	4	116	148.83	70.67	29	5	750	438.75	283.12	150
3	24	38.73	21.19	8	4	120	151.66	72.51	30	5	875	474.34	314.08	175
3	27	44.72	23.11	9	4	128	157.16	76.16	32	5	1000	507.44	343.26	200
3	30	50	25	10	4	136	162.48	79.73	34	5	1125	538.52	670.95	225
3	33	54.77	26.86	11	4	144	167.63	83.24	36	5	1250	567.89	397.36	250
3	36	59.16	28.69	12	4	152	172.63	86.68	38	5	1375	595.82	422.67	275
3	39	63.25	30.48	13	4	160	177.48	90.07	40	5	1500	622.49	446.99	300
3	42	67.08	32.25	14	4	168	182.21	93.4	42					
3	45	70.71	33.98	15	4	176	186.82	96.69	44	6 6	12	34.64 55.23	11.06 15.62	2 3
3	48	74. 16	35.69	16	4	184	191.31	99.92	46	6 6	18	55.23	15.62	3
3	51	77.46	37.37	17	4	192	195.7	103.11	48	6 6	24 30	70 82.16	24.2	4 5
3	54	80.62	39.02	18	4	200	200	106.25	50	6	36	82.16 92.74	24.2 28.26	5 6
3	57	83.67	40.66	19	4	220	210.36	113.93	55	6	42	92.74 102.23	28.26 32.2	7
3	60	86.6	42.26	20	4	240	220.23	121.36	60	6	48	110.91	32.2 36.02	8
3	63	89.44	43.85	21	4	260	229.67	128.59	65	6	54	110.91 118.95	36.02 39.74	9
3	66	92.2	45.42	22	4	280	238.75	135.61	70	6	60	126.49		10
3	69	94.87	46.96	23	4	300	247.49	142.46	75	6	66	126.49 13.6	43.98	11
3	72	97.47	48.49	24	4	320	255.93	148.15	80	6	72	140.36	50.41	12
3	75	100	50	25	4	340	264.1	155.68	85	6	78	146.8	53.83	13
3	78	102.47	51.49	26	4	360	272.03	162.07	90	6 6	84	146.8 152.97	53.83 57.18	13
3	81.	104.88	52.97	27	4	380	279.73	168.32	95	6	90	158.9	60.47	15
3	84	107.24	54.42	28	4	400	287.23	174.46	100	6	96	164.62	63.71	16
3	87	109.54	55.87	29	4	500	322.1	203.5	125	6	102	170.15	66.89	17
3	90	111.8	57.29	30	4	600	353.55	230.33	150	6	108	175.5	70.03	18
3	96	116.19	60.11	32	4	700	382.43	255.4	175	6	114	180.69	73.12	18
3	102	120.42	62.87	34	4	800	409.27	279.02	200	6	120	185.74		19
3	108	124.5	65.57	36	4	900	434.45	301.44	225	6	126	185.74	76. 17	20
3	114	128.45	68.23	38	4	1000	458.26	322.82	250	6	126	190.66	79.18	21
3	120	132.29	70.85	40	4	1100	480.88	343.3	275	6	138	200.12	85.08	23
3	126	136.01	73.42	42	4	1200	502.49	362.99	300	6	144	204.69	87.97	24
3	132	139.64	75.96	44						6	150	209.17	90.83	25
3	138	143.18	78.45	46	5	10	10	10	2	6	156	213.54	93.66	26
3	144	146.63	80.91	48	5	15	37.42	13.57	3	6	162	217.83	96.46	27
3	150	150	83.33	50	5	20	51.96	17.22	4	6	168	222.04	96.46 99.23	28
3	165	158.11	89.25	55	5	25	63.25	20.75	5	6	174	226.16	101.96	29
3	180	165.83	94.99	60	5	30	72.8	24.16	6	6	180			30
3	195	173.21	100.56	65	5	35	81.24	27.47	7	6	180	230.22 238.12	104.67 110.01	3
3	210	180.28	105.97	70	5	40	88.88	30.69	8	6	204	245.76	115.25	34
3	225	187.08	111.25	75	5	45	95.92	33.82	9		216	253.18	120.39	36
3	240	193.65	116.4	80	5	50	102.47	36.88	10	6	228	260.38	125.45	36 38
3	255	200	121.43	85	5	55	108.63	39.87	11	6	240	267.39	130.42	40
3	270	206. 16	126.35	90	5	60	114.46	42.8	12	6	252	274.23	135.31	42
3	285	212.13	131.17	95	5	65	120	45.68	13	6 6	264	274.23 280.89	135.31.	42 44
3	300	217.94*	135.89	100	5	70	125.3 130.38	48.49 51.26	14	6	276	287.4	144.88	46
3	375	244.95	158.25	125	5	75	130.38	51.26	15	6	288	293.77	149.55	48
3	450	269.26	178.89	150	5	80	135.28	53.99 56.67	16	6	300	300	154.17	50
3	525	291.55	198.17	175	5	85	140	56.67 59.31	17	6	330	315.04	165.44	55
3	600	312.25	216.33	200	5	90	144.57	59.31 61.91	18	6	360	329.39	176.36	60
3	675	331.66	233.57	225	5	95 100	149	61.91 64.47	19	6	390	343.15	186.97	65
3	750	350	250	250	5	100	153.3 157.48	64.47 67	20	6	420	356.37	197.3	70
3 3	825 900	367.42 384.06	265.74 280.87	275 300	5	105 110	157.48 161.55		21	6	450	369. 12	207.36	75
3	900	384.06	280.87	300	5	110 115	161.55 165.53	69.49 71.96	22	6	480	381.44	217.19	80
					5	120	169.41	74.39	24	6	510	393.38	226.79	85
					5	125	173.21	76.79	25	6	540	404.97	236.18	90
4	12	7.07	12.31	3	5	130	176.92	79.17	26	6	570	416.23	245.38	95
4	16	30	14.78	4	5	135	180.55	81.52	27	6	600	427.2	254.4	100
4	20	41.83	17.57	5	5	140	184.12	83.85	28	6	750	478.28	297.13	125
4	24	50.99	20.32	6	5	145	187.62	86.15	29	6	900	524.4	336.61	150
4	28	58.74	23	7	5	150	191.05	88.43	30	6	1050	566.79	373.5	175.
4	32	65.57	25.6	8	5	160	197. 74	92.91	32	6	1200	606.22	408.29 441.3	200
4	36	71.76	28.15	9	5	170	204.21	97.31	34	6	1350	643.23 678.23	441.3 472.79	225
4	40	77.46	30.64	10	5	180	210.48	101.63	36	6	1650	678.23 711.51	472.79 502.86	275
4	44	82.76	33.07	11	5	190	216.56	105.88	38	6	1850 1800	711.51 743.3	502.98 531.96	275 300
4	48	87.75	35.45	12	5	200	222.49	110.06	40	6	1800		531.85	
4	52	92.47	37.78	13	5	210	228.25	114.17	42	7	14	50	12.5	2
4	56	96.85	40.07	14	5	220	233.88	118.21	44	7	21	70.71	17.83	3
4	60	101.24	42.32	15	5	230	239.37	122.2	46	7	28	86.6	22.9	4
4	64	105.36	44.54	16	5	240	244.74	126.13	48	7	35	100	27.78	5
4	68	109.32	46.72	17	5	250	260	130	50	7	42	111.8	32.48	6
4	72	113.14	48.86	18	5	275	262.68	139.46	55	7	49	122.47	37.04	7
4	76	116.83	50.97	19	5	300	274.77	148.64	60	7	56	132.29	41.47	8
4	80	120.42	53.06	20	5	325	286.36	157.54	65	7	63	141.42	45.79	9
4	84	123.9	55.11	21	5	350	297.49	166.21	70	7	70	150	50	10
4	88	127.28	57.14	22	5	375	308.22	174.66	75	7	77	158.11	54. 12	11
4	92	130.58	59.14	23	5	400	318.59	182.91	80	7	84	165.83	58.16	12
4	86	133.79	61.12	24	5	425	328.63	190.97	85	7	91	173.21	62.12	13
4	100	136.93	63.07	25	5	450	338.38	198.85	80	7	98	180.28	66	14
4	104	140	65	26	5	475	347.85	206.57	95	7	105	187.08	69.82	15
4	108	143	68.91	27	5	500	357.07	214.14	100	7	112	193.65	73.58	16

Q	$\mathrm{X}_{\mathrm{L} 1}$	$\mathrm{X}_{\mathbf{L} 2}$	$\mathrm{X}_{\mathrm{Cl} 1}$	R_{1}	Q	$\mathrm{X}_{\mathrm{L} 1}$	$\mathrm{X}_{\mathrm{L} 2}$	$\mathrm{X}_{\mathbf{C 1}}$	R_{1}	Q	$\mathbf{x}_{\text {L } 1}$	X_{12}	$\mathrm{X}_{\mathbf{C 1}}$	\mathbf{R}_{1}
7	119	200	77.27	17	8	256	318.59	144.73	32	9	675	552.27	306.8	75
7	126	206.16	80.91	18	8	272	328.63	151.65	34	9	720	570.53	321.4	80
7	133	212.13	84.5	19	8	288	338.38	158.46	36	9	765	588.22	335.67	85
7	140	217.94	88.04	20	8	304	347.85	165.14	38	9	810	605.39	349.63	90
7	147	223.61	91.53	21	8	320	357.07	171.71	40	9	855	622.09	363.31	95
7	154	229.13	94.97	22	8	336	368.06	178.18	42	9	900	638.36	376.71	100
7	161	234.52	98.37	23	8	352	374. 83	184.56	44	9	1125	714.14	440.24	125
7	168	239.79	101. 73	24	8	368	383.41	190.83	46	9	1350	782.62	498.94	150
7	175	244.95	105.05	25	8	384	391.79	197.02	48	9	1575	845.58	553.81	175
7	182	250	108.33	26	8	400	400	203.13	50	9	1800	904. 16	605.54	200
7	189	254.95	111.58	27	8	440	419.82	218.04	55	9	2025	959.17	654.64	225
7	196	259.81	114.79	28	8	480	438.75	232.49	60	9	2250	101: 19	701.48	250
7	203	264.58	117.97	29	8	520	456.89	246.53	65	9	2475	1080.66	746.36	275
7	210	269.26	121.11	30	8	560	474.34	260.2	70	9	2700	1107.93	789.51	300
7	224	278.39	127.31	32	8	600	491.17	273.52	75	10	10	50.5	9.17	
7	238	287.23	133.39	34	8	640	507.44	286.52	80	10	20	50.5 87.18	17.2	2
7	252	285.8	139.36	36	8	680	523.21	299.23	-85	10 10	20	81.18 112.47	17.2 24.74	3
7	266	304.14	145.23	38	8	720	538.52	311.66	- 90	10 10	40	112.47 133.04	24.74 31.91	4
7	280	312.25	151	40	8	760	553.4	323.84 335.78	95 100	10 10	50	153.84 150.83	38.8	5
7	294	320.16	156. 68	42	8	800	567. 89	335.78	100	10 10	60	166.73 168	45.45	6
7	308	327.87	162.27	44	8	1000	635.41	392.36	125	10 10	70	166.73 181.25	45.45 51.89	7
7	322	335.41	167.78	46	8	1200	696.42	444.63 493.49	150	10 10	80	194.68	58.16	8
7	336	342.78	173.21	48	8	1400	752.5	493.49	175	10	80	207.24	64.26	9
7	350	350	178.57	50	8	1600	804.67	539.57	200	10		219.09		10
7	385	367.42	191.66	55	8	1800	853.67	583.29	225	10 10	100 110	219.09 230.33	70.23 76.06	11
7	420	384.06	204.34	60	8	2000	900	625	250 275	10	120	241.04	81.78	12
7	455	400	216.67	65	8	2200	944. 06	664.96	275	10	120	241.04 251.3		13
7	490	415.33	228.66	70	8	2400	986.15	703.38	300	10 10	130 140	251.3 261.15	87.38 92.89	14
7	525	430.12 444.41	240.35 251.76	75 80	9	θ	40	8.37	1	10	150	270.65	98.29	15
7	560 595	444.41 458.86	251.76	80 85	9	18	75.5	15.6	2	10	160	279.82	103.61	16
7	595 630	458.86 471.7	262.91 273.82	85 80	9	27	98.99	22.4	3	10	170	288.7	108.85	17
7	6	481.7 484.77	273.82	8	9	36	117.9	28.88	4	10	180	297.32	114.01	18
7	700	497. 49	294.99	100	9	45	134.16	35.09	5	10	190	305.7	119.09	19
7	875	556.78	344.63	125	9	54	148.66	41.09	6	10	200	313.85	124.1	20
7	1050	610.33	390.49	150	9	63	161.86	46.91	7	10	210	321.79	129.05	21
7	1225	659.55	433.36	175	9	72	174.07	52.56	8	10	220	329.55	133.93	22
7	1400	705.34	473.78	200	9	81	185.47	58.07	9	10	230	337.12	138.75	23
7	1575	748.33	512.14	225	9	90	196.21	63.45	10	10	240	344.53	143.51	24
7	1750	788.99	548.73	250	9	99	206.4	68.71	11	10	250	351.78	148.22	25
7	1925	827.65	583.79	275	9	108	216.1	73.86	12	10	260	358.89	152.87	26
7	2100	884.58	617.5	300	9	117	225.39	78.92	13	10	270	365.86	157.47	27
					9	126	234.31	83.88	14	10	280	372.69	162.03	28
8	8	27.39	7.6	1	9	135	242.9	88.76	15	10	290	379.41	166.53	29
8	16	63.25	14.03	2	9	144	251.2	93.55	16	10	300	386.01	170.99	30
8	24	85.15	20.1	3	9	153	259.23	98.28	17	10	320	398.87	179.78	32
8	32	102.47	25.87	4	9	162	287.02	102.93	18	10	340	411.34	188.4	34
8	40	117.26	31.42	5	9	171	274.59	107.51	19	10	360	423.44	196.87	36
8	48	130.38	36.77	6	9	180	281.86	112.03	20	10	380	435.2	205.2	38
8	56	142.3	41.95	7	9	189	289.14	116.49	21	10	400	446.65	213.38	40
8	64	153.3	46.89	8	9	188	296.14	120.89	22	10	420	457.82	221.44	42
8	72	163.55	51.8	9	9	207	302.99	125.23	23	10	440	468.72	229.37	44
8	80	173.21	56.7	10	9	216	309.68	129.53	24	10	460	479.37	237.19	46
8	88	182.35	61.39	11	9	225	316.23	133.77	25	10	480	489.8	244.9	48
8	86	191.05	65.88	12	9	234	322.65	137.97	26	10	500	500	252.5	50
8	104	199.37	70.49	18	9	243	328.94	142.12	27	10	550	524.64	271.07	55
8	112	207.36	74.91	14	9	252	335.11	146.22	28	10	600	548.18	289.07	60
8	120	215.06	79.26	15	9	281	341.17	150.28	29	10	650	570.75	306.56	65
8	128	222.49	83.54	16	9	270	347. 13	154.3	30	10	700	592.45	323.58	70
8	136	229.67	87.74	17	9	288	358.75	162.23	32	10	750	613.39	340.18	75
8	144	236.64	91.89	18	9	308	370	170	34	10	800	633.64	356.37	80
8	152	243.41	95.97	19	9	324	380. 92	177.63	36	10	850	653.28	372.21	85
8	160	250	100	20	9	342	391.54	185.14	38	10	800	672.31	387.7	90
8	168	256.42	103.97	21	9	380	401.87	192.52	40	10	950	690.83	402.87	95
8	176	262.68	107.9	22	9	378	411.85	199.78	42	10	1000	708.87	417.74	100
8	184	268.79	111.77	23	9	386	421.78	206.93	44	10	1250	792.94	488.23	125
8	192	274.77	115.58	24	9	414	431.39	213.88	46	10	1500	868.91	553.36	150
8	200	280.62	119.38	25	9	432	440.79	220.93	48	10	1750	938. 75	614.25	175
8	208	286.36	123.11	26	9	450	450	227.78	50	10	2000	1003. 74	671.66	200
8	216	291.88	126.81	27	9	485	472.23	244.52	55	10	2250	1064.78	726.14	225
8	224	297.49	130.47	28	9	540	498.46	280.74	60	10	2500	1122.5	778.12	250
8	232	302.9	134.09	29	9	585	513.81	276.51	65	10	2750	1177. 39	827.82	275
8	240	308.22	137.67	30	9	630	533.39	291.85	70	10	3000	1229.84	875.8	300

$\substack{\text { Preoared by: } \\ \text { Roy flehal }}$ SYSTEMIZING RF POWER AMPLIFIER DESIGN

INTRODUCTION

Two of the most popular RF small signal design techniques are:

1) the use of two port parameters, and
2) the use of some type of equivalent circuit for the transistor.
Early attempts to adapt these techniques to power ampljfier design led to poor results and frustration.

In the mid-1960's, Motorola pioneered the concept of solid state power amplifier design through the use of large signal transistor input and output impedances. This system has since achieved almost universal acceptance by solid state communications equipment manufacturers. It provides a systematic design procedure to replace what used to be a trial and error process. This note is a description of the concept and its use in transmitter design.

LIMITATIONS OF SMALL-SIGNAL PARAMETERS

As a vivid example to show the short-comings of trying to adapt small-signal parameters to power amplifier design, the 2N3948 transistor was considered. A performance comparison was made of the 2 N 3948 operating at 300 MHz as a Class A small-signal amplifier, and as a Class C^{*} power amplifier delivering a power output of 1 W . Table I shows the results of this comparison.

CLASS A CLASS C Smatl-signsl amplifier Power amplifier $V_{C E}$ $=15 \mathrm{Vde;}_{c}$ 300 MHz		
Input resistance	9 Ohms	38 Ohms
tnput cepmeitance or inductance	$0.012 \mu \mathrm{H}$	21 pf
Trandistor output resktance	199 Ohms	92 Onms
Output capacitance	4.6 pF	5.0 pF
GPE	12.4 dB	8.2 dB

Table I - Smell- and large-signal performance data for the 2N3948 show the inadequecy of using emall-signst charecter izetion data for targe-signal amplifier design. Resituences and reactances shown are parsilet components. That is, the large-signal input impedance ts 38 ohms in perallel with 21 pF. etc.

The most striking difference in this comparison is in the device input impedance. As operation is changed from small-signal to large-signal conditions, the complex input impedance of the 2 N 3948 undergoes a considerable change in magnitude and actually changes from inductive to capacitive reactance.

[^23]Note also that the transistor's output resistances and power gains are considerably different for the two modes of operation. This example clearly demonstrates the inaccuracies that would result in a power-amplifier design based on the small-signal parameters of this device.

IMPORTANCE OF LARGE-SIGNAL PARAMETERS

The network theory for power amplifier design is well known but is useless unless the designer has valid input and output impedance data for the transistor. The design method described in this report hinges primarily on the direct measurement of these parameters for use in network synthesis equations. Large-signal impedance data, together with power output and gain data, provide the designer with the information necessary to design his amplifier networks and to predict the performance that should be achieved when the design is completed.

A clear understanding of the test conditions and method of presentation for the large signal impedance data is important.

TEST CONDITIONS

The term "large-signal input impedance" and "largesignal output impedance" refer to the actual transistor terminal impedances when operating in a matched amplifier at the desired RF power output level and de supply voltage.
"Matched" is defined as the condition where the input and output networks of the test amplifier provide a conjugate match to the transistor, such that the input and output impedances of the amplifier are $50+\mathrm{j} 0$ ohms.

Large-signal impedances should not be confused with small-signal, two port parameters which are normally measured at low signal levels with Class A bias and the transistor (or IC) connected directly to a short, open, or 50 ohm termination.

Most of the data which appears on Motorola RF power transistor data sheets is measured in common emitter, Class Camplifiers; as this condition covers the majority of device applications.

One significant exception to this involves transistors characterized for Class B linear power amplifier service. Examples of such transistors are the Motorola 2N5941-2 series. Since these transistors are designed specifically for linear service, their large-signal impedances were measured in a linear power amplifier test circuit with a two tone test signal instead of the conventional single frequency signal. .For further information on these transistors see the

[^24]

FIGURE 1 - Parallel Equivalent Input Resistance versus Frequency

FIGURE 3 - Parallel Equivalent Output Capacitance versus Frequency

Motorola 2N5941-2 data sheet.

DATA FORMAT

Much of the information on device data sheets is presented in parallel equivalent form of resistance and capacitance. Figures $1-3$ form an example of this type of presentation. The data may also be presented in series equivalent form. It makes no difference which form is used as long as the designer pays particular attention to the form and uses the data accordingly. As a convenience, the series-parallel equivalent conversion equations are given in Appendix A.

For example, reading the complex input impedance, from Figures 1 and 2 at 50 MHz with 40 W output and a 12.5 Vdc collector supply, we obtain a value of 0.8 ohms resistance in parallel with a 500 pF capacitance.

Another form of impedance data presentation uses the series equivalent form plotted on a Smith Chart. This form is popular with UHF power transistors due to the extensive use of the Smith Chart in microstrip network synthesis. Figure 4 is an example of large-signal impedances plotted on a Smith Chart plot. Note that Figure 4 includes complete complex output impedance data, not just the output capacitance. This topic is discussed more fully in the section on collector load resistance.

FIGURE 2 - Parallel Equivalent Input Capacitance versus Frequency

AMPLIFIER DESIGN

After selection of a transistor with the required performance capabilities, the next step in the design of a power amplifier is to determine the large-signal input and output impedances of the transistor. When using devices for which the data is available, this step involves nothing more than reading the complex impedance values off of the data sheet. If only output capacitance is given on the data sheet, the collector load resistance may be calculated in the manner described in the Collector Load Resistance Section of this note.

Again, the designer is cautioned to carefully determine whether the data sheet impedance curves are in parallel or series equivalent form, and to use the data accordingly. If the data is not available, a later section of this note contains information on large-signal impedance measurement.

FIGURE 4 - Large Signal Input and Output Series Impedances, 2N6256

Having determined the large-signal impedances, the designer selects a suitable network configuration and proceeds with his network synthesis.

The primary purpose of this note is to describe the large-signal impedance concept. Accordingly, network selection and synthesis are beyond the scope of this discussion. For specific transmitter design examples using this concept, the reader is referred to the following Motorola Application Note: AN-548A.

COLLECTOR LOAD RESISTANCE

Large-signal impedance data at HF and VHF have for the most part been published by Motorola without collector load resistance information. The reason is that the load resistance can easily be calculated. The conditions necessary to obtain this load resistance derivation will now be discussed.

If certain simplifying assumptions are made, the theoretical collector voltage of a power amplifier with a tuned output network is a sine wave which swings from zero to $2 \mathrm{~V}_{\mathrm{CC}}$, where V_{CC} is the dc collector supply voltage.

These assumptions include:

1. V_{CE} (sat) is equal to zero.
2. The output network has sufficient loaded Q to produce a sine wave voltage regardless of transistor conduction angle.
3. The voltage drop in the de collector supply feed system is zero.
4. The collector load impedance at all harmonics of the operating frequency is zero.
Obviously none of the foregoing assumptions is true, and the most serious discrepancies probably arise from assumptions 1 and 4 . However, conditions are close enough to give good results.

Let us assume for a moment that this theoretical condition does exist. The parallel equivalent collector load resistance, $\mathrm{R}_{\mathrm{L}}{ }^{\prime}$, then becomes a function of desired RF output power and VCC only. The expression for $\mathrm{R}_{\mathrm{L}}{ }^{\prime}$ given in equation 1 is readily derived.

$$
\begin{equation*}
R_{L^{\prime}}=\frac{\left(V_{C C}\right)^{2}}{2 P} \tag{1}
\end{equation*}
$$

where $P=R F$ output power
Therefore, the complex collector load impedance for an amplifier design would be the conjugate of the parallel equivalent output capacitance and collector load resistance computed with Equation I.

Figure 5 provides a graphic solution to Equation 1 for the four popular dc supply levels of $12.5,13.6,24$ and 28 volts.

Despite the assumptions required, experience with HF and VHF lumped-component, power amplifiers with supply voltages from 7 to 30 Vdc and power output levels from a few tenths of a watt to 300 watts have proven that the use of Equation I to compute $\mathbf{R}_{\mathbf{L}}$ ' for network synthesis yields good results. That is to say, the types of HF and VHF lumped component collector output networks which

have proved best from the standpoint of proper impedance matching with low losses and smooth tuning generally have a sufficient tuning and matching range to compensate for any errors associated with Equation 1.

Of course if the V_{CE} (sat) of the transistor is accurately known for the frequency of operation and collector current swings anticipated in a particular amplifier, Equation 1 is readily modified as follows:

$$
\begin{equation*}
R_{L^{\prime}}=\frac{\left(\mathrm{V}_{\mathrm{CC}} \cdot \mathrm{~V}_{\mathrm{CE}(\text { sat })}\right)^{2}}{2 \mathrm{P}} \tag{2}
\end{equation*}
$$

The advent of greatly increased numbers of UHF power transistors and their associated amplifier design problems brought some revisions to Motorola's methods of presenting large-signal transistor impedances for UHF devices. Among the reasons for this are the popularity of microstrip matching networks and the higher $V_{C E}$ (sat) values at UHF.

The major difference in the data format involves output impedance, which is presented in full complex form instead of plotting parallel equivalent output capacitance only and using Equation 1 to compute the load resistance. Further, the UHF devices are measured in a microstrip test amplifier for the purpose of determining the transistor impedances in an environment which is as close as possible to that of the majority of the actual applications of the device. And finally, a Smith Chart plot is used as this is more convenient to the microstrip network designer, who often makes extensive use of the Smith Chart as a design tool.

Future Motorola data sheets may also include collector load resistance data at frequencies below UHF. The information is automatically generated for the test circuit in use while measuring $C_{i n}, R_{\text {in }}$ and $C_{\text {out }}$.

PARAMETER MEASUREMENT

Although design engineers will find Irrge-signal impedance characterization on Motorola data sheets for RF power transistors, it may help to know how this data is obtained. The transistor is placed in a test circuit designed to provide wide tuning capabilities. Design of the first
test amplifier for a new transistor type is based on estimates of input and output impedance.

Since the input and output impedances are needed to design an amplifier which is then used to measure the impedances of the device, we have a "chicken or the egg" type of problem. Wide tuning range networks help compensate for errors in the impedance estimates and they also permit the same characterization amplifier to be used at multiple power output levels.

The amplifier is tuned for a careful impedance match at both input and output. Several precautions are in order to insure that this is accomplished.

Tuning for maximum power output is valid only if the source and load impedances are an accurate $50+\mathrm{j} 0$ ohms. Usually a good 50 ohm load is available in the laboratory. Such a load should be used, as tuning for maximum output power for a given input power is the best method to use on the amplifier output network.

The input network poses some additional problems. First, many laboratory RF power sources are not accurate 50 ohm generators. A generator impedance that is not 50 ohms can introduce errors in measuring gain as well as input impedances. In addition, a source with high harmonic levels can cause difficulties in low \mathbf{Q} input networks.

A good solution to this problem is to use a dual directional coupler or directional power meter in the coax line between the generator and the test amplifier. The amplifier is then tuned for zero reflected power, thus indicating that the input network is really matching the transistor input impedance to $50+\mathrm{j} 0$ ohms.

In practice, the reflected power usually will not null all the way to zero, so one should insure that the null is at least as deep as that obtained with a good 50 ohm passive termination.

In some cases, the amplifier will reflect enough harmonic power to prevent a satisfactory reflected power null from being obtained. A good solution to this problem is to place a fundamental frequency bandpass filter at the reflected power port of the dual directional coupler.

A typical test amplifier for HF and VHF measurements is shown in Figure 6. For UHF device characterization, amplifiers employing microstrip matching networks are most commonly employed.

After the test amplifier has been properly tuned, the dc power, signal source, circuit load, and test transistor are disconnected from the circuit. Then the signal source and output load circuit connections are each terminated with 50 ohms. After performing these substitutions, complex impedances are measured at the base and collector circuit connections of the test transistor (points A and B respectively in Figure 7). The desired data, the transistor input and output impedances, will be the conjugates of the base circuit connection and the collector circuit connection, impedances respectively.

By operating test amplifiers at several different frequencies with at least two power outputs, sufficient data can be obtained to characterize a transistor for the majority of its power applications.

FIGURE 6 - Typical Test Amplifier Circuit

FIGURE 7 - Test Circuit with Transistor Removed

SUMMARY

The large-sigual impedance characterization of $R F$ power transistors has provided the most systematic and successful power amplifier design method the author has encountered since the concept was explored in depth in the mid 1960's.

APPENDIX A

PARALLEL-TO-SERIES AND SERIES-TO-PARALLEL IMPEDANCE CONVERSION EQUATIONS.

UHF AMPLIFIER DESIGN USING DATA SHEET DESIGN CURVES

INTRODUCTION

The design of UHF amplifiers usually involves a particular set of device parameters of which h, y, and s parameters are probably the most familiar. These parameters are commonly used to determine device loading (input and output) admittances for particular gain and stability criteria. The design procedure for determining gain and stability usually involves a mathematical solution, a graphical approach, or a combination of both.

This report describes a design technique for the unneutralized case whereby the device loading admittances are taken directly from device design curves. An example is given of how these design parameters are used to design a single stage 1 GHz microstrip amplifier and predicted results are compared to actual measured values. Practical circuit construction techniques are also discussed for the benefit of readers unfamiliar with microstrip techniques.

STABILITY CONSIDERATIONS

Two very important methods ${ }^{1}$ for expressing stability involve Linvill's stability factor "C" and Stern's stability factor " k ". The first deals primarily with the device since an open termination is assumed on both the input and output and is formulated:

$$
C=\frac{\left|y_{12} y_{12}\right|}{2 g_{11} g_{22}-\operatorname{Re}\left(y_{12} y_{21}\right)}
$$

If "C" is greater than 1 , the transistor is potentially unstable. However, if \mathbf{C} is less than 1 , the transistor is unconditionally stable. The C factor versus frequency for the common base and common emitter configurations (2N4957) are shown in Figures 10 and 17 respectively.

The second method is primarily circuit oriented and is used to compute the relative stability of an actual amplifier circuit for the particular source and load terminations used. If " k " is greater than 1 , the circuit is stable. If " k " is less than 1 the circuit is potentially unstable

Stern has developed equations for calculating the input and output loading admittances for maximum power gain with a particular stability factor, k. These values of input and output admittances in conjunction with the device parameters can then be used to calculate the transducer gain. ${ }^{1}$

$$
\begin{gathered}
k=\frac{2\left(g_{11}+G_{s}\right)\left(g_{22}+G_{L}\right)}{\left|y_{12} y_{21}\right|+R_{e}\left(y_{12} y_{21}\right)} \\
G_{s}=\sqrt{\frac{k\left[\left|y_{12} y_{21}\right|+R_{e}\left(y_{12} y_{21}\right)\right]}{2}} \sqrt{\frac{8_{11}}{g_{22}}}-g_{11} \\
G_{L}=\sqrt{\frac{k\left[\left|y_{12} y_{21}\right|+R_{e}\left(y_{12} y_{21}\right)\right]}{2}} \sqrt{\frac{g_{22}}{g_{11}}}-g_{22}
\end{gathered}
$$

$$
\begin{aligned}
& B_{S}=\frac{\left(G_{S}+g_{11}\right) z_{0}}{\sqrt{k\left[\left|y_{12} y_{21}\right|+\operatorname{Re} y_{12} y_{21}\right]}}-b_{11} \\
& B_{L}=\frac{\left(G_{L}+g_{22}\right) z_{0}}{\sqrt{k\left[\left|y_{12} y_{21}\right|+\operatorname{Re}\left(y_{12} y_{21}\right)\right]}}-b_{22}
\end{aligned}
$$

Where,

$$
\begin{aligned}
& Z=\frac{\left(B_{s}+b_{11}\right)\left(G_{L}+g_{22}\right)+\left(B_{L}+b_{22}\right) k(L+M) / 2\left(G_{L}+g_{22}\right)}{\sqrt{k(L+M)}} \\
& L=\left|y_{12} y_{21}\right| \\
& M=\operatorname{Re}\left(y_{12} y_{21}\right)
\end{aligned}
$$

Defining \mathbf{D} as the denominator in $\mathbf{G}_{\mathbf{T}}$ expression yields:

$$
D=\frac{Z^{4}}{4}+\frac{[\mathrm{k}(\mathrm{~L}+\mathrm{M})+2 \mathrm{M}] \mathrm{Z}^{2}}{2}-2 \mathrm{NZ} \sqrt{\mathrm{k}(\mathrm{~L}+\mathrm{M})}+\mathrm{A}^{2}+\mathrm{N}^{2}
$$

where,

$$
\begin{aligned}
& A=\frac{k(L+M)}{2}-M, \\
& N=\operatorname{Im}\left(y_{12} y_{21}\right),
\end{aligned}
$$

and,
$\mathrm{Z}_{0}=$ that real value of Z which results in the smallest minimum of D, found by setting,

$$
\frac{d D}{d Z}=Z^{3}+[k(L+M)+2 M] Z-2 N \sqrt{k(L+M)}
$$

equal to zero.

$\mathrm{G}_{\mathrm{T}}=\frac{4 \operatorname{Re}\left(Y_{3}\right) \operatorname{Re}\left(Y_{L}\right)\left\|y_{21}\right\|^{2}}{}$	
$\mathrm{GT}=\frac{}{1\left(y_{1}\right.}$	$\left\|\left(y_{11}+Y_{S}\right)\left(y_{22}+Y_{L}\right)-y_{12} y_{21}\right\|^{2}$
k	$=$ Stern's stability factor
Gs	$=$ Real part of the source admittance
GL	$=$ Real part of the load admittance
$\mathrm{B}_{\text {s }}$	= Imaginary part of the source admittance
B_{L}	= Imaginary part of the load admittance
811	$=$ Real part of y_{11}
822	$=$ Real part of y_{22}
Y_{L}	- Complex load admittance
Y_{s}	= Complex source admittance
GT	= Transducer gain
YIN	= Input admittance
YOUT	TT $=$ Output admittance
$\mathrm{G}_{\max }$	$x=$ Maximum gain without feedback

Computer solutions of these equations for various values of k versus frequency have been plotted in Appendix I for the 2N4957. These curves include common-base (Figures 10 through 16) and common-emitter (Figures 17 through 22).

From these curves, the designer can determine the input and output loading admittances for maximum power gain at a particular circuit stability. In addition, the transducer power gain under these conditions can also be determined. Thus the designer, rather than reading s or y parameters from a curve and using this information to design an amplifier, has all the design equations solved and presented in convenient, computer-derived design curves.

The following example demonstrates how these curves can be utilized in the design of a $1 \mathbf{G H z}$ amplifier using the 2N4957. In addition, a second example is shown to demonstrate the special case where input admittance is determined primarily by noise figure considerations rather than by maximum power gain.

1 GHz AMPLIFIER DESIGN

A preliminary investigation of stability and power gain, common-emitter and common-base, can be quickly made from the design curves. For instance, the unilateralized gain (Figure 8) at 1 GHz is approximately 15 dB for either the common-emitter or common-base configuration. Also, the \mathbf{C} factor for the common-base configuration (Figure 10) is greater than one and indicates potential device instability. However, the \mathbf{C} factor for the common-emitter configuration (Figure 17) is less than one and indicates unconditional device stability.

Figures 16 and 22 are key curves that show transducer power gain for the common base and common emitter configuration respectively. Assuming a circuit stability factor of 4^{*}, power gain is approximately 15 dB , commonbase. Although the common-emitter curve is not extended to 1 GHz (since this is a region of unconditional stability) power gain for $k=4$ would be obviously much less than 15 dB .

Using the common base configuration with $k=4$, the required input and output admittance for maximum power gain can be determined directly from Figures 11 through 16.

For instance, the real part of the output admittance can be read from either Figure 11 or 12. Figure 12 is an expanded version of Figure 11 and is intended to facilitate lower frequency use. The imaginary portion of the output admittance is shown in Figure 13. Figures 14 and 15 show the real and imaginary portions of the input admittance respectively. The resultant input and output admittances are shown in Figure 1 and are summarized:

Conditions: (2N4957)
$V_{C E}=10 \mathrm{~V}$
IC $=2 \mathrm{~mA}$
$f=1 \mathrm{GHz}$
$\mathrm{G}_{\mathrm{T}}=15 \mathrm{~dB}$
$k=4$

Input admittance $=69.5$ mmhos +j 27.1 mmhos Output admittance $=1.53$ mmhos -j 7.46 mmhos

It becomes apparent that the emitter must "see" an admittance of 69.5 mmhos shunted by a susceptance of +j 27.1 mmhos. The latter, in terms of a lumped constant element, would be a lossless capacitor. Likewise, the collector would be required to see an admittance of 1.53 mmhos shunted by -j 7.46 mmhos. The latter, in terms of a lumped-constant element, would be a lossless coil. This loading will result in a stability factor, k, of 4 and a power gain of 15 dB , the maximum power gain possible for $\mathrm{k}=4$. This loading does not include stray capacitance. If stray capacitance is assumed to be 1 pF , the actual load is 1.53 mmhos -j13.5 mmhos (see Figure 1).

FIGURE 1 - COMMON BASE INPUT AND OUTPUT ADMITTANCES INCLUDING STRAY CAPACITANCE

To facilitate instrumentation, both the source and load impedance will be 50 ohms. This admittance level must be transformed to the required device loading admittance. Micro strip techniques provide a convenient method of achieving this transformation without circuit reproducibility and component loss problems that are common with many lumped constant circuits at this frequency.

The Smith Chart is a convenient design tool for solving transmission line problems of this type. Since space does not permit, familiarity with this chart will be assumed.

[^25]

FIGURE 2 - OUTPUT NETWORK DESIGN

Starting with the output circuit, both the 50 ohm (20 mmhos) load and the desired collector admittance are plotted on the Smith Chart (see Figure 2). As a starting point, a characteristic admittance of 20 mmhos will be assumed. First, the 20 mmho load is plotted (point A, Figure 2), then point B is plotted (1.53 mmhos -j 13.5 mmhos).

Although many different methods exist for transforming point A to point B (see Figure 2), a direct, and as it turns out, practical approach is that shown in Figure 3. This circuit uses C_{1} in parallel with R_{L} to vary the $S W R$ of point A (Figure 2) to point C. Since point C has the same SWR as point B, a line L_{1} with an electrical length equal to $0.405 \lambda_{2}$ (point E) minus 0.214λ (point D) will complete the transformation. Collector tuning is available with component C_{2}. This variable capacitor provides the difference between the assumed stray capacitance and the actual circuit stray capacitance.

The required SWR could have been realized by using an inductor in place of C_{1}. However, an inductor would have either forced the bias feed-point to be changed to the collector lead or necessitated a dc-isolated coil. Although this is readily attainable using transmission line techniques, the variable component C_{1} is more convenient. A typical curve of Q versus capacitance for $\left(C_{1}\right)$ is shown in Figure 4.

The output bias is fed through a 4000 ohm resistor rather than an RF choke. The resultant 8 volt drop across this resistor is easier to contend with than the circuit instabilities sometimes associated with RF chokes.

The same procedure is followed in designing the input network (see Figure 5). Again, a stray capacitance of 1 pF is assumed. Thus, the actual input loading becomes 69.5 mmhos +j 21.3 mmhos. First, the 20 mmho load is plotted (see Point T, Figure 6). Next, point W is plotted (69.5 mmhos +j 21.3 mmhos). Adjusting the SWR with C_{3} (point V) allows a transmission line of length L_{2} to transform the admittance at point V to the desired level at the base (point W).

FIGURE 3 - OUTPUT NETWORK

FIGURE $4-\mathrm{Q}$ versus CAPACITANCE FOR $\mathrm{C}_{1} @ 1 \mathrm{GHz}$

CIRCUIT CONSTRUCTION

The transmission line lengths L_{1} and L_{2} are readily transferred to micro-strip lengths once the wavelength and line-width are known. Hopefully, this information is available from the manufacturer, but if not, it must be measured before the design can be completed. The laminate used for this application required a line-width of approximately 0.16 inches for a 20 mmho characteristic admittance. This value proved adequate both from a realizable design solution on the Smith Chart and also from a practicable circuit construction standpoint.

The actual laminate thickness depends to a large extent on the desired characteristic impedance and the frequency of operation The line thickness for a 50 ohm line is approximately 0.16 inch for a $1 / 16$ inch laminate and approximately 0.035 inch for the same laminate $1 / 64$ inch thick. As the intended frequency of operation is increased, the line width becomes a larger percentage of the line length. ${ }^{4}$ Higher ratios of line width to length may result in undesirable modes of operation. Decreasing the laminate thickness results in a smaller line width for the same characteristic (assuming TEM operation) and a smaller line width to length ratio.

The dielectric constant for the material used was 2.6. The actual wavelength in the laminate is:
λ (actual) $=\frac{\lambda \text { (air) }}{\sqrt{2.6}}=\frac{11.8 \text { inches }}{\sqrt{2.6}}=7.34$ inches
Since $\mathrm{L}_{1}=0.191 \lambda$,
The physical length of L_{1} is 1.4 inches
Correspondingly, L_{2} is 0.062λ or 0.455 inches.
It should be pointed out that the actual wavelength ${ }^{3}$ for this laminate is somewhat larger than that calculated from the dielectric constant. A careful measurement ${ }^{4}$ of wavelength versus characteristic impedance (line width) demonstrates this phenomena. The slight increase in wavelength (6%) from that calculated using the dielectric constant was judged insignificant. However, this error increases for larger values of characteristic impedance and may prove to be quite significant for other laminates or narrower line widths. A good precaution would be to measure wavelength versus line width on each laminate used before TEM propagation is assumed.

Although the lines can be produced by a masking-etch process, adequate results can be obtained by cutting the desired strip from a thin copper sheet and glueing this strip to the teflon glass board. The latter is a convenient method for making rapid design changes.

The author observes several precautions which may or may not be necessary for all applications:

1. All breadboards have a ground strap which encompasses the outer periphery of the board. This strip is soldered to both the top and bottom copper sheets to effectively ground the outer periphery of the am-

FIGURE 6 - INPUT NETWORK DESIGN
plifier on all four sides. The circuit dimensions are held to a minimum to keep the ground planes as short as possible.
2. All RF connectors are carefully connected with grounding surfaces soldered to the ground plate. For instance, mount the connectors* perpendicularly to the board at a point where the connection to the center conductor is a minimum length. Completely solder the outer conductor to the copper sheet on the opposite side of the board. Poorly mounted connectors may result in poor transitions and unpredictable impedance transformations. For example, tacking the outer barrel of this connector to the line side of the board may seriously alter the predicted impedance level at the collector.
The amplifier was constructed as specified and the admittance levels were measured at the emitter and collector pins. These admittance levels were checked and adjusted to the origina! design values with $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}$, and C_{4}

The 2 N 4957 was then soldered directly into the circuit with minimum lead length. The resultant power gain was 14.3 dB and the noise figure, 6.5 dB , which is within 1 dB of the original design requirements. Attempts to re-adjust the input loading and output loading for lower noise figure resulted in lower noise figure with decreased circuit stability. Although the circuit (adjusted for minimum noise figure) didn't oscillate, the calculated k factor from the resultant input and output admittances was approximately 2.

[^26]
LOW NOISE DESIGN

Improvement in noise figure is possible by arbitrarily adjusting the input and output loading. For the purpose of this paper, the stability factor $(k=4)$ will be retained.

However, the design curves represent the maximum power gain case. Although the circuit stability factor can be maintained at $k=4$, varying the source loading will result in less power gain than indicated in the design curves.

The procedure for this case is as follows:
First, the optimum source resistance is calculated (see Appendix) and found to be 43Ω. * The calculated noise figure for this source is 5 dB . In addition, the source reactance was empirically determined to be inductive ($\mathrm{j} 119 \Omega$).

Second, the collector loading was calculated for a stability factor of 4 . Using these values of source resistance and stability factor, the calculated gain (G_{T}) and collector loading is 11.8 dB and 3.41 mmhos -7.5 mmhos (neglecting stray capacitance).

FIGURE 7 - LOW NOISE INPUT DESIGN

FIGURE 10 - LINVILL STABILITY FACTOR versus FREQUENCY

The output network was readily adjusted to the desired collector loading. However, the input line was too short and required re-design (see Figure 7). The calculated value of this line length is 1.15 inches as contrasted with .46 inches used in the first example. The complete amplifier is shown in Figure 9.

The resultant power gain and noise figure was 11.8 dB and 5.5 dB . These figures compare well with the calculated design.

FIGURE 8 - UNILATERALIZED POWER GAIN versus FREQUENCY

FIGURE 9-1 GHz AMPLIFIER

FIGURE 11 AND 12 - LOAD ADMiTTANCE versus FREQUENCY (REAL)

[^27]

FIGURE 13 - LOAD ADMITTANCE versus FREQUENCY (IMAGINARY)

FIGURE 15 - SOURCE ADMITTANCE versus FREQUENCY (IMAGINARY)

FIGURE 17 - LINVILL STABILITY FACTOR versus FREQUENCY

FIGURE 19 - LOAD ADMITTANCE versus FREQUENCY (IMAGINARY)

FIGURE 14 - SOURCE ADMITTANCE versus FREQUENCY (REAL)

FIGURE 16 - TRANSDUCER GAIN versus FREQUENCY

FIGURE 18 - LOAD ADMITTANCE versus FREOUENCY (REAL)

FIGURE 20 - SOURCE ADMITTANCE versus FREQUENCY (REAL

FIGURE 21 - SOURCE ADMITTANCE versus FREQUENCY (IMAGINARY)

APPENDIX

LOW NOISE DESIGN

The procedure followed in designing this amplifier is to first calculate the optimum source resistance for optimum noise figure and then calculate the collector loading for a required value of k.

A first approximation of optimum source resistance for optimum noise figure is: $\mathbf{2}^{2}$

$$
\begin{aligned}
& R_{g F}(o p t)=\sqrt{k_{2} 2+\frac{k_{1}}{k_{3}}} \\
& k_{1}=r b+\frac{r e}{2} \\
& k_{2}=r b+r e \\
& k_{3}=\frac{1+\left(B_{0}+1\right)\left(\frac{f}{f_{a b}}\right)^{2}}{2 B_{0} r_{e}}
\end{aligned}
$$

Assuming the above parameters for the 2 N 4957 are:

$$
\begin{aligned}
\mathrm{rb} & =12.5 \text { ohms } \\
\mathrm{r} & =13 \text { ohms } \\
\mathrm{Bo} & =40 \\
\mathrm{f}_{\mathrm{ab}} & =1600 \mathrm{MHz}, \\
\therefore \mathrm{RgF}(\mathrm{opt}) & =43 \text { ohms }
\end{aligned}
$$

The noise figure using this source resistance is available from Nielsen's equation: $\mathbf{2}^{2}$

$$
N F=1+\frac{r e}{2 R g}+\frac{r b}{R_{g}}+\frac{\left(R_{g}+r e+r b\right)^{2}}{2 B o R g r e}\left[1+\left(B_{o}+1\right)\left(\frac{f}{r a b}\right)^{2}\right]
$$

Using the previous parameter values,

$$
\mathrm{NF}=5 \mathrm{~dB}
$$

Since the impedance level is different at the base, the collector loading must be re-designed.

Using Stern's stability equator for $k=4$ (see Table 1):

FIGURE 22 - TRANSDUCER GAIN versus FREQUENCY

$$
k=\frac{2\left(g_{11}+G_{s}\right)\left(g_{22}+G_{L}\right)}{\mid y_{12 y_{21} \mid}+\operatorname{Re}\left(y_{12 y_{21}}\right)}
$$

and calculating G_{L} for $\mathrm{G}_{\mathrm{S}}=\mathbf{2 5}$ mmhos ($\mathbf{4 0} \mathrm{ohms}$)

$$
\mathrm{G}_{\mathrm{L}}=3.41 \text { mmhos }
$$

The transducer gain can be calculated from these impedance levels:

$$
\mathrm{G}_{\mathrm{T}}=\frac{4 \operatorname{Re}\left(\mathrm{Y}_{\mathrm{S}}\right) \operatorname{Re}\left(\mathrm{Y}_{\mathrm{L}}\right)\left|y_{21}\right|^{2}}{\mid\left(\mathrm{y}_{11}+\mathrm{Y}_{\mathrm{S}}\right)\left(\mathrm{y}_{22}+\mathrm{Y}_{\mathrm{L}}\right)-y_{\left.12 \mathrm{y}_{21}\right|^{2}}} \underset{\mathrm{G}_{\mathrm{T}}=11.8 \mathrm{~dB}}{ }
$$

TABLE 1
$\mathrm{f}=1 \mathrm{GHz} \quad \mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V} \quad \mathrm{IC}=2 \mathrm{~mA}$
$\mathrm{y}_{\mathrm{ib}}=25-\mathrm{j} 25$
$\mathrm{y}_{\mathrm{ob}}=0.55+\mathrm{j} 7.54$
$\mathrm{y}_{\mathrm{fb}}=-4.99+\mathrm{j} 41$
$\mathrm{y}_{\mathrm{rb}}=-0.01-\mathrm{jl} .19$

REFERENCES

1. R. Hejhall, "RF Small Signal Design Using Admittance Parameters", Motorola Application Note AN-215A, Motorola Semiconductor Products, Inc., Phoenix, Arizona.
2. E. G. Nielsen, "Behavior of Noise Figure in Junction Transistors," Proc. IRE, Vol. 45, p. 957, July 1957.
3. F. Assadourian and E. Rimai, "Simplified Theory of Microstrip Transmission Systems", Proc. IRE, pp. 1651-1663, December 1953.
4. M. Arditi, "Experimental Determination of the Properties of Microstrip Components," Electrical Communication, December 1953.

MICROSTRIP DESIGN TECHNIQUES FOR UHF AMPLIFIERS

Prepared by:
Glenn Young

INTRODUCTION

This note uses a 25 watt UHF amplifier design as a vehicle to discuss microstrip design techniques. The design concentrates on impedance matching and microstrip construction conșiderations. A basic knowledge of Smith chart techniques is helpful in understanding this note. 1

The amplifier itself, as shown in Figure 1, provides 25 watts of output power in the $450-512 \mathrm{MHz}$ UHF band. It is designed for 12.5 volt operation which makes it useful for mobile transmitting equipment. A variety of police, taxi, trucking and utility maintenance communication systems operate in this band.

A summary of the performance of the completed amplifier operating with a 12.5 volt supply at 512 MHz indicates a power gain of 16 dB and a bandwidth $(.1 \mathrm{~dB})$ of 8 MHz . Overall efficiency is 48.5% and all harmonics are a minimum of 20 dB below the fundamental output.

Sections on construction and device handling considerations are also presented.

MICROSTRIP DESIGN CONSIDERATIONS

Microstrip design was used for this amplifier due to its inherent superiority over other methods at this frequency. These techniques not only offer good compatibility with the Motorola "stripline" package but they also offer very good reproducibility. Mierostrip construction is more efficient than lumped constant equivalents since microstrip lines are less lossy than lumped constant components.

Microstrip board with Teflon bonded fiberglass dielectric rather than the higher dielectric constant ceramics was chosen due to the ease of working with that type of material. A substrate thickness of $1 / 16$-inch is convenient since a line of the same width as the transistor leads (0.225 inch) produces a reasonable characteristic impedance $\left(Z_{0}\right)$ of 40.65 ohms. The value of the characteristic impedance is

All that remains to finish the solution is to determine the amount of reactance necessary to reach the source at point F. To do this, it is first necessary to transpose point D, which is an admittance, to an impedance. This is accomplished by rotating point D one-quarter wavelength on a constant VSWR circle. This moves point D to point E which is on the 2.04 reactance line thus representing a series reactance of:
$\mathrm{X}_{\mathrm{CS}}=\left(\mathrm{X}_{\mathrm{E}}\right) \cdot\left(\mathrm{Z}_{\mathrm{o}}\right)=(2.04) \cdot(40.65)=82.9 \mathrm{ohms}$
A series capacitance with this reactance is:

$$
\begin{equation*}
C_{S}=\frac{1}{(2 \pi)(f)\left(X_{C S}\right)}=\frac{1}{(2 \pi)\left(470 \times 10^{6}\right)(82.9)}=4.08 \mathrm{pF} \tag{14}
\end{equation*}
$$

This completes the solution for the input network.
The interstage networks as well as the output network are solved in similar fashion with the following differences. In the case of the interstage networks when the imaginary term of the source impedance is other than zero, point F would be plotted at the complex conjugate of the source impedance. In the output network solution the "source" is the output load of the amplifier ($50+\mathrm{j} 0$) and the "load" is the collector impedance of the output device.

Powor Gain
Bandwidth (-1 db)
Ovorall Efficiency
Harmonics
Stability

FIGURE 5 - Typical Performance Specifications

Figure 5 gives details on the performance of the completed amplifier. The use of the porcelain dielectric chip capacitors for the series elements in the interstage networks was found to provide an additional 2.5 to 3.0 dB of gain over that obtained with compression trimmers as well as reducing the number of tuning adjustments necessary.

CONSTRUCTION CONSIDERATIONS

As in all RF power applications, solid emitter grounds are imperative. In microstrip amplifiers gain can be increased more than 1 dB by grounding both of the emitter leads to the bottom foil of the microstrip board by wraping strips of copper foil thru the transistor mounting hole as shown in Figure 6

FIGURE 6 - Proper Emitter Grounding Mathod

FIGURE 7a - Microstrip Boerd Layout

FIGURE 7b - Photograph of Amplifier
Stability under normal operating conditions is essential, however, stability should be maintained over as wide a range of supply voltage and drive levels as possible. If amplifier stability is maintained at all RF drive levels with the supply voltage reduced to between three and five volts, the designer can be practically certain that the amplifier will remain stable under all conditions of load. Maintaining stability is a key factor in protecting these transistors from damage. In a stable amplifier that has adequate heat sinking, these transistors will withstand high VSWR loads including open and shorted loads without damage. The major controlling factors in obtaining wide range stability are:

1) Mechanical layout: Good mechanical layout includes good emitter grounds (as previously described), compact layout and short ground paths.
2) Biasing: The devices are all zero biased for Class " C " operation. The use of relatively low Q base chokes with ferrite beads on the ground side will maintain good base circuit stability. In some applications, the use of a resistor in series with the ground side of the base chokes on the output and driver stages may enhance the stability. Approximate values of these resistors should be 10 ohms, $1 / 2$ watt for the driver and $1.0 \mathrm{ohms}, 1 / 2$ watt for the output device. The addition of these series resistors will cause a slight loss in gain; (about 0.1 to 0.2 dB overall).
3) Collector supply feed method: The collector supply feed system is designed to provide decoupling at or near the operating frequency and a low collector load impedance at frequencies much lower than the operating frequency.
4) Heat sinking: In order to protect against burnout under all conditions of load, adequate heat-sinking must be
provided. In heat sinking the device it is imperative to use a good grade of thermal compound, such as Dow-Corning 340, on the interface between the device and its heat sink.

Figure 7a shows the microstrip board layout while Figure 7 b is a photo of the completed amplifier.

DEVICE HANDLING CONSIDERATIONS

Although the Motorola stripline package is a rugged assembly, some care in its handling should be observed. The most important mechanical parameter is stud-torque, specified on the data sheet at 6.5 inch-pounds maximum. This data sheet specification is an absolute maximum and should not be exceeded under any circumstances. A good limit to use in production assembly is 6 inch-pounds and if for any reason repeated assembly/dissassembly is required torque should be limited to 5 inch-pounds.

Another major precaution to observe is to avoid upward pressure on the leads near the case body. Stresses of this type can crack or dislodge the cap. This type stress sometimes occurs due to adverse tolerance build-up in dimensions when the device is mounted thru a microstrip board onto a heat sink. Many times this type of stress is applied even in the most carefully thought out designs due to solder build-up on the copper foil when a device is replaced. In device replacement care should be taken to flow all solder away from the mounting area before the stud nut is torqued. Finally, one must be sure to torque the stud nut before soldering the device leads. Refer to Motorola Application Note AN-555 for details on mounting Motorola "strip. line packaged transistors.

REFERENCES

1. P. H. Smith, "Electronic Applications of the Smith Chart", McGraw-Hill, 1969.
2. H. A. Wheeler, "Transmission-Line Properties of Parallel Wide Strips by a Conformal-Mapping Approximation" IEEE Trans. Microwave Theory and Techniques Vol. MTT-12, May 1964.
3. H. A. Wheeler, "Transmission-Line Properties of Parallel Strips Separated by a Dielectric Sheet" IEEE Trans. Microwave Theory and Techniques Vol. MTT-3, March 1965.
4. H. Sobol "Extending Microwave and Technology to Microwave Equipment" Electronics, March 20, 1967.
5. Microwave Engineers Technical and Buyers Guide, Edition of the Microwave Journal, 1969.

TUNING DIODE DESIGN TECHNIQUES

Prepared by:
 Doug Johnson

INTRQDUCTION

Voltage variable capacitors or tuning diodes are best described as diode capacitors employing the junction capacitance of a reverse biased PN junction. There is a wide range of available capacitances and different device types. The capacitance of these devices varies inversely with the applied reverse bias voltage.

Tuning diodes or Motorola's "Epicaps"" have several advantages over the more common variable capacitor. They are much smaller in size and lend themselves to circuit board mounting. They are available in most of the same capacitance values as air variable capacitors. Tuning diodes offer the designer the unique feature of remote tuning.

Epicaps, as opposed to earlier versions of voltage variable capacitors exhibit many new improvements. Lower leakage, significantly higher Q and uniformity are just some of these advantages. However, the capacitance of all tuning diodes inherently varies with temperature and may require compensation. A simple scheme is available for compensation of the temperature drift, resulting in stabilities as good as, or better than, that of air capacitors. This note contains the details for compensating Motorola's Epicap diodes.

SIMPLIFIED THEORY

A tuning diode is a silicon diode with very uniform and stable capacitance versus voltage characteristics when operated in its reverse biased condition. In accordance with semiconductor theory, a depletion region is set up

FIGURE 1 - Tuning Diodo Capacitor Analogy
around the PN junction. The depletion layer is devoid of mobile carriers. The width of this depletion region is dependent upon doping parameters and the applied voltage. Figure 1A shows a PN junction with reverse bias applied, while Figure $1 B$ shows the analogy, a parallel plate capacitor. The equation for the capacitance of a parallel plate capacitor given below predicts the capacitance of a tuning diode.

$$
\begin{equation*}
C=\frac{\epsilon \mathrm{A}}{\mathrm{~d}} \tag{1}
\end{equation*}
$$

where $\epsilon=$ dielectric constant of silicon equal to $11.8 \times \epsilon_{0}$
$\epsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$
$A=$ Device cross sectional area
$\mathrm{d}=$ Width of the depletion layer.
The depletion layer width d may be determined from semiconductor junction theory.

The more accepted method of determining tuning diode capacitance is to use the defining formula for capacitance.

$$
\begin{equation*}
C=\frac{d Q}{d V} \tag{2}
\end{equation*}
$$

The charge, Q per unit area, is defined as:

$$
\begin{equation*}
\mathrm{Q}=\epsilon \mathrm{E} \tag{3}
\end{equation*}
$$

where $\mathrm{E}=$ Electric field
So we have capacitance per unit area:

$$
\begin{equation*}
c=\frac{C}{A}=\epsilon \frac{d E}{d V} \tag{4}
\end{equation*}
$$

Norwood and Shatz ${ }^{1}$ use these ideas to develop a general formula:

$$
\begin{equation*}
c=\left[\frac{q B \epsilon m+1}{(m+2)(V+\phi)}\right]^{1 / m+2} \tag{5}
\end{equation*}
$$

$\mathrm{m}=$ Impurity exponent
$\mathrm{c}=$ Capacitance per unit area
Lumping all the constant terms together, including the area of the diode, into one constant, C_{D}, we arrive at:

$$
\begin{equation*}
C_{J}=\frac{C_{D}}{(V+\phi)^{\gamma}} \tag{6}
\end{equation*}
$$

where $\boldsymbol{\gamma}=$ Capacitance Exponent, a function of impurity exponent
$\phi=$ The junction contact potential (≈ 0.7 Volts)

The capacitance constant, C_{D}, can be shown to be a function of the capacitance at zero voltage and the contact potential. At room temperature we have:

$$
\begin{align*}
C_{D} & =C_{0}(\phi)^{\gamma} \tag{7}\\
C_{0} & =\text { Value of capacitance at zero voltage }
\end{align*}
$$

The simple formula given in Eq. 6, very accurately predicts the voltage-capacitance relationship of Epicaps. There are many detailed derivations ${ }^{1,2,3,4,5}$ of junction capacitance, so further explanation is not necessary in this note.

The capacitance of commercial tuning diodes must be modified by the case capacitance.

The equation then becomes:

$$
\begin{equation*}
C=C_{c}+C J \tag{8}
\end{equation*}
$$

where
$\mathrm{C}_{\mathrm{c}}=$ Case capacitance typically 0.1 to 0.25 pF
$\mathrm{CJ}=$ Junction capacitance given by equation 6 .

TUNING RATIOS

The tuning or capacitance ratio, TR, denotes the ratio of capacitance obtained with two values of applied bias voltage. This ratio is given by the following expression for the Epicap junction.

$$
\begin{equation*}
\mathrm{TR}=\frac{\mathrm{C}_{\mathrm{J}}\left(\mathrm{~V}_{2}\right)}{\mathrm{C}_{\mathrm{J}}\left(\mathrm{~V}_{1}\right)}=\left[\frac{\mathrm{V}_{1}+\phi}{\mathrm{V}_{2}+\phi}\right]^{\gamma} \tag{9}
\end{equation*}
$$

where $\quad C_{J}\left(V_{1}\right)=$ Junction capacitance at V_{1}

$$
\begin{gathered}
\mathrm{C}_{\mathrm{J}}\left(\mathrm{~V}_{2}\right)=\text { Junction capacitance at } \mathrm{V}_{2} \\
\text { where } \mathrm{V}_{1}>\mathrm{V}_{2}
\end{gathered}
$$

In specifying TR, some Epicap data sheets use four volts for V_{2}. However, in order to achieve larger tuning ratios, the devices may be operated at slightly lower bias levels with some degradation in the Q specified at four volts. (See the discussion of Q versus voltage in the circuit Q section, later in this note). Furthermore, care must be taken when operating Epicaps at these low reverse bias levels to avoid swinging the diode into forward conduction upon application of large ac signals. These large signals may also produce distortion due to capacitance modulation effects.

Since the effects of ϕ and case capacitance, C_{c}, are usually small, Eq. 9 may be simplified to the following for most design work:

$$
\begin{equation*}
T R=\frac{C(V \min)}{C(V \max)}=\left(\frac{V \max }{V \min }\right) \tag{10}
\end{equation*}
$$

The frequency ratio is equal to the square root of the tuning ratio. This tunable frequency ratio assumes no stray circuit capacitance.

Another parameter of importance is γ, the capacitance exponent. Physically, $\boldsymbol{\gamma}$ depends on the doping geometry employed in the diode. Varactor diodes with γ values from $1 / 3$ to 2 can be manufactured by various processing techniques. The types of junctions, their doping profiles, and resulting values of γ are shown in Figure 2. These graphs show the variation of the number of acceptors $1\left(N_{A}\right)$ and the number of donors (ND) with distance from the junctipn.

Abrupt junctions are the easiest to manufacture and most Epicaps are of this type. This type of junction gives a γ of approximately $1 / 2$ and a tuning ratio on the order 3 with the specified voltage range. Therefore the corresponding frequency range which may be tuned is about 1.7 to 1.0. A typical example is the MV2101:

$$
\begin{aligned}
C\left(\mathrm{~V}_{2}\right) & =\mathrm{C}(30 \mathrm{~V})=2.5 \mathrm{pF} \\
\mathrm{C}\left(\mathrm{~V}_{1}\right) & =\mathrm{C}(4 \mathrm{~V})=6.8 \mathrm{pF} \\
\mathrm{TR} & =2.7 \\
\gamma & =0.47
\end{aligned}
$$

The subscripts on the capacitance refer to the bias voltage applied.
In many applications, such as tuning the television channels, or the AM broadcast band, a wider frequency range is required. In this event, the designer must use a hyperabrupt junction Epicap. The hyper-abrupt diode has a γ of 1 or 2 , and much larger frequency ranges. Table I shows typical types of tuning diodes available, their tuning ratios, frequency ratios and junction types.

TABLE I SAMPLE TUNING DIODE TYPES

Device Series	Capacitances Available	Tuning Ratio		Frequency Ratio	Junction Type
1N5139	$47-6.8 \mathrm{pF}$	$2.7-3.4$	0.47	$1.6-1.8$	Abrupt
MV2101	$100-6.8 \mathrm{pF}$	$1.6-3.3$	0.47	$1.6-1.8$	Abrupt
B8105	10 pF	$4-6$	1.0	$2-2.4$	Hyper-Abrupt
MV1400	$550-120 \mathrm{pF}$	10.14	2.0	$3.2-3.7$	Hyper.Abrupt
MV109	30 pF	6.6 .5	1.0	$2.2-2.5$	Hyper-Abrupt

FIGURE 2 - Doping Profites and Capacitance Exponent for Somo Common Tuning Diode Types

The hyper-abrupt devices are constructed with special epitaxial growth and diffusion techniques, which creates a doping profile similar to that shown in Figures 2C and 2D. The Q of the BB105 and MV109 series hyper-abrupt diodes is as high as abrupt junction Epicaps. Their capacitance range is from a few picofarads to 10 or 20 pF , and their major application is in television tuners. The MV1400 series are high capacitance devices for applications below 10 MHz . They are suitable for tuning elements in AM broadcast band receivers and similar low frequency applications.

CIRCUIT Q

Popular types of mechanical tuning capacitors often have Q's on the order of a thousand or greater. The \mathbf{Q} of tuned circuits using these capacitors is generally dependent only on the coil. When using an Epicap, however, one must be conscious of the tuning diode \mathbf{Q} as well. The Q of the tuning diode is not constant being dependent on bias voltage and frequency. The Q of tuning diode capacitors falls off at high frequencies, because of the series bulk resistance of the silicon used in the diode. The Q also falls off at low frequencies because of the back resistance of the reverse-biased diode.

The equivalent circuit of a tuning diode is often described as shown: ${ }^{7}$

FIGURE 3 - Equivalent Circuit of Epicap Diode

> where $$
\begin{aligned} \mathbf{R}_{\mathrm{p}} & =\text { Parallel resistance or back resistance of the diode } \\ \mathrm{R}_{\mathbf{S}} & =\text { Bulk resistance of the silicon in the diode } \\ \mathrm{LS}^{\prime} & =\text { External lead inductance } \\ \mathrm{LS}_{S} & =\text { Internal lead inductance } \\ \mathrm{C}_{\mathrm{C}} & =\text { Case capacitance }\end{aligned}
$$

Normally we may neglect the lead inductance and case capacitance. This results in the simplified circuit of Figure 4.

FIGURE 4 - Simplified Equivalent Circuit of Epleap Diodes
The tuning diode \mathbf{Q} may be calculated with equation 11.

$$
\begin{equation*}
Q=\frac{2 \pi f C R_{p}^{2}}{R_{s}+R_{p}+(2 \pi f C)^{2} R_{s} R_{p}^{2}} \tag{11}
\end{equation*}
$$

This rather complicated equation is plotted in Figure 5 for

FIGURE 5 - Graph of 0 versus Frequency
$R_{S}=1.0 \mathrm{ohm}, \mathrm{R}_{\mathrm{p}}=30 \times 10^{9} \mathrm{ohms}$, at $\mathrm{V}=4$ volts and $\mathrm{C}=6.8 \mathrm{pF}$, typical for a 1 N 5139 Epicap at room temperature.

At frequencies above several MHz , the Q decreases directly with increasing frequency by the simpler formula given below:

$$
\begin{equation*}
\left.\mathrm{Q} \approx \mathrm{Q}_{\mathrm{S}}=\frac{1}{2 \pi \mathrm{fCR}} \quad \text { (High frequency } \mathrm{Q}\right) \tag{12}
\end{equation*}
$$

The emphasis today is on decreasing R_{S} so better high frequency Q can be obtained. At low frequencies Q increases with frequency since only the component resulting from R_{p}, the back resistance of the diode, is of consequence.

$$
\begin{equation*}
Q \approx Q_{p}=2 \pi \Gamma C R_{p} \text { (Low frequency } Q \text {) } \tag{13}
\end{equation*}
$$

Q is also dependent on voltage and temperature. Higher reverse bias voltage yields a lower value of capacitance, and also since R_{s} decreases with increasing bias voltage, the Qincreases with increasing voltages. Similarly, low reverse bias voltages accompany larger capacitances, and lower Q 's. Increasing temperature also lowers the Q of tuning diodes. As the junction temperature increases, the leakage current

FIGURE 6 - \mathbf{Q} versus Reverso Bias and Temperaturo
increases, lowering $\mathbf{R}_{\mathbf{p}}$. There is also a slight decrease in $\mathbf{R}_{\mathbf{s}}$ with increasing temperature, but the effects of the decreasing R_{p} are greater and this causes the Q to decrease. The effects of temperature and voltage on the Q of a 1 N 5139. at 50 MHz are plotted in Figure 6.

TEMPERATURE

The Q and tuning ratio of Epicaps are parameters that every design engineer must be aware of in his circuits. Another equally important characteristic of tuning diodes is their temperature coefficient. A typical example of the capacitance versus temperature drift is shown in Figure 7.

FIGURE 7 - Capacitance versus Tomperature for a MV2101 Epicap Biased at 4 Volts

FIGURE 8 - Capacitance Drift in ppro ${ }^{\circ} \mathrm{C}$ versus Voltage MV2101 Diode

The temperature constant, T_{C}, is a function of applied bias. Figure 8 shows TC for a typical Motorola Epicap. Note that for low bias levels, on the order of a volt or two, the T_{C} is as high as +600 parts per million per degree centigrade ($\mathrm{ppm} /{ }^{\circ} \mathrm{C}$). This represents a frequency change of $-300 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ which at 100 MHz means a frequency shift of 30 kHz per degree. It is obvious that a temperature compensation scheme is desirable for any frequency control not using feedback techniques.

In Figure 9, the actual capacitance drift of a MV2101 per degree centigrade is plotted. The graph illustrates that

FIGURE 9 - Capscitanco Drift in Attofarads ${ }^{\circ} \mathrm{C}$ versus Voltage for the MV2101 Tuning Diode
Attofarads $=\left(\mathrm{pF} \times 10^{-6}\right)$
a simple negative temperature coefficient compensating capacitor will not compensate for the tuning diode T_{C} because the change in capacitance is not constant with voltage.

A popular method of temperature compensating Epicaps involves the use of a forward biased diode. The voltage drop of a forward biased diode decreases as the temperature rises, thus applying a changing voltage to the Epicap. In the network shown in Figure 10, an increase in temperature

FIGURE 10 - Simple Temperature Compensating Network
will result in a decrease of the diode voltage VDIODE to perhaps 0.5 V . If $\mathrm{V}_{\text {in }}$ is maintained constant, the available output voltage $\mathrm{V}_{\text {out }}$ will rise by 0.1 V . This increase in output voltage will lower the capacitance of the tuning diode and partially offset the initial capacitance increase caused by the temperature change. This method has been explored in detail and specific compensating circuits for Epicaps have been designed: The following sections describe the results of this work.

THEORY OF TEMPERATURE CHANGE

Before proceeding further with schemes to correct the temperature drift, it is informative to investigate the physical mechanisms responsible for the changing capacitance. Equations 6 and 8 may be combined to give the basic expression for capacitance below:

$$
\begin{equation*}
C=\frac{C_{d}}{(V+\phi)^{\gamma}}+C_{c} \tag{14}
\end{equation*}
$$

We can pinpoint the terms in Eq. 14 that may account for capacitance changes. The contact potential, ϕ, is a strong function of temperature, varying on the order of $-2 \mathrm{mV} /{ }^{\circ} \mathrm{C} . \quad \mathrm{C}_{\mathrm{d}}$ is a function of geometric dimensions which can change with temperature and ϵ which changes with temperature. Case capacitance also changes with temperature. For this analysis we will assume the only terms not temperature dependent are the supply voltage V , and the capacitance exponent, which is a function only of the slope of the doping profile.

The contact potential, ϕ, is readily calculated from semiconductor theory, and the equations predict a large change with temperature. This change in ϕ will produce a much larger change in capacitance for lower voltages than for higher voltages, and therefore accounts for the majority of capacitance change in tuning diode temperature drift. See Table II.

TABLE II
Calculated capacitance change versus applied voltage in ppm $/{ }^{\circ} \mathrm{C}$ for:

$$
\begin{aligned}
\frac{\mathrm{d} \phi}{\mathrm{dT}} & =-2 \mathrm{mV} /{ }^{\circ} \mathrm{C} \\
\mathrm{C} & =\frac{\mathrm{C}_{\mathrm{d}}}{(\mathrm{~V}+\phi)^{\gamma}}+\mathrm{C}_{\mathrm{c}}
\end{aligned}
$$

Applied Bias Voltage (Volts)	Capacitance Drift In (ppm/ ${ }^{\circ} \mathrm{C}$)
1	587
2	261
4	204
10	88.7
20	45.6
30	30.7

Comparing Table II with Figure 8, we see that a +40 to $+50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ temperature drift still remains. Therefore ϕ is not the only mechanism responsible for temperature drift and others must be sought. There is a change with temperature in physical dimensions in any material which has an affect on the order of $1 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for a tuning diode. However, this change is too small to be of any significance. Another possibility is a change in dielectric constant. Silicon, depleted of its charge carriers, forms a dielectric layer with a relative dielectric constant of 11.8 . The dielectric constant of silicon has a temperature coefficient of +35 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$. ${ }^{1}$ These effects change the value of C_{d} with temperature.

Another effect which sometimes must be considered is the change in case capacitance with temperature. The case capacitance is about 0.25 pF for the plastic TO.92 case. And there is a change of +25 AF (attofarads $=10^{-6}$ pF) per degree centigrade. The glass DO-7 case exhibits a capacitance of about 0.20 pF and a change of +30 $\mathrm{AF} /{ }^{\circ} \mathrm{C}$. These are small changes for most low voltage capacitances, but become increasingly important as the voltage is increased and capacitance is reduced. Also these effects are only important for the low capacitance devices. For instance, consider the 1N5139 series which are packaged in the DO-7 glass case. Table III shows how large an effect case capacitance has on the capacitance drift of these diodes.

TABLE III Effect Of Case Capacitance Chenges On IN5t39 And 1N5148 Epicaps

Bias Voltage (Volts)	Capacitance (pF)	Changes attributable to case cappecitance (ppm/ ${ }^{\circ} \mathrm{C}$)	Capscitance (pF)	Changas attributable to case capacitance (ppm/ ${ }^{\circ} \mathrm{C}$)
	8.9	3.4	61	0.5
4.0	6.4	4.7	47	0.6
10.0	4.8	6.3	32	1.0
30.0	3.0	10.0	19	1.6
60.0	2.2	14.0	13	2.3

In summary, the largest changes are caused by the change in contact potential. This effect is most noticeable at low voltage, high capacitance levels. The change in silicon dielectric is the next most important factor providing a change that is uniform for all devices and voltages. Case capacitance changes are most noticeable in the low capacitance, high voltage range, and may be neglected for all devices except those low capacitance devices.

THE POWER SUPPLY

We previously assumed that the supply voltage did not change with temperature. This is rarely the case, and special consideration must be given to this part of the design. All our efforts to temperature compensate the tuning diode may be in vain if the power supply has a large T_{C} or is otherwise unstable. Figure 11 shows the common method of supplying voltage to a tuning diode.

POWER SOURCE

The power source is the most critical part of the circuit in Figure 11. It must be extremely stable in order to achieve good varactor tuning stability. The full drift of the power supply as expressed in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ will appear at V_{d} regardless of the setting of the potentiometer. For example, if $\mathrm{V}_{\text {out }}$ is 40 volts with a drift of $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\left(4 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right), \mathrm{V}_{\mathrm{d}}$ may be 10 V , but will still have a drift of $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}\left(1 \mathrm{mV} /{ }^{\circ} \mathrm{C}\right)$. A $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ stability figure in V_{d} translates into a $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ stability of capacitance, when the capacitance exponent is 0.5 . For hyper-abrupt junctions we realize capacitance stabilities of 50 and 100 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for exponents of 1 and 2 respectively.

There are many differing power supply regulators available to the designer. Zener diodes are relatively inexpensive, but have a poor temperature coefficient. Temperature compensated zeners are very expensive and have a limited voltage range. The MC1723, a monolithic integrated circuit voltage regulator, has excellent temperature characteristics, 37 volt output capability, and wide temperature range.

Device	Voltoge Rango	Temperature Renge	$\begin{gathered} \text { Voltage } \\ \text { ppm } /{ }^{\circ} \mathrm{C} \\ \text { Max } \\ T_{C} \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Vottoge } \\ \text { ppm/ } C \\ \text { Typical } \\ T_{C} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Capocitance } \\ \text { ppmi }{ }^{\circ} \mathrm{C} \\ \text { Typicad } \\ \boldsymbol{\gamma}=0.5 \\ \hline \end{array}$	Relative cost
$\begin{aligned} & \text { 1N5260 } \\ & \text { Zener } \\ & \hline \end{aligned}$	33	$\begin{array}{r} -65 \\ +200^{\circ} \mathrm{C} \\ \hline \end{array}$	975	975	475	Low
$\begin{aligned} & \text { IN4752 } \\ & \text { Zener } \\ & \hline \end{aligned}$	33	$\begin{array}{r} -65 \\ +200^{\circ} \mathrm{C} \\ \hline \end{array}$	850	850	425	Low
1N3157 Temperature Compensated Zener	8.4	$\begin{array}{r} -50 \\ +125^{\circ} \mathrm{C} \end{array}$	10	10	5	High
$\begin{aligned} & \text { MC1723 } \\ & \text { Aqpulator } \end{aligned}$	37	$\begin{aligned} &-55 \\ &+ 125^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	20	12	6	Medium
MFC6030 Functional Repuletor	32	$\begin{array}{r} 0^{\circ} \\ +70^{\circ} \mathrm{C} \end{array}$	50	15	7.5	Low
MC7800 Fined Voltage Regulators	29	$\begin{gathered} 0^{\circ} \\ +125^{\circ} \mathrm{C} \end{gathered}$		40.60	20.30	Medium
$\begin{aligned} & \text { MVS460 } \\ & \text { TO. } 92 \\ & \text { Regulator } \end{aligned}$	31 V	$\begin{gathered} 0 \\ +70^{\circ} \mathrm{C} \end{gathered}$	$\begin{array}{r} +100 \\ +50 \end{array}$	25	12	Low

Notes:

1) See Figure 12 for some typical circuit connections
2) More information on regulators is available in Ifterature 8,9.10
3) More information on regulators is available in iferature $8,9.10$ ($\mathrm{p} \mathrm{pm} /{ }^{\circ} \mathrm{C}$) change by 2.

The MFC6030 Functional* integrated circuit is less costly and exhibits almost as good a temperature constant.

The MC7800 fixed output voltage regulators are extremely simple to use in that they have only input, output and ground terminals and require no external components other than possibly a high frequency bypass capacitor. (The latter item is generally required with all IC regulators to prevent high frequency oscillations).

The MVS460 is a two leaded IC regulator especially designed for use with tuning diodes. It represents a simple, inexpensive solution to the voltage regulator problem. Table IV contains a summary of available power supply regulators.

VARIABLE RESISTOR

The variable resistor is considerably less critical. Since it is being used as a voltage divider, all that is required is that the resistive material be uniform so any change in resistance is uniform throughout the potentiometer. Wire wound, and special high quality cermet film variable resistors are suitable for these applications. Generally speaking, a linear potentiometer should have a T C of $\pm 150 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or better. Special taper potentiometers should have a TC of $\pm 50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ or better.

The variable resistance cannot be made too large or there will be appreciable voltage drop as the reverse current in the diode increases. The reverse current in a silicon diode generally doubles every $10^{\circ} \mathrm{C}$ so this becomes an important problem at temperatures above $50^{\circ} \mathrm{C}$. If the temperature is expected to run as high as $70^{\circ} \mathrm{C}$, one must limit the variable resistor to $50 \mathrm{k} \Omega$ or the effect will be a greater than $5 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ capacitance change. If $50^{\circ} \mathrm{C}$ is the upper temperature limit, the resistance may be upped to $150 \mathrm{k} \Omega$. These values apply to all of Motorola's Epicap series. When the tuning diodes are used in applications where temperature will greatly exceed $70^{\circ} \mathrm{C}$, the divider resistance should be kept below $10 \mathrm{k} \Omega$. This low value requires large power supply currents and would be undesirable in some applications. However, since the Motorola MC1723 is the recommended power source at these temperatures, voltage control may be accomplished using the regulator without relying on an external divider potentio*Trademark of Motorola Inc.

FIGURE 12A - High Stability Regutator $\mathbf{- 5 0}$ to $+125^{\circ} \mathrm{C}$

FIGURE 12 B - Regulator Using MCF6030, $0^{\circ}-70^{\circ} \mathrm{C}$
meter, as shown in Figure 12A. The MC1723's low output impedance of 0.05 ohms will easily and reliably handle the change in current demanded by the Epicap as it heats up. Figure 12B shows another popular regulator circuit." If higher or lower voltages are needed, schemes such as voltage boost ${ }^{\text {s }}$ and floating regulators may be used.

FIGURE 13 - Temperature Compensation Using A Silicon Diode

TEMPERATURE COMPENSATION

It has been previously noted that the most effective means of temperature compensation is simply to use a silicon junction biased in the forward direction. A circuit employing this technique is shown in Figure 13.

Diode D1 has a forward voltage drop on the order of 0.6 volts, and a temperature coefficient of $-0.002 \mathrm{~V} /{ }^{\circ} \mathrm{C}$. Assuming a constant voltage from the supply, the reduction in diode voltage with increasing temperature, increases the voltage available to the tuning diode, V_{D}. The higher tuning diode voltage, V_{D}, lowers the capacitance enough to compensate for the increase due to temperature. However, merely using a random diode with an arbitrary value of R1 will not result in very accurate temperature compensation.

Different correction devioes exhibit different TC (changes in voltage drop with temperature) values because of differing doping schemes. For example, a typical Epicap exhibits a T_{C} of approximately $-1.5 \mathrm{mV} /{ }^{\circ} \mathrm{C}$ while some high current rectifier junctions measure as high as $-2.6 \mathrm{mV} /{ }^{\circ} \mathrm{C}$. So it is necessary to investigate many different junction devices in order to find a diode that adequately compensates the tuning diode drift.

The tuning diode's change with temperature must be accurately determined. Also of major importance is the value of R1. A typical junction may have a T_{C} of -1.5 $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ at 10 mA junction current, and a T_{C} of $-2.8 \mathrm{mV} /$ ${ }^{\circ} \mathrm{C}$ at $1 \mu \mathrm{~A}$ junction current. Thus the value of R1, the bias resistor, must be chosen to yield the optimum value of compensating diode current.

Detailed analysis was performed on 160 low cost junction devices in order to arrive at suitable compensation schemes for Motorola's Epicaps. The results appear in Table V. The correction diodes represent the devices which provided the most accurate and reliable compensation. A computer program was devised to optimize the value of R1 in each case. Two different methods of compensation were analyzed. Method one searches for the lowest ppm values without using Cl , the temperature compensating capacitor. At some voltages the temperature corrected tuning diode will have a negative temperature coefficient, while at others it will be positive. In general the results are better than $\pm 50 \mathrm{ppm}$ over the entire range from 2 volts to the breakdown voltage of the Epicap diode.

Method two attempts to cluster the residual capacitance at some standard value after the diode has performed its

correction. This value (due to silicon dielectric change, case capacitance change, etc.) is easily "tuned out" by means of a small negative temperature coefficient capacitor.

Consideration must be given to the stability of R1. As the resistance of RI increases with changing temperature, less current will be drawn through D1, thus decreasing its voltage drop. The result will be a rise in the voltage applied to the Epicap. Analysis of this effect is shown in Table VI.

The results of using a MV2111 in the compensation circuits are shown in Figures 14A and 14B. Only the diode,
table VI
TUNING DIODE BIAS VOLTAGE

ppm Accurscy of R1	1 V	2 V	5 V	25 V	
$\pm 10 \mathrm{ppm}$	1	1	-	-	
$\pm 25 \mathrm{ppm}$	3	2	1	-	PPM
$\pm 50 \mathrm{ppm}$	6	4	2	1	CAPACITANCE
$\pm 100 \mathrm{ppm}$	12	7	4	2	CHANGE
$\pm 200 \mathrm{ppm}$	24	14	8	4	

Kaoping cost in mind, ± 100 ppm or ± 50 ppm 1\% resistors aro rocommanded for R1.
resistor R1, tuning diode, and capacitor C 1 if used were subjected to temperature changes. Thus, any effect of power supply variation and variable resistor instability were neglected.

Actual circuits constructed will not be as accurate as these test results because the power supply and variable resistor will contribute some instability. Some of the variations that will occur are shown in Table VII.

The effects of tuning diode variation and correction diode variation are accounted for in Table V. The effects

TABLE V

Tuning Diode	Correction Diode	Method One R1	$\begin{gathered} \text { Typ } \\ \text { ppm } \\ \text { Mathod One } \\ -50 \text { to } 125^{\circ} \mathrm{C} \end{gathered}$	Max ppm Mothod One -50 to $125^{\circ} \mathrm{C}$	Method Two R1	Method Two C_{x} Note 1	Typ ppm Method Two -50 to $125^{\circ} \mathrm{C}$	Max ppm Method Two -50 to $125^{\circ} \mathrm{C}$
$\begin{aligned} & \text { MV2101 } \\ & \text { Series } \end{aligned}$	MSD6100	$\left\{\begin{array}{c} 50 k t o \\ 70 k \end{array}\right.$	-30 to +40	± 50	8.2 k	23	± 15	± 25
	1N4001	$\left\{\begin{array}{c}20 \mathrm{k} \text { to } \\ 30 \mathrm{k}\end{array}\right.$	-40 to +40	± 60	-	-	-	-
	-2N5221	$\left\{\begin{array}{c}250 \mathrm{k} \text { to } \\ 400 \mathrm{k}\end{array}\right.$	-30 to +40	± 55	33 k	23	± 15	± 25
	-MPS5172	$\left\{\left.\begin{array}{c} 250 \mathrm{k} \text { to } \\ 400 \mathrm{k} \end{array} \right\rvert\,\right.$	-35 to +40	± 60	47 k	23	± 16	± 25
	-MPS3904	.-	-	-	180 k	23	± 20	± 30
1N5139	MSD6100	$\left\{\begin{array}{c} 400 \mathrm{k} 20 \\ 600 \mathrm{k} \end{array}\right.$	-30 to +50	± 60	120 k	16	± 25	± 35
Sorios	1N4001	$\left\{\begin{array}{c} 400 \mathrm{k} \text { to } \\ 600 \mathrm{k} \end{array}\right.$	-30 20 +45	± 50	82 k	15	± 20	± 30
	MPS5172	-	-	-	$\begin{aligned} & 600 \mathrm{~K} \\ & 800 \mathrm{k} \end{aligned}$	15	± 25	± 35
MV2305 Saries	MSD6100	$\left\{\begin{array}{c}40 \mathrm{k} \text { to } \\ 60 \mathrm{k}\end{array}\right.$	-40 to +50	± 60	-	-	-	-
$\begin{gathered} \text { Noto } \\ 2 \end{gathered}$		$\left\{\begin{array}{c}15 k \text { to } \\ 25 k\end{array}\right.$	± 45	± 65	-	-	-	-
	-2N5221	$\{250 \mathrm{ktp}$	± 45	± 70	18 k	35	± 15	± 25
	- MPS5172	$\int_{-}^{350 k}$	-	-	100 k	34	± 15	± 25
MV3600 Series	MSD6100	$\left\{\begin{array}{c}30 \mathrm{k} \text { to } \\ 40 \mathrm{k}\end{array}\right.$	± 40	± 60	-	-	-	-
	-2N5221 -MPS5172 -MPS3904	$\left\{\left.\begin{array}{c} 120 \mathrm{k} \text { to } \\ 180 \mathrm{k} \end{array} \right\rvert\,\right.$	-38 to +46	± 55	66k	22	$+15$	425
$\begin{aligned} & \text { 1N5441 } \\ & \text { \& 1N5461 } \\ & \text { Series } \end{aligned}$	MS06100	1400 k to	± 45	± 60	68 k	22	± 20	± 30
		$\{500 \mathrm{k}$						
	1N4001.	$\left\{\begin{array}{c} 400 \mathrm{k} 20 \\ 500 \mathrm{k} \end{array}\right.$	± 50	± 60	22 k	22	± 20	± 30
	-2N5221 -MPS5172.		-	-	390 k	22	± 20	± 35

- Baso-Emitter junction used as o diode.

TABLE VII Other Error Contributing Factors In Temperature Compensation

Typical ppm/ $/{ }^{\circ} \mathrm{C}$	
Powar Supply Variation	± 8
R1 Changas	± 5
Chenges In Epicap Curront through Potentiomator	± 5
Potantiomater Nonlinoaritios	± 2
Tuning Dioda Variation	± 10
Corroction Diodo Variation	± 15

of power supply and potentiometers must be accounted for separately and decrease the total accuracy. If a ± 25 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ correction scheme is used, but the power supply has $\pm 25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ stability, an overall stability of $\pm 35 \mathrm{ppm}$ is obtained. This apparent error results from the fact that the error factors cannot be added directly, but must be summed as vectors in accordance to the rules of error theory. It is important to consider the whole circuit when designing for temperature compensation.

FIGURE 14A - MV2111, MSD8100 Compensation Diodo R1-68k

FIGURE 14B - MV2111, MSD6100 Compensating Diodo

$$
\begin{aligned}
& \mathrm{R} 1=8.2 \mathrm{k} \\
& \mathrm{C} 1=3.3 \mathrm{pF}(\mathrm{~N} 330) \\
& 0.00109 \mathrm{pF} / \mathrm{O}_{\mathrm{C}} \mathrm{C}
\end{aligned}
$$

HYPER-ABRUPT TEMPERATURE DRIFT

The hyper-abrupt tuning diode is more sensitive than other types to temperature variations resulting in a greater need for temperature compensation. Also their drift with temperature is not as uniform as abrupt junction tuning diodes. Their drift factors expressed in $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ run as high as 800 to 1200 for the units with a γ of 2 . Units having a γ of 1 typically show 300 to $400 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ capacitance changes. These higher drift rates are caused by the
hyper-abrupt tuning diode's greater sensitivity to changes in voltage, and the fact that the majority of capacitance change is caused by the change in contact potential, ϕ. This greater sensitivity to voltage changes means that power supply and other instabilities will also have a larger effect than with regular abrupt junction tuning diodes.

As a first order approximation, a MPS3904 transistor's emitter-base junction with a 50 k resistor used for R1 will improve the temperature drift in capacitance to better than $200 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. Improvement from this point can only be obtained by a trial and error method described below.

Figure 15 shows the variation in compensation as R1 is varied for the MV3142, a hyper-abrupt tuning diode. As R1 is increased in value, the $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ value is made more negative. The effect of the change is greatest at lower voltages.

To completely compensate the drift factor of the MV3142 shown in Figure 15 would be very difficult due to the variation of the curve shape. However, improved compensation may be achieved by limiting the diode to an operating voltage range of 2 to 15 volts. Starting with an R1 value of 50 k , the tuning diode and compensation circuit should be varied in temperature, while measuring the capacitance change. If the drift factor is more positive than desired, R1 may be increased in value. Referring to Figure 15, a temperature drift factor of $+40 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ at 2 V may be larger than can be tolerated. Substituting a 200 k resistor will reduce the value to $25 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ at 2 V . In order to accurately compensate at any voltage, it is only necessary to vary R1 while measuring the capacitance drift. If the required value for R1 becomes larger than 750 k , the compensating junction type should be switched to a MSD6100, and the bias resistor started at 50 k again.

FIGURE 15 - MV3142 Tuning Diode Compensation For Differing Values of R1

SUMMARY

Voltage variable capacitors are rapidly replacing air variable capacitors in many applications. These devices offer many advantages over previous variable capacitors, such as the ability to employ remote tuning. By carefully considering the proper design conditions, such as temperature drift, and designing accordingly, Epicaps can replace air capacitors in virtually all but high power applications. The designer must be aware of the tuning range and Q limitation in order to use these devices effectively. Temperature drift should cease to be a problem when proper compensation schemes are used.

BIBLIOGRAPHY

1. Norwood, Marcus; and Shatz, Ephraim, "Voltage Variable Capacitor Tuning: A Review." IEEE, 56:5, May 1968, pp. 788-98.
2. Chang, Y.F., "Capacitance of $\mathrm{p} \cdot \mathrm{n}$ Junctions: Space Charge Capacitance." Journal of Applied Physics, 37:6, May 1966, pp. 2337-42.
3. Gimmel, H.K.; and Schauftter, D.L., "Depletion Layer Capacitance of $\mathrm{p}^{+} \mathrm{n}$ Step Junctions." Journal of Applied Physics, 38:5, April, 1967, pp. 2148-53.
4. Gray, P.E.; DeWitt, D.; Boothroyd, A.; Gibbons, J., Physical Electronics and Circuit Models of Transistors. New York, John Wiley \& Sons, 1964, pp. 8-54.
5. Warner, R.; Fordemwalt, J., Integrated Circuits, Design Principles and Fabrication, New York, McGraw-Hill, 1965, pp. 31-68.
6. John Hopkins, "A Printed Circuit VHF TV Tuner Using Tuning Diodes," Motorola Application Note AN-544A.
7. G. Schaffner, "Designing Around The Tuning Diode Inductance," Motorola Application Note AN-249.
8. Don Kesner, Marv Gienger, "Voltage and Current Boost Techniques Using The MC1560-61," Motorola Application Note AN-498.
9. Ed Renschler and Don Schrock, "Development, Analysis, and Basic Operation of The MC1560-61 Monolithic Voltage Regulators," Motorola Application Note AN-500.
10. Don Kesner, "Regulators Using Operational Amplifiers," Motorola Application Note AN-480.

MOUNTING STRIPLINE-OPPOSED-EMITTER (SOE) TRANSISTORS

Prepared by Lou Danley

INTRODUCTION

The Stripline Opposed Emitter (SOE) package presently used by Motorola for a number of rf power transistors represents a major advancement in high frequency and thermal performance. This Application Note discusses the SOE package, it advantages and limitations as well as a number of considerations to avoid improper usage.

An understanding of a few basic principles in regard to mounting and heat-sinking of this package can help avoid cases of poor performance or device damage.

Two general package types - the stud-mounted and flange-mounted SOE packages will be discussed. Each of the general types is available in a variety of sizes. Typical package outlines of the two SOE packages are shown in Figure 1.

ADVANTAGES OF THE SOE PACKAGE

The primary electrical advantages of the SOE packages are the low inductance strip line leads which interface very well with the microstrip lines often used in UHF.VHF equipment and the good collector to base isolation provided by the two emitter leads. The two emitter concept promotes symmetry in board layout when combining devices to obtain higher output power. Both emitter leads should always be used for best performance.

DESCRIPTION OF THE SOE PACKAGE

Figure 2 displays the component parts on a studmounted SOE package. This package will be used as an
example since both the stud and flange-mounted packages are very similar in construction. The body of the package is a Berylium Oxide (BeO) disc. Berylium Oxide was chosen due to its high thermal conductivity. Attached to the bottom of the disc is a copper stud which is for heat transfer and mechanical mounting. The lead frame is attached to a metalized pattern on to the top surface of the BeO disc. The actual shape of the leads differs between the various package types. Finally an Alumina ceramic cap is attached to the top of the disc over the leads providing a protective cover for the transistor die.

An understanding of the basic structure of the SOE package is essential to proper usage of these devices in respect to heat-sinking and mechanical mounting. Since these two areas present the greatest problem to users, they will be discussed in detail.

HEAT-SINKING THE SOE PACKAGE

In order to properly understand the thermal considerations involved in mounting SOE type packages, it is necessary to lay some groundwork in the area of heat flow. Table I gives equivalent Thermal and Electrical parameters which may be used to relate Thermal properties to more familiar electrical units.

Semiconductor power devices are usually guaranteed to have a certain thermal performance as stated by the thermal resistance of the device from the junction to the case, or mounting surface $-\theta \mathrm{JC}$. How to get the heat out of the

FIGURE 1 - SOE Packages

FIGURE 2 - Component Parts of SOE Package
case has generally been left to the user. In any dynamic heat flow problem, the heat must go somewhere, otherwise there will be a continuous rise in the temperature of the system. In text books, there always seems to be an "infinite heat sink" available which can absorb any amount of heat with no temperature rise whatsoever. In the practical sense, however, such a heat sink does not really exist. Practical heat sinks must be characterized by a certain temperature rise for a given ambient condition, with a known amount of heat input (power to be dissipated) after equilibrium conditions have been achieved. Characterization of heat-sink systems is best achieved by examining the complete system under controlled conditions.

TABLE I - Thermal Parameters and Thoir Eloctrical Analogs

Symbol	Thermal Parameter	Units*	Electrical Analog	
			Symbol	Parameter
ΔT	Temporature difforence	${ }^{\circ} \mathrm{C}$	V	Voltage
H	Heat flow	watts	1	Current
θ	Thermal resistance	${ }^{\circ} \mathrm{C} /$ watt	R	Resistance
$\boldsymbol{\gamma}$	Haet capocity	$\frac{\text { watt-sec }}{{ }^{\circ} \mathrm{C}}$	C	Capacity
K	Therma! conductivity	$\frac{\mathrm{cal}}{50 \mathrm{c} \cdot \mathrm{cm} \cdot{ }^{\circ} \mathrm{C}}$	σ	Conductivity
0	Quantity of hoat	cal	9	Chargo
t	Time	sec	t	Tima
$\theta \gamma$	Thermal time constant	sec	RC	Tima constant

[^28]For example, the normal environment for a land-mobile VHF transmitter might be the trunk of a taxi cab in the hot Arizona summer. In such an environment, temperatures might reach as high as $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$. The heat-sink system for such a radio should therefore be tested at a minimum ambient temperature of $80^{\circ} \mathrm{C}$. The method that should be applied in this test would utilize a fine wire thermocouple rigidly secured to the stud of the rf power transistor for which the test is being conducted. The system, which in this case would include all parts of the radio which would contribute heat, should then be operated under maximum heat generating conditions, in the high temperature environment specified. Careful measurement of the temperature of the device under test would then give the difference in temperature between the case of the transistor and the controlled ambient.

If the case and ambient temperatures are known, as well as the power levels in the transistor, the thermal resistance from the transistor case to the ambient can be calculated. The first step is to obtain the power being dissipated by the device.

$$
\begin{equation*}
P_{d}=P_{1}+P_{2}-P_{3} \tag{1}
\end{equation*}
$$

where: $P_{d}=$ power being dissipated by the transistor in watts;
$P_{1}=$ de power into the transistor in watts;
$P_{2}=$ rf power into the transistor in watts;
$P_{3}=$ rf power out of the transistor in watts.
This value of \mathbf{P}_{d} is used to obtain the $\boldsymbol{\theta}_{\mathrm{CA}}$ value from the equation:

$$
\begin{equation*}
\theta_{C A}=\frac{T_{C}-T_{A}}{P_{d}} \tag{2}
\end{equation*}
$$

where: ${ }^{\theta} \mathrm{CA}=$ thermal resistance device case to ambient;
$\mathrm{T}_{\mathrm{C}}=$ device case temperature;
$T_{A}=$ ambient temperature.
In order to determine the maximum temperature rise in the transistor element (junction temperature rise) under any given operating condition the following equation may be used.

$$
\begin{equation*}
T_{j}=\left(\theta_{J C}+\theta_{C A}\right) P_{d}+T_{A} \tag{3}
\end{equation*}
$$

where: $\quad \mathrm{T}_{\mathrm{j}}=$ junction temperature;
$\theta_{\mathrm{JC}}=$ published thermal resistance junction to case.

If power is dissipated in a power transistor, the case temperature will rise above the ambient temperature by an amount determined by θ_{JC} and θ_{CA}. Since the value to θ_{JC} is fixed by the transistor type being used, $\theta \mathrm{CA}$ is the only factor with which the user can control the junction temperature for a given power dissipation.

Since heat generated by the transistor must be radiated to the ambient by the heat sink, a low ${ }^{0} \mathrm{CA}$ requires an effective heat sink. In general, an efficient heat sink requires that material with high thermal conductivity and high specific heat be used. A table of thermal properties for various materials is given in the Appendix. A welldesigned heat sink requires that all thermal paths be as short as possible and of maximum cross-sectional area. Examples of thermal resistance calculations for a bar and a flat disc of thermal conducting material are given in the Appendix.

The equations given in the Appendix however, assume no thermal resistance between the case and the heat sink.

The primary heat conducting surface on stud-mounted SOE packages is the flat metal surface between the actual stud and BeO case body labeled surface S in Figure 2. This surface, which has a D-flat on some case types, must make good contact with the heat sink to allow good thermal conduction. To insure good contact: a) the heat sink mounting surface must be flat, b) the mounting hole must be burr free, the proper size and perpendicular to the mounting surface, c) the proper sized nut should be used and d) the nut should be properly torqued. Recommended mounting hardware is given in the section on device mounting.

With flange-mounted devices the primary parameters affecting thermal transfer are the flatness of the heat sink surface and the flatness of the device flange. The flangemounted package requires that good contact be made between the flange and the heat-sink surface, particularly directly beneath the BeO disc.

With either of these packages it has been found that a considerable improvement in thermal transfer can be achieved through the proper use of one of the silicone based "heat-sink compounds" which are marketed by several vendors. Dow Corning and Wakefield Engineering are both suppliers of good thermal compounds. It should be pointed out however, that these compounds have a thermal conductivity approximately equal to that of Mica ($0.0018 \mathrm{Cal} / \mathrm{Sec}-\mathrm{cm}-{ }^{\circ} \mathrm{C}$) which is poor compared to that of Aluminum ($0.49 \mathrm{Cal} / \mathrm{Sec}-\mathrm{cm} \cdot{ }^{\circ} \mathrm{C}$). However by comaprison, the thermal conductivity of still air is approximately $0.000006 \mathrm{Cal} / \mathrm{Sec} \cdot \mathrm{cm} \cdot{ }^{\circ} \mathrm{C}$). The quantity of silicone grease used must be kept to the absolute minimum required to fill in any air gaps which might occur between the transistor mounting surface and the heat-sink surface. In the case of the stud-mounted package this is the gap after the transistor has been secured with the proper stud torque. Contributions of as high as $0.5^{\circ} \mathrm{C} /$ watt to the overall thermal resistance can occur if the heat-sink compound is used in a sloppy and excessive manner.

MOUNTING SOE DEVICES

The second area demanding consideration by a user of SOE transistors is mechanical mounting. Failure to observe proper mounting procedures can result in device destruction. This section will discuss both the stud-mounted, and the flange-mounted SOE devices.

Seven general considerations for properly mounting

SOE transistors are listed briefly below. More detailed discussion will follow.
A. The device should never be mounted in such a manner as to place ceramic to metal joints in tension.
B. The device should never be mounted in such a manner as to apply force on the strip leads in a vertical direction towards the cap.
C. When the device is mounted in a printed circuit board with the copper (stud or flange) and BeO portion of the header passing through a hole in the circuit board, adequate clearance must be provided for the BeO to prevent shear forces from being applied to the leads.
D. Some clearance must be allowed between the leads and the circuit board when the device is properly secured to the heat sink.
E. The device should be properly secured into the heat sinks before the device leads are attached (soldered) into the circuit.
F. The leads must not be used to prevent device rotation on stud type devices during stud torque application. A wrench flat is provided for this purpose.
G. With stud packages, maximum stud torque, as stated later in this note, and on the respective device data sheets must not be exceeded. If repeated assembly/disassembly operation is expected, a lesser torque should be used.

Most of the considerations listed above are designed to prevent tension at the metal-ceramic interfaces on the SOE package. Improper mechanical design can lead to application of stresses to these joints resulting in device destruction. Three joints are considered: The cap to the BeO disc, the leads to the disc, and the stud or flange to the dise.

The joint between the ceramic cap and the BeO ceramic disc is composed of a material which loses strength above $175^{\circ} \mathrm{C}$. While the strength of the material returns upon cooling, any force applied to the cap at high temperature may result in failure of the cap to ceramic joint.

The lead frame and stud or flange attachment will be grouped together since they are very similar. Although the SOE package used by Motorola makes use of high temperature ($>700^{\circ} \mathrm{C}$) solder alloys for lead frame and flange or stud attachment, care should be taken to avoid the application of tensile forces to the joint in the mounting of the transistor into a system. Such forces could result if the device were mounted with improper mounting clearances.

MOUNTING THE STUD TYPE SOE TRANSISTOR

Figure 3 shows a cross-section of a printed circuit board and heat sink assembly for mounting a stud type SOE device. Let us define H as the distance from the top surface of the printed circuit board to the D-flat heat sink surface. If H is less than the minimum distance from the bottom of the lead material to the mounting surface of the SOE

FIGURE 3 - Typical Stud-Mounting Method
package, there is no possibility of tensile forces in the copper stud - BeO ceramic joint. If, however, H is greater than the package dimension, considerable force is applied to the cap to BeO joint and the BeO to stud joint. Two occurances are possible at this point. The first is a cap joint failure when the structure is heated, as might occur during the lead soldering operation; while the second is BeO to stud failure if the force generated is high enough. Lack of contact between the device and the heat sink surface will occur as the difference between H and the package dimension becomes larger, this may result in device failure as power is applied.

Proper stud torque is an important consideration when mounting stud type SOE devices.* The stud section of the SOE package is composed of a special copper alloy chosen because of its high thermal conductivity. However when this material is used in studded semiconductor device packages, it is necessary to place severe restrictions on the amount of tightening torque which can be applied to a nut used to secure the device to a heat sink.

The Motorola Outline Dictionary calls for Class 2A threads. The National Bureau of Standards Handbook H28 entitled Screw Thread Standards, paragraph 4.2 on page 2.17 , reads in part as follows:
"However, for threads with additive finish, the maximum diameters of Chass 2A threads may be exceeded by the amount of the allowance; i.e., the 2A maximum diameters apply to an unplated part or to a part before plating whereas the basic diameters (the 2A maximum diameter plus allowance) apply to a part after plating."
Also, footnote b, page 2.37 reads:
"For Class 2A threads having an additive finish, the maximum is increased to the basic size, the value being the same as for Class 3A."

This means that for plated parts, the no-go gauge used is the 2 A minimum and the go gauge used is the 2A maximum plus the allowance or, in other words, the 3A maximum.

The recommended torque values are listed below for the two thread sizes presently being employed on Motorola rf power transistor packages.

Recommended maximum torque for stud SOE transistors follows:

	$8-32$ Threads	$10-32$ Threads
One time maximum	$6.5 \mathrm{lb} . \cdot \mathrm{in}$.	$11.0 \mathrm{lb} .-\mathrm{in}$.
Repeated assembly- assembly maximum	$5.0 \mathrm{lb} . \mathrm{in}$.	$8.5 \mathrm{lb} . \mathrm{in}$.

An evaluation of the effects of measured torque on the studs under consideration requires a known set of conditions. The system used to generate the data shown in Figure 4 consisted of a $1 / 8 \mathrm{inch}$ aluminum plate with a deburred clearance hole for the stud under test, a steel washer to be positioned between the plate and appropriate steel nut. A calibrated torque wrench was used as the driving means. On each unit under test, the spacing separating four threads positioned between the nut and heatsink surface was measured. After mounting the device on the aluminum plate and applying a known amount of torque the spacing was again measured and the results recorded.

The results of this test show that up to the maximum torque specified, the permanent elongation of the threads increases linearly with applied torque. At the torque specified this elongation does not exceed acceptable limits.

MOUNTING THE FLANGE TYPE SOE TRANSISTOR

The mounting and heat sinking of the flange type package is similar to that of the stud type package. The main considerations with the flange package are avoiding tensile stresses at the metal-ceramic joints and providing a flat heat conducting surface beneath the flange.

Figure 5 shows a typical mounting technique for flange type SOE rf power transistors. Again H is defined as the distance from the top of the printed circuit board to the heat-sink surface. If distance H is less than the minimum distance from the bottom of transistor lead to the bottom surface of the flange, tensile forces at the various joints in the package are avoided. However, if distance H exceeds the package dimension, problems similar to those discussed for the stud type devices can occur. Because of the ability

FIGURE 4 - Permanent Elongation Over a Four Tooth Length

FIGURE 5 - Flange Type SOE Transistor Mounting Method
of the copper flange to bend under the types of loads encountered when the mounting screws are tightened, permanent deformation of the flange may result. Corrective action after the flange has been bent will not necessarily insure proper thermal contact with the heat sink.

The flange surface as supplied with Motorola SOE transistors is either flat or slightly convex. It is important that the mating heat-sink surface also be flat or slightly convex to provide the best contact when the device is properly secured.

The holes for the mounting screws should be deburred because any irregularity of the surface at these two points is equivalent to concavity of the heat-sink surface which will degrade thermal contact between the transistor and the heat sink.

Since the flange may be permanently deformed during mounting, the device should not be dismounted and remounted in another position.

CONCLUSION

The SOE package is an excellent rf power transistor package. However, improper heat sinking and mechanical mounting can result in device damage. A number of considerations have been presented to inform the potential user of the hazards of improper mounting. Proper usage of the SOE package requires no great difficulty if the designer is aware of the limitations and construction of the package.

A list of recommended mounting hardware and a suggested mounting procedure follows:

Table of Recommended Mounting Hardware Which Can be Supplied With Motorola Stud Type SOE Transistor

Stud Thread Size	Motorola Part Numbers		
	Nut	Flat Washer	Lock Washer
10.32	02BSB51568F044	04BSB51567F040	04BSB51566F028
8.32	02BSB51568F042	04BSBSI567F038	04BSB51566F030
6.32	02BSB51568F040	04BSB51567F036	04BSB51566F032

STEPS IN A PROPER MOUNTING PROCEDURE

1. Compare the distance between the heat sink surface and the top of the printed circuit board with the minimum dimension of the transistor from the mounting surface to the bottom of the leads. The transistor dimension, as stated on the device data sheet, should be the greater distance to avoid the chance of stresses on the various joints of the SOE package.
2. Bore the proper sized mounting hole or holes for the stud or mounting screws. These holes should be perpendicular to the heat sink surface and they should be properly deburred.
3. Place a limited amount of thermal compound on the heat sink surface where it will contact the flange or mounting surface above the stud. Insert the transistor and mount with the proper hardware as suggested in the preceeding table.

In the case of the stud device, torque the nut to the proper value.
4. Solder the Jeads to the printed circuit board using the minimum amount of heat and the least possible time of application. The leads should be soldered as close to the package as possible to minimize series lead inductance.
5. With the unit exposed to the highest expected ambient temperature, and power applied, measure the temperature at the stud or flange surface with a thermocouple to insure that this temperature is not excessive. Before production quantities are commited, it is suggested that a sample assembly to be tested under worst case heat generating conditions.

TABLE AI - Typical Thermal Propertios of Matorials

Material	Therma! Conductivity K (cal/sec $\cdot \mathrm{cm}{ }^{\circ} \mathrm{C}$)	Specific Heat S (cal/gm ${ }^{\circ} \mathrm{C}$)	$\begin{aligned} & \text { Mass Density } y_{p} \\ & \left(\mathrm{gm} / \mathrm{cm}^{\circ} \mathrm{Cl}\right. \end{aligned}$
Silver	0.97	0.056	10.5
Copper	0.92	0.093	8.9
Gold	0.69	0.030	19.3
BeryiliaCeramic	0.55	0.31	2.8
Aluminum	0.49	0.22	2.7
Brass	0.26	0.094	8.6
Silicon	0.20	0.18	2.4
Germanium	0.14	0.074	5.5
Stoet	0.12	0.12	7.8
Solder	0.09	0.04	8.7
Kovar	0.046	0.11	8.2
AluminaCeramic	0.04	0.21	3.7
PlasticEpoxy	0.0026	0.2	2.0
Glass	0.0026	0.20	2.2
Mica	0.0018	0.20	3.2
Toflon	0.00056	0.25	2.2
Air	0.000057	0.24	0.0013
Hear Sink Compound	0.0018	-	- -

Example 1.

In order to present some of the important characteristics to be used in heat sink design, the examination of two admittedly simplified models is desirable. The analogy between electrical resistivity and thermal resistivity will be employed.

The first of these is shown in Figure AI

FIGURE A1 - A Bar of Thermal Conducting Material

The electrical resistance from Surface A to Surface B of this bar of conductive material is:

$$
\begin{equation*}
\mathrm{R}=\frac{\rho \mathrm{L}}{\mathrm{hW}} \tag{AI}
\end{equation*}
$$

Using the electrical to thermal analogs:

$$
\begin{equation*}
\theta=\frac{L}{K h W}=\frac{L}{K A} \tag{A2}
\end{equation*}
$$

This simplified model might represent a pedestal mount or a device mount in the center of a bar connecting at either end to a housing, and demonstrates the need for thermally conducting paths of high cross-sectional area and the shortest possible length.

Example 2.

The second simple model represents the mounting of the power device on a plate of conducting material which provides the conducting path to the ambient conditions.

Consider the simple disc geometry shown in Figure A2 as a donut-shaped sheet resistor. Equation A3 represents the electrical resistance between rl and r2,

$$
\begin{equation*}
\mathrm{R}=\frac{\rho}{2 \pi \mathrm{x}} \ln \left(\mathrm{n} \frac{\mathrm{r}_{2}}{\mathrm{r}_{1}}\right) \tag{A3}
\end{equation*}
$$

FIGURE A2 - Disc-Shaped Thermal Conductor
using the first term of the appropriate power series expansion

$$
\begin{equation*}
\mathrm{R} \approx \frac{\rho}{\pi x}\left(\frac{r_{2}-r_{1}}{r_{2}+r_{1}}\right) . \tag{A4}
\end{equation*}
$$

Where: $\quad \rho=$ Resistivity;
$\rho=\frac{1}{\sigma}$;
$\sigma=$ Conductivity.
Replacing the electrical terms with their thermal analogs we find:

$$
\theta=\frac{1}{K \pi x}\left(\frac{r_{2}-r_{1}}{r_{2}+r_{1}}\right)
$$

Note the inverse linear dependence of thermal resistance on the thickness of the conducting sheet.

This model demonstrates a major factor in designing heat sink structures for stud type power transistors. All other factors being equal, the thickness of the thermally conducting plate is of prime importance in the solution of heat flow problems.

BROADBAND LINEAR POWER AMPLIFIERS USING PUSH-PULL TRANSISTORS

Prepared by
Helge Granberg
RF Circuits Engineering

INTRODUCTION

Linear power amplifier operation, as used in SSB transmitters, places stringent distortion requirements on the high-power stages. To meet these distortion requirements and to attain higher power levels than can be generally achieved with a single transistor, a push-pull output configuration is often employed. Although parallel operation can often meet the power output demands, the push-pull mode offers improved even-harmonic suppression making it the better choice. The exact amount of even-harmonic suppression available with push-pull stages is highly dependent on several factors, the most significant one being the matching between the two output devices. Nevertheless, even in the worst case the suppression provided in pushpull designs is superior to that of single-ended circuits. Device matching however is not limited to push-pull circuits since it is also required to a lesser degree in parallel transistor designs.

Two linear power amplifier designs are to be discussed in this Application Note. The 80 Watt design is intended for mobile communications systems operating from a 12.5 V power sources. The other supplies 160 W when operated from a 28 V line and it is intended for fix location systems. Both designs cover the 3- 30 MHz band and utilize a driver stage to provide a total power gain of about 30 dB . Each amplifier requires some amount of heat-sinking for proper operation. The 28 V amplifier requires a heat-sink with a thermal characteristic of $0.85^{\circ} \mathrm{C} / \mathrm{W}$ while the 12.5 V version uses a heat-sink with a $1.40^{\circ} \mathrm{C} / \dot{\mathrm{W}}$ thermal resistance. With these heat-sinks, cooling fans are not required for normal conditions, since with speech operation the average power is some 15 dB below peak levels. However, if twotone bench testing is to exceed more than a duration of a few minutes, a cooling fan should be provided.

To assure ruggedness, engineering models of both amplifiers were subjected to open and short circuit output mismatches for several minutes at full power levels without any apparent damage to any of the transistors. This is very important in most equipment designs to avoid possible downtime for transistor replacements.

A 28 V, 160 W AMPLIFIER

An amplifier which can supply 160 watts (PEP) into a 50Ω load with IMD performance of $\mathbf{- 3 0} \mathrm{dB}$ or better is shown in the schematic diagram of Figure 1 and photos of Figures 2 and 3. Two 2N5942 transistors are employed in the design. These transistors are specified at 80 watts
(PEP) output with intermodulation distortion products (IMD) rated at -30 dB . For broadband linear operation, a quiescent collector current of $60-80 \mathrm{~mA}$ for each transistor should be provided. Higher quiescent current levels will reduce fifth order IMD products, but will have little effect on third order products except at lower power levels. Generally, third order distortion is much more significant than the fifth order products.

A biasing adjustment is provided in the amplifier circuit to compensate for variations in transistor current gain. This adjustment allows control of the idling current for both the output and driver devices. This control is also useful if the amplifier is operated from a supply other than 28 volts.

Even with the biasing control, it is strongly suggested that the output transistors be beta matched. As with any push-pull design, both dc current gain and power gain at a midband frequency should be matched within about 15 20%. This matching may require more stringent limits if broad-banding is necessary since broad-band operation requires more effective cancellation of even harmonics. In the engineering model used, the transistors were not perfectly matched. Four "similar" pairs were selected from a total of ten randomly chosen 2 N5942 transistors. Table I shows the measured harmonic suppression which is degraded by the mismatch in the output transistor parameters. This data was taken with a single frequency test and 80 watts average output.

TABLE I - HARMONIC SUPPRESSION OF 28 V AMPLIFIER AT FULL OUTPUT POWER

Harmonic		2nd	3rd	4th	5th
Frequency	3 MHz	-16 dB	-30 dB	-22 dB	-37 dB
	6 MHz	-15 dB	-20 dB	-21 dB	-37 dB
	12 MHz	-16 dB	-24 dB	-22 dB	-34 dB
	30 MHz	-35 dB	-20 dB	-51 dB	-44 dB

A 2N6370 transistor is employed as a driver. This device is specified at -30 dB IMD when delivering 10 watts (PEP). However, at about 4.5 W (PEP) output, which is the maximum necessary to drive two 2 N 5942 transistors, the IMD is typically better than -40 dB with Class B biasing. A quiescent collector current level of at least $10-15 \mathrm{~mA}$ provides best IMD performance with the 2 N 6370 . Higher current levels will not improve linearity, but will degrade driver efficiency.

FIGURE 1 - 160 Watt (PEP) Broadband Linear Amplifier

FIGURE 2 - Photo of 28 V Linear Amplifier

FIGURE 3 - Photo of Back Side of 28 V Linear Amplifier

FIGURE 4 - Transformer Datails for 28 V Linear Amplifier

Feedback

To compensate for variations in output with changes in operating frequency, negative voltage feedback is employed on both the final amplifier and driver stages. At the low end of the desired frequency band, approximately 4.5 dB of feedback is introduced in the final stage and 15 dB in the driver stage. With this feedback and the feedback networks shown in the schematic diagram, Figure I, a total gain variation of 0.5 dB was measured on an engineering prototype amplifier over a $3-30 \mathrm{MHz}$ range. The total gain differential in three identical amplifiers constructed for evaluation was less than 1.5 dB .

Transformers Employed

In order to achieve the desired broadband response, transmission line-type transformers were employed for coupling and signal-splitting. These transformers utilize twisted-pair windings and toroidal cores. Transformers TI,

T2 and T3 have turn ratios of $4: 1,1: 1$ and $1: 4$ respectively. Additional information on these transformers can be found in the references. A short description of each of the transformers will follow.

Transformer T1 provides an impedance transformation to match the 50Ω source to the low impedance level required at the base of Q1. This transformer consists of six turns of two twisted pairs wound on a toroidal core. The two pairs (four separate wires), are twisted together and the two wires from each original pair are soldered together at each end. Each pair thus connected is shown as a single wire in Figure 4 . The pairs can easily be identified by choosing wires with two different colors of insulation.

Transformer T2 is a 1:1 Balun consisting of six turns of two-twisted pairs of wire (four wires total). As shown in Figure 4 each of the pairs is treated as a single wire.

Transformer T3 consists of four turns of two twisted pairs. Again both wires of each pair are soldered together at each end.

Transformer T4 is a $1: 4$ ratio unbalanced to balanced unit with three separate windings.

A lumped-constant equivalent conventional transformer diagram of transformer T4 is shown in Figure 5. The two windings in a single twisted pair are indicated by similar cupital and lower case letters (i.e. windings A and a). The output line of the balun is in the same direction as windings A and B while the grounded line is in the opposite direction from the winding it is connected to. Windings A, a, B and b consist of 5 turns of two twisted pairs while C and c are formed from eight turns of a single pair. Connections are shown in Figure 4. The three windings are bifilar wound, although for simplicity the figures do not show this.

Referring to Figure 5 the equivalent connection diagram of $T 4$, it can be seen that the sum of the voltages across c and C should be equal to the voltage across windings $D E$. From this, winding cC (a twisted pair) should have twice as many turns as twisted pairs aA and bB. Deviations of about $10-20 \%$ from the $2: 1$ ratio do not produce noticeable effects.

FIGURE 5 - Equivalemt Lumped Element Form of T4.
The ferrite core used for T 4 in the parts list of Figure 1 has a specified maximum flux density of about 100 gauss. The flux density may be computed from equation 1 .

$$
\begin{equation*}
B \max =\frac{V \times 10^{8}}{4.44 \mathrm{fn} A} \quad \text { gauss } \tag{1}
\end{equation*}
$$

where:
$\mathrm{V}=$ RMS voltage actoss the winding $=89$
$f=$ frequency in Hertz $\quad=3 \times 10^{6}$
$\mathrm{n}=$ number of turns (windings Aa and Bb only.
Windings Cc cancel each other) $=20$
$\mathrm{A}=$ cross sectional area of Toroid in $\mathrm{Cm}^{2}=0.25$
$4.44=2 \pi \times 0.707$
therefore:

$$
B \max =\frac{89 \times 10^{8}}{4.44\left(3 \times 10^{6}\right) 20(.25)}=133 \text { gauss }
$$

Despite this slight overrating, this density is not excessive.

Amplifier Performance

The data shown in the following curves was obtained from measurement performed on an engineering model of the 28 V 160 Watt (PEP) amplifier.

FIGURE 6 - IMD as a Function of Output Power for 28 V Amplifier

FIGURE 7 - Output Power for - $\mathbf{3 0} \mathrm{dB}$ IMD as a Function of V_{Cc} for $\mathbf{2 8} \mathrm{V}$ Amplifier

FIGURE 8 - IMD versus Froquency

figure 9 - Power Gain versus
Frequency

FIGURE 10 - Total Efficiency versus Frequency

FIGURE 11 - VSWR versus Froquency

AN 80 WATT (PEP) 12.5 - 13.6 V AMPLIFIER

To complement the 28 Volt amplifier discussed previously, a second amplifier designed for 12 V operation was constructed and evaluated. This amplifier is shown in Figures 12, 13 and 14. It utilizes a 2 N 6367 and a pair of 2 N 6368 transistors. The 2 N 6367 transistor is employed as a driver and is specified for up to 9 watts (PEP) output. In the amplifier design the driver must supply only 5 watts (PEP) at 30 MHz with a resulting IMD performance of about -37 to -38 dB . At lower operating frequencies, drive requirements drop to the 2-3 Watt (PEP) range and IMD performance improves to better than 40 dB . The 2N6367 data sheet suggests a quiescent collector current of 35 mA , but it was found that increasing this to 40 mA yielded somewhat better linearity in broadband operation.

Two 2N6368 transistors are employed in the final stage of the transmitter design in a push-pull configuration. These devices are rated at 40 Watts (PEP) and -30 dB maximum IMD, although -35 dB performance is more typical for narrow band operation.

The 2 N 6368 data sheet suggests a quiescent collector current level of 50 mA , but a level of 60 mA for each transistor was used in this design for improved linearity.

Without frequency compensation, the completed amplifier can deliver 90 Watts (PEP) in the 25.30 MHz band with IMD performance down -30 dB . If only the power amplifier stage is frequency compensated, 95 Watts (PEP) can be obtained at 6.10 MHz .

Gain Compersation

Negative collector to-base feedback is employed in both the driver and output stages for gain compensation. The feedback networks consist of: a) a dc blocking capacitor, b) a series resistor, to limit the amount of feedback at the low frequencies and c) a series inductor with a parallel resistor to determine the feedback slope.

In general, the use of negative feedback lowers the input impedance, and reduces the gain of the amplifier. However, it also improves the linearity since some of the output signal is fed back to the input and reamplified, tending to cancel the distortion originally generated. This is only true at the low frequencies where the phase errors are small. The phase error is caused by reactive elements in the feedback path. Since the basis for the compensation is to introduce more feedback at low frequencies, it will also equalize the input impedance to some degree. This, in turn, should result in a lower VSWR over the band.

The following two tables illustrate the affect of compensation on the final amplifier stage. This data was taken with a $9: 1$ ratio transformer connected between 50Ω source and the input balun to the final stage.

From this table it can be seen that efficiency is reduced by applying compensation. For this reason only 3 dB of compensation was utilized on the final stage. The driver stage, where efficiency is not of primary concern, was actually over compensated. This stage has a gain of 16 dB at 30 MHz but only 13 dB at 3 MHz .

AN593

FIGURE 12 - Schematic Diagram of 12.5 V Amplifier

FIGURE 13 - Photo of Top View of 12.5 V Linear Amplifier

FIGURE 14 - Photo of Bottom of 12.5 V Linear Amplifier

TABLE II - PERFORMANCE OF 12.5 V OUTPUT STAGE WITH AND WITHOUT GAIN COMPENSATION

With Feodback				
	GPE	EFF.	IMD	$\underline{\text { VSWR }}$
3 MHz	16 dB	45.5%	-30 dB	1.6
12 MHz	15.3 dB	46.5%	-31 dB	2.1
30 MHz	12 dB	43.0%	-31 dB	1.05

Without Feedback

	GPE	EFF.	IMD	VSWR
3 MHz	19.2 dB	48.0%	-26 dB	6.5
12 MHz	16.2 dB	46.8%	-30 dB	2.4
30 MHz	12.5 dB	43.0%	-33 dB	1.05

FIGURE 15 - Transformer Details for
12.5 V Linear Amplifier
(See Figure 4)

Transformer T1 consists of two twisted pairs of wires which can be wound on either a single or two separate toroids. In the two core approach, both windings have an equal number of turns (four). If a single core is utilized, winding Aa uses four turns while winding Bb uses eight turns. These lines must be wound bifilar on the core. See Figure 15. The single core approach was used in the engineering model.

FIGURE 16 - Equivalent Lumped Etement Form of 11

A lumped-constant equivalent conventional transformer diagram of transformer Tl is shown in Figure 16. Examination reveals that since winding \mathbf{B} is directly in parallel with the series combination of aA , line Bb must have twice the number of turns as winding Aa. (The lower case and capital letters refer to the two wires in a given twistedpair). As an example of the voltage relationships for the various windings in this transformer, an arbitrary 3 V input has been shown in the Figure. It can be seen that the voltages generated across windings b and B are out of phase and cancel each other. Therefore, the resulting output is $1 \mathrm{~V}(3 \mathrm{~V}-2 \mathrm{~V})$.

This transformer may be considered as a combination of a $4: 1$ ratio transformer (aA) and a $1: 1$ balun (bB), where the balun performs the voltage subtraction.

Transformer T2 consists of two twisted pairs on a single core. Both wires of each pair are soldered together at each

Transformer T3 also uses two twisted pairs wound on a single core. Each pair is treated as a single wire by soldering the two wires at each end.

Transformer T4 uses three separate bifilar windings on a single core. Windings aA and bB are balanced while Cc is unbalanced. Both aA and bB utilize five turns and Cc uses eight turns. This is the nearest whole number of turns possible to the desired ratio of 1:1.5 for winding Aa and

Bb to winding cC. Deviations of $\mathbf{1 0 - 2 0 \%}$ of this ratio are allowable without noticeable effects.

Figure 17 shows the lumped equivalent transformer of

FIGURE 17 - Equivalent Lumped Element Form of T4

T4 and the ratio of voltages on the various windings if one volt is applied to the input. It can be seen that the voltage developed across c and C must equal the voltage between points D and E on the diagram. Since windings A and b are paralleled and connected to the input, they see one volt. Thus the voltage from point D to point E would be 3 V (I V from A and b plus I V from winding a plus 1 V from winding B). Therefore, the output voltage is 3.0 volts and the voltage across winding $\mathrm{c}=-1.5 \mathrm{~V}$ and winding $\mathrm{C}=1.5 \mathrm{~V}$.

When using twisted-pair transmission line transformers. windings with four or more pairs should be avoided as it is diflicult to lwist such lines uniformly.

A second amplifier was evalualed with T4 replaced by a balun and an misymmelrical 1 : 9 ratio transtormer. Performance results were very similar to that obtained from the linst vasion exeqp that much mase high fieguenty compensillion was necensary. This was required becouse it is diliticult th oblain the low charackeristic inpedance sepuired for the ballun. For this reasoln capacitors Clo. ('II.('I) and C'25 were unnsually large in value.

Performance

Typical performance of the 12.5 volt linear amplifiers is provided in the following curves. A calibration curve for use to correlate low frequency readings on a power meter is also given in Figure 24.

The harmonic suppression measurements taken at full output power levels with a single tone test are illustrated in Table II. This data suggests that a suitable low-pass filter between the amplifier output and the antenna will be required to meet harmonic suppression requirements. This filter's necessity is common to most broadband amplifier designs.

FigURE 18 - IMD as a Function of Output Power For Push-Pull Linear Amplifier

FIGURE 19 - Maximum Output Power © -30 dB IMD versus V_{CC} for 12.5 V Power Amplifier

FIGURE 20 - IMD versus Frequency

FIGURE 21 - Power Gain versus Frequency

FIGURE 22 - Efficiancy versus Froquency

FIGURE 23 - VSWR versus Frequency

FIGURE 24 - Responso of H.P. 431-432 Power Meters at Low Frequencies

Transformer Data

As with the 28 V amplifier, transmission line type transformers are employed throughout the 12 V design. Although this type of transformer does not provide optimum impedance match, it is easy to duplicate for consistant performance results. A similar amplifier was constructed with a standard $2: 1$ ratio coupling transformer instead of the $1: 1$ ratio balun (T2). This amplifier featured a $40-60 \%$ improvement in VSWR at all frequencies while gain and IMD were basically unchanged from the performance of the model using transmission line type transformers.

Splitting the compensating capacitor for transformer T2 into three parts ($\mathrm{C} 10, \mathrm{Cl1}$ and C 12) will result in considerably lower IMD at higher frequencies. Capacitors C11 and C12 should be well matched and therefore should be either $\pm 5 \%$ or better tolerance fixed value units, or variable capacitors such as Arco 466 and 469.

Two factors must be considered in the choice of toroidal core materials. The first is core losses. The second is the power handling capability which is limited by both mag. netic saturation and heat generation.

For the input transformer (T1) core losses are of primary concern. For the material chosen in this design, a loss factor of $1.2 \mathrm{~mW} / \mathrm{cm}^{3}$ at 3 MHz is typical. This increases to $5.10 \mathrm{~mW} / \mathrm{cm}^{3}$ at 30 MHz . For the size of core used in T 1 , a maximum core loss of $1.5-7.0 \mathrm{~mW}$ can be expected. While this figure seems negligible, it is advantageous to use the smallest practical sized core for the input transformer consistent with the wire size and required number of turns.

Conversely the core of the output transformer (T4) should be as large as possible to be able to handle the required power levels and remain in the linear operating region of the materials' B-H curve. If the core is operated near the saturation region of the core material, distortion will be generated on the carrier and envelope. This saturation occurs first at low frequencies. However, core heating due to losses is most prevalent at higher frequencies, being a function of flux density and operating frequency. The maximum recommended flux density for a 1/2" O.D. toroid (such as Indiana General F627-8 or Stackpole 57-9322),
is 45 to 70 gauss. From the B-H curves it can be seen that this is well into the linear region.

For the 12 -volt amplifier, a flux density of roughly 180 gauss would be required for a $1 / 2^{\prime \prime}$ O.D. core. Use of a larger core reduces the density to about 130 gauss. As stated in the 28 V amplifier section, although this is in excess of the 100 gauss limit suggested for the particular core type, it was not found to be excessive. In fact, some of the $1 / 2^{\prime \prime}$ O.D. toroids were tested at three to four times the maximum recommended flux density, and then compared to a larger toroid of the same material. The distortion in each core was small enough not to be noticed in an oscilloscope. However, there was some amount of heat generated in the small toroid at the high frequencies. Excessive heating is the primary problem that one should be first concerned about.

As a rule of thumb, the required minimum transformer inductance can be determined to have at least $4-5$ times the reactance of the high impedance port at the lowest operating frequency. This means that for T 4 , the reactance would be 250 ohms, which corresponds to roughly $14 \mu \mathrm{H}$ at 3 MHz

Employing a different wire size or wire with a different thickness of dielectric or changing the number of twists per inch will alter the line impedance. However, this is one of the least critical points in the design of broadband linear amplifiers and will mainly affect the amount of high frequency compensation required. The variations in the transistor input and output impedance over a decade frequency range are several times larger than the changes in transformer impedance due to wire sizes or twist variations. Although compromises in matching are necessary to tune the wide frequency range, they are most serious in the output stage where a mismatch can significantly degrade total linearity.

The maximum theoretical linear output powers for the 28 V and 12.5 V amplifiers would be 120 W and 50 W respectively, when $4: 1$ and $9: 1$ output transformers are employed.

However, due to stray inductances in the circuit, and line impedances usually being higher than optimum, the actual impedance ratios of the transformers will be somewhat higher.

Thus, if the phase and even harmonic distortions are minimized it is possible to obtain higher power levels with fairly low IMD readings despite slight flat-topping of the envelope.

Construction Notes (12.5 V version)

The circuit board for both amplifier designs is made of two-sided copper-fiberglass laminate. A full sized pattern is given in Figures 25 and 26. The ground planes on each side are connected together at several points with the feedthrough capacitors, the BNC connectors and the mounting screws. From experience with an earlier broadband amplifier, it was learned that a good ground plane is extremely important because of the high currents and low impedance levels involved. The power supply impedance must be as low as possible.

The ac impedance of the supply should not be higher than 0.01 ohm at the lowest envelope frequency.

All dc connections are made on the back side of the board which is separated from the heat sink by $3 / 32$ inches. The base bias resistors ($\mathrm{R} 3, \mathrm{R} 10$), and all by-pass capacitors, except the feed-throughs, are on the back side of the board in each end of the heat sink. Diode D2 is press fitted into the heat sink for temperature compensation of the quiescent collector currents of the 2 N 6368 transistors. Ceramic capacitors have been avoided, except for certain by-pass applications, because they have spurious resonances and, their capacitance values are voltage and temperature sensitive. Parallel capacitors are employed to increase the current carrying capability and to decrease the possibility of self resonances. The peak RF current in

FIGURE 25 - Bottom PC Board Pattern

FIGURE 26 - Top Side of PC Board

TABLE III - HARMONIC SUPPRESSION varsus FREQUENCY

Harmonic		2nd	3rd	4th	5th
	3 MHz	-19 dB	-15 dB	-26 dB	-29 dB
Frequency	6 MHz	-17 dB	-18 dB	-23 dB	-35 dB
	12 MHz	-30 dB	-20 dB	-28 dB	-34 dB
	30 MHz	-35 dB	-25 dB	-50 dB	-62 dB

the output transformer primary is $\sqrt{\frac{80 \mathrm{~W}}{6.25 \Omega}}=3.54 \mathrm{~A}$. Half of this is supplied by each 2 N 6368 . Thus, the collector . isolation capacitors will have to handle 1.77A peak and 1.26 A average currents. Even the lead sizes in most capacitors are insufficient for these current levels. In general, the low impedances involved in a 12.5 volt amplifier of this power level make the layout, construction and component selection somewhat critical compared to a higher voltage unit.

CONSTRUCTION NOTES (28 V version)

The 28 volt unit is less critical than the 12.5 V amplifier as far as the physical circuit lay-out is concerned. However, the same precautions should be taken in grounding the by-pass capacitors and the transformer high frequencycompensation capacitors. It is recommended that variable capacitors, such as the ARCO 460 line be used initially for the compensating capacitors. Then after establishing satisfactory operation of the unit, they can be changed to fixed value capacitors.

IMPROVED PERFORMANCE

Since the original work on these amplifiers, device improvements have been made. Both IMD and load mismatch ruggedness characteristics can be enhanced by substituting the MRF463 or MRF464 for the 2N5942 in the 28 -Volt amplifier. The MRF460 is recommended for upgrading the 12 -Volt amplifier using the 2 N 6368 . Neither of these new devices require circuit modifications for optimum operation.

REFERENCES

1. Ruthroff: Some Broad Band Transformers, IRE, Volume 47, August, 1957.
2. Hilbers: Design of H. F. Wideband Power Transformers, Philips Application Information \#530.
3. Pitzalis-Couse: Broadband Transformer Design for RF Transistor Amplifiers, ECOM-2989, July 1968.
4. Pappenfus; Bruene, Schoenike: Single Sideband Principles and Circuits, McGraw-Hill.
5. Granberg, H.; Broadband Transformers and Power Combining Techniques for RF, AN-749 Motorola Semiconductor Products Inc., June 1975.
6. Granberg, H.; Get 300 Watts PEP Linear Across 2 to 30 MHz From This Push-Pull Amplifier, EB-27 Motorola Semiconductor Products Inc., September 1974.
7. Granberg, H.; A Complementary Symmetry Amplifier for 2 to 30 MHz SSB Driver Applications, EB-32 Motorola Semiconductor Products Inc., February 1975.
8. Granberg, H.; Measuring the Intermodulation Distortion of Linear Amplifiers, EB-38 Motorola' Semiconductor Products Inc., January 1975.

IMPEDANCE MATCHING NETWORKS APPLIED TO RF POWER TRANSISTORS

Prepared by: B. Becciolinj

1. INTRODUCTION

Some graphic and numerical methods of impedance matching will be reviewed here. The examples given will refer to high frequency power amplifiers.

Although matching networks normally take the form of filters and therefore are also useful to provide frequency discrimination, this aspect will only be considered as a corollary of the matching circuit.

Matching is necessary for the best possible energy transfer from stage to stage. In RF-power transistors the input impedance is of low value, decreasing as the power increases, or as the chip size becomes larger. This impedance must be matched either to a generator - of generally 50 ohms internal impedance - or to a preceding stage. Impedance transformation ratios of 10 or even 20 are not rare. Interstage matching has to be made between two complex impedances, which makes the design still more difficult, especially if matching must be accomplished over a wide frequency band.

2. DEVICE PARAMETERS

2.1 INPUT IMPEDANCE

The general shape of the input impedance of RFpower transistors is as shown in Figure 1 . It is a large signal parameter, expressed here by the parallel combination of a resistance R_{p} and a reactance X_{p} (Ref. (11).

With the presently used stripline or flange packaging, most of the power devices for VHF low band will have their R_{p} and X_{p} values below the series resonant point fs. The input impedance will be essentially capacitive.

Most of the VHF high band transistors will have the series resonant frequency within their operating range, i.e. be purely resistive at one single frequency f_{s}, while the parallel resonant frequency f_{p} will be outside.

Parameters for one or two gigahertz transistors will be beyond f_{s} and approach f_{p}. They show a high value of R_{p} and X_{p} with inductive character.

A parameter that is very often used to judge on the broadband capabilities of a device is the input Q or $Q_{I N}$, defined simply as the ratio R_{p} / X_{p}. Practically $\mathrm{O}_{\text {IN }}$ ranges around 1 or less for VHF devices and around 5 or more for microwave transistors.

QIN is an important parameter to consider for broadband matching. Matching networks normally are low-pass or pseudo low-pass filters. If $Q_{I N}$ is high, it can be necessary to use band-pass filter type matching networks and to allow insertion losses. But broadband matching is still possible. This will be discussed later.

2.2. OUTPUT IMPEDANCE

The output impedance of the RF-power transistors, as given by all manufacturers' data sheets, generally consists of only a capacitance COUT. The internal resistance of the transistor is supposed to be much higher than the load and is normaily neglected. In the case of a relatively low internal resistance, the efficiency of the device would decrease by the factor:

$$
1+R_{L / R_{T}}
$$

where R_{L} is the load resistance, seen at the collectoremitter terminals, and R_{T} the internal transistor resistance equal to:

$$
\frac{1}{\left.\left.\omega_{\mathrm{T}} \cdot\right|^{C_{T C}+C_{D C}}\right)}
$$

defined as a small signal parameter, where:

$$
\begin{aligned}
& \omega_{T}=\text { transit angular frequency } \\
& C_{T C}+C_{D C}=\begin{array}{c}
\text { transition and diffusion capacitances } \\
\text { at the collector junction }
\end{array}
\end{aligned}
$$

The output capacitance COUT, which is a large signal parameter, is related to the small signal parameter CCB, the collector-base transistion capacitance.

Since a junction capacitance varies with the applied voltage, COUT differs from ССB in that it has to be averaged over the total voltage swing. For an abrupt junction and assuming certain simplifications, $C_{\text {OUT }}=2 C_{C B}$.

Figure 3 shows the variation of COUT with frequency. COUT decreases partly due to the presence of the collector lead inductance, but mainly because of the fact that the base-emitter diode does not shut off anymore when the operating frequency approaches the transit frequency f_{T}.

Fig. 3 - Output capacitance COUT as a function of frequency

3. OUTPUT LOAD

In the absence of a more precise indication, the output load R_{L} is taken equal to:

$$
R_{L}=\frac{\left|V_{C C}-V_{C E(\text { sat })}\right|^{2}}{2 P_{O U T}}
$$

with $V_{C E}$ (sat) equal to 2 or 3 volts, increasing with frequency.

The above equation just expresses a well-known relation, but also shows that the load, in first approximation, is not related to the device, except for VCE (sat). The load value is primarily dictated by the required output power and the peak voltage; it is not matched to the output impedance of the device.

At higher frequencies this approximation becomes less exact and for microwave devices the load that must be presented to the device is indicated on the data sheet. This parameter will be measured on all Motorola RF-power devices in the future.

Strictly speaking, impedance matching is accomplished only at the input. Interstage and load matching are more impedance transformations of the device input impedance and of the load into a value R_{L} (sometimes with additional reactive component) that depends essentially on the power demanded and the supply voltage.

4. MATCHING NETWORKS

In the following, matching networks will be described by order of complexity. These are ladder type reactance networks.
The different reactance values will be calculated and determined graphically. Increasing the number of reactances broadens the bandwidth. However, networks consisting of more than four reactances are rare. Above four reactances, the improvement is small.

4.1 NUMERICAL DESIGN

4.1.1 Two-Resistance Networks

Resistance terminations will first be considered. Figure 4 shows the reactive L-section and the terminations to be matched.

Matching or exact transformation from R_{2} into R_{1} occurs at a single frequency f_{0}.
At f_{0}, X_{1} and X_{2} are equal to:

$$
\begin{aligned}
& x_{1}= \pm R_{1} \sqrt{\frac{R_{2}}{R_{1}-R_{2}}}=R_{1} \frac{1}{\sqrt{n-1}} \\
& x_{2}=\mp \sqrt{R_{2}\left(R_{1}-R_{2}\right)}=R_{1} \frac{\sqrt{n-1}}{n}
\end{aligned}
$$

At $f_{0}: X_{1} \cdot X_{2}=R_{1} \cdot R_{2}$
X_{1} and X_{2} must be of opposite sign. The shunt reactance is in parallel with the larger resistance.

The frequency response of the L-section is shown
as a function of the normalized frequency.

If X_{1} is capacitive and consequently X_{2} inductive, then:

$$
\begin{aligned}
x_{1} & =-\frac{f o}{f} R_{1} \sqrt{\frac{R_{2}}{R_{1}-R_{2}}}=-\frac{f o}{f} R_{1} \frac{1}{n-1} \\
\text { and } \quad x_{2} & =\frac{f}{f o} \sqrt{R_{2}\left(R_{1}-R_{2}\right)}=\frac{f}{f o} R_{1} \frac{\sqrt{n-1}}{n}
\end{aligned}
$$

The normalized current absolute value is equal to:

$$
\left|\begin{array}{l}
l_{2} \\
r_{0}
\end{array}\right|=\frac{2 \sqrt{n}}{\sqrt{(n-1)^{2} \cdot\left(\frac{f}{f}\right)^{4}-2\left(\frac{f}{f}\right)^{2}+(n+1)^{2}}}
$$

where $I_{0}=\frac{\sqrt{n} E}{2 . R_{1}}$, and is plotted in Figure 5 (Ref. (2)).

Fig. 5 - Normalized frequency response for the L-section in low-pass or high-..ass form

If X_{1} is inductive and consequently X_{2} capacitive, the only change required is a repacement of f by f_{0} and vice-versa. The L-section has low pass form in the first case and high-pass form in the second case.

The Q of the circuit at f_{0} is equal to:

$$
Q_{0}=\frac{X_{2}}{R_{2}}=\frac{R_{1}}{X_{1}}=\sqrt{n-1}
$$

For a given transformation ration, there is only one possible value of Q. On the other hand, there are two symmetrical solutions for the network, that can be either a low-pass filter or a high-pass filter.

The frequency f_{0} does not need to be the center frequency, $f_{1}+f_{2}$, of the desired band limited by f_{1} and f_{2}.

In fact, as can be seen from the low-pass configuration of Figure 5, it may be interesting to shift fo toward the high band edge frequency f_{2} to obtain a larger bandwidth w, where $w=\frac{2\left(f_{1}+f_{2}\right)}{f_{2}-f_{1}}$

This will, however, be at the expense of poorer harmonic rejection.

Example:

For a transformation ratio $n=4$, it can be determined from the above relations:

Bandwidth w	0.1	0.3
Max insertion losses	0.025,	0.2
X_{1} / R_{1}	1.730	1.712

If the terminations $\mathrm{R}_{\mathbf{1}}$ and $\mathrm{R}_{\mathbf{2}}$ have a reactive component X, the latter may be taken as part of the external reactance as shown in Figure 6.

This compensation is applicable as long as

$$
Q_{I N T}=\frac{X_{I N T}}{R_{2}} \text { or } \frac{R_{1}}{X_{I N T}}<n-1
$$

Tables giving reactance values can be found in Ref. (3) and (4).

4.1.1.1 Use of transmission lines and inductors

In the preceding section, the inductance was expected to be realized by a lumped element. A transmission line can be used instead (Fig 7).

Fig. 7 - Use of a transmission line in the $L-$ section

As can be seen from the computed selectivity curves (Fig. 8) for the two configurations, transmission lines result in a larger bandwidth. The gain is important for a transmission line having a length $L=\lambda / 4\left(\Theta=90^{\circ}\right)$ and a characteristic impedance
$Z_{o}=\sqrt{R_{1} \cdot R_{2}}$. It is not significant for lines short with respect to $\lambda / 4$. One will notice that there is an infinity of solutions, one for each value of C , when using transmission lines.

4.1.2 Three-reactance matching networks

The networks which will be investigated are shown in Figure 9. They are made of three reactances alternatively connected in series and shunt.

A three-reactances configuration allows to make the quality factor Q of the circuit and the transformation ratio $n=\frac{R_{2}}{R_{1}}$ independent of each other and consequently to choose the selectivity between certain limits.

For narrow band designs, one can use the following formulas (Ref. (5) AN-267, where tables are given):

Network (a):

$$
\begin{aligned}
& X_{C 1}=R_{1} / Q Q \text { must be first selected } \\
& X_{C 2}=R_{2} \sqrt{\frac{R_{1} R_{2}}{\left(Q^{2}+1\right)-\frac{R_{1}}{R_{2}}}} \\
& X_{L}=\frac{Q R_{1}+\left(R_{1} R_{2} / X_{C 2}\right)}{Q^{2}+1}
\end{aligned}
$$

(a)

(b)

Transformation ratio $n=10$

Fig. 8 - Bandwidth of the L-section for $n=10$
(a) with lumped constants
(b) with a transmission line ($\lambda / 4$)

Fig. 9 - Three-reactance matching networks

Network (b) :
Q must first be selected

$$
\begin{array}{ll}
X_{L 1}=R_{1} Q & \\
X_{L 2}=R_{2} \cdot B & A=R_{1}\left(1+Q^{2}\right) \\
X_{C 1}=\frac{A}{Q+B} & B=\sqrt{\frac{A}{R_{2}}-1}
\end{array}
$$

Network (c) :

$$
\begin{aligned}
& X_{L 1}=Q . R_{1} \\
& X_{C 2}=A . R_{2} \\
& X_{C 1}=\frac{B}{Q-A}
\end{aligned}
$$

Q must first be selected
$A=\sqrt{\frac{R_{1}\left(1+Q^{2}\right)}{R_{2}}-1}$
$B=R_{1} \cdot\left(1+0^{2}\right)$

The network which yields the most practical component values, should be selected for a given application.

The three-reactance networks can be thought of as being formed of a L-section (two reactances) and of a compensation reactance. The L-section essentially performs the impedance transformation, while the additional reactance compensates for the reactive part of the transformed impedance over a certain frequency band.
Figure 10 shows a representation in the Z -plane of the circuit of Figure 9 (a) split into two parts $\mathrm{R}_{1}-\mathrm{C}_{1}-\mathrm{L}_{1}$ and $\mathrm{C}_{2}-\mathrm{R}_{2}$.

Exact transformation from R_{1} into R_{2} cccurs at the points of intersection M and N. Impedances are then conjugate or $Z^{\prime}=R^{\prime}+j X^{\prime}$ and $Z^{\prime \prime}=R^{\prime \prime}+j X^{\prime \prime}$. with $R^{\prime}=R^{\prime \prime}$ and $X^{\prime}=-X^{\prime \prime}$.

The only possible solution is obtained when X^{\prime} and . $X^{\prime \prime}$ are tangential to each other. For the dashed curve, representing another value of L_{1} or C_{1}, a wider frequency band could be expected at the expense of scme ripple inside the band. However, this can only be reached with four reactances as will be shown in section 4.1.3.

With a three-reactance configuration, there are not enough degrees of freedom to permit $X^{\prime}=-X^{\prime \prime}$ and simultaneously obtain the same variation of frequency on both curves from M^{\prime} to point N^{N}.

$$
\begin{aligned}
& \left.z=\frac{R_{1}}{1+\omega^{2} R_{1}^{2} C_{1}^{2}}+i \omega\left[L_{1}-\frac{R_{1}^{2} C_{1}}{1 \cdot \omega^{2} R_{1}^{2} C_{1}^{2}}\right]=A \cdot \right\rvert\, x \\
& z^{*}=\frac{R_{2}}{1 \cdot \omega^{2} C_{2}^{2} R_{2}^{2}}-\frac{i \omega C_{2} R_{2}^{2}}{1 \cdot \omega^{2} C_{2}^{2} R_{2}^{2}}=R \cdots, x \cdot \\
& \left|x^{\prime}\right|=\left(\frac{L_{1}}{C_{1} R_{1}{ }^{2}}-\frac{A_{1}}{A_{1}}\right) \sqrt{\frac{A_{1}}{R^{\prime}}-1} \\
& \text { (}
\end{aligned}
$$

Fig. $10-2$-plane representation of the circuit of fig. 9 (a)

Exact transformation can, therefore, only be obtained at one frequency.

The values of the three reactances can be calculated by making $X^{\prime}=\cdot X^{\prime \prime}, R^{\prime}=R^{\prime \prime}$ and $\frac{d X^{\prime}}{d R^{\prime}}=-\frac{d X^{\prime \prime}}{d R^{\prime \prime}}$.

The general solution of these equations leads to complicated calculations. Therefore, computed tables should be used.

One will note on Figure 10 that the compensation reactance contributes somewhat to impedance transformation, i.e. \mathbf{R}^{\prime} varies when going from M to R2.

The circuit of Figure 9 (b) is dual with respect to the first one and gives exactly the same results in a Y-plane representation

Circuit of Figure 9 (c) is somewhat different since only one intersection M exists as shown in Figure 11. Narrower frequency bands must be expected from this configuration. The widest band is obtained for $C_{1}=\infty$.

Again, if one of the terminations has a reactive component, the latter can be taken as a part of the matching network, provided it is not too large isee Fig. 6).

$r=G^{\cdot} \rightarrow i \theta^{\cdot}=\frac{w^{2} c_{1}^{2} R_{1}}{1+w^{2} c_{1}^{2} R_{1}^{2}}-\frac{i \omega c_{1}}{1+w^{2} c_{1}^{2} R_{1}^{2}}$

$$
v "=G "+i B^{\prime \prime}=\frac{R_{2}}{R_{2}^{2}+w^{2} L_{2}^{2}}+j \omega C_{2}-\frac{j \omega x_{2}}{R_{2}^{2}+w^{2} L_{2}^{2}}
$$

$$
B^{\prime}=-\sqrt{G^{\prime} / R_{1}-G^{2}} \quad B^{\prime \prime}=\left(1 / k R_{2}-G^{\prime \prime}\right) \sqrt{1 / G^{\prime \prime} R_{2}-1}
$$

$$
k=L_{2} / C_{2}^{R}{ }_{2}^{2}
$$

Fig. 11 - Y-plane representation of the circuit of fig. 9 (c)

4.1.3 Four-reactance networks

Four-reactance networks are used essentially for broadband matching. The networks which will be considered in the following consist of two tworeactance sections in cascade. Some networks have pseudo low-pass filter character, others band-pass filter character. In principle, the former show narrower bandwidth since they extend the impedance transformation to very low frequencies unnecessarily, while the latter insure good matching over a wide frequency band around the center frequency only (see Fig. 14).

The two-reactance sections used in above networks have either iransformation properties or compensation properties. Impedance transformation is obtained with one series reactance and one shunt reactance. Compensation is made with both reactances in series or in shunt.

If two cascaded transformation networks are used, transformation is accomplished partly by each one.

With four-reactance networks there are two
frequencies. f_{1} and f_{2}, at which the transformation from R_{1} into R_{2} is exact. These frequencies may also coincide.

For network (b) for instance, at point M, R_{1} or R_{2} is transformed into $\sqrt{R_{1} R_{2}}$ when both frequencies fall together. At all points $(M), Z_{1}$ and Z_{2} are conjugate if the transformation is exact.

In the case of Figure 12 (b) the reactances are easily. calculated for equal frequencies:

$$
\begin{aligned}
& x_{1}=\frac{R_{1}}{\sqrt{\sqrt{n-1}}}, x_{2}=R_{1} \sqrt{\frac{\sqrt{n}-1}{n} x_{1} \cdot x_{4}=R_{1} \cdot R_{2}=x_{2} \cdot x_{3}} \\
& x_{3}=\frac{R_{1}}{\sqrt{n(\sqrt{n}-1)}}, x_{4}=\frac{R_{1}}{n} \sqrt{\sqrt{n}-1}
\end{aligned}
$$

For network (a) normally, at point (M), Z_{1} and Z_{2} are complex. This pseudo low-pass filter has been computed elsewhere (Ref. (3)). Many tables can be found in the literature for networks of four and more reactances having Tchebyscheff character or maxi-mally-flat response (Ref. (3), (4) and (6)).

Figure 13 shows the transformation path from R_{1} to R_{2} for networks (a) and (b) on a Smith-Chart (refer also to section 4.2, Graphic Design).

Case (a) has been calculated using tables mentioned in Ref. (4).
Case (b) has been obtained from the relationship given above for $X_{1} \ldots X_{4}$. Both apply to a transformation ratio equal to 10 and for $R_{1}=1$.

There is no simple relationship for $\mathrm{X}^{\prime} 1$. . . $\mathrm{X}^{\prime}{ }_{4}$ of network (b) if f_{1} is made different from f_{2} for larger bandwidth.

Figure 14 shows the respective bandwidths of network (a) and (b) for the circuits shown in Figure 13.

Fig. 14 - Selectivity curves for networks (a) and (b) of Fig. 13

If the terminations contain a reactive component, the computed values for X_{1} or X_{4} may be adjusted to compensate for this.

For configuration (a), it can be seen from Figure 13, that in the considered case the Q 's are equal to 1.6.

For configuration (b) $Q^{\prime}{ }_{1}$, which is equal to $Q^{\prime}{ }_{2}$, is fixed for each transformation ratio.

| n | 2
 $\mathrm{O}_{1}^{\prime}=\mathrm{O}_{2}^{\prime}$
 0.65 | 1 | 1.35 | 1.46 | 1.73 |
| :--- | :--- | :--- | :---: | :---: | :---: |$\quad \mathrm{a}^{\prime}=\sqrt{\sqrt{n}-1}$

The maximum value of reactance that the terminations may have for use in this configuration can be determined from the above values of Q^{\prime}.

If R1 is the load resistance of a transistor, the internal transistor resistance may not be equal to R_{1}. In this case the selectivity curve will be different from the curves given in Figure 14. Figure 15 shows the selectivity for networks (a) and (b) when the source resistance R_{1} is infinite.

From Figure 15 it can be seen that network (a) is more sensitve to R_{1} changes than network (b).
As mentioned earlier, the four-reactance network can also be thought of as two cascaded tworeactance sections; one used for transformation, the other for compensation. Figure 16 shows commonly used compensation networks, together with the associated L-section.

The circuit of Figure 16 (a) can be compared to the three-reactance network shown in Figure 9 (c). The difference is that capacitor C_{2} of that circuit has been replaced by a L-C circuit. The resulting improvement may be seen by comparing Figure 17 with Figure 11.

By adding one reactance, exact impedance transformation is achieved at two frequencies. It is now possible to choose component values such that the point of intersection M^{+}occurs at the same frequency f_{1} on both curves and simultaneously that N^{\prime} occurs at the same frequency f_{2} on both curves. Among the infinite number of possible intersections, only one allows to achieve this.

When M^{\prime} and N^{\prime} coincide in, M, the new condition can be added to the condition $X^{\prime}=-X^{\prime \prime}$ (for threenetworks) and similarly $R^{\prime}=R^{\prime \prime}$ and $\frac{d R^{\prime}}{d f}=\frac{d R^{\prime \prime}}{d f}$.

If f_{1} is made different from f_{2}, a larger bandwidth can be achieved at the expense of some ripple inside the band.
Again, a general solution of the above equations leads to still more complicated calculations than in the case of three-reactance networks. Therefore, tables are preferable (Ref. (3), (4) and (6)).

The circuit of Figure 16 (b) is dual of the circuit of of Figure 14 (a) and does not need to be treated separately. It gives exactly the same results in the Z-plane. Figure 16 (c) shows a higher order compensation requiring six reactive elements.
The above discussed matching networks employing compensation circuits result in narrower bandwidths than the former solutions (see paragraph 4.1.3) using two transformation sections. A matching with higher order compensation such as in Figure 16 (c) is not recommended. Better use can be made of the large number of reactive elements using them ail for transformation.

When the above configurations are realized using short portions of transmission lines, the equations or the usual tables no longer apply. The calculations must be carried out on a computer, due to the complexity. However, a graphic method can be used (see next section) which will consist essentially in tracing a transformation path on the Z-Y-chart using the computed lumped element values and replacing it by the closest path obtained with distributed constants. The bandwidth change is not significant as long as short portions of lines are used (Ref. (13)).

4.1.4 Matching networks using quarter-wave transformers

At sufficiently high frequencies, where $\lambda / 4$-long lines of practical size can be realized, broadband transformation can easily be accomplished by the use of one or more $\lambda / 4$-sections.

Figure 18 summarizes the main relations for (a) one-section and (b) two-section transformation.

A compensation network can be realized using a $\lambda / 2$-long transmission line.

Figures 19 and 20 show the selectivity curves for different transformation ratios and section numbers.

Exponential lines

Exponential lines have largely frequency independent transformation properties.

The characteristic impedance of such lines varies exponentially with their length I:

$$
z=Z_{0} \cdot e^{k l}
$$

where k is a constant,
but these properties are preserved only if \mathbf{k} is small.

4.1.5 Broadband matching using band-pass filter type networks. High 0 case.

The above circuits are applicable to devices having low input or output Q, if broadband matching is required. Generally, if the impedances to be matched can be represented for instance by a resistor R in series with an inductor L (sometimes a capacitor C) within the band of interest and if L is sufficiently low. the latter can be incorporated into the first inductor of the matching network. This is also valid if the representation consists of a shunt combination of a resistor and a reactance

Practically this is feasible for Q's around one or two. For higher Q 's or for input impedances consistinǧ of a series or parallel resonant circuit (see Fig. 2), as it appears to be for large bandwidths, a different treatment must be followed.

Let us first recall that, as shown by Bode and Fano (Ref. (7) and (8)), limitations exist on the impedance matching of a complex load. In the example of figure 21, the load to be matched consists of a capacitor C and a resistor R in shunt.

The reflection coefficient between transformed load and generator is equal to:
$\Gamma=\frac{Z_{I N}-R_{g}}{Z_{I N}+R_{g}}$
$\Gamma=0$, perfect matching.
$\Gamma=1$, total reflection.
The ratio of reflected to incident power is:

$$
\frac{\mathrm{Pr}}{\mathrm{Pi}}=\mid \Gamma_{\mid}^{\mid 2}
$$

The fundamental limitation on the matching takes the form:

$$
\int_{\omega=0}^{\infty} \ln \left(\frac{1}{|\Gamma|}\right) d \omega \leqslant \frac{\pi}{R C}
$$

Bode equation
and is represented in Figure 22.
The meaning of Bode equation is that the area S under the curve cannot be greater than $\frac{\pi}{R C}$ and therefore, if matching is required over a certain bandwidth, this can only be done at the expense of less power transfer within the band. Thus, power

transfer and bandwidth appear as interchangeable quantities.

It is evident that the best utilization of the area S is obtained when $|r|$ is kept constant over the desired band ω_{C} and made equal to 1 over the rest of the spectrum. Then $|\Gamma|=e^{\cdot \frac{\pi}{\omega_{c} R C}}$
within the band and no power transfer happens outside.

A network fulfilling this requirement cannot be obtained in practice as an infinite number of reactive elements would be necessary.

If the attenuation a is plotted versus the frequency for practical cases, one may expect to have curves like the ones shown in Figure 23 for a low-pass filter having Tchebyscheff character.

For a given complex load, an extension of the bandwidth from ω_{1} to ω_{2} t is possible only with a simultaneous increase of the attenuation a. This is especially noticeable for Q^{\prime} 's exceeding one or two (see Figure 24).
Thus, devices having relatively high input Q^{\prime} s are useable for bioadband operation, provided the consequent higher attenuation or reflection introduced is acceptable.

The general shape of the average insertion losses or attenuation a (neglecting the ripple) of a low-pass impedance matching network is represented in Figure 24 as a function of $1 / 0$ for different numbers of network elements n (ref. (3)).

For a given \mathbf{O} and given ripple, the attenuation decreases if the number n of the network elements increases. But above $n=4$, the improvement is small.
For a given attenuation a and bandwidth, the larger n the smaller the ripple.
For a given attenuation and ripple, the larger n the larger the bandwidth.
Computations show that for $0<1$ and $n \leqslant 3$ the attenuation is below 0.1 db approximately. The impedance transformation ratio is not free here. The network is a true low-pass filter. For a given load, the optimum generator impedance will result from the computation.

Before impedance transformation is introduced, a conversion of the low-pass prototype into a band-pass filter type network must be made. Figure 25 summarizes the main relations for this conversion.

$a_{1 N \text { max }}=\frac{\omega_{c} L_{1}}{R_{0}}$

$$
O_{I N \text { max }}=\frac{\omega_{0} L_{1}}{R_{0}}
$$

$$
C_{2}^{*}=r . C_{2} \quad L_{2}^{*}=\frac{1}{\omega_{0}^{2} C_{2}^{*}}
$$

Fig. 25 - Conversion from low-pass into band-pass fifter
r is the conversion factor.
For the band-pass filter, $\mathrm{O}_{\mathbb{N}}$ max or the maximum possible input Q of a device to be matched, has been increased by the factor r (from Figure 25, Q^{\prime} IN max $=r Q_{I N}$ max $)$.
Impedance inverters will be used for impedance transformation. These networks are suitable for insertion into a band-pass filter without affecting the transmission characteristics.
Figure $\mathbf{2 6}$ shows four impedance inverters. It will be noticed that one of the reactances is negative and must be combined in the band-pass network with a reactance of at least equal positive value. Insertion of the inverter can be made at any convenient place (Ref. (3) and (9)).
When using the band-pass filter for matching the input impedance of a transistor, reactances $\mathrm{L}^{\prime} 1 \mathrm{C}^{\prime} 1$ should be made to resonate at ω_{0} by addition of a convenient series reactance.
As stated above, the series combination of Ro, L'1 and $\mathrm{C}^{\prime}{ }_{1}$ normally constitutes the equivalent input network of a transistor when considered over a large bandwidth. This is a good approximation up to about 500 MHz .

In practice the normal procedure for using a bandpass filter type matching network will be the following:
(1) For a given bandwidth, center frequency and input impedance of a device to be matched e.g. to 50 ohms, first determine $Q_{I N}$ from the data sheet as $\frac{\omega_{0} L_{1}^{\prime}}{R_{0}}$ after having eventually added a series reactor for centering,
(2) Convert the equivalent circuit $\mathrm{R}_{0} \mathrm{~L}_{1}{ }^{\prime} \mathrm{C}_{1}$ ' into a low-pass prototype $R_{O} L_{1}$ and calculate $Q_{I N}$ using the formulas of Figure 25,
(3) Determine the other reactance values from tables (Ref. (3)) for the desired bandwidth,
(4) Convert the element values found by step (3) into series or parallel resonant circuit parameters,
(5) Insert the impedance inverter in any convenient place.

In the above discussions, the gain roll-off has not been taken into account. This is of normal use for moderate bandwidths 130% for ex.). However, several methods can be employed to obtain a constant gain within the band despite the intrinsic gain decrease of a transistor with frequency.

Tables have been computed elsewhere (Ref. (10)) for matching networks approximating $6 \mathrm{db} / o c t a v e$ attenuation versus frequency.

Another method consists in using the above mentioned network and then to add a compensation circuit as shown for example in Figure 27.

$R=Z_{\text {IN }}=$ constemt vs. t .
$L_{1} C_{1}=L_{2} C_{2}$
$R_{1}=R$
$\omega_{b}{ }^{2}=1 / L_{1} C_{1}=1 / L_{2} C_{2}$
inigh band adpe)
$O_{2}=\omega_{0} L_{2} / R=O_{1}=$

$$
\omega_{D} c_{1} R
$$

Fig 27 - Roll-off compensation nerwork

Resonance ω_{b} is placed at the high edge of the frequency band. Choosing Q correctly, roll-off can be made $6 \mathrm{db} /$ octave.

The response of the circuit shown in Figure 27 is expressed by:
$\frac{1}{1+Q^{2}\left(\frac{\omega}{\omega_{b}}-\frac{\omega_{b}}{\omega}\right)^{2}}$ ' where $\omega<\omega_{b}$
This must be equal to $\frac{\omega}{\omega}$ for 6 db /octave compen-
ation.
At the other band edge a, exact compensation can be obtained if:

$$
Q=\frac{\left(\frac{\omega_{b}}{\omega_{a}}\right)^{2}-1}{\frac{\omega_{a}}{\omega_{b}}-\left(\frac{\omega_{b}}{\omega_{a}}\right)^{2}}
$$

4.1.6 Line Transformers

The broadband properties of line transformers make them very useful in the design of broadband impedance matching networks (Ref. (11) and (121).
A very common form is shown by Figure 28. This is a $4: 1$ impedance transformer. Other transformation ratios like 9:1 or $16: 1$ are also often used but will not be considered here.

The high frequency cut-off is determined by the length of line which is usually chosen smaller than $\lambda \mathrm{min} / 8$. Short lines extend the high frequency performance.
The low frequency cut-off is determined first by the length of line, long lines extending the low frequency performance of the transformer. Low frequency cut-off is also improved by a high even mode impedance, which can be achieved by the use of ferrite material. With matched ends, no power is coupled through the ferrite which cannot saturate.

For matched impedances, the high frequency attenuation a of the 4:1 transformer is given by:
$a=\frac{\left(1+3 \cos 2 \pi^{\prime} / \lambda\right)^{2}+4 \sin ^{2} 2 \pi^{\prime} / 4}{4\left(1+\cos 2 \pi^{\prime}(\lambda)^{2}\right.}$

For $1=\lambda / 4, a=1.25$ or $1 d b ;$ for $I=\lambda / 2, a=\infty$.

The characteristic impedance of the line transformer must be equal to:
$Z_{0}=\sqrt{\mathrm{Rg} \cdot \mathrm{R}}$.
Figures 29 and 30 show two different realizations of 4 : 1 transformers for a 50 to 12.5 ohm-transformation designed for the band $118-136 \mathrm{MHz}$.

The transformers are made of two printed circuit boards or two ribbons stuck together and connected as shown in Figures 29 and 30.

Line transformer on p.c. board (Fig. 29)

Stick one ubbon (1 5 mm wide) against the other 12.5)
Total length pet nitton 9 cm
Turns 35

Fig. 30-4:1 copper ribbon line transformer with ferrite

4.2 GRAPHIC DESIGN

The common method of graphic design makes use of the Impedance-Admittance Chart (Smith Chart).
It is applicable to all ladder-type networks as encountered in matching circuits.
Matching is supposed to be realized by the successive algebraic addition of reactances (or susceptances) to a given start impedance (or admittance)
until another end impedance (or admittance) is reached.

Impedance chart and admittance chart can be superimposed and used alternatively due to the fact that an immittance point, defined by its reflection coefficient Γ with respect to a reference, is common to the Z -chart and the Y-chart, both being representations in the Γ-plane.
$\Gamma=\frac{Z-R_{S}}{Z+R_{S}}=\gamma_{r}+i \gamma_{i}$
$\Gamma=\frac{\mathrm{G}_{\mathrm{S}}-\mathrm{Y}}{\mathrm{G}_{\mathrm{S}}+\mathrm{Y}} \quad \mathrm{R}_{\mathrm{S}}=\frac{1}{\mathrm{G}_{\mathrm{S}}}=\begin{aligned} & \text { Characteristic } \\ & \text { impedance of the line }\end{aligned}$

More precisely, the Z -chart is a plot in the Γ-plane, while the Y-chart is a plot in the $-\Gamma$-plane. The change from the Γ to $-\Gamma$-plane is accounted for in the construction rules given below.

Figure 31 and 32 show the representation of normalized Z and Y respectively, in the Γ-plane.

The Z-chart is used for the algebraic addition of series reactances. The Y -chart is used for the algebraic addition of shunt reactances.

For the practical use of the charts, it is convenient to make the design on transparent paper and then place it on a usual Smith-chart of impedance type (for example). For the addition of a series reactor, the chart will be placed with "short" to the left. For the addition of a shunt reactor, it will be rotated by 180° right.

The following design rules apply. They can very easily be found by thinking of the more familiar Z and Y representation in reactangular coordinates.

For joining two impedance points, there are a infinity of solutions. Therefore, one must first decide on the number of reactances that will constitute the matching network. This number is related essentially to the desired bandwidth and the transformation ratio.

Addition of	Chart to be used	Direction	Using curve of constant
series R	Z	open (in terms of	x
series G	Y	admittance) short (in terms of admittance)	b
$\text { series } C\left(+\frac{1}{j \omega C}\right)$	Z	ccw	r
shunt $\mathrm{C}(+j \omega \mathrm{C})$	Y	cw	9
series $L(+j \omega L)$	Z	cw	r
shunt $L\left(+\frac{1}{j \omega L}\right)$	Y	ccw	9

Secondiy, one must choose the operating \mathbf{Q} of the circuit, which is also related to the bandwidth. Q can be defined at each circuit node as the ratio of the reactive part to the real part of the impedance at that node. The \mathbf{Q} of the circuit, which is normally referred to, is the highest value found along the path.
Constant 0 curves can be superimposed to the charts and used in conjunction with them. In the Γ-plane, Q -curves are circles with a radius equal to $\sqrt{1+\frac{1}{Q^{2}}}$ and a center at the point $\pm \frac{1}{\mathrm{a}}$ on the imaginary axis, which is expressed by:

$$
0=\frac{x}{r}=\frac{2 \gamma_{i}}{1-\gamma_{r}{ }^{2}-\gamma_{i}{ }^{2}} \quad \gamma_{r}^{2}+\left(\gamma_{i}+\frac{1}{0}\right)^{2}=1+\frac{1}{0^{2}} .
$$

The use of the charts will be illustrated with the help of an example.
The following series shunt conversion rules also apply:

$$
\begin{aligned}
& R=\frac{R^{\prime}}{1+\frac{R^{\prime 2}}{x^{2}}} \\
& X=\frac{x^{\prime}}{1+\frac{x^{\prime 2}}{R^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& G^{\prime}=\frac{1}{R^{\prime}}=\frac{R}{R^{2}+X^{2}} \\
& -B^{\prime}=\frac{1}{X^{\prime}}=\frac{X}{R^{2}+X^{2}}
\end{aligned}
$$

Fig. 33 - Narrow band VHF power amplifier

Figure 33 shows the schematic of an amplifier using the 2N5642 RF power transistor. Matching has to be achieved at 175 MHz , on a narrow band basis.

The rated output power for the device in question is 20 W at 175 MHz and 28 V collector supply. The input impedance at these conditions is equal to 2.6 ohms in parallel with -200 pF (see data Sheet). This converts to a resistance of 1.94 ohms in series with a reactance of 1.1 ohm.

The collector load must be equal to:
$\frac{\left[\mathrm{Vcc}-V_{c e}(\text { sat })\right]^{2}}{2 \times P_{\text {out }}}$ or $\frac{(28-3)^{2}}{40}=15.6$ ohms.
The collector capacitance given by the data sheet is 40 pF , corresponding to a capacitive reactance of 22.7 ohms.

The output impedance seen by the collector to insure the required output power and cancel out the collector capacitance must be equal to a resistance of 15.6 ohms in parallel with an inductance of 22.7 ohms. This is equivalent to a resistance of 10.6 ohms in series with an inductance of 7.3 ohms.

The input Q is equal to, $1.1 / 1.94$ or 0.57 while the output Q is $7.3 / 10.6$ or 0.69 .
It is seen that around this frequency, the device has good broadband capabilities. Nevertheless, the matching circuit will be designed here for a narrow band application and the effective 0 will be determined by the circuit itself not by the device.
Figure 34 shows the normalized impedances (to 50 ohms).

Figure 35 shows the diagram used for the graphic design of the input matching circuit. The circuit 0 must be larger than about 5 in this case and has been chosen equal to 10 . At $Q=5, C_{1}$ would be infinite. The addition of a finite value of C_{1} increases the circuit Q and therefore the selectivity. The normalized values between brackets in the Figure are admittances $(\mathrm{g}+\mathrm{j})$.

At $\mathbf{f}=175 \mathrm{MHz}$, the following results are obtained:

$$
\begin{aligned}
& \omega L_{3}=50 x_{3}=50(0.39-0.022)=18.5 \text { ohms } \\
& \therefore L_{3}=16.8 \mathrm{nH} \\
& \omega C_{2}=\frac{1}{50} b_{2}=\frac{1}{50}(2.5-0.42)=0.0416 \text { mhos } \\
& \\
& \therefore C_{2}=37.8 \mathrm{pF} \\
& \frac{1}{\omega C_{1}}=50 x_{1}=50.1 .75=87.5 \text { ohms } \quad \\
& \quad \therefore C_{1}=10.4 \mathrm{pF}
\end{aligned}
$$

Figure 36 shows the diagram for the output circuit, designed in a similar way.
Here, the results are ($f=175 \mathrm{MHz}$):
$\omega L_{4}=50 . x_{4}=50 .(0.4+0.146)=27.3 \mathrm{ohms}$
$\therefore L_{4}=24.8 \mathrm{nH}$
$\omega C_{5}=\frac{1}{50} b_{5}=\frac{1}{50} \cdot 1.9=0.038$ mhos $\begin{array}{ll}\therefore C_{5}=34.5 \mathrm{pF}\end{array}$
The circuit O at the output is equal to 1.9.

The selectivity of a matching circuit can also be determined graphically by changing the ' x or b values according to a chosen frequency change. The diagram will give the VSWR and the attenuation can be computed.
The graphic method is also useful for conversion from a lumped circuit design into a stripline design. The immittance circles will now have their centres on the $1+$ jo point.
At low impedance levels (large circles), the difference between lumped and distributed elements is small.

5. PRACTICAL EXAMPLE

The example shown refers to a broadband amplifier stage using a 2 N 6083 for operation in the VHFband $118-136 \mathrm{MHz}$. The 2 N 6083 is a 12.5 V -device and, since amplitude modulation is used at these transmission frequencies, that choice supposes low level modulation associated with a feedback system for distortion compensation.

Line transformers will be used at the input and output. Therefore the matching circuits will reduce to two-reactance networks, due to the relatively low impedance transformation ratio required.

5.1 DEVICE CHARACTERISTICS

Input impedance of the $\mathbf{2 N} 6083$ at 125 MHz :

$$
\begin{aligned}
& R_{p}=0.9 \mathrm{ohms} \\
& C_{p}=-390 \mathrm{pF}
\end{aligned}
$$

Rated output power:

30 W for 8 W input at 175 MHz . From the data sheet it appears that at $125 \mathrm{MHz}, 30 \mathrm{~W}$ output will be achieved with about 4 W input.

Output impedance:

$$
\begin{aligned}
& {\left.\frac{V_{c c}}{}-v_{c e}(\text { sat })\right]^{2}}_{2 \times P_{\text {out }}}{ }^{2}=\frac{100}{60}=1.67 \text { ohms } \\
& C_{\text {out }}=180 \mathrm{pF} \text { at } 125 \mathrm{MHz}
\end{aligned}
$$

5.2 CIRCUIT SCHEMATIC

5.3 TEST RESULTS

${ }^{\text {Pout }}$

 Fig. 38 - Pout vs frequency

Fig 39 - 7 vs frequency

118-136 MHz amplifier (see Fig. 37) before coil adjustment.

Acknowledgements:

The author is indebted to Mr. T. O'Neal for the fruitful discussions held with him. Mr. O'Neal designed the circuit shown in Figure 37; Mr. J. Hennet constructed and tested the lab model.

6. LITERATURE

1. Motorola Application Note AN-282 A "Systemizing RF Power Amplifier Design"
2. W. E. Everitt and G. E. Anner
"Communication Engineering"
McGraw-Hill Book Company, Inc.
3. G. L. Matthaei, L. Young, E. M. T. Jones
"Microwave Filters, Impedance-Matching Networks and Coupling Structures"
McGraw-Hill Book Company, Inc.
4. G. L. Matthaei
"Tables of Chebyshew Impedance-Transforming Networks of Low-Pass Filter Form"
Proc. IEEE, August 1964
5. Motorola Application Note AN-267
"Matching Network Designs with Computer Solutions"
6. E. G. Cristal
"Tables of Maximally Flat Impedance-Transforming Networks of Low-Pass-Filter Form"
IEEE Transactions on Microwave Theory and Techniques
Vol. MTT 13, No 5, September 1965
Correspondence
7. H. W. Bode
"Network Analysis and Feedback Amplifier Design"
D. Van Nostrand Co., N.Y.
8. R. M. Fano
"Theoretical limitations on the Broadband Matching of Arbitrary Impedances"
Journal of Franklin Institute, January-February 1950
9. J. H. Horwitz
"Design Wideband UHF-Power Amplifiers"
Electronic Design 11, May 24, 1969
10. O. Pitzalis, R. A. Gilson
"Tables of Impedance Matching Networks which Approximate Prescribed Attenuation Versus Frequency Slopes"
IEEE Transactions on Microwave Theory and Techniques
Vol. MTT-19, No 4, April 1971
11. C. L. Ruthroff
"Some Broadband Transformers"
Proc. IRE, August 1959
12. H. H. Meinke
"Theorie der H. F. Schaltungen"
München, Oldenburg 1951

BROADBAND TRANSFORMERS AND POWER COMBINING TECHNIQUES FOR RF

Prepared by
H. Granberg

RF Circuits Engineering

INTRODUCTION

The following discussion focuses on broadband transformers for RF power applications with practical examples of various types given with performance data. Detailed design formula are available in the Reference section. Power combining techniques useful in designing high power amplifiers are discussed in detail.

BROADBAND TRANSFORMERS

The input and output transformers are among the most critical components in the design of a multi-octave amplifier. The total performance of the amplifier (linearity, efficiency, VSWR, gain flatness) will depend on their quality. Transformers with high impedance ratios and for low impedances are more difficult to design in general. In the transmission line transformers very low line impedances are required, which makes them impractical for higher than 16:1 impedance ratios in a 50 -Ohm system. Other type transformers require tight coupling coefficients between the primary and secondary, or excessive leakage inductances will reduce the effective bandwidth. Twisted line transformers (Figure 1C, D, F, G) are described in Refer-
ences 1, 2, and 4. Experiments have shown that the dielectric losses in certain types of magnet wire, employed for the twisted lines, can limit the power handling capability of such transformers. This appears as heat generated within the transformer at higher frequencies, although part of this may be caused by the losses in the magnetic core employed to improve the low frequency response. At low frequencies, magnetic coupling between the primary and secondary is predominant. At higher frequencies the leakage inductance increases and the permeability of the magnetic material decreases, limiting the bandwidth unless tight capacitive coupling is provided. In a transmission line transformer this coupling can be clearly defined in the form of a line impedance.

The required minimum inductance on the low impedance side is:

$$
\mathrm{L}=\frac{4 \mathrm{R}}{2 \pi \mathrm{f}} \text { where } \quad \begin{aligned}
& \mathrm{L}=\text { Inductance in } \mu \mathrm{H} \\
& \mathrm{R}=\text { Impedance in } \mathrm{Ohms} \\
& \mathrm{f}=\text { Frequency in } \mathrm{MHz}
\end{aligned}
$$

This applies to all transformers described here.
Some transformers, which exhibit good broad band performance and are easy to duplicate are shown in Figure 1.

FIGURE 1 - HF Broadband Transformers

Transformers E and F are intended for input applications, although A in a smaller physical form is also suitable. In E, the windings are photo etched on double sided copper-Kapton* (or copper-fiberglass) laminate. The dielectric thickness is 3 mils, and the winding area is $0.25 \mathrm{in}^{2}$.

FIGURE 2 - Laminate Thickness versus Winding Area

FIGURE 3 - Detailed Structure of Transformer Shown in Figure 1E
*Trademark of E. I. DuPont, De Nemours and Co., Inc.

Ferrite plates ($\mu_{\mathrm{r}}=2000$ to 3000) are cemented on each side to improve the low frequency response. This type transformer in the size shown, can handle power levels to 10 W . Figure 2 shows curves for laminate thickness versus winding area for various impedance ratios.

Impedance ratios of this transformer are not limited to integers as $1: 1,4: 1-\mathrm{N}: \mathrm{L}$, and the de isolated primary and secondary have an advantage in certain circuit configurations. This design will find its applications in high volume production or where the small physical size is of main concern. Table 1 shows the winding configuration and measured data of the transformer shown in Figure 3.

TABLE 1 - Impedance at Terminals BB' Transformer Terminated as Shown

$f(\mathrm{MHz})$	R_{p} (Ohms)	X_{p} (Ohms)
1.0	50.7	+i 81
2.0	53.0	+j 185
4.0	53.1	+j 1518
8.0	53.5	¢ 214
16.0	50.5	- 79
32.0	52.9	¢ 30

In the transformer shown in Figure 1F and Table 2, a regular antenna balun core is employed (Indiana General F684-1 or equivalent). Lines A and B each consist of two twisted pairs of AWG \#30 enameled wire. The line impedances are measured as 32 Ohms, which is sufficiently close to the optimum 25 Ohms calculated for $4: 1$ impedance ratio. ($Z_{o}=\sqrt{R_{i n} R_{L}}$).

Windings a and b are wound one on top of the other, around the center section of the balun core. Line c should have an optimum Z_{0} of 50 Ohms . It consists of one pair of AWG \#32 twisted enameled wire with the Z_{0} measured as 62 Ohms. The balun core has two magnetically isolated toroids on which c is wound, divided equally between each. The inductance of c should approach the combined inductance of Lines a and b (Reference 4, 6).

The reactance in the 50 Ohm port (BB^{\prime}) should measure a minimum of +j 200. To achieve this for a $4: 1$ transformer, a and b should each have three turns, and for a 9:1 transformer, four turns. When the windings are connected as a 9:1 configuration, the optimum Z_{0} is 16.6 Ohms, and a larger amount of high frequency compensation will be necessary. Lower impedance lines can be realized with heavier wires or by twisting more than two pairs together. (e.g., four pairs of AWG \#36 enameled wire
would result in the Z_{0} of approximately 18 Ohms .) Detailed information on the manufacture of twisted wire transmission lines can be found in References 2,4, and 8.

TABLE 2 - Impedance at Terminals BB' Transformer Terminated as Shown

$f(\mathrm{MHz})$	R_{p} (Ohms)	X_{p} (Ohms)
1.0	53.0	+j 185
2.0	52.6	+ 330
4.0	52.9	+j430
8.0	53.1	+i 600
16.0	53.2	+i 750
32.0	53.5	+j 3060

Figure 1A shows one of the most practical designs for higher impedance ratios (16 and up). The low impedance winding always consists of one turn, which limits the available ratios to integers $1,4,9-\mathrm{N}$. Data taken of this type of a 16:1 transformer is shown in Table 3, while Figure 4 illustrates the physical construction. Two tubes, 1.4" long and $1 / 4^{\prime \prime}$ in diameter - copper or brass - form the primary winding. The tubes are electrically shorted on one end by a piece of copper-clad laminate with holes for the tubes and the tube ends are soldered to the copper foil. The hole spacing should be larger than the outside diameter of the ferrite sleeves.

TABLE 3 - Impedance at Terminals BB' Transformer Terminated as Shown

FIGURE 4 - Physical Construction of a 16:1 Transformer (Actual Number of Turns Not Shown)
A similar piece of laminate is soldered to the opposite ends of the tubes, and the copper foil is divided into two sections, thus isolating the ends where the primary connections are made. The secondary winding is formed by threading wire with good RF insulating properties through the tubes for the required number of turns.

Although the measurements indicate negligible differences in performance for various wire sizes and types (stranded or solid), the largest possible diameter should be chosen for lower resistive losses. The initial permeability of . the ferrite sleeves is determined by the minimum inductance required for the lowest frequency of operation according to the previous formula. Typical μ_{r} 's can vary from 800 to 3000 depending upon the cross sectional area and lowest operating frequency. Instead of the ferrite sleeves, a number of toroids which may be more readily available, can be stacked.

The coupling coefficient between the primary and secondary is almost a logarithmic function of the tube diameter and length. This factor becomes more important with very high impedance ratios such as $36: 1$ and up, where higher coupling coefficients are required. The losses in the ferrite are determined by the frequency, permeability and flux density. The approximate power handling capability can be calculated as in Reference 4 and 6, but the ferrite loss factor should be taken into consideration. The μ_{r} in all magnetic materials is inversely proportional to the frequency, although very few manufacturers give this data.

Two other variations of this transformer are shown in Figure 5 . The smaller version is suitable for input matching, and can handle power levels to 20 W . It employs a stackpole dual balun ferrite core 57-1845-24B. The low impedance winding is made of $1 / 8^{\prime \prime}$ copper braid. The portions of braid going through the ferrite are rounded, and openings are made in the ends with a pointed tool. The high impedance winding is threaded through the rounded portions of the braid, which was uncovered in each end of the ferrite core. (See Figures 4 and 5.)

FIGURE 5 - Variations of Transformers in Figure 1A

The construction technique of the larger version transformer is similar, except two separate ferrite sleeves are employed. They can be cemented together for easier handling. This transformer is intended for output applications, with a power handling capability of $200-250 \mathrm{~W}$ employing Stackpole 57-0472-27A ferrites. For more detail, see Reference 7.

The transformer shown in Figure 1B is superior in bandwidth and power handling capability. Table 4 shows data taken on a 4:1 transformer of this type. The transmission lines (a and b) are made of $25-\mathrm{Ohm}$ miniature co-axial cable, Microdot 260-4118-000 or equivalent. Two 50 Ohm cables can also be connected in parallel.

The balun, normally required to provide the balanced to unbalanced function is not necessary when the two transmission lines are wound on separate magnetic cores, and the physical length of the lines is sufficient to provide the necessary isolation between AA^{\prime} and BB^{\prime}. The minimum line length required at 2.0 MHz employing Indiana General F627-19-Q1 or equivalent ferrite toroids is 4.2 inches, and the maximum permissible length at 30 MHz would be approximately 20 inches, according to formulas 9 and 10 presented in Reference 2. The 4.2 inches would amount to four turns on the toroid, and measures $1.0 \mu \mathrm{H}$. This complies with the results obtained with the formula given earlier for minimum inductance calculations.

Increasing the minimum required line length by a factor of 4 will provide the isolation, and the total length is still within the calculated limits. The power loss in this PTFE insulated co-axial cable is $0.03 \mathrm{~dB} / \mathrm{ft}$ at 30 MHz in contrast to $0.12 \mathrm{~dB} / \mathrm{ft}$ for a twisted wire line. The total line loss in the transformer will be about 0.1 dB

The number of turns on the toroids has been increased beyond the point where the flux density of the magnetic core is the power limiting factor. The combined line and core losses limit the power handling capability to approximately 300 W , which can be slightly increased by employ. ing lower loss magnetic material.

FIGURE 6 - Transformer Construction (Figure 1B)
Note the connection arrangement (Figure 6), where the braid of the cable forms the high current path of the primary.

TABLE 4 - Impedance at Terminals BB' Transformer Terminated as Shown

$f(\mathrm{MHz})$	R_{p} (Ohms)	X_{p} (Ohms)
1.0	48.3	+j 460
2.0	48.1	+j 680
4.0	48.0	+j 920
8.0	48.0	+j 1300
16.0	48.1	+j 900
32.0	48.1	+j 690

HIGH-FREQUENCY POWER COMBINING TECHNIQUES EMPLOYING HYBRID COUPLERS

The zero degree hybrids described here are intended for adding the powers of a multiple of solid-state amplifiers, or to combine the outputs of groups of amplifiers, usually referred to as modules. With this technique, powers to the kW level at the high-frequency bands can be realized.

When reversed, the hybrids can be used for splitting signals into two or more equal phase and amplitude ports. In addition, they provide the necessary isolation between the sources. The purpose of the isolation is to keep the system operative, even at a reduced power level during a possible failure in one amplifier or module. The isolation is especially important in output combining of linear
amplifiers, where a constant load impedance must be maintained. Sometimes the inputs can be simply paralleled, and a partial system failure would not have catastrophic effects, but will merely result in increased input VSWR.

For very high frequencies and narrow bandwidths, the hybrid couplers may consist of only lengths of transmission line, such as co-axial cable. The physical lengths of the lines should be negligible compared to the highest operating frequency to minimize the resistive losses, and to avoid possible resonances. To increase the bandwidth and improve the isolation characteristics of the line, it is necessary to increase the impedance for non-transmission line currents (parallel currents) without effecting its physical length. This can be done by loading the line with magnetic material. Ideally, this material should have a linear BH curve, high permeability and low losses over a wide frequency range. For high-frequency applications, some ferrites offer satisfactory characteristics, making bandwidths of four or more octaves possible.

Depending upon the balance and phase differences between the sources, the currents should be mostly cancelled in the balun lines. In a balanced condition, very little power is dissipated in the ferrite cores, and most occurring losses will be resistive. Thus, a straight piece of transmission line loaded with a high permeability ferrite sleeve, will give better results than a multiturn toroid arrangement with its inherent higher distributed winding capacitance.

It is customary to design the individual amplifiers for 50 Ohm input and output impedances for testing purposes and standardization. 50 -and 25.0 hm co-axial cable can then be employed for the transmission lines. Twisted wire lines should not be used at power levels higher than 100 Watts average, due to their higher dielectric losses.

Variations of the basic hybrid are shown in Figure 7A and B where both are suitable for power dividing or combining.

The balancing resistors are necessary to maintain a low VSWR in case one of the $50-0 \mathrm{hm}$ points reaches a high impedance as a result of a transistor failure. As an input power splitter, neither 50 -Ohm port will ever be subjected to a short due to the base compensation networks, should a base-emitter junction short occur. An open junction will result in half of the input power being dissipated by the balancing resistor, the other half still being delivered to the amplifier in operation. The operation is reversed when the hybrid is used as an output combiner. A transistor failure will practically always cause an increase in the amplifier output impedance. Compared to the $50-0 \mathrm{hm}$ load impedance it can be regarded as an open circuit. When only one amplifier is operative, half of its output power will be dissipated by R, the other half being delivered to the load. The remaining active source will still see the correct load impedance, which is a basic requirement in combining linear amplifiers. The resistors (R) should be of noninductive type, and rated for 25% of the total power, uniess some type of automatic shutoff system is incorporated. The degree of isolation obtainable depends upon the frequency, and the overall design of the hybrid. Typical

FIGURE 7 - Variations of Basic Hybrid
figures for 2 to 30 MHz operation are $30-40 \mathrm{~dB}$. Fig. ures 8 A and B show 4 port "totem pole" structures derived from Figures 7A and 7B. Both can be used with even number of sources only, e.g. 4, 8, 16, etc. For type 8B, it is more practical to employ toroidal multi-turn lines, rather than the straight line alternatives, discussed earlier. The power output with various numbers of inoperative sources can be calculated as follows, if the phase differences are negligible: (Reference 2)
$P_{\text {out }}=\left(\frac{P}{N}\right) N_{1}$
where: $\mathrm{P}=$ Total power of operative sources
$\mathrm{N}=$ Total number of sources
$\mathrm{N}_{1}=$ Number of operative sources
Assuming the most common situation where one out of four amplifiers will fail, 75% of the total power of the remaining active sources will be delivered to the load.

Another type of multiport hybrid derived from Figure 7A is shown in Figure 9. It has the advantage of being capable of interfacing with an odd number of sources or loads.

In fact, this hybrid can be designed for any number of ports. The optimum values of the balancing resistors will vary according to this and also with the number of ports assumed to be disabled at one time. Two other power combining arrangements are shown in Figures 10 and 11.

FIGURE 8A

FIGURE 8B

FIGURE 8 - Four Port "Totem Pole" Structure

FIGURE 9 - Three-Port Hybrid Arrangoment

$z_{0}(a, b)=50 \Omega$
$Z_{o}(c, d)=25 \Omega$ (optimum 35.4Ω)
FIGURE 10 - Two-Port Hybrid System

FIGURE 11 - Four-Port Hybrid System

The isolation characteristics of the four-port output combiner were measured, the data being shown in Table 5. The ferrite sleeves are Stackpole $57-0572-27 \mathrm{~A}$, and the transmission lines are made of RG-142/U co-axial cable. The input power dividers described here, employ Stackpole $57-1511-24 \mathrm{~B}$ ferrites, and the co-axial cable is Microdot 250-4012-0000.

TABLE 5 - Isolation Characteristics of Four Port Output Combiner

$\mathrm{f}(\mathrm{MHz})$	Isolation, Port-to-Port (dB)
2.0	$27.0-29.4$
4.0	$34.8-38.2$
7.5	$39.0-41.2$
15	$32.1 \cdot 33.5$
20	$31.2 \cdot 33.0$
30	$31.0-33.4$

The input and output matching transformers ($\mathrm{T} 1-\mathrm{T} 2$) will be somewhat difficult to implement for suchimpedance ratios as $2: 1$ and $3: 1$. One solution is a multi-turn toroid wound with co-axial cable, such as Microdot 260-4118-000. A tap can be made to the braid at any point, but since this is 25 -Ohm cable, the Z_{O} is optimum for a $4: 1$ impedance ratio only. Lower impedance ratios will normally require increased values for the leakage inductance compensation capacitances ($\mathrm{C} 1-\mathrm{C} 2$). For power levels above $500-600$ W, larger diameter co-axial cable is desirable, and it may be necessary to parallel two higher impedance cables. The required cross sectional area of the toroid can be calculated according to the $\mathrm{B}_{\max }$ formulas presented in References 4 and 6.

The 2 to 30 MHz linear amplifier (shown in Figure 13)

FIGURE 12 - Two-Four Port Hybrids
The one at the lower left is intended for power divider applications with levels to $20-30 \mathrm{~W}$. The larger one was designed for amplifier output power combining, and can handle levels to $1 \mathbf{- 1 . 5} \mathrm{~kW}$. (The balancing resistors are not shown with this unit.)
consists of two 300 W modules (8). This combined amplifier can deliver 600 W peak envelope power. The CW power output is limited to approximately 400 W by the heatsink and the output transformer design.

The power combiner (Figure 13A) and the 2:1 step-up transformer (Figure 13B) can be seen in the upper right corner. The input splitter is located behind the bracket (Figure 13C). The electrical configuration of the hybrids is shown in Figures 7A and 10. Note the loops equalizing the lengths of the co-axial cables in the input and output to assure a minimum phase difference between the two modules.

FIGURE $13-2$ to 30 MHz Linear Amplifier Layout

REFERENCES

1. Ruthroff: Some Broad Band Transformers, IRE, Volume 47, August 1957.
2. Pizalis-Couse: Broadband Transformer Design for RF Transistor Amplifiers, ECOM-2989, U.S. Army Electronics Command, Fort Monmouth, New Jersey, July 1968.
3. Lewis: Notes on Low Impedance H.F. Broad Band Transformer Techniques, Collins Radio Company, November 1964.
4. Hilbers: Design of H. F. Wideband Power Transformers, Philips Application Information \#530.
5. Philips Telecommunication Review, Volume 30, No. 4, pp. 137-146, November 1972.
6. Granberg, H.: Broadband Linear Power Amplifiers Using Push-Pull Transistors, AN-593, Motorola Semiconductor Products Inc.
7. Granberg, H.: Get 300 Watts PEP Linear Across 2 to 30 MHz From This Push-Pull Amplifier, EB-27, Motorola Semiconductor Products Inc.
8. Lefferson: Twisted Wire Transmission Line, IEEE Transactions on Parts, Hybrids and Packaging, Vol. PHP-7, No. 4, December 1971.
9. Krauss-Allen: Designing Toroidal Transformers to Optimize Wideband Performance, Electronics, August 1973.

A TWO-STAGE 1 kW SOLID-STATE LINEAR AMPLIFIER

Prepared by
Helge O. Granberg
RF Circuits Engineering

INTRODUCTION

This application note discusses the design of 50 W and 300 W linear amplifiers for the 1.6 to 30 MHz frequency band. Both amplifiers employ push-pull design for low, even harmonic distortion. This harmonic distortion and the 50 Vdc supply voltage make the output impedance matching easier for $50-0 \mathrm{hm}$ interface, and permits the use of efficient $1: 1$ and $4: 1$ broadband transformers.

Modern design includes integrated circuit bias regulators and the use of ceramic chip capacitors throughout the RF section, making the units easily mass producible.

Also, four 300 W modules are combined to provide a 1 to 1.2 kW PEP or CW output capability. The driver amplifier increases the total power gain of the system to approximately 34 dB .

Although the transistors employed (MRF427 and MRF428) are 100% tested against $30: 1$ load mismatches, in case of a slight unbalance, the total dissipation ratings may be well exceeded in a multi-device design. With high drive power available, and the power supply current limit set at much higher levels, it is always possible to have a failure in one of the push-pull modules under certain load mismatch conditions. It is recommended that some type of VSWR based protective circuitry be adapted in the equipment design, and separate dc regulators with appropriate current limits provided for each module.

The MRF428 is a single chip transistor with the die size of $0.140 \times 0.248^{\prime \prime}$, and rated for a power output of 150 W PEP or CW. The single chip design eliminates the problem of selecting two matched die for balanced power distribution and dissipation. The high total power dissipation rating (320 W) has been achieved by decreasing the thermal resistance between the die and the mount by reducing the thickness of the BeO insulator to 0.04 " from the standard $0.062^{\prime \prime}$, resulting in R $\mathrm{R}_{\boldsymbol{\theta} \mathrm{JC}}$ as low as $0.5^{\circ} \mathrm{C} / \mathrm{W}$.

The MRF427 is also a single chip device. Its die size is $0.118 \times 0.066^{\prime \prime}$, and is rated at 25 W PEP or CW. This being a high voltage unit, the package is larger than normally seen with a transistor of this power level to prevent arcing between the package terminals.

The MRF427 and MRF428 are both emitter-ballasted, which insures an even current sharing between each cell, and thus improving the device ruggedness against load mismatches.

The recommended collector idling currents are 40 mA and 150 mA respectively. Both devices can be operated in Class A, although not specified in the data sheet, providing the power dissipation ratings are not exceeded.

GENERAL DESIGN CONSIDERATIONS

Similar circuit board layouts are employed for the four 300 W building block modules and the preamplifier. A compact design is achieved by using ceramic chip capacitors, of which most can be located on the lower side of the board. The lead lengths are also minimized resulting in smaller parasitic inductances and smaller variations from unit-to-unit.

Loops are provided in the collector current paths to allow monitoring of the individual collector currents with a clip-on current meter, such as the HP-428B. This is the easiest way to check the device balance in a push-pull circuit, and the balance between each module in a system such as this.

The power gain of each module should be within not more than 0.25 dB from each other, with a provision made for an input Pi attenuator to accommodate device pairs with larger gain spreads. The attenuators are not used in this device however, due to selection of eight closely matched devices.

In regards to the performance specifications, the following design goals were set:

Devices: $8 \times$ MRF428 $+2 \times$ MRF427A
Supply Voltage: $40-50 \mathrm{~V}$
η. Worst Case: 45% on CW and 35% under two-tone conditions
IMD, d_{3} : -30 dB Maximum (1 kW PEP, 50 V and 800 W PEP, 40 V)
Power Gain, Total: 30 dB Minimum
Gain Variation: $2.0-30 \mathrm{MHz}: \pm 1.5 \mathrm{~dB}$ Maximum
Input VSWR: 2.0:1 Maximum
Continuous CW Operation, 1 kW : 50\% Duty Cycle, 30 -minute periods, with heatsink temperature $<75^{\circ} \mathrm{C}$.
Load Mismatch Susceptibility : 10:1, any phase angle
Determining the figures above is based on previous performance data obtained in test circuits and broadband amplifiers. Some margin was left for losses and phase errors occurring in the power splitter and combiner.

THE BIAS VOLTAGE SOURCE

Figure 1 shows the bias voltage source employed with each of the 300 W modules and the preamplifier. Its basic components are the integrated circuit voltage regulator MC1723C, the current boost transistor Q3 and the temperature sensing diode D1.

FIGURE 1 - Bias Voltage Source

Although the MC1723C is specified for a minimum V_{O} of 2 Volts, it can be used at lower levels with relaxed specifications, which are sufficient for this application. Advantages of this type bias source are:

1. Line voltage regulation, which is important if the amplifier is to be operated from various supply voltages.
2. Adjustable current limit.
3. Very low stand-by current drain.

Figure 1 is modified from the circuit shown on the MC1723 data sheet by adding the temperature sensing diode D1 and the voltage adjust element R10. D2 and R12 reduce the supply voltage to a level below 40 V , which is the maximum input voltage of the regulator.

D1 is the base-emitter junction of a 2 N 5190 , in a Case 77 plastic package. The outline dimensions allow its use for one of the circuit board stand-offs, attaching it automatically to the heatsink for temperature tracking.

The temperature compensation has a slight negative coefficient. When the collector idling current is adjusted to 300 mA at $25^{\circ} \mathrm{C}$, it will be reduced to $240-260 \mathrm{~mA}$ at a $60^{\circ} \mathrm{C}$ heatsink temperature. (-1.15 to $-1.7 \mathrm{~mA} / \mathrm{C}^{\circ}$.)

The current limiting resistor R5 sets the limiting to approximately 0.65 A , which is sufficient for devices with a minimum $h_{F E}$ of $17,\left(I_{B}=\frac{I_{C}}{h_{F E}}\right)$ when the maximum average IC is 10.9 A . ($2 \mathrm{MHz}, 50 \mathrm{~V}, 250 \mathrm{CW}$.) Typically, the MRF428 hFE's are in the 30's.

The measured output voltage variations of the bias
source ($0-600 \mathrm{~mA}$) are ± 5 to 7 mV , which amounts to a source impedance of approximately 20 milliohms.

THE 300 W AMPLIFIER MODULE

Input Matching

Due to the large emitter periphery of the MRF428, the series base impedance is as low as $0.88,-\mathrm{J} .80 \mathrm{Ohm}$ at 30 MHz . In a push-pull circuit a $16: 1$ input transformer would provide the best impedance match from a 50.0 hm source. This would however, result in a high VSWR at 2 MHz , and would make it difficult to implement the gain correction network design. For this reason a 9:1 transformer, which is more ideal at the lower frequencies, was chosen. This represents a 5.55 Ohm base-to-base soure impedance.

In a Class C push-pull circuit, where the conduction angle is less than 180°, the base-to-base impedance would be about four times the base-to-emitter impedance of one device. In Class A where the collector idling current is approximately half the peak collector current, the conduction angle is 360°, and the base-to-base impedance is twice the input impedance of one transistor. When the forward base bias is applied, the conduction angle increases and the base-to-base impedance decreases rapidly, approaching that of Class A in Class $A B$.

A center tap, common in push-pull circuits, is not necessary in the input transformer secondary, if the transistors are balanced. ($\mathrm{C}_{\mathrm{ib}}, \mathrm{hFE}, \mathrm{V}_{\mathrm{BEf}}$) The base current return path is through the forward biased base-emitter

FIGURE 2 - Equivalent Basa Input Circuit
junction of the off transistor. This junction acts as a clamping diode, and the power gain is somewhat dependent upon the amount of the bias current. The equivalent input circuit (Figure 2) represents one half of the push-pull circuit, and for calculations RS equals the total source impedance (Rs') divided by two.

Since a junction transistor is a current amplifier, it should ideally be driven from a current source. In RF applications this would result in excessive loss of power gain. However, input networks can be designed with frequency slopes having some of the current source characteristics at low frequencies, where excess gain is available.

The complex base input characteristics of a transistor would place requirements for a very sophisticated input compensation network for optimum overall performance. The design goal here was to maintain an input VSWR of $2: 1$ or less and a maximum gain variation of $\pm 1.5 \mathrm{~dB}$ from 2 to 30 MHz . Initial calculations indicated that these requirements can be met with a simple RC network in conjunction with negative collector-to-base feedback. Figure 2 shows this network for one device. L1 and L2 represent lead lengths, and their values are fixed. The feedback is provided through R2 and L2. Because the calculations were done without the feedback, this branch is grounded to simulate the operating conditions.

The average power gain variation of the MRF428 from 2 to 30 MHz is 13 dB . Due to phase errors, a large amount of negative feedback in an RF amplifier decreases the linearity, or may result in instabilities. Experience has shown that approximately $5-6 \mathrm{~dB}$ of feedback can be tolerated without noticeable effects in linearity or stability, depending upon circuit layout. If the amount of feedback is $5 \mathrm{~dB}, 8 \mathrm{~dB}$ will have to be absorbed by the input network at 2 MHz .

Omitting the reactive components, $\mathrm{LI}, \mathrm{L} 2, \mathrm{Cl}$, and the phase angle of X_{I} which have a negligible effect at $2 \mathbf{M H z}$,
a simple L-pad was calculated with $\mathrm{R}_{\mathrm{S}}=2.77 \Omega$, and R_{L} $=\sqrt{4.65^{2}+1.25^{2}=4.81 \Omega}$.

From the device data sheet we find the GPE at 2 MHz is about 28 dB , indicating 0.24 W at R_{L} will produce an output power of 150 W , and the required power at $\mathrm{RS}_{\mathrm{S}}=$ $0.24 \mathrm{~W}+8 \mathrm{~dB}=1.51 \mathrm{~W}$.

Figuring out currents and voltages in various branches, results in: $\mathrm{R} 1=1.67 \Omega$ and $\mathrm{R} 2=1.44 \Omega$.

The calculated values of R1 and R2 along with other known values and the device input data at four frequencies were used to simulate the network in a computer program. An estimated arbitrary value of 4000 pF for Cl was chosen, and VCS2 represents the negative feedback voltage (Figure 2.) The optimization was done in two separate programs for R1, R2, C1 and VCS2 and in several steps. The goals were: a) VCS and R2 for a transducer loss of 13 dB at 2 MHz and minimum loss at 30 MHz . b) R1 and C1 for input VSWR of $<1.1: 1$ and $<2: 1$ respectively. The optimized values were obtained as:

$$
\begin{array}{ll}
\mathrm{C} 1=5850 \mathrm{pF} & \mathrm{R} 2=1.3 \Omega \\
\mathrm{R} 1=2.1 \Omega & \mathrm{VCS} 2=1.5 \mathrm{~V}
\end{array}
$$

The minimum obtainable transducer loss at 30 MHz was 2.3 dB , which is partly caused by the highest reflected power at this frequency, and can be reduced by "overcompensation" of the input transformer. This indicates that at the higher frequencies, the source impedance (RS) is effectively decreased, which leaves the input VSWR highest at 15 MHz .

In the practical circuit the value of C1 (and C2) was rounded to the nearest standard, or 5600 pF . For each half cycle of operation R2 and R4 are in series and the value of each should be $\frac{1.3 \Omega}{2}$ for VCS2 $=1.5 \mathrm{~V}$. Since the voltage across ac and bd $=V_{C E}$, a turns ratio of $32: 1$ would be required. It appears that if the feedback voltage

FIGURE 3 -
on the bases remains unchanged, the ratio of the voltage across L5 (VCS2) and R2R4 can be varied with only a small effect to the overall input VSWR. To minimize the resistive losses in the bifilar winding of T2 (Figure 3), the highest practical turns ratio should not be much higher than required for the minimum inductance, which is

$$
\frac{4 \mathrm{R}}{2 \pi \mathrm{f}}=\frac{50}{12.5}=4.0 \mu \mathrm{H}
$$

$\mathrm{R}=$ Collector-to-Collector Impedance $=12.5 \Omega$
$\mathrm{f}=\mathbf{2} \mathrm{MHz}$
ac or bd will then be $1.0 \mu \mathrm{H}$, which amounts to 5 turns. (See details on T2.) 25\% over this represents a $7: 1$ ratio setting VCS2 to 6.9 V .

In addition to providing a source for the negative feedback, T2 supplies the dc voltage to the collectors as well as functions as a center tap for the output transformer T3.

The currents for each half cycle are in opposite phase in ac and bd, and depending on the coupling factor between the windings, the even harmonic components will see a much lower impedance than the fundamental. The optimum line impedance for ac, bd would equal one half the collector-to-collector impedance, but experiments have shown that increasing this number by a factor of 2.3 affects the 2 nd and 4th harmonic amplitudes by only 1 to 2 dB .

Since the minimum gain loss obtainable at 30 MHz with network as in Figure 2, and the modified VCS2
source was about 3.8 dB at $30 \mathrm{MHz}, \mathrm{C} 5$ was added with the following in mind: C 5 and L 5 form a parallel resonant circuit with a Q of approximately 1.5 . Its purpose is to increase the shunting impedance across the bases, and to disturb the 180° phase difference between the input signal and the feedback voltage at the higher frequencies. This reduces the gain loss of 3.8 dB , of which 1.4 dB is caused by the feedback at 30 MHz . The amount depends upon the resonant frequency of C5 L5, which should be above the highest operating frequency, to avoid possible instabilities.

When L 5 is 45 nH , and the resonance is calculated for 35 MHz , the value of C5 becomes 460 pF , which can be rounded to the closest standard, or 470 pF . The phase shift at $\mathbf{3 0 ~ M H z}$ is:
$\operatorname{Tan}^{-1}\left[\begin{array}{c}\left.\frac{2 \pi \mathrm{fL}}{R\left(1-\frac{\mathrm{f}^{2}}{\mathrm{f}_{\mathrm{o}}^{2}}\right)}\right]=\operatorname{Tan}^{-1}\left[\frac{6.28 \times 30 \times 0.045}{6.8\left(1-\frac{900}{1225}\right)}\right]\end{array}\right.$
Tan ${ }^{-1}$
$=\quad\left(\frac{8.48}{1.80}\right)=78.0^{\circ}$
The impedance is: $\frac{\mathrm{R}}{\cos \theta}=\frac{6.8}{\cos 78^{\circ}}=32.7 \Omega$
At 2 MHz the numbers are respectively 4.76° and 6.83Ω.
The 1.4 dB feedback means that the feedback voltage is 16% of the input voltage at the bases. By the aid of
vectors, we can calculate that the 78° phase shift and the increased impedance reduces this to 4%, which amounts to 0.35 dB . These numbers were verified in another computer program with VCS2 $=6.9 \mathrm{~V}$, and including C5. New values for R1 and R2 were obtained as 1.95Ω and 6.8Ω respectively, and other data as shown in Table 1 .

The VSWR was calculated as
$\frac{\mathrm{Z} 1-\mathrm{Z2}}{\mathrm{Z} 1+\mathrm{Z2}} \quad$ where:

Z1 = Impedance at transformer secondary.

TABLE1:

Frequancy MHz	Input VSWR	Input Impedance Real	Input Impedance Reactive	Attenustion dB
2.0	1.07	2.79	-0.201	13.00
4.0	1.16	2.66	-0.393	12.07
7.5	1.33	2.36	-0.615	10.42
15	1.68	1.77	-0.611	7.40
20	1.82	1.57	-0.431	5.90
30	1.74	1.62	-0.21	2.70

Although omitted from the preliminary calculations, the $2 \times 5 \mathrm{nH}$ inductances, comprising of lead length, were included in this program.

The input transformer is a 9:1 type, and uses a television antenna balun type ferrite core, made of high permeability material. The low impedance winding consists of one turn of $1 / 8^{\prime \prime}$ copper braid. The sections going through the openings in the ferrite core are rounded to resemble two pieces of tubing electrically. The primary consists of AWG \#22 TFE insulated wire, threaded through the rounded sections of braid, placing the primary and secondary leads in opposite ends of the core. (4) (5). The saturation flux density is about 60 gauss which is well below the limits for this core. For calculation procedures, see discussion about the output transformer.

This type physical arrangement provides a tight coupling, reducing the amount of leakage flux at high frequencies. The wire gauge, insulation thickness, and number of strands have a minimal effect in the performance except at very high impedance ratios, such as $25: 1$ and up. The transformer configuration is shown in Figure 4. By using a vector impedance meter, the values for C3 and C4 were measured to give a reasonable input match at $30 \mathrm{MHz},\left(\mathrm{Z}_{\text {in }}=1.62-\mathrm{j} 0.21 \times 2=3.24-\right.$ j 0.42) with the smallest possible phase angle.

FIGURE 4 - Transformer Configuration
When the high impedance side was terminated into 50Ω, the following readings were obtained at the secondary:

Z2 $=$ Input impedance of compensation network $\mathbf{x} 2$ (RS in Figures 2 and 3) as in computer data presented ahead.

The effect of the lower VSWR to the power loss in the input network can be calculated as follows:

$$
\begin{aligned}
& 10 \log \left[\begin{array}{l}
\left(1-\frac{\left.\left(\frac{S 1-1}{S 1+1}\right)^{2}\right)}{\left(1-\left(\frac{S 2-1}{S 2+1}\right)^{2}\right)}\right.
\end{array}\right] \begin{array}{l}
\text { where: } \\
\text { S1 = VSWR 1 (Lower) } \\
S 2=\text { VSWR 2 (Higher) }
\end{array} \\
& \text { which at } 30 \mathrm{MHz}=10 \mathrm{Log}\left(\begin{array}{l}
\left(1-\left(\frac{1.11-1}{1.11+1}\right)^{2}\right) \\
\left(1-\left(\frac{1.74-1}{1.74+1}\right)^{2}\right)
\end{array}\right. \\
& =10 \log \left(\frac{0.997}{0.927}\right)=0.32 \mathrm{~dB}, 2.7-0.32=2.38 \mathrm{~dB}
\end{aligned}
$$

These figures for other frequencies are presented with the data below. Later, some practical experiments were done with moving the resonance of C5 L5 lower, to find out if instabilities would occur in a practical circuit. When the resonance was equal to the test frequency, slight breakup was noticed in the peaks of a two-tone pattern. It was then decided to adjust the resonance to 31 MHz , where $\mathrm{C} 5=560 \mathrm{pF}$, and the phase angle at 30 MHz increases to 87°. The transducer loss is further reduced by about 0.2 dB .

Several types of output transformer configurations were considered. The 12.5Ω collector-to-collector im-

TABLE 2:

Frequency MHz	$\mathbf{R H S}_{\mathbf{S}}$ Ohms	$\mathrm{X}_{\mathbf{S}}$ Ohms	VSWR	Attenuation dB
2.0	5.59	+0.095	1.05	12.99
4.0	5.55	+0.057	1.15	12.06
7.5	5.50	+0.046	1.32	10.40
15	4.90	+0.25	1.48	7.28
20	4.32	+0.56	1.38	5.63
30	3.43	+0.73	1.11	2.38

(Abovo readings with transformar
and compensation network.)

B.

FIGURE 5 - Bottom and Top of the 300 W Module Circuit Board pedance estimated earlier, would require a $4: 1$ transformer for a 50Ω output. The type used here as the input transformer exhibits good broad band characteristics with a convenient physical design. However, according to the low frequency minimum inductance formula presented earlier in connection with T2, the initial permeability required would be nearly 3000 , with the largest standard core size available. High permeability ferrites are almost exclusively of Nickel-Manganese composition, and are lossy at radio frequencies. Although their Curie points are higher than those of lower permeability Nickel-Zinc ferrites, the core losses would degrade the amplifier performance. With the core losses being a function of the power level, these rules can sometimes be disregarded in low power applications.

A coaxial cable version was adapted for this design, since the transmission line type transformers are theoretically ideal for RF applications, especially in the $1: 4$ impedance ratio. A balanced to unbalanced function would normally require three separate transmission lines including a balun (5) (6). It appears that the third line can be omitted, if lines a and b (Figure 3) are wound on separate magnetic cores, and the physical length of the lines is sufficient to provide the necessary isolation between the collectors and the load. In accordance to formulas in (7), the minimum line length required at 2 MHz , employing Stackpole 57.9074 or equivalent ferrite toroids is $4.2^{\prime \prime}$, and the maximum permissible line length at 30 MHz would be approximately $20^{\prime \prime}$. The 4.2 " amounts to four turns on the toroid, and measures $1.0 \mu \mathrm{H}$, which in series with the second line is sufficient for 2 MHz . Increasing the minimum required line
length by a factor of 4 is still within the calculated limits, and in practical measurements the isolation has been found to be over 30 dB across the band. The main advantage with this arrangement is a simplified electrical and physical lay-out.

The maximum flux density of the toroids is approximately 200 gauss (3), and the number of turns has been increased beyond the point where the flux density of the magnetic core is the power limiting factor.

The $1: 4$ output transformer is not the optimum in this case, but it is the closest practical at these power levels. The optimum power output at 50 V supply voltage and 50Ω load is:
$\mathrm{V}_{\mathrm{RMS}}=4 \times\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{CE}(\mathrm{sat})} \times 0.707\right)=135.75 \mathrm{~V}$, when

$$
\mathrm{V}_{\mathrm{CE}(\mathrm{sat})}=2 \mathrm{~V}
$$

$\mathrm{I}=\frac{135.75}{50}=2.715 \mathrm{~A}, \mathrm{P}_{\text {out }}=2.715 \times 135.75=368.5 \mathrm{~W}$
The optimum V_{CC} at $\mathrm{P}_{\text {out }}=300 \mathrm{~W}$ would be:
$\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CE}}(\mathrm{sat})+\left(\sqrt{\mathrm{R}_{\text {in }} \times 2 \mathrm{P}_{\text {out }}}\right)=2+(\sqrt{6.25 \times 300})$ $=45.3 \mathrm{~V}$
The above indicates that the amplifier sees a lower load line, and the collector efficiency will be lowered by $1-2 \%$. The linearity at high power levels is not affected, if the device hFE is maintained at the increased collector currents. The linearity at low power levels may be slightly decreased due to the larger mismatch of the output circuit.

The required characteristic line impedance (a and b , Figure 3) for a 1:4 impedance transformer is: $\sqrt{\mathrm{R}_{\text {in }} \mathrm{R}_{\mathrm{L}}}=$ $\sqrt{12.5 \times 50}=25 \Omega$, enables the use of standard miniature 25Ω coaxial cable (i.e., Microdot $260-4118-000$) for the transmission lines. The losses in this particular cable at 30 MHz are $0.03 \mathrm{~dB} / \mathrm{ft}$. With a total line length of 2 x $16.8^{\prime \prime}\left(2 \times 4 \times 4.2^{\prime \prime}\right)$, the loss becomes 0.084 dB , or $300-\left(\frac{300}{10 \text { antilog } 0.084 \mathrm{~dB}}\right)=5.74 \mathrm{~W}$.

For the ferrite material employed, Stackpole grade \#11 (or equivalent Indiana General Q1) the manufacturers data is insufficient for accurate core loss calculations (6). The BH curves indicate that $100-150$ gauss is well in the linear region.

The toroids measure $0.87^{\prime \prime} \times 0.54^{\prime \prime} \times 0.25^{\prime \prime}$, and the $16.8^{\prime \prime}$ line length figured above, totals to 16 turns if tightly wound, or $12-14$ turns if loosely wound. The flux density can then be calculated as:
$\mathrm{B}_{\text {max }}=\frac{\mathrm{V}_{\text {max }} \times 102}{2 \pi \mathrm{fnA}}$
where: $f=$ Frequency in MHz
$\mathrm{n}=$ Total number of turns.
$\mathrm{A}=$ Cross sectional area of the toroid in cm^{2}.
$\mathrm{V}=$ Peak voltage across the 50Ω load,

$$
\sqrt{\left(\frac{300}{50}\right)\left(\frac{50}{0.707}\right)=173 \mathrm{~V}}
$$

$\mathrm{B}_{\max }($ for each toroid $)=\frac{86.5 \times 10^{2}}{6.28 \times 2 \times 28 \times .25}=98.3$ gauss

Practical measurements showed the core losses to be negligible compared to the line losses at 2 MHz and 30 MHz . However, the losses increase as the square of $\mathrm{B}_{\text {max }}$ at low frequencies.

With the amount of HF compensation dependent upon circuit layout and the exact transformer construction, no calculations were made on this aspect for the input (or output) transformers. C3, C4, and C6 were selected by employing adjustable capacitors on a prototype whose values were then measured.

A photo of the circuit board is shown in Figure 5, Abottom and B-top. The performance data of the 300 W module can be seen in Figure 6.

FIGURE 6 - IMD, Power Gain, Input VSWR and Efficiency versus Frequency of a 300 W Module

THE DRIVER AMPLIFIER

The driver uses a pair of MRF427 devices, and the same circuit board layout as the power amplifier, with the exception of the type of the output transformer.

The input transformer is equal to what is used with the power amplifier, but has a $4: 1$ impedance ratio. The required minimum inductance in the one turn secondary (Figures 3 and 4) being considerably higher in this case,
$\frac{4 \mathrm{R}}{2 \pi \mathrm{f}}=\frac{4 \times 12.5}{12.5}=4 \mu \mathrm{H}$
the A_{L} product of the core is barely sufficient. The measured inductances between a number of cores range $3.8-4.1 \mu \mathrm{H}$.

This formula also applies to the output transformer, which is a $1: 1$ balun. The required minimum inductance at 2 MHz is $16 \mu \mathrm{H}$, amounting to 11 turns on a Ferroxcube $2616 \mathrm{P}-\mathrm{A} 100-4 \mathrm{C} 4$ pot core, which was preferred over a toroid because of ease of mounting and other physical features. Although twisted wire line would be good at this power level, the transformer was wound with RG-196 coaxial cable, which is also used later for module-driver interconnections.

The required worst case driver output is $4 \times 12 \mathrm{~W}=$ 48 W . The optimum $\mathrm{P}_{\text {out }}$ with the $1: 1$ output transformer is

$$
\frac{V_{\mathrm{RMS}}}{50} \times \mathrm{V}_{\mathrm{RMS}}=\frac{67.7}{50} \times 67.7=92 \mathrm{~W} .
$$

The MRF 427 is specified for a 25 W power output. Having a good hFE versus IC linearity, the 1 to 2 load mismatch has an effect of $2-3 \mathrm{~dB}$ in the IMD at the 10% power level, and the reduced efficiency in the driver is insignificant regarding the total supply current in the system.

The component values for the base input network and the feedback were established with the aid of a computer, and information on the device data sheet, as described earlier with the 300 W module. The HF compensation was done in a similar manner as well. Neither amplifier employs LF compensation. C7 and C8 are dc blocking capacitors, and their value is not critical.

In T2 (Figure 7), b and c represent the RF center tap, but are separated in both designs - partly because

FIGURE 7
of circuit lay-out convenience and partly for stabilization purposes.

The test data of the driver is presented later along with the final test results.

FIGURE 8 - Driver Amplifier Board Layout

COMBINING FOUR 300 W POWER MODULES

The Input Power Divider

The purpose of the power divider is to divide the input power into four equal sources, providing an amount of isolation between each. The outputs are designed for

50Ω impedance, which sets the common input at 12.5Ω. This requires an additional $4: 1$ step down transformer to provide a 50Ω load for the driver amplifier. Another requirement is a 0° phase shift between the input and the 50Ω outputs, which can be accomplished with $1: 1$ balun transformers. (a, b, c and d in Figure 10.) For im-

FIGURE 9 - Component Layout of the 300 W Amplifier Module
PARTS LIST*
(Power Module and Driver Amplifier)

	Power Module	Driver Amplifier
C1, C2	5600 pF	3300 pF
C3	56 pF	39 pF
C4	470 pF	Not Used
C5	560 pF	470 pF
C6	75 pF	51 pF
C7, C8	$0.1 \mu \mathrm{~F}$	$0.1 \mu \mathrm{~F}$
C9, C10	$0.33 \mu \mathrm{~F}$	$0.33 \mu \mathrm{~F}$
C11	$10 \mu \mathrm{~F} / 150 \mathrm{~V}$	$10 \mu \mathrm{~F} / 150 \mathrm{~V}$
R1, R2	$2 \times 3.9 \Omega / 1 / 2 \mathrm{~W}$ in parallel	$2 \times 7.5 \Omega / \% / 2 \mathrm{~W}$ in parallel
R3, R4	$2 \times 6.8 \Omega / 1 / 2 \mathrm{~W}$ in parallel	$2 \times 18 \Omega / 1 / 2 \mathrm{~W}$ in parallel
L.1, L2	Ferroxcube VK200 19/4B ferrite choke	Ferroxcube VK 200 19/4B ferrite choke
L3, L4	6 ferrite beads each, Ferroxcube 56590 65/3B	6 ferrite beads each. Ferroxcube 56590 65/3B
	All capacitors, except C11, are cera Union Carbide type 1225 or 1813 Others ATC Type B.	ic chips. Values over 100 pF are Varadyne size 18 or 14 .
T1	9:1 type, see text. (Ferrite cores for both: Stackpole 287300201 or equivalent.)	4:1 type, see text. 7.1845-24B or Fair-Rite Products
T2	7 turns of bifilar or loosely twisted Ferrite cores for both: Stackpole F627.801 or equivalent.	ires. (AWG \#20.) 9322, Indiana General
T3	14 turns of Microdot 260-4118.00 25Ω miniature coaxial cable wound on each toroid. (Stackpole 57-9074, Indiana General F624-1901 or equivalent.)	11 turns of RG-196, 50Ω miniature coaxial cable wound on a bobbin of a Ferroxcube 2616P-A100-4C4 pot core.

*Parts \& kits for this amplifier are available from Communication Concepts, 121 Brown St., Dayton, Ohio 45402 (513) 220-9677
proved low frequency isolation characteristics the line impedance must be increased for the parallel currents. This can be done, without affecting the physical length of the line, by loading the line with magnetic material. In this type transformer, the currents cancel, making it possible to employ high permeability ferrite and a relatively short physical length for the transmission lines. In an absolutely balanced condition, no power will be dissipated in the magnetic cores, and the line losses are reduced. The minimum required inductance for each line can be calculated as shown for the driver amplifier output transformer, which gives a number of $16 \mu \mathrm{H}$ minimum at 2 MHz . A low inductance value degrades the isolation characteristics between the 50Ω output ports, to maintain a low VSWR in case of a change in the input impedance of one or more of the power modules. However, because of the base compensation networks, the power splitter will never be subjected to a completely open or shorted load.

FIGURE 10 - Four Port Power Divider
The purpose of the balancing resistors (R) is to dissipate any excess power, if the VSWR increases. Their optimum values, which are equal, are determined by the number of 50Ω sources assumed unbalanced at one time, and the resistor values are calculated accordingly.

Examining the currents with one load open, it can be seen that the excess power is dissipated in one resistor in series with three parallel resistors. Their total value is $50-12.5=37.5 \Omega$. Similarly, if two loads are open, the current flows through one resistor in series with two parallel resistors, totaling 37.5Ω again. This situation is illustrated in Figure 11.
Except for a two port power divider ${ }^{(5)}$, the resistor values can be calculated for odd or even number systems as:

$$
R=\left(\frac{R_{L}-R_{i n}}{n+I}\right) n \text { where: }
$$

$\mathbf{R}_{\mathrm{L}}=$ Impedance of the output ports, 50Ω.
$\mathrm{R}_{\mathrm{in}}=$ Impedance of the input port, 12.5Ω.
$\mathrm{n}=$ Number of output ports properly terminated.

FIGURE 11

Although these resistor values are not critical in the input divider, the formula also applies to the output power combiner, where mismatches have a larger effect in the total power output and linearity.

The practical power divider employs large ferrite beads (Fair-Rite Products 2673000801 or Stackpole 57-1511-24B or equivalent) over a 1.2 inch piece of RG-196 coaxial cable. The arrangement is shown in Figure 10. Both above ferrite materials have a $\mu \mathrm{r}$ of about 2500 , and the inductance for one turn is in excess of $10 \mu \mathrm{H}$.

The step-down transformer (T 1, Figure 10) is wound on a Stackpole 57-9322-11 toroid with 25Ω miniature coaxial cable. (Microdot 260-4118-000 or equivalent.) Seven turns will give a minimum inductance of $4 / 16 \mu \mathrm{H}$, required at 2 MHz .

For the preamplifier interface, Cl could be omitted in order to achieve the lowest input VSWR.

The structure is mounted between two phenolic terminal strips as can be seen in the foreground of Figure 14 , providing a sufficient number of tie points for the coaxial cable connections.

THE OUTPUT COMBINER

The operation of the output combiner is reversed from that of the input power divider. In this application we have four -50Ω inputs and one 12.5Ω output, which is transformed to 50Ω by a $1: 4$ impedance ratio transformer.

An arrangement similar to the input power divider is employed in the combiner. The baluns consist of straight pieces of coaxial cable loaded by a sleeve of magnetic material (ferrite). The line length is determined by the physical dimensions of the ferrite sleeves. The $\mu \mathrm{r}$ versus cross sectional area should be calculated or measured to give sufficient loading inductance.

Straight line baluns as these have the advantage over multiturn toroidal types in introducing a smaller possibility for phase errors, due to the smaller length of the line. The largest possible phase errors occur in the input
and output connecting cables, whose lengths are $18^{\prime \prime}$ and 10 " respectively. All four input and output cables must be of equal length within approximately $1 / 4$ ", and the excess in some, caused by the asymmetrical system layout, can be coiled or formed into loops.

The output connecting cables between the power amplifier outputs and the combiner are made of low loss RG-142B/U coaxial cable, that can adequately handle the 300 W power with the average current of 2.45 A .

The balun transmission lines are also made of RG$142 \mathrm{~B} / \mathrm{U}$ coaxial cable, with an outer diameter of $0.20^{\prime \prime}$. The line length is not critical as it is well below the maximum length permitted for 30 MHz (7). The minimum inductance, as in the input divider, is $16 \mu \mathrm{H}$ per line. Measurements were made between two port combiners, one having the line inductance of $17 \mu \mathrm{H}$ (7 Ferroxcube 768 series 3E2A toroids) and the other $4.2 \mu \mathrm{H}$ (one Stackpole 57-0572.27A ferrite sleeve). The results are shown in Table 3.

The power output with various numbers of disabled sources, referring to Figures 11 and 12 can be calculated as:

$$
P_{n}-P_{R}+\frac{P_{R}}{n}
$$

where: $\mathrm{n}=$ Number of Operative Sources.
$\mathrm{Pn}_{\mathrm{R}}=$ Total Power of Operative Sources.
$\mathbf{P}_{\mathbf{R}}=$ Power Dissipated in Balancing Resistors.
For one disabled source:
$P_{R}=250\left(\frac{28.13}{50}\right)=140.65$,
$P_{\text {out }}=(250 \times 3)-\left(140.65+\frac{140.65}{3}\right)=$
$750-187.5=562.5 \mathrm{~W}$
This is assuming that the phase errors between the active sources are negligible. Otherwise the formula in (7) can

f MHz	Isolation dB (Line Inductance $17 \mu \mathrm{H}$)	Isolation dB Line Inductance $\mathbf{4 . 2} \mu \mathrm{H}$)
2.0	40.2	29.1
4.0	40.0	38.3
7.5	39.6	39.1
15	37.5	37.8
20	35.8	36.2
30	33.4	33.5

TABLE 3:

The main difference is at 2 MHz - and it was decided that the 29 dB of isolation is sufficient, as the high frequency isolation in either case is not much better. The 3E2A and other similar materials are rather lossy at RF, and with their low Curie points, would present a danger of overheating in case of a source unbalance.

Figure 12 shows the electrical design of the four-port power combiner.

FIGURE 12 - Four Port Output Combiner
be adapted, but if the errors between the active sources are unequal, the situation will get rather complex.

From above we see that 140.65 W will be dissipated by one of the balancing resistors and only 15.6 W by the other three. For this high power dissipation the resistors must be the type which can be mounted to a heat sink, and noninductive. After experiments with the "noninductive" wirewound resistors which exhibited excess inductance at 30 MHz and were bulky with 50 and 100 W ratings, thin film terminations were specially fabricated in-house for this application.* These terminations are deposited on a BeO wafer, which is attached to a copper flange. They are rated for 50 W continuous power, but can be operated at 100 or even 150 W for nonextended periods if the flange temperature is kept moderately low. The balancing resistors can be seen on the upper side of the combiner, which is shown in the foreground of Figure 15.

The purpose of the step-up transformer T2, (Figure 12) is to transform the 12.5Ω impedance from the combiner up to 50Ω. It is a standard 1:4 unbalanced-to-unbalanced transmission line type transformer, $(6,7,8)$ in which the line is made of two RG-188 coaxial cables connected in parallel in the manner as shown in Figure 13.

Normally the loss in RG-188 at 30 MHz is 0.08 dB /foot. In this connection arrangement, the currents in both directions are carried by the braid in parallel with the

[^29]

FIGURE 13
inner conductor and the power loss is reduced to approximately $0.025 \mathrm{~dB} /$ foot. The impedance becomes 25Ω, and depending on how close the cables are to each other physically, it can be as low as 22Ω. The minimum line inductance can be calculated as shown before, and is $16 \mu \mathrm{H}$ for the 50Ω side. This inductance is achieved by winding several turns of the dual cable line on a magnetic core. In contrast to the balun transformers in the combiner, the line currents do not cancel and the magnetic core must handle the full power, and must be made of lower loss material. The form of a toroid was figured to require the shortest line length for a specific inductance, and out of the standard sizes, two stacked units resulted in a shorter line length than a single larger one with similar cross sectional area.

Six turns on two Indiana General F626-12-Q1 toroids give 4.8 and $23 \mu \mathrm{H}$ for the secondary; the line length being 16 inches.

In continuous operation the core temperature was measured as $95-90^{\circ} \mathrm{C}$. This resulted in a decision to change the core material to Q2, which exhibits about 70% lower losses at 30 MHz . The permeability is also lower (35), and with the same number of turns gives only $13 \mu \mathrm{H}$.

The line length could not be increased according to (7), and the measurements indicated no difference in operation at 2 MHz , so the Q2 toroids with the low inductance were considered permanent.

The maximum flux density of the toroids is calculated as shown before:
$\mathrm{B}_{\max }=\frac{\mathrm{V}_{\max } \times 10^{2}}{2 \pi \mathrm{f} \eta \mathrm{A}}$ gauss, where:
$\mathrm{V}=$ Peak voltage across the secondary, (50 point) 316.2 V
$\mathrm{f}=$ Frequency in MHz (2.0)
$\eta=$ Number of turns at the 50Ω point. (12)
$\mathrm{A}=$ Core cross sectional area $\left(1.21 \mathrm{~cm}^{2}\right)$
$B_{\max }=\frac{316.2 \times 10^{2}}{6.28 \times 2 \times 12 \times 1.21}=260$ gauss
From the BH curves we can see that the linear portion extends to $800-1000$ gauss, and the saturation occurs at over 3000 gauss. Comparable materials are Stackpole grade 14 and Fair-rite products 63.

The core losses are minimal compared to the line
 0.81%.

As in the input transformer, the HF compensation (C2) was not required. The lay-out of the combiner and T2 is

FIGURE 14-1 kW Linear Amplifier showing the input power divider in the foreground, to the right is the preamplifier. Two of the four 300 W modules can be seen on the upper side of the structure. The other two modules are shown in Figure 15.

FIGURE 15-1 kW Linear Amplifier showing the output combiner in the foreground, to the right is the 1:4 stepup transformer. The four balancing resistors, mounted to the heat sink, can be seen directly above the combining network.
such that minimum lead lengths are obtained, and the structure is mounted on a PC board having feedthrough eyelets to a continuous ground plane on its lower side.

MEASUREMENTS

Six 300 W modules were built using matched pair production MRF428's. The maximum gain distribution was 0.9 dB , and in the four units selected for the amplifier, the gain varied from 13.7 to 14.1 dB at 30 MHz , so it was not necessary to utilize the option of the input attenuators.

Figure 16 shows the test set-up arrangement employed for testing the modules and the combined amplifier.

The heatsink design was not optimized as it was felt to be outside the scope of this report; concentration was made in the electrical design. However, it was calculated to be sufficient for short period testing under two-tone or CW conditions at full power. The heatsink consists of

FIGURE 16 - For two tone operation, a signal from an external audio oscillator is added to a signal from the T-4XB built-in oscillator, which has been adjusted to 800 Hz .

During single tone testing, the external oscillator (1200 Hz) is switched off. A calorimeter wattmeter in the output can be used to calibrate the HP-432A's at frequencies below $\approx 10 \mathrm{MHz}$, where their response roll-off begins.

FIGURE 17 - VSWR and Efficiency versus Frequency

FIGURE 18 - IMD versus Power Output

FIGURE 19 - Photo of Spectrum Analyzer Display Showing the IMD Products to the 9 th Order. Power Output $=1 \mathrm{~kW}$ at $30 \mathrm{MHz}(50 \mathrm{~V})$.

AN758
four 9" lengths of Thermalloy 6151 extrusion, each having a free air thermal resistance of $0.7^{\circ} \mathrm{C} / \mathrm{W}$. They are bolted in pairs to two 9 " $\times 81 / 2^{\prime \prime} \times 3 / 8^{\prime \prime}$ copper plates, to which the four power modules are mounted. Assuming a coefficient of 0.85 between two parallel extrusions, a total thermal resistance of $0.4^{\circ} \mathrm{C} / \mathrm{W}$ is realized. Two of these dual extrusions are mounted back-to-back to provide

FIGURE 21 - Heat Sink Temperature versus Time
a channel for the air flow from four Rotron SP2A2 4" fans. Two are mounted in each end of the heatsink, and the four fans operating in the same direction provide an air flow of approximately 150 CFM.

The third order harmonic is 14 dB below the fundamental at certain frequencies, as can be seen in Figure 22. This number is typical in a four octave amplifier, and it is obvious that some type of output filter is required when it is used for communications purposes.

FIGURE 22 - Output Harmonic Comtents versus Frequency

The 10:1 load mismatch was simulated with 34 feet of RG-58 coaxial cable, which has an attenuation of approximately 0.9 dB at 30 MHz , representing 1.8 dB return loss. The coaxial was terminated into an LC network consisting of a $2 \times 15-125 \mathrm{pF}$ variable capacitor and two inductors as shown in Figure 23.

FIGURE 23 - Losd Mismatch Test Circuit

NOTE: The Printed Circuit Board shown is $\mathbf{7 5 \%}$ of the original.
FIGURE 24, - Circuit Board Layout of the Power Combiner Assembly

AN758

75% of Actual Size

FIGURE 25 - Board Layout of the Power Combiner

REFERENCES

1. Ruthroff: Some Broad Band Transformers, IRE, Volume 47, August 1975.
2. Lewis: Notes on Low Impedance H.F. Broad Band Transformer Techniques, Collins Radio Company, November 1964.
3. Granberg, H.: Broadband Linear Power Amplifiers Using Push-Pull Transistors, AN-593, Motorola Semiconductor Products Inc.
4. Granberg, H.: Get 300 Watts PEP Linear Across 2 to 30 MHz From This Push-Pull Amplifier, EB-27, Motorola Semiconductor Products Inc.
5. Granberg, H.: Broadband Transformers and Power Combining Techniques for RF, AN-749, Motorola Semiconductor Products Inc.
6. Hilbers: Design of H.F. Wideband Power Transformer Techniques, Phillips Application Information \#530.
7. Pizalis-Couse: Broadband Transformer Design for RF Transistor Amplifiers, ECOM-2989, U.S. Army Electronics Command, Fort Monmouth, New Jersey, July 1968.
8. Philips Telecommunication Review, Volume 30, No. 4, pp. 137-146, November 1972.
9. Hejhall, R.: Solid-State Linear Power Amplifier Design, AN-546, Motorola Semiconductor Products Inc.
10. Lefferson: Twisted Wire Transmission Line, IEEE Transactions on Parts, Hybrids and Packaging, Volume PHP-7, No. 4, December 1971.
11. Krauss-Allen: Designing Toroidal Transformers to Optimize Wideband Performance, ELECTRONICS, August 1973.

LINEAR AMPLIFIERS FOR MOBILE OPERATION

Prepared by
Helge O. Granberg
RF Circuits Engineering

INTRODUCTION

The three versions of the amplifier described here are intended mainly for amateur radio applications, but are suitable for other applications such as marine radio with slight modifications.

100 W is obtained with two MRF455's. MRF460 or MRF453 is also adaptable to this design, resulting in approximately 1.0 to 2.5 dB higher overall power gain than the values shown. The MRF454 devices which can be directly substituted with MRF458's for slightly lower IMD, deliver the 140 W , and two MRF421 devices are used in the 180 W version.

The use of chip capacitors results in good repeatability, making the overall design suitable for mass production.

There are several precautions and design hints to be taken into consideration regarding transistor amplifiers:

1. Eliminate circuit oscillation. Oscillations may cause overdissipation of the device or exceed the breakdown voltages.
2. Limit the power supply current to prevent excessive dissipation.
3. Adopt protective circuitry, such as fast acting ALC.
4. Ensure proper attachment of the device to a heatsink using Silicone grease (such as Corning 340 or GC Electronics 8101) to fill all thermal gaps.

THE TRANSISTORS

The MRF421 with a specified power output of 100 W PEP or CW is the largest of the three RF devices. The maximum dissipation limit is 290 Watts, which means that the continuous collector current could go as high as 21.3 A at 13.6 V operated into any load. The data sheet specifies 20 A ; this is actually limited by the current carrying capability of the internal bonding wires. The values given are valid at a $25^{\circ} \mathrm{C}$ mount temperature.

The minimum recommended collector idling current in Class $A B$ is 150 mA . This can be exceeded at the expense of collector efficiency, or the device can be operated in Class A at an idling current of approximately one fourth the maximum specified collector current. This rule of thumb applies to most RF power transistors, although not specified for Class A operation.

The MRF454 is specified for a power output of 80 W CW. Although the data sheet does not give broadband performance or IMD figures, typical distortion products
are ≈-31 to -33 dB below one of the two test tones (7) with a 13.6 V supply. This device has the highest figure of merit (ratio of emitter periphery and base area), which correlates with the highest power gain.

The maximum dissipation is 250 Watts, and the maximum continuous collector current is 20 A . The minimum recommended collector idling current is 100 mA , and like the MRF421, can be operated in Class A.
The data sheet specification for the MRF455 is 65 W CW, but it can be operated in SSB mode, and typically makes - 32 to - 34 dB IMD) in reference to one of the two test tones at 50 W PEP, 13.6 volts. It contains the same die as MRF453 and MRF460, but is tested for different parameters and employs a smaller package. The MRF455/MRF453/MRF460 has a higher figure of merit than the two devices discussed earlier. Hue to this and the higher associated impedance levels, the power gain exceeds that of the MRF454 and MRF421 in a practical circuit. The minimum recommended collector idling current is 40 mA for Class AB, but can be increased up to 3.0 A for Class A operation.

It should be noted that the data sheet figures for power gain and linearity are lowered when the device is used in multi-octave broadband circuit. Normally the device input and output impedances vary by at least a factor of three from 1.6 to 30 MHz . Therefore, when impedance correction networks are employed, some of the power gain and linearity must be sacrificed.

The input correction network can be designed with RC or RLC combinations to give better than 1 dB gain flatness across the band with low input VSWR. In a low. voltage system, little can be done about the output without reducing the maximum available voltage swing.
At power levels up to 180 Watts and 13.6 V . the peak currents approach 30 A , and every 100 mV lost in the emitter grounding or collector de feed also have a significant effect in the peak power capability. Thus, these factors must be emphasized in RF power circuit design.

THE BASIC CIRCUIT

Figure I shows the basic circuit of the linear amplifier. For different power levels and devices, the impedance ratios of T1 and T3 will be different and the values of R1, R2, R3, R4, R5, C1, C2, C3, C4 and C6 will have to be changed.

figure 1 - Basic Circuit of Linear Amplifier

The Bias Voltage Source

The bias voltage source uses active components (MC1723G and Q3) rather than the clamping diode system as seen in some designs. The advantages are line voltage regulation capability, low stand-by current, ($<1.0 \mathrm{~mA}$) and wide range of voltage adjustability. With the component values shown, the bias voltage is adjustable from 0.5 to 0.9 Volts, which is sufficient from Class B to Class A operating conditions.

In Class B the bias voltage is equal to the transistor V_{BE}, and there is no collector idling current present (except small collector-emitter leakage, ICES), and the conduction angle is 180°.

In Class A the bias is adjusted for a collector idling current of approximately one-half of the peak current in actual operating conditions, and the conduction angle is 360°.

In Class AB, (common for SSB amplifiers) the bias is set for a low collector quiescent current, and the conduction angle is usually somewhat higher than 180°.

The required base bias current can be approximated as:

$$
\frac{\mathrm{LC}}{\mathrm{~h}_{\mathrm{FE}}} \text {, }
$$

where:
$I^{C}=$ Collector current, assuming an efficiency of 50%
and $\mathrm{P}_{\text {out }}$ of 180 W is: $\frac{2 \mathrm{P}_{\text {out }}}{\mathrm{V}_{\text {CC }}}=\frac{360}{13.6}=26.47 \mathrm{~A}$.
hFE $=$ Transistor dc beta (typical 30, from data sheet)
Bias current $=\frac{26.47}{30}=0.88 \mathrm{~A}$
R12 shares the dissipation with Q3, and its value must be such that the collector voltage never drops below
approximately 2.0 V (e.g. $\frac{(13.6-2)}{0.88}=13.2 \Omega$). The
MRF421 devices used for this design had hFE values on the high side (45), and R12 was calculated as 20Ω, which is also sufficient for the lower power versions.

R5 determines the current limiting characteristics of the MC1723, and 0.5Ω will set the limiting point to $1.35 \mathrm{~A}, \pm 10 \%$.

For SSB operation, excluding two-tone testing, the
the circuit board.
The measured output voltage variations of the bias source from zero to 1.0 A were $\pm 8.12 \mathrm{mV}$ resulting in a source impedance of $\approx 30 \mathrm{~m} \Omega$.

The Input Frequency Correction Network

The input correction network consists of R1, R2, C2 and C3. With the combination of the negative feedback derived from L5 through R3 and R4 (Figure 1), it forms an attenuator with frequency selective characteristics. At 30 MHz the input power loss is 1.2 dB , increasing to $10-12 \mathrm{~dB}$ at 1.6 MHz . This compensates the gain variations of the RF transistors over the 1.6 to 30 MHz band, resulting in an overall gain flatness of approximately ± 1.0 to $\pm 1.5 \mathrm{~dB}$.

Normally an input VSWR of $2.0: 1$ or lower (Figure 8) is possible with this type of input network (considered sufficient for most applications). More sophisticated

FIGURE 2 - Photograph of 180 W Version of the Linear Amplifier
duty cycle is low, and the energy charged in C11 can supply higher peak bias currents than required for 180 W PEP.

It is possible to operate the basic regulator circuit, MC1723, at lower output voltages than specified, with modified component values, at a cost of reduced line and output voltage regulation tolerances which are still more than adequate for this application. Temperature sensing diode D1 is added for bias tracking with the RF power transistors. The base-emitter junction of a 2N5 190 or similar device can be used for this purpose. The temperature tracking within 15% to $60^{\circ} \mathrm{C}$ is achieved, even though the die processing is quite different from that of the RF transistors. The physical dimensions of Case 77 (2N5190) permits its use for the center stand-off of

LRC networks will yield slightly better VSWR figures, but are more complex and sometimes require individual adjustments.

Additional information on designing and optimizing these networks can be found in reference(2).

The Broadband Transformers

The input transformer T 1 and the output transformer T3 are of the same basic type, with the low impedance winding consisting of two pieces of metal tubing, electrically shorted in one end and the opposite ends being the connections of this winding (Figure 3A). The multiturn high impedance winding is threaded through the tubing so that the low and high impedance winding connections are in opposite ends of the transformer.

FIGURE 3 - Two Variations of the Input and Output Transformers (T1 and T3)

The physical configuration can be implemented in various manners. A simplified design can be seen in Figure 3B. Here the metal tubing is substituted with copper braid, obtained from any co-axial cable of the proper diameter (4). The coupling coefficient between the primary and secondary windings is determined by the length-to-diameter ratio of the metal tubing or braid, and the gauge and insulation thickness of the wire used for the high impedance winding. For high impedance ratios ($36: 1$ and higher), miniature co-axial cable where only the braid is used, leaving the inner conductor disconnected gives the best results. The high coefficient of coupling is important only at the high-frequency end of the band, e.g. 20 to 30 MHz . Additional information on these transformers can be found in reference (5).

Both transformers are loaded with ferrite material to provide sufficient low-frequency response. The minimum required inductance in the one turn winding can be calculated as:

$$
L=\frac{\mathrm{R}}{2 \Pi \mathrm{f}}
$$

where
$\mathrm{L}=$ Inductance in $\mu \mathrm{H}$
$\mathrm{R}=$ Base-to-Base or Collector-to-
Collector Impedance
$\mathrm{f}=$ Lowest Frequency in MHz

For example, in the 180 Watt version the input transformer is of $16: 1$ impedance ratio, making the secondary impedance 3.13Ω with a 50Ω interface.

Then: $\mathrm{L}=\frac{3.13}{6.28 \times 1.6}=0.31 \mu \mathrm{H}$
For the output transformer having a $25: 1$ impedance ratio to a 50Ω interface, $L=\frac{2}{6.28 \times 1.6}=0.20 \mu \mathrm{H}$.

It should be noted that in the lower power versions, where the input and output impedances are higher and the transformers have lower impedance ratios, the required minimum inductances are also higher.

T2, the collector choke supplying the dc to each collector, also provides an artificial center tap for T3. This combination functions as a real center tapped transformer with even harmonic cancellation. T2 provides a convenient low impedance source for the negative feedback voltage, which is derived from a separate one turn winding.

T3 alone does not have a true ac center tap, as there is virtually no magnetic coupling between its two halves. If the collector dc feed is done through point E (Figure 1) without T2, the IMD or power gain is not affected, but the even harmonic suppression may be reduced by as much as 10 dB at the lower frequencies.

The characteristic impedance of ac and bd (T2) should equal one half the collector-to-collector impedance but is not critical, and for physical convenience a bifilar winding is recommended.

The center tap of T2 is actually bc (Figure 1), but for stabilization purposes, b and c are separated by RF chokes by-passed individually by C 8 and C 9 .

TABLE 1 - Parts List ${ }^{*}$

- Note: parts \& kits for this amplifier are available from Communication Concepts, 121 Brown St., Dayton, Ohio 45402 (513) 220-9677

GENERAL DESIGN CONSIDERATIONS

As the primary and secondary windings of T3 are electrically isolated, the collector dc blocking capacitors (which may also function as low-frequency compensation elements) have been omitted. This decreases the loss in RF voltage between the collectors and the transformer primary, where every 100 mV amounts to approximately 2 W in output power at 180 W level. The RF currents at the collectors operating into a 2Ω load are extremely high, e.g.: $I_{R F}=\sqrt{\frac{180}{2.0}}=9.5 \mathrm{~A}$, or peak $\frac{9.5}{0.707}=13.45 \mathrm{~A}$.

Similarly, the resistive losses in the collector dc voltage path should be minimized. From the layout diagram of
the lower side of the circuit board (Figure 4), VCC is brought through two $1 / 4^{\prime \prime}$ wide runs, one on each side of the board. With the standard 1.0 oz . laminate, the copper thickness is 1.4 thousands of an inch, and their combined cross sectional area would be equivalent to AWG \#20 wire. This is not adequate to carry the dc collector current which under worst case conditions can be over 25 A . Therefore, the high power version of this design requires 2 oz . or heavier copper laminate, or these runs should be reinforced with parallel wires of sufficient gauge.

The thermal design (determining the size and type of a heat sink required) can be accomplished with information in the device data sheet and formulas presented in references 5 and 6. As an example, with the 180 W unit using MRF421's, the Junction-to-Ambient Temperature

AN762

$\left(R_{\theta J A}\right)$ is calculated first as $R_{\theta J A}=\frac{T_{J}-T_{A}}{P}$ where:
$\mathrm{T}_{\mathrm{J}}=$ Maximum Allowed Junction Temperature $\left(150^{\circ} \mathrm{C}\right)$.
$\mathrm{T}_{\mathrm{A}}=$ Ambient Temperature $\left(40^{\circ} \mathrm{C}\right)$.
$P=$ Dissipated Power $\left(\frac{180}{\eta}\right) \times(100-\eta)$
$\eta=$ Collector Efficiency (\%).

If the worst case efficiency at 180 W CW is 55%, then
$\mathrm{P}=148 \mathrm{~W}$, and $\mathrm{R}_{\theta \mathrm{JA}}=\frac{150-40}{\left(\frac{148}{2}\right)}=1.49^{\circ} \mathrm{C} / \mathrm{W}$ (for one
device). The Heat Sink-to-Ambient Thermal Resistance, $\mathrm{R}_{\theta \text { SA }}=\mathrm{R}_{\theta \mathrm{JA}}-\left(\mathrm{R}_{\theta \mathrm{JC}}+\mathrm{R}_{\theta \mathrm{CS}}\right)$ where: $\mathrm{R}_{\theta \mathrm{JC}}=$ Device Junction-to-Case Thermal Resistance, $0.60^{\circ} \mathrm{C} / \mathrm{W}^{*}$ (from data sheet).
$\mathrm{R}_{\theta \mathrm{CS}}=$ Thermal Resistance, Case-to-Heat Sink, $0.1^{\circ} \mathrm{C} / \mathrm{W}$ (from table in reference 5).

Then: $\mathrm{R}_{\theta \mathrm{SA}}=\frac{1.49-(0.60+0.1)}{2}=0.395^{\circ} \mathrm{C} / \mathrm{W}$
This number can be used to select a suitable heat sink for the amplifier. The information is given by most manufacturers for their standard heat sinks, or specific lengths of extrusion. As an example, a $9.1^{\prime \prime}$ length of thermalloy 6153 or a $7.6^{\prime \prime}$ length of Aavid Engineering 60140 extrusion would be required for 100% duty cycle, unless the air velocity is increased by a fan or other means.

FIGURE 4 - Component Layout of the Basic Amplifier

FIGURE 5 - An Example of the IMD Spectral Display (c. Power Output $=180 \mathrm{~W}$ PEP, 30.00 MHz)

The Two Tones Have Been Adjusted 6 dB Below the Top Line, and the Distortion Products Relative to Peak Power can be Directly Read on the Scale.

PERFORMANCE AND MEASUREMENTS

The performance of each amplifier was measured with equipment similar to what is described in reference (2). The solid lines in Figures 6, 7, 8 and 9 represent the 100 W unit, the dashed lines represent the 140 W unit. and the dotted lines refer to the 180 W version. The data presented is typical, and spreads in the transistor lifE's will result in slight variations in RF power gain (Fig. ure 7).

The performance data is also affected by the purity of the driving source. There should be at least $5-6 \mathrm{~dB}$ IMD margin to the expected power amplifier specification, and a harmonic suppression of 50 dB minimum below the fundamental is recommended (7).

The IMD measurements were done in accordance to the E.I.A. proposed standard, commonly employed in Ham Radio and other commercial equipment design. The distortion products are referenced to the peak power, and adjusting the tone peaks 6 dB below the 0 dB line on the spectrum analyzer screen (Figure 5) provides a direct reading on the scale.

The collector efficency under two tone test conditions is normally $15-20 \%$ lower than at CW. The load line has been optimized for the peak power (as well as possible in a broadband system with transformer impedance ratios of $4: 1,9: 1,16: 1,25: 1$, etc. available), which at SSB represents a smaller duty cycle, and the power output varies between zero and maximum. Typical figures are $40-45 \%$ and $55-65 \%$ respectively.

The stability and load mismatch susceptibility were tested at 15 and 30 MHz employing an LC network (2) to simulate high and low reactive loads at different phase angles. The maximum degree of load mismatch was controlled by placing high power $50.0 h m$ attenuators between the amplfiier output and variable LC network.

FIGURE 6 - Intermodulation Distortion versus Power Output

FIGURE 7 - IMD and Power Gain versus Frequency

FIGURE 8 - Input VSWR and Collector Efficiency versus Frequency

FIGURE 9 - Output Harmonic Contents (Odd Order) versus Frequency

A 2 dB attenuator limits the output VSWR to $4.5: 1,3 \mathrm{~dB}$ to $3.0: 1,6 \mathrm{~dB}$ to $1.8: 1$ etc., assuming that the simulator is capable of infinite VSWR at some phase angle. The attenuators for -1.0 dB or less were constructed of a length of RG-58A co-axial cable, which at 30 MHz has an attenuation of $3.0 \mathrm{~dB} / 100 \mathrm{ft}$. and at $15 \mathrm{MHz} 2.0 \mathrm{~dB} / 100 \mathrm{ft}$. Combinations of the cable and the resistive attenuators can be used to give various degrees of total attenuation.

The tests indicated the 100 W and 140 W amplifiers to be stable to $5: 1$ output VSWR at all phase angles, and the 180 W unit is stable to $9: 1$. All units passed a load mismatch test at full rated CW power at an output load mismatch of $30: 1$, which they were subjected to, until the heat sink temperature reached $60^{\circ} \mathrm{C}$. For this, the load mismatch simulator was motor driven with a 2 second cycle period.

Output Filtering

Depending on the application, harmonic suppression of -40 dB to -60 dB may be required. This is best accomplished with low-pass filters, which (to cover the entire range) should have cutoff frequencies e.g. 35 MHz , $25 \mathrm{MHz}, 15 \mathrm{MHz}, 10 \mathrm{MHz}, 5.5 \mathrm{MHz}$ and 2.5 MHz .

The theoretical aspect of low-pass filter design is well covered in the literature (8).

A simple Chebyshev type constant K, 2 pole filter (Figure 10) is sufficient for $40-45 \mathrm{~dB}$ output harmonic suppression.

FIGURE 10

The filter is actually a dual pi-network, with each pole introducing a -90° phase shift at the cutoff frequency, where L1, L2, C1 and C3 should have a reactance of NOTE: The use of these amplifiers is illegal for Class D Citizens band service.

50 Ohms, and C2 should be 25 Ohms. If C2 is shorted, the resonances of L1C1 and L2C3 can be checked with a grid-dip meter or similar instrument for their resonant frequencies.

The calculated attenuation for this filter is 6.0 dB per element/octave, or -45 dB for the 3rd harmonic. In practice, only -35 to -40 dB was measured, but this was due to the low Q values of the inductors (approximately 50). Air core inductors give excellent results, but toroids of magnetic materials such as Micrometals grade 6 are also suitable at frequencies below 10 MHz . Dipped mica capacitors can be used throughout.

If the filters are correctly designed and the component tolerances are 5% or better, the power loss will be less than 1.0 dB .

SUMMARY

The basic circuit layout (Figure 1) has been successfully adopted by several equipment manufacturers. Minor modifications may be necessary depending on the availability of specific components. For instance, the ceramic chip capacitors may vary in physical size between various brands, and recent experiments show that values $>0.001 \mu \mathrm{~F}$ can be substituted with unencapsulated polycarbonate stacked-foil capacitors. These capacitors are available from Siemens Corporation (type B32540) and other sources. Also T1 and T2 can be constructed from stacks of ferrite toroids with similar material characteristics. Toroids are normally stock items, and are available from most ferrite suppliers.

The above is primarily intended to give an example of the device performance in non-laboratory conditions, thus eliminating the adjustments from unit to unit.

REFERENCES:

1. Hejhall R.: Understanding Transistor Response Parameters, AN-139A Motorola Semiconductor Products Inc.
2. Granberg, H.: A Two Stage 1 kW Solid-State Linear Amplifier, AN- 758 Motorola Semiconductor Products, Inc..
3. Granberg, H.: Get 300 W PEP Linear Across 2 to 30 MHz From This Push-Pull Amplifier, EB-27A Motorola Semiconductor Products Inc.
4. Granberg, H.: Broadband Transformers and Power Combining Techniques for RF, AN- 749 Motorola Semiconductor Products Inc.
5. White, John: Thermal Design of Transistor Circuits, QST, April 1972, pp. 30-34.
6. Mounting Stripline-Opposed-Emitter (SOE) Transistors, AN-555 Motorola Semiconductor Products Inc..
7. Granberg, H.: Measuring the Intermodulation Distortion of Linear Amplifiers, EB-38 Motorola Semiconductor Products Inc..
8. Reference Data for Radio Engineers, ITT, Howard \& Sams Co., Inc.

The PCB layout below is a supplement to Figure 4 and may be used for generating printed circuit artwork.

LOW-DISTORTION 1.6 TO 30 MHz SSB DRIVER DESIGNS

Prepared by
Helge O. Granberg
RF Circuits Engineering

GENERAL CONSIDERATION

Two of the most important factors to be considered in broadband linear amplifier design are the distortion and the output harmonic rejection.

The major cause for intermodulation distortion is amplitude nonlinearity in the active element. The nonlinearity generates harmonics, and the fundamental odd-order products are defined as $2 \mathrm{f} 1-\mathrm{f} 2,2 \mathrm{f} 2-\mathrm{f} 1$, $3_{\mathrm{f} 2}-2 \mathrm{f} 2,3_{\mathrm{f} 2}-2_{\mathrm{f} 1}$, etc., when a two-tone test signal is used. These harmonics may not always appear in the amplifier output due to filtering and cancellation effects, but are generated within the active device. The amplitude and harmonic distortion cannot really be distinguished, except in a case of a cascaded system, where even-order products in each stage can produce odd-order products through mixing processes that fall in the fundamental region. ${ }^{2}$ This, combined with phase distortion -which in practical circuits is more apparent at higher frequenciescan make the distortion analysis extremely difficult; ${ }^{5,2}$ whereas, if only amplitude distortion was present, the effect of IMD in each stage could easily be calculated.

In order to expect a low harmonic output of the power amplifier, it is also important for the driving source to be harmonic-free. This is difficult in a four-octave bandwidth system, even at 10-20 watt power levels. Class A biasing helps the situation, and Class A push-pull yields even better results due to the automatic rejection of even harmonics.

Depending on the application, a full Class A system is not always feasible because of its low efficiency. The theoretical maximum is 50%, but practical figures are not higher than 25% to 35%. It is sometimes advantageous to select a bias point somewhere between Class AB and A which would give sufficiently good results, since filtering is required in the power amplifier output in most instances anyway.

In order to withstand the high level of steady dc bias current, Class A requires a much larger transistor die than Class B or $A B$ for a specific power output. There are sophisticated methods such as generating the bias voltage from rectified RF input power, making the dc bias proportional to the drive level. ${ }^{1}$ This also yields to a better efficiency.

$20 \mathrm{~W}, 25 \mathrm{~dB}$ AMPLIFIER
 WITH LOW-COST PLASTIC DEVICES

The amplifier described here provides a total power gain of about 25 dB , and the construction technique allows the use of inexpensive components throughout. The plastic RF power transistors, MRF475 and MRF476, featured in this amplifier, were initially developed for the CB market. The high manufacturing volume of these

TO-220 packaged parts makes them ideal for applications up to 50 MHz , where low cost is an important factor.

The MRF476 is specified as a 3 -watt device and the MRF475 has an output power of 12 watts. Both are extremely tolerant to overdrive and load mismatches, even under CW conditions. Typical IMD numbers are better than -35 dB , and power gains are 18 dB and 12 dB , respectively, at 30 MHz .

The collectors of the transistors are electrically connected to the TO-220 package mounting tab which must be isolated from the ground with proper mounting hardware (TO-220 AB) or by floating heat dissipators. The latter method, employing Thermalloy 6107 and 6106 heat dissipators, was adapted for this design. Without an airflow, the 6106 and 6107 provide sufficient heat sinking for about 30% duty cycle in the CW mode. Collector idle currents of 20 mA are recommended for both devices, but they were increased to 100 mA for the MRF475 and to 40 mA for the MRF476 to reduce the higher order IMD products and to achieve better harmonic suppression.

FIGURE 1

Biasing and Feedback

The biasing is achieved with the well-known clamping diode arrangement (Figure 2). Each stage has it own diode, resistor, and bypass network, and the diodes are mounted between the heat dissipators, being in physical contact with them for temperature-tracking purposes. A better thermal contact is achieved through the use of silicone grease in these junctions.

FIGURE 2*
${ }^{\bullet}$ Note: Communication Concepts, 121 Brown Street, Dayton, Ohio 45402 (513) 220-9677

The bias currents of each stage are individually adjustable with R5 and R6. Capacitors C4 and C10 function as audio-frequency bypasses to further reduce the source impedance at the frequencies of modulation.

This biasing arrangement is only practical in low and medium power amplifiers, since the minimum current required through the diode must exceed $\mathrm{I}_{\mathrm{C}} / \mathrm{h} \mathrm{fe}$.

Gain leveling across the band is achieved with simple RC networks in series with the bases, in conjunction with negative feedback. The amplitude of the out-of-phase voltages at the bases is inversely proportional to the frequency as a result of the series inductance in the feedback loop and the increasing input impedance of the transistors at low frequencies. Conversely, the negative feedback lowers the effective input impedance presented to the source (not the input impedance of the device itself) and with proper voltage slope would equalize it. With this technique, it is possible to maintain an input VSWR of $1.5: 1$ or less from 1.6 to 30 MHz .

Impedance Matching and Transformers

Matching of the input and output impedances to 50 ohms, as well as the interstage matching, is accomplished with broadband transformers (Figures 3 and 4).

Normally only impedance ratios such as 1:1, 4:1, 9:1, etc., are possible with this technique, where the lowimpedance winding consists of metal tubes, through which an appropriate number of turns of wire is threaded to form the high-impedance winding. To improve the broadband characteristics, the winding inductance is increased with magnetic material. An advantage of this design is its suitability for large-quantity manufacturing, but it is difficult to find low-loss ferrites with sufficiently high permeabilities for applications where the physical size must be kept small and impedance levels are relatively high. Problems were encountered especially with the output transformer design, where an inductance of $4 \mu \mathrm{H}$ minimum is required in the one-turn winding across the collectors, when the load impedance is

$$
\frac{2\left(V_{\text {CE }}-V_{\text {CEsat }}\right)^{2}}{P_{\text {out }}}=\frac{2(13.6-2.5)^{2}}{20}=12.3 \mathrm{ohms}^{4 ., 8}
$$

Ferrites having sufficiently low-loss factors at 30 MHz range only up to $800-1000$ in permeability and the inductance is limited to $2.5-3.0 \mu \mathrm{H}$ in the physical size required. This would also limit the operation to approximately 4 MHz , below which excessive harmonics are

FIGURE 4
should be lower than required for the optimum gain and efficiency. Considering that the device input impedance increases at lower frequencies, a better overall match is possible with a $4: 1$, especially since the negative feedback is limited to only 4 dB at 2 MHz due to its effect on the efficiency and linearity.

The maximum amount of feedback a circuit can tolerate depends much on the physical layout, the parasitic inductances, and impedance levels, since they determine the phase errors in the loop. Thus, in general, the high-level stages should operate with lower feedback than the low-level stages.

The maximum amount of feedback the low-level driver can tolerate without noticeable deterioration in IMD is about 12 dB . This makes the total 16 dB , but from the data sheets we find that the combined gain variation for both devices from 2 to 30 MHz is around 29 dB . The difference, or 13 dB , should be handled by the gainleveling networks.

The input impedance of the MRF476 is $7.55,-\mathrm{j} 0.65$ ohms at 30 MHz resulting in the base-to-base impedance of $2 \times \sqrt{\left(7.55^{2}+0.65^{2}\right)}=15.2$ ohms. This, in series with networks R1, C1 and R4, C3 (2×4.4 ohms), gives 24 ohms, and would require a $2: 1$ impedance ratio transformer for a 50 -ohm interface. However, due to the influence of strong negative feedback in this stage, a better overall matching is possible with $4: 1$ ratio. The input networks were designed in a manner similar to that described in Reference 8.

FIGURE 5

Component Layout Diagram of Low-Cost 20 W Amplifier

The leads of R7 and R12 form the one-turn feedback windings in T2 and T3. Ferrite beads in dc line can be seen located under T1 and T2.

Measurements and Performance Data

At a power output of 20 W CW , all output harmonics were measured about 30 dB or more below the fundamental, except for the third harmonic which was only attenuated 17 dB to 18 dB at frequencies below 5 MHz . Typical numbers for the higher order distortion products (d9 and d_{11}) are in the order o, -60 dB above 7 MHz and -50 dB to -55 dB at the lower frequencies. These both can be substantially reduced by increasing the idle currents, but larger heat sinks would be necessary to accommodate the increased dissipation.

The efficiency shown in Figure 6 represents the overall figure for both stages. Currents through the bias networks, which are $82 /(13.6-0.7)=0.16 \mathrm{~A}$ each, are excluded. Modified values for R5 and R6 may have to be selected, depending on the forward voltage characteristics of D1 and D2.

Although this amplifier was designed to serve as a 1.6 to 30 MHz broadband driver, it is suitable for the citizens band use as well. With some modifications and design shortcuts, the optimization can be concentrated to one frequency.

Intermodulation distortion and power gain versus frequency

FIGURE 7
Input VSWR and combined collector efficiency of both stages

FIGURE 8^{*}
*Note: perts \& kits for this amplifier are available from Communications Concepts, 121 Brown St., Dayton, Ohio 45402 (613) 220-9677

The output matching is done with a transformer similar to that described in the first part of this paper (Figures 4B, 4C). This transformer employs a multi-turn primary, which can be provided with a center tap for the collector dc feed. In addition to a higher primary inductance, more effective coupling between the two transformer halves is obtained, which is important regarding the even-order harmonic suppression.

28.Volt Version

A $28 . \mathrm{V}$ version of this unit has also been designed with the MHW592 and a pair of MRF401s. The only major change required is the output transformer, which should have a $1: 1$ impedance ratio in this case. The transformer consists of six turns of RG-196 coaxial cable wound on an Indiana General F-627-8-Q1 toroid. Each end of the braid is connected to the collectors, and the inner conductor forms the secondary. A connection is made in the center of the braid (three turns from each end) to form the center tap and dc feed.

The MRF433 and MRF401 have almost similar input characteristics, and no changes are necessary in the input
circuit, except for the series feedback resistors, which should be 68-82 ohms and 1 W .

In designing the gain-leveling networks, another approach can be taken, which does not involve the computer program described in Reference 8. Although the input VSWR is not optimized, it has proved to give satisfactory results.

The amount of negative feedback is difficult to determine, as it depends on the device type and size and the physical circuit layout. The operating voltage has a minimal effect on the transistor input characteristics, which are more determined by the electrical size of the die. High-power transistors have lower input impedances and higher capacitances, and phase errors are more likely to occur due to circuit inductances.

Since the input capacitance is an indication of electrical size of the device, we can take the paralleled value $\left(\mathrm{X}_{\mathrm{p}}\right)$ at 2 MHz , which is $\mathrm{X}_{\mathrm{s}}+\left(\mathrm{R}_{\mathrm{s}}{ }^{2} / \mathrm{X}_{\mathrm{s}}\right)$ and for MRF433 $3.5+\left(9.1^{2} / 3.5\right)=27$ ohms. The X_{p} of the largest devices available today is around 10 ohms at 30 MHz , and experience has shown that the maximum feedback should be limited to about 5 dB in such case. Using these figures
as constants, and assuming the GPE is at least 10 dB , we can estimate the amount of feedback as: $5 /\left(10^{2} / 27\right)+5=$ 6.35 dB , although only 4 dB was necessary in this design due to the low \triangle GPE of the devices.

The series base resistors (R4 and R5) can be calculated for 4 dB loss as follows:

$$
\begin{gathered}
\frac{\left[\left(\mathrm{V}_{\mathrm{in}} \times \Delta 4 \mathrm{~dB}\right)-\mathrm{V}_{\mathrm{in}}\right]}{\mathrm{I}_{\text {in }}}=\frac{[(0.79 \times 1.58)-0.79]}{0.04} \\
=11.45 \text { ohms, or }
\end{gathered}
$$

$11.45 / 2=5.72$ ohms each .
$\mathrm{Z}_{\text {in }}(2 \mathrm{MHz})=\sqrt{\left(9.1^{2}+3.5^{2}\right)}=9.75$ ohms, in Class AB push-pull 19.5 ohms.
$P_{\text {in }}=20 \mathrm{~W}-28 \mathrm{~dB}=20 / 630=0.032 \mathrm{~W}$
$\mathrm{V}_{\text {RMS }}$ (base to base) $=\sqrt{(0.032 \times 19.5)}=0.79 \mathrm{~V}$

$$
\mathrm{I}_{\mathrm{in}}=\mathrm{V}_{\mathrm{in}} / \mathrm{R}_{\mathrm{in}}=0.79 / 19.5=0.04 \mathrm{~A}
$$

$$
\Delta \mathrm{V} 4 \mathrm{~dB}=\sqrt{\left[\log ^{-1}(4 / 10)\right]}=1.58 \mathrm{~V}
$$

The parallel capacitors (C3 and C4) should be selected to resonate with R (5.7 ohms) somewhere in the midband. At 15 MHz , out of the standard values, 1800 pF appears to be the closest, having a negligible reactance at 2 MHz , and 28 ohms at 30 MHz , where most of the capacitive reactance is cancelled by the transformer winding inductance.

Measurements and Performance Data

The output harmonic contents of this amplifier are substantially lower than normally seen in a Class AB system operating at this power level and having a 4.5 octave bandwidth. All harmonics except the third are attenuated more than 30 dB across the band. Between 20 and $30 \mathrm{MHz},-40$ to -55 dB is typical. The third harmonic

FIGURE 10
Intermodulation Distortion and Power Gain versus Frequency (Upper Curves). Input VSWR and Collector Efficiency (excluding MHW591) (Lower Curves).

FIGURE 9
Component Layout Diagram of 20 W, 55 dB High-Performance Driver

The leads of D1 and D2 are bent to allow the diodes to contact the transistor mounting flanges.

Note that the mounting pad of Q1 must be connected to the lower side of the board through an eyelet or a plated through-hole.
has its highest amplitude (-20 to -22 dB), as can be expected, below 20 MHz . The measurements were done at an output level of 20 WCW and with 200 mA collector idle current per device. Increasing it to 400 mA improves these numbers by 3-4 dB, and also reduces the amplitudes of d5, d7, d9, and d_{11} by an average of 10 dB , but at the cost of $2-3 \mathrm{~dB}$ higher d_{3}.

FIGURE 11 - IMD versus Power Output

CONCLUSION

The stability of both designs (excluding the 28 V unit) was tested into reactive loads using a setup described in Reference 8. Both were found to be stable into 5:1 load mismatch up to $7 \mathrm{MHz}, 10: 1$ up to 30 MHz , except the latter design did not exhibit breakups even at $30: 1$ in the $\mathbf{2 0 - 3 0 ~ M H z}$ range. If the test is performed under twotone conditions, where the power output varies from zero to maximum at the rate of the frequency difference, it is easy to see at once if instabilities occur at any power level.

The two-tone source employed in all tests consists of a pair of crystal oscillators, separated by 1 kHz , at each test frequency. The IMD (d_{3}) is typically -60 dB and the harmonics -70 dB when one oscillator is disconnected for CW measurements.

HP435 power meters were used with Anzac CH-130-4 and CD.920.4 directional couplers and appropriate attenuators. Other instruments included HP141T analyzer system and Tektronix 7704A oscilloscope-spectrum analyzer combination.

REFERENCES

1. "Linearized Class B Transistor Amplifiers," IEEE Journal of Solid State Circuits, Vol. SC-11, No. 2, April, 1976.
2. Pappenfus, Bruene and Schoenike, "Single Sideband Principles and Circuits," McGraw-Hill.
3. Reference Data for Radio Engineers, ITT, Howard \& Sams Co., Inc.
4. H. Granberg, "Broadband Transformers and Power Combining Techniques for RF," AN.749, Motorola Semiconductor Products Inc.
5. H. Granberg, "Measuring the Intermodulation Distortion of Linear Amplifiers," EB-38, Motorola Semiconductor Products Inc.
6. K. Simons, Technical Handbook for CATV Systems, Third Edition, Jerrold Electronics Corp.
7. Data Sheets, Motorola MRF475, MRF476, MRF433, and MHW591
8. H. Granberg, "Two-Stage 1 KW Solid-State Linear Amplifier," AN-758, Motorola Semiconductor Products Inc.
9. Phillips,"Transistor Engineering," McGraw-Hill.

AN779

The PCB layouts below are a supplement to. Figures 5 and 9 and may be used for generating printed circuit artwork.
NOTE: The Printed Circuit Board shown is 75% of the original.

FIGURE 12 - PCB Layout of Low-Cost 20 W Amplifier

FIGURE 13 - PCB Layout of 20 W, 65 dB
High-Performance Driver

THERMAL RATING OF RF POWER TRANSISTORS

Prepared by:
Robert J. Johnsen

Abstract

Reliability is of primary concern to many users of transistors. The degree of reliability achieved is controlled by the device user because he determines the stress levels applied by his circuit and environmental conditions. This application note will permit the device user to estimate transistor reliability from the circuit designer's point of view, namely power dissipation and case temperature.

Introduction

The temperature-dependent thermal properties of silicon and beryllium oxide have been measured and documented by many laboratories during the last twenty years. Only in rare cases has this information been disseminated by semiconductor device manufacturers to the users. The purpose of this note is to clarify and correct some long-standing industry-wide assumptions which have been commonly maintained about thermal resistance and high temperature derating.

Most manufacturer's data sheets include a single thermal resistance number ($\mathrm{R}_{\theta \mathrm{JC}}$) and use this number to calculate a linear derating constant out to some specified maximum junction temperature. The number cited on the data sheet was probably measured in the $25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ range, and assumed constant over the whole range of temperatures up to the maximum specified junction temperature. How often have you calculated a junction temperature from a data sheet, as $\mathrm{TJ}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\theta_{\mathrm{JC}}\right) \mathrm{P}_{\mathrm{D}}$? Unfortunately, the thermal resistance of silicon increases by 80% from $25^{\circ} \mathrm{C}$ to $200^{\circ} \mathrm{C}$. The thermal resistance of BeO changes by 30%, if the case temperature goes from $25^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$. Knowledge of the basic physical properties of the materials and the methods used to calculate and measure thermal resistance will assist the device user in transistor selection and equipment design.

NOTE: ${ }^{\circ} \mathrm{K}={ }^{\circ} \mathrm{C}+273$.

Temperature-Dependent Thermal Properties

 Of Silicon and BerylliaThe temperature-dependent thermal conductivities of silicon and beryllium oxide are seen in Figures 1 through 3 and Table 1. The temperature ranges are somewhat wider than are necessary for typical transistor operation, but are shown to emphasize the wide variation in thermal conductivities. Fulkerson et al ${ }^{3}$ tabulate the values for thermal conductivity and resistivity of silicon from $100^{\circ} \mathrm{K}$ to $1350^{\circ} \mathrm{K}$ (see Table 1), and they find that the thermal resistivity of silicon as a function of temperature can be estimated by a linear approximation over the temperature range shown.

$$
\begin{align*}
& \left(400-660^{\circ} \mathrm{K}\right) \\
& 1 / \mathrm{k}=-0.1171+2.954 \times 10^{-3} \mathrm{~T}\left({ }^{\circ} \mathrm{K}\right) \tag{1}\\
& \left(600-1050^{\circ} \mathrm{K}\right) \\
& 1 / \mathrm{k}=-0.9609+4.229 \times 10^{-3} \mathrm{~T}\left({ }^{\circ} \mathrm{K}\right) \tag{2}
\end{align*}
$$

A similar least-square fit to Fulkerson's data over the range 200 to $700^{\circ} \mathrm{K}$, within 1%, is given by:

$$
\begin{align*}
& \left(200-700^{\circ} \mathrm{K}\right) \\
& 1 / \mathrm{k}=-0.2286+3.1683 \times 10^{-3} \mathrm{~T}\left({ }^{\circ} \mathrm{K}\right) \tag{3}
\end{align*}
$$

Similarly for beryllia, one can fit the data of Elston et al^{2} over the range of 200 to $800^{\circ} \mathrm{K}$, with equation (4).

$$
\begin{align*}
& \left(200-800^{\circ} \mathrm{K}\right) \\
& 1 / \mathrm{k}=1.943 \times 10^{-5} \mathrm{~T}\left({ }^{\circ} \mathrm{K}\right)^{1.7} \tag{4}
\end{align*}
$$

where k is the thermal conductivity in units of watts $/ \mathrm{cm}^{\circ} \mathrm{K}$.

TABLE 1 - Smoothed Data for Thormal Conductivity and Resistivity of Siticon (Ref. 3)

$\stackrel{T}{\left.{ }^{\circ} \mathrm{K}\right)}$	Smoothed ORNL Values	
	$\left(\mathrm{w} \mathrm{~cm}^{-1} \operatorname{dog}^{-1}\right)$	$\begin{gathered} W=1 / k \\ \left(\mathrm{cmdog} W^{-1}\right) \end{gathered}$
100	7.52	0.133
150	3.88	0.258
200	2.44	0.410
250	1.78	0.563
300	1.40	0.716
350	1.15	0.870
400	0.939	1.065
450	0.825	1.212
500	0.736	1.359
550	0.663	1.508
600	0.604	1.656
650	0.555	1.803
700	0.500	1.999
750	0.452	2.210
800	0.413	2.420
850	0.380	2.634
500	0.351	2.845
950	0.327	3.055
1000	0.306	3.268
1050	0.287	3.479
1100	0.273	3.65
1150	0.261	3.82
1200	0.251	3.97
1250	0.245	4.08
1300	0.241	4.14
1350	0.239	4.18

FIGURE 2 - Thermal Conductivity of BoO (Ref. 2)
FIGURE 1 - Temperature Dependent Thermal Conductivity of Silicon (Rof. 1)

FIGURE 3 - Thermal Conductivity

Geometric Factors and Thermal Resistance Calculation

The thermal resistance of most silicon RF transistors is controlled by the bulk properties of silicon and beryllium oxide, geometry of the heat generating (base) areas, and the temperature of the heat sink (case). The interfaces generally are well behaved and contribute little to the overall total thermal resistance if the device, die and package elements are assembled and handled properly.

Die temperature calculations are performed in two steps. The first uses the method of Linsted and Surtey ${ }^{4}$ to calculate the temperature distribution of a die by using a double Fourier series solution to Laplace's equation. Figure 4 shows the device geometry and some of the boundary conditions. Equation (5) will calculate the temperature rise at any (x, y, z) point in the die, where A, B, C, D, F are die and heat-generating area boundaries. Q is the heat input in watts, and k is the thermal conductivity of the material in watts $/ \mathrm{cm}^{0} \mathrm{~K}$ (Linsted's equation).
resistivity. The calculated thermal resistance of the beryllia piece (from the previous section) is mathematically divided into fifty layers, each with $1 / 50$ of the total BeO thermal resistance. The first layer at the bottom is assumed to have its temperature at the heat-sink ambient with its thermal resistance value corrected to the proper temperature using the equations for the temperaturedependent resistivity. The power flux through the first layer then leads to its temperature rise, and this new temperature determines the thermal resistivity value for the second layer. Its temperature rise is calculated, and so on, until the result for the top surface of the fiftieth layer gives the temperature rise above the ambient for the beryllia piece.

The same method is used for the silicon die, using the beryllia top surface temperature as the starting point, and correcting the thermal resistance of each of fifty layers based upon the temperature of the layer directly

$$
\begin{align*}
T= & -\frac{Q}{K}\left(\frac{C D}{A B}\right)(z-F) \\
& +\sum_{m=1}^{\infty}\left(-\frac{Q}{K}\right)\left(\frac{2 B C}{m^{2} \pi^{2} A}\right) e^{m \pi z / B}\left(\frac{1-\exp [2 m \pi(F-z) / B]}{1+\exp (2 m \pi F / B)}\right)\left[\sin \left(\frac{m \pi D}{B}\right) \cos \left(\frac{m \pi y}{B}\right)\right] \\
& +\sum_{n=1}^{\infty}\left(-\frac{Q}{K}\right)\left(\frac{2 A D}{n^{2} \pi^{2} B}\right) e^{n \pi z / A}\left(\frac{1-\exp [2 n \pi(F-z) / A]}{1+\exp (2 n \pi F / A)}\right)\left[\sin \left(\frac{n \pi C}{A}\right) \cos \left(\frac{n \pi x}{A}\right)\right] \tag{5}\\
& +\sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left(-\frac{Q}{K}\right)\left(\frac{4}{\pi^{2} m n \gamma}\right)\left(\frac{1-\exp [2 \gamma(F-z)]}{1+\exp (2 \gamma F)}\right) \\
& \cdot e^{\gamma z} \sin \left(\frac{n \pi C}{A}\right) \sin \left(\frac{m \pi D}{B}\right) \cos \left(\frac{n \pi x}{A}\right) \cos \left(\frac{m \pi y}{B}\right)
\end{align*}
$$

where

$$
\gamma^{2}=\pi^{2}\left[\left(\frac{n}{A}\right)^{2}+\left(\frac{m}{B}\right)^{2}\right]
$$

The Fourier series solutions are amenable to computer calculation and converge adequately within ten to twenty terms. Figure 5 shows the treatment of multiple base cell transistors. Lines of symmetry between adjacent base cells are considered to be adiabatic die boundaries as assumed by Lindsted. The power dissipated is assumed to be equally shared among the several base cells. The result of this calculation is the temperature rise of the silicon chip, assuming a constant thermal resistance for bulk silicon. The same model is used to calculate the temperature rise for the beryllia piece, using the silicon die area as the power dissipating area for the beryllia, again assuming the thermal resistance of the beryllia as a constant. The thermal resistances of the silicon die and the beryllia substrate are in series, so adding the above numbers gives a value for the thermal resistance of the device at a particular temperature and a power level low enough to avoid the effects of the temperature variations of the respective thermal resistances.

The second step in the thermal resistance calculation takes into account the temperature-dependent thermal
beneath it, until the top surface of the silicon die result gives the calculated die temperature for that particular case of ambient temperature and power dissipation. The results of these calculations indicate that the thermal resistance of a given device is not a constant number, but is a function of the dissipated power and the ambient (case) temperature. Another result is that the junction temperature of a device dissipating power will rise more than $1^{\circ} \mathrm{C}$ for a $1^{\circ} \mathrm{C}$ rise in ambient temperature, because of the increase in thermal resistance. Figures 6 through 9 show the calculated thermal resistance and die temperature for several different devices as a function of ambient temperature and power dissipation.

FIGURE 5 - Array of Base Areas in a Silicon Die

FIGURE 6 - Junction Temperature and Thermal Resistance as a Function of Power Dissipated, Flange (Heat Sink) Temperature

FIGURE 8 - Junction Temperature and Thermal Resistance as a Function of Power Dissipated, Flange (Heat Sink) Temperature

FIGURE 7 - Junction Temperature and Thermal Resistance as a Function of Power Dissipated, Flange (Heat Sink) Temperature

FIGURE 9 - Junction Temperature and Thermal Resistance as a Function of Power Dissipated, Flange (Heat Sink) Temperature

Experimental Verification

Of Calculated Die Temperature

Actual temperature measurements are made with an infrared microscope, Barnes Eng. Co. Model RM2A. This instrument uses an indium antimonide diode photodetector at liquid nitrogen temperatures to measure the infrared radiance emitted from a 1.5 mil spot on the surface being examined. The IR radiance versus temperature curve is calibrated by measuring the radiance at various known temperatures monitored by a calibrated thermocouple while the device is heated by external means. An experimental calibration is necessary because the radiance output of the device at a given temperature is a function of the average emissivity in the area seen by the microscope, and this average emissivity is a function of the geometry and processing history of the device in question. The effective emissivity depends upon the relative amounts of metal and silicon and the infrared transparency of the varying thicknesses of SiO_{2} glass in the field of view. The calibration data of radiance versus temperature can be least-squares curve fit to an equation of the form $T=(A)(R)^{b}$, where A and b are the fitted constants, and R the measured radiance.

The device is then powered up in its circuit, and the radiance data collected point-by-point around the surface of the silicon die. A computer program inputs the array of radiance data, calculates the actual temperature from the calibration equation, and prints a map of the temperature profile, as well as some statistical information about the temperature distribution.

FIGURE 10 - Actual vs Caiculated Die Temperatures

Figures 10 through 12 are plots showing the correlation of measured to calculated temperature for several geometries, under various conditions of flange temperature $\left(30^{\circ} \mathrm{C}\right.$ to $\left.150^{\circ} \mathrm{C}\right)$, supply voltage, drive power, and

FIGURE 11 - Actual vs Catculated Die Temperatures

FIGURE 12 - Actual vs Catculated Die Temperatures

output load magnitude and phase angles from 50Ω to over 30:1 VSWR. The calculated temepratures seem to be somewhat higher than measured at the higher power levels. The calculated temperatures are based on the calculated power dissipation, disregarding RF losses in the actual loads and circuits.

Metal Migration and Mean Time to Failure

The calculated/observed temperature agreements are seen to be close enough so that the calculated temperature can be used as the basis for reliability calculations of Mean Time Before Failure (MTBF) for metal migration based upon Black's 5 work.

$$
\begin{equation*}
\text { MTBF }=\frac{(\text { cross section })^{3}}{\mathrm{I}^{2} \cdot \mathrm{f}\left(\mathrm{~T}^{0}\right)} \tag{6}
\end{equation*}
$$

Equation (6) is the equation used for calculating metal migration lifetime, where the cross section refers to the conducting stripe dimensions in cm^{2}, and I is the current in the stripe in amps. $f\left(\mathrm{~T}^{0}\right)$ is an Arrhenius function of the stripe material, having the form:

$$
\begin{equation*}
f\left(\mathrm{~T}^{0}\right)=\mathrm{B} \exp (-\phi / K T) \tag{7}
\end{equation*}
$$

The material dependent parameters B and ϕ are shown in Table 2. K is Boltzman's constant, and T is in degrees Kelvin. A series of graphs (Figures 13 through 16) have been constructed, one for each device, that present the results of the calculations of device temperature and

MTBF as a function of power and ambient temperature.
The temperature lines are valid for any combination of supply voltage, efficiency and drive power, by reading the power axis as power dissipated. The MTBF lines, because of the current dependence, have been constructed based upon the assumptions of 12.5 -volt supply and 50% efficiency, so that the power axis should be interpreted as output power. It is possible to use the MTBF set of lines at other conditions. Enter the graphs by reading the power output parameter as power dissipated, and find the MTBF, then scale the MTBF by the ratio square of the $\eta=50 \%$ current to the actual current.

$$
\begin{equation*}
M T B F=M T B F(\text { from graph }) \times\left(\frac{1 @ \eta=50 \%}{1 \text { actual }}\right)^{2} \tag{8}
\end{equation*}
$$

TABLE 2 - Material Dependent Parameters

Material	B	ϕ
Large Crystal Glassed Al (Ref. 5)	8.5×10^{-10}	1.2
Al-2\% Cu Alloy (Ref. 6)	7.9×10^{-17}	0.6

figure 15 - Motal Migration - MTBF

FIGURE 16 - Motal Migration - MTBF

FIGURE 17 - Geometry Code to Standard Part Cross-Reference

Geometry Code	12.5	28		50	$V_{\text {ce }}(\mathrm{V})$
	Al	Al	Au	Al	Metal
1KF	MRF421	MRF422		MRF428A	
5NN	MRF243 MRF4S3/A MRF455/A MRF460		MRF316		
9NL	MRF245 MRF454/A	$\begin{gathered} \text { MRF463 } \\ \text { MRF464/A } \end{gathered}$	MRF317		
6TH	MRF648		MRF327 MRF328		

To Scale Metal Migration MTBF
From 12.5 V to Other Operating Voltages
Keeping P_{D} and η constant, then the current for 28 V operation compared with that for 12.5 V operation is given by:

$$
\begin{aligned}
& \mathrm{I}_{12.5} \times 12.5=\mathrm{I}_{28} \times 28 \\
& \frac{\mathrm{I}_{12.5}}{\mathrm{I}_{28}}=\frac{28}{12.5}
\end{aligned}
$$

From Black's ${ }^{5}$ equation:

$$
\operatorname{MTBF} \propto \frac{1}{1^{2}}
$$

For like geometries, the ratio of the MTBF at 28 V to the MTBF at 12.5 V is:

$$
\begin{aligned}
& \text { MTBF }_{28}=\mathrm{MTBF}_{12.5} \times \frac{28}{12.5} 2 \\
& \mathrm{MTBF}_{28}=\mathrm{MTBF}_{12.5} \times 5.02
\end{aligned}
$$

Similarly, for 50 V operation:

$$
\mathrm{MTBF}_{50}=\mathrm{MTBF}_{12.5} \times 16
$$

Conclusion

We have discussed the elements of thermal resistance and metal migration lifetime with particular attention paid to their variation with temperature as functions of power dissipation and ambient temperature.

Graphical presentations of the results are included which should be useful to the device user who is interested in better reliability in his application.

References

1. G. A. Slack, Journal of Applied Physics, 35, 3462, 1964.
2. J. Elston, J. DeGoer, and Z. Mihailovic, J. Nucl., Mater., 11, 333, 334, 1964.
3. Fulkerson, Moore, Williams, Graves, and McElroy, Phys. Rev., 167, 768-780.
4. Linsted and Surtey, IEEE Transactions on Electron Devices, ED-19, 42, 1972.
5. Black, Proc. IEEE, 57, 1587, 1969.
6. Hall, ECOM, DAAB07-70C 0164, October 1971.

A SIMPLIFIED APPROACH TO VHF POWER AMPLIFIER DESIGN

Prepared by
Helge O. Granberg
RF Circuits Engineering

This note discusses the design of $35-\mathrm{W}$ and $75-\mathrm{W}$ VHF linear amplifiers. The construction technique features printed inductors, the design theory of which is fully described. Complete constructional details, including a printed circuit layout, facilitate easy reproduction of the amplifiers.

Solid-state VHF amplifier design can be simplified by employing printed or etched lines for impedance matching. The lines, having a distant ground-plane reference and high Z_{0}, can be treated as lumped constant inductors, and make design and duplication easier than with wire-wound inductors.

An example is an optimized $35-\mathrm{W}$ amplifier which yields over 10 dB of power gain across the 2 -meter amateur band. It employs an inexpensive, non-internally matched transistor, the MRF240, which has good linear
characteristics for SSB operation.
A higher power version with the same board layout is concentrated around the MRF247, although this results in some compromise in the impedance matching.

A carrier operated T / R switch (COR) is incorporated, allowing applications such as a booster amplifier for hand-held and mobile radios.

Both designs are biased class $A B$ for linear operation, but are suitable for FM operation as well. Figure 1 shows the two amplifiers.

GENERAL

VHF solid state amplifier design is almost exclusively done with lumped constant LC matching networks. Broadband transformer matching is feasible when extremely wide bandwidths are required. Transmission lines for impedance transformation usually require quarterwave electrical lengths and make designs bulky at VHF unless materials with high dielectric constant are used. Transmission lines can be realized with coaxial cable or printed lines (strip-lines) on a circuit board with a continuous ground plane, separated by a suitable dielectric material. The printed airlines discussed here are, in fact, high characteristic impedance transmission lines which, for the purposes of design calculation, are treated as inductors; therefore the quality of the board material is less critical. The printed airlines also have the advantage of repeatability and easy access for designing multielement networks. The network calculations can be done in the same manner as if lumped-constant, round-wire inductors were used.

Input and output impedance matching in transistor amplifiers is required to transform the source impedance (usually 50 ohms) to the low complex input impedance of the device. The output load impedance, which is a function of the supply voltage and power level, must also be matched to a $\mathbf{5 0} 0 \mathrm{ohm}$ load except in multistage driver designs.

At VHF, the input and output impedances of a power transistor are both usually inductive in reactance (desig. nated as +JX in data sheets), becoming capacitive (-JX) at lower frequencies. For transistors such as MRF240, 2N6084 and 2N5591, the crossover point is around 100 MHz . This is determined by the transistor die size, geometry and package type, and smaller devices can be capacitive up to UHF frequencies.

Since the bandwidth required here is only a fraction of an octave, $(140-150 \mathrm{MHz})$ the impedance matching can be adequately done with two section networks. In Figure 2, X_{1}, which represents the +J input of the MRF240 transistor is not part of the external input matching network. C_{1} and C_{6} are dc blocking capacitors with measured parasitic inductances of close to 12 nH at the center frequency when the lead lengths are 0.1 inch.

These inductances, as well as the relay inductance, are added to the values of L_{1} and L_{5}.

If the relay were used in a $50-\mathrm{ohm}$ system, it would result in 0.3 dB power loss due to impedance mismatch and losses. This can be minimized if the relay inductance is used as part of a resonant circuit, but the series inductance (37 nH per contact pair) obviously places an upper frequency limit.

The simplest approach to matching network design is with a purely resistive source and load. This can be accomplished by compensating the +J with an equal amount of capacitance (-J). C_{3} and C_{4} are used to accomplish the compensation in Figure 2. This is not always practical, however, especially when maximum bandwidths are required. In this case, only part of the inductive component may be cancelled, leaving the base and collector still inductively reactive. In either case, it may be considered that part of the impedance-matching occurs within the device package itself; this is more obvious with internally matched devices, which are discussed later.

35-W LINEAR AMPLIFIER

The MRF240 was chosen for this application due to its ruggedness against load mismatch and inherently high power gain for a non-internally matched device. The transistor is rated for an output power of 40 W and a power gain of 8 dB at 175 MHz . A typical power gain at 145 MHz is 10 to 11 dB . At this frequency the input and output impedances of the MRF240 are $0.6+\mathrm{J} 0.8$ ohms and $2.0+\mathrm{J} 0.1$ ohms respectively ($\mathrm{P}_{\text {out }}=35 \mathrm{~W}$).

Before designing the matching networks, the values of C_{3} and C_{4} must be established to cancel the inductive reactance components at the base and the collector. For the input, the series numbers $0.6+\mathrm{J} 0.8$ must be converted to parallel equivalent values, either by using a Smith chart or equations in references 3 and 4. The resulting equivalent values are: $R_{P}=1.67 \mathrm{ohms}, X_{P}=1.25$ ohms or 880 pF .

All capacitors have a series inductive reactance component, normally called parasitic inductance. It could be only a fraction of a microhenry, but at VHF its effect is large enough to be taken into consideration. The para-

FIGURE 2 - Impedance Matching Network for 35 watt VHF Amplifier

sitic inductance results in an increased effective value of capacitance, and is frequency and impedance-level dependent.

The unencapsulated mica capacitors, widely used in VHF power applications, range from 1 to 2 nH in parasitic inductance for a single plate type, (up to 360 to 390 pF nominal values) depending on the mounting technique. Assuming a parasitic inductance of 1.5 nH , the equivalent low-frequency value can be calculated with Equation 1 as:

$$
\begin{equation*}
C_{\text {Equiv }}=\frac{C}{1+\left[(2 \pi I)^{2} \mathrm{LC}\right] 10^{\circ 9}} \tag{1}
\end{equation*}
$$

where $\mathrm{C}=$ effective capacitance required in pF
$\mathrm{L}=$ parasitic inductance in nH
$\mathrm{f}=$ frequency in MHz
Substituting the values in equation (1):
$\mathrm{C}_{\text {Equiv }}=\frac{880}{1+\left[(910)^{2} \times 1.5 \times 880\right] 10^{-9}}=420 \mathrm{pF}$
Thus, for the required 880 pF , a capacitor of this type with equivalent low-frequency value of 420 pF , or the closest standard (390 pF), should be used.

Similarly, converting the output impedance ($2.0+\mathrm{J}$ 0.1 ohms) to parallel form, $R_{P}=2.01$ ohms and $X_{P}=$ +J 26.8 ohms. The X_{C} represents a capacitance value of 47 pF for C_{4} (from Equation 2), or a 43 pF nominal value.
$C=\left(\frac{1}{\frac{X_{C}}{2 \pi f}}\right)^{10^{6}}$
where $\begin{aligned} \mathrm{X}_{\mathrm{C}} & =\text { capacitive reactance in ohms } \\ \mathrm{C} & =\text { capacitance in } \mathrm{pF} \\ \mathrm{f} & =\text { frequency in } \mathrm{MHz}\end{aligned}$
This high reactance in parallel with the low collector impedance had no noticeable effect and was completely omitted in later functional tests of the unit. It would be easy to see from a Smith chart that the resistive components of 1.67 ohms and 2.01 ohms remain unchanged, and can be treated as a purely resistive load and source for the matching network calculations.

At high frequencies the base-emitter impedance of the transistor die itself is always lower than the collector output impedance. With power devices, both can be only a fraction of an ohm. The input impedance is increased by the base and emitter bonding wire and package lead frame inductances, which are effectively in series with the transistor base (Figure $2, \mathrm{X}_{1}$ and X_{2}). The collector has normally much less series inductance since it is attached directly to the package bonding pad.

From this it can be seen that part of the matching network is actually built into the transistor package, and
it is obvious that the amplifier bandwidth cannot be accurately determined by calculating the Q values of the external matching networks. (See the discussion of a 75-W linear amplifier.)

As an approximation, the 3 dB bandwidth can be used to obtain a starting point. Assuming a 15 MHz bandwidth at $\pm 1.5 \mathrm{~dB}$ is desired at 145 MHz center frequency, a loaded \mathbf{Q} of approximately 9 is required. For simplicity this number is applied to both input and output network design.

In Figure 2, X_{1} and X_{2} represent the inductive impedance component of the transistor and are shown only to give an idea of the transistor internal structure. The values of L_{1}, L_{2} and C_{2} can be obtained from the Appendix, or calculated by using Equation 3:

$$
\begin{align*}
& X_{1}=R_{S} B \\
& X_{L_{2}}=R_{L} Q \\
& X C_{2}=\frac{A}{Q+B} \tag{3}\\
& A=R_{L}\left(1+Q^{2}\right) \\
& B=\sqrt{\frac{A}{R_{S}}-1}
\end{align*}
$$

where $\quad R_{S}=$ source impedance

$$
\mathrm{R}_{\mathrm{L}}=\text { load impedance }
$$

For $\mathrm{Q}=9$:

$$
\begin{aligned}
& \mathrm{XL}_{1}=\mathrm{R}_{\mathrm{S}} \mathrm{~B}=50 \times 1.32=66 \mathrm{ohms} \\
& \mathrm{XL}_{2}=\mathrm{R}_{\mathrm{L}} \mathrm{Q}=1.67 \times 9=15 \mathrm{ohms} \\
& \mathrm{XC}_{2}=\frac{\mathrm{A}}{\mathrm{Q}+\mathrm{B}}=\frac{137}{9+1.32}=13.3 \mathrm{ohms} \\
& \mathrm{~A}=1.67\left(1+9^{2}\right)=137 \\
& \mathrm{~B}=\sqrt{\frac{\mathrm{A}}{50-1}}=1.32
\end{aligned}
$$

where $R_{S}=50$ ohms, $R_{L}=1.67$ ohms
Since

$$
\begin{equation*}
\mathrm{L}=\left(\frac{\mathrm{XL}}{2 \pi \mathrm{f}}\right)^{10^{3}} \tag{4}
\end{equation*}
$$

where $\mathrm{XL}=$ inductive reactance in ohms
$\mathrm{L}=$ inductance in nH

$$
\mathrm{f}=\text { frequency in } \mathrm{MHz}
$$

we have from Equations 3 and 4:

$$
\begin{aligned}
& \mathrm{L}_{1}=73 \mathrm{nH} \\
& \mathrm{~L}_{2}=16 \mathrm{nH} \\
& \mathrm{C}_{2}=82 \mathrm{pF}
\end{aligned}
$$

Subtracting the relay inductance (37 nH) and the parasitic inductance of the blocking capacitor $\mathrm{C}_{1}(12 \mathrm{nH})$ from the total value of $\mathrm{L}_{1}, \mathrm{~L}_{1}{ }^{\prime}=24 \mathrm{nH}$. This means the total printed line inductance must be $\mathrm{L}_{1}{ }^{\prime}+\mathrm{L}_{2}=24+16$ $=40 \mathrm{nH}$.

Calculating the values of the output network in a similar manner, the values for $\mathrm{L}_{4}, \mathrm{~L}_{5}$ and C_{5} are obtained as $20 \mathrm{nH}, 83 \mathrm{nH}$ and 70 pF , respectively, and $\mathrm{L}_{5}{ }^{\prime}$ becomes 34 nH .

The capacitors employed for C_{2} and C_{5} are of the same unencapsulated mica type as C_{3}, but smaller in size, and their parasitic inductance is only about 1 nH . The equivalent values for C_{2} and C_{5} would then be 77 pF and 66 pF according to Equation 1. These are nonstandard values, and considering a 5% tolerance, a 68 pF marked value can be used for both.

Inductors $\mathrm{L}_{1}, \mathrm{~L}_{2}, \mathrm{~L}_{4}$ and L_{5} are comprised of etched lines on the circuit board. To determine their widths and lengths, the inductance of each line per unit length must be established. From the tables in the Reference section, it can be extrapolated that the inductance of \#25 round wire is 24 nH per inch and \#26 wire nearly 26 nH per inch. When a ground plane is 0.15 inch below, which in this case is the heat sink, and the side grounds are off an equal distance, the inductance is about onehalf of this, which has been verified by measurement.

If the circuit board is made of 1 -ounce, copper-clad material, (one ounce of copper per one square foot) the copper thickness is 1.4 mils. With a one mil solder plating, the total thickness is 2.4 mils, and a $100-\mathrm{mil}$-wide strip would be equivalent to a \#26 round wire having a 240 square mil cross sectional area. Similarly, a 130 -milwide strip would be equivalent to a \#25 round wire with 312 square mil area. A wider line would have lower losses but would also be physically longer for a given inductance. As a compromise, a narrow line was used for the input in this design, and a wider line for the output, where the losses due to the high RF currents are more evident. Bends in the line have a minimal effect to the inductance compared to the presence of the ground plane.

From the above, the resulting inductances for the 100 mil and 130 mil lines are 13 nH per inch and 12 nH
per inch, respectively. This means that for $L_{1}+L_{2}$ a total length of 3.1 inches is required, and 4.4 inches for $\mathrm{L}_{4}+\mathrm{L}_{5}{ }^{\prime}$. Then, for $\mathrm{L}_{2}=16 \mathrm{nH}, \mathrm{C}_{2}$ should be located 1.3 inches from the transistor base along the input line. For $\mathrm{L}_{4}=20 \mathrm{nH}, \mathrm{C}_{5}$ should be 1.6 inches from the collector along the output line. The Power Output and Efficiency vs. Power Input of the $35 . \mathrm{W}$ amplifier is shown in Figure 3.

FIGURE 3 - Power Input vs. Power Output and Cotlector Efficiency of 35-W Amplifier

75-W LINEAR AMPLIFIER

The MRF247 employed in this design is a version of the well-known MRF245, which has been reprocessed to improve the linear characteristics. It is a much larger device than the MRF240, resulting in lower input and output impedances. However, it employs internal base matching with a built-in MOS capacitor to bring the base impedance up to a level where external low loss matching networks can be realized.

In Figure 4 the dashed line encircles the specially designed T matching network, including the metal oxide capacitor $\mathrm{X}_{4}, \mathrm{X}_{1}, \mathrm{X}_{2}$, and X_{3} represent the bonding wires whose inductances can be varied by controlling the loop heights. This network will be part of the total matching network designed to match the transistor to function in a practical circuit.

FIGURE 4 - 75-Watt Amplifier Impedance Matching Natwork

The internal matching still leaves the input impedance inductively reactive.

The MRF247 input impedance under forward biased conditions (100 mA) is $0.45+\mathrm{J} 0.85$ ohms at 145 MHz , which translates to $2.06+\mathrm{J} 1.08$ ohms in parallel form. A capacitive reactance of -J 1.08 ohms, converting to 1018 pF is required for C_{3}. The nominal value equivalent value, using Equation 1, is obtained as 450 pF .

Since the remaining resistive component of the base impedance (2.06 ohms) is only slightly higher than that of the MRF240, only minor changes in the input matching network are necessary. When $L_{1}+L_{2}$ is fixed, and only their ratio can be varied, the resulting Q will be lower for the increased R_{L}. If only $L_{1}+L_{2}$ is known, the Q can be calculated with Equation 5 as:
$\mathrm{Q}=\frac{\left[4 \mathrm{X}_{\mathrm{T}}{ }^{2}+\left(\mathrm{R}_{\mathrm{S}}^{2} / \mathrm{R}_{\mathrm{L}}+\mathrm{X}_{\mathrm{T}}^{2} / \mathrm{R}_{\mathrm{L}}-\mathrm{R}_{\mathrm{S}}\right) 4\left(\mathrm{R}_{\mathrm{S}}-\mathrm{R}_{\mathrm{L}}\right]^{1 / 2}-2 \mathrm{X}_{\mathrm{T}}\right.}{2\left(\mathrm{R}_{\mathrm{S}}-\mathrm{R}_{\mathrm{L}}\right)}$
where
$X_{T}=X L_{1}+X L_{2}$ or $X L_{4}+X L_{5}$
$\mathrm{R}_{\mathrm{S}}=$ source impedance
$\mathrm{R}_{\mathrm{L}}=$ load impedance
Reverse for output network calculations

Therefore,
$\mathrm{Q}=\frac{\sqrt{[26244+(1214+3185-50)(192)]-162}}{95.88}$
$\mathrm{Q}=\frac{928-162}{95.88}=7.99$
$Q=8$
where
$\begin{aligned} \mathrm{X}_{\mathrm{T}}=\mathrm{XL}_{1}+\mathrm{XL}_{2} & =81 \text { ohms } \\ \mathrm{RS} & =50 \text { ohms } \\ \mathrm{RL} & =2.06 \text { ohms }\end{aligned}$

Then, with Equations 1,2,3 and 4, the values for L_{1}, L_{2} and C_{2} can be calculated as: $\mathrm{L}_{1}=71 \mathrm{nH}, \mathrm{L}_{2}=18 \mathrm{nH}$, $\mathrm{C}_{2}=63 \mathrm{pF}$ (56 pF nearest standard $)$. The position of C_{2} will be approximately 1.6 inches from the transistor base. (See line inductance calculations in the discussion for the 35 -watt amplifier.)

The measured output impedance of MRF247 is 0.65 +J 0.45 ohms, which is much lower and more reactive than the values shown for MRF240. The output matching must also be done with the existing total line inductance, $\left(\mathrm{L}_{4}+\mathrm{L}_{5}\right)$ and it can be expected that a higher factor of compromise in the output matching is evident regarding the network bandwidth.

The above impedance numbers convert to 0.96 ohms resistive and -J 1.39 ohms reactive in parallel form. Since -J 1.39 ohms $=790 \mathrm{pF}$, a nominal value of $400 \mathrm{pF}\left(\mathrm{C}_{4}\right)$ is required at the collector. To find the Q :

$$
\begin{aligned}
& \mathrm{X}_{\mathrm{T}}=94 \text { ohms }\left(\mathrm{XL}_{4}+\mathrm{XL}_{5}\right) \\
& \mathrm{R}_{\mathrm{S}}=0.96 \text { ohms } \\
& \mathrm{R}_{\mathrm{L}}=50 \text { ohms }
\end{aligned}
$$

Then:

$$
\begin{aligned}
\mathrm{Q} & =13.7(\text { Eq. } 5), \text { and: } \\
\mathrm{L}_{4} & =13 \text { ohms }=14 \mathrm{nH} \\
\mathrm{~L}_{5} & =81 \text { ohms }=89 \mathrm{nH} \\
\mathrm{C}_{5} & =11.8 \text { ohms }=93 \mathrm{pF}
\end{aligned}
$$

A practical value of $82-91 \mathrm{pF}$ can be used for C_{5}, and it should be located 1.1 inches along the output line from the collector, to give the above inductance values for L_{4} and L_{5}.

Although the output Q is higher than the value calculated earlier for the 40 W unit, the total bandwidth of this version is increased as shown in Figure 7. The input matching network is usually dominant in determining the total bandwidth since the impedance transformation required is greater than the output requires, although the output circuit also has secondary effect. The internal matching elements of the device further make the total
effective \mathbf{Q} even lower than the calculated value, which in this case was 8 . The higher output Q usualiy results in higher collector efficiency and better harmonic suppression, but at the same time the circulating RF currents will increase, resulting in higher overall circuit losses which is especially noticeable at increased power levels. These factors are difficult to determine without knowing all the internal transistor parameters.

FIGURE 5 - Power Input vs. Power Output and Collector Efficiency of 75-W Amplifior

CLASS AB BIASING AND OTHER CONSIDERATIONS

The biasing system, as seen in Figure 6, uses a forward
biased transistor, Q_{2}, to provide a voltage source of 0.6 to 0.7 volts. When the collector is connected to the base, a second current path is formed, decreasing the base current according to the h_{FE}, and thus lowering the voltage drop across the base-emitter junction. In this manner the voltage drop can be adjusted by selecting the appropriate $h_{F E}$ for Q_{2}. For the 2 N 5190 series h_{FE} is typically in the range of $80-100$, although the minimum spec is 20-25.

Typical hFE's for the MRF240 and MRF247 are $50-60$, and the worst case collector currents around 4A and 9 A respectively. The minimum base currents required, $\mathrm{I}_{\mathrm{E}}\left(\mathrm{Q}_{2}\right)$ are 80 mA and $180 \mathrm{~mA}\left(\mathrm{I}_{\mathrm{C}} / \mathrm{h}_{\mathrm{FE}}\right)$.
$\mathrm{R}_{2}=\frac{\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{BE}}\left(\mathrm{Q}_{2}\right)}{\mathrm{I}_{\mathrm{E}}\left(\mathrm{Q}_{2}\right)}=160$ ohms and 75 ohms.
The bias, which should not exceed 50 mA for MRF240 and 150 mA for MRF247, can be further adjusted by varying the value of R_{2}, but the minimum $I_{E}\left(Q_{2}\right)$ should be maintained.

It should be noted that since Q_{2} is attached to the heat sink for temperature tracking purposes, its collector must be electrically isolated from the ground. The anodized surface of the heat sink is normally sufficient, or a separate insulating washer can be employed.

The 0.3 dB relay insertion loss mentioned earlier amounts to a VSWR of 1.7:1. However, the reflected power is only 0.2% (VSWR $=1.1: 1$) in a straight-through mode (receive), indicating that most of the relay losses are due to contact resistance and the dielectric insula-

Figure 6

tion resistance, rather than impedance mismatch.
Both amplifier designs may be employed in FM applications without modification. The bias networks may be omitted and L_{6} connected to ground, which modifies the operation to Class C. The increased input impedance of the device operating class C results in increased input VSWR, but it will still remain less than $1.5: 1$ for the $145-150 \mathrm{MHz}$ band.

FIGURE 7 - IMD vs. Power Output

FIGURE 8 - Power Gain and VSWR vs. Frequency

The two amplifiers may be connected in cascade to provide a total power gain of around 20 dB ; however, an attenuator of 4 to 6 dB is required between the two units to prevent overdrive of the MRF247. Since 10 to 20 watts will be dissipated in the attenuator, it cannot be built from discrete resistors. Most convenient, size and costwise, are the thin film attenuators such as those manufactured by Pyrofilm.

The COR circuit requires 400 to 500 mW for the relay to switch. At this drive level, without the attenuator, the second amplifier would already produce full power output.

The COR (Figure 5) incorporates one of the standard circuits popular with mobile add-on amplifiers. Part of the $R F$ input signal is being rectified by D_{1}. The dc turns on Q_{3} which activates the relay. L_{7} and R_{3} provide the bias for D_{1} and Q_{3}, and D_{2} suppresses inductive transients produced by the relay coil inductance. A time constant for SSB operation is provided by C_{12}, whose value can be changed according to individual requirements. For FM this capacitor can also be omitted along with the bias network.

The repeatability of these amplifiers has been proven by constructing more than half a dozen units. Capacitors C_{2} and C_{5} were simply located within the marked areas on the circuit board (see Figure 9 and the photograph). On these capacitors, 20% tolerances can be allowed, but this may result in adjustments of each individual unit for optimum performance.

References

1. Frederick Emmons Terman, Sc. D. Radio Engineers Handbook, McGraw • Hill Co., Inc., 1943
2. Donald Kochen, Practical VHF and UHF Coil Winding Data, Ham Radio, April 1971
3. Davis, "Matching Network Design with Computer Solutions," AN-267, Motorola Semiconductor Products Inc. (See appendix).
4. Becciolini, "Impedance Matching Networks Applied to RF Power Transistors," AN-721, Motorola Semiconductor Products Inc.

AN791

FIGURE 9 - Component Layout Diagram of 35W and 75W Amplifiers

\times DENOTES FEED THROUGH EYELETS OR PLATED THROUGH HOLES
Q denotes terminal pins
(O) DENOTES BOARD STANDOFFS

FIGURE 10 - Printed Circuit Board Layout

NOTE: The Printed Circuit Board shown is 75% of the original.

APPENDIX

This information was originally published in Motorola Application Note AN-267, "Matching Network Designs with Computer Solutions."

NETWORK D

The following is a computer solution for an RF "Tee" matching network.

Tuning is accomplished by using a variable capacitor

for C_{1}. Variable matching may also be accomplished by increasing $X_{L 2}$ and adding an equal amount of X_{C} in series in the form of a variable capacitor.

TO DESIGN A NETWORK USING THE TABLES

1. Define Q, in column one, as $X_{L 1} / R_{1}$.
2. For an R_{1} to be matched and a desired Q, read the reactances of the network components from the charts.
3. $\mathrm{X}_{\mathrm{L} 1}{ }^{\prime}$ is equal to the quantity $\mathrm{X}_{\mathrm{L} 1}$ obtained from the tables plus $\left|X_{\mathrm{C}_{\text {out }}}\right|$.
4. This completes the network.

0	$X_{L 1}$	$\mathrm{X}_{\mathrm{L} 2}$	X_{Cl}	R_{1}
8	8	27.39	7.6	1
8	16	63.25	14.03	2
8	24	85.15	20.1	3
8	32	102.47	25.87	4
8	40	117.26	31.42	5
8	48	130.38	36.77	6
8	56	142.3	41.95	7
8	64	153.3	46.99	8
8	72	163.55	51.9	9
8	80	173.21	56.7	10
8	88	182.35	61.39	11
8	96	191.05	65.98	12
8	104	199.37	70.49	13
8	112	207.36	74.91	14
8	120	215.06	79.26	15
8	128	222.49	83.54	16
8	136	229.67	87.74	17
8	144	236.64	91.89	18
8	152	243.41	95.97	19
8	160	250	100	20
8	168	256.42	103.97	21
8	176	262.68	107.9	22
8	184	268.79	111.77	23
8	192	274.77	115.59	24
8	200	280.62	119.38	25
8	208	286.36	123.11	26
8	216	291.98	126.81	27
8	224	297.49	130.47	28
8	232	302.9	134.09	29
8	240	308.22	137.67	30
8	256	318.59	144.73	32
8	272	328.63	151.65	34
8	288	338.38	158.46	36
8	304	347.85	165.14	38
8	320	357.07	171.71	40
8	336	366.06	178.18	42
8	352	374.83	184.56	44
8	368	383.41	190.83	46
8	384	391.79	197.02	48
8	400	400	203.13	50
8	440	419.82	218.04	55
8	480	438.75	232.49	60
8	520	456.89	246.53	65
8	560	474.34	260.2	70
8	600	491.17	273.52	75
8	640	507.44	286.52	80
8	680	523.21	299.23	85
8	720	538.52	311.66	90
8	760	553.4	323.84	95
8	800	567.89	335.78	100
8	1000	635.41	392.36	125
8	1200	636.42	444.63	150
8	1400	752.5	493.49	175
8	1600	804.67	539.57	200
8	1800	853.67	583.29	225
8	2000	900	625	250
8	2200	944.06	664.96	275
8	2400	986.15	703.38	300

0	$\mathrm{X}_{\text {L1 }}$	$\mathrm{X}_{\mathbf{L} 2}$	$\mathrm{X}_{\text {c1 }}$	R_{1}
9	9	40	8.37	1
9	18	75.5	15.6	2
9	27	98.99	22.4	3
9	36	117.9	28.88	4
9	45	134.16	35.09	5
9	54	148.66	41.09	6
9	63	161.86	46.91	7
9	72	174.07	52.56	8
9	81	185.47	58.07	9
9	90	196.21	63.45	10
9	99	206.4	68.71	11
9	108	216.1	73.86	12
9	117	225.39	78.92	13
9	126	234.31	83.88	14
9	135	242.9	88.76	15
9	144	251.2	93.55	16
9	153	259.23	98.28	17
9	162	267.02	102.93	18
9	171	274.59	107.51	19
9	180	281.96	112.03	20
9	189	289.14	116.49	21
9	198	296.14	120.89	22
9	207	302.99	125.23	23
9	216	309.68	129.53	24
9	225	316.23	133.77	25
9	234	322.65	137.97	26
9	243	328.94	142.12	27
9	252	335.11	146.22	28
9	261	341.17	150.28	29
9	270	347.13	154.3	30
9	288	358.75	162.23	32
9	306	370	170	34
9	324	380.92	177.63	36
9	342	391.54	185.14	38
9	360	401.87	192.52	40
9	378	411.95	199.78	42
9	396	421.78	206.93	44
9	414	431.39	213.98	46
9	432	440.79	220.93	48
9	450	450	227.78	50
9	495	472.23	244.52	55
9	540	493.46	260.74	60
9	585	513.81	276.51	65
9	630	533.39	291.85	70
9	675	552.27	306.8	75
9	720	570.53	321.4	80
9	765	588.22	335.67	85
9	810	605.39	349.63	90
9	855	622.09	363.31	95
9	900	638.36	376.71	100
9	1125	714.14	440.24	125
9	1350	782.62	498.94	150
9	1575	845.58	553.81	175
9	1800	904.16	605.54	200
9	2025	959.17	654.64	225
9	2250	1011.19	701.48	250
9	2475	1060.66	746.36	275
9	2700	1107.93	789.51	300

"A 15-WATT AM AIRCRAFT TRANSMITTER POWER AMPLIFIER USING LOW-COST PLASTIC TRANSISTORS"

Prepared by
Dave Hollander

INTRODUCTION

This application note describes a 15 watt carrier power, amplitude modulated broadband amplifier covering the $118-136 \mathrm{MHz}$ AM aircraft band. Simplicity and low cost are emphasized in this design through the use of Motorola's common emitter TO-220 VHF power transistors. The power amplifier is designed to operate from 13.5 VDC. High level AM modulation is accomplished by a series modulator operating from a 27 volt supply.

CIRCUIT DESCRIPTION

The transmitter power amplifier has three stages using an MRF340 transistor as a pre-driver, a MRF342 as a driver, and a MRF344 as the final amplifier. All three devices are common emitter where the mounting tab is the emitter. The pre-driver stage is forward biased to enhance linearity and dynamic range. Amplitude modulation is applied fully to all three stages.
The P.A. is designed to operate with 50 ohm source and load impedances.

DESIGN CONSIDERATIONS

The design objectives are that the transmitter must be capable of operating over the range of 118 to 136 MHz with a minimum carrier output power of 15 watts. It must also be capable of being amplitude modulated greater than $+85 \%$ over the frequency range, and the transmitter should be free from instability.
Other important considerations involve the interstage and the output networks. The output network is to operate efficiently at both the carrier power of 15 watts and the peak power of 60 watts while providing harmonic suppression. The interstage networks transform the output impedance of the device to the input impedance of

FIGURE 1 - Modulated Output Waveform of Power Amplifier

the following device during modulation of all three stages.
In designing the networks, the Smith Chart is used to obtain initial values. These values were then optimized using a computer aided design program.

Figure 2 shows a schematic diagram of the transmitter P.A. RF circuitry.

The pre-driver stage uses a simple π-section input matching network. Forward bias for this stage is obtained through the network consisting of $\mathrm{R}_{1}, \mathrm{R}_{2}, \mathrm{R}_{3}, \mathrm{D}_{1}$, and is applied to Q_{1} through L_{2}. The quiescent current is approximately 20 ma for the MRF340.

The interstage between Q_{1} and Q_{2} is designed as follows. The effective collector load impedance is estimated to be $100-\mathrm{j} 50$ ohms. The input impedance, Z_{IN}, of the MRF 342 is $1.75+\mathrm{j} 2$ ohms at 136 MHz (as taken from the data sheet). One way to match the output of the MRF340 to the input of the MRF342 with a minimum of components is through the use of a 9:1 transformer (1,2). Figure 3 shows a Smith Chart plot of the interstage network with the chart normalized to 50 ohms. Starting at point A, this impedance is rotated to point B by a shunt capacitor C_{8}. The impedance at this point is approximately 5 to 5.5 ohms. A 9:1 transformer transforms this impedance to approximately 50 ohms. Point C , the 50 ohm point, is rotated to D by series capacitor C_{6}. Point D is then rotated to point E, the complex conjugate of the output impedance of Q_{1}, by shunt inductor L_{3}.

A different approach is used for the $Q_{2}-Q_{3}$ interstage network. The MRF342 output impedance Z_{OL}, and the MRF344 input impedance Z_{IN}, are taken from the data sheets. Figure 4 shows a Smith Chart plot of this network with the chart normalized to 50 ohms. Point A is the input impedance of the MRF344. This impedance is rotated to the real axis by shunt capacitors - C_{12} and C_{13}. Point B is then rotated to point C by series capaci-
tors $-\mathrm{C}_{10}$ and C_{11}. This impedance is then transformed to the complex conjugate of the output impedance of the MRF342 by shunt inductor L_{6}.
The MRF344 output matching network consists of a shunt inductor at the collector of Q_{3} followed by two L-sections. L-sections were used because they provide excellent harmonic suppression and good efficiency over the entire band. Figure 5 shows a Smith Chart of the output network, with the chart normalized to 50 ohms.
All impedance matching element values calculated using the Smith Chart and optimized with the computer program were used as starting points in building the networks. The final component values shown in Figure 2 were derived through on-the-bench tuning and adjustment and differ from the calculated values as the Figure 2 values cover $118-136 \mathrm{MHz}$. The calculated values are only for 136 MHz .
Since low cost is a key factor in the use of the TO-220 devices, inexpensive components are used wherever applicable. Molded chokes, dipped mica and dipped ceramic capacitors are used throughout the circuit. One of the problems encountered when using dipped micas at VHF is their series lead inductance. The higher capacitance values approach resonance at VHF. Selected values were
measured on an HP network analyzer at 125 MHz . The results are shown in Table 1.

TABLE 1

Cnominal (PF)	Cmeasured (PF)
5	5
10	10
25	26
30	33
39	45
50	64
75	106
100	161
200	750

Note: All lead lengths kept to an absolute minimum (<0.1 inch)

The data obtained shows that values below 75 pf are usable. Lead length should be kept to a minimum when using both the dipped mica and the disc ceramic capacitors. UNELCO capacitors are used in place of the dipped micas at the base of Q_{2} and Q_{3}, since the net required capacitance and base current is very high.

CONSTRUCTION TECHNIQUES

The amplifier is assembled on a $2^{"} \times 5^{\prime \prime}$ double sided printed circuit board. Board material is G-10 with a thickness of $0.062^{\prime \prime}$. A $1: 1$ photomaster of the top side of the board is shown in Figure 6. Eyelets are placed through the board at points marked by the letter "O". The eyelets are soldered to both sides of the PCB to connect the top ground to the bottom side ground return. Feed-thru capacitors are mounted on the DC feed bar which is made of G-10 PCB. A 1:1 photomaster of the feedbar is also shown in Figure 6. Eyelets are placed at points marked by an "O" and feed-thru capacitors are placed at points marked by an "X". The DC feedbar is soldered to the main board. The location of the critical components is shown in Figure 7. Construction details of the 9:1 impedance transformer are shown in Figure 8. (1,2)
For reliable operation, the transistors must not only be heatsunk, but they must also be mounted properly for emitter RF ground return. Figure 9 shows mounting details for the TO-220 package. More detailed information on mounting is available in AN-778.(3) The entire assembly is mounted on a 6 " extruded aluminum heatsink using $4-40 \mathrm{X} \quad 1 / 4$ machine screws. The heatsink surface should be flat and free of burrs, particularly around the transistor mounting holes.

FIGURE 3 - MRF340 - MRF342 Interstage Network

AN793

FIGURE 4 - MRF342-MRF344 Interstage Network

FIGURE 5 - MRF344 Output Network

NOTE: The Printed Circuit Board shown is 75% of the original.

FIGURE 7 - Location of Critical Components

Twist wircs together - approximately 12 turns per inch

The transformer is wound with \#24 AWG. Three different colors are used - red, green and blue.

Cut 3 lengths of wire

FIGURE 9 - Mounting Details for TO-220 Package
a) Proforred Arrangoment
for Non-isolated
Mounting Screw is at Semi.
conductor Case Potontial.
4.40 Hardware is used.

FIGURE 10 - Amplitude Modutation Waveforms

MODULATION

In an amplitude modulated waveform the amplitude of each cycle of the modulated wave varies in accordance with the modulating signal. Using voice modulation, the resultant waveform is not only complex, but difficult to analyze. Therefore, when testing and analyzing the transmitter P.A., a simple 1 KHz sine wave is used as the modulating signal. When analyzing an AM waveform, one of the things to consider is the modulation factor (M). M is usually expressed as percent modulation and is calculated as follows:

$$
M=\frac{E_{\max }-E_{\min }}{E_{\max }+E_{\min }} \times 100 \%
$$

Figure 10 shows amplitude modulation waveforms.
The above formula is valid only when the modulation process is symmetrical and little distortion is present. If significant assymmetry is present then up modulation and down modulation must be analyzed separately.

$$
\begin{aligned}
& M=\frac{E \max -E c}{E c} \times 100 \% \text { For positive peak modulation } \\
& M=\frac{E c-E \min }{E c} \times 100 \% \text { For negative peak modulation }
\end{aligned}
$$

When a carrier is modulated by a pure sine wave, two sidebands are generated at the carrier frequency plus and minus the modulating frequency. The power level of the
sidebands is dependent upon the percentage of modulation. At 100% modulation, the total power contained in the sidebands is one-half the carrier power or one-fourth in each sideband. For modulation levels of less than 100%, the total power is:

$$
\mathrm{PSB}=\frac{1}{2} \mathrm{~m}^{2} \mathrm{PC}
$$

where $\mathrm{m}=$ modulation factor

$$
\mathrm{Pc}=\text { carrier power }
$$

Collector modulation is a commonly used method for modulating a solid state transmitter. Using this method, the modulating voltage is applied to a collector through a transformer. The secondary winding of the transformer must be capable of handling the DC current required by the transistor and have low DC resistance, so as not to cause a significant voltage drop. The voltage drop will reduce the voltage applied to the collector of the stage being modulated.
Another form of collector modulation uses a series modulator. This type of modulator is used to evaluate the transmitter in this application note.(4) A series modulator uses audio power transistors instead of a transformer secondary. A schematic diagram of the series modulator is shown in Figure 11.27 volts is applied to the modulator and the quiescent DC voltage applied to the transmitter is set by the $10 \mathrm{~K} \Omega$ potentiometer.

FIGURE 11 - Series Modulator

Table 2 - Performence of the 15 Watt Amplifier

	118 MHz	127 MHz	136 MHz
$P_{\text {ln }}(\mathrm{mW})$	14.0	15.0	18.0
Pcorrier (W)	15.0	16.0	15.0
Total Current (Adc)	2.2	2.0	2.5
Power Supply Voltoge (Vdc)	13.5	13.5	13.5
Upward Modulation (\%)	89.0	88.0	90.0
Harmonic Rejection (dB) (Re)	ve to Paok P		
27	$\begin{aligned} & 55.0 \\ & 58.0 \end{aligned}$	$\begin{aligned} & 55.0 \\ & 58.0 \end{aligned}$	$\begin{aligned} & 52.0 \\ & 57.0 \end{aligned}$
Lood Mismatch	Capabte of Operating into 3:1 Lood VSWR.		

OUTPUT POWER VERSUS SUPPLY VOLTAGE

Pout is initially set at the carrier power of 15 watts at 13.5 Vdc, then the supply votlage is varied from 0 to 27 Vdc keeping
$P_{\text {in constant. This demonstrates the peak }}$
power output capability of the transmitter P.A.

FIGURE 12 - Block Diagram of Swept Set-Up for Tuning Up the Transmitter

TEST SET-UP

When adjusting a broadband RF power amplifier, it is advantageous to have a swept test station. Using a swept set-up, one can observe the following:

1) The effect of varying individual component values
2) Bandwidth
3) Instability
4) Input VSWR bandwidth.

A Wavetek 1002 Sweep Generator driving a Motorola MHW590 module is recommended as a drive source. Figure 12 shows a block diagram of the swept set-up used to test and evaluate the amplifier.

REFERENCES

1. Ruthroff, "Some Broadband Transformers," PROC. IRE Vol. 47, No. 8, August, 1959
2. Granberg, H. "Broadband Transformers and Power Combining Techniques for RF," Motorola AN-749
3. Roehr, Bill, "Mounting Techniques for Power Semiconductors," Motorola AN-778
4. "A 13-W Broadband AM Aircraft Transmitter," Motorola AN-507
5. Terman, Frederick E., "Electronic and Radio Engineering," McGraw-Hill

POWER MOSFETS versus BIPOLAR TRANSISTORS

Prepared by
Helge O. Granberg
Sr. Staff Engineer

What is better, if anything, with the power FETs if we can get a bipolar transistor with an equal power rating for less than half the price?

Several manufacturers have recently introduced power FETs for RF amplifier applications. Devices with 100 W output capabilities are available for VHF frequencies and smaller units are made for UHF operation. All are enhancement mode devices, which means that the gate must be biased with positive voltage (N channel) in respect to the source to "turn it on." Early
designs were so called V-MOS FETs, where the channel is in a V-groove. The V-groove must be etched with a special process, and the silicon material must have a different crystal orientation from the material normally used for bipolar transistors. The difficulty of the etching process in production has led to the development of other types of channel structures such as HEX and T, which are still vertical channel structures, but V-groove is eliminated, and the gate is on a straight surface. Thus, for an equal gate periphery, more room

TABLE A		
	Bipolar	TMOS FET
$\mathrm{Z}_{\text {in }} \mathrm{RS} / \mathrm{XS}(30 \mathrm{MHz})$:	0.65-J0.35 Ohms	2.20-J2.80 Ohms
$\mathrm{zin}_{\text {in }} \mathrm{RS} / \mathrm{XS}(150 \mathrm{MHz}$):	$0.40+J 1.50$ Ohms	0.65-J0.35 Ohms
ZOL (Load Impedance):	Almost equal in each case, depending on	er level and supply voltage.
Biasing:	Not required, except for linear operation, high current voltage source necessary.	Some gate bias always required. Low current source, such as resistor divider sufficient.
Ruggedness:	Fails usually under current conditions. Thermal runaway and secondary breakdown possible.	Failure modes: Gate punch through, exceeding of breakdown voltages, over dissipation.
Linearity:	Low order distortion depends on die size and geometry. High order IMD is a function of type and value of ballast resistors.	Low order distoriton worse than bipolar for a given die size and geometry. High order IMD better due to lack of ballast resistors.
Advantages:	Wafer processing easier. Low collectoremitter saturation voltage, which makes devices for low voltage operation possible.	Input impedance more constant under varying drive level. Lower high order IMD. Easier to broadband. Devices or die can be paralleled. High voltage devices easy to implement.
Disadvantages:	Low input impedance with high reactive component. Internal matching required to lower \mathbf{Q}. Input impedance varies with drive level. Devices or die cannot easily be paralled.	Larger die required for comparable power level. Nonrecoverable gate breakdown. High drain - source saturation voltage, which makes low voltage, high power devices less feasible.

on the surface is required. Japanese manufacturers seem to favor geometries with horizontal channels. They are similar to small signal MOSFETs with a number of them paralleled on one chip. This technique represents even more wasteful use of the die surface than HEX or TMOS. Typically a power FET requires 50 to 100 percent more die area than a bipolar transistor for equal power output performance. ForTMOS the number is about 50 percent. This is mainly due to the higher saturation voltage, but the geometry also gives some 30 percent less gate periphery than available base area in bipolar. Since the price of a solid state device is a function of a die size, we get fewer watts per dollar. This is completely opposite from what the industry has been trying to do in the past years with bipolar transistors. So, one may ask: What is better, if anything, with the power FETs if we can get a bipolar transistor with an equal power rating for less than half the price? This is where we come to the purpose of this article, which is to discuss the characteristics of the FET and bipolar device. Both have the same basic geometry, but with some mask changes, one was processed as a MOSFET and the other as a bipolar.

CIRCUIT CONFIGURATIONS

Since the gate of a MOSFET device is essentially a capacitor, which consists of MOS capacitance distributed between the channel and the surface metalization, the input Q is normally extremely high. For this reason, the gate must be de-Q'ed with a shunt resistance or applying negative feedback or a combination of the two. Unless this is done properly, the affect of feedback capacitance ($\mathrm{C}_{\mathrm{rss}}$) will result in conditions, where stable operation is impossible to achieve.
Figure 1 shows a Smith Chart plot of a 150 W MOS FET and a bipolar device using the same basic geometry for comparison purposes. The gate of the FET has been shunted by a resistance of 20 ohms. Without the shunt resistance the input impedance would be a pure capactive reactance, if package inductances are disregarded.
The input Q is an inverse function of the broadbandability of a device. With the techniques mentioned above, the \mathbf{Q} can be controlled to a large degree, but some power gain will be sacrificed, unless only some type of selective negative feedback is employed for that purpose. Amplifiers in the 100 W power level, covering five octaves can be designed, and the limiting factor only seems to be the proper design of the broadband matching transformers.
Due to the lack of base diode junctions inherent to bipolar devices, where the diode forward conductance depends on the drive level, the MOSFET gate impedance varies only slightly with the input voltage amplitude. The gate MOS capacitance should be more or less independent of voltage, depending on the die processing. This is considered one of the advantages with FETs, especially regarding amplitude modulated applications, where a constant load for the driver stage is important. Negative feedback should be limited, since it tends to deteriorate this characteristic. Another advantage is the AGC capability by varying the gate voltage. In common source configuration, depending on the initial power gain, etc., an AGC range of 20 dB is achievable.

FIGURE 1 - 160 Watt MOSFET and Bipolar Comparison

Common gate configuration has some advantages, although it is not useful in applications requiring linearity. The load impedance is reflected back to the gate and in effect is in parallel with the source to ground impedance. The total inputimpedance is more constant with frequency than in common source mode, but varies greatly with output power level and supply voltage. As in a comparable configuration with bipolar transistors, the overall power gain is low, but the unity gain frequency (f_{α}) extends higher, which makes the common gate circuit attractive at UHF designs. It also

FIGURE 2 - A Typical Common Source MOSFET
Power Amplifier Circuit
has more tendency for parasitic oscillations, since the input and output are in the same phase. The de-Q'ing of the input can be done in the same manner as in a common source circuit, but negative feedback is not as easy to implement. This circuit also exhibits greater power gain versus bias voltage variation characteristics. In applications, where 40 dB to 50 dB AGC range is required, the common gate configuration should be considered.
A common drain configuration represents the emitter follower in bipolar circuits. In both cases the input impedance is high and the load impedance is effectively in series with the input. The input capacitance, (drain-to-gate, or collector-to-base) is lower than in common source or common gate circuits, and several times lower for the FET than bipolar for equal die size. This is due to lack of the diode junction. A MOSFET source follower can not be regarded as having current gain as the emitter follower. The amplification rather takes place through impedance transformation. Due to the fair amount of input de-Q'ing required, the available power gain is lower than in common source circuit for example. Having less than unity voltage gain, the circuit exhibits exceptional stability, and negative feedback is not necessary, nor can it be easily implemented. Push pull broadband circuits for a frequency range of 2 to 50 MHz have been designed for $200-300$ watt power levels. Their inherent characteristics are good linearity and gain flatness without any leveling networks. High power SSB amplifiers are probably the most suitable application for common drain operation. The AGC range is comparable to that in common source, but higher voltage swing is required. It must be noted that the MOS devices used must have high gate rupture voltage, since during the negative half cycle of the input signal, the gate voltage approaches the level of VDS.

LINEARITY ASPECTS

Some literature claims that MOS power FETs are inherently more linear than the bipolar transistors. This is only true up to the point where envelope distortion, caused by saturation, instabilities or other reasons, is not present. It is also a function of the bias current (IDQ). The FETs usually require higher idling currents than the bipolars to get full advantage of their linearity. Bipolars are usually biased only to get the base-emitter diode into forward conduction, whereafter increasing the bias helps little. Class A is an exception, but the device must then be operated at $20-25$ percent of the rated Class AB level.
Probably the main advantage with the MOS power FETs is their greatly superior high order IM distortion performance. This is mainly due to the fact that ballasting resistors are not required with FETs. In bipolar RF power transistors, nonlinear feedback is distributed to each emitter site through the MOS capacitance from the collector. In devices using diffused silicon resistors, this effect is even worse, and caused by additional nonlinear diode capacitance between the collector and the emitters. The high order IMD (9th and up) is actually in

FIGURE 3 - A Typical Common Gate MOSFET
Power Amplifier Circuit

FIGURE 4 - A Typical Common Drain, Narrow Band MOSFET Power Amplifier Circuit
direct relation to the ballasting resistor values, which must be optimized for an even power distribution along the die. Too low values would result in a fragile device, and the opposite would, in addition to the IMD problem, result in high collector-emitter saturation voltage and low power gain.
The feedback capacitance, drain-to-gate or collector-to-base for example, also has a secondary effect in IMD. In both cases it is a function of the die geometry, and is usually lower with devices with higher figure of merit, such as the ones made for UHF and microwave applications. A MOS power FET exhibits some five times lower feedback capacitance than a bipolar transistor with a similar geometry. In a bipolar transistor this capacitance partly consists of the collector-base junction, which is highly nonlinear with voltage. This, together with the varying input impedance, generates internal feedback, which is nonlinear and produce high order IMD to some degree. A more noticeable effect is that the low order IMD goes up with reduced drive levels as shown in Figure 6.
This can be related to different turn on characteristics between the two device types. When a bipolar device is biased to Class AB, the bias does not usually, completely overcome the VBE knee. Thus, at lower signal levels, the remaining nonlinear portion covers a larger area of the total voltage swing. Increasing the bias from the normally recommended Class $A B$ values will help and full Class A should eliminate the problem completely.

FIGURE 5 - Two Tone Spectrographs of 300 W PEP, 50 V Amplifier Outputs a. using bipolar transistors and b. with TMOS power FETs. 500 mA of bias current per device was used in each case. Doubling the bias current has a minimal effect in a. but b. the 7th order products would be lowered by $10-12 \mathrm{~dB}$.

FIGURE 6 - IM Distortion as a Function of Power Output. Solid Curves MOSFET, Dashed Curves Bipolar Transistor

CLASS D/E APPLICATIONS

Switching mode RF power amplifiers have only become feasible since the introduction of the power FET. Being a majority carrier device, the FET does not exhibit the storage time phenomena, that limits the switching speed of a bipolar. For a given device, the switching speed is mainly determined by the speed the gate capacitance can be charged and discharged. If the capacitance is in the order of several hundred pF , a smaller FET is required to provide the fast chargedischarge switch. For low power stages, bipolars can be used, since the storage time is mainly an inverse function of the f_{T} and device size. The advantages of a Class D amplifier are high efficiency, linearity and ruggedness, since power is ideally dissipated only during the switching transitions.

These amplifiers are readily applicable for FM modulation, after harmonic filtering. The analog gain is obtained by pulse-width modulation of the input
switching signal, and demodulation of the output with suitable filters. Linearity is required only from the modulator, which is easy to achieve at small signal levels. The high speed voltage controlled one shot MC10198 should be ideal for a linear pulse-width modulator. By properly adjusting its operating point, low level AM or suppressed carrier double sideband signals can be generated.

FIGURE 7 - A Typical Power MOSFET Class D RF Amplifier, Arranged in Push-Pull Configuration

GENERAL

All MOSFETs can in theory have a positive temperature coefficient on the gate threshold voltage. This means that the gate threshold voltage increases with temperature, trying to "turn the device off." In addition the gm_{m} will decrease, which also helps in preventing the thermal runaway, which is commonly a problem with bipolars. The coefficient of the gate threshold
voltage is also a function of the drain current. Normally the coefficient is negative at low current levels, and turns positive at higher currents. The turnaround point, which can be controlled by doping the other fabrication steps, must be at a current level not to exceed the maximum dissipation rating, taking the derating factor into account. Thus, the power MOS devices can be easily biased to Class A, without fear of a thermal runaway.
Two types of high frequency noise are generated by bipolar transistors. Shot noise is caused by the forward biased junctions, and thermal noise by moving carriers upon flow of electrons. Both have different noise spectrums, and only the latter is present in a FET. In a transmitter, where the devices are biased for linear operation, the shot noise becomes a problem, especially if a receiver is in close proximity, as in transceiver designs. Also, if several stations are operated near each other, the noise can be transmitted through the antenna, disturbing the reception at nearby stations. In most instances, the bias of the power devices must be switched on and off during the transmit and receive functions, which will prevent a full break-in operation. Measurements of 150 W devices, intended for SSB applications, were performed at 30 MHz , at the proper idling current levels. The difference in the total noise figure between a bipolar and a FET is about three to
one, or 7 dB and 2.2 dB respectively. The amount of noise that can be tolerated varies with each situation, and whether the difference above is significant in practice depends on other factors involving the design of the equipment.

CONCLUSION

From the above we must conclude that it is doubtful the power FET ever will replace the bipolar transistor in all areas of communications equipment. It will have its applications in low and medium power VHF and UHF amplifiers, eliminating the need for internal matching, and up to medium power low band and VHF SSB, where the high order IMD is beginning to be more and more in emphasis due to the crowded frequency spectrums. The author's personal opinion is that the power FET is the most feasible device for the amplitude compandored sideband (ACSB) applications, proposed for future use in land mobile communications. The system principle requires extreme linearity in the amplifying stages, which in the past has only been achieved with Class A operation. The power FET also opens new applications for high efficiency switching mode power amplifiers, which have not been possible in the past for reasons described earlier. The possible upper frequency limit would be dictated by the physical lay-out of the system.

FIGURE 8 - An Experimental Three Stage, One Kilowatt Class D Amplifier.
The unit operates up to 10 MHz yielding an efficiency of 85 percent. The power gain is 30 dB .

VHF MOS POWER APPLICATIONS

Prepared by
Roy Hejhall
Sr. Staff Engineer

INTRODUCTION

The assumption is made that the reader is familiar with the types, construction, and electrical characteristics of FETS. References 1 and 2 contain information on this subject.

Silicon RF power FETs are generally N-Channel MOS enhancement mode devices. Most are vertical structures, meaning that current flow is primarily vertical through the chip with the bottom forming the drain contact. Vertical construction has the advantage of providing greater current density which translates to more watts per unit area of silicon.

The assembly of RF power FET wafers into finished devices is similar to the assembly of bipolar RF power transistors (BPTs). Identical packaging is utilized for both types of devices.

ADVANTAGES OF RF POWER FETS

The advantages of FETs have been described elsewhere, ${ }^{3,4}$ and will not be repeated in detail. Some observations on this subject are given below.
The inherently higher power gain is illustrated by a comparison of the MRF171 FET and MRF315 BPT. Both are VHF devices rated at 45 watts power output. Typical power gains at similar operating conditions ($f=150 \mathrm{MHz}$, $P_{\text {out }}=45 \mathrm{~W}$, dc supply voltage $=28 \mathrm{~V}$) are 15.0 dB for the FET and 11 dB for the BPT.
Any gain comparison should also include ruggedness data. Ruggedness is defined as the ability of a device to survive operation into mismatched loads. Obviously, UHF and microwave BPTs are available with gains exceeding that of the MRF171 FET at 150 MHz , but the higher frequency BPTs will not survive much abuse at VHF. The superior ruggedness of the FET is even more impressive when it is recognized that no source site ballasting is used.

Another gain comparison at VHF is provided by the MRF174 FET and MRF317 BPT. The MRF317 is rated at 100 watts output, and contains an internal input matching network which increases the device gain by typically 5.0 dB . The MRF174 is rated at 125 watts out-
put and has no internal input matching, yet the typical gain of the MRF174 at 125 watts output is 12 dB while the typical gain of the MRF317 is 10 dB at 100 watts output (both devices operating at 150 MHz with a 28 Vdc supply).
Impedance differences are found mainly at the device input. FET input impedance at dc approaches infinity, dropping at VHF to a level approximately equal to, but slightly higher than the input impedances of comparable BPTs.
This point can be illustrated by considering again the aforementioned 45 watt VHF devices. When operating at 150 MHz with a 28 Vdc supply and 45 watts output, the large-signal input impedances are $1.89-\mathrm{j} 4.81$ ohms for the MRF171 FET and $1.2+\mathrm{j} 1.0$ ohms for the MRF315 BPT.
These devices illustrate another difference. The largesignal input impedance of FETs at VHF is capacitive. By contrast, most VHF BPTs with power outputs greater than 20 watts have an inductive input impedance at 150 MHz . The input impedance of the MRF315 passes through resonance at about 100 MHz .
The low-noise figure of the FETs facilitates the design of low-noise power amplifiers and high dynamic range receiver front ends. Noise figures of less than 3.0 dB at $\mathrm{f}=150 \mathrm{MHz}, \mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~A}$ have been measured with the 125 watt MRF174. The MRF134 5.0 W VHF FET has a typical noise figure of 2.0 dB at 150 MHz , $28 \mathrm{~V}, 100 \mathrm{~mA}$, and values as low as 1.5 dB have been measured. Transmitter noise floor determines the antenna front to back ratio required for duplex systems.

A most interesting FET characteristic is the inherent gain control mechanism. The power output of a FET amplifier can be varied from full rated output over a range of greater than 20 dB (with RF input power held constant) by varying the dc gate voltage. Further, the device gate does not draw dc current, so the dc source utilized for gain control does not have to deliver any power to the FET. This capability, which does not exist in the RF power BPT, facilitates the design of systems requiring gain control, either manual or automatic.

AMPLIFIER DESIGN

The design of TMOS FET RF power amplifiers has much in common with the design of BPT amplifiers. The amplifier must include dc circuitry to apply bias voltages and RF matching networks to perform the necessary impedance transformation over the frequency band of interest. Amplifier design consists of the synthesis of circuitry to perform the above tasks.

A positive de supply voltage is required on the drain. To date most RF power FETs have been designed for the standard BPT operating collector voltages, i.e. 12.5 V , 28 V , and 50 V . Some higher voltage FETs are also available. The FETs described are designed for 28 V operation.
There is no FET parallel to the popular zero base bias BPT amplifier. The typical FET RF power amplifier requires forward gate bias for optimum power output and gain. That is the bad news; the good news is that the FET gate is a dc open circuit and the bias network may often be just a simple resistive divider.

A convenient gate bias source is the drain supply. When utilizing this technique care must be taken in filtering the bias circuitry. An inadequately filtered bias circuit connected to the drain supply can form an output-to-input feedback path for oscillations.

BPT amplifiers. These networks usually take the form of broadband transformers at HF, lumped reactive elements at VHF, and microstrip lines with RF chip capacitors at UHF. ${ }^{5,6}$

Solid-state power amplifier drain or collector load impedances are set primarily by supply voltage and power level. Therefore, FET and BPT amplifiers with like performance parameters can utilize similar output networks.

The inductive input impedance of high power VHF BPTs usually dictates that the input network design include shunt capacitors placed as close to the transistor package as is physically possible. FETs, with their capacitive input impedances at VHF, do not require these critical capacitive circuit elements.
Figure 1 shows a 125 watt 150 MHz amplifier which utilizes the MRF174 TMOS FET. Note the following items which have been discussed previously:

1. No shunt capacitors at the gate.
2. Resistive bias network operating from the drain supply voltage.
3. Impedance matching networks similar to those of a comparable BPT amplifier (except for item 1 above).

FIGURE 1 - 125 Watt, 150 MHz TMOS FET Amplifier

FET amplifier $I_{D Q}$ (quiescent drain current) is not critical and values in the $10-150 \mathrm{~mA}$ range are suggested. $I_{D Q}$ may be varied from less than 100 mA to values approaching Class A operation without large changes in gain and efficiency at full rated power. Linear applications are an exception to this where $I_{D Q}$ should be selected to optimize linearity.
The design of RF impedance matching networks for FET amplifiers is similar to the corresponding task for

This amplifier operates from a 28 volt de supply. It has a typical gain of 12 dB , and can survive operation into a 30:1 VSWR load at any phase angle with no damage.
The amplifier has an AGC range in excess of 20 dB . This means that with input power held constant at the level that provides 125 watts output, the output power may be reduced to less than 1.0 watt continuously by driving the dc gate voltage negative from its I_{DQ} value. Figure 2 illustrates this performance feature. Note that

FIGURE 2 - Gain Control Performance of 125 Watt Amplifier
a negative voltage capability would have to be added to the bias system to take full advantage of this AGC performance.

Another useful feature of RF power FETs is that they have less variation of input and output impedances with power level than does a BPT. This characteristic permits the use of small-signal 2 port scattering parameters to develop useful design information for gain, stability, and impedances. ${ }^{7}$ S-parameters are often found on RF power FET data sheets. While s-parameters will not provide an exact design solution for high power operation, they do produce a useful first approximation.

Power FETs with outputs below the 40 watt range often have such high gain at HF and VHF that stability problems may be encountered. This problem can be addressed by the classic methods used to stabilize RF small-
signal amplifiers - loading of input or output terminals, feedback, or both. Here is an area where s-parameters are useful in calculating the effects of circuit techniques for achieving stability. References 7 and 8 discuss amplifier stability.
Figure 3 shows a 5.0 watt 150 MHz amplifier utilizing the MRF134 TMOS power FET. The MRF134 is a very high gain FET which is potentially unstable at both VHF and UHF. Note that a 68 ohm input loading resistor has been utilized to enhance stability. This amplifier has a gain of 14 dB and a drain efficiency of 55%. Figure 4 shows a 5.0 watt 400 MHz amplifier with a nominal gain of 10.5 dB .

CAUTIONARY NOTES

Some precautions regarding FET RF power amplifiers should be mentioned.
One involves temperature coefficient. Literature abounds with statements that FETs are totally immune to thermal runaway because of their negative temperature coefficient. Actually, many RF power FETs have a positive temperature coefficient over a portion of their operating range. Increasing drain current usually shifts the coefficient from positive to negative. See Figure 5.

DC bias experiments have been conducted with several RF TMOS FETs. While they all had positive temperature coefficients over a portion of their operating ranges, none exhibited a tendency toward thermal runaway at drain currents ranging from less than 100 mA to full Class A bias. Thermal runaway does not appear to be a problem, but the positive temperature coefficients suggest that the designer should not completely ignore the thermal aspects of dc bias design.

FIGURE 3-5.0 Wett, 150 MHz tmos FET Amplifier

C1. C4 - Arco 406, 15-1 15 pF
C2 - Arco 403, 3-35 pF
C3 - Arco 402, 1.5-20 pF
C5, C6, C7, C8, C12-0.1 μ F Erie Redcap
C9 - $10 \mu \mathrm{~F} .50 \mathrm{~V}$
C10. C11-680 pF Feedthru
D1 - 1N5925A Motorola Zener
L1 - 3 Turns, 0.310* ID. \#18 AWG Ensmel. 0.2* Long
L2-3-1/2 Turns, 0.310*ID, \#18 AWG Enamel, 0.25* Long

L3 - 20 Turns, \#20 AWG Enamel Wound on R5
L4 - Ferroxcube VK-200 - 19/4B
R1 - 68 』. 1.0 W Thin Film
R2 - 10 kI . $1 / 4 \mathrm{~W}$
R3 - 10 Turns, 10 kll Beckman Instruments 8108
R4-1.8kn. $1 / 2 \mathrm{~W}$
R5 - 1.0 Msl, 2.0 W Carbon
Board - G10, 62 mils

FIGURE 4 - 5.0 Watt, 400 MHz TMOS FET Amplffer

C1. C6 - 270 pF. ATC 100 mils
C2. C3. C4. C5 - 0-20 pF Johanson
C7. C9. C10. C14-0.1 μ F Erie Redcap. 50 V
C8-0.001 $\mu \mathrm{F}$
C11-10 F . 50 V
C12. C13-680 pF Feedihru
D1 - IN5925A Motorola Zener
L1 - 6 Turns, $1 / 4^{*}$ ID, \#20 AWG Enamel
L2 - Ferroxcube VK-200-19/4B
R1-68 s1. 1.0 W Thin Film

FIGURE 5 - Gate-Source Voltage versus Case Temperature For Constant Values of Drain Current MRF174

A second potential problem is the danger of permanent damage to FET gates from static electricity. Fortunately, the larger capacitances of power devices reduce this danger. No special precautions have been taken to protect the FETs described from static damage, and there were no failures known to be caused by static induced voltages. However, it is worthwhile to exercise the usual precau: tions taken in handling all MOS devices.

SUMMARY

The construction, characteristics, and advantages of RF power FETs have been described with emphasis on

$$
\begin{aligned}
& \text { R2 - } 10 \mathrm{kII} .1 / 4 \mathrm{~W} \\
& \text { R3 - } 10 \text { Turns, } 10 \mathrm{kgl} \text { Beckman Instruments } 8108 \\
& \text { R4 }-1.8 \mathrm{ks} .1 / 2 \mathrm{~W} \\
& 21-1.4^{*} \times 0.166^{*} \text { Microstrip } \\
& \text { z2-1.1**0.166* Microstrip } \\
& \text { Z3-0.95* } \times 0.166^{\prime \prime} \text { Microstrip } \\
& \text { Z4-2.2" } \times 0.166^{-} \text {Microstrip } \\
& 25-0.85^{\prime \prime} \times 0.166^{\circ} \text { Microstrip } \\
& \text { Board-Glass Teflon, } 62 \text { mils }
\end{aligned}
$$

the VHF frequency range. Particular attention was given to the excellent gain control characteristics of these devices.

REFERENCES

1. Field Effect Transistors in Theory and Practice, Motorola Semiconductor Sector Application Note AN-211A.
2. The Radio Amateur's Handbook, 59th Edition, Chapter 4, ARRL, Inc., Newington, CT.
3. H. Granberg, Power MOSFETs versus Bipolar Transistors, R.F. Design Magazine, Nov./Dec., 1981. Also available as Motorola Semiconductor Sector Application Note AN-860.
4. D. DeMaw, Practical Class-A and Class-C PowerFET Applications at HF, paper presented at Midcon Electronic Show \& Convention, December, 1982.
5. H. Granberg, Broadband Transformers and Power Combining Techniques for RF, Motorola Semiconductor Sector Application Note AN-749.
6. B. Becciolini, Impedance Matching Networks Applied to RF Power Transistors, Motorola Semiconductor Sector Application Note AN-721.
7. S-Parameters ... Circuit Analysis and Design, Hewlett-Packard, Palo Alto, CA, Application Note 95.
8. R. Hejhall, RF Small-Signal Design using Two-Port Parameters, Motorola Semiconductor Sector Application Note AN-215A.

800 MHz TEST
 FIXTURE DESIGN

by
DAN MOLINE
Product Manager
Landmobile Power Products

Although this article presents techniques for the general case of UHF. 800 MHz circuit design, the emphasis is placed specifically on test fixture design for 800 MHz . Text fixtures tend to be the last consideration for most RF power amplifier development programs, yet they are the most valuable tool available for measuring and maintaining device consistency. Minimum power gain, collector efficiency and broadband performance requirements, though they are always detailed in some form of written specification, are meaningless unless they are demonstrated and controlled by a test fixture. A good test fixture will assure correlation between the customer and vendor and function as a trouble shooting tool in the event of radio problems. When alternate sources are pursued for a stage, test fixtures can shorten qualification cycles. But the prevention of gradual shifts in RF performance over the lifetime of a product is the major purpose of a test fixture.

Motorola has recognized the importance for good test fixtures and has established general guidelines for their implementation.

Each hi-tech product is tied to a well defined test fixture, which has the following general specifications:

- Broadband performance, demonstrating typical characteristics throughout the band. (Ex.: UHF; 450-512 $\mathbf{M H z}, 800 ; 800-870 \mathrm{MHz}$)
- A $3^{\prime \prime} \times 5^{\prime \prime}$ mechanical format, which is rugged for high volume test applications.
- Simple RF match construction to represent realistic radio performance.
- Devices must meet all minimum test requirements at the specified test frequency. UHF: $\mathbf{4 7 0} \mathrm{MHz}, 800: 870$ MHz .
The repeatability, mechanical ruggedness and broadband performance are all very important factors needing consideration in the design of test fixtures. The remainder of this article goes into detail, using the MRF846 as an example.

The schematic representation of the fixture outlined in this article is shown below (Figure 1).
C_{I} and C_{O} represent the shunt capacitors at the input and output (respectively) which cancel most of the inductive reactance associated with the transistor's input and output impedance. Mini clamped-mica capacitors are used for these components and are physically located beneath the common lead wear blocks. Inductance " L " is introduced by the input (and output) wear blocks. Because of this parasitic inductance, L, trimmer capacitors ($\mathrm{C}^{\prime} \mathrm{I}$ or $\mathrm{C}^{\prime} \mathrm{O}$) are required to transform the now reactive impedance back to real before launching off into the $\lambda / 4$ transmission lines.

FIGURE 1 - SCHEMATIC REPRESENTATION OF TEST FIXTURE

The transistor's input and output impedance can be represented as a combined series resistor and inductor as shown in Figure 2.

FIGURE 2 - EQUIVALENT CIRCUIT FOR \mathbf{Z}_{in} OR $\mathbf{Z}_{\text {out }}$

FIGURE 3 - PARALLEL EQUIVALENT CIRCUIT

This series combination can be transformed into a parallel equivalent by using the equations shown in Figure 3. The capacitors C_{I} and C_{O} are selected by calculating the value necessary to form a parallel resonance with X_{p}. Since all capacitors have a finite, series lead inductance, the capacitor is actually considered as a simple series resonant circuit. The resulting effect is the capacitance is always higher than the marked value and goes through resonance at some frequency. Mini clamped-mica capacitors are recommended for test fixture design due to the very low parasitic inductance associated with them which increases the usable range of capacitances. (They are also extremely high "Q"). A typical measured series inductance for clampedmica capacitors is about 0.5 nH . The equivalent capacitance is calculated by subtracting the series lead inductance from the capacitive reactance, or $X_{c}($ equiv $)=X_{c}$ $\mathrm{X}_{\mathrm{L}(0.5 \mathrm{nH})}$.

Since two capacitors are used in parallel, the total capacitance is derived as shown in Figure 4.

FIGURE 4 - EQUIVALENT REACTANCE FOR CAPACITORS IN PARALLEL

A value of $2.0 \mathrm{X}_{\mathrm{c}}$ is used in the above example since each capacitor will contribute only $1 / 2$ to the total capacitance. By setting X_{c} (equiv.) equal to the parallel equivalent reactance calculated in Figure 3, the exact capacitor values may be determined.

$$
\begin{aligned}
& X_{p}=\frac{2.0 X_{c}-X_{L(0.5 \mathrm{nH})}}{2} \\
& X_{c}=\frac{2.0 X_{p}+X_{L(0.5 \mathrm{nH})}}{2} \quad\left(X_{c}=1 / 2 \mathrm{fC}\right) \\
& \mathrm{C}=\frac{1}{\pi f\left(2.0 \mathrm{X}_{\mathrm{p}}+\mathrm{X}_{\mathrm{L}(0.5 \mathrm{nH})}\right)}
\end{aligned}
$$

Introducing an actual example at this time should help in explaining the remaining steps involved in a test fixture design. The MRF846 is a $40 \mathrm{~W}, 12.5 \mathrm{~V}, 800 \mathrm{MHz}$ device whose input and output impedances are:
TABLE $1-\mathbf{Z}_{\text {in }}, \mathbf{Z}_{\text {out }}$ FOR MRF846

Frequency	$\mathbf{Z}_{\text {in }}$	$\mathbf{Z}_{\text {out }}$
800 MHz	$1.1+\mathrm{j} 4.8$	$1.20+\mathrm{j} 2.4$
836 MHz	$1.0+\mathrm{j} 4.9$	$1.15+\mathrm{j} 2.5$
870 MHz	$1.0+\mathrm{j} 5.0$	$1.10+\mathrm{j} 2.7$
900 MHz	$0.9+\mathrm{j} 5.1$	$1.10+\mathrm{j} 2.8$

Since X_{p} will vary as a function of frequency, C_{I} and CO need only be calculated for one point within the frequency band. Typically, the input response of an RF power transistor is optimized about the center of the band. Hence, the input R_{p} and X_{p} are generally calculated at this frequency $\left[\left(f_{h}+f_{j}\right) / 2\right]$.

The output response is different. If C_{0} were selected for a resonance to occur with X_{p} at band-center, an unacceptable performance roll-off would be seen at the upper end of the frequency band. Overall performance is best when C_{O} is calculated at a frequency within 20% of the upper end of the band. Since device gain increases as frequency decreases, the performance at lower frequencies is generally no problem.

Using the MRF846 as an example, input and output capacitor values may be determined as follows:

INPUT:
Frequency $=836 \mathrm{MHz}$
$\mathrm{Z}_{\text {in }}=1+\mathrm{j} 4.9$
$=4.9 \quad \mathrm{Q}=4.9 / 1$
$X_{p}=4.9\left(1+\frac{1}{(4.9)^{2}}\right)$
$=5.1 \Omega$
$\mathrm{X}_{\mathrm{L}(0.5 \mathrm{nH})}=2.0 \pi$
$\left(836 \times 10^{6}\right)\left(0.5 \times 10^{-9}\right)$
$=2.63 \Omega$
$C=1 /\left[\pi\left(836 \times 10^{6}\right)\right.$
$(2 \times 5.1+2.63)]=29.7 \mathrm{pF}$
2-15 pF Capacitors would
be the best choice.

OUTPUT:

Frequency $=870 \mathrm{MHz}$
$\begin{aligned} & \mathrm{Z}_{0}=1.1+\mathrm{j} 2.7 ; \mathrm{Q}=2.7 / 1.1 \\ &=2.45 \\ & \mathrm{X}_{\mathrm{p}}=2.7\left(1+\frac{1}{(2.45)^{2}}\right) \\ &=3.15 \Omega \\ & \mathrm{X}(0.5 \mathrm{nH})=2.0 \pi \\ &\left(870 \times 10^{6}\right)(0.5 \times 10-9) \\ &=2.7 \Omega \\ & \mathrm{C}\left.=1 / / \pi 870 \times 10^{6}\right) \\ &(2 \times 3.15+2.7)]=40.7\end{aligned}$
pF
2-20 pF Capacitors would be the best choice.
(20 pF Capacitors were not available, so an 18 pF \& a 24 pF capacitor were chosen instead. The total $\mathrm{C}=42 \mathrm{pF}$.)

Though the MRF846 test fixture used at Motorola does use these capacitor values, the above calculations may act only as a good starting point. Empirical measurements and more precise impedance measurements for a given application may result in minor deviations from these values.

Assuming no additional circuit parasitics had to be accounted for, the quarter wave transmission line sections could now be determined. The input (and output) fixture wear blocks do, however, contribute additional series lead inductance to the impedances. These inductances are counteracted by the trim capacitors C_{1} and $\mathrm{C}^{\prime} \mathrm{O}$. The wear block inductance could be calculated and then used to determine the proper capacitance values. However, since there are other, less obvious frequency and grounding effects which may influence the impedance transformation, it is a more practical (and generally a more accurate) procedure to measure the impedance which will be transformed by the transmission line to 50Ω.

FIGURE 5 - BASIC CIRCUIT TO MEASURE $Z_{i n}, Z_{\text {out }}$

The capacitors C_{I} and C_{O} should be mounted into the test fixture and a known characteristic impedance transmission line soldered into place as shown below in Figure 5.

Triple stub tuners are used on the input and output to tune for maximum output power and minimum reflected power at various frequencies throughout the band. Band edges and band center are generally adequate for a good circuit design. Due to higher impedance levels produced by adding C_{I} and C_{O}, $\left(\mathrm{Z}_{\text {in }}\right)$ and ($\mathrm{Z}_{\text {out }}$) are measured instead of the real transistor impedances, Z_{in} and $\mathrm{Z}_{\text {out }}$. Also, by measuring impedances in the actual applications fixture, the design can be optimized for the particular fixture. Perhaps a maximum gain tuning point is not what is desired. Obtaining impedances for an efficiency/gain compromise may be more desirable. If this is the case, an impedance table for the appropriate conditions may be obtained. It is then for these impedances that $\mathrm{C}_{\mathrm{I}}, \mathrm{C}_{0}$ and Z_{0} will be calculated.

The procedure for obtaining the impedances is simple and requires a vector voltmeter (VVM) or a network analyzer. Both are used at Motorola, but a vector voltmeter is less expensive and if used with a high directivity directional coupler, ($>40 \mathrm{~dB}$), is very accurate. The set-up is constructed as shown in Figure 5. With frequency set, stub tuners are adjusted for the desired performance. Again, using the MRF846 as an example, numbers shown in Table 2 were measured for $\mathrm{P}_{\text {in }}=12.0 \mathrm{~W}, \mathrm{~V}_{\mathrm{CC}}=12.5$ V.

The output stub tuners were adjusted for maximum gain at each frequency and the input stub tuners were adjusted for zero watts reflected power. After each measurement, the impedance presented to the fixture by the

TABLE 2 - PERFORMANCE OF MRF846 versus FREQUENCY

806 MHz	838 MHz	870 MHz
$\mathrm{P}_{\text {out }}=50.0 \mathrm{~W}$	$\mathrm{P}_{\text {out }}=48.3 \mathrm{~W}$	$\mathrm{P}_{\text {out }}=44 \mathrm{~W}$
Eff. $=53.3 \%$	Eff. $=55.2 \%$	Eff. $=58 \%$
Prefl. $=0 \mathrm{~W}$	Prefil. $=0 \mathrm{~W}$	Prefi. $=0 \mathrm{~W}$

triple stub tuner and load (or source) combination is measured by the vector voltmeter. The impedance is then translated by the transmission line used in the test fixture to obtain (Z_{in}) and ($\mathrm{Z}_{\text {out }}$). In the above example a $26 \Omega, 0.309 \lambda$ ($@ 836 \mathrm{MHz}$) transmission line was arbitrarily chosen to be in the MRF846 measurements. By using the equation: $\mathrm{Z} \angle \theta=\mathrm{R}_{\mathbf{0}}[(1+\Gamma \angle \theta) /(1-\Gamma \angle \theta]$ or various computer or calculator programs, the transformation is easily calculated. The most important part of the whole procedure is obtaining an accurate measurement from the stub tuners. Prior to making any measurements, the vector voltmeter must be referenced to a short (180° on a Smith Chart). As a means of accounting for the errors introduced by the connectors at the fixture's input and output, that same connector is used for a referencing short as shown in Figure 6.

The measurement reference plane is now the edge of the connector used on the test fixture, which is also the beginning of the transmission line. Assuming the same reference plane is maintained during the measurements, an accurate impedance value will be produced. A good technique for maintaining the appropriate reference plane is accomplished by creating a new connector to measure the triple stub tuners. Two connectors are attached as shown in Figure 7.

FIGURE 6 - ESTABLISHING REFERENCE PLANE

The triple stub tuner, load combination may now be measured with an adequate degree of accuracy using the test setup shown in Figure 8.

FIGURE 8 - TEST SETUP TO MEASURE STUB TUNER W/LOAD
Repeat the process for the input stub tuner combination. Two numbers are obtained for each frequency which (Z_{in}) and ($\mathrm{Z}_{\text {out }}$) can be calculated from, as shown in the MRF846 example below:

TABLE 3 - MEASURED Z VALUES FOR TEST FIXTURE

Frequency		Measured [$\angle \boldsymbol{\theta}$	r $\angle \theta$ converted to Impedance in Ohms	Impedance Transformed Over 26Ω Line in Ohms
806 MHz	INPUT OUTPUT	$\begin{aligned} & 0.35 \angle 155^{\circ} \\ & 0.37 \angle 144^{\circ} \end{aligned}$	$\begin{aligned} & 24.97+j 8.42 \\ & 24.86+j 12.53 \\ & \hline \end{aligned}$	$\begin{aligned} & 20.72-j 5.64=\left[\mathrm{Z}_{\text {in }}{ }^{*}\right] \\ & 17.72-j 6.66=\left[Z_{\text {out }}{ }^{*}\right] \end{aligned}$
838 MHz	INPUT OUTPUT	$\begin{aligned} & 0.26 \angle 166^{\circ} \\ & 0.22 \angle 154^{\circ} \end{aligned}$	$\begin{aligned} & 29.78+j 3.98 \\ & 33.30+j 6.58 \end{aligned}$	$\begin{array}{ll} 21.35+j 0 & =\left[Z_{\text {in }}{ }^{*}\right] \\ 18.68+j .74 & =\left[Z_{\text {out }}{ }^{*}\right] \end{array}$
870 MHz	INPUT OUTPUT	$\begin{aligned} & 0.14 \angle-169^{\circ} \\ & 0.07 \measuredangle-158^{\circ} \end{aligned}$	$\begin{array}{r} 38.25-\mathrm{j} 1.99 \\ 44.10-\mathrm{j} 2.24 \\ \hline \end{array}$	$\begin{aligned} & 20.21+j 6.92=\left\{Z_{\text {in }}{ }^{*}\right\} \\ & 17.90+j 8.3=\left\{Z_{\text {out }}{ }^{*}\right] \end{aligned}$

Note: $\left[Z_{\text {out }}{ }^{*}\right]$ is conjugate of $\left[Z_{\text {out }}\right]$
$\left|Z_{i n}{ }^{*}\right|$ is conjugate of $\left|Z_{i n}\right|$

The new impedances can be obtained by using a Smith Chart or using the equation $\mathbf{Z} \angle \theta=\mathrm{R}_{0}[(1+\Gamma \angle \theta) /(1-$ $\Gamma(\theta)]$. These impedances (shown in the last column of Table 3) are the impedances which the test fixture will
be optimized around. Once again, it is convenient to convert these numbers into parallel equivalents. By doing so, the values of $\mathrm{C}^{\prime} \mathrm{I}$ and $\mathrm{C}^{\prime} \mathrm{O}$ become more obvious. Table 4 shows this process.

TABLE 4 - CONVERSION OF Z VALUES TO C VALUES

Series Impedance $\left[Z_{i n}\right] \&\left[Z_{\text {out }}\right]$	$\mathbf{R}_{\mathbf{p}}$	X_{p}	Capacitance Required	
$20.72+j 5.64$	22.26	j81.8	2.42 pF	C'I
$17.72+j 6.66$	20.2	j53.8	3.67 pF	$\mathrm{C}^{\prime} \mathrm{O}$
$21.35+$ j0	21.35	-	0.0 pF	$\mathrm{C}^{\prime} 1$
$18.68+\mathrm{j} .74$	18.7	j472	0.40 pF	$\mathrm{C}^{\prime} \mathrm{O}$
$20.21-¢ 6.92$	21.6	- j 68.3	-2.68 pF	$\mathrm{C}^{\prime} 1$
17.90-j8.3	21.75	-j46.9	-3.90 pF	$\mathrm{C}^{\prime} \mathrm{O}$

From Table 4, notice the calculated values of C_{I} and C_{0} come close to giving the desired frequency response. $\mathrm{C}^{\prime} \mathrm{I}$ is zero at the band center, indicating the capacitors selected for the input are optimum. The values for $\mathrm{C}^{\prime} \mathrm{O}$
produce a slight skew in performance toward the high end of the band. Capacitor values for the output could be reduced slightly, but they will remain the same until final fixture performance is determined.

Since $C^{\prime} I$ and $C^{\prime} O$ are very small capacitor values, little or no capacitance is actually needed for $\mathrm{C}^{\prime} \mathrm{I}$ or $\mathrm{C}^{\prime} \mathrm{O}$. However, to allow minor tuning adjustments, a small trimmer capacitor is mcluded at the wear block/transmission line interface.

The final calculation which needs to be performed is that of finding the optimum characteristic impedance for the transmission line. The recommended approach for doing this is to use a computer optimization program which will iterate any number of variables for a desired frequency response. The variables available to be optimized at this point are $\mathrm{Z}_{0}, \mathrm{C}^{\prime} \mathrm{I}$ and $\mathrm{C}^{\prime} \mathrm{O}$ and even $\mathrm{n} \lambda$ (transmission line length). $\mathrm{Z}_{0}, \mathrm{C}_{\mathrm{I}}^{\prime}$ and $\mathrm{C}^{\prime} \mathrm{O}$ are the very minimum variables.

In the example of the MRF846, where input R_{p} varies from 22.3Ω to 21.6Ω over the frequency band, a close approximation can be had by using a mean value of 21.9Ω. This results in a Z_{0} of $50 \times 21.9=33 \Omega$. The output R_{p} starts at 20.2Ω, dips to 18.7Ω and goes back up to 21.75Ω. Using the same method as before, Z_{0} is calculated as $50 \times 20.2=31.7 \Omega$ where 20.2Ω is the mean value of 18.7 and 21.75. Using a computer optimization program, a 32Ω, quarter wave transmission line is optimum for the input and a 30Ω quarter wave line is optimum for the output. These are the values used in the MRF846 test fixture.

After constructing the MRF846 test fixture and tuning the small trimmer capacitors for best overall gain and input reflected response, the average data shown in Figure 9 was obtained.

The goal was to demonstrate $12 / 40 \mathrm{~W}$ across the band with less than 2.0:1 input VSWR and greater than 45% collector efficiency. Further optimization could be done by performing impedance measurements on additional transistors or characterizing the test fixture more accurately. However, the above performance is very satisfactory to the required performance. The best compromise for a second pass fixture would be to trade-off gain at 806 and 838 MHz for efficiency, and redesign input and output matching networks for the new impedance tables. This, of course, is only one of the many procedures which may be followed in developing an 800 MHz test fixture.

MOUNTING TECHNIQUES FOR POWERMACRO TRANSISTOR

Prepared by:
Harry Swanson
RF Product Development/Applications Engineer
Motorola Semiconductor Sector

For reliable operation, the PowerMacro plastic molded transistor must be properly mounted. Methods of mounting and heatsinking are discussed. Tradeoffs of implementation and thermal performance are considered.

INTRODUCTION

The Stripline Opposed Emitter (SOE) package when used to mount an RF power transistor for output power levels less than 2.0 watts is excellent electrically but relatively expensive for the function performed. This application note describes an equally effective electrical package called the PowerMacro package.

The primary advantages of the PowerMacro package are (1) its low cost and (2) that it is a drop-in replacement for the $0.204^{\prime \prime}$ SOE pill or stud package using the same transistor die. Note that this package will also substitute for most low power applications of an SOE device with comparable RF and thermal performance.

The PowerMacro package has excellent thermal properties; however, it is essential to utilize proper mounting techniques. Therefore, this application note emphasizes
thermal considerations and methods of heat sinking the package.

DESCRIPTION OF THE POWERMACRO PACKAGE

Figure 1 is the case outline drawing of the Power Macro package. It is similar to the Macro-X package except for the wider collector lead. Figure 2 is a cut away view showing the component parts of a PowerMacro package. The package consists of an epoxy molded copper leadframe which has a 100 mil wide collector lead. A transistor die is silicon-gold eutectic die bonded to the collector lead and is wirebonded in a manner similar to the SOE package. Completion of the assembly process is accomplished by molding the copper leadframe and tin plating the four leads.

STYLE 2: PIN 1. COLLECTOR 2. EMITTER 3. BASE 4. EMITTER		DIM	Millimeters		Inches	
			Min	Max	Min	Max
		A	4.44	5.21	0.175	0.205
		C	1.90	2.54	0.075	0.100
		D	0.84	0.99	0.033	0.039
		F	0.20	0.30	0.008	0.012
		G	0.63	1.01	0.025	0.040
		H	8.84	9.72	0.348	0.383
		K	7.24	8.13	0.285	0.320
		L	2.46	2.64	0.097	0.104

FIGURE 2 - Cut Away View of the PowerMacro Package

THERMAL RATING OF THE POWER MACRO TRANSISTOR

The RF PowerMacro transistor is guaranteed to have a certain thermal performance defined by the total device dissipation, P_{D}, at a certain case temperature, T_{C}, which is measured on the collector lead immediately adjacent to the package body. The parameters are defined for T_{J} \max of $150^{\circ} \mathrm{C}$. In order to use the thermal data presented on the RF data sheet, the concepts and ground rules for heat flow must be defined. Table 1 compares the thermal parameters to their more familiar electrical analogs. The task of the designer is to get the heat out the collector lead (case) of the PowerMacro transistor. This presents a classical heat transfer problem ideally calling for an "infinite heat sink" which can absorb any amount of heat with no temperature rise, ΔT, whatsoever. In a realistic sense, such a heat sink does not exist; however, a practical solution can be obtained. A practical heat sink is

TABLE 1. Thermal Parameter and Their Electrical Analogs

Symbol	Thermal Parameter	Units*	Electrical Analog	
			Symbol	Parameter
ΔT	Temperature Difference	${ }^{\circ} \mathrm{C}$	V	Voltage
H	Heat Flow	Watts	1	Current
θ	Thermal Resistance	${ }^{\circ} \mathrm{C} /$ Watts	R	Resistance
γ	Heat Capacity	$\frac{\text { Watt-Sec }}{{ }^{\circ} \mathrm{C}}$	C	Capacity
K	Thermal Conductivity	$\frac{\mathrm{CaI}}{\text { Sec-cm }}{ }^{\circ} \mathrm{C}$	σ	Conductivity
Q	Quantity of Heat	Cal	q	Charge
t	Time	Sec	t	Time
$\theta \gamma$	Thermal Time Constant	Sec	RC	Time Constant

- Note the one major difference in thermal and electrical units $-Q$ is in units of energy, whereas q is simply charge. Hence, H is in units of power and may be equated to an electrical power dissipation.
characterized by a certain temperature rise, $\Delta \mathrm{T}$, for a given ambient condition with a known amount of heat input or power dissipation, P_{D}.

When the collector lead and ambient temperature of PowerMacro transistor and power dissipation are known, then the thermal resistance from case-to-ambient can be calculated. First, the power being dissipated in the device, P_{D}, is obtained by:

$$
P_{D}=P_{D C}+P_{\text {in }}-P_{\text {out }}-P_{\text {ref }}
$$

Where: $\mathrm{P}_{\mathrm{D}}=$ Power dissipated in transistor in watts; $\mathrm{P}_{\mathrm{DC}}=\mathrm{DC}$ power into transistor in watts;
$\mathrm{P}_{\text {in }}=$ RF power into transistor in watts;
$\mathrm{P}_{\text {out }}=$ RF power out of the transistor in watts;
$P_{\text {ref }}=R F$ input power reflected in watts;
P_{D} is used in the equation below to obtain θ CA.

$$
\theta_{\mathrm{CA}}=\frac{\mathrm{T}_{\mathrm{C}}-\mathrm{T}_{\mathrm{A}}}{\mathrm{PD}_{\mathrm{D}}}
$$

Where: $\theta_{\mathrm{CA}}=$ Thermal resistance device case to ambient
$\mathrm{T}_{\mathrm{C}}=$ Device case temperature
$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature
The junction temperature under a given operating condition is defined by:
$\mathrm{T}_{\mathrm{J}}=\left(\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}\right) \mathrm{PD}_{\mathrm{D}}+\mathrm{T}_{\mathrm{A}}$
Where: $\mathrm{T}_{\mathrm{J}}=$ Junction temperature
$\theta_{\mathrm{JC}}=$ Published thermal resistance junction-to-case.

Since θ_{JC} is fixed by the transistor type used, the user can only control the junction temperature by $\theta \mathrm{CA}$.

A low $\theta^{C A}$ requires an effective heat sink and interface between the case and heat sink. In general, an effective heat sink requires that materials with high thermal conductivity and high specific heat be used. A table of thermal properties for various materials is found in the Appendix. A well designed interface and heat sink requires that all thermal paths be as short as possible and of maximum cross sectional area.

FIGURE 3 - Bar of Conducting Material

The thermal resistivity from Surface A to Surface B in the conductive bar shown in Figure 3 is:

$$
\theta=\frac{\mathrm{h}}{\mathrm{KWL}}=\frac{\mathrm{h}}{\mathrm{KA}}
$$

Where: $h=$ Length of thermal path
A = Cross-sectional area of thermal path
$K=$ Thermal conductivity
In order to define the thermal resistance factors still further for our purpose, $\theta \mathrm{CA}$ is defined as:

$$
\theta C A=\theta C S+\theta S A
$$

Where: $\theta_{C S}=$ Interface thermal resistance - case to heat sink
OSA $=$ Heat sink thermal resistance - heat sink to ambient
Thus the thermal resistance, junction-to-ambient is the sum of individual components and T_{J} is then defined as:

$$
T_{J}=P_{D}\left(\theta_{J C}+\theta_{C S}+\theta_{S A}\right)+T_{A}
$$

This gives the basic thermal resistance model for the PowerMacro as indicated by Figure 4.

The thermal resistance of the transistor (the junction-to-case thermal resistance), θ_{JC}, is not constant; it is a function of biasing and temperature as given on the data sheet. The thermal resistance of the heat sink is also variable; it decreases as ambient temperature increases.

The interface thermal resistance, θ_{CS}, is affected by the mounting technique and interface material used.

Since this thermal resistance may be significant compared to the others, it will receive primary emphasis in the following section on mounting techniques.

FIGURE 4 - Thermal Resistance Model for the PowerMacro Transistor

MOUNTING TECHNIQUES FOR POWERMACRO

The available heat sink will vary depending on the application. In the case of the handheld radio, the heat sink is relatively small and lightweight. In the case of a predriver in a mobile radio the heat sink is relatively large but it is shared with other devices of higher power dissipation. In general, the size and weight of the heat sink should be as small as possible.

The intent of this section is to discuss in detail the different techniques and tradeoffs involved in reducing the thermal interface resistance in the PowerMacro.

The wide lead collector of the PowerMacro offers an excellent thermal path from the transistor chip. This wide lead should be utilized effectively to provide the best thermal interface. Since this lead is the output of the device, it is necessary to consider RF matching and DC biasing. Thus, the lead is usually mounted to some PC board material such as G-10, glass teflon, alumina, or beryllium oxide (BeO). Table A1 in the Appendix lists the typical thermal data from IR scans of the MRF553 PowerMacro transistor (1.5 Watts Pout - 7.5/12.5 V VHF device). The analysis compares two PC board materials:

1. G-10
2. Alumina
for various operating conditions of $\mathrm{P}_{\text {out }}, \mathrm{P}_{\mathrm{D}}, \mathrm{T}_{\mathrm{J}}$ (die junction temperature), T_{C} (collector lead temperature), and T_{S} (heat sink temperature) and $\mathrm{T}_{\mathrm{A}} \approx 25^{\circ} \mathrm{C}$.

Figure A1 shows the circuit used to provide the thermal data of the MRF553 device mounted to a 62 mil thick G-10 PC board. The device is soldered to the PC board which is mounted to a $3^{\prime \prime} \times 5^{\prime \prime} \times 3 / 4^{\prime \prime}$ aluminum heat sink.

Figure A2 shows the circuit used to provide the thermal data of the MRF553 device mounted with alumina interface. The device is soldered into a specially constructed socket (see Figure A3) which is mounted to a $3^{\prime \prime} \times 5^{\prime \prime} \times 3 / 4^{\prime \prime}$ aluminum heat sink. The socket is copper and uses 28 mils thick alumina substrates (195 mils x 250 mils) with 62 mils thick copper tabs (125 mils $\times 250$ mils) on the input and output. These components are soldered together using high temperature solder.

A comparison of the data in Table Al shows the relative performance of the two mounting techniques. IR Scan II of the alumina/copper mounting technique clearly shows its superior thermal performance. Comparing the data at $P_{D} \approx 1.9$ watts for IR Scan I (G-10 PC board mounting) and IR Scan II (alumina/copper mounting) demonstrate the better thermal interface using alumina/copper. θ_{JS} for the alumina/copper mounting is $30.7^{\circ} \mathrm{C} / \mathrm{W}$ while θ_{JS} for the $\mathbf{G - 1 0} \mathrm{PC}$ board is $39^{\circ} \mathrm{C} / \mathrm{W}$.

As expected, the θ_{JL} is approximately the same for the two mounting techniques. The difference in $\theta_{J S}$ is dependent on the mounting technique used. The resulting $\theta_{C S}$ is calculated from the IR scan data by:

$$
\theta_{\mathrm{CS}}=\theta_{\mathrm{JS}}-\theta_{\mathrm{JL}}
$$

Thus for IR Scan I (G-10 mounting):

$$
{ }^{\theta} \mathrm{CS}=(39-23.2)^{\circ} \mathrm{C} / \mathrm{W}=15.8^{\circ} \mathrm{C} / \mathrm{W}
$$

Whereas, for Scan II (alumina/copper mounting):

$$
\theta \mathrm{CS}=(30.7-24.4)^{\circ} \mathrm{C} / \mathrm{W}=6.3^{\circ} \mathrm{C} / \mathrm{W}
$$

Therefore, the IR scan results show a marked improvement in thermal performance when using the alumina/ copper.

The heat spreading effects of the epoxy mold compound are also analyzed by IR scan of a molded device and an unmolded device. The molded device was chemically etched to expose the surface of the transistor die while maintaining the maximum epoxy compound around the transistor leads. The unmolded device was soldered into the RF circuit in leadframe form and then the lead interconnects were trimmed to make the part functional.

A comparison of RF Scan I and RF Scan III shows that the epoxy mold compound aids in spreading the heat from the collector lead to the other three leads. For example, at $\mathrm{PD}_{\mathrm{D}} \approx 1.9$ watts, the junction temperature, T J , of the molded device is only $106.2^{\circ} \mathrm{C}$ versus $154.3^{\circ} \mathrm{C}$ for the unmolded device. Thus, the heat transfer ability of the epoxy mold compound is significant.

Additional heat transfer can be realized by applying a small amount of heat sink compound to the heat sink side of the PowerMacro package and by mounting the device so that the package body contacts the heat sink. The thermal conductivity of the heat sink compound ($\mathrm{K}=0.0018$) is close to that of the epoxy mold compound
($\mathrm{K}=0.0026$) and it is 3 times better than G-10 ($K=0.0056$). Table A2 in the Appendix lists and defines the thermal conductivity K, the specific heat S and mass density P of various materials.

SUMMARY

This application note utilizes the IR scan results in Table A1 to quantify the tradeoffs in performance of the two mounting techniques. A more rigorous analysis should be made by the designer when considering a particular application of a PowerMacro device. In a particular application, there usually are certain constraints, such as:
(1) Ambient and operating conditions
(2) Available heat sink size
(3) Available circuit layout space
(4) PC board material choice
(5) Assembly manufacturing techniques that are available and cost effective
These constraints may limit the designer's available options in providing the best interface and heat sink for the PowerMacro transistor.

The PowerMacro package is an excellent RF low power package. With proper mounting and applications of device specifications, the transistor will function reliably. The data sheet specifications for $\theta_{\mathrm{JL}}, \mathrm{T}_{\mathrm{L}}$, and P_{D} are based on mounting the device to G-10 PC board or equivalent at $\mathbf{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

APPENDIX

Table A1 lists the IR scan results of the MRF553 PowerMacro transistor comparing two PC board materials. The mounting and RF circuit techniques are shown in Figures A1, A2 and A3.

TABLE A1. IR Scan Results for MRF553 PowarMacro

Mounting Technigue	$\begin{aligned} & \text { Pout } \\ & \text { (W) } \\ & \text { f=175 } \\ & \text { MHz } \end{aligned}$			$\begin{aligned} & \mathrm{Po} \\ & \mathrm{~W} \mid \end{aligned}$		$\begin{aligned} & \text { Dte } \\ & \text { Temp. } \\ & \text { TJ }{ }^{(* C)} \\ & \text { Aver. } \end{aligned}$	Collector Lead Temp. $\mathrm{T}_{\mathrm{L}} \mathrm{P}^{\circ} \mathrm{C}$.	Aver. (CMM	$\mathrm{OHF}_{\mathrm{OL}}$ (${ }^{(20} \mathrm{CN}$)	Cks. Heassink Temp. Ts $\left.\right\|^{\circ} \mathrm{C} \mid$	0.Js Avas. ('CMN)	$\begin{array}{\|c\|} \hline \text { Oss } \\ \text { Hset Spot } \\ \left.\hline{ }^{\circ} \mathrm{CH} /\right)^{2} \\ \hline \end{array}$	TA ('C) Amblent Tomp.
IR Scan I:	1.0			1.55	96.62	99.5	55.3	25.3	26.65	32	40.3	41.7	25
G-10 PC Boerd with Epory (Case Materiat)	1.5			1.70	101.40	99.1	69.7	23.2	24.5	32	39.5	40.8	25
	2.0			1.89	108.9	106.2	62.7	23.2	24.6	33	38.95	40.4	25
	2.5			2.08	120	116.9	67.35	23.8	25.3	35	39.4	40.9	25
	3.0			2.46	138.35	134.8	74.2	224.6	26.1	37	39.75	41.2	25
IR Scan it: Alumina/ Copper Board with Epoxy (Cessemateriat)	1.5			1.07	68	66.7	33.8	24.5	25.7	28	36.2	37.4	25
	2.0			1.27	73.8	71.9	35.3	24.3	25.8	29	33.8	35.3	25
	2.5			1.92	90	88	41.1	24.4	25.5	29	30.7	31.8	25
	3.0			3.0	120.5	117.7	48.8	23.4	24.3	29	29.7	30.7	25
	3.2	1000	12.	3.4	138.8	131.3	49	24.2	25.8	29	30.1	31.7	25
IR Scen IIf: G-10 PC Board with No Epoxy (Case Material)	1.0			1.54	138.99	137.1	91.9	29.2	30.5	28	70.8	72.1	25
	1.5			1.69	146.28	143.5	95.6	28.2	29.8	28	68	69.7	25
	2.0		12.5	1.87	158.64	154.3	101.35	28.35	29.6	28	67.4	68.6	25

AN938

FIGURE A1 - Circuit Using G-10 PC Board

FIGURE A2 - Circuit Using Alumina/
Copper Socket

FIGURE A3 - Alumina/Copper Socket

The IR scans were made using a Barnes radiometric scope (Model No. RM2). The transistor's active area was IR measured at 6 points to adequately map the junction temperature. Also, the collector lead was IR measured immediately adjacent to the body of the package to obtain the case temperature, T_{L} of the device (see Figure A4).

FIGURE A4 - IR. Scan Map

Each operating condition chosen was allowed to reach steady state before the IR scan measurements were made.

In order to aid in heat sinking and mounting designs a table of thermal properties of common materials is presented. Three important thermal properties of common heat sink materials are given in Table A2. These properties should be considered in order to properly evaluate the choice of materials used in heat sinking/mounting of a PowerMacro for a given application.
Thermal Conductivity is a measure of the ability of a material of known cross sectional area to transfer heat a given distance in a given time with a given temperature difference. Generally metals are good thermal conductors.
Specific Heat is a measure of the amount of heat a given mass of material can accept for a given rise in temperature. The scale is normalized to the heat capacity of water ($\mathrm{H}_{2} \mathrm{O}=1.0$).
Mass Density is simply the mass per unit volume of a material. This parameter is important in heat sink design in as much as large heat sinks of dense materials are undesirable.

The devices were decapsulated using a machine called a "Jet Etch." This machine is manufactured by:

B \& G Enterprises
62B Hanger Way
Watsonville, California 95076-2486

The jet etch machine uses hot sulfuric acid to decapsulate the molded device. The device can be decapsulated so that there is no mechanical damage, no corrosive damage, and no loosening of external leads. Thus, the device is fully RF functional.

TABLE A2. Typical Thermal Properties of Materials

Material	Thermal Conductivity K (Cal/Sec-cm• $\left.{ }^{\circ} \mathrm{C}\right)^{*}$	Specific Heat S (Cal/gm- ${ }^{\circ} \mathrm{C}$)	Mass Density, P $\left(\mathrm{gm} / \mathrm{cm} \cdot{ }^{\circ} \mathrm{C}\right.$)
Copper	0.94	0.093	8.9
Beryllia Ceramic	0.55	0.31	2.8
Aluminum	0.49	0.22	2.7
Brass	0.26	0.094	8.6
Silicon	0.20	0.18	2.4
Steel	0.12	0.12	7.8
Solder	0.09	0.04	8.7
Kovar	0.046	0.11	8.2
Alumina Ceramic	0.04	0.21	3.7
Plastic Epoxy	0.0026	0.2	2.0
Glass	0.0026	0.2	2.0
Mica	0.0018	0.2	3.2
Teflon	0.00056	0.25	2.2
Heatsink Compound	0.0018	-	-

${ }^{\bullet}$ Conversion Factor: $1 \mathrm{watt} / \mathrm{m}=2.39 \times 10^{-3} \mathrm{Cal} / \mathrm{Sec}$. cm. The thermochemical calorie $=4.184$ joules. The absolute joule per second or watt is thus related in terms of calorie per second.

A Cost Effective VHF Amplifier For Land Mobile Radios

By Ken Dufour

Motorola Power Products Division

INTRODUCTION

This application note describes a two stage, 30 watt VHF amplifier featuring high-gain, broad bandwidth and outstanding ruggedness to load mismatch, achieved by use of the new MRF1946A power transistor. It uses a die geometry intended for RF power devices operating in the UHF region. The emitter periphery (EP) to base area (BA) ratio of this die is 4.9, up from the normal EP/BA range of 1.5 to 3.5 for VHF devices. Power sharing and current sharing in the chip are controlled with diffused emitter resistors. The end result is a VHF transistor with very high power gain $(10+d B)$, sufficient so that processing steps can be taken to provide tolerance to load mismatch while still maintaining excellent performance. By mounting this
die in the 0.380 flange or stud package and providing characterization data that spans 136 to 220 MHz , Motorola has provided a very versatile component for the RF designer.

CIRCUIT DESCRIPTION

Smith chart techniques were used to develop the two stage amplifier shown pictorially in Figure 1 and schematically in Figure 2. The end result is an amplifier that can produce 20 dB overall gain in the specified band (150 to 175 MHz), with a midband efficiency of 50 percent. The Motorola MRF237 was selected for the driver stage. This

Figure 1. Engineering Model of MRF1946A Wideband Amplifier
common emitter (TO-39) RF power transistor produces high-gain, is easy to mount and is cost effective. In this design, the MRF237 is inserted into a hole in the circuit board and soldered to the ground plane for heat sinking, as shown in Figures 1 and 3. This method of attachment also provides a very effective emitter ground connection. By introducing a small amount of forward bias ($5-15 \mathrm{~mA}$) to the MRF237, it will track low drive levels and help maintain stability in the input stage. The amplifier is constructed on $1 / 16$ ", double sided G-10 board with 2 ounce copper cladding. A photomaster of the printed circuit board is shown in Figure 4. The top and bottom ground planes of the board are connected by wrapping the board edges with thin copper foil ($0.002^{\prime \prime}$) and then soldering it in place. Figures 1 and 3 illustrate how and where the board edges are wrapped in the prototype amplifier. No eyelets or plated-through-holes are required to achieve the level of performance noted here. Printed lines are used to match the devices' input and output impedance
to 50 ohms, and an inductor and two capacitors form the interstage match. This allows some flexibility in shaping the overall frequency response and helps conserve board area. The MRF1946A stage is operated in Class C and is mounted to the heatsink using conventional methods, i.e.; an 8-32 stud inserted into an appropriately prepared heatsink. An alternate packaging arrangement, the 0.380 flange, allows one to attach the transistor to the topside of the heatsink with two screws. A Motorola Application Note on mounting techniques for various semiconductors is available and provides detailed information on installing either of these package styles isee reference 1). Additional information on thermal considerations can be found in reference 2. Performance of the amplifier is illustrated in Figures 5, 6 and 7. Figure 5 is a plot of $P_{\text {out }}$ versus $P_{\text {in }}$ at $160 \mathrm{MHz}, 12.5$ volts; Figure 6 shows output power, input VSWR and collector efficiency as functions of frequency; while Figure 7 demonstrates harmonic content for 30 watts output power.

C1 $=\mathbf{5 6} \mathrm{pF}$ Dura \cdot Mica
C2 $=39$ pF Mini-Unelco
C3, C7 = 68 pF Mini-Unelco
C4, C5, C6, C9, C10 = 91 pF Mini-Unelco
C8 $=\mathbf{2 5 0} \mathrm{pF}$ Unelco J101
C11 $=\mathbf{3 6}$ pF Mini-Unelco
C12 $=\mathbf{4 3}$ pF Mini-Unelco ${ }^{\circ}$
C13 $=1 \mu \mathrm{~F}, 25 \mathrm{~V}$ Tantalum
C14, C15 $=0.1 \mu \mathrm{~F}$ Mono-Block
C16 $=10 \mu \mathrm{~F} 25 \mathrm{~V}$ Electrolytic

D1 = Diode, 1N4933 or Equivalent
L1 = Base Lead Cút to 0.4", Formed Into Loop
L2 = Collector Lead Cut To 0.35", Formed Into Loop
L3 $=0.7^{*}$ \#18 AWG Into Loop
$L .4=7$ Turns \#18 AWG, $1 / 8^{\circ}$ ID
$\mathrm{L} 5=3$ Turns \#16 Enam, 3/16" ID
$R 1=10 \Omega, 1 / 4 \mathrm{~W}$ Carbon
$R 2=1500 \Omega, 1 / 2 W$ (Select For Most Appropriate ICQ)

RFC1 $=\mathbf{1 0} \boldsymbol{\mu H}$ Molded Choke

RFC2 $=0.15 \mu \mathrm{H}$ Molded Choke
RFC3 $=$ VK200-4B Choke
Z1, $\mathrm{Z2}$ = Printed Line
$\mathbf{Z 3}=\mathbf{5 0} 0 \mathrm{hm}$ Printed Line
B = Ferroxcube Ferrite Bead 56-590-65-3B

Figure 2. Schematic Diagram of MRF1946A Wideband Amplifier

Figure 3. Parts Placement

NOTE: The Printed Circuit Board shown is 75% of the original.
Figure 4. PCB Photomaster

Figure 5. Output Power versus Input Power

Figure 7. Output Spectrum

Figure 6. Output Power, Efficiency, and Input VSWR versus Frequency

CONCLUSIONS

The two-stage amplifier described produces greater than 20 dB gain with 30 watts of output power over the frequency range of 150 to 175 MHz . Ruggedness and stability are achieved by use of the new MRF1946/A power transistor. The amplifier illustrates that relatively unsophisticated construction techniques properly implemented with the appropriate high gain devices can provide a cost effective 30 watt VHF amplifier for land mobile applications.

REFERENCES

1. Roehr, Bill: Mounting Techniques for Power Semiconductors, AN778. Motorola Semiconductor Products, Inc.
2. Johnsen, Robert J.: Thermal Rating of RF Power Transistors, AN790. Motorola Semiconductor Products, Inc.

A HIGH-PERFORMANCE VIDEO AMPLIFIER FOR HIGH RESOLUTION CRT APPLICATIONS

I. INTRODUCTION

This application note describes the superior performance characteristics of Motorola CRT driver transistors in a state-of-the-art video amplifier. In particular, the high speed obtainable with low DC power consumption is shown. A circuit which is insensitive to load variations and interconnect methods is given.

II. APPROACH

The performance requirements for the amplifier are these:

Vottage Gain	20
Rise and fall times	3 nS
Output	40 V p-p min.
Overshoot	5% max.
Load capacitance	8 pF min.
Power supplies	$60 \mathrm{~V}, 5 \mathrm{~V},-5 \mathrm{~V}$

The voltage gain is obtained in a transconductance amplifier in the form of a common-emitter, common-base cascode circuit. In this circuit the load cepacitance is isolated from the cascode by a set of complementary emitter-followers. Thus, the capacitive loading on the cascode is low, which allows operation at a moderate dissipation level.

The emitter followers are biased at a Class "B" operating point. They conduct only during voltage transitions, while charging or discharging the CRT capacitance. This operation is similar to the way highly efficient C.MOS logic ICs function.

The emitter followers provide a combined output signal from a low impedance, or "stif"" source. This stiff source makes the entire circuit insensitive to load variations and to different methods of connect. ing the video amplifier to the CRT.

III. THE CIRCUIT

A. The Input Circuit

Refer to the circuit diagram in Figure 1. A fast pulse generator is required for accurate performance data. The Tektronix Model PG502 is a good example of a puse generatos for optimum performance, versatility and price considerations. The puse generator has a rise time in the range of . 8 ns and an output impedance of 50 ohms. A minimum-loss L.pad is used berween the generator and the base of the driver transistor, Oit The impedance level at this point is designed to be 75 ohms. The volage attervation of the matching circuit is 0.64 .

B. The Cascode Circuit

1. The Common-emitter stage uses an LT1001 transistor in a TO-39 package. The emitter current of 70 mA is supplied from a - 5 \checkmark source via resistors R_{4}, and R5. For ac, only R4 at 15 ohms is operative. R4 and the built-in emitter-ballast resistor of 1.6 ohms, determine the transconductance of 01 , which is then 60 mAN .

Both the emitter curtent and the collector current of this stage follow the base voltage almost instantaneoustr. Computer simulation has shown that the transition times are less than 1 ns. The trassconductance may be increased during the ransition times by adding the "peaking-nework" R5, C2, C3. Adding this network is very much bike adjusting the rise time in the probes of fast oscilloscopes. In the cascade circuit under discussion the "peaking" network compensates rise time deterioration at the collector by speeding up the eminter current of 01 . This procedure must be applied with moderation since it may affect the largesignal swing capebitity. The resistor, Ro, should be equal to or larger than RA. The capacitor, C2, determines the tength of time during which "peaking" occurs. The product of R6 and C_{2} is typirally a few nanoseconds. The trimmer, C , can be used for fine-tuning, but is usually not important and may be omitted. If there is lead inductance associated with the path from the emitter of Q_{1} through C_{3} to ground, use of Co may cause ringing at high requencies.
2. The common-base stage uses an LT1817 transistor in a TO-117 package. Since the transistor must dissipate continuously some two Watts of DC power, good heatsinking is mardatory. The T0-117 package provides a highconductance thermal path to a heatsink or chassis. At the same time, it adds onty minimal capacitance to the circuit.

Figure 1. Circuit Diagram of Video Amplifier

Figure 2A. Rise Time at 10 V p-p

Figure 2C. Rise Time at 40 V p-p

Figure 2E. 10 nsec Pixels 10 V p-p

Figure 2B. Fall Time at 10 V p-p

Figure 2D. Fall Time at 40 V p-p

Figure 2F. 10 nsec Pixels 40 V p-p

The common-base stage has near unity current gain and acts as an impedance transformer, providing a current source at its collecior. This current charges the combined collector capacitances of C_{2}, ard the emitter-followers, O3 and O4, which add up to about 5 pF at the operating point. To this toral one must add stout one of of stray capacitance. A laad or "pulthp" resistor of 430 ahms is used at the collector of the common-base transistor, 隹. The rise time at this point may be calculated to be:
$t=.35 \cdot 2 \cdot \mathrm{Pi} \cdot 430 \cdot 6 \mathrm{pF}=5.7 \mathrm{nS}:$
This value is improved by the addition of a peaking coil of $.22 \mu H$. Theoretically, the rise time coutd be rectuced by up to 40\% (without overshoot by optimizing the inductance. Dua to the non-linear nature of the capacitances to be compensated for here, differents eflects resula for rise and fall times. This situation requires a compromise resulting in a practical improvement of less than the theorecical transition time. Neverthetess, 3 ns transtion times are obtained at the collector of 02 by means of the eminter peaking discussed eartier.

The LII 817 is packaged in a comman-base corrfiguration. This means that the transistor base is connected to two symmetrizal low-inductance base keads. As is well known, basolcad indur. tance may cause instabilities in common-base configurations. To prevent this from happening, base damping resistors, A7 and As, have been added. The value of these resistors depends on the device bias point and the circuit layout. If cocilations occur, they woutd be near a Gigahert or higher, and therelore may not be seen on anything but a sampling oscilloscope. They will attect rise times and output swing capabirity. Instabitities may be easily detected with a spectrum anatyer connected to the inpul jack of the video ampffier. Enough signal will feed back trough the collector capacitance of 01 to resch the analyzer.
3. The emitterfollowers, Os end OA_{4}, are a complementiary pair of transistars, LT1829 and LT5839, in $\mathrm{T} 0-39$ packages. The transistors are biased to the trreshhotd of conduction by two diodes, Dl_{1} and O . These diodes should be reativedy large, stow rectifier ivpes, each providing no more than 0.6 V of bias with a forward diode current of 70 mA . The diodes have low, largely capacitive impedarces at hight frequencies, and should be connected with shont leads between the bases of O_{3} and Q_{4}.

The emitter followers provide temporary charging currents to the coutpul circuit whenever the valtage across the load is changed. In case of a
display with high contrast and many transitions, . the current in O_{3} and OA_{4} may become appreciable, causing the transistors to hear up. The elevated junction temperature stifts the bias point from Class " B " in the direction of "AB."

If the eminters of these transistors were connected drectry, a DC component of current would flow from the 60 V supply through the devices to ground. This "pole-armen" weuld furthe heas ip the junctions and might lead to thermal runaway. In the circuit described, this situation is prevented from occurring through the use of the emitter stabiting resistors R10 and Rill. Using capacitor, CA, prevents deterioration of the dynamic operation of the circuit.

A simpler, more primitive way to avoid thermad problems, is to use only one bias diade, or none al all. Doing this, however, has serious effects on the gray scale linearity at mid-range.
4. The output circuit The LT1839 and 175839 transistors have excellent peak current handing capabibities. Thes emitter currents react vitually instantaneousty to the base voltage. Even when supphying several hundred millamperes of peak charging current, the base-toemitter gain holds up well. It is therefore possible to dive more elaborate had configura tions than a bare capacitance. This ability may ease interconnect problenis. The cirain described in Figure 1 is powertul enough to accommodate a piece of shistled cable between the CRT and the video amplifier. A win-lead line of a single wire connection may also be used instead of the shiedded cable. The cricuit is not onty able to tive edaborate interconnect netwarks, but also to handle substantially larger CRT capacitances without significant penalties in rise and tall times. For instance, this cricuit is capable of driv. ing 15 pF with 3.8 ns transtion times.

In all cases, the presence of additional reactive circuit elements causes the output circuit to have resonances which will cause rimging or over. shools, it the output circuit is not properly damped. To this end, a variable resistor, R12, is incturded in the circuit. When adiusted for critiaal damping, the waveform will look smooth ecross the load capacitance.

In the demonstration circuit, lfig. 11, a 6.5 pf chip capacior simutates the CRT cathode capaciance. It is connected across a special jack, which has been designed for the Tektronix FET probe, Type 6201. Probe, jack and chip have a combined capacitance of BpF. The FET probe may be used in cominsccion with Tektronix sempling scopes or reat-ime scopes with bartwitths of 300 MHz or more.

One may be tempted to use stower instruments, such as a 200 Mita type, and correct mathematically for the addritional transsition time contributed by the scope. We do not recommend this approach since stower scopes appear to produce wave shape distortions which lead to misteading rise time values.

N. AMPLIFIER PERFORMANCE

Figure 2 contains photogrephs showing rise and fall times at 10 V and 40 V peak-10-peak swing. Also shown are some response curves generated by the well-known circuit analysis program SPCE. Careful modelling of the semiconductors used, according to the theory of Gummel and Poon, restited in good agreement between computer and laboratory. generated performance data. In addition, computer anaysis offers insights, which cannot be obtained by practical measurements.

Shown in Figure 3 are the superimposed plots of the input voltege at the base of 01 and the outiput vatage across the CRT capacitance. The second set of plots, figure 4, displays the collector-curent wave form of Q_{1} and the combined emitter circuits of the complementary set of enitter followers. The collector current of O_{1} shows clearty the effect of "peaking," introduced by the emitter circuit components, P6, C2 and C3. Note that under full swing conditions 140 V p-p outputi), the wavelorms are not quite symmetrical. The effect on the transition times of the output voltage, however, is minimal.

The example shown in both Figures 3 and 4 correspends to a pixel-time of 10 ns , which is the practiral minimum for a system with 3 ns transtions. When operating continuousty at this rate, approx. imately 25 mA of average current flows in each one of the emitter-followers. This causes a significant rise in case temperature for these devices. It is therefore recommended that clip-on heat radiators be used.
There is no electrical penalyy for this measure, since the collectors are on ground potential.

Heassinking becomes absolutity mandatory if one explores the limits of the amplifier by operating at 100 MHz and beyond.

V. CONCLUSION

An ampififier was developed which meets all needs of a highresolution CRT monitor. While practical considerations played an important pan in the circuit reaication, the prinary purpose was to demanstrate transistor capabiity. It is hoped that enough background information was given to allow the reader to taitor his cricuin to his specific needs.

Figure 3. Computer Generated Voltage Plots

Figure 4. Computer Generated Current Waveforms

A HYBRID VIDEO AMPLIFIER FOR HIGH RESOLUTION CRT APPLICATIONS

Motorola RF Devices has used their unique high frequency RF semiconductor capabilities and thin film hybrid expertise to produce a hybrid video amplifier with less than 2.9 ns rise and fall time for a 40 V output swing. This video amplifier provides a low power dissipation solution to a problem that has been limiting the performance of ultra high resolution CRT monitors: video amplifier speed. Many of the 1024×1024 and 1280×1024 pixel, 64 kHz horizontal sweep rate CRTs that are used in CAD/CAM and high resolution graphics applications have not realized their potential performance because of the speed of their video emplifiers. Video amplifiers with 3.5-4 ns rise and fall times often found in these high resolution CRTs do not provide optimum picture quality when the CRT has approximately 10 ns to energize each pixel. A slow video amp will produce dimmer vertical lines than horizontal lines or may force monitor designars to other compromises such as a slower sweep rata which may produce flicker, or lower cathode voltage which will produce a dimmer picture. The hybrid described here solves these problems.

SUMMARY

The Video Amplifiers, CR2424 and CR2425, are hybrid integrated circuits designed for high resolution CRT Video Amplifier applications. They are capable of delivering 40 volts peak-to-peak output with overshoot typically less than 5\% into an 8.5pf load. Typical 10.90\% transition times are 2.6 nsec with a bandwidth of better than 130 MHz . They have excellent gray-scale linearity, are dc coupled and do not require an external load-resistor.

CONSTRUCTION

A. Mechanical

The amplifier is housed in a proven package, which consists of a plastic housing, attached to an aluminum heatsink. Dimensions and pin configurations are shown on the attached specification sheets. The circuit uses special silicon transistors mounted on heat spreaders on an alumina substrate with thin.film resistors and gold metalization. The substrate is soldered to the heatsink.

The heatsink is supplied in two versions, CA Low Profile which is designated CR2424, and a taller heatsink version, CR2425. These two package styles are shown in Figure 1. The electrical characteristics of these two amplifiers are iden. tical. The heatsink style choice should be based on ease of mechanicalielectrical interface. In both cases, the heatsink is at ground potential and should be attached directly to the chassis or external heatsink for mechanical stability and heat conduction to ambient.

This CR2424 hybrid driver can also be supplisd in a hermetically sealed package. The hermetic version is designated CR2424H and can be streened to Mil Sid 883 method 5008.

B. Electrical

The circuit uses bipolar silicon transistors in a two-stage feed-back amplifier configuration. The output is supplied by emitter.followers. Because of the complementary circuitry employed, there is no need for a load (or pull-up) resistor.

Figure 1. Package Types

The power consumption is typically 3.0 watts for average picture content and a maximum of 6.0W for 10 ns continuous black to white transitions or worst case situations. The electrical pin connections are shown in Figure 2.

C. Thermal

Thermal analysis of an amplifier design is a very essential issue to ensure amplifier reliability. Heat is one of the most critical factors that determines how long the amplifier operates.

The ability to examine the CRT circuit thermally under operating conditions is absolutely necessary. The infrared microscanner was used for evaluation of the CRT hybrid amplifier from the standpoint of thermal resistance and operating temperature.

With the heatsink temperature stabiized at $60^{\circ} \mathrm{C}$, the maximum transistor jumction temperature was measured at $108^{\circ} \mathrm{C}$. This is a very safe value, especially for devices with all gold metalization as used here. The maximum temperature occurs when the output voltage is either at its lower or upper extreme. Under this condition the maximum power dissipation on the die will be approximately 1.6 W . Thus, the thermal resistance can be calculated to be $30^{\circ} \mathrm{C}$ W.

Under normal operating conditions (normal operating conditions means an average picture content) the hottest transistor will dissipate approximately IW. Again, with the heatsink temperature stabiized at $60^{\circ} \mathrm{C}$, the transistor junction temperature will be $60^{\circ} \mathrm{C}+30^{\circ} \mathrm{CW} \times$ $1 \mathrm{Wi}-90^{\circ} \mathrm{C}$. This is a very sate value for this kind of amplifier for a long life time.

(CASE 714G-01, STYLE 1)
Figure 2. Pin Configuration P/N CR2424

APPLICATIONS

A. Output Characteristics

The hybrid is intended to be used as the fina! stage of very fast video circuits. Properly driven, it can produce continuously alternating 10 nsec pixels with 40 volts swing and excellent brightness. The nominal load-capacitance is 8.5 pf .
Other values may be accommodated, since the output voltage is supplied by a pair of emitter followers, and is faity insensitive to changes in load capacitance.

Often a wise connection of some length batween the output of the modula and the CRT cathode cannot be avoided. In this case a resonant circuit is formed, which may cause objectionable ringing or overshoot at its resonant frequency. To avoid this condition a damping resistor must be used in series with the lead inductance. For critical damping the value of this resistor becomes

A resistor is often desired at this position also for protection against arcing. In practice, the optimum value of resistance may be determined experimentally during the bread-boarding stage.
Typical values are 50 to 100 ohms. The lead. inductance may be artificially increased by a few tenths of a microhenry to obtain a desired praking effect. Any change in inductance will require readjustment of the damping resistance, as stated by Equation (11).

A short piece of cable (75 or 93 ohm) or 300 ohm twin-lead, terminated by a capacitance, will act similar to an inductance in the frequency range involved. In this case a damping resistor must also be used.

The output terminal of the hybrid is not shortcircuit proof. Any resistance from this ppint to either ground or $\mathrm{B}+$ should not be less than 600 ohms.

B. Input and Transfer Characteristics

The de transfer characteristics of the module are shown in Figures 3, 4 and 5.

It is seen from Figure 3 that, at $d \mathrm{c}$, an input current swing of $\pm 6.25 \mathrm{~mA}$ causes the output voltage to change by ± 20 volts. The next plot (see Figure 4) relates the input voltage, as measured at RF input port to the output voltage. The amplifier is phase-inverting. The ratio between thase voltages is approximately 13.5 . From the above values, one may calculate a low frequency input impedance of ~ 240 ohms at the RF input port.

Figure 5 is a plot that relates the input voltage, as measured immediately at module terminal 1 ,
to the output voltage. The ratio between these voltages is approximately 230 . From the above values, one may calculate a low-frequency input impedance of ~ 15 ohms at Pin 1.

Pin 1 is an internal dc feedback node and thus, as we can see, has a low impedance looking in from the outside. Pin 1 must be fed from a series network made up of a resistor with a shunt capacitor for high frequency pre-emphasis. An appropriate input network is shown in Figure 7 and is included as part of the standard test fixturing.

With the input terminal open, a dc level of approximately 1.4 volt exists at this point. Under this condition the module output voltage is approximately one-half of the supply voltage applied.

GENERAL CONSIDERATIONS

A. Test Circuit

The test circuit used to evaluate the hybrid module is shown in Figure 7.

The input is driven from a fast pulse generator, such as the Tektronix model PG502. It is impor. tant that the internal generator impedance is 50 ohms. It is also advisable to keep the cable length between the generator and the test circuit at a minimum; preferably only a barrel connector is used.

Since the module is dc coupled, the input drive voltage must be adjusted such that the driving wave form is centered around 1.4 volts. If the pulse generator used should not allow the setting of the de level, a biasing current, injected at module terminal 1 , through a resistor of more than 1 kilochm, may be applied in order to adjust the desired quiescent point of the output voltage.

The output is taken from terminal 9 with an active FET oscilloscope probe fitted with a 100:1 voltage divider. This probe adds 1.5 pf to the load capacitance, bringing the total load capacitance to 8.5 pf .

The input circuit contains a series resistor and capacitor in parallel, which is tuned for good response when driving with a 50 ohm pulsegenerator. These components perform a RC "praking" circuit.

B. Practical Circuits

The module is best driven from a low-impedance source, such as an emitter follower. The reader is invited to experiment with a circuit as shown in Figure 8.

The driver transistor can be an LT2001,
biased at about 30 mA . The collector lead must be by-passed for RF as close to the transistor as possibls. For all common-collector for commonbase) circuits, a base resistor of ~ 20 ohms is recommended. It helps suppress spurious oscillations, which may occur in the GHz range and are difficult to detect. Resistors R1, R2 and R3, and capacitor Cl_{1} and coil L 1 are adjustable for desired circuit gain and response. Typical values may bs:

$$
\begin{aligned}
& R_{1} \approx 508 \\
& R_{2} \approx 215 \Omega \\
& C_{1} \approx 90 \mathrm{pF} \\
& R_{3} \approx 508 \\
& L_{1} \approx 50 \mathrm{nH}
\end{aligned}
$$

The pulse generator used should allow changing the dc level in order to set a quiescent bias point of about 1.4 V at the input of the module.

C. Frequency Response

In the literature and in many equipment specifications frequency response and rise-times are often treated as having a fixed relationship. The equation frequently quoted is
$\operatorname{tr10.90\%)}=.35$ f3dB (2)
It can be shown that (2) indeed applies for the simple case of a single-pole R.C network. In reafi. ty, video amplifiers have much more complicated transfer functions, and the above equation holds true only in a very genaral way.

In addition to the proper gain response, another amplifier characteristic is of great importance.
Since a symmetrical square wave consists of a fundamental frequency and odd harmonics thereof, the preservation of the phase-relationship between all frequency components, while passing through the amplifier, must be guaranteed. This requirement is tantamount to specifying a "linear. phase" response or, in other terms, a uniform delay. Amplifiers having constant group delay exhibit smooth, monotonically decreasing frequencyresponse curves. One must be wary of responses which show ripple or paaking at high frequencies. Although sometimes impressive in terms of bandwidth, such amplifiers often have poor transient response. Shown in Figure 6 is the sine-wave frequency response of the CR2424 in its test fixture with the input variables proviously adjusted for best rise and fall times. The output voltage is 20 V peak-to-pseak. The sine-wave signal generator has a 50 ohm intemad impedance. The -3dB point occurs at about 200MHz. For 40 V output swings the -3 dB bandwidth is typically 145 MHz . Actual photographs of CR2424 output waveforms driving a 8.5 pf load are shown in Figure 9.

Figure 3. Output Voltage versus Input Current

Figure 4. Voltage Ratio at RF Input Port

Figure 7. Test Circuit
 VCC - 6CV Nominal

Figure 5. Voltage Ratio at Port 1

Figure 6. Frequency Response of CR2424

Figure 8. Experimental Circuit

Scale 10V per Div.
Rise Time (10.90\%)
$\mathrm{tr}=2.2 \mathrm{nsec} \mathrm{tr}$ typical $=2.5 \mathrm{nsec}$

Scale 10V per Div.
Output Signal at 40V p.p $\mathrm{f}=50 \mathrm{MHz}$ (10nsec Pixels)

Scale 10V per Div.

Scale 10V per Div.
Fall Time (10.90%) $\mathrm{tf}_{\mathrm{f}}=2.2 \mathrm{nsec}$ tit typical $=2.5 \mathrm{nsec}$

Output Signal at $40 \mathrm{~V} \mathrm{p.p} \mathrm{f}=10 \mathrm{MHz}$

Scale 10 V pet Div.
Vout $=40 \mathrm{r} p \cdot \mathrm{p}$

Figure 9. CR2424/2425 Output Waveforms Across 8.5 pF Load

MECHANICAL AND THERMAL CONSIDERATIONS IN USING RF LINEAR HYBRID AMPLIFIERS

By Don Feeney
Motorola RF Devices

Abstract

Motorola's thin film hybrid amplifiers are medium power (0.2 W to 2.0 W power output) broadband devices (1 to 1000 MHz) that are biased in a class A mode for linear operation. To insure a proper electrical/mechanical interface with adequate RF/thermal characteristics, certain guidelines are presented for the design engineer to obtain maximum electrical performance and the longest operating life.

THERMAL CONSIDERATIONS

A question that often arises from engineers using our hybrid amplifiers is "What is the thermal impedance?" Thermal impedance (expressed as $\theta \mathrm{JC}$) is a very real and important parameter for the RF design engineer using discrete solid state devices. However, this term loses its meaning in a multistage hybrid amplifier. Each stage may be blased at different quiescent conditions resulting in different junction temperatures under a given set of environmental conditions. Additionally, hybrid circuit design engineers may speak of θ_{JC} referring to the thermal impedance of a single transistor die mounted on a hybrid circuit using thelr particular assembly processes. However, this term has no meaning to the customer using their product who can only compute the power consumption of the total amplifier.

To avoid this confusion, Motorola RF Devices simply rates the maximum operating case temperature for their RF linear hybrid amplifiers. These amplifiers are designed so that under the worst case operating conditions, the maximum junction temperature of any of the transistor die will be below $150^{\circ} \mathrm{C}$. This junction temperature correlates with our two years of accumulated reliability data which predicts an MTBF in excess of 142 years.

HEATSINK YOUR HYBRID

Like all RF power'devices, hybrid amplifiers require heatsinking for proper operation. How much heatsinking is necessary? As much as is required to maintain the case operating temperature at the maximum value under worst case ambient temperature and maximum supply voltage. The presence or absence of the RF signal is insignificant due to the class A bias conditions. Reducing the supply voltage will decrease the power consumption, but it will also decrease the linearity. Attach the hybrid amplifier directly to the chassis, to a module card sidewall, to a small baseplate, or to a mounting bracket that is corinected to one of the above. But before you complete your design, verify that the maximum case (flange) temperature for the hybrid amplifier is within the manufacturer's specified limits under your worst case operating conditions.

One additional note of caution. DO NOT attempt to lap or file the heatsink of the hybrid amplifier. Not only does this void the warranty (considered "mishandling" by the manufacturer), but you can induce substrate cracking during the machining operation. If you need a shorter heatsink, consider the hermetic package option or the low profile package avair able on some models. Motorola RF linear hybrid amplifiers are shipped with a mounting surface flatness of $\pm .002^{\prime \prime}$. To improve heatsinking, thermal grease can be used.

PRINTED CIRCUIT BOARD INTERFACE

All Motorola RF linear hybrid amplifiers are intemally matched to a nominal characteristic impedance of 50 or 75 ohms, both at the input and the output. This not only reduces the external components normally required to match to these impedances in discrete designs, but it also simplifies the requirements for interfacing printed circuit board connections - for short path lengths, strip line width has littie effect on RF performance.

Motorola RF linear hybrid amplifiers feature $.020^{\prime \prime}$ diameter gold plated pins' spaced at $.100^{\prime \prime}$ centers. Nominal pin length is $.460^{\prime \prime}\left(.375^{\prime \prime}\right.$ for hermetic package). ${ }^{2}$ There is provision for a total of nine pins, but unused pins will be missing (refer to pin configuration diagram for the particular hybrid amplifier). Viewing the hybrid from the top, pin 1 is identified on the left. This is the RF input, usually transformer coupled. ${ }^{3}$ The two adjacent pins are ground connections. The middle three pins are reserved for power supply connections. Positive polarity units have the power supply in pin located in the midde.e. ${ }^{4}$ Units designed to operate from a negative supply have the power supply connection offset one pin to the left to guard against inadvertent installation in an improper test fixture. The extreme right hand pin is the RF output, and the two adjacent pins are ground connections. All ground connections are internally connected to the flange, except as noted on the functional schematic (refer to particular data sheats).

EXTERNAL COMPONENTS

Although it is not specified as a requirement on the data sheets, it is usually good RF practice to add a low impedance RF bypass capacitor (e.g.; $0.1 \mu \mathrm{~F}$ chip capacitor) located near the power supply pin. Additional decoupling is normally not required. However, some Motorola RF linear hybrids require external chokes and capacitors for proper operation. ${ }^{5}$ Chip capacitors are recommended. A broadband $30 \mu \mathrm{H}$ RF choke may be constructed by winding 30 turns of \#36AWG magnet wire on a Ferroxcube 891 T050/4C4 core (alternate core is Indiana General P/N CF 12001). With an accompanying order of hybrid amplifiers, this choke may be procured through Motorola.

For Motorola hybrid amplifier model CA2820, the external chokes isolate the transistor from the power supply. Positioning of these chokes will have an effect on the high frequency end of the amplitude response.

TEST FIXTURES

Figures 1 through 10 detail the assembly of standard test fixtures for Motorola's line of RF linear hybrid amplifiers. Much of this mechanical information will prove useful to the engineer who is designing one of these units into his equipment. The details of the test fixture assembly for the CA2820 presented in Figure 7 apply to most of the standard RF linear hybrid amplifiers (just substitute PC boards, adjust pin spacing, and remove external components as required). Special
provisions for adapting this same test fixture for the low profile package, the bent pin option, and the hermetic package option are presented in Figures 8, 9, and 10.
' Pin diameter for hermetic package is $.018^{\prime \prime}$.
2 These pins will mate with sockets manufactured by Amphenol (P/N 502-20071-572) and Barnes (P/N 027-01802).
${ }^{3}$ Except for CA2820, which has an internal DC blocking capacitor at the input.
${ }^{4}$ Except for CA2820 and CA2870. Refer to individual data sheets.
${ }^{5}$ e.g. CA2820, CA2870

NOTES:

1. All dimensions in inches, tolerance $\pm .005$.
2. Material is double sided glass epoxy (G 10).
$1 / 16^{\prime \prime}$ thickness. 1 o2. cooper, solder plated
3. TF- 06 used for CA2820 only. All other models use TF. 03.

Figure 1. PC Board Construction for Hybrid Amplifier Test Fixtures

AN1022

Figure 2. Heatsink Base Plate Construction for Hybrid Amplifier Test Fixture

NOTES:

1. All dimensions in inches, tolerances $\pm .005$.
2. Alateriat is aluminum.

Figure 3. Adapter for Hermetic Package to Standard Hybrid Amplifier Test Fixtures

AMPHENOL PIN US-625IU (508) TROPOMETER PIN UBJ-20(75Q)

Figure 6. Modifications to BNC Connector

AN1022

Figure 7. CA2820 Test Fixture Assembly (Case 714F-01)

Figure 9. Text Fixture Assembly for Hybrid Amplifiers with Bent Pin Option (Case 714J-01)

Figure 8. Text Fixture Assembly for Hybrid Amplifiers in Low Profile Package (Case 714G-01)

Figure 10. Test Fixture Assembly for Hybrid Amplifiers in Hermetic Package (Case 826-01)

MOUNTING TECHNIQUES FOR RF HERMETIC PACKAGES

ABSTRACT

Motorola RF Linear Hybrid Amplifiers are available in three package types; the plastic "CA" package, the low profile "CA" package, and the hermetic SINGLE-IN-LINE-PACKAGE (S.I.P.). The two "CA" type packages are discussed at length in applications note AN1022, "MECHANICAL AND THERMAL CONSIDERATIONS IN USING MOTOROLA RF LINEAR HYBRID AMPLIFIERS." The hermetically sealed package will be dealt with in this note. Guidelines for obtaining suitable interface between these packages and the printed circuit board are presented as well as Hi-Rel screening capabilities for military applications. Proper attention to mechanical details will insure long operating lifetime with optimum electrical performance.

THERMAL CONSIDERATIONS

A question that often arises from engineers using our hybrid amplifiers is "What is the thermal impedance?" Thermal impedance (expressed as $\theta_{\mathrm{J}} \mathrm{C}$) is a very real and important parameter for the RF design engineering using discrete solid state devices. However, this term loses its meaning in a multi-stage hybrid amplifier. Each stage may be biased at different quiescent conditions resulting in different junction temperatures under a given set of environmental conditions. Additionally, hybrid circuit design engineers may speak of $\theta_{J C}$ referring to the thermal impedance of a single transistor die mounted on a hybrid circuit using their particular assembly processes. However, this term has no meaning to the customer using their product who can only compute the power consumption of the total amplifier.
To avoid this confusion, Motorola RF Devices simply rates the maximum operating case temperature for their RF linear hybrid amplifiers. This information is given in Table 1 under Case Burn-In temperature. These amplifiers are designed so that under the worst case operating conditions, the maximum junction temperature of any of the transistor die will be below $150^{\circ} \mathrm{C}$. This junction temperature correlates with our two years of accumulated reliability data which predicts an MTBF in excess of 142 years.

heatsinking

The RF S.I.P. outline is shown in Figure 1. This package is used for medium power amplifiers with up to 15 watt of D.C. power dissipation. The RF SIP package is mounted on the groundplane side of the printed circuit board, with the pins soldered on the circuit side of the board. This mounting technique is compatible with the technique used on lower power TO-8 packages. Due to the large amount of power dissipated in the package, the P.C. board groundplane may not provide adequate heatsinking. Additional heatsinking, will generally be required to insure that the case temperature is kept below the maximum rating.

Figure 1. RF SIP Option (Case 826-01)

This additional heatsinking can be easity provided by a commercial heatsink sandwiched between the amplifier case and the P.C. board as shown in Figure 2. How do we determine which heatsink will work best for a given application? In order to answer this question, two important heatsink characteristics must be examined. The first characteristic is the thickness of the heatsink plate. Short lead lengths are a must for optimum RF performance. Since the amplifier leads must pass through both the heatsink plate and the P.C. board before making electrical contact, the minimum lead length is determined by the total thickness of the board and plate. As a rule of thumb, this combined thickness should be less than $0.190^{\prime \prime}$ for operation to 500 MHz and less than $\mathbf{0 . 1 6 5 "}$ for
operation to 1000 MHz . The second important heatsink characteristic is the thermal efficiency. The heatsink must provide a low thermal impedance path from the amplitier case to ambient. Heatsink manufacturers refer to this impedance as θ CA and they specify it in ${ }^{\circ} \mathrm{C}$ per watt. Low values of θ CA correspond to high heatsinking efficiency. We will now examine several heatsinks which have both thin mounting surfaces and high efficiency.

For applications where air flow around the heatsink is available, low cost finned heatsinks can be used. The heatsinks shown in Figures 3 and 4 are of this variety. The heatsink shown in Figure 3 (AAVID' \#6070) has a mounting surface thickness of 0.091 " and a θ CA of $7.2^{\circ} \mathrm{C}$ per watt for a $4^{\prime \prime}$ section. If this heatsink were

Figure 2.

Figure 3.

Figure 4.
used with a common glass-epoxy P.C. board, $0.062^{\prime \prime}$ thick, the total thickness of the board and heatsink would be $0.152^{\prime \prime}$. This combination would allow amplifier operation to 1 GHz . Also, for each watt of D.C. power dissipated in the hybrid, the case temperature will rise $7.2^{\circ} \mathrm{C}$ above ambient. The heatsink shown in Figure 4 (AAVID ${ }^{1}$ \#60235) has a flange thickness of $0.109^{\prime \prime}$ and a ${ }^{\theta} \mathrm{CA}$ of $6.0^{\circ} \mathrm{C}$ per watt for a 4 " section. For applications where air flow is not available, the configuration shown in Figure 5 can be used. Here, a custom heatsink was built out of aluminum and bolted to a chassis (infinite heatsink). The mounting surface thickness for this heatsink is $0.062^{\prime \prime}$ and the ${ }^{\theta} \mathrm{CA}$ was measured at $1.8^{\circ} \mathrm{C}$ per watt.

In order to demonstrate this mounting technique, an amplifier was built using the heatsink shown in Figure 3, and $0.062^{\prime \prime}$ G-10 circuit board. The amplifier (see photo) consists of a TO-8 hybrid driving an RF SIP hybrid. The overall gain is 29 dB from 10 MHz to 700 MHz , with a third order intercept point of 41 dBm . Total D.C. power dissipation on the board is 6.8 watts resulting in a temperature rise of $50^{\circ} \mathrm{C}$ from case to ambient. Since both hybrids are rated at $100^{\circ} \mathrm{C}$ maximum case operating temperature, the maximum ambient temperature will be limited to $50^{\circ} \mathrm{C}$.

HI-REL SCREENING

Motorola RF Linear Hybrids in the RF S.I.P. package are available with Hi-Rel screening to Military Standard 883C Method 5008 with the following exceptions:

- Substitute Motorola internal visual specificaiton for Method 2017.
- Substitute case burn-in temperature listed in Table 1 for temperature in Method 1015.
- Substitute constant acceleration level in Table 1 for level in Method 2001.
Consult the factory for specific requirements.

Figure 5.

Table 1.

RF LINEAR HYBRID AMPLIFIERS

Two sources of a new family of medium power broadband gain blocks for RF applications.

By Don Feeney
Reprinted with permission from "r.f. design" magazine

A new class of low cost, high performance hybrid amplifiers has emerged to assist the design engineer working in the frequency range of 1 to 500 MHz . Utilizing the low distortion and wide dynamic range performance technology developed for the CATV industry, these amplifiers feature power output capabilities previously unavailable in hybrid circuits.

What Are They?

RF linear hybrid amplifiers represent a new family of mediumpower, broadband gain blocks for multi purpose RF applications. Internally matched at both the input and the output for either 50 ohm or 75 ohm systems, these devices cover gains ranging from 17 to 35 dB , and can accommodate output power levels in excess of 400 mW . Linear class A bias conditions accommodate third order intercept values in excess of +45 dBmV . Depending on quantity and model selected, most prices fall in the range of $\$ 30$. to $\$ 60$. If you've been using transistors like the 2N3866, 2N5109, or stud mounted devices, read on. You may save a lot more than just design time.

Construction

RF linear hybrid amplifiers utilize the thin film manufacturing and construction techniques developed for the demanding CATV industry. All ceramic substrates are alumina (A1203) with gold conducting paths. Resistors are either cermet or nichrome, and are laser trimmed to better than one percent tolerance. For maximum MTBF, gold metallized transistor die are used incorporating resistive ballasting in the emitter fingers to provide even thermal distribution across the surface corporating resistive ballasting in the emitter fingers to provide even thermal distribution across the surface of the die and to eliminate "hot spotting." These transistor die are subjected to rigorous testing through an extensive wafer qualification program before being mounted on the circuit. The hybrid manufacturer must insure that the transistors used will meet the exacting requirements for gain, distortion, and noise figure.

Basic Circuit

To meet the stringent performance requirements of low distortion and low noise figure, the basic parallel cascade circuit shown in Figure 1 has emerged as the
standard gain block used in CATV repeater amplifiers. Using resistive feedback techniques to assure product uniformity, this basic circuit accomplishes gain functions ranging from 17 to 25 dB . For higher gain models, two sections of this circuit are cascaded as shown in Figure 2. To accommodate the increased package density in the same form factor, the transmission line transformers are mounted on a bridge assembly suspended above the substrate.

Packaging Technique

The form factor standardized by the CATV industry allows the hybrid amplifier to be bolted directly to the chassis frame for maximum power dissipation. The pins are located on $0.100^{\prime \prime}$ centers for easy connection to a printed circuit board. Mating sockets are manufactured Amphenol (P/N 502-20071-572) and Barnes (P/N 027-018-02).
One note of caution. DO NOT attempt to lap or file the heatsink of the hybrid amplifier. Not only does this void the warranty (considered "mishandling" by the manufacturer), but you can induce substrate cracking during the machining operation.

Heatsink Your Hybrid

Like all RF power devices, hybrid amplifiers require heatsinking for proper operation. How much heatsinking is necessary? As much as is required to maintain the case operating temperature at the maximum value under worst case ambient temperature and maximum supply voltage. The presence or absence of the RF signal is insignificant due to the class A bias conditions. Reducing the supply voltage will decrease the power consumption, but it will also decrease the linearity. Attach the hybrid amplifier directly to the chassis, to a module card sidewall, to a small baseplate, or to a mounting bracket that is connected to one of the above. But before you complete your design, verify that the maximum case (flange) temperature for the hybrid amplifier is within the manufacturer's specified limits under your worst case operating conditions. This will insure that the maximum junction temperatures of the individual transistor die will not be exceeded (usually 140 C).

Figure 1. Single Parallel/Cascade Circuit

Figure 2. Double Parallel/Cascade Circuit

Electrical Performance Features

Gain - RF linear hybrid amplifiers are fixed gain devices (17 to 35 dB) which are fully cascadable for additional gain. If adjustable gain (AGC) is required for a particular application, it must be added externally (as with a conventional pin diode attenuator).

Frequency Range - These hybrid amplifiers utilize broadband transmission line transformers and 5 GHz IT transistor die to achieve wide bandwidths and linear phase response. Although some models may be optimized over a particular frequency range to fit a certain market, these hybrid amplifiers will often deliver satisfactory performance beyond the frequency ranges - specified by the manufacturer.

Impedance - All hybrids are internally matched at both the input and the output for either 50 or 75 ohms. This not only reduces the external components normally required to match to these impedances in discrete designs, but it also simplifies the requirements for interfacing printed circuit board connections. For short path lengths, strip line width has little effect on RF performance.

Output Power - RF linear hybrids are often operated at power levels well below their maximum output capability (for example, in receiver applications). In such cases, operation at a reduced power supply voltage is recommended to reduce power consumption (assuming the full dynamic range is not required).

The maximum power capability for linear class A operation of these circuits may be restricted by several factors:
a) The operating supply voltage, which limits the maximum AC peak to peak swing.
b) The quiescent bias conditions, which limit the maximum current swing across the transformed load impedance.
c) Core saturation in the output transformer, a condition aggravated by high permeability ferrites operating at high ambient temperatures.
Changes in Performance with Supply Voltage Simply as a point of relerence, most RF linear hybrid amplifiers are characterized at a supply voltage of 24 V . However, a design engineer may operate above (to increase available output power) or below (to reduce DC power consumption) the rated supply voltage and observe little or no change in gain or frequency response. However, certain specifications are directly affected by the supply voltage:
a) Current consumption. These hybrid amplifiers are biased (quiescent operating point) in a linear mode for class A operation. The higher the supply voltage, the more current they draw. The lower the supply voltage, the lower the current consumption. There is a $1: 1$ linear relationship between supply voltage and current consumption. Therefore, power consumption varies as the squre of the supply voltage.
b) Output power capability. As the supply voltage increases, so does the maximum available output power (higher peak to peak AC swing is possible across a given load).
c) Linearity. Third order intercept, a measure of tinearity, is directly related to supply voltage. In many applications, however, these RF hybrid amplifiers offer more linearity than required. In these cases operation at a lower supply voltage is recommended to reduce power consumption.
d) Noise Figure. Just like a low noise transistor, the lower the bias current (or supply voltage, for these hybrid amplifiers), the lower the noise figure.

Reliability Screening, Military Applicattons

Since reliability is a mafor factor in the profitability of CATV systems, the component manufacturers who are supplying hybrid cirucits in volume to this competitive industry have developed extensive data bases to insure the reliability of their product. Additional reliability screens uncommon to commercial products are often added at the manufacturer's expense to insure against field failures. Reliability is a major consideration, but these hybrid devices were not designed to qualify to MIL-STD-883, level B.

For example, the caps are sealed with epoxy (non hermetic). The physical mass of the ferrite transmis-
sion line transformers prohibits excessive levels of mechanical shock and variable frequency vibration. However the manufacturers should be consulted for specific applications, because hybrid amplifiers of this generic type have qualified for certain military programs.

Why Use a Hybrid Circult?

Many engineers can design a circuit with discrete components to do exactly what they want. Selecting a hybrid amplifier from a standard product line results in some compromise, but usually offers several advantages:

Who Uses Them?
Because of their wide bandwidth and linear operation, RF linear hybrids are effective for digital (or pulse) applications as well as for analog waveforms. Their unique combination of hgh performance over a broad frequency range and low cost make them the ideal choice for a broad spectrum of major markets:

[^30]
Key Features

Linear Phase Response
Wide Bandwidth, Low Distortion
High Power Output Capabillty
Unconditional Stability and Linear
Operation into Highly Reactive Loads
Infinite VSWR Protection
High Third Order Intercept
Excellent Impedance Match
Low Noise Figure, Wide Dynamic
Range

Applications
Antenna Distribution
Cable Drivers (508 or 758)
CCD Drivers
IF Amplifiers
Local Oscillator Buffers
Repeater Amplifiers
SAW Filter Amplifiers
Signal Processing Equipment
Swept Measurement Testing
Transmitter Drivers

AN1024

SATELLITE COMMUNICATIONS EQUIPMENT

Performance - The product of years of research, the RF linear hybrid offers the design engineer low distortion levels, wide dynamic range, and noise performance that are difficult to achieve in discrete form. This "extra margin" of performance may enhiance the overall equipment design or allow more competitive specifications.
Size - If space is a consideration in the equipment design, the added real estate required for discrete circuitry may be prohibitive.

Reliability - The high degree of reliability demanded by the CATV industry has already been discussed. But given equivalent manufacturing and screening methods, hybrid cirucits offer improved system reliability over a circuit comprised of multiple discrete components. This rellability improvement is a result of reduced package count, fewer solder interconnects (each interconnect is a potential failure point). and system level testing and screening performed by the hybrid manufacturer. Consequently the hybrid manufacturer. Consequently the hybrid manufacturer is accepting a larger responsibility for reliability. The delivered product is a combination of many discrete components tested as a complete system. Losses due to individual component interaction or failure are isolated during the manufacturing cycle.

Cost - The raw cost of materials to build a replacement discrete circuit for a particular application is usually less than the initial price of a hybrid. However, the following factors are often overlooked in many equipment designs:
a) The hybrid manufacturer is absorbing the costs of incoming inspection, assembly, and test on the circuit he is providing. Manufacturing costs for equipment using discrete circuitry are always higher than equivalent equipment utilizing commercially available hybrid circuits. This is especially true if any tuning or tweaking of the circuit is required.
b) An equipment manufacturer's cost of procurement and cost of stocking are higher for a multicomponent discrete circuit than for a single thin film hybrid amplifier. These higher costs apply not only during the production build cycle, but throughout the lifetime of the equipment (spare parts inventory).
c) Engineering costs to design reliable replacement circuit. Don't forget to include the time spent in debugging and optimizing the circuit, and the time spent in productions support. The manufacturers of these RF linear hybrid amplifiers have spread their development costs over more than $1,000,000$ units operating in the field.

ELECTROIOPTICAL EQUIPMENT, SAW APPLICATIONS FIBER OPTIC APPLICTIONS

ACOUSTO-OPTIC MODULATORS
FIBER OPTIC LASER/LED DRIVERS
SAW FILTER AMPLIFIERS DRIVERS FOR CHARGE COUPLED DEVICES SUITABLE FOR ANALOG OR DIGITAL MOOULATION, ALL TYPES OF WAVEFORMS

Is the RF Linear Hybrid The

Right Choice For My Design?

In the end, the choice between a standard hybrid amplifier and a discrete circuit must be made by the design engineer. Find out what's available from the various manufactureres, what their prices are, and
what it costs your company to implement a discrete design. One thing you can be sure of: the thin film hybrid amplifiers described in this article have been proven in production and will be around for a long, long time. Probably longer than the discrete transistors they are replacing.

References

J.G. Bouchard; "Hybrid Technology - Best Supporting Actor," IEEE Transactions on Manulacturing Technology, Vol. MFT-6, No. 4, Dec. 1977, pp 65-68.
B.T. Joyce: "Hybrids - A Look at the Total Cost": IEEE Transactions on Manufacturing Technology, Vol. MFT-6. No. 4, Dec. 1977, pp. 69-72.

Bob Kromer, and Mike Turner; "Guide to Military Hybrid Microcircuits", Military Electronics/Countermeasures, June. 1978. pp 56-90.

Jim Eackus, and Al Grant; "Reliability Considerations in CATV Hybrids", IEEE Transactions on Cable Television, Vol. CATV-3. No. 1, Jan. 1978, pp 1-23.

James Humphrey and George Luettgenau: "Reliablity Considerations In Design and Use of RF Integrated Circuits", TRW Semiconductors, Feb. 5, 1976.
M.D. McCombs: "Reliability/Performance Aspects of CATV Amplifier Design", TRW Semiconductors, Jan. 24, 1977.
D.M. Feeney: "Mechanical and Thermal Considerations in Using TRW RF Linear Hybrid Amplifiers", TRW Semiconductors, September 1978.
D.M. Feeney; "Extending the Range of an Intermodulation Distortion Test", Electronics, Aug. 3, 1978, pp 121-122.

Craig Wells; "A Layman's Guide to CATV Hybrid Amplifiers", TVC, Dec. 1977.

RELIABILITY CONSIDERATIONS IN DESIGN AND USE OF RF INTEGRATED CIRCUITS

By

James Humphrey and George Luettgenau

Abstract

Reliability is a major factor in the profitability of CATV Systems. In spite of its proportionally low cost, the RF integrated circuit figures prominently in the overall reliability picture. This complex and important function is located at strategic points in the system.

Fortunately, modern design and manufacturing technology, which draws extensively from resources generated by military and space activities, assures a degree of reliability which is compatible with the most stringent requirements.

Transistor chips are the most vital elements of the RF integrated circuit. Low noise and distortion require state-of-the-art transistor structures. Gold metallization, thermal equilibrium by means of diffused balancing resistors, as well as automated process control have resulted in transistor lifetimes of over 100 years.

One of the inherent reliability advantages of IC's is the reduced number of interconnects. The full benefit of this characteristic is achieved through the use of gold conduction paths in conjunction with gold wire bonding. Perhaps the single most dangerous enemy of high reliability is excessive heat. Careful, computer-aided circuit design coupled with thermally sound, stress-free mechanical construction guarantee structural integrity and safe operating temperatures under all practical conditions. Intrared scanning helps verity the achievement of design goals.

Abuse or abnormal stresses may counteract the best of reliability. In order to avoid problems, the user must control the electrical, thermal, and mechanical environment surrounding the RFIC. Much progress in this respect has been made by the equipment industry.

INTRODUCTION

Reliability considerations are becoming increasingly important in the operation of CATV Systems, requiring an absorption of military and aerospace reliability technology into the CATV business. Market surveys show a large number of MSO's and consultants consider reliability as a major item in equipment selection.

A definition of major reliability terms is important along with an introduction to microcircuit reliability tools (both hardware and software).
An overview discussion of Physics of Construction involved with the die and interconnects must be presented.

DEFINITIONS

$R=$ Reliability

Reliability is related to the probability that an item will perform a defined task satisfactorily for a specified length of time, when used for the purpose intended, and under conditions for which it was designed to operate.

Failure

Failure is a detected cessation of ability to perform a specified function within previously established limits in the area of interest.
(a) Dead on arrival
(b) Infant mortalities
(c) Lifetime failure rates (random)
(d) End of life (wearout)

MTBF (Mean Time Between Fallures)

The total measured operating time of a population of equipment, divided by the total number of failures within the population during the measured period of time.

Average Life

The mean value for a normal distribution of lives, and generally, it applies to failures resulting from wearout.

BASIC RELIABILITY EQUATION

$R=e^{-t / m}=e^{-\lambda t}$
Where: $R=$ Reliability or probability of success
$t=$ Mission time in hours
$m=$ MTBF in hours $=\frac{\text { hours }}{\text { failures }}$
$\lambda=$ Failure rate $=\frac{1}{\text { MTBF }}=\frac{\text { failures }}{\text { hours }}$

SYSTEM RELIABILITY

1. When components are in series, failure of any one of the components will result in failure of the system.

Then: $R_{\text {drstew }}=R_{4} \times R_{1} \times R_{3} \times--R_{w}$
$\lambda_{\text {srstri }}=\lambda_{1}+\lambda_{2}+\lambda_{3}+--\lambda_{N}$
2. When the same components are in parallel (redundancy) neglecting, for simplicity, the decision-making device, the switchover function and the fail safe requirements:

RELIABILITY CURVE

The following curve represents the typical condition of operational reliability.

RELIABILITY PREDICTION ALGORITHM

The military has put considerable money and time into the study of reliability. One very useful military document is Military Handbook 217B, Reliability Prediction of Electronic Equipment. This handbook shows how to develop failure rate predictions by the use of mathematical models based on years of data collection by military agencies. A discussion of the interaction of components in the model is very useful in gaining an understanding of the overall subject.

PART FAILURE RATE MODEL λ_{p}

$\lambda_{p}=\lambda_{t}\left(\pi_{\tau} \times \pi_{\varepsilon} \times \pi_{Q} \times \pi_{r} \times \pi_{M}\right)$
Where: $\lambda_{0}=$ Part failures in failures per 10° hrs.
$\lambda_{0}=$ Base failure rate
$\pi_{T}=$ Temperature adjustment factor
$\pi_{\varepsilon}=$ Environmental adjustment factor
$\pi_{0}=$ Adjustment factor based on quality
$\pi_{r}=$ Adjustment factor for circuit function
$=0.8$ for digital hybrids
$=1.0$ for linear hybrids
$=1.1$ for combination hybrids
$\pi_{M}=$ Adjustment factor for maturity of product
BASE FAILURE RATE MODEL λ_{s}
$\lambda_{s}=\lambda_{s}+A_{s} \lambda_{c}+\Sigma \lambda_{R r} N_{R r}$ (Substrate contribution) $+\Sigma \lambda_{D C} N_{D C}$ (Attached components contributions)
$+\lambda_{P F} \pi_{P F}$ (Package contributions)
Where: $\quad \lambda_{0}=$ Base failure rate in failures $/ 10^{6} \mathrm{hr}$.
$\lambda_{s}=$ Failure rate due to the substrate and film processing
$A, \lambda_{c}=$ Failure rate contributions due to network complexity and substrate area which includes:
(a) Number of lead terminations
(b) Number of film resistors
(c) Number of discrete chip devices
(d) Type of film (thin versus thick)
$\Sigma \lambda_{R T} N_{R T}=$ The sum of the failure rates for each resistor as a function of the required resistance tolerance
$\Sigma \lambda_{D C} N_{D C}=$ The sum of the attached device failure rates for semiconductors and capacitors
$\lambda_{P F} \pi_{p r}=$ The hybrid package failure adjusted to include material and style

PHYSICS OF CONSTRUCTION

Following the enumeration and identification of symbols used in reliability algorithms, a discussion of the major microelectronic components with respect to their reliability contributions is in order:

TRANSISTORS

The transistor die is the heart of the hybrid amplifier. With four to eight devices per circuit, the transistor determines performance and is most critical to proper circuit operation.

During the last few years users have witnessed major advances in the periormance of linear broadband transistors. Often, efforts to improve one characteristic have adverse effects on other desirable features. For instance, distortion may be bettered by thinning the epitaxial collector region. This, however, leads to sensitivity to voltage transients and other abnormal operating conditions. Therefore, devices with outstanding performance in one area are prone to weakness in others. Computeraided device design coupled with volume production and tight process controls have resulted in transistors in which all essential features are in proper balance.

High f_{T} is generally recognized as an important factor in achieving wide bandwidth and uniform distortion characteristics. Gigahertz transistors, which are now being used, have very delicate patterns, involving micron and submicron tolerances. They also occupy sizable areas on the silicon wafer, since watt-sized powers have to be handled. It is only realistic to expect that all parts of the overall transistor structure are not perfectly alike, but rather resemble the parallel configuration of many, slightly differing, small devices, as shown in the figure.

Ballast Resistors

It is also apparent that the entire transistor geometry cannot be tightly thermally coupled within itself, therefore giving rise to the possibility of small sub-areas of the transistor assuming different values of temperature than others. This possible problem can be effectively combatted by adding emitter balancing resistors to the device. Ideally each emitter-site or finger should have its own resistor. This goal is easily realized in interdigitated structures. Film or diffused monolithic resistors may be used. From a process and reliability point of view, diffused resistors are preferred because they avoid the silicon-oxide barrier which has a very high thermal resistance.

Diffused Ballasting System (Only one emitter contact shown)

Metal Film Ballast Resistor

METAL MIGRATION

Some time ago a serious failure mechanism, associated with GHz transistors, was discovered. The metallization stripes of such devices, as mentioned earlier, are only a few microns wide. The metal thickness is, because of fabrication limitations, of similar dimensions. Consequently, the current density in these stripes is quite high, often reading hundreds of thousands of amperes per cm^{2} of cross-section. Under these circumstances, metal migration may occur. With such large numbers of electrons flowing in such crowded space, the probability of collisions with thermally activated metal ions is great. The
ions are propelled in the direction of electron current flow causing, in the long run, the metal to move, forming hillocks, whiskers and voids. The lifetime of a transistor is a function of three things: the current density, the temperature, and the type and consistency of metallization.

Not much leeway exists in reducing the current density (unless f_{T} is sacrificed). Changing from aluminum to gold extends the life at least by an order of magnitude. At high temperatures the difference is even more pronounced. At $150^{\circ} \mathrm{C}$, the time to metal failure for gold metallization microwave transistors is in excess of 10° hours $=114$ years. While this number is quite comforting, one is not at liberty to treat the subject of transistor chip heatsinking too lightly. A proven method for removing heat while at the same time obtaining a solid mechanical mount, has been to employ a heatspreader between the silicon chip and the IC substrate. Automatic mounting stations are used to eutectic collet mount the chip to indexed leadframes. Tight control of pressure and scrub sequence result in defect free attachment. Although one may employ other methods of heatsinking, e.g. beryllium oxide substrates for part of the circuit, the added mechanical complexity and the reduced freedom of optimal circuit layout presently outweight the minor advantages resulting from a reduction in transistor temperature.

INTERCONNECTS

One of the most important parts of hybrid circuits is the interconnect system. The ability to reduce the number, control the quality, and test them by screening complete functions, is one of the major advantages of hybrid circuits over more conventional approaches. Constant improvement in the mechanical and metallurgical systems have drastically improved reliability.

An analysis of the schematic on the standard 33dB Hybrid Amplifier will illustrate the point:

Comparing hybrid versus discrete techniques, one can show the following:

1. For each transistor used, a minimum of three interconnects corresponding to the solder joints at the PC board are eliminated.
2. For each capacitor used, a minimum of two interconnects are eliminated:
3. For each film resistor used, a minimum of four interconnects are eliminated corresponding to the connection to the resistor body and the connection to the PC board.
4. Transformer interconnects will be the same for hybrid or discrete.

The increase in interconnects in building 33dB of gain in discrete form over the same circuit in hybrid form is:

Add due to transistors	$=24$	
Add due to chip capacitors	$=12$	
Add due to resistors	$=100$	
Add due to transformers	$=$	0
Less due to hybrid jumpers	$=$	-4
Less due to active pins	$=\frac{-5}{127}$ Additional inter-	
		connects per

MIL Handbook 217B also discusses the reduction in reliability of printed circuit boards as a direct multiple of the holes required. Eighty-one additional holes are involved in making one discrete amplifier.

AN1025

33dB Gain Block

Having the interconnects made early in the manufacturing sequence, before the subsequent series of tests and inspections, has beneficial influence on end equipment reliability.
The complete functional system including interconnects is tested, screened and Q.C. sampled many times betore it even meets up with the PC board in the manufacturers subsystem.

Interconnects

COMPONENT MOUNT

The transistor heatspreaders, chip capacitors and pin connections are soldered to the metallization pattern on the substrate surface. This process is completed in a tightly controiled solder reflow furnace.

Due to the fact that the units are processed in an inert atmosphere and thoroughly cleaned and inspected early in the production process, workmanship problems are greatly reduced.

BONDS

Wire bonding was a major reliability issue for years.

Aluminum has been one of the most widely used bonding systems in the hybrid industry for many years. The main reason for this is that ultrasonic aluminum systems bond at room temperature and, hence, do not interfere with other hybrid assembly processes.
Gold thermal compression ball bonding has been a reliable standard process in the semiconductor industry for years. However, the requirement for $300^{\circ} \mathrm{C}$ bonding temperatures have kept this technique out of most hybrids. The recent changeover to all gold hybrids prompted the development of a compatible low temperature gold wire bonding system which by far out-performs aluminum.

Advantages of Aluminum Bonds

Low temperature process
Compatible with AI die metal
Low cost
High speed
Easy to loop (stiff)
Disadvantages of Aluminum Bonds
Degrades with time/temperature
Kirkendall voiding
Intermetallic formation with gold
Brittle and subject to cracks
Difficult to screen
Difficult to control

Advantages of Gold Bonding

Compatible with gold die and substrate Strength stable with time/temperature
Malleable - not subject to cracking
Easier to control process

Disadvantages of Gold Bonding

More expensive
More deformation at bond foot
Hard to form loops

Histogram of Gold Versus Aluminum Bond Strengths

Strength Versus Time on Gold Versus Aluminum Wire

RELIABILITY ADJUSTMENT FACTORS

Following is a discussion of the " π adjustment factors" in MIL Handbook 217B. These relate to the external influences on hybrid circuit reliability.

TEMPERATURE ADJUSTMENT FACTOR π_{T}

Operating temperature is one of the most important factors in reliability. As can be seen by the curve shown, great reliability improvements can be obtained by lowering the case temperature.

Failure Rate Multiplier Due to Temperature

This curve shows that a hybrid circuit, operating at a case temperature of $100^{\circ} \mathrm{C}$, has four times the failure rate as the same circuit run at $50^{\circ} \mathrm{C}$.

ENVIRONMENTAL ADJUSTMENT FACTOR π,

This adjustment factor is based on the service environmental conditions that the part will be exposed to during operation.
π_{ℓ}, Environmental Factor Based on Environmental Service Conditions

Environment	Symbol	π_{ε}
Ground, Benign	G_{μ}	0.2
Space Flight	S_{t}	0.2
Ground Fixed	G_{t}	1.0
Airborne, Inhabited	A_{t}	4.0
Naval, Sheltered	N_{s}	4.0
Ground, Mobile	G_{*}	4.0
Naval, Unsheltered	N_{t}	5.0
Airborne, Uninhabited	A^{*}	6.0
Missile, Launch	M_{t}	10.0

MATURITY ADJUSTMENT FACTOR π_{4}

The failure rate predicted by this mechanical model can be expected to increase by a factor of ($\left.\pi_{M}=10\right)$ under any one of the following conditions:
(a) New device in initial production.
(b) Where major changes in design or processes have occurred.
(c) Where there has been an extended interruption in production or a change in line personnel (radical expansion).

The factor of 10 can be expected to apply until conditions and controls have stabilized. This period can extend for as much as 6 months of continuous production.

This maturity factor is extremely important. The industry has used over 400,000 CATV modules since the first module was shipped in 1970. Since that time we have constantly improved and refined the IC. Optimum reliability is an evolutionary process depending on time, volume, defect analysis and feedback to fine tune the product and eliminate defects.

The question is where does CATV fit into this table. Mechanical and thermal casting designs are extremely important in protecting the RF IC from the external environment conditions. Still, wide variations in system placement introduce a swing factor for environmental effects, which will cause π, for CATV to fall between 1.0 and 5.0.

The user must strive to keep the components as close to laboratory zero as possible.

QUALITY ADJUSTMENT FACTOR π_{0}

This is the adjustment factor based on the quality grade of the product. This factor modifies the reliability levels by the different quality levels specified in MIL STD 883, Test Methods and Procedures for Microelectronics. These levels take into account different screening levels, qualification levels and quality conformance inspection requirements for the specified class.

	π_{Q}
MIL STD 883 Class A	0.5
MIL STD 883 Class B	1.0
Vendor Equivalent Class B	5.0
MIL STD 883 Class C	30.0
Commercial with Screening	50.0
Commercial (No Screening)	75.0

A study of the MiL STD 883 Quality Requirements allow a very important discussion of cost versus reliability. As could be expected the test, manpower, equipment, time and paperwork go up rapidly as the MIL STD Grade is increased. A relative plot of this relationship is shown below:

Many of the MIL Standard Military requirements seem unimportant in influencing CATV reliability. However, the cost versus reliability curve is real and the equipment supplier can make choices as to the type of reliability he is willing to pay for.

EQUIPMENT

It takes a massive capital investment in order to meet the manufacturing requirements for the CATV industry. The volume, quality and performance standards required have caused us to constantly reinvest for the future. Many of the invested dollars are for equipments for which the return on investment is subjective.

SCANNING ELECTRON MICROSCOPE

This instrument allows very high magnification of surface conditions not available with optical methods. Magnifications up to 100,000 times are possible with the SEM.

DISPERSIVE X-RAY ANALYSIS

This capability, which is a feature of the SEM, allows us to make a microprobe to determine the chemical composition of a sample. This is accomplished by detection of secondary emission x-rays which possess characteristic energies. The relative quantity and location of elements may then be displayed on the CRT.

VARIABLE FREQUENCY VIBRATION

This is a destructive test which is performed for the purpose of determining the effect on component parts of vibration in the specified frequency range.

X-RAY

This is a very valuable tool for detecting voids in solder or eutectic bonds.

INFRARED MICROSCOPY

The ability to examine a circuit thermally under operating conditions is absolutely necessary when designing a new product or testing a new process. The infrared microscanner is used for evaluation of new products from the standpoint of thermal resistance and operating temperature. Resolution of 0.0005 inch can be achieved.

CONCLUSIONS

- Many reliability tools are available today both in equipments for evaluation of reliability and in analytical tools such as MIL Handbook 217B for predictions of reliability.
- Hybrid circuits offer massive reliability leverage due to:
(a) Reduction of Interconnects
(b) Ability to control quality by screening
(c) Large volume of complex standard functions are easier to control
- Case temperature is very important for reliability
- A monometallic system, i.e., gold die metallization and gold wire bonding are optimum for reliability.
- Reliability can be improved by adding quality cost to the module process. This increased cost may easily be returned due to the lower failure rate.

ACKNOWLEDGEMENTS

The authors wish to thank Al Bird, TRW Systems Group Redondo Beach, California, for his technical guidance

REFERENCES

1. MIL Handbook 217B, Reliability Prediction of Electronic Equipment.
2. MIL Standard 883, Test Methods and Procedures for Microelectronics.
3. MIL Handbook 175, Microelectronic Device Data Handbook.
4. M. Flahie, "Reliability and MTF - The Long and Short of It," Microwaves, July 1972.
5. R.Y. Scapple and F.Z. Keister, "A Simplified Approach to Hybrid Thermal Design," Solid State Technology, October 1973.
6. J.R. Black, "Electromigration Failure Modes in Aluminum Metallization for Semiconductor Devices," Proceedings of the IEEE, Volume 57, Number 9, Sep tember 1969.
7. C.M. Ryerson, S.L. Webster, F.G. Albright, "RADC Reliability Notebook Volume II," RADC-TR-67-108. September 1967.
8. George G. Luettgenau, "Microwave Power Transistors," International Microwave Conference, Stock holm, 1972.

EXTENDING THE RANGE OF AN INTERMODULATION DISTORTION TEST

More often than not, a system's intermodulation distortion is characterized by its third-order intercept value, the most widely accepted figure of merit for indicating the linearity of a system. Even though IMD is extremely difficult to measure accurately and with repeatability when low signal levels are introduced into the device under test, precise measurements can be made at levels as low as 100 decibets below the desired carriee (input-signal) point. The secret is to add a tunable bandpass fitter to the measuring system and to reduce the nonlinearities inherent in the test system, thus making it possible to determine third-order intercept values of up to +50 dBm , which is more than 20 dB above that of most measuring systems now in use.

Third-order intermodulation products are generated as shown in part (a) of the figure. Consider two signals, f 1 and f , that are applied to the input of a device that has a nonlinear transfer function. If the cutput power is equally distributer at both frequencies and the frequencies are close together, equal power-distartion products will occur at $2 \mathrm{f} 1-\mathrm{f}$ and 2 f 2 f 1 .

The magnitude of these unwanted products, expressed in decibels below the output Po , is defined as the system IMD. The third-order intercept may then be found by its defining equation:

$$
\mathrm{I}=\mathrm{P}(\mathrm{~dB} \mathrm{~m})+\mathrm{IMD}(\mathrm{~dB} \mid / 2
$$

where IMD is the third-order product produced by the I intercept value, measured in decibels.

An IMD setup having wide dynamic range is shown in (b). In this case, measurements are per. formed at 30 to 500 MHz , although the gridelines set forth here will allow accurate measurements at any frequency.

The first step in measuring IMD and thus securing the third-order.intercept of a device is frequently the most difficult to attain - that of combining two input tones to the device under test without introducing distortion or spurious responses. For fixed-input-frequency setups, fitters can be employed to eliminate harmanics generated by ft and f 2 . If the input frequencies are variable, cavity oscillators should be used instead of sweep generators, because the latter's harmonic content is too high.

The best method for combining the two signals linearly is to use a resistive power combiner as shown, so that the composite signal generated will be virtually clean (no nonlinearities). To reduce third-harmonic distortion between the f and \mathfrak{f} generators, $10 \cdot \mathrm{~dB}$ attenuator pads should be used between the cavity oscillators and the power combiner. Using both the pads and the combinter guarantees a broadband input source with constant characteristic impedance facing the device under test. As the requirement for a broadband resistive source of constant impedance also applies to the load for the test device, it is wise to use a $10-\mathrm{dB}$ attenuator here, as well.

The system's measuring range is improved by placing a five-pole bandpass filter in the postamplifier chain. Having a bandwidth of less than $\Delta \phi$, this filter rejects unwanted signals f , f2, thus elininating strong but unwanted signal responses that tend to limit the dynamic range of (that is, desensitize) the test system.

For those not familiar with the procedure, IMD and third-order intercept are found as follows:

- Set channel spacing to the desired Δ^{f} (6 megahertz for the system shown in the figure).
- Set reference signal f3 to $2 \mathrm{fl}-\mathrm{f} 2$.
- Using a power meter, set Po to the desired output power level for each of the three sources independently. Connect only one source at a time.
- With f3 connected, tune the bandpass fitter to f3. With the variable attenuation at 30 to 50 dB , set a reference level on the spectrum analyzer. Make sure the postamplifier is not in compression by inserting 30 to 50 dB of addi. tional attenuation. One should then observe 30 to 50 dB of signal reduction on the spectrum analyzer.
- Apply f 1 and f2. Decrease attenuation in the variable attenuator to bring the signal within range of the analyzer. Add the change in attenuation to the value of surpression as read on the analyzer to obtain IMD.
- Adjust fi and filter to $2 \mathrm{f}_{2}-\mathrm{f} 1$ and repeat all steps. IMD should be within 3 dB of the first measurement.
- Calculate the third-order intercept from Eq. 1.

Wide ramge. mitermodulation distortion is created if two input frequencies pass through a norlinear devite (a). System measures (MD over wider range than standard setups by using cevity
 combiner of $\mathbf{i 1}$ ard 12 . Pads ($6 d B$ and $10 d B$) offer isolation between system elements. With satup, measurements al IMD can be made at hevels 100dB below carrien.

RELIABILITY/PERFORMANCE ASPECTS OF CATV AMPLIFIER DESIGN

By
Michael D. McCombs

Abstract

The reliability advantages to be offered by the RF hybrid amplifier as used in CATV applications are discussed. The active part of the hybrid amplifier is the transistor. Metallization, ballasting and ruggedness are reliability related factors that must be considered by the device engineer when designing a high performance CATV transistor. Vertical and horizontal geometry and device distortion mechanisms are performance related factors that must also be taken into account. The interrelation between these factors is examined. Life test data is then presented to illustrate the advantages to be gained by careful device design.

I. INTRODUCTION

The cable television system operator buys equipment which he knows has demonstrated a certain minimum level of performance, or in other words, equipment that meets his specifications. If he questions this performance he can run various electrical tests to check it.

Another question that we would like to be able to answer is, how long will his equipment operate before it fails. costing him downtime and repair. This is the question of reliability and to understand this it is necessary to understand the factors that go into designing tor reliability.

The primary building block of a reliable CATV amplifier is the RF integrated circuit. This concept possesses many advantages over the PC board discrete design including a reduced number of interconnects and the ability of the manufacturer to effectively test the system before delivery to the equipment manufacturer.

Going one step further, the basic constituent of the integrated circuit is the transistor itself. It is in the design of this transistor that the ideals of high performance with reliability can be effectively realized.

The ultimate test is to see how long a part operates in the field without failing. The best way to simulate this is by means of a life test. Life test data is included as a means of demonstrating the results of a careful design.

II. WHAT IS RELIABILITY

One definition could be that reliability is something that can cost you money if you don't have it. The dictionary defines reliability as "the quality describing that which is dependable or honest." To build honest transistors and amplifiers is a noble concept but one which may be difficult to measure. So in the everyday sense, reliability is a somewhat abstract idea that is difficult to describe quantitatively. In engineering, however, reliability has an exact meaning.
"Reliability is the probability of a device performing its purpose adequately for the period of time intended under the operating conditions encountered." ${ }^{3}$

When an amplifier is designed for a certain level of gain, it may happen in practice that the gain is less than that called out in the specification. In certain cases this may be acceptable if the amplifier turns out to be very reliable. However, another amplifier, which supplies the full gain with ease, may breakdown in operation because its components are being taxed to their limits. This is where reliability enters the picture. It is possible to achieve fuil performance and still have state-of-the-art reliability.s

We said that reliability is the capability of equipment not to break down in operation. The measure of an equipment's reliability, then, is the frequency at which failures occur in time. A failure is a malfunction which causes the component to violate the requirement for adequate performance. The frequency of such failures is called the failure rate. The reciprocal of the failure rate is called the mean time between failures or MTBF.

$$
\begin{aligned}
& \lambda=\text { Failure Rate } \\
& \frac{1}{\lambda}=\text { MTBF }
\end{aligned}
$$

Referring to Figure 1, it is seen that there are three basic types of failures; early, chance and wearout failures. ${ }^{2}$

Early failures occur early in the life of a component and result usually from poor manufacturing. These can be eliminated by a 'burn-in' process.

Wearout failures are a symptom of component aging. These types of failures can be eliminated by either replacing at regular intervals or by designing for longer life than the intended life of the equipment if the components are inaccessible.

Chance failures occur at random intervals and are due to sudden stress accumulations beyond the design strength of the component. Since the other failure types are relatively easy to eliminate, performance reliability should be determined by the chance failures.

For chance failures only, reliability may be expressed by the exponential relationship

$$
R(t)=e^{-\lambda t}
$$

where λ is the failure rate and t is a given operating time; t must never exceed the 'useful life' of the device. The derivation of this reliability expression is found in the Appendix.

System failures are caused by component failures. When components can fail only because of chance, the system will fail only because of chance. The design engineer is responsible for the reliability which is characteristic of his equipment. If he desires to reduce the number of chance failures which occur during the useful life period of his equipment, he must keep several key points in mind.s

Figure 1. Component Failure Rate as a Function of Age

1. Design components to accept overstress; the normal operating point should be well below rated values, including temperature.
2. Provide good packaging with adequate heat sinking.
3. Design with as few components and interconnects as possible.

III. HYBRID CIRCUIT RELIABILITY ADVANTAGES

The hybrid circuit is the heart of the CATV amplifier. This assembly must perform its duty while experiencing a variety of electrical and environmental extremes. If the hybrid circuit should fail, then the cost to the system operator is high. For this reason the hybrid circuit should be an extremely reliable plece of equipment.

There are certain qualities of a hybrid circuit which make it an inherently reliable assembly.

One subtle advantage relates to the wear out life of components. Replacement of a hybrid circuit means replacing every amplifier component which resets the clock on the entire amplifier as far as mean life is concemed. Replacing a component in a discrete amplifier does not. All of the other discrete components continue to approach their wear out life.

The metallization system of the hybrid is another advantage. The gold metallization which is used for interconnects on the hybrid circuit allows the designer to have the high conductivity of gold for use in tying together the various components of the circuit, while having the additional reliability advantage of a monometallic gold system in wire bonding from the transistor to the hybrid. Even though the hybrid circuit utilizes heat sinking to reduce heat buildup, any bi-metallic interface will be susceptible to failure due to intermetallic formation. These gold-aluminum intermetallics are more brittle than the parent metals, and they also are susceptible to void formation due to the faster diffusion of aluminum into gold compared with gold into aluminum (Kirkendall Effect). If a hybrid circuit is manufactured using die with aluminum metallization, it is certainly preferable to use aluminum for bonding. This is because the gold-aluminum interface will then occur on the substrate, away from the heat of the transistor. This is important since the formation of intermetallics, $A u A l_{2}$ or $\mathrm{Au}_{3} \mathrm{Al}_{2}$. is accelerated by temperature. However, these interfaces, even though they occur on the substrate, are nonetheless sensitive to weakening. Which intermetallic compound is formed depends on the amount of gold available in the bonding area. If the gold is thin then $\mathrm{Aus}_{5} \mathrm{Al}_{2}$ will be formed. If the gold is thicker then $\mathrm{Au}_{3} \mathrm{Al}_{2}$ will be formed. The end result is the same; voiding and a weak bond which eventually lifts. The entire process can be accelerated by thermal cycling whereby cracks are formed in the brittle intermetallics. ${ }^{3}$ Data presented later illustrates the comparison between failure rates due to bond lifts in aluminum and gold systems.

Another advantage which hybrids enjoy over discrete designs is the reduction of the number of interconnects.

An interconnect is a potential failure point. Reduction of the number of these points will result in a more reliable system. A calculation of the additional interconnects required in a typical discrete amplifier over the hybrid equivalent shows an increase of 127 interconnects in the discrete version. ${ }^{2}$ Figure 2 summarizes hybrid life test data.

So it is apparent that the hybrid structure is inherently more reliable than a discrete assembly. But the heart of the amplifier, be it hybrid or discrete, is the transistor.

Reliability Data at $95^{\circ} \mathrm{C}$ Case Temperature

Part Descriptlon	Unit Hours Accumulated	MTBF WIth Fall Confldonce	MTBF-Gain Product	
Trensistor Chip	$7,398,000$	3	141 Years	-
CA2200 Hybrid	984,000	4	13 Years	221 dB - Yrs
CA2600 Hybrid	577,000	4	8 Years	264 dB - Yrs

Figure 2. Hybrid Circuit Life Test Data

IV. RF TRANSISTOR DESIGN CONSIDERATIONS

The performance which can be obtained from the amplifier is determined, in the end, by the transistor. Not only must the transistor provide performance, however, it must provide this performance for a reasonable length of time. If the transistor fails, then the hybrid fails and cost to the system operator is the result.

When the transistor engineer begins to design a device for use in CATV amplifiers, then, he is faced with two main requirements. The device must offer a certain level of performance and it must do its job reliably. We will now investigate the RF transistor and the considerations that go into its design.

1. Starting Material

Modern transistors are built using what is called the planar technology. This name arises from the fact that all areas of the transistor are found on the planar surface of the silicon wafer. Figure 3 illustrates a cross-section
of a typical transistor structure as built using the planar technology. The first job of the designer is to decide what starting material he wishes to use for his transistor. The starting material consists of a wafer of silicon, approximately 10 mils thick and typically 2 inches in diameter. This silicon has been grown in crystal form while introducing a large concentration of impurities. This substrate silicon, then, is very heavily 'doped' so that the resistivity is very low. On the surface of this low resistivity silicon wafer is then grown a layer of silicon which is not so heavily doped so that the resistivity of this layer is higher than that of the substrate. It is the configuration of this 'epitaxial layer' that is very important to the performance of the device. It is this layer that will form the collector of the transistor. There are two parameters of the epi layer that can be specified by the engineer. One is the thickness and the other is the resistivity. The resistivity is chosen from operating voltage considerations. The transistor is intended for a specific purpose and presumably the voltage at which it will be operating is known. If the device will be biased at 20 volts in an amplifier, then the collector breakdown voltage of the transistor, BVcso, should be higher than 20 volts to provide a safety cushion. The phenomenon that occurs in a well-designed transistor at breakdown is called avalanche. This occurs when a sufficiently high reverse voltage is placed across a $p-n$ junction. A field is formed across this junction and carriers are accelerated across the field. When the applied voltage equals the avalanche voltage a multiplication effect occurs in which atomic bonds are broken and the junction breaks down. This is the collector breakdown voltage and it is proportional inversely to the doping level of the collector or epi layer. By specifying epi material, then, the designer sets his voltage operating limit.

The other epi parameter of interest is the thickness of the layer. It has been found that epi thickness is closely tied in to both device reliability and performance. One parameter that is commonly. used to describe highfrequency transistors is ir. This is the gain-bandwidth product of the device or the frequency at which the common-emitter, short circuit current gain, h_{21}, equals unity. A high fr means to the circuit designer better wide band gain performance. The it frequency can be related to the physical device in terms of the various delay times throughout the transistor. If the delay that a carrier sees

Figure 4. Imo Distortion Performance as a Function of EPI Thickness
in traveling through a device is less than in another device, then the ft for the device with the least delay is higher. The thickness of the epitaxial region is related directly to one of these delay times; namely the rsc-ic time constant in the collector. The rsc is the collector series resistance and to reduce this value for a given resistivity, we must reduce the epi thickness. There is another advantage to be gained from reducing the epi thickness which relates to distortion performance. Figure 4 shows a comparison of intermodulation distortion performance between two CATV transistors. The transistors are identical in all respects except that one device was built on epi material which was 50% thicker than the other. It is seen that the device which was built on thin epi material offers better distortion performance at higher current levels. The reason for this performance gain with thin epi is the fact that the maximum current density available in a device increases as the epi thickness is decreased. This occurs because of debiasing of the collector-base depletion region by the resistive epi region. The thin epi device, then, acts like a larger device at higher currents, resulting in better distortion performance at these higher levels.

Thin epitaxial material appears to yield very good transistors for CATV applications. Unfortunately there is a negative side to the story. The fact is that as the epi material is made thinner and thinner to achieve good performance the transistor becomes more and more sensitive to voitage variations. With thin epi the ballasting effect of the collector resistor is lost and the transistor loses ruggedness. The designer, then, wants to choose an epitaxial material which is as thin as possible for performance yet which is thick enough to avoid complete depletion and provide some collector ballasting.

2. Vertical Geometry

Once the starting material is decided upon, then it must be insured that a process is available which will yield a high performance vertical geometry. The importance of high it in the CATV transistor has been discussed. Another time constant which can be reduced in order to increase $f \boldsymbol{f}$ is the delay due to carrier movement through the base region. The relationship for this delay is

$$
t_{0}=\frac{W_{b^{2}}}{2.43 \mathrm{Debfn}^{\left(\mathrm{NB}^{1} / \mathrm{NBC}\right)}}
$$

This relationship describes the time required for carrier transit across the base region in terms of base width, Wo; diffusion co-efficient, Dob; and doping gradient, Ns^{\prime} and Nec. The point here is that this delay time varies directly as the square of the base width. A desirable goal then is to produce a transistor which has a narrow base width. The well understood diffusion process can be used to control this parameter to a point. However, as narrower base widths are sought, device yields go down due to non-uniformities which are inherent in the diffusion process. State-of-the-art base widths with good uniformity are possible, though, by taking advantage of ion implant technology for the formation of the device junctions. Another advantage of implantation is that it makes possible steeper gradients in the emitter and base regions resulting in higher fields and shorter transit times in those areas.

3. Horizontal Geometry

One more item must be considered before the CATV transistor is ready to be built. A mask set must be designed, or, in other words, it must be determined what the device will look like, physically.

First, the basic device configuration must be decided upon. There are three transistor contact geometries in use; these are interdigitated, overlay, and mesh. The overlay and mesh configurations are used primarily for modern power transistors. High frequency devices are sensitive to parasitic capacitances and this favors the interdigitated design.

Figure 5 is a representation of typical transistor configurations. The base area is dictated by the power

Figure 5. Typical Transistor Configurations
handling requirements of the transistor. There must be enough area available to dissipate the heat which is generated. The amount of current to be handled by the device will determine what the minimum emitter periphery is. This is because at higher bias levels and frequencies a large transverse voltage drop occurs in the active base region under the emitter. This will have a de-biasing effect on the central portion of the emitterbase junction causing most of the current to pass at the emitter edges. Since it is known how much current the device will be required to handle, it is possible to calculate the amount of emitter periphery necessary to safely handle this current. The task now is to pack this amount of emitter periphery into the smallest base area possible, thereby reducing collector-base junction capacitance. Two examples of possible interdigitated designs having equal emitter peripheries are shown in Figure 6. It is seen

Figure 6. Ep/Ba Comparison for Square vs Rectangular Base Configuration
that slightly higher $\mathrm{E}_{\mathrm{p}} / \mathrm{BA}_{\mathrm{A}}$ ratios are possible with a design which is square compared to one with a higher aspect ratio. The problem with the square configuration is that the long emitter fingers required will result in considerable voltage drop along their length. The result is that part of the device is not being used and hot spots will develop. Not only will device performance be reduced, but it will soon fail because of overheating. The design with the higher aspect-ratio is desirable since the voltage drop problem is eliminated. Another advantage of this configuration is that it is inherently better able to dissipate heat since the cells are not so closely coupled as in the square contiguration. This design also has a problem, however. Although the emitter fingers are now short enough, the active area of the device is now quite long. The middle portion of the device will tend to draw more current which is not efficient. The solution to this problem is to add ballast resistors between the emitter feeder arm and the emitter fingers. (See Figure 7.) The ballast resistors are thus in series with the emitter contact metallization. If an emitter-base junction site begins

Figure 7. Ballast Resistor Configurations
pulling more than its share of current the series resistance will cause a proportionate drop in the input voltage for that site, thus limiting the current and preventing failure. An important point is the type of ballast resistor used. Two types of resistor are popular, thin film or diffused. Thin film resistors are susceptible to microcracking and they also are faced with a high thermal barrier since they sit on top of the silicon dioxide barrier. Diffused resistors are more reliable since they avoid the oxide barrier and are not susceptible to cracking.
It is also desirable to reduce the contact spacing and the emitter contact widths of the transistor for two important reasons.' A narrow contact spacing will allow more emitter periphery to be placed within a given base area. This is good since we have seen that gain performance depends directly on the amount of periphery available for current handling. A narrow emitter stripe is desirable since the resistance of the base region, ro', varies directly as the emitter contact width and it is necessary to reduce the parasitic ro' as much as possible for gain purposes. Incidentally, reduction of ro' is good for noise figure too. Figure 8 illustrates the impact of emitter width on base resistance.

Figure 8. Effect of Emitter Stripe Width on Base Resistance

The last step in the construction of the transistor is the deposition of metallization so that contact can be made to the emitter and base regions. (See Figure 9.) The type

Figure 9. Transistor Metallization
of metal to be used is an important decision. The two metals that are low enough in conductivity that can be used for transistor metalization are gold and aluminum. Aluminum metallization has been used for years as a conductor for transistors. Its advantages are that it is a well-understood process, it offers a good silicon contact without any barrier metalization, and it is inexpensive. However, considering the micron contact geometry of the RF transistor and the fact that it will be mounted on a gold hybrid circuit, then the decision is considerably easier to make. For a CATV transistor, gold provides the following advantages over aluminum.4

1. Monometallic wire bonding system.
2. Electromigration resistance.
3. Low contact resistance with elimination of shorts due to silicon-metal alloying.
4. Corrosion resistance.
5. Oxide step coverage.

Allows use of tighter contact geometries.

Monometallic Wire Bonding System

As has been described, it is desirable to have an all-gold metal system for reasons of reliability. A monometallic system eliminates the formation of gold-aluminum inter-
metallics and the wire bond failures that result. Figure 10 illustrates life test data that shows an increased failure rate due to bond failures in the aluminum-gold system.

Life Test at $95^{\circ} \mathrm{C}$ Case Temperature

Part Descriptlon	Unit Hours Aecumulatod	Wire Bond Fallure No's	Whro Bond Falluro Rato $\%$
601B, 200 Hybrids Whth Aluminum 3070 Dee	$1,162,000$	24	4.1
2200, 2600 Hybrids With Gold 3040 Die	$1,188,000$	0	0

Figure 10. Wire Bond Failure Rates in Aluminum/Gold Life Test

Electromigration Resistance

It was shown earlier that it was desirable to achieve a high Ep/Ba ratio so as to obtain maximum performance from a device. This was achieved by placing the transistor contacts as close together as possible. The use of such tight contact geometry forces the use of very narrow metal fingers. The resulting high current densities can lead to reliability problems as a result of electromigration. Electromigration is a phenomenon which occurs in metal films as a function of time, temperature, and current density. For any given temperature, a certain equilibrium concentration of vacancies exists in all metal films. Self diffusion of metal ions throughout the film arise due to the metal ions being thermally activated into adjacent vacancies. In the absence of any external forces, the metal ion diffusion will be isotropic and will result in no net accumulation or depletion of mass in any given site. In the presence of an electric field, however, the metal ions experience a force due to their charge, inducing an ionic flux toward the cathode end of the film. In addition, the conduction flow of electrons in the metal due to the electric field will cause electron scattering off the activated ions and impart momentum to them inducing an ionic flux toward the anodic end of the film. In good conductors, the momentum exchange force dominates the electrostatic force and results in a net mass transport toward the anodic end of the film. The result is an open circuit in the metallization strip. This void formation is accelerated by high temperatures and current density.

Aluminum has exhibited a high susceptibility to electromigration for current densities above $10^{\circ} \mathrm{A} / \mathrm{cm}^{2}$ Such a current density is easily realized in state-of-the-art RF devices. For a given device geometry there are only two alternatives to allow reduction of the current density in a device. Either the operating level can be reduced or a metal can be selected which has a higher mass and activation energy. The operating level cannot be reduced without a sacrifice in performance. We can still keep high performance and reduce the current density by using gold metallization. At $200^{\circ} \mathrm{C}$, experiments conducted on identical transistors with gold vs. aluminum metallization showed an improvement in mean life time of two orders of magnitude using gold.

Contact Resistance

Gold cannot be used as a single layer metallization because of its relatively low silicon eutectic temperature and its poor adhesion to silicon and silicon dioxide. A barrier layer must be employed to prevent gold diffusion into the silicon and this barrier metal must offer good adhesion to silicon, silicon dioxide, and gold. Such a barrier is offered by a system utilizing platinum silicide, titanium and tungsten. The platinum silicide forms a good ohmic contact with the silicon; the Ti / W provides the necessary diffusion barrier and offers good adhesion to SiO_{2} and silicon.

Aluminum has historically offered good ohmic contact without the need for barrier metals. In RF devices, however, at current densities well below electromigration densities, a problem of formation of silicon/aluminum alloy is ever present resulting in emitter-base shorts. Any hot spot formation will result in an increased alloying rate and early failure.

Corrosion Resistance

Under biased conditions, in a humid atmosphere, gold has demonstrated a lifetime more than 3 times that of aluminum. The failure mode in aluminum is electromechanical corrosion and gold is insensitive to this phenomenon.

Step Coverage

Gold offers tremendous improvements over aluminum in its ability to cover oxide steps without decrease in metal thickness or cracking. (See Figure 11.) Aluminum is deposited by means of evaporation in a vacuum where the mean free path of the aluminum particle is long. This means that equal coverage of all surfaces is impossible even if the target is rotated during evaporation. The plate-up gold system reduces step coverage problems to insignificance.

Narrow Contact Geometries

The RF transistor must have very fine horizontal geometry to achieve the performance required in a CATV system. With aluminum metallization these narrow finger widths are achieved by etching the aluminum to remove it. Such a process, if done very carefully, will at best result in fingers of uneven width which are susceptible to high current densities and the associated reliability problems. The gold system is capable of providing microwave geometries with insignificant variations in line widths. In fact, the geometry on present gold CATV devices is narrower than some low-noise microwave devices which are on the market today.

Figure 11. Oxide Step Coverage

V. SUMMARY

1. The CATV syatem operator is interested in per formance with reliabitity in the emplifier equipment he uses.
2. The basic building block of the CATV amplifier is the hybrid circuit. The hybrid emplifier olfers refiability advantages over discrete designs including gold circuit metalization and a reduced number of interconnects.
3. The hean of the hytrid circuit is the RF transistor.
4. The design of a reliable transistor tor use in CATV amplifiers requires a knowledge of basic design vadues plus the avatlabikty of state-ot-the-st processing. Points to be considered include:
starting material
vertical geometry
horizontal geometry
configuration
metallization.
5. Life tests show the improvements in reliability to be geined by carotul transistor design

APPENDIX

Derivation of reliabilily expression for chance taitures'

$$
R(1)=e^{\cdot 11}
$$

II an original population of X_{0} items is continuously decaying so that there are X items at time t. the change of population in ono interval dt is $\mathrm{dX} / \mathrm{dt}$. Divided by the totad poputation X at t, this gives the negative rate at which the poputation changes as time t :

$$
-\lambda=\frac{d x / d t}{X}=\frac{d X}{X} \frac{1}{d t}
$$

then. $\quad\langle d i=d X / X$
Integrating over the time period being considered.

$$
\int \lambda d 1=\ln x / C=\ln x \cdot \ln C
$$

0
for $t=0, x=x_{0}$
Then $C=X_{0}$
And $x / x_{0}=e_{00} \int_{0}^{1} \lambda d t$
If the rate of decay, λ, is constant, then

$$
x / x_{0}=e_{\Delta} \cdot \lambda t
$$

Since X / X_{0} is probabitly of survival tor a decaying popu. lation then

REFERENCES

1. Mike Flarie. "Reliability and MTF - Tho Long and Short of tt," Mierowaves, July 1972.
2. James Humphrey and George Luettgen๕u, "Rebabikty Considerations in Design and Use ol RF integrated Circuits." IEEE/NCTE COnterence. February 1976
3. Eliott Phiblsky, "Design Lirmits When Using GoldAluminum Bonds." Motorola. Inc., Semtconductor Products Division
4. R. Flahie and M. Weiss. "A Study of the Advantages ol Gold Melallization in the Manufacture of Microwave Transistors." TRW Somiconductors Technical Note.
5. Igor Bazousky. Reliability Theory and Practice. Prentice-Hall, 1961.
6. J.R. Black, "Electromigration Faikure Modes in Aluminum Metallization for Semiconductor Devices." Procoedings of the IEEE. Volume 57. Number 9. September 1969

35/50 WATT BROADBAND (160-240 MHz) PUSH-PULL TV AMPLIFIER BAND III

This note describes the performance of a broadband ultra linear push pull amplifier designed for service in band III TV transposers and transmitters.

Devices used : two TPV 375.
Basic amplifiar specifications :

$\operatorname{IMD}(1)=-51 \mathrm{~dB}$	at $\quad P_{0}=35 \mathrm{~W}$	$P_{\text {gain }}=10 \mathrm{~dB}$
IMD $(1)=-48 \mathrm{~dB}$	at $\quad P_{0}=50 \mathrm{~W}$	
$\mathrm{~V}_{\text {ce }}=28$ volts;	Total $=4.4 \mathrm{~A}$	output VSWR:<1.6

(1) vision carrier -8 dB, sound carrier -7dB, sideband signal -16 dB .

General design Consideration

The principal aims were :

- employ a relatively simple solution permitting us to obtain the optimal performances from TWO TPV 375.
- simplify the design and reduce the cost.

The main consideration was to obtain the maximum output power with the best IMD over the band. To obtain this requirement the output match and losses must be the best possible in all the band.

The second consideration was to obtain the maximum gain by reducing the input matching circuit losses to a minimum.

These factors led us to choose matching circuits using quarter-wavelength transformers at the input and output which permit us to :

- reduce the load and source impedances to low values with low losses
- couple two transistors in a push pull configuration.

Because the output and input transistor impedances are in series, due to the push-pull configuration, the required transformation ratio is one half of that required for a single ended stage.

The first approach for the circuit calculation was made from the input and output impedances given in the TPV375 data sheet and matched to the proper impedance levels using a Smith Chart. The element values were then optimized with the aid of «COMPACT» program.

Amplifier Design

The basic block diagram for the amplifier is shown in Figure 1 and the circuit schematic is shown in Figure 2.
The input and output circuits are each composed of two networks: a quarter-wavelength transformer-balun and a matching network.

The quarter-wavelength transformer impedances have been chosen to be easily built using microstrip technology.

Input circuit

The input circuit is shown in Figure 3 and the input impedances are shown in Smith Chart 1.
The low transistor input impedances are transformed into higher impedances near the real axis by Capacitors FF.
The (EE, DD) series elements and (CC, BB) parallel elements collapse the amplifier input impedances around 8.5Ω.
Since the devices can be considered in series at this point the impedance is doubled to 17Ω. The quarterwavelength transformer balun (AA) completes the match to 50Ω.
The transformation ratio is 2.8 : 1 .
The maximum theoritical input VSWR is $1.80: 1$ and the maximum experimental VSWR is $1.60: 1$.

Output circuit

The output circuit is shown in Figure 4 and the output impedances on Smith Chart. II. Since the output impedances are higher than the input impedances, the output matching network is simpler and the quarter-wavelength transformer ratio is lower.
The inductors aid the matching but primarily provide for good stability at the low frequencies, and are used for collector bias. The output quarter-wave-length transformer ratio is $1.6: 1$.
The maximum theoretical VSWR is $\mathbf{1 . 1 6 : 1}$ and the maximum experimental VSWR is 1.44:1.

Amplifier Performances

- IMD versus output power : Figure 5
- Input and output return loss and VSWR = Figure 6
- Gain versus frequency: see Figure 7
- 1 dB gain point compression : 70 W
- Bias conditions : $\mathrm{V}_{\text {ce }}=28 \mathrm{~V}$: \quad Total $=4.4 \mathrm{~A}$.

Technology and layout considerations

The epoxy-Glass $1 / 16$ inch ($\varepsilon_{\mathrm{r}}=4.1$) is used as board material except for the input and ouput transformers. The glass - Teflon $1 / 50$ inch ($\varepsilon_{\mathrm{r}}=\mathbf{2 . 5 5}$) is used for the transformers (see the details Figure 8).
We have considered for a microstrip line that after W (Width) from the conductor strip edge the fields are negligible and we can size the ground conductor to be 3 W without perturbing the propagation. This kind of transformer has the following characteristics :

- We can have any impedance values within realizable min-max limits.
- The vertical dimensions are small and the mechanical realibility is good.
- Good repeatibility.

The bias circuits are included with RF circuits in order to give a compact amplifier : Figures 10 and 11 show the layouts and the Figure 12 the physical layout of the push-pull amplifier.

Combined pairs of push-pull Amplifiers

- In general several push-pull amplifiers are used for the final stage of the TV transmitter amplifiers.

They can be combined by pair with quadrature combiners (see block diagram Figure 9).
The advantage of using this kind of coupler is that the input and output VSWR become good ($>20 \mathrm{~dB} \mathrm{rtn}$. loss) in comparison with the relatively high original VSWR of the push-pull amplifier.

General Conclusions

- Pushpull techniques simplify the required circuitry and associated losses.
- The problems associated with 3 dB hybrids in cascade - insertion loss and imbalance - when four devices in parallel are required are minimized.
- With additional effort both the input and output VSWR could be improved to $1.2: 1$.
- Good repeatability in production without variable components being required.

Figure 1. Push-Pull Circuit

AN1028

Figure 2. Circuit Diagram

On the smith chart the impedences are represented by :

	AA		88	cc		DD	EE		FF
	(2)	$\underset{(\mathrm{mm})}{\mathbf{t}^{+}}$	(pF)	$\begin{gathered} z_{0} \\ (\Omega) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{L}^{0^{\circ}} \\ (\mathrm{mm}) \\ \hline \end{gathered}$	(pf)	$\begin{aligned} & z_{0} \\ & (\Omega) \end{aligned}$	$\mathbf{L m}_{\text {(m) }}$	(PF)
Calc. valuo	30	313	139	100	11.3	47	50	80.8	238
Empiticel vatue	30	313	100	100	15.0	47	50	82.5	200

- Lis given for $\varepsilon_{t}=1$

Figure 3. Input Circuit

AN1028

IMPEDANCE COORDNATES-50-OHM CHARACTERISTIC IMPEDANCE

Figure 4A. Input Circuit

Figure 4B. Output Circuit

AN1028

Figure 5. IMD versus Output Power

Figure 6. Input and Output Return Loss versus Frequency

Figure 7. Low Level Gain versus Frequency

a.) Quater Wavelength Balun

b.) Equivalent Circuit

Figure 8.

AN1028

Figure 9. Combined Pair of Push-Pull Amplifiers

Board material : opoxy-glass: $1 / 16$ inch ; $\varepsilon_{r}=4.1$
Figure 10. PC Board Layout (Not to Scale)

Board material : glass teflon: $\mathbf{1 / 5 0}$ inch: $\varepsilon_{\mathbf{r}}=\mathbf{2} .55$
Figure 11. PC Board Layout for Input and Output Quater-Wavelength Transformer (Not to Scale)

AN1028

Figure 12. $\mathbf{1 6 0 - 2 4 0 ~ M H z ~ A m p l i f i e r ~}$

- L is given for $\varepsilon_{r}=1$

Figure 13. Output Circuit

TV TRANSPOSERS BAND IV AND V Po = 0.5 W/1.0 W

This note describes the performance of a broadband ($470-860 \mathrm{MHz}$) ultra linear amplifier designed for service in band IV and V TV transposers.
Device used :
TPV 596.
Basic specs:

$$
\begin{aligned}
& \text { I.M.D. }-60 \mathrm{~dB} \text { max. at } \text { Po }=0.5 \text { watts } \\
& \text { Vce }=20 \text { volts } \text { Ic }=200 \mathrm{~mA} \\
& \text { Pgain }=11.5 \mathrm{~dB} \text { min. }
\end{aligned}
$$

The approach used is intended to be straight forward and inexpensive as follows.

1) The load line be defined to provide the correct match for peak power (P : sync).
2) The VSWR at the collector be less than $2: 1$.
3) The input match be designed to provide flat gain with decreasing frequency.
4) Use computer aided design.
5) Use a three tone norm
Pvision $=-8 \mathrm{~dB}$
Psound $=-7 \mathrm{~dB}$
Psideband $=-16 \mathrm{~dB}$
6) Circuit realization to be a distributed design built upon teflon glass copper clad circuit boards. However the design will be analized using $\mathrm{Er}=1.0$.
The input and output impedances were taken from the TPV596 data sheet and plotted on a smith chart. First consider the input. To have flat gain with an optimum collector load, the basic physics of a class aAn biased device defines a gain slope of $-6 \mathrm{~dB} /$ octave which must be compensated for. The band of interest is $470-860 \mathrm{MHz}$ which is .915 octaves which implies that 5.25 dB of gain must be compensated for if the device is perfectly matched at 860 MHz . This means that a transmission less of 5.25 dB or a VSWR for $11.0: 1$ must be employed at 470 MHz . The input Z is converted to Y on Smith Chart (I). The point at 860 MHz will intersect the constant conductance line equal to 1.0 ($20 \mathrm{~m} \boldsymbol{\mathrm { J }}$) if it is rotated 0.14λ using a $20 \mathrm{~m} \boldsymbol{J}(50 \Omega)$ transmission line. After this rotation a capacitive stub or chip capacitor is used to resonate the susceptance at 860 MHz ; A capacitive stub or a chip capacitor equal to 16.7 pF can be used, and the result is shown on Smith chart (I). It is interesting to note that the VSWR vs frequency can be adjusted for gain flatness by selecting an optimum Z_{0} for the capacitive stub. It is also obvious that the locus of impedances at the circuit input can vary between the locus of points defined by using a chip capacitor, and the imaginary axis by using a stub with $Z_{0}=\infty$. Graph (II) is a plot of these results. Because infinite isolation doesn't exist between the output and input of any transistor, and because the required network is very simple, the input circuit will be optimized empirically. A computed aided circuit will be defined for the output only. It is also indicated that a combination chip capacitor and stub may provide the best results.
The output circuit considerations were first determined using a Smith Chart approach. It must be clearly understood that computer optimization is only as good as the circuit configuration and associated computer instructions.

The approach follows :

Smith Chart (II)

1) The device output impedances are first converted to admittances and plotted as the conjugate (Y load).
2) In order to allow easy collector lead soldering a $Z_{0}=50 \Omega, 3 \mathrm{~mm}$ long transmission line is used. Since the Smith chart is normalized to $20 \mathrm{mij}(50 \Omega)$ we can rotate toward the load directly as the chart is configured.
3) Since the balance of the circuit used $Y_{0}=10 \mathrm{mis}(100 \Omega)$ we next normalize the chart to 10 mī. 100Ω transmission line was chosen as a good compromise between physical length requirements and ease of realization on Teflon Glass.
4; The next element, a shorted shunt transmission line less than $\lambda / 4$ in length reduces the imaginary part by moving each point of admittance along a line of constant conductance. The length was chosen to locate the lowest frequency point (400 MHz) near the real axis so that the locus of points would be more equally distributed about a 2.0:1 VSWR circle.
4) The resultant locus of points are then rotated with a $10 \mathrm{mis}(100 \Omega)$ transmission line to a degree which locates the admittance point of 860 MHz near the line of constant conductance equal to 2.0 on Smith Chart (II). This conductance is exactly equal to $20 \mathrm{~m} \overline{\mathrm{c}}$ since the chart is normalized to $\mathbf{1 0} \mathrm{m} \mathbf{7}$.

AN1029

6) The final step is to use a parallel resonant circuit which will reduce the imaginary pacts at both the upper and lower frequencies.
The following approach was used to calculate the element values for the antiresonant circuit.
By observation of the smith chart it was decided to place the 460 and 860 MHz points on or just inside the 2.0:1 VSWR circle.
It then follows that

$$
\begin{aligned}
& \text { at } f_{1}=460 \mathrm{MHz} \quad W_{1} C-\frac{1}{W_{1} L}=-0.4 \\
& \text { at } f_{2}=860 \mathrm{MHz} \quad W_{2} C-\frac{1}{W_{2} L}=1.7
\end{aligned}
$$

The 2 equations with 2 unknows are solved with the following result.

$$
\begin{aligned}
\mathrm{L} & =0,189 \mathrm{nHy} \\
\mathrm{C} & =496.11 \mathrm{pFd}
\end{aligned}
$$

since we are normalized to 10 mi
Lactual $=0.189 / .01 \mathrm{nH}=18.9 \mathrm{nHy}$
Cactual $=496.11 \times 0.1 \mathrm{pF}=4.96 \mathrm{pFd}$
7) The result is normalized to $\mathbf{2 0} \mathbf{m i s}$ with the final result shown.

Zo	10Ω	50Ω	TPV 596	50Ω	100Ω	100Ω		100Ω
Calc. Value	45.7 mm	3.78 mm		3 mm	76.1 mm	29.3 mm	4.9 pF	50.4 mm
Empirical Value	8.5 48.8 mm	1.5 mm	Opti- mized Value	3 mm	98.8 mm	39.62	5.5 pF	61.6 mm

Graph (III) shows the various VSWR calculated compared to the theoretical best curve and the actual VSWR measured.

Graph (IV) shows the collector load VSWR for the calculated, optimized, and actual result.
Graph (V) is a plot of the single ended amplifier results taken with a network analyzer. No component losses were considered for the theoretical and optimized analysis. The final circuit was also optimized empirically from $470-860 \mathrm{MHz}$ using a network analyzer.
The following results are a-summary of performance, bias conditions circuit configuration and recommended hybrid adaptation.

Figure 1. Smith Chart (I)

Figure 2. Smith Chart (II)

Figure 3. Graph III - VSWR versus Frequency

Figure 4. Graph IV - VSWR versus Frequency

Figure 5. Graph V - TPV596 Amplifier Performance versus Frequency

AN1029

Class A
$V_{C E}=20 \mathrm{~V}-\mathrm{I}_{\mathrm{C}}=220 \mathrm{~mA}$
$\mathrm{f}_{\mathrm{O}}=860 \mathrm{MHz}$ - WAVELENGTH (Ag) at 860 MHz
(material: Glass tefion $\epsilon_{\mathrm{r}}=2.55-1 / 16^{\prime \prime}$)
Transistor — TPV596

Figure 6. Circuit Diagram for $\mathbf{4 7 0 - 8 6 0} \mathbf{~ M H z}$ Amplifier

Figure 7. Class A Bias Circuit

AN1029

TPV 596 BROADBAND AMPLIFIER

FREQUENCY RANGE	$: 470 \mathrm{MHz}-860 \mathrm{MHz}$
POWER OUTPUT AT	$:-60 \mathrm{~dB} \mathrm{IMD}^{*} \geqslant 0.5 \mathrm{~W}$
POWER GAIN	$: 11.5 \leqslant \mathrm{G} \leqslant 12.7 \mathrm{~dB}$
INPUT RETURN LOSS	$:<-1 \mathrm{~dB}$
OUTPUT RETURN LOSS	$:<-11 \mathrm{~dB}$
VOLTAGE SUPPLY	$: \sim 23 \mathrm{~V}\left(\mathrm{~V}_{\mathrm{CE}}=20 \mathrm{~V}\right)$
TOTAL CURRENT	$: 220 \mathrm{~mA}$

-IMD : Vision : - 8 dB ; Sound carried : -7 dB ; Side band : -16 dB
RECOMMENDED CONFIGURATION
*INPUT RETURN LOSS : This amplifier must be used by two connected together with two 3 dB quadrature hybrids to have a balance amplifier with a good input VSWR

$\cdot 3 \mathrm{~dB} \cdot 90^{\circ}$ Hybrid coupler from

- ANAREN 10 264-3
- SAGE wireline 3 dB Hybrid 4450500

IMD VS OUTPUT FOR A SINGLE STAGE
$V C E=20 \mathrm{~V}-220 \mathrm{~mA}$
$F=860 \mathrm{MHz} ;$ Vision $=-8 \mathrm{~dB} ;$ Sound Carrier $=-7 \mathrm{~dB} ;$ Sideband $=-16 \mathrm{~dB}$

Pout (W)	0.25 W	0.5 W	1 W
IMD (dB)	-67 dB	-61 dB	-55 dB

$F=860 \mathrm{MHz}$; IMD DIN 45004/B
RL = 75 ohms
$1.5 \mathrm{~V} / 75$ ohms $\quad I M D=-66 \mathrm{~dB}$
$2 \mathrm{~V} / 75$ ohms $\quad I M D=-60 \mathrm{~dB}$

1 W/2 W BROADBAND TV AMPLIFIER BAND IV AND V

This note describes the performance of a broadband (470.860 MHz) ultra linear amplifier designed for service in band IV and V TV transposers.
Device used : TPV 597

Basic specifications

$$
\begin{array}{ll}
\operatorname{IMD}(1) & =-60 \mathrm{~dB} \text { at } P_{0}=1 \mathrm{~W} \\
V_{\text {ce }} & =20 \mathrm{~V} ; \quad I_{c}=440 \mathrm{~mA} \\
P_{g a i n} & =11.5 \mathrm{~dB} .
\end{array}
$$

(1) Vision carrier - 8 dB , sound carrier -7 dB , sideband signal -16 dB .

General design considerations

In general to obtain a flat gain for broadband amplifiers which use ransistors with about - 6 dB power gain variation per octave we can use two techniques:

- feedback technique (eg emitter resistor and a negative feedback with a selective circuit between the collector and the base).
- or reflect the input or the output power selectivly to have an insertion loss of 6 dB per octave with 0 dB for the highest frequency.
(There is also another technique which uses a selective attenuator).
With the feedback technique we can have a good input and output match. With the second technique we need to reflect the input power and have a good output match in order to obtain a good IMD. It means the input VSWR is very high for the low frequencies.

The second solution is simpler than the first and if we use two amplifiers connected together with 3 dB quadrature hybrids to have a balanced amplifier this inconvenience disappears. We have chosen for this amplifier this second solution. For the larger broadband amplifier (eg 170.860 MHz) this solution must be rejected and the only acceptable solution is to use the feedback technique.

Amplifier design

The first approach fer the circuit calculation was made by using the Smith Chart from the input and output impedances given in the TPV 597 data sheet to have, at the input, a reflected power so that the gain will be flat and at the output to obtain the best match possible.

INPUT VSWR VERSUS FREQUENCY TO OBTAIN A FLAT GAIN :

The power gain can be approximated by :

$$
\mathbf{G} \simeq\left(\frac{F_{\max }}{F}\right)^{2}
$$

$F_{\text {max }}$ is the frequency for which power gain drops to unity.
The transmission loss due to the input reflection is: p is the reflection coefficient.
To have $\mathbf{G x}$ constant we must have :

$$
G x \simeq\left(\frac{F_{\max }}{F}\right)^{2}\left[1-|\rho|^{2}\right]=G_{H}=\left(\frac{F_{\max }}{F_{H}}\right)^{2}
$$

G_{H} is the gain at the highest frequency used (F_{H})
or

$$
\alpha=1-|\rho|^{2}
$$

$$
|\rho| \simeq\left[1-\left(\frac{F}{F_{H}}\right)^{2}\right]^{t / 2}
$$

$$
\operatorname{VSWR}=\frac{1+|\rho|}{1-|\rho|} \simeq \frac{1+\left[1-\left(\frac{F}{F_{H}}\right)^{2}\right]^{1 / 2}}{1-\left[1-\left(\frac{F}{F_{H}}\right)^{2}\right]^{1 / 2}}
$$

Abstract

AN1030 Figure 1 shows the theoretical VSWR versus frequency with an insertion loss of 0 dB (implies $\rho=0$) for 860 MHz . We have defined the input circuit from the TPV597 input impedance to have an input VSWR as close as possible to this curve, and have assumed that output circuit losses versus frequency is negligible. After we have calculated separately the input and the output circuits, we optimized some of the parameters by means of the global amplifier and the TPV597 S-parameters, with the COMPACT Program. - RF equivalent circuit : Figure 2 - Program : Figure 3 - Calculated gain and empirical goin: Figure 4 - Calculated and empirical input VSWR : Figure 5 - Calculated and empirical output VSWR : Figure 6

\section*{Amplifier Performance} - IMD versus output power: Figure 7A - IMD versus frequency: Figure 7B - Input return loss and VSWR : Figure 5 - Output return loss and VSWR : Figure 6 - Gain versus frequency : Figure 4 - Bias conditions: $\mathrm{V}_{\mathrm{ce}}=20 \mathrm{~V}$; $\mathrm{I}_{\mathrm{e}}=440 \mathrm{~mA}$

Technology and layout considerations - The glass Teflon $1 / 16$ inch $\left(\epsilon_{r}=2.55\right)$ is used as board material. This substrate is soldered to the heatsink to have a good contact and repeatable results. Figure 8 shows the circuit diagram and the bias circuit; figure 9 shows the PC board layout.

\section*{Combined - Transistor Stage}

In many instance the power output requirements of transposers exceed the capability of a single transistor, which forces the designer to use combinations of transistors. They can be combined by pair with quadrature combiners (See figure 10). Since quadrature combiners have the ability to channel the reflected power from the amplifier into the fourth port of the combiner it means the input and output VSWR become very low (VSWR < 1.2). The power gain is reduced due to the couplers insertion loss by 0.6 dB . Coupler imbalance should also be taken into account as causing some IMD degradation.

Figure 1. Input VSWR

AN1030

	AA	88		CC	DD		FF	
	pF	$\begin{aligned} & \mathbf{Z}_{0} \\ & (\Omega) \end{aligned}$	$\underset{(\mathrm{mm})}{\mathrm{L}}$	pF	$\begin{aligned} & z_{0} \\ & (\Omega) \end{aligned}$	$\frac{\mathrm{L}}{(\mathrm{~mm})}$	$\begin{gathered} \mathbf{z}_{0} \\ (\Omega) \end{gathered}$	$\underset{(\mathrm{mm})}{\mathrm{L}}$
Calc. value	4.5	50	32.0	29.3	25	14	50	72.2
Empirical value	4.7	50	45.4	10.0	25	14	50	34.9

	GG		HH		$\\|$ pF	JJ		$\begin{gathered} \mathbf{K K} \\ \hline \mathbf{p F} \end{gathered}$
	$\begin{aligned} & Z_{0} \\ & (\Omega) \end{aligned}$	$\frac{\mathrm{L}}{(\mathrm{~mm})}$	$\begin{gathered} z_{0} \\ (\Omega) \end{gathered}$	$\frac{\mathrm{L}}{(\mathrm{~mm})}$		$\begin{gathered} \mathbf{z}_{0} \\ (\mathbf{\Omega}) \end{gathered}$	$\underset{(\mathrm{mm})}{\mathrm{L}}$	
Calc. value	110	28.4	45	14	5.1	75	50	3.5
Empirical value	110	27.9	45	14	3.9	75	38.4	3.3

L are given for $\varepsilon_{r}=1$. Figure 2. RF Equivalent Circuit for Compact Program

Figure 3. Compact Program

AN1030

VARIABLES (一)

GRADIENTS

(1) : 4.51899	(1) : - . 894864
(2) : 32.0136	(2) : .704452E-01
(3) : 29.2938	(3) : 2.69282
(4) : 72.2399	(4): . 287748
(5) : 5.16145	(5) : 1.68585
(6) : 3.53445	(6) : - . 267730
ERR. F. 37.809	

HOW MANY ITERATIONS BEFORE NEXT STOP? 0° RESULTS IN FINAL ANALYSIS. WANT INTERMEDIATE PRINTS (YES $=1 \cdot$ NO $=0$) ? TYPE TWO NUMBERS : $(1, J): 0$ SEARCH INTERRUPTED, FINAL ANALYSIS FOLLOWS :

POLAR S-PARAMETERS IN 50.0 OHM SYSTEM

FREO.	$\begin{gathered} \text { S11 } \\ \text { (MAGN }<\text { ANGL) } \end{gathered}$			$\begin{gathered} \text { S21 } \\ \text { (MAGN }<A N G L \text {) } \end{gathered}$			$\begin{gathered} \text { S12 } \\ \text { (MAGN }<A N G L) \end{gathered}$			$\begin{gathered} \text { S22 } \\ \text { (MAGNL) } \end{gathered}$			$\begin{aligned} & \text { S21 } \\ & \mathrm{DB} \end{aligned}$	$\begin{gathered} \mathrm{K} \\ \text { FACT. } \end{gathered}$
470.00	0.88	<	134	3.53	<	86.3	0.049	<	45.3	0.11	<	O5	10.97	0.75
500.00	0.85	$<$	128	3.46	$<$	68.4	0.053	$<$	30.4	0.12	<	109	10.79	0.90
600.00	0.75	<	92	4.19	$<$	12.2	0.086	<	16.8	0.05	<	5	12.45	0.78 0.78
700.00	0.59	<	55	4.48	<	39.2	0.111	<	62.2	0.19	<	127	13.02	0.78
800.00	0.43		11	4.34	<	93.2	0.133	<	09.2	0.26	<	180	12.75	0.86
860.00	0.20		44	4.08	<	135.2	0.141	$<$	47.2	0.26	$<$	114	12.22	1.0

COMPACT PROGRAM

Figure 4. Gain versus Frequency

Figure 5. Calculated and Empirical Input Return Loss

Figure 6. Calculated and Empirical Output Return Loss

AN1030

Figure 7b. IMD versus Frequency

Lengths are given at $F_{0}=860 \mathrm{MHz}\left(\lambda g=\frac{3.10^{\circ}}{F_{0} \sqrt{\varepsilon_{e f f}}}\right)$
Glass teflon $\epsilon_{r}=2.55,1 / 16^{\prime \prime}$ board material.
a) Circuit Diagram

b) Class A Bias Circuit

Figure 8. Circuit Diagram and Bias Circuit

AN1030

Board material : Glass Teflon; 1/16 inch : $\varepsilon_{\mathrm{r}}=2.55$

Figure 9. PC Board Layout (Not to Scale)

The 3 dB quadrature combiners can be supplied by:

- ANAREN (10 264-3)
- SAGE wireline (4450900)

Figure 10. Two Broadband Amplifiers Combined with Quadrature Combiners

HOW LOAD VSWR AFFECTS NON-LINEAR CIRCUITS

By Don Murray

RF Devices Division
Lawndale, Calif.
Reprinted from RF Design Magazine
If your amplifiers test out fine in the lab but fail ©C testing, the testing environment not the product - is likely at feult.

Consider the following scenario: You're designing and implementing into production a broadband Class C power amplifier. During your design phase, you follow all the rules of science and also dig into your bag of electronic tricks to meet the design specification. Your dasign is fabricated and tested successfully in the lab. Twenty-five mare urits are built in the lab and they, too, test out fine.

Confident that toth design and production procedures are satisfactory, you begin series production. But when the first units reach RF test, not one meets specification. Yet when you retrieve the units, they test OK in the lab.

What's wrong with these amps? Probably nothing. This scenario, in one form or another, is all too common in the design and manufacture of non-linear RF circuitry. The culprit is correlation of test systems. A difference of .5 dB is enough to fail units that are perfectly good, resuiting in unnecessary and expensive retesting or even reworking. Still worse, a half dB error will pass units that don't meet specs and never should be stipped.

Such correlation errors will disurpt an even more important function, that of maintaining product continuity. A device built in 1982 should perform the same as an identical model number device built in 1976. Another way of saying this is that a device tested in a 1982 test system should produce the same results when tested in a 1976 system. The key, of course, is RF correlation.

What is RF correlation? Simply put, RF correlation accurs when target error limits are establisted and adhered to on a continuous basis among two or more testing stations. Such correlation is essential to cost-effect production of non-linear RF and microwave power amplifiers, whose circuits are extremely sensitive to the in-
pedance of their loads, either in test systems or equipment environments. It is easy to compensate for the insertion loss errors in an attenuator, but it is much more difficult to compensate for variations in the input impedance difference between attenuator pads, that is, the load VSWR.

Let's examina RF correlation on both an empirical and theoretical level.

EMPPRICAL APPROACH

The empirical approach is stown in Tabla I, where several test circuit loads lconsisting of series attenuators, directional couplers and RF switches) were assembled. The insertion loss and input impedance of each load string was measured. Following this, the individual loads were connected to a given test circuit contairing a common base microwave power transistor. The power meter used was also a constant.

Table I shows insertion loss, insertion loss corrections, indicated RF power, and actual power data of each load string. A maximum error of 0.52 dB was detected with a standard deviation of 19 dB. All these loads had a VSWR less than 1.1:1 at the frequency tested. A VSWR of $1.1: 1$ is better than the publisterd specifications of commercially available attemuators, directional couplers, and RF switches from most leading manufacturers. A VSWR of $1.5: 1$ is a typical VSWR specification limit at 1.4 GHz . It must be noted that many users will gladly pay an eddjtional nominal charge for components mesting a tighter VSWR spec.

THEORETICAL APPROACH

The vehicle for the theoretical discussion is the well known expression:

$$
P_{0}=\frac{\left(V C C-\left.V C E S A T\right|^{2}\right.}{2 R Z}
$$

Where: $\mathrm{PO}_{0}=$ Power output
VCC - Collector supply voltage
VCESAT - Collecter-Emitter saturation voltaga
RL = Load resistance.
This expression is valid for a narrow range of RL (10% range maximum). Over a wider range of RL, significant changes in VCESAT occur as a function of R. Output power varies with the square of Vcesat. Vcesat is a very strong func-
tion of collector current and transistor die temperature.
The theoretical approach will evaluate the changes in ampififier output power (Po) for a given change in bad resistance (Ral.
For simplicity, let us assume the following hypothetical conditions, which are typical of taday's RF power transistors.

Hypothetical conditions:
VCC $=28 \mathrm{~V}$
Vcesat - 1.5 V
Pout - 50W
Frequency - 1.0 GHz
Solving for load resistance:

$$
\mathrm{RL}=\frac{(\mathrm{VCC}-V C E S A T)^{2}}{2 P_{0}}=\frac{702.25}{100}-7.020
$$

Additionally, assume that a simple two-section impedance matching network matches the 78 to 508. Let this two-section match consist of two $\lambda / 4$ wave transformers.

Given the conditions we have hypothesized, the RL of 7.029 represents the collector load that will yield the best simultanecus satisfaction of device efficiency, device gain, gain transfer characteristics, and saturated power.

For minimum \mathbf{Q}, with a 2 section match, the transformation ratio of each section is

$\sqrt{\frac{50}{7}}=2.67$.
Zo 1st section $-\sqrt{(742.67 / 17)}$

Zo 2nd section $-\sqrt{(7)(2.67)(50)}$
$=30.58 \Omega$
$\lambda 14 @ 1 \mathrm{GHz}=2.95^{\prime \prime}=.075 \mathrm{~m}$
Table II shows the transformed impedance at the input of the matcting network as a furction of

Table I. Microwave Load Substitution Study

Tha vehide used for this test was a production test fixture and correlation sampla H2 2 for the TRW MRA1417-6 broadband, high-gein transistor. Measurements were taken at 1400 MHz with input powe of 1.11%.

Load \#	Measured Power Level	Circuit Return Loss	Collector Current	Measured Insertion Loss	Calibration Error	Actuel Power	Delta from Beferente	Lasd luput Return Loss	Imperdance Anglo	Real	Imaginary
1	1.1W	35 dB	-	30.03 dB	+. 03 dB	thru	calidration	-40.2	99.1	49.8	+ 1.0
1	7.7W	16 dB	. 51 A	30.03 dB	+. 03 dB	7.75w	reference	-40.2	99.1	49.8	+1.0
2	7.6W	15.5 dB	. 5 A	39.66 dB	-. 44 dB	6.87w	-30.5		-77.5	50.6	-3.0
3	7.65W	15.5 dB	. 51 A	39.68 dB	-. 32 dB	7.10W	+. 38 dB	-34.1	-171.5	50.4	-2.0
4	8.0W	$15.5 d 8$. 51 A	39.8 dB	-. 20 dB	7.63W	-. 07 dB	-34.1	68.1	50.7	-1.9
5	7.2W	16 dB	. 505 A	30.16 dB	+. 16 dB	7.47W	-. 16 dB	-30.1	- 128.0	51.1	-3.0
6	8.3W	15.2 dB	. 51 A	39.78 dB	+. 22 dB	7.89w	+. 08 dB	-31.7	-144.6	47.9	-1.5
7	7.75w	16.2 dB	. 505 A	39.73 dB	-. 27 dB	7.28W	-. 27 dB	-32.7	11.9	49.0	-2.4
8	7.78W	16.8 dB	. 503 A	39.7 d8	$-.30 \mathrm{~dB}$	7.26W	-. 28 dB	-35.4	-111.9	49.1	-1.5

Largest Datta after calibration correction is 0.52 dB .
Mean valus of the measured power $=7.41 \mathrm{~W}$.
Standard Deviation - . $34 \mathrm{~W}=.19 \mathrm{~dB}$.
Hote: - 30 dB RETURN LOSS $=\mathrm{e}$ of 0.03 and VSWR of 1.06:1.

Tabla II. RL Effects on Output Power

Load Rasistanee (8)	Transformed Load Resistance (8)	Output Power (W)	$\Delta d B$	Cumulative $\Delta d B$
45	6.30	55.73		
			. 095	. 095
46	6.44	54.52		
			. 093	. 189
47	6.58	53.36		
			. 091	. 280
48	6.72	52.25		
			. 090	. 370
49	6.86	51.18		
			. 087	. 457
50	7.00	50.16		
			. 086	. 543
51	7.14	49.18		
			. 085	. 628
52	7.28	48.23		
			. 083	. 710
53	7.42	47.32		
			. 081	. 791
54	7.56	46.45		
			. 080	. 871
55	7.70	45.60		

Maximum Delta dB Vs. VSWR

VSWR	Maximum ddB
1.02	$.17(\pm .085)$
1.04	$.34(\pm .17)$
1.06	$.51(\pm .255)$
1.08	$.68(\pm .34)$
1.10	$.87(\pm .435)$

various load impedances. Our example utilizes a real-to-real impedance match for convenience. The analysis also is appropriate for an imaginary-toreal match in that center of the VSWR circle at the input to the matching network will be rotated but won't change in magnitude from the data presented.

CONCLUSION

The data presented in table represents the power variation into a lord with a VSWR of 1.1:1 relative to 50Ω. The result is a power output of $50 \mathrm{~W} \pm 5.3 \mathrm{~W}(\pm .435 \mathrm{~dB})$. The total Delta is $10.3 \mathrm{~W}(.87 \mathrm{~dB})$. This is enough to: A) Make a good circuit look bad, or. . .
B) Make a bad circuit look good.

This analysis was done for a single frequency. The problem is compounded in a broadband environment by requirements for a good broadband load impedance.

TEST EQUIPMENT ACCURACY

Test equipment manufacturers have produced some very impressive equipment in recent yebrs; however, the accuracy of a well constructed system using the latest equipment available is generally considered to te no better than $\pm 3 \%$. Considering the number of variables in RF testing and the megnitude of the task faced by the test equipment manufacturers, $\pm 3 \%$ is no small achievement. However, $\pm 3 \%$ is $\pm .13 \mathrm{~dB}$. This $\pm .13 \mathrm{~dB}$ added to the $\pm .435 \mathrm{~dB}$ indicated eartier yields a total possible error magnitude of $\pm .565 \mathrm{~dB}$. This adds up to a total possible error of $\pm 14 \%$ into a load with 1.1:1 VSWR. The output power range of our amplifier is now 50W $\pm 7.05 \mathrm{~W}$.

Now we see how bad things can be, a few comments on reality are in order.

The author believes that the correlation target for the test of RF power devices should be ± 0.2 dB , which we believe is the optimum tolerance for combining strict quality standards and the need for easy repeatability under series production conditions. If more than an occasional device fails this test, do not assume that the devices are at fault. Instead, first analyze the test circuit and then the test system to determine the reason for the additional error. Some suggestions on how to maintain a $\pm 0.2 \mathrm{~dB}$ correlation are shown in Teble III.

AN1032

Tahla [II. Rotes	
Suggestions to the Maintenance of Correlation	
1. Serialize and document all companents (atteruators, directional courplers, power meters, detectors, etc.l of the test system. Do not disturb the system once cafitiotion has been performed. Ceitiorate the system once a month.	5. Be selective whten using cables in test systems. For example, the MIL.C. 11 specification for "RG" cable types says that RG- 58 can have a characteristic impedance from 48 to 529 (mmaxinu VSWR of 1.04:1) when teminated in a "perfect" 509 load.
2. Require that loads have a calbration return loss $>-35 \mathrm{~dB}$ (NSWR of 1.05:1) in frequency band of interest.	6. Be very selective when choosing RF switchas. The VSWR of a mechenical switch will vary with time.
3. Dedicate test systems to specific circuits or products. This is necessary for both corredation and product continuity. 4. The placement of transistors in the test fixtures must be unitorm. For instance, flanged transistors shoudd be placed in the test fixtures with the device pushed towards collector load circuitry.	7. If possible, teminate the system with a 509 load rather than an attenuator. Load manufacturers need orly consider the VSWR of a boad. However, for attenuator, tradeolis must be made between VSWR and frequency response. Measure power and other performance parameters via calibrated drectional couplers.

The 0.2 dB target is an achievable target in broadband test systems. However, a constant awareness of the test system capabitities and potential problem areas is mandatory. RF correlation problems will never go away, but they can be made easier to handle.

MATCH IMPEDANCES IN MICROWAVE AMPLIFIERS

and you're on the way to successful solid-state designs. Here's how to analyze input/output factors and to create a practical design.

By Roger DeBloois

The key to successful solid-state microwave power-amplifier design is impedance matching.

In any high-frequency power-amplifier design, improper impedance matching will degrade stability and reduce circuit efficiency. At microwave frequencies, this consideration is even more critical, since the transistor's bond-wire inductance and base-to-collector capacitance become significant elements in input/output impedance network design.

In selecting a suitable transistor, therefore, keep in mind that the input and output impedances are critical along with power output, gain and efficiency.

Unless the selected transistor is used at frequencies that are much lower than the maximum operating frequency, the input impedance is largely inductive with a small real part. The large inductance is due to bond wires that connect the transistor chip to the input lead of the package and to the common-element bond wires. The small real part of the input impedance is due to the large geometries required to generate high power at high frequencies; the base bulk resistance may be the predominant part of the real input impedance.

Use microstrip stubs at input network

The first and most important step in designing the input matching network for the selected device is to provide a shunt capacitance that will resonate the inductive component of the input impedance. This step forms the low-pass matching section of the network and should provide the smallest possible transformed impedance. To minimize the inductive component, the input and common-element lead lengths must be kept short.

The resonating capacitance is generally best provided by a microstrip stub. In some cases the stub producing the required capacitance is so large that a practical circuit size cannot be realized. It is best then to distribute as much of

1. In this output equivalent circuit, capacitance $C_{\text {out }}$ is almost equal to the selected transistor's collectorto base capacitance C_{ob}.
this capacitance as is physically practical and to provide the balance with high-quality chip capacitors.

The first section of the impedance matching network is extremely important because it can degrade the stability of the amplifier if it is not well designed. Depending on the design frequency of the amplifier and the transistor selected, the resonated real impedance can range from less than 50Ω to much higher. When it is below 50Ω, an additional low-pass matching section can be conveniently added to achieve the required 50Ω impedance at the input.

The higher-impedance case presents a special problem if microstrip techniques are used to build the matching network. The problem occurs because the resonated impedance may be as high as 300Ω. Reducing this to 50Ω by use of a lowpass network configuration requires a seriestransmission line that will behave as an inductor. The rule of thumb is that the characteristic impedance of the transmission line must be at least twice the higher impedance before such behavior results. Examination of the accompanying table shows that characteristic impedance lines of greater than 100Ω are very narrow. Narrow transmission lines (less than 0.01 -inch wide) should be avoided wherever possible, because repeatability of width dimensions is poor. Also, the loss in a narrow line may become excessive. A better solution is to use a quarter-wave transmissionline transformer with a characteristic impedance
equal to the square root of the $50-\Omega$ impedance product: $\mathrm{Z}_{\mathrm{o}}=\sqrt{50 \mathrm{Z}_{\mathrm{R}}}$.

Make output bandwidth wider than input

The output impedance of a microwave power transistor is usually defined as the conjugate of the load impedance required to achieve the device performance. A typical output equivalent circuit is shown in Fig. 1. The capacitance $\mathrm{C}_{\text {ont }}$ is nearly equal to the collector-base capacitance C_{ob} specified for the selected transistor. L_{c} is the inductance of the bond wires used to bridge from the collector metallization area to the package output lead, and $\mathrm{L}_{\mathrm{com}}$ represents the inductive effects of the common element bond wires.

For correct operation of the transistor, the ultimate load impedance must be transformed to a real impedance across the current generator. This real impedance is determined by

$$
\mathrm{R}_{\mathrm{L}}=\frac{\left[\mathrm{V}_{\mathrm{ce}}-\mathrm{V}_{\mathrm{ce}}(\mathrm{sat})\right]^{2}}{2 \mathrm{P}_{\mathrm{out}}}
$$

The load impedance presented to the package terminals will contain the real impedance at the current generator, transformed to a lower value by the low-pass L section formed by $\mathrm{C}_{\text {out }}$ and the parasitic inductances L_{c} and $L_{\text {rom }}$. Usually the reactive part of the load impedance is made inductive to tune out the residual capacitance of the device.

The output matching network should be designed so it has greater bandwidth than the input matching network. Providing a good collector match, both above and below the design frequency, ensures that the input power will be reflected before the collector VSWR rises to values that endanger the transistor. In this way the transistor is protected from off-frequency operation. The amount of additional bandwidth required for protection of the transistor depends on the ruggedness of the transistor used. The manufacturer's specifications for VSWR tolerance and input Q can be a guide for determining the bandwidth requirements of the input matching network.

One technique for obtaining the required bandwidth is to resonate a portion of the capacitive

2. With this typical microwave amplifier breadboard layout, the entire board can be soldered to a metal plate to provide a path for thermal cooling.
reactance of the transistor output impedance with a shunt inductor. The shunt inductor can also be used to feed the collector supply voltage to the transistor. Additional transformation may be obtained from a low-pass matching section. By adjusting the amount of shunt inductance and rematching with the low-pass section, the designer can create a truly broadband output match.

Don't overlook base and collector paths

In addition to matching the device impedances, direct-current paths must be provided to the base and collector of the transistor. The collector path is provided by the shorted stub in the imped-ance-matching network. The base path requires the addition of a choke from the base to ground. The choke can be a lumped element or a distributed shorted stub of sufficient impedance to be negligible in the circuit. A quarter-wavelength stub is ideal. The narrowest practical line should be selected. In addition a dc blocking capacitor is required in the collector circuit. Also needed is a bypass capacitor to provide the proper ac shorting point for the inductive stub in the col-

AN1033

Microstrip Z_{0} and velocity factor vs width-to-height (W/H) ratio.

(Prepared by Don Schulz, Applications Engineer)

W/H	$z_{.}{ }^{\mathrm{Air}}{ }^{\text {Air }}{ }^{1.0} \mathrm{~V}_{\mathrm{p}}$		$z_{:}{ }^{\frac{\text { Tefion }}{=}=2.55} V_{p}$		$K \stackrel{\text { Epoxy }}{=} \underset{V_{p}}{ }$		$Z_{.} \begin{gathered} \text { Alumina } \\ \mathrm{K}=9.6 \end{gathered}$	
0.630	168.425	1.000	110.683	0.657	87.986	0.522	60.977	0.362
0.695	161.878	1.000	106.258	0.656	84.414	0.521	58.441	0.361
0.766	155.370	1.000	101.865	0.656	80.870	0.521	55.927	0.360
0.844	148.909	1.000	97.509	0.655	77.360	0.520	53.440	0.359
0.931	142.506	1.000	93.199	0.654	73.888	0.518	50.985	0.358
1.026	136.171	1.000	88.941	0.653	70.463	0.517	48.566	0.357
1.131	129.916	1.000	84.745	0.652	67.090	0.516	46.187	0.356
1.247	123.753	1.000	80.616	0.651	63.775	0.515	43.853	0.354
1.375	117.692	1.000	76.565	0.651	60.524	0.514	41.568	0.353
1.516	111.746	1.000	72.597	0.650	57.345	0.513	39.337	0.352
1.672	105.926	1.000	68.721	0.649	54.243	0.512	37.164	0.351
1.843	100.242	1.000	64.944	0.648	51.223	0.511	35.053	0.350
2.032	94.706	1.000	61.273	0.647	48.291	0.510	33.007	0.349
2.240	89.327	1.000	57.714	0.646	45.451	0.509	31.030	0.347
2.470	84.115	1.000	54.271	0.645	42.709	0.508	29.123	0.346
2.723	79.076	1.000	50.951	0.644	40.066	0.507	27.289	0.345
3.002	74.218	1.000	47.757	0.643	37.527	0.506	25.531	0.344
3.310	69.546	1.000	44.692	0.643	35.094	0.505	23.849	0.343
3.649	65.065	1.000	41.759	0.642	32.768	0.504	22.244	0.342
4.023	60.779	1.000	38.959	0.641	30.550	0.503	20.716	0.341
4.435	56.689	1.000	36.292	0.640	28.440	0.502	19.266	0.340
4.890	52.796	1.000	33.760	0.639	26.439	0.501	17.892	0.339
5.391	49.100	1.000	31.360	0.639	24.544	0.500	16.594	0.338
5.944	45.600	1.000	29.091	0.638	22.755	0.499	15.370	0.337
6.553	42.291	1.000	26.952	0.637	21.069	0.498	14.218	0.336
7.224	39.173	1.000	24.938	0.637	19.485	0.497	13.138	0.335
7.965	36.233	1.000	23.047	0.636	17.998	0.497	12.125	0.335
8.781	33.484	1.000	21.275	0.635	16.606	0.496	11.179	0.334
9.681	30.904	1.000	19.618	0.635	15.305	0.495	10.295	0.333
10.674	28.491	1.000	18.071	0.634	14.091	0.495	9.472	0.332
11.768	26.240	1.000	16.629	0.634	12.961	0.494	8.707	0.332
12.974	24.143	1.000	15.288	0.633	11.911	0.493	7.996	0.331
14.304	22.192	1.000	14.043	0.633	10.937	0.493	7.338	0.331
15.770	20.381	1.000	12.888	0.632	10.033	0.492	6.728	0.330
17.387	18.702	1.000	11.818	0.632	9.198	0.492	6.164	0.330
19.169	17.148	1.000	10.830	0.632	8.425	0.491	5.644	0.329
21.133	15.172	1.000	9.917	0.631	7.713	0.491	5.164	0.329
23.300	14.385	1.000	9.074	0.631	7.056	0.490	4.722	0.328
25.688	13.162	1.000	8.299	0.630	6.451	0.490	4.315	0.328

Table continued								
W/H	z_{0}^{K}	V_{p}	z^{k}	${ }^{5} v_{p}$	z^{K}	${ }^{25} V_{p}$		1.6
28.321	12.036	1.000	7.585	0.630	5.894	0.490	3.942	0.327
31.224	10.999	1.000	6.929	0.630	5.383	0.489	3.598	0.327
34.424	10.047	1.000	6.326	0.630	4.914	0.489	3.284	0.327
37.953	9.172	1.000	5.773	0.629	4.483	0.489	2.995	0.327
41.843	8.370	1.000	5.266	0.629	4.089	0.489 .	2.731	0.326
${ }^{*} 46.132$	7.634	1.000	4.801	0.629	3.727	0.488	2.489	0.326
50.860	6.960	1.000	4.376	0.629	3.397	0.488	2.267 -	0.326
56.073	6.343	1.000	3.987	0.629	3.094	0.488	2.065	0.326
61.821	5.779	1.000	3.632	0.628	2.818	0.488	1.880	0.325
68.157	5.264	1.000	3.307	0.628	2.566	0.487	1.711	0.325
75.144	4.792	1.000	3.010	0.628	2.335	0.487	1.557	0.325
82.846	4.362	1.000	2.739	0.628	2.125	0.487	1.417	0.325
91.337	3.969	1.000	2.492	0.628	1.933	0.487	1.289	0.325
100.700	3.611	1.000	2.267	0.628	1.758	0.487	1.172	0.324

lector-matching network.
Selection of a blocking capacitor is relatively straightforward. The capacitor should be chosen to provide low loss at the operating frequency while maintaining the capacitance at a value that inhibits low-frequency oscillation. The latter is caused by the series capacitor's tendency to display rising reactance with decreasing frequency.

Blocking capacitors must be large enough to preserve coupling characteristics down to a frequency where the shunt-feed chokes can effectively short the respective port to ground. Coupling capacitors should not be excessively large, or they may produce as much as $1-\mathrm{dB}$ loss in gain with a corresponding decrease in efficiency in the case of collector coupling capacitors. The Q of the coupling capacitor determines the acceptable range of capacitance values and is generally inversely related to capacitance.

Bypass capacitors are selected by analysis of the same considerations as those for blocking capacitors. A large bypass capacitor (tantalum or electrolytic), placed from the dc feedpoint to ground, prevents tendencies toward low-frequency oscillation in the circuit. Also, it may be necessary to add smaller bypass capacitors to preserve stability over a wide range of frequencies.

Adjust for bandwidth and physical dimensions

The circuit design may be adjusted quickly for bandwidth requirements through use of a computer optimization program such as Magic, of-
fered by University Computing of Dallas, Tex. When that step is finished, electrical dimensions must be converted to physical dimensions.

At this point in the design sequence, the dielectric material must be chosen. Three commonly used materials are Teflon fiberglass, epoxy fiberglass and alumina. Above 500 MHz , epoxy fiberglass exhibits too many losses to be a good choice. Teflon fiberglass can be used up to several gigahertz; it has reasonable dielectric losses and is easy to process. Alumina, a ceramic, offers a high dielectric constant, good dimensional consistency and small circuit geometry.

When plastic materials are used, it's a good practice to measure the material thickness and dielectric constant, because variations are common. In a recent test the dielectric constant of a sheet of epoxy fiberglass material was measured at 4.55 at 1 MHz and 4.25 at 500 MHz . If the manufacturer's value of 5.5 had been used for the design of matching networks, considerable error would have resulted.

The physical dimensions of the matching circuitry may be calculated from the data in the table. The line lengths are scaled by the velocity factor, which is equal to $\mathrm{Z}_{\mathrm{n}} / \mathrm{Z}_{\text {on|r| }}$ in air for a constant width-ta-height ratio, W/H.

The final design of a typical breadboard microwave amplifier is shown in Fig. 2. The ground areas on the top of the board are connected to the microstrip ground plane by 2 -mil-thick foil wrapped around the edges of the board and the areas directly under the emitter leads of the transistor. The foil is secured to the top and bot-

3. The immittance chart, with values specified for the design example, indicates the necessary inductive and
capacitive stubs. Impedance transformations are achieved by $50-\Omega$ series-transmission lines.
tom surfaces with solder. Plating may be used for production units. The entire board can be soldered to a metal plate to allow connector mounting and to provide a thermal path for the heat generated by the transistor.

The initial tune-up of the amplifier matching circuits can be expedited by use of a network analyzer and a precision load on the input or output connector. The circuit can be adjusted to match the nominal impedances supplied by the transistor manufacturer. Distributed stubs are purposely made longer than necessary and are adjusted to the correct length by trimming of the
foil on the capacitive stubs. The inductive stub in the output network is adjusted by positioning of the bypass capacitor along the stub and the adjacent ground plane.

This procedure results in a load line that is fairly close to optimum. A transistor can now be inserted in the circuit and the collector matching network readjusted for maximum collector efficiency. Stub tuners are used to match the amplifier input impedance, so that only one variable at a time need be considered. Initially it may be necessary to operate the transistor at reduced collector voltage and power output to avoid
excessive stress. When maximum efficiency is obtained, the stub tuner is removed and the input network adjusted for minimum input VSWR.

Now let's design an impedance-matching circuit

Let's consider a practical example of a procedure for the design of impedance-matching circuitry. The sample circuit uses a TRW 2 N 5596 at 700 MHz as the active device.

Specifications for the completed amplifier are:

$$
\begin{aligned}
& \mathrm{Z}_{\text {in }}=50 \Omega \\
& \mathrm{Z}_{\text {out }}=50 \Omega, \\
& \mathrm{P}_{\text {out }}=20 \mathrm{~W}, \\
& \mathrm{G}_{\mathrm{p}}=7 \mathrm{~dB}, \\
& \eta \quad=55 \% \text { minimum. }
\end{aligned}
$$

Specifications for the TRW 2N5596 are:

$$
\begin{aligned}
& \mathrm{P}_{\text {out }}=20 \mathrm{~W} \text { at } 1 \mathrm{GHz}, \\
& \eta=55 \% \text { minimum at } 1 \mathrm{GHz}, \\
& \mathrm{G}_{\mathrm{p}}=5 \mathrm{~dB} \text { minimum at } 1 \mathrm{GHz}, \\
& \mathrm{Z}_{\text {in }}=2.5+\mathrm{J} 4.0 \text { at } 700 \mathrm{MHz}, \\
& \mathrm{Z}_{\text {out }}=6.0-\mathrm{J} 12.5 \text { at } 700 \mathrm{MHz} .
\end{aligned}
$$

In practice, the gain of a common-emitter amplifier decreases at a rate of 4 to 5 dB per octave. The 2 N 5596 at 700 MHz produces about 7 dB of gain. Therefore approximately 4 W of drive will be required to produce 20 W of output power. The collector efficiency can be expected to increase at the lower frequency, but it is difficult to estimate because it is a complex phenomenon. Manufacturers' curves of typical behavior are useful. Output power will not increase significantly with the decreased frequency.

The efficiency-frequency relationship depends on device f_{T} and ballasting. Heavily ballasted transistors tend to give increased efficiency as frequency is decreased. However, they level out at a lower efficiency than a nonballasted part because of $I^{2} R$ losses in ballast resistors. The average increase in efficiency as a result of decreasing frequency is about 20% per octave. Values from 10 to 40% per octave have been measured.

The initial phase of the design is best accomplished on an immittance chart. The chart with appropriate values indicated for the sample design is shown in Fig. 3. The input match is achieved when the input impedance is resonated with a capacitive susceptance of 0.18 mhos. This susceptance is realized by use of a pair of capacitive microstrip stubs. Each stub must exhibit a reactance of $2 \times 1 / 0.18$ mhos, or 11.1Ω. The length of the stub may be calculated by

$$
\tan \theta=\frac{\mathbf{Z}_{0}}{\mathbf{X}_{c}}
$$

For ease of adjustment, the length of the stubs should be less than 60 degrees. Because ca-
pacitive reactance is a tangential function, the reactive variations per unit length become increasingly severe past 60 degrees. It is better to decrease $Z_{\text {o }}$ rather than to use longer stubs to achieve higher capacitance. Therefore $\mathrm{Z}_{\circ} \leqq 1.732$ $\mathrm{X}_{\mathrm{c}} \leqq 19.24 \Omega$. Because it is easier to shorten a microstrip stub than to lengthen it, the Z_{0} of 15Ω, for example, provides sufficient adjustment range to accommodate device variations.

The next step is to transform the resonated impedance to 50Ω. This is accomplished by a series-transmission line with a characteristic impedance of 50Ω. From Fig. 3, we see that the length of this line can be directly determined to be 0.062 wavelengths, or 22.3 degrees, long. A capacitive susceptance of 0.040 mhos completes the transformation. Again, a pair of capacitive stubs will provide the susceptance. For ease of converting the design to microstrip dimensions, it is convenient to choose a Z_{o} for the second stub that is equal to that selected for the first. Therefore:

$$
\begin{aligned}
\tan \theta & =\frac{Z_{o}}{X_{r}}=\frac{15}{50}=0.3, \\
\text { or } \theta & =16.7 \text { degrees. }
\end{aligned}
$$

In this case the length chosen is 20 degrees to allow for some adjustment.

The output match is achieved by partial resonating of the device's output impedance with an inductive susceptance. While the amount of susceptance chosen is arbitrary at this point, the output network bandwidth is affected by the value. From Fig. 3, we can determine that 0.05 mhos is required for the first matching element. This susceptance is achieved by use of a shorted microstrip stub. The length of the stub may be calculated from the equation

$$
\tan \theta=\frac{\mathrm{X}_{1}}{\mathrm{Z}_{\mathrm{n}}} .
$$

If Z_{o} of the stub is arbitrarily chosen to be 50Ω,

$$
\begin{aligned}
\tan \theta & =\frac{20}{50}=0.4 \\
\theta & =21.8 \text { degrees. }
\end{aligned}
$$

Again, the stub is made somewhat longer because it can be adjusted by sliding the chip capacitor (ac short) up or down the line length. The remaining transformation is achieved by a $50-\Omega$ series-transmission line of 0.15 wavelengths (54 degrees long) and a capacitive susceptance of 0.014 mhos. Selecting a pair of 50 -ohm microstrip lines to provide the susceptance requires a stub length of

$$
\begin{aligned}
X_{c} & =2 \times \frac{1}{0.014}=143 \Omega \\
\tan & =\frac{Z_{o}}{X_{c}}=\frac{50}{143}=0.350=19.3 \text { degrees. }
\end{aligned}
$$

A stub length of 25 degrees will provide an adequate allowance for adjustment of the circuit. -

AN1034

THREE BALUN DESIGNS FOR PUSH-PULL AMPLIFIERS

SINGLE RF power transistors seldom satisfy today's design criteria; several devices in separate packages,' or in the same package (balanced, push-pull or dual transistors), must be coupled to obtain the required amplifier output power. Since highpower transistors have very low impedance, designers are challenged to match combined devices to a load. They often choose the push-pull technique because it allows the input and output impedances of transistors to be connected in series for RF operation.
Balun-transformers provide the key to push-pull design, but they have not been as conspicuous in microwave circuits as at lower frequencies. Ferrite baluns ${ }^{2}$ have been applied up to 30 MHz ; others incorporating coaxial transmission lines operate in the $30-$ to $-400-\mathrm{MHz}$ range. ${ }^{\text {. }}$

The success of these two balun types should prompt the microwave designer to ask if balun-transformers can be included in circuits for frequencies above 400 MHz . Theory and experimental results lead to the emphatic answer: yes! Not only will baluns function at microwave frequencies, but a special balun can be designed in microstrip form that avoids the inherent connection problems of coax.
On the next six pages, you will observe the development of three balun-transformers-culminating with the microstrip version. None of the baluns was tuned nor were the parasitic elements compensated. In this way, the deviation of the experimental baluns from their theoretical performance could be evaluated more easily. The frequency limitations imposed by the parasitic elements also were observed more clearly.

1. A balun transforms a balanced system that is symmetrical (with respect to ground) to an unbalanced system with one side grounded. Without balun-transformers, the minimum device impedance (real) that can be matched to 50 ohms with acceptable bandwidth and loss is approximately 0.5 ohms. The key to increasing the transistors' output power is reducing this impedance ratio. Although $3-\mathrm{dB}$ hybrid combiners can double the maximum power output, they lower the matching ratio to only $50: 1$. Balun transformers can reduce the original 100:1 ratio to $6.25: 1$ or less. The design offers other advantages: the baluns and associated matching circuits have greater bandwidth, lower losses, and reduced even-harmonic levels.
2. Baluns are not free of disadvantages. Coupling a pair of push-pull amplifiers with $3-\mathrm{dB}$ hybrids avoids (for four-transistor circuits) one of these: the higher broadband VSWRs of balun-transformers. A second disadvantage, the lack of isolation between the two transistors in each

A $500-W$ puah -pull a mplifier for DME band. push-pull configuration, is outweighed by the advantages of the balun design in reducing the critical impedance ratio.
3. In this simple balun that uses a coaxial transmission line, the grounded outer conductor makes an unbalanced termination, and the floating end makes a balanced termination. Charge conservation requires that the currents on the center and the outer conductors maintain equal magnitudes and a 180 -degree
 phase relationship at any point along the line. By properly choosing the length and characteristic impedance, this balun can be designed to match devices to their loads. In the case shown, if $0_{A}=90$ degrees, the matching condition is:

Erperimental version of a simple
balun using coarial lines.

$$
\mathrm{Z}_{\mathrm{A}}{ }^{2}=2 \times \mathrm{R} \times 50
$$

4. By adding a second coaxial line, the basic balun can be made perfectly symmetrical. In this symmetrical coaxial balun, the bandwidth (in terms of the input VSWR) is limited by the transformation ratio, $50 / 2 \mathrm{R}$, and the leakages, which are represented by lines B and C. If $Z_{A}=$ 50 ohms and $\mathrm{R}=25$ ohms, the bandwidth is constrained only by the leakages.
5. The equivalent circult for the symmetrical balun shows the effect of the leakages (lines B and C) on its performance. A broadband balun can be obtained by using a relatively high characteristic impedance for these leakage lines. In theory, the construction of the baluns insures perfect balance.
6. The symmetric balun's input equivalent circuit further simplifies its configuration and allows the input VSWR to be calculated. ${ }^{4}$ In this design, line A has a characteristic impedance of $Z_{A}=50$ ohms, a length of $L_{A}=1799$ mils, and a dielectric constant (relative) of $\epsilon_{\mathrm{r}}=2.10$. For lines B and C, $Z_{0}=30$ ohms, E1799 mils, and $\epsilon_{\text {eff }}=2.23$.

7. The measured phase difference and insertion loss difference, which indicate the maximum unbalance for the Design 1 experimental balun, are 3 degrees and 0.2 dB , respectively.
8. The maximum VSWR measured for the first design is 1.5:1. Note the comparison between the calculated and measured response. The performance shown can be considered valid for amplifier applications up to an octave range.
9. The second balun design adds two identical coax llnes to the simple balun just described. The inputs of the identical lines are connected in series to the output of the first balun. By putting their outputs in parallel, the final output becomes symmetrical. The output impedance is halved.
10. The equivalent circult for the Design 2 balun indicates that its bandwidth, in terms of input VSWR, is limited by the transformation ratios of the first and second sections and the leakages represented by lines B, C, E, and G. If the balun is designed with $Z_{\Lambda}=$ 50 ohms, and $Z_{D}=Z_{F}=25$ ohms, and if the load, $2 R$, is set at 2×6.25 ohms, all of the transmission lines will be connected to their characteristic impedances. In this case, the bandwidth will be limited by the leakage alone, and a broadband balun can be obtained by choosing lines B, C, E, and G with relatively high impedance and $\lambda / 4$ length for the center frequency. The balun achieves a transformation from 50 ohms to twice 6.25 ohms without causing a standing wave in the coaxial cables.
11. The performance of the Design 2 balun can be calculated using its equivalent circult. The calculated VSWR shows a response very close to the simple coaxial balun (Fig. 10) because the new second section has four times the bandwidth of the first section. This design and its two companions are intended to have octave bandwidths centered at 1.1 GHz , the central frequency used in distance measuring equipment (DME, 1.025 to 1.150 GHz) and tactical air navigation (TACAN, 0.960 to 1.215 GHz). For line $\mathrm{A}: \mathrm{Z}_{\mathrm{A}}=50$ ohms, $\mathrm{L}_{\mathrm{A}}=1799$ mils, $\epsilon_{\mathrm{r}}=2.10$; lines B , C, E, and $\mathrm{G}: \mathrm{Z}_{\mathrm{o}}=30 \mathrm{ohms}, \mathrm{L}=1799$ mils, $\epsilon_{\mathrm{eff}}=2.23 ;$ lines E and F : $\mathrm{Z}_{0}=25$ ohms, $\mathrm{L}=1799$ mils, $\epsilon_{r}=2.10$.

Two-section balun often used in the 100 -to-400 MHz range.
14. Two $\lambda / 4$ transformers match the experimental twosectlon coaxial balun's 6.26 ohm impedance to the $50-\mathrm{ohm}$ load. Although these transformers drastically reduce the bandwidth (in terms of the VSWR), they don't affect the balance.
15. The measured phase difference and measured Insertion loss difference are plotted for the two-section coaxial balun (Design 2). The maximum unbalances for these two measurements over the octave bandwidth are 1 degree and 0.2 dB .

16. The calculated and measured values for the input VSWR for the Design 2 balun show close agreement between the experimental and predicted performances. This indicates that the parasitic inductors at the connections are negligible to at least 1.4 GHz . Moreover, the balun has excellent balance to 1.4 GHz and achieves the 4:1 transformation without causing a standing wave in the coaxial line. Despite the many excellent qualities of the Design 1 and Design 2 baluns, the necessary coaxial line connection limits them to approximately 2 GHz .

17. The problems associated with the previous coaxial baluns can be reduced or ellminated by using a balun that allows a microstrip coplanar arrangement of the input and output lines, which greatly simplifies the connections to the amplifier. This balun ${ }^{5}$ consists of an input line, A, connected in series to three elements in the center of the halfwavelength cavity: a reactive open-circuit stub, B, and the $\lambda / 4$ output lines, C and D .

18. The equivalent circuit of the Design 3 coaxial version balun shows lines C and D connected to place their input signals in antiphase, thereby producing two antiphase signals at their outputs. Transmission line impedances and lengths are optimized to achieve the correct input/output transformation ratio and a good match across the desired bandwidth. If only one frequency or a narrow bandwidth is desired, and all lengths are $\lambda / 4$, the matching condition $Z_{A}{ }^{2} / 50=$ $2 \mathrm{Z}_{\mathrm{c}}{ }^{2} / \mathrm{R}$, will occur. In this case, $\mathrm{Z}_{\mathrm{E}}\left(\mathrm{Z}_{\mathrm{E}}=\mathrm{Z}_{\mathrm{F}}\right)$ and Z_{B} have no significance except for loss.
19. The coplanar arrangement of input and output Ilines can be accomplished with microstrip technology. The uppermost conductor plane contains input line A, output lines C and D, and the open stub B. Coupling between these lines is avoided by separating
them by at least one line width. The middle conductor carries the ground plane for the lines. To avoid radiation loss, the center conductor must extend at least one line width to either side of the upper plane circuit line. The balun resonant cavity is formed by
the region between the the region between the
middle and the lower con19 ductor planes. A hole for the cavity is cut in the circuit fixture, filled with dielectric, and covered with the middle conductor plane. The end-to-end length of the cavity is nominally a half-wavelength at midband. To avoid disturbance of the field distribution, the cavity width must be at least three times the width of the middle conductor plane. The arms of the balun cavity are folded to produce two parallel and proximate output transmission lines. This configuration is more suited to coupling two transistors than the original layout in which the two outputs were on opposite sides (Fig. 17).
20. The Input equivalent circuit for the microstrip verslon of the Design 3 bafun allows its theoretical performance to be calculated. The design parameters shown provide a microstrip circuit that can be compared with the coaxial baluns of Design 1 and Design 2. Transmission line A and lines C and D are loaded by their characteristic impedances-in this case, 50 and 25 ohms. The cavity and the stub impose the principal frequency limitation. The impedances of these elements are dictated by the properties of the available dielectric substrates (glass-Teflon 0.020 and 0.0625 inches thick).

22. The equivalent circuit of the microstrip balun shows it during performance measurements with $\lambda / 16$ matching lines. The experimental model uses

The experimental microstrip balun show ing the uppermost conductor plane. 18 -mil glass-Teflon ($\epsilon_{r}=$ 2.55) for the tap circuits and 62.5 mil glass-Teflon for the cavity. Balance properties were measured with a 50 -ohm system, which was transformed to 25 ohms by the $\lambda / 16$ linesection Chebyshev impedance transformers, which have a bandwidth from 0.960 to 1.215 GHz .
23. The unbalance between output ports for a oneoctave bandwidth is shown in the measured 1.5degree maximum phase difference and $0.15-\mathrm{dB}$ maximum insertion loss difference.
24. The central frequency is 10 percent higher than expected, but response is ciose to the calculated values if relative frequency is considered. If the output transformers and their effect on input VSWR are disregarded, an octave bandwidth with a maximum input VSWR of around 2.0:1 can be obtained. The 100MHz shift between the two curves may be caused by the improper determination of the folded cavity's electrical length. Similar calculation inaccuracies may arise from effects at the balun junction and from the electrical length of the stub. As in the calculated response, the experimental microstrip balun performs comparably to the two coaxial designs.
25. The similarity in the performance of the three balun designs within the considered frequency bands indicates that the parasitic elements do not significantly affect the theoretical properties. The frequency limit is higher than 1.5 GHz for all three. In the $0.960-$ to $-1.215-\mathrm{GHz}$ bandwidth (TACAN and DME applications), each performed with satisfactory balance. The table compares the main characteristics of the balun designs.
The phase differences (± 1.5 degrees) for all three baluns are similar to those experienced with the miniature $3-\mathrm{dB}$ hybrid couplers that are normally used to combine transistors for microwave balanced amplifiers. But the insertion loss differences of the baluns are better -0.2 dB for a one-octave bandwidth compared with 0.5 dB .
The physically simple microstrip balun eliminates the connection problem inherent in coaxial designs: physical variances that breed standing waves and unbalance. Microstripping the transmission lines allows a designer to choose any value of characteristic impedance of the lines. Consequently, the microstrip balun is both more manageable and more controllable.
Since the balun load impedance will vary with frequency, the best results will be obtained by simultaneously optimizing the balun parameters with those of the matching network. The transistor's internal prematching network must be considered. ${ }^{\circ}$

Performance of the Three Balun Designs

Type of balun	Balun loads, R (ohms)	Maximum experl- mental unbalance for one-octave bandwidth	Theoretical Input VSWR for:		
$\Delta \phi\left({ }^{\circ}\right)$$\Delta \mathrm{MAG}$ (dB)	$960-1215$ MHz	One-oc- tave band- width			
Coaxial 1 (Design 1) Coaxial II (Design 2) Microstrip (Design 3)	25	6.25	1	0.2	$1.15: 1$

SOLID STATE POWER AMPLIFIER 300 W FM $88-108 \mathrm{MHz}$

High efficiency multikilowat FM transmitters with full solid state amplifiers are possible today. The power amplifier of these transmitters should be made by multiparalleling of a basic building block amplifier. This building block should have a high output power and a high gain, a good collector efficiency, broadband ($88-108 \mathrm{MHz}$) frequency response and a simple, reproducible and reliable circuit design. This application note describes an FM building block amplifier that meets the requirements mentioned above and that can be successfully incorporated to a number of amplifier architectures.

The amplifier has been developed with a pair of TP 9383 transistors in push-pull configuration. TP 9383 is a double diffused silicon epitaxial transistor that makes use of gold metallization and diffused ballast resistors for long operationg life and ruggedness. Its basic specifications are :

$$
\begin{gathered}
\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V} ; \eta=75 \% \text { at } 108 \mathrm{MHz} \text { and } 150 \mathrm{~W} \text { output power } \\
\mathrm{G}=9 \mathrm{~dB} \quad \mathrm{Po}=150 \mathrm{~W}
\end{gathered}
$$

DESIGN CONSIDERATIONS

When designing an FM amplifier the total efficiency must be the first goal.
Overall efficiency is the combination of good collect efficiency and high gain. To get a good collector efficiency the transistors must be operated in class C and the load impedance should match the transistors output impedance at the operation power level. Class C amplifiers are non-linear units. The harmonic content of the output signal of this type of amplifiers can be very high and their power wasted with an important reduction in the efficiency.

This fact made advantageous the use of balanced amplifiers. In such circuit arrangement all the even harmonic are largely suppressed and the waste of power minimized. Push-pull amplifiers have also the additional advantages of connecting in series for RF operation the input and output impedance of the 2 transistors. That makes considerably easier to match the input and output impedances of the transistor pair. However, as the impedance transformation is lower, the RF power losses are smaller and the gain and efficiency higher.

Another important consideration in the design of an FM amplifier is the ruggedness of the amplifier. FM transmitters are often operated 24 hours per day and sometimes remotly controlled and in difficult access sites. The operating point of the transistors should be chosen in a conservative way and the heat properly evacuated. A thermo switch should be incorporated to the system. The amplifier must also be able to withstand output VSWR. Although all transmitters use to incorporate VSWR protection in their interlocky systems, the amplifier must be designed with the capability of supporting VSWR of 3.1 as a minimum. This point can be very determinent when considering that on a high efficiency circuit the collector voltage swing can be close to 3 times the collector supply voltage.

CIRCUIT DESCRIPTION

Circuit schematic is given in the Figure 1. At the amplifier input there is a two section balun. The first section, L_{1}, consists of a short lenght ($\simeq \lambda / 20$) of 50Ω coaxial semirigid cable. The outer conductor of the coaxial cable is grounded at the input side and floats at the output.

The second section of the balun consists of two identical coaxial cables, L_{2} and L_{3}, of the same length that L_{1} but with 25Ω characteristic impedance. The ends of these two coaxials are interconnected in series at the input side (thus offering 50Ω impedance to L_{1}) and in parailel at the output of the section.
The combined balanced impedance will be therefore 12.5Ω at the output of the balun. The input impedance of the transistor pair Q_{1} and Q_{2} is transformed to $12.5 \Omega(2 \times 6.25)$ with the LC network represented in the schematic.

If this balun is well charged by $2 \times 6.25 \Omega$ it is well capable of multioctave operation. However in this case the LC network that transform the impedances of the transistor pair has been optimized only between 88 and 108 MHz .

A similar balun circuit is used at the output of the amplifier. The main difference with the input balun is that the coaxial cables are also used in the collect biasing circuit. Care has been taken with the decoupling of the collect bias in order to avoid low frequency oscillations. The collect impedance is higher than the base impedance and therefore the LC output transforming network is very simple, only L_{8}, L_{9} and C_{7}.

88-108 MHz; 300 W 28 V

Figure 1. FM Broadband Power Amplifier

AN1037

COMPONENTS LIST

C_{1}	$=120+80 \mathrm{pF}$ Chip capacitor ATC 100 B
C_{2}	$=220 \mathrm{pF}$ Chip capacitor ATC 100 B
$\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}$	$=470 \mathrm{pF}$ Chip capacitor ATC 100 B
C_{7}	$=100 \mathrm{pF}$ Chip capacitor ATC 100 B
C_{8}	$=27 \mathrm{pF}$ Chip capacitor ATC 100 B
$\mathrm{C}_{4}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{14}$	$=1000 \mathrm{pF}$ Disc capacitor
$\mathrm{C}_{12}, \mathrm{C}_{15}$	$=10 \mathrm{nF}$
$\mathrm{C}_{13}, \mathrm{C}_{16}, \mathrm{C}_{18}$	$=0,1 \mu \mathrm{~F}$
C_{17}	
	$=1000 \mu \mathrm{~F} / 63 \mathrm{~V}$ Electrolytic

$L_{1} \quad=50 \Omega$ coaxial cable $\varnothing 3,2 \mathrm{~mm}$ (Teflon) $\mathrm{L}=110 \mathrm{~mm}$
$\mathrm{L}_{2}, \mathrm{~L}_{3}=25 \Omega$ coaxial cable $\varnothing 3.2 \mathrm{~mm}$ (Teflon) $\mathrm{L}=110 \mathrm{~mm}$
$L_{4} L_{5} \quad=$ Hair pin : copper foil $18 \times 3 \mathrm{~mm} 0,3 \mathrm{~mm}$ thickness
$L_{6}, L_{7}=$ Line on substrate : $15 \times 5 \mathrm{~mm}$
$L_{B}, L_{9} \quad=$ Line on substrate : $10 \times 5 \mathrm{~mm}$
$L_{10}, L_{11}=25 \Omega$ coaxial cable $\varnothing 5 \mathrm{~mm}$ (Teflon) $L=110 \mathrm{~mm}$
$L_{12}=50 \Omega$ coaxial cable $\varnothing 5 \mathrm{~mm}$ (Teflon) $\mathrm{L}=110 \mathrm{~mm}$
$L_{13} \quad=15$ turns $\varnothing 8 \mathrm{~mm} \mathrm{1.4} \mathrm{~mm} \mathrm{wire}$
R_{1}, R_{2}
$=22 \Omega 1 / 2 \mathrm{~W}$
$R_{3} \quad=47 \Omega 2 \mathrm{~W}$
Q_{1}, Q_{2}
$=$ TP 9383

Figure 2. Component Layout

300 W PUSH-PULL FM TP 9383

Figure 3. Output Power versus input Power and Frequency

Figure 4. Gain and Efficiency versus Frequency

$1.2 \mathrm{~V}, 40-900 \mathrm{MHz}$ BROADBAND AMPLIFIER WITH THE TP 3400 TRANSISTOR

INTRODUCTION

This application note describes a single stage broadband amplifier incorporating the TP 3400 transistor. The amplifier will deliver 1.2 V output signal from 40 to 900 MHz at an intermodulation level ${ }^{\circ}$ of -60 dB or less. The gain is $9.5 \mathrm{~dB} \pm 0.5 \mathrm{~dB}$. Although the amplifier has been designed for MATV use, its simplicity and versatility makes it suitable for use in many other applications. The circuit construction is straight forward and only standard components have been used.

TP $\mathbf{3 4 0 0}$

The TP 3400 is a NPN gold metalized transistor with a transition frequency of more than $\mathbf{3} \mathbf{G H z}$. The transistor is housed in a SOE 200 package.
The gold metallization process used on the manufacture of this transistor is etchless, providing exact finger definition with submicron resolution and avoids the finger scalloping characteristic of all etching processes, which eliminates therefore current crowding where metal fingers are necked down. Moreover this gold process improves on all the benefits of gold over aluminium regarding electromigration.
The TP 3400 also incorporates diffused ballast resistors. High resistance ballast resistors are diffused directly into the silicon avoiding therefore all the reliability problem associated with conventional thin film, metal ballast resistors. In addition the P-N diode of the ballast resistor is diffused to avalanche at a lower voltage than the transistor, thus protecting effectively the transistor against VSWR or transient damage. A diagram illustrating the above mentioned technological characteristic is given in fig. 1.

DIFFUSED BALLAST RESISTORS WITH ETCHLESS GOLD METALLIZATION

vs. CONVENTIONAL THIN FILM BALLAST RESISTORS WITH ETCHED METALLIZATION

(${ }^{\circ}$) Intermodulation measured with a test procedure in accordance with DIN 45004/B.
Figure 1. Types of Ballast Resistors

AMPLIFIER DESIGN

a) Calculations

The amplifier configuration chosen is given in figure 2. A combination of series and shunt feedback compensates the frequency gain slope of the transistor. Transmission line inductors are used 0 in the shunt feedback network. The resistor in series with the base will improve the input VSWR at the cost of some gain, but this gain decrease is partially compensated by the fact that less series feedback is necessary in this way.
The calculation and optimization of the circuit was carried out with the aid of a computer using the COMPACT program. The program, the optimization data and the final expected results are given in table. 1. The expected gain is 9.5 dB plus/minus 0.5 dB , the amplifier is unconditionally stable over the required frequency range and input and output impedance matchings could be considered correct.

b) Amplifier assembly

Final amplifier is shown in fig. 3. The component values are given in table 2. The amplifier was built on standard Epoxy glass double clad printed circuit board and all the components are commonly used types. The resistors are carbon-composition type. Care was taken with all ground returns, made by wrapping copper foil between both planes. Plated trough holes may also be used. PC board and component layouts are given in figures 4 and 5 respectively.

RESULTS

Several TP 3400 transistors, covering all the accepted production spread, were used and no significant differences in the amplifier performance were recorded.
Input and output matching are given in figures 6 and 7. Gain versus frequency is given in figure 8. It is similar to that calculated.
Figure 9 shows its behabiour as an MATV amplifier, measured according to the DIN 45004B test procedure. The - 60 dB IMD level is attained at 1.2 volt, 75 output.

INTERMODULATION MEASUREMENT ACCORDING DIN 45004/B

AN1038
Table 1. Compact Program

100	200	300	400	500	600	700	800	900
END								

\(\left.\left.$$
\begin{array}{llllllll}.61 & 226 & 17.8 & 126 & .0200 & 35 & .53 & 320 \\
.73 & 203 & 12.9 & 103 & .0282 & 33 & .32 & 305 \\
.77 & 192 & 9.23 & 93 & .0299 & 33 & .27 & 297 \\
.75 & 185 & 6.92 & 84 & .0335 & 33 & .27 & 295 \\
.75 & 179 & 5.15 & 79 & .0335 & 38 & .27 & 300 \\
.78 & 174 & 4.68 & 72 & .0355 & 42 & .24 & 300 \\
.77 & 167 & 3.34 & 61 & .0447 & 44 & .27 & 285 \\
.77 & 163 & 3.16 & 56 & .0473 & 44 & .24 & 290 \\
\text { END } & & & & & & \end{array}
$$\right\} \begin{array}{l}

POLAR S PARAMETERS

FOR TWO HH\end{array}\right\}\)| (TP 3400) |
| :--- |

OPTIMIZATION DATA

POLAR S-PARAMETERS IN 50.0 OHM SYSTEM

FREQ.	$\text { (MAGN }^{\text {S11 }} \text { ANGL) }$	(MAGN	${ }^{521} \text { ANGL) }$	$\stackrel{\text { S12 }}{\text { (MAGN }} \text { ANGL) }$	$\text { (MAGN }^{\mathrm{S} 22} \text { ANGL) }$	$\begin{gathered} \mathrm{S} 21 \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} \mathrm{K} \\ \text { FACT. } \end{gathered}$
100.00	0.09-132	2.99	157.1	$0.139-10.7$	0.16149	9.52	1.38
200.00	0.11-140	3.14	135.2	$0.139-21.5$	0.16141	9.94	1.33
300.00	0.13-152	3.13	113.4	$0.136-32.7$	0.11128	9.91	1.36
400.00	$0.15-166$	3.14	89.7	$0.133-43.6$	0.0386	9.94	1.38
500.00	0.15166	2.94	64.2	$0.128-53.5$	$0.07-52$	9.37	1.49
600.00	0.15140	3.15	43.9	$0.126-63.6$	0.10-68	9.96	1.42
700.00	0.1599	3.18	20.0	$0.127-72.3$	$0.16-99$	10.05	1.37
800.00	$0.20 \quad 51$	2.95	- 6.8	$0.128-80.8$	$0.25-120$	9.38	1.34
900.00	0.2618	3.06	- 29.3	$0.128-93.0$	0.25-125	9.78	1.22

Figure 2. TP $\mathbf{3 4 0 0}$ Amplifier $\mathbf{4 0 - 9 0 0} \mathbf{~ M H z}$

Table 2. List of Components

$\begin{aligned} & C_{1} \\ & C_{2} \\ & C_{3} \\ & C_{4} \\ & C_{5,} C_{7} \\ & C_{6,} \\ & C_{9} \\ & C_{10} \\ & C_{11} \end{aligned}$	= capacitor ceramic 2.8 pF 632 RTC - capacitor chip 10 nF Eurofarad = capacitor chip 8.2 pF Vitramon - capacitor chip 2.2 pF Vitramon = capacitor chip 1 nF Eurofarad = capacitor chip 10 nF Eurofarad = capacitor chip 22 pF Vitramon = capacitor chip 10 nF Eurofarad = capacitor electrolytic 25 MF 25 V
$\begin{aligned} & L_{1} \\ & L_{2} \\ & L_{3} \\ & L_{4}^{4} \\ & \mathbf{F}_{1} \end{aligned}$	$=8$ turns $5 / 10 \mathrm{~mm} \mathrm{Cu}$ ID 2.5 mm $=$ printed 5 nH $=$ printed stripline 75 ohms 11.5 mm = printed stripline 75 ohms 11 mm - printed stripline 75 ohms 25 mm = ferrite bead 1200082 TRW
$\begin{aligned} & \mathbf{R}_{1} \\ & \mathbf{R}_{2} \\ & \mathbf{R}_{3}, \mathbf{R}_{4} \\ & \mathbf{R}_{\mathbf{5}} \\ & \mathbf{R}_{6} \\ & \mathbf{R}_{7} \end{aligned}$	$=$ resistor 12 ohms $1 / 4 \mathrm{~W}$ carbon composition $=$ resistor 4.7 ohms $1 / 4 \mathrm{~W}$ carbon composition - resistor 10 ohms $1 / 4 \mathrm{~W}$ carbon composition $=$ resistor 8.2 kohms $1 / 4 \mathrm{~W}$ carbon composition = resistor 240 ohms $1 / 4 \mathrm{~W}$ carbon composition $=$ resistor 12 ohms $1 / 2 \mathrm{~W}$ carbon composition
	ransistor TP 3400

Board Material

Epoxy glass (G10) 1/16 inch $E_{R}=4.2$

Figure 3. Circuit Schematic

AN1038

Epoxy glass (G 10),
Double Sided

Figure 4. PC Board Layout (Not to Scale)

+++ FOIL WRAP OR PLATE AROUND PLANE

Figure 5. Compenent Layout

Figure 6. \mathbf{S}_{11} versus Frequency

AN1038

Figure 7. $\mathbf{S}_{\mathbf{2 2}}$ versus Frequency

Figure 8. Gain versus Frequency

Figure 9. IMD (Din 45004 B) versus Output Voltage

INTRODUCTION

This application note describes an ultralinear broadband ($470-860 \mathrm{MHz}$) anplifier, developed for TV transposer applications. The amplifier incorporates two TPV 593 transistors.

Each transistor is used to build a separate broadband amplifier. The two identical amplifiers are later combined with 3 dB hybrids.

The TPV 593 transistor has been developed for TV class A application. It incorporates gold metallization and diffused ballast resistors for ruggedness and linearity. Its DC current consumption is very low and makes it a good candidate for solar cell powered systems. Its basic specifications are :

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{Cc}}=25 \mathrm{~V} \quad \mathrm{I}_{\mathrm{C}}=450 \mathrm{~mA} \\
& \mathrm{G}=9 \mathrm{~dB} \text { at } 860 \mathrm{MHz} \\
& \mathrm{IMD}=-60 \mathrm{~dB} \text { at } 860 \mathrm{MHz} \text { and } 2 \mathrm{~W} \text { output }
\end{aligned}
$$

The S parameters of the TPV 593 are given in the table below.

POLAR S-PARAMETERS IN 50.0 OHM SYSTEM

FREQ.	S11		S21		S12		S22		$\begin{gathered} \mathrm{S} 21 \\ \mathrm{~dB} \end{gathered}$	$\begin{gathered} K \\ \text { FACT. } \end{gathered}$
	(MAGN	ANGL)	(MAGN	ANGL)	(MAGN	ANGL)	(MAGN	ANGL)		
470.00	0.93	170	1.50	63.0	0.040	50.0	0.55	-166	3.52	1.01 .
650.00	0.93	165	1.06	50.0	0.050	54.0	0.60	-169	0.51	1.04
860.00	0.92	162	0.79	38.0	0.056	54.0	0.65	-169	- 2.00	1.15

POLAR COORDINATES OF SIMULTANEOUS CONJUGATE MATCH

F	SOURCE REFL. COEFF.	LOAD REFL. COEFF.	Gmax	
$M H z$	MAGN. ANGLE	MAGN. ANGLE	dB	
470.0	$0.99-173$	0.91	124	15.23
650.0	0.97	-168	0.83	134
860.0	$0.95-165$	0.79	146	12.01

DESIGN CONSIDERATIONS

Two identical single transistor class A amplifiers will be combined with 3 dB couplers. First the design of a single amplifier will be considered.

From the analysis of the variation of the TPV 593 S21 parameter with the frequency it may be seen that there is a difference of 5.52 dB between 470 and 860 MHz . If a flat gain is required this gain slope has to be compensated. The compensation can be implemented in two ways:
a) By placing a selective attenuator at the input of the transistor amplifier, with an insertion loss minimum at 860 MHz and which increases to 5.52 dB at 470 MHz . The insertion loss increase should compensate the transistor gain slope.
b) By selective mismatch at the input of the transistor. The input circuit will provide impedance matching at $\mathbf{8 6 0}$ MHz , in order to get a gain as close as possible to the GA max. Frequency dependent mismatch will compensate the gain slope. At 470 MHz a VSWR as high as $11: 1$ will be necessary. It has been proved that impedance mismatch at the base terminal of a transistor power amplifier does not modify the linearity behavior of the device.
As it was decided to combine two amplifiers with 3 dB couplers the method b) was selected. 50 ohms 3 dB hybrid couplers when used with two identical loads provide a good VSWR at the common terminal even if the loads differ from 50 ohms. The reflected energy is dissipated as the 50 ohms load connected to the fourth terminal of the coupler. The coupler behaves as a selective attenuator. Figure 1 shows the amplifier arrangement. The use of a 3 dB coupler to split the input signal makes almost compulsory the use of the same type of circuit at the output.

Figure 1. Block Diagram of Amplifier

The amplifier must be as linear as possible over the complete UHF band. A transistor power amplifier usually requires impedance matching at the collector side for optimum intermodulation. Therefore the output circuitry has been designed for impedance matching all over the bands IV and V.

COMPONENTS PART LIST

$L_{1} \quad=65$ line $11 \% g$ at 860 MHz
$L_{2} \quad=50$ line $1.5 \% g$ at 860 MHz
$L_{3} \quad=50$ line $17 \% g$ at 860 MHz
$L_{4} \quad=7$ turns ID 2 mm - Closely Wound - wire 5 mm
$\mathrm{L}_{5}=\overrightarrow{10 \mathrm{~mm}}$
$C_{1}-C_{5}=$ Variable Airtronic AT 7275, .8-4.5 pF
$\mathrm{C}_{2}=6.8 \mathrm{pF}$ ATC 100A
$\mathrm{C}_{3}-\mathrm{C}_{4}=10 \mathrm{pF}$ ATC 100A
$C_{0}-C_{7}=1 \mathrm{nF}+10 \mathrm{nF}+1 \mu+10 \mu \mathrm{~F}$
Board Material: $1 / 16^{\prime \prime}$ Teflon Fiberglass

CIRCUIT DESCRIPTION

The circuit of a simple amplifier is given in
Figure 2.

Figure 2. Circuit Schematic

The input circuit consist of a three section low pass type matching network. To minimize power losses all the impedance transformations are made at a low Q level. Variable capacitor C_{1} is adjusted for optimum VSWR at 860 MHz . The tuning is straight forward and only a small retouch is necessary after the collector tuning.
The very constant S22 of the TPV 593 transistor makes extremely simple to match the collector to a 50 ohms load. L8 tunes the output capacitance of the device and is determined for good matching at the low end of the band. Only one low pass section is necessary. Capacitor C_{5}, variable, allows a good shaping of the output VSWR. Collector tuning should be done after tuning the input.
The bias control circuitry is classical and is given in Figure 3.

Figure 3. Class A Bias Circuit

AN1039

CONSTRUCTIONAL DETAILS

The printed circuit board lay-out of the complete amplifier is given in Figure 4. Considerate attention should be paid to the ground returns. Plated through holes have been used to ensure low emitter inductance. Wrapped foils ensure proper grounding of parallel capacitors and connectors.
The couplers have been made with parallel wire cable.
This solution is as inexpensive as a straight forward.

Figure 5. Gain and Return Loss versus Frequency

Figure 6. Intermodulation Distortion versus Frequency

AN1039

Figure 7. Output Power versus Input Power
Figure 8. Vision to Sound Cross Modulation
$\mathrm{f}=\mathbf{4 7 0} \mathbf{M H z}$

$$
f=650 \mathrm{MHz}
$$

$$
f=860 \mathrm{MHz}
$$

NOTE: $\Delta \%$ of sound carrier (-7 dB) when vision carrier is switch ON/OFF

MEASUREMENTS

The measurements results have been summarized in Table 2.
Figure 5 shows the frequency response of the amplifier as well as the input and output match. Figure 6 displays the linearity (IMD test; $-8,-16,-7 \mathrm{~dB}$) of the amplifier. Static transfer curves are given in the figures 7 and 8 that show also the vision to sound cross modulation of the amplifier.

CONCLUSION

A high performance amplifier has been described as an example of the possibilities offered to the designer by the TPV 593. In particular the amplifier combines exceilent frequency response and linearity with high efficient use of the DC power. This circuit may be of interest for output stages of low power TV transposers or drivers of higher power units.

Mounting Considerations for Power Semiconductors

Prepared by Bill Roehr
Staff Consultant, Motorola Semiconductor Sector

TABLE OF CONTENTS

Introduction 1
Mounting Surface Preparation 2
Interface Decisions 3
Insulation Considerations 4
Fastener and Hardware Characteristics. 7
Fastening Techniques. 8
Free Air and Socket Mounting 13
Connecting and Handling Terminals 14
Cleaning Circuit Boards 16
Thermal System Evaluation 16
Appendix A Thermal Resistance Concepts 17
Appendix B Measurement of Interface 18
Appendix C Sources of Accessories 19
Package Index 20

Figure 1 shows an example of doing nearly everything wrong. A tab mount TO-220 package is shown being used as a replacement for a TO-213AA (TO-66) part which was socket mounted. To use the socket, the leads are bent an operation which, if not properly done, can crack the package, break the internal bonding wires, or crack the die. The package is fastened with a sheet-metal screw through a $1 / 4^{\prime \prime}$ hole containing a fiber-insulating sleeve. The force used to tighten the screw tends to pull the package into the hole, possibly causing enough distortion to crack the die. In addition the contact area is small because of the area consumed by the large hole and the bowing of the package; the result is a much higher junction temperature than expected. If a rough heatsink surface and/or burrs around the hole were displayed in the illustration, most but not all poor mounting practices would be covered.

Figure 1. Extreme Case of Improperly Mounting A Semiconductor (Distortion Exaggerated)

[^31]In many situations the case of the semiconductor must be electrically isolated from its mounting surface. The isolation material is, to some extent, a thermal isolator as well, which raises junction operating temperatures. In addition, the possibility of arc-over problems is introduced if high voltages are present. Various regulating agencies also impose creepage distance specifications which further complicates design. Electrical isolation thus places additional demands upon the mounting procedure.
Proper mounting procedures usually necessitate orderly attention to the following:

1. Preparing the mounting surface
2. Applying a thermal grease (if required)
3. Installing the insulator (if electrical isolation is desired)
4. Fastening the assembly
5. Connecting the terminals to the circuit

In this note, mounting procedures are discussed in general terms for several generic classes of packages. As newer packages are developed, it is probable that they will fit into the generic classes discussed in this note. Unique requirements are given on data sheets pertaining to the particular package. The following classes are defined:
Stud Mount
Flange Mount
Pressfit
Plastic Body Mount
Tab Mount
Surface Mount
Appendix A contains a brief review of thermal resistance concepts. Appendix B discusses measurement difficulties with interface thermal resistance tests. Appendix C indicates the type of accessories supplied by a number of manufacturers.

MOUNTING SURFACE PREPARATION

In general, the heatsink mounting surface should have a flatness and finish comparable to that of the semiconductor package. In lower power applications, the heatsink surface is satisfactory if it appears flat against a straight edge and is free from deep scratches. In high-power applications, a more detailed examination of the surface is required. Mounting holes and surface treatment must also be considered.

Surface Fiatness

Surface flatness is determined by comparing the variance in height ($\Delta \mathrm{h}$) of the test specimen to that of a reference standard as indicated in Figure 2. Flatness is normally specified as a fraction of the Total Indicator Reading (TIR). The mounting surface flatness, i.e, $\Delta h / T I R$, if less than 4 mils per inch, normal for extruded aluminum, is satisfactory in most cases.

Surface Finish

Surface finish is the average of the deviations both above and below the mean value of surface height. For minimum interface resistance, a finish in the range of 50 to 60 microinches is satisfactory; a finer finish is costly to achieve and does not significantly lower contact resis-

Figure 2. Surface Flatness Measurement
tance. Tests conducted by Thermalloy using a copper TO-204 (TO-3) package with a typical 32-microinch finish, showed that heatsink finishes between 16 and 64μ-in caused less than $\pm \mathbf{2 . 5 \%}$ difference in interface thermal resistance when the voids and scratches were filled with a thermal joint compound.(3) Most commercially available cast or extruded heatsinks will require spotfacing when used in high-power applications. In general, milled or machined surfaces are satisfactory if prepared with tools in good working condition.

Mounting Holes

Mounting holes generally should only be large enough to allow clearance of the fastener. The larger thick flange type packages having mounting holes removed from the semiconductor die location, such as the TO-3, may successfully be used with larger holes to accommodate an insulating bushing, but many plastic encapsulated packages are intolerant of this condition. For these packages, a smaller screw size must be used such that the hole for the bushing does not exceed the hole in the package.

Punched mounting holes have been a source of trouble because if not properly done, the area around a punched hole is depressed in the process. This "crater" in the heatsink around the mounting hole can cause two problems. The device can be damaged by distortion of the package as the mounting pressure attempts to conform it to the shape of the heatsink indentation, or the device may only bridge the crater and leave a significant percentage of its heat-dissipating surface out of contact with the heatsink. The first effect may often be detected immediately by visual cracks in the package (if plastic), but usually an unnatural stress is imposed, which results in an early-life failure. The second effect results in hotter operation and is not manifested until much later.
Although punched holes are seldom acceptable in the relatively thick material used for extruded aluminum heatsinks, several manufacturers are capable of properly utilizing the capabilities inherent in both fine-edge blanking or sheared-through holes when applied to sheet metal as commonly used for stamped heatsinks. The holes are pierced using Class A progressive dies mounted on four-post die sets equipped with proper pressure pads and holding fixtures.
(3) Catalog *87-HS.9 (1987), page 8, Thermalloy, Inc., P.O. Box 810839 , Dallas. Texas 75381-0839.

When mounting holes are drilled, a general practice with extruded aluminum, surface cleanup is important. Chamfers must be avoided because they reduce heat transfer surface and increase mounting stress. However, the edges must be broken to remove burrs which cause poor contact between device and heatsink and may puncture isolation material.

Surface Treatment

Many aluminum heatsinks are black-anodized to improve radiation ability and prevent corrosion. Anodizing results in significant electrical but negligible thermal insulation. It need only be removed from the mounting area when electrical contact is required. Heatsinks are also available which have a nickel plated copper insert under the semiconductor mounting area. No treatment of this surface is necessary.

Another treated aluminum finish is iridite, or chromateacid dip, which offers low resistance because of its thin surface, yet has good electrical properties because it resists oxidation. It need only be cleaned of the oils and films that collect in the manufacture and storage of the sinks, a practice which should be applied to all heatsinks.

For economy, paint is sometimes used for sinks; removal of the paint where the semiconductor is attached is usually required because of paint's high thermal resistance. However, when it is necessary to insulate the semiconductor package from the heatsink, hard anodized or painted surfaces allow an easy installation for low voltage applications. Some manufacturers will provide anodized or painted surfaces meeting specific insulation voltage requirements, usually up to 400 volts.

It is also necessary that the surface be free from all foreign material, film, and oxide (freshly bared aluminum forms an oxide layer in a few seconds). Immediately prior to assembly, it is a good practice to polish the mounting area with No. 000 steel wool, followed by an acetone or alcohol rinse.

INTERFACE DECISIONS

When any significant amount of power is being dissipated, something must be done to fill the air voids between mating surfaces in the thermal path. Otherwise the interface thermal resistance will be unnecessarily high and quite dependent upon the surface finishes.

For several years, thermal joint compounds, often called grease, have been used in the interface. They have a resistivity of approximately $60^{\circ} \mathrm{C} / \mathrm{W} /$ in whereas air has $1200^{\circ} \mathrm{C} W /$ /in. Since surfaces are highly pock-marked with minute voids, use of a compound makes a significant reduction in the interface thermal resistance of the joint. However, the grease causes a number of problems, as discussed in the following section.

To avoid using grease, manufacturers have developed dry conductive and insulating pads to replace the more traditional materials. These pads are conformal and therefore partially fill voids when under pressure.

Thermal Compounds (Grease)

Joint compounds are a formulation of fine zinc or other conductive particies in a silicone oil or other synthetic base fluid which maintains a grease-like consistency with time and temperature. Since some of these compounds do not spread well, they should be evenly applied in a
very thin layer using a spatula or lintless brush, and wiped lightly to remove excess material. Some cyclic rotation of the package will help the compound spread evenly over the entire contact area. Some experimentation is necessary to determine the correct quantity; too little will not fill all the voids, while too much may permit some compound to remain between well mated metal surfaces where it will substantially increase the thermal resistance of the joint.

To determine the correct amount, several semiconductor samples and heatsinks should be assembled with different amounts of grease applied evenly to one side of each mating surface. When the amount is correct a very small amount of grease should appear around the perimeter of each mating surface as the assembly is slowly torqued to the recommended value. Examination of a dismantled assembly shouid reveal even wetting across each mating surface. In production, assemblers should be trained to slowly apply the specified torque even though an excessive amount of grease appears at the edges of mating surfaces. Insufficient torque causes a significant increase in the thermal resistance of the interface.

To prevent accumulation of airborne particulate matter, excess compound should be wiped away using a cloth moistened with acetone or alcohol. These solvents should not contact plastic-encapsulated devices, as they may enter the package and cause a leakage path or carry in substances which might attack the semiconductor chip.

The silicone oil used in most greases has been found to evaporate from hot surfaces with time and become deposited on other cooler surfaces. Consequently, manufacturers must determine whether a microscopically thin coating of silicone oil on the entire assembly will pose any problems. It may be necessary to enclose components using grease. The newer synthetic base greases show far less tendency to migrate or creep than those made with a silicone oil base. However, their currently observed working temperature range are less, they are slightly poorer on thermal conductivity and dielectric strength and their cost is higher.

Data showing the effect of compounds on several package types under different mounting conditions is shown in Table 1. The rougher the surface, the more valuable the grease becomes in lowering contact resistance; therefore, when mica insulating washers are used, use of grease is generally mandatory. The joint compound also improves the breakdown rating of the insulator.

Conductive Pads

Because of the difficulty of assembly using grease and the evaporation problem, some equipment manufacturers will not, or cannot, use grease. To minimize the need for grease, several vendors offer dry conductive pads which approximate performance obtained with grease. Data for a greased bare joint and a joint using Grafoil, a dry graphite compound, is shown in the data of Figure 3. Grafoil is claimed to be a replacement for grease when no electrical isolation is required; the data indicates it does indeed perform as well as grease. Another conductive pad available from Aavid is called KON-DUX. It is made with a unique, grain oriented, flake-like structure (patent pending). Highly compressible, it becomes

Table 1

Approximate Values for Interface Thermal Resistance Data from Measurements Performed in Motorola Applications Engineering Laboratory

Dry interface values are subject to wide variation because of extreme dependence upon surface conditions. Unless otherwise noted the case temperature is monitored by a thermocouple located directly under the die reached through a hole in the heatsink. (See Appendix B for a discussion of Interface Thermal Resistance Measurements.)

Packago Type and Data		Interface Thermal Resistanco (${ }^{\circ} \mathrm{C}$ W)						
JEDEC Outlines	Description	Test Torque ln-Lb	Metal-to-Metal		With Insulator			See Note
			Dry	Lubed	Dry	Lubed	Type	
$\begin{aligned} & \text { DO-203AA, TO-210AA } \\ & \text { TO-208AB } \end{aligned}$	$\begin{aligned} & 10.32 \text { Stud } \\ & 7116^{\text {Hex }} \end{aligned}$	15	0.3	0.2	1.6	0.8	3 mil Mica	
$\begin{aligned} & \text { DO-203AB, TO-210AC } \\ & \text { TO-208 } \end{aligned}$	1/4-28 Stud 11/16" Hex	25	0.2	0.1	0.8	0.6	5 mil Mica	
DO-208AA	Pressfit, 1/2"	-	0.15	0.1	-	-	-	
$\begin{aligned} & \text { TO-204AA } \\ & \text { (TO-3) } \end{aligned}$	Diamond Flango	6	0.5	0.1	1.3	0.36	$\begin{aligned} & 3 \mathrm{mil} \\ & \text { Mica } \end{aligned}$	1
$\begin{aligned} & \text { TO-213AA } \\ & \text { (TO-66) } \end{aligned}$	Diamond Flange	6	1.5	0.5	2.3	0.9	$\begin{aligned} & 2 \mathrm{mil} \\ & \text { Mica } \end{aligned}$	
T0-126	$\begin{aligned} & \text { Thermopad } \\ & 1 / 4^{*} \times 3 / 8^{\prime \prime} \end{aligned}$	6	2.0	1.3	4.3	3.3	$\begin{aligned} & 2 \mathrm{mil} \\ & \text { Mica } \end{aligned}$	
TO-220AB	Thermowatt	8	1.2	1.0	3.4	1.6	2 mil Mica	1,2

NOTES: 1. See Figures 3 and 4 for additional dato on $\mathbf{T O - 3}$ and TO-220 packages.
2. Screw not insulated. See Figure 12.
formed to the surface roughness of both the heatsink and semiconductor. Manufacturer's data shows it to provide an interface thermal resistance better than a metal interface with filled silicone grease. Similar dry conductive pads are available from other manufacturers. They are a fairly recent development; long term problems, if they exist, have not yet become evident.

INSULATION CONSIDERATIONS

Since most power semiconductors use are vertical device construction it is common to manufacture power semiconductors with the output electrode (anode, collector or drain) electrically common to the case; the problem of isolating this terminal from ground is a common one. For lowest overall thermal resistance, which is quite important when high power must be dissipated, it is best to isolate the entire heatsink/semiconductor structure from ground, rather than to use an insulator between the semiconductor and the heatsink. Heatsink isolation is not always possible, however, because of EMI requirements, safety reasons, instances where a chassis serves as a heatsink or where a heatsink is common to several nonisolated packages. In these situations insulators are used to isolate the individual components from the heatsink. Newer packages, such as the Motorola Full Pak and EMS modules, contain the electrical isolation material within, thereby saving the equipment manufacturer the burden of addressing the isolation problem.

Insulator Thermal Resistance

When an insulator is used, thermal grease is of greater importance than with a metal-to-metal contact, because two interfaces exist instead of one and some materials,
such as mica, have a hard, markedly uneven surface. With many isolation materials reduction of interface thermal resistance of between 2 to 1 and 3 to 1 are typical when grease is used.

Data obtained by Thermalloy, showing interface resistance for different insulators and torques applied to TO-204 (TO-3) and TO-220 packages, are shown in Figure 3, for bare and greased surfaces. Similar materials to those shown are available from several manufacturers. It is obvious that with some arrangements, the interface thermal resistance exceeds that of the semiconductor (junction to case).

Referring to Figure 3, one may conclude that when high power is handled, beryllium oxide is unquestionably the best. However, it is an expensive choice. (lt should not be cut or abraided, as the dust is highly toxic.) Thermafilm is a filled polyimide material which is used for isolation (variation of Kapton). It is a popular material for low power applications because of its low cost ability to withstand high temperatures, and ease of handling in contrast to mica which chips and flakes easily.

A number of other insulating materials are also shown. They cover a wide range of insulation resistance, thermal resistance and ease of handling. Mica has been widely used in the past because it offers high breakdown voltage and fairly low thermal resistance at a low cost but it certainly should be used with grease.

Silicone rubber insulators have gained favor because they are somewhat conformal under pressure. Their ability to fill in most of the metal voids at the interface reduces the need for thermal grease. When first introduced, they suffered from cut-through after a few years in service. The ones presently available have solved this problem by having imbedded pads of Kapton or fiberglass. By

Figure 3. Interface Thermal Resistance for TO-204, TO-3 and TO-220 Packages using Different Insulating Materials as a Function of Mounting Scrow Torque (Data Courtesy Thermalloy)
comparing Figures 3c and 3d, it can be noted that Thermasil, a filled silicone rubber, without grease, has about the same interface thermal resistance as greased mica for the TO-220 package.
A number of manufacturers offer silicone rubber insulators. Table 2 shows measured performance of a number of these insulators under carefully controlled, nearly identical conditions. The interface thermal resistance extremes are over 2:1 for the various materials. It is also clear that some of the insulators are much more tolerant than others of out-of-flat surfaces. Since the tests were performed, newer products have been introduced. The Bergquist K-10 pad, for example, is described as having about $2 / 3$ the interface resistance of the Sil Pad 1000 which would place its performance close to the Chomerics 1671 pad. AAVID also offers an isolated pad called

Table 2. Thermal Resistance of Silicone Rubber Pads

Manufacturer	Product	$\begin{aligned} & \text { R }_{\theta} \text { CS @ } \\ & \mathbf{3} \text { Mils* } \end{aligned}$	$\begin{aligned} & R_{\theta C S} @ \\ & 7.5 \text { Mils* } \end{aligned}$
Wakefield	Delta Pad 173-7	. 790	1.175
Bergquist	Sil Pad K-4	. 752	1.470
Stockwell Rubber	1867	. 742	1.015
Bergquist	Sil Pad 400-9	. 735	1.205
Thermalloy	Thermalsil II	. 680	1.045
Shin-Etsu	TC-30AG	. 664	1.260
Bergquist	Sil Pad 400-7	. 633	1.060
Chomerics	1674	. 592	1.190
Wakefield	Delta Pad 174-9	. 574	. 755
Bergquist	Sil Pad 1000	. 529	. 935
Ablestik	Thermal Wafers	. 500	. 990
Thermalloy	Thermalsil III	. 440	1.035
Chomerics	1671	. 367	. 655

-Test Fixture Deviation from flat from Thermalloy ELR86-1010.

Rubber-Duc, however it is only available vulcanized to a heatsink and therefore was not included in the comparison. Published data from AAVID shows R_{θ} CS below $0.3^{\circ} \mathrm{C} / \mathrm{W}$ for pressures above 500 psi . However, surface flatness and other details are not specified so a comparison cannot be made with other data in this note.
The thermal resistance of some silicone rubber insulators is sensitive to surface flatness when used under a fairly rigid base package. Data for a TO-204AA (TO-3) package insulated with Thermasil is shown on Figure 4. Observe that the "worst case" encountered (7.5 mils) yields results having about twice the thermal resistance of the "typical case" (3 mils), for the more conductive insulator. In order for Thermasil III to exceed the performance of greased mica, total surface flatness must be under 2 mils, a situation that requires spot finishing.

Figure 4. Effect of Total Surface Flatness on Interface Resistance Using Silicon Rubber Insulators

Silicon rubber insulators have a number of unusual characteristics. Besides being affected by surface flatness and initial contact pressure, time is a factor. For example, in a study of the Cho-Therm 1688 pad thermal interface impedance dropped from $0.90^{\circ} \mathrm{C} W$ to $0.70^{\circ} \mathrm{C} W$ at the end of 1000 hours. Most of the change occurred during the first 200 hours where R θ CS measured $0.74^{\circ} \mathrm{C} W$. The torque on the conventional mounting hardware had decreased to 3 in-lb from an initial 6 in-lb. With nonconformal materials, a reduction in torque would have increased the interface thermal resistance.
Because of the difficulties in controlling all variables affecting tests of interface thermal resistance, data from different manufacturers is not in good agreement. Table 3 shows data obtained from two sources. The relative performance is the same, except for mica which varies widely in thickness. Appendix B discusses the variables which need to be controlled. At the time of this writing ASTM Committee D9 is developing a standard for interface measurements.

The conclusions to be drawn from all this data is that some types of silicon rubber pads, mounted dry, will out perform the commonly used mica with grease. Cost may be a determining factor in making a selection.

Insulation Resistance

When using insulators, care must be taken to keep the mating surfaces clean. Small particles of foreign matter can puncture the insulation, rendering it useless or seriously lowering its dielectric strength. In addition, particularly when voltages higher than 300 V are encountered, problems with creepage may occur. Dust and other foreign material can shorten creepage distances significantly; so having a clean assembly area is important. Surface roughness and humidity also lower insulation resistance. Use of thermal grease usually raises the withstand voltage of the insulation system but excess must be removed to avoid collecting dust. Because of these factors, which are not amenable to analysis, hi-pot testing should be done on prototypes and a large margin of safety employed.

Insulated Electrode Packages

Because of the nuisance of handling and installing the accessories needed for an insulated semiconductor mounting, equipment manufacturers have longed for cost-effective insulated packages since the 1950's. The first to appear were stud mount types which usually have a layer of beryllium oxide between the stud hex and the can. Although effective, the assembly is costly and requires manual mounting and lead wire soldering to terminals on top of the case. In the late eighties, a number of electrically isolated parts became available from various semiconductor manufacturers. These offerings presently consist of multiple chips and integrated circuits as well as the more conventional single chip devices.

The newer insulated packages can be grouped into two categories. The first has insulation between the semiconductor chips and the mounting base; an exposed area of the mounting base is used to secure the part. The EMS (Energy Management Series) Modules, shown on Figure 8, Case 806 (ICePAK) and Case 388A (TO-258AA) (see Figure 11) are examples of parts in this category. The second category contains parts which have a plastic overmold covering the metal mounting base. The Full Pak,

Table 3. Performance of Silicon Rubber Insulators Tested per MIL-I-49456

Material	Measured Thermal Resistance (${ }^{\circ} \mathrm{C} / \mathrm{W}$)	
	Thermalloy Data(1)	Berquist Data(2)
Bare Joint, greased	0.033	0.008
BeO, greased	0.082	-
Cho-Therm, 1617	0.233	-
Q Pad (non-insulated)	-	0.009
Sil-Pad, K-10	0.263	0.200
Thermasil III	0.267	-
Mica, greased	0.329	0.400
Sil-Pad 1000	0.400	0.300
Cho-therm 1674	0.433	-
Thermasil II	0.500	-
Sil-Pad 400	0.533	0.440
Sil-Pad K-4	0.583	0.440

(1) From Thermalloy EIR 87-1030
12) From Berquist Data Sheet

Case 221C, illustrated in Figure 13, is an example of parts in the second category.

Parts in the first category - those with an exposed metal flange or tab - are mounted the same as their non-insulated counterparts. However, as with any mounting system where pressure is bearing on plastic, the overmolded type should be used with a conical compression washer, described later in this note.

FASTENER AND HARDWARE CHARACTERISTICS

Characteristics of fasteners, associated hardware, and the tools to secure them determine their suitability for use in mounting the various packages. Since many problems have arisen because of improper choices, the basic characteristics of several types of hardware are discussed next.

Compression Hardware

Normal split ring lock washers are not the best choice for mounting power semiconductors. A typical \#6 washer flattens at about 50 pounds, whereas 150 to 300 pounds is needed for good heat transfer at the interface. A very useful piece of hardware is the conical, sometimes called a Belleville washer, compression washer. As shown in Figure 5, it has the ability to maintain a fairly constant pressure over a wide range of its physical deflec-tion-generally $\mathbf{2 0 \%}$ to $\mathbf{8 0 \%}$. When installing, the assembler applies torque until the washer depresses to half its original height. (Tests should be run prior to setting up the assembly line to determine the proper torque for the fastener used to achieve 50% deflection.) The washer will absorb any cyclic expansion of the package, insulating washer or other materials caused by temperature changes. Conical washers are the key to successful mounting of devices requiring strict control of the mounting force or when plastic hardware is used in the mounting scheme. They are used with the large face contacting the packages. A new variation of the conical washer includes it as part of a nut assembly. Called a Sync Nut, the patented device can be soldered to a PC board and the semiconductor mounted with a $6-32$ machine screw. (4)

Figure 5. Characteristics of the Conical Compression Washers Designed for Use with Plastic Body Mounted Semiconductors
(4) ITW Shakeproof, St. Charles Road, Elgin, IL 60120.

Clips
Fast assembly is accomplished with clips. When only a few watts are being dissipated, the small boardmounted or free-standing heat dissipators with an integral clip, offered by several manufacturers, result in a low cost assembly. When higher power is being handled, a separate clip may be used with larger heatsinks. In order to provide proper pressure, the clip must be specially designed for a particular heatsink thickness and semiconductor package.
Clips are especially popular with plastic packages such as the TO-220 and TO-126. In addition to fast assembly, the clip provides lower interface thermal resistance than other assembly methods when it is designed for proper pressure to bear on the top of the plastic over the die. The TO-220 package usually is lifted up under the die location when mounted with a single fastener through the hole in the tab because of the high pressure at one end.

Machine Screws

Machine screws, conical washers, and nuts (or syncnuts) can form a trouble-free fastener system for all types of packages which have mounting holes. However, proper torque is necessary. Torque ratings apply when dry; therefore, care must be exercised when using thermal grease to prevent it from getting on the threads as inconsistent torque readings result. Machine screw heads should not directly contact the surface of plastic packages types as the screw heads are not sufficiently flat to provide properly distributed force. Without a washer, cracking of the plastic case may occur.

Self-Tapping Screws

Under carefully controlled conditions, sheet-metal screws are acceptable. However, during the tappingprocess with a standard screw, a volcano-like protrusion will develop in the metal being threaded; an unacceptable surface that could increase the thermal resistance may result. When standard sheet metal screws are used, they must be used in a clearance hole to engage a speednut. If a self tapping process is desired, the screw type must be used which roll-forms machine screw threads.

Rivets

Rivets are not a recommended fastener for any of the plastic packages. When a rugged metal flange-mount package or EMS module is being mounted directly to a heatsink, rivets can be used provided press-riveting is used. Crimping force must be applied slowly and evenly. Pop-riveting should never be used because the high crimping force could cause deformation of most semiconductor packages. Aluminum rivets are much preferred over steel because less pressure is required to set the rivet and thermal conductivity is improved.

The hollow rivet, or eyelet, is preferred over solid rivets. An adjustable, regulated pressure press is used such that a gradually increasing pressure is used to pan the eyelet. Use of sharp blows could damage the semiconductor die.

Solder

Until the advent of the surface mount assembly technique, solder was not considered a suitable fastener for power semiconductors. However, user demand has led to the development of new packages for this application. Acceptable soldering methods include conventional belt-
furnace, irons, vapor-phase reflow, and infrared reflow. It is important that the semiconductor temperature not exceed the specified maximum (usually $260^{\circ} \mathrm{C}$) or the die bond to the case could be damaged. A degraded die bond has excessive thermal resistance which often leads to a failure under power cycling.

Adhesives

Adhesives are available which have coefficients of expansion compatible with copper and aluminum. (5) Highly conductive types are available; a 10 mil layer has approximately $0.3^{\circ} \mathrm{C} / \mathrm{W}$ interface thermal resistance. Different types are offered: high strength types for non-fieldservicable systems or low strength types for fieldserviceable systems. Adhesive bonding is attractive when case mounted parts are used in wave soldering assembly because thermal greases are not compatible with the conformal coatings used and the greases foul the solder process.

Plastic Hardware

Most plastic materials will flow, but differ widely in this characteristic. When plastic materials form parts of the fastening system, compression washers are highly valuable to assure that the assembly will not loosen with time and temperature cycling. As previously discussed, loss of contact pressure will increase interface thermal resistance.

FASTENING TECHNIQUES

Each of the various classes of packages in use requires different fastening techniques. Details pertaining to each type are discussed in following sections. Some general considerations follow.

To prevent galvanic action from occurring when devices are used on aluminum heatsinks in a corrosive atmosphere, many devices are nickel- or gold-plated. Consequently, precautions must be taken not to mar the finish.
Another factor to be considered is that when a copper based part is rigidly mounted to an aluminum heatsink, a bimetallic system results which will bend with temperature changes. Not only is the thermal coefficient of expansion different for copper and aluminum, but the temperature gradient through each metal also causes each component to bend. If bending is excessive and the package is mounted by two or more screws the semiconductor chip could be damaged. Bending can be minimized by:

1. Mounting the component parallel to the heatsink fins to provide increased stiffness.
2. Allowing the heatsink holes to be a bit oversized so that some slip between surfaces can occur as temperature changes.
3. Using a highly conductive thermal grease or mounting pad between the heatsink and semiconductor to minimize the temperature gradient and allow for movement.

Stud Mount

Parts which fall into the stud-mount classification are shown in Figure 6. Mounting errors with non-insulated stud-mounted parts are generally confined to application
(5) Robert Batson, Elliot Fraunglass and James P. Moran, "Heat Dissipation Through Thermalloy Conductive Adhesives," EMTAS 83. Conference, February 1-3, Phoenix. AZ; Society of Manufacturing Éngineers, One SME Drive, P.O. Box 930, Dearborn. MI 48128.

CASE 42A (DO-5)

CASE 56-02 DO-203AA (DO-4) .

CASE 245 (00-4)
6a. Standard Non-Isolated Types

CASE 311-02
6b. Isolated Type

CASE 1448-0S
(.380" STUD)

CASE 145A-09 1.380" STUD)

CASE 145A-10 (.500" STUD)

CASE 244.04 (.280" STUD)

CASE 305-01
(.204" STUD)

CASE 332.04 (.380" STUD)
6c. RF Stripline Opposed Emitter (SOE) Series

Figure 6. A Variety of Stud-Mount Parts
of excessive torque or tapping the stud into a threaded heatsink hole. Both these practices may cause a warpage of the hex base which may crack the semiconductor die. The only recommended fastening method is to use a nut and washer; the details are shown in Figure 7.

Insulated electrode packages on a stud mount base require less hardware. They are mounted the same as their non-insulated counterparts, but care must be exercised to avoid applying a shear or tension stress to the insulation layer, usually a berrylium oxide (BeO) ceramic. This requirement dictates that the leads must be attached to the circuit with flexible wire. In addition, the stud hex should be used to hold the part while the nut is torqued.
R.F. transistors in the stud-mount stripline opposed emitter (SOE) package impose some additional constraints because of the unique construction of the package. Special techniques to make connections to the stripline leads and to mount the part so no tension or shear forces are applied to any ceramic - metal interface are discussed in the section entitled "Connecting and Handling Terminals."

Figure 7. Isolating Hardware Used for a Non-Isolated Stud-Mount Package

Press Fit

For most applications, the press-fit case should be mounted according to the instructions shown in Figure 8. A special fixture meeting the necessary requirements must be used.

Figure 8. Press-Fit Package

Flange Mount

A large variety of parts fit into the flange mount category as shown in Figure 9. Few known mounting difficulties exist with the smaller flange mount packages, such as the TO-204 (TO-3). The rugged base and distance between die and mounting holes combine to make it extremely difficult to cause any warpage unless mounted on a surface which is badly bowed or unless one side is tightened excessively before the other screw is started. It is therefore good practice to alternate tightening of the screws so that pressure is evenly applied. After the screws are finger-tight the hardware should be torqued to its final specification in at least two sequential steps. A typical mounting installation for a popular flange type part is shown in Figure 10. Machine screws (preferred) self-tapping screws, eyelets, or rivets may be used to secure the package using guidelines in the previous section. "Fastener and Hardware Characteristics."
The copper flange of the Energy Management Series (EMS) Modules is very thick. Consequently, the parts are rugged and indestructible for all practical purposes. No

Figure 9. A Large Array of Parts Fit into the Flange-Mount Classification
special precautions are necessary when fastening these parts to a heatsink.
Some packages specify a tightening procedure. For example, with the Power Tap package, Figure 9b, final torque should be applied first to the center position.
The RF power modules (MHW series) are more sensitive to the flatness of the heatsink than other packages because a ceramic (BeO) substrate is attached to a relatively thin, fairly long, flange. The maximum allowable flange bending to avoid mechanical damage has been determined and presented in detail in EB107 "Mounting Considerations for Motorola RF Power Modules." Many of the parts can handle a combined heatsink and flange deviation from flat of 7 to 8 mils which is commonly available. Others must be held to 1.5 mils, which requires that the heatsink have nearly perfect flatness.

Specific mounting recommendations are critical to RF devices in isolated packages because of the internal ceramic substrate. The large area Case 368-1 (HOG PAC) will be used to illustrate problem areas. It is more sen-
sitive to proper mounting techniques than most other RF power devices.

Although the data sheets contain information on recommended mounting procedures, experience indicates that they are often ignored. For example, the recommended maximum torque on the 4-40 mounting screws is $5 \mathrm{in} / \mathrm{lbs}$. Spring and flat washers are recommended. Over torquing is a common problem. In some parts returned for failure analysis, indentions up to 10 mils deep in the mounting screw areas have been observed.

Calculations indicate that the length of the flange increases in excess of two mils with a temperature change of $75^{\circ} \mathrm{C}$. In such cases, if the mounting screw torque is excessive, the flange is prevented from expanding in length, instead it bends upwards in the mid-section, cracking the BeO and the die. A similar result can also occur during the initial mounting of the device if an excessive amount of thermal compound is applied. With sufficient torque, the thermal compound will squeeze out of the mounting hole areas, but will remain under the center

Figure 10. Hardware Used for a TO-204AA (TO-3) Flange Mount Part
of the flange, deforming it. Deformations of 2-3 mils have been measured between the center and the ends under such conditions (enough to crack internal ceramic).
Another problem arises because the thickness of the flange changes with temperature. For the $75^{\circ} \mathrm{C}$ temperature excursion mentioned, the increased amount is around 0.25 mils which results in further tightening of the mounting screws, thus increasing the effective torque from the initial value. With a decrease in temperature, the opposite effect occurs. Therefore thermal cycling not only causes risk of structural damage but often causes the assembly to loosen which raises the interface resistance. Use of compression hardware can eliminate this problem.

Tab Mount

The tab mount class is composed of a wide array of packages as illustrated in Figure 11. Mounting considerations for all varieties are similar to that for the popular TO-220 package, whose suggested mounting arrangements and hardware are shown in Figure 12. The rectangular washer shown in Figure 12a is used to minimize distortion of the mounting flange; excessive distortion could cause damage to the semiconductor chip. Use of
the washer is only important when the size of the mounting hole exceeds 0.140 inch ($6-32$ clearance). Larger holes are needed to accommodate the lower insulating bushing when the screw is electrically connected to the case; however, the holes should not be larger than necessary to provide hardware clearance and should never exceed a diameter of 0.250 inch. Flange distortion is also possible if excessive torque is used during mounting. A maximum torque of 8 inch-pounds is suggested when using a 6-32 screw.

Care should be exercised to assure that the tool used to drive the mounting screw never comes in contact with the plastic body during the driving operation. Such contact can result in damage to the plastic body and internal device connections. To minimize this problem, Motorola TO-220 packages have a chamfer on one end. TO-220 packages of other manufacturers may need a spacer or combination spacer and isolation bushing to raise the screw head above the top surface of the plastic.
The popular TO-220 Package and others of similar construction lift off the mounting surface as pressure is applied to one end. (See Appendix B, Figure B1.) To counter this tendency, at least one hardware manufacturer offers a hard plastic cantilever beam which applies more even pressure on the tab. ${ }^{(6)}$ In addition, it separates
(6) Catalog, Edition 18, Richco Plastic Company, 5825 N. Tripp Ave., Chicago, IL. 60546 .

Figure 11. Several Types of Tab-Mount Parts

Figure 12. Mounting Arrangements for Tab Mount TO-220
the mounting screw from the metal tab. Tab mount parts may also be effectively mounted with clips as shown in Figure 15 c . To obtain high pressure without cracking the case, a pressure spreader bar should be used under the clip. Interface thermal resistance with the cantilever beam or clips can be lower than with screw mounting.
The ICePAK (Case 806-02) is basically an elongated TO-220 package with isolated chips. The mounting precautions for the TO-220 consequently apply. In addition, since two mounting screws are required, the alternate tightening procedure described for the flange mount package should be used.
In situations where a tab mount package is making direct contact with the heatsink, an eyelet may be used, provided sharp blows or impact shock is avoided.

Plastic Body Mount

The Thermopad and Full Pak plastic power packages shown in Figure 13 are typical of packages in this group. They have been designed to feature minimum size with no compromise in thermal resistance. For the Thermopad (Case 77) parts this is accomplished by die-bonding the silicon chip on one side of a thin copper sheet; the opposite side is exposed as a mounting surface. The copper sheet has a hole for mounting; plastic is molded enveloping the chip but leaving the mounting hole open. The low thermal resistance of this construction is obtained at the expense of a requirement that strict attention be paid to the mounting procedure.

The Full Pak (Case 221C-01) is similar to a TO-220 except that the tab is encased in plastic. Because the mounting force is applied to plastic, the mounting procedure differs from a standard TO-220 and is similar to that of the Thermopad.

Several types of fasteners may be used to secure these packages; machine screws, eyelets, or clips are preferred. With screws or eyelets, a conical washer should be used which applies the proper force to the package over a fairly wide range of deflection and distributes the force over a fairly large surface area. Screws should not be tightened with any type of air-driven torque gun or equipment which may cause high impact. Characteristics of a suitable conical washer is shown in Figure 5.

Figure 14 shows details of mounting Case 77 devices. Clip mounting is fast and requires minimum hardware, however, the clip must be properly chosen to insure that the proper mounting force is applied. When electrical isolation is required with screw mounting, a bushing inside the mounting hole will insure that the screw threads do not contact the metal base.

The Full Pak, (Case 221C, 221D and 340B) permits the mounting procedure to be greatly simplified over that of a standard TO-220. As shown in Figure 15c, one properly chosen clip, inserted into two slotted holes in the heatsink, is all the hardware needed. Even though clip pressure is much lower than obtained with a screw, the thermal resistance is about the same for either method. This occurs because the clip bears directly on top of the die and holds the package flat while the screw causes the package to lift up somewhat under the die. (See Figure B1 of Appendix B.) The interface should consist of a layer of thermal grease or a highly conductive thermal pad. Of course, screw mounting shown in Figure 15b may also be used but a conical compression washer should be included. Both methods afford a major reduction in hardware as compared to the conventional mounting method with a TO-220 package which is shown in Figure 15a.

Figure 13. Plastic Body-Mount Packages

Figure 14. Recommended Mounting Arrangements for TO-225AA (TO-126) Thermopad Packages

Surface Mount

Although many of the tab mount parts have been surface mounted, special small footprint packages for mounting power semiconductors using surface mount assembly techniques have been developed. The DPAK, shown in Figure 16, for example, will accommodate a die up to 112 mils $\times 112$ mils, and has a typical thermal resistance around $2^{\circ} \mathrm{C} / \mathrm{W}$ junction to case. The thermal resis-

Figure 15. Mounting Arrangements for the Full Pak as Compared to a Conventional TO-220
tance values of the solder interface is well under $1^{\circ} \mathrm{CW}$. The printed circuit board also serves as the heatsink.
Standard Glass-Epoxy 2-ounce boards do not make very good heatsinks because the thin foil has a high thermal resistance. As Figure 17 shows, thermal resistance assymtotes to about $20^{\circ} \mathrm{C} / \mathrm{W}$ at 10 square inches of board area, although a point of diminishing returns occurs at about 3 square inches.
Boards are offered that have thick aluminum or copper substrates. A dielectric coating designed for low thermal resistance is overlayed with one or two ounce copper foil for the preparation of printed conductor traces. Tests run on such a product indicate that case to substrate thermal resistance is in the vicinity of $1^{\circ} \mathrm{C} W$, exact values depending upon board type. (7) The substrate may be an effective heatsink itself, or it can be attached to a conventional finned heatsink for improved performance.
Since DPAK and other surface mount packages are designed to be compatible with surface mount assembly techniques, no special precautions are needed other than to insure that maximum temperature/time profiles are not exceeded.

Figure 16. Surface Mount D-PAK Parts

Figure 17. Effect of Footprint Area on Thermal Resistance of DPAK Mounted on a Glass-Epoxy Board

FREE AIR AND SOCKET MOUNTING

In applications where average power dissipation is on the order of a watt or so, most power semiconductors may be mounted with little or no heatsinking. The leads
(7) Herb Fick. "Thermal Management of Surface Mount Power Devices," Powerconversion and Intelligent Motion, August 1987.
of the various metal power packages are not designed to support the packages; their cases must be firmly supported to avoid the possibility of cracked seals around the leads. Many plastic packages may be supported by their leads in applications where high shock and vibration stresses are not encountered and where no heatsink is used. The leads should be as short as possible to increase vibration resistance and reduce thermal resistance. As a general practice however, it is better to support the package. A plastic support for the TO-220 Package and other similar types is offered by heatsink accessory vendors.
In many situations, because its leads are fairly heavy, the CASE 77 (TO-225AA) (TO-127) package has supported a small heatsink; however, no definitive data is available. When using a small heatsink, it is good practice to have the sink rigidly mounted such that the sink or the board is providing total'support for the semiconductor. Two possible arrangements are shown in Figure 18. The arrangement of part (a) could be used with any plastic package, but the scheme of part (18b) is more practical

18a. Simple Plate, Vertically Mounted

18b. Commercial Sink, Horizontally Mounted
Figure 18. Methods of Using Small Heatsinks With Plastic Semiconductor Packages
with Case 77 Thermopad devices. With the other package types, mounting the transistor on top of the heatsink is more practical.
In certain situations, in particular where semiconductor testing is required or prototypes are being developed, sockets are desirable. Manufacturers have provided sockets for many of the packages available from Motorola. The user is urged to consult manufacturers' catalogs for specific details. Sockets with Kelvin connections are necessary to obtain accurate voltage readings across semiconductor terminals.

CONNECTING AND HANDLING TERMINALS

Pins, leads, and tabs must be handled and connected properly to avoid undue mechanical stress which could cause semiconductor failure. Change in mechanical dimensions as a result of thermal cycling over operating temperature extremes must be considered. Standard metal, plastic, and RF stripline packages each have some special considerations.

Metal Packages

The pins and lugs of metal packaged devices using glass to metal seals are not designed to handle any significant bending or stress. If abused, the seals could crack. Wires may be attached using sockets, crimp connectors or solder, provided the data sheet ratings are observed. When wires are attached directly to the pins, flexible or braided leads are recommended in order to provide strain relief.

EMS Modules

The screw terminals of the EMS modules look deceptively rugged. Since the flange base is mounted to a rigid heatsink, the connection to the terminals must allow some flexibility. A rigid buss bar should not be bolted to terminals. Lugs with braid are preferred.

Plastic Packages

The leads of the plastic packages are somewhat flexible and can be reshaped although this is not a recommended procedure. In many cases, a heatsink can be chosen which makes lead-bending unnecessary. Numerous leadand tab-forming options are available from Motorola on large quantity orders. Preformed leads remove the users risk of device damage caused by bending.

If, however, lead-bending is done by the user, several basic considerations should be observed. When bending the lead, support must be placed between the point of bending and the package. For forming small quantities of units, a pair of pliers may be used to clamp the leads at the case, while bending with the fingers or another pair of pliers. For production quantities, a suitable fixture should be made.

The following rules should be observed to avoid damage to the package.

1. A leadbend radius greater than $1 / 16$ inch is advisable for TO-225AA (CASE 77) and 1/32 inch for TO-220.
2. No twisting of leads should be done at the case.
3. No axial motion of the lead should be allowed with respect to the case.

The leads of plastic packages are not designed to withstand excessive axial pull. Force in this direction greater than 4 pounds may result in permanent damage to the device. If the mounting arrangement imposes axial stress on the leads, a condition which may be caused by thermal cycling, some method of strain relief should be devised. When wires are used for connections, care should be

19a. Component Parts of a Stud Mount Stripline Package. Flange Mounted Packages are Similarly Constructed

19b. Typical Stud Type SOE Transistor Mounting Method

Figure 19. Mounting Details for SOE Transistors
exercised to assure that movement of the wire does not cause movement of the lead at the lead-to-plastic junctions. Highly flexible or braided wires are good for providing strain relief.

Wire-wrapping of the leads is permissible, provided that the lead is restrained between the plastic case and the point of the wrapping. The leads may be soldered; the maximum soldering temperature, however, must not exceed $260^{\circ} \mathrm{C}$ and must be applied for not more than 5 seconds at a distance greater than $1 / 8$ inch from the plastic case.

Stripline Packages

The leads of stripline packages normally are soldered into a board while the case is recessed to contact a heatsink as shown in Figure 19. The following rules should be observed:

1. The device should never be mounted in such a manner as to place ceramic-to-metal joints in tension.
2. The device should never be mounted in such a manner as to apply force on the strip leads in a vertical direction towards the cap.
3. When the device is mounted in a printed circuit board with the copper stud and BeO portion of the header passing through a hole in the circuit boards, adequate clearance must be provided for the BeO to prevent shear forces from being applied to the leads.
4. Some clearance must be allowed between the leads and the circuit board when the device is secured to the heatsink.
5. The device should be properly secured into the heatsinks before its leads are attached into the circuit.
6. The leads on stud type devices must not be used to prevent device rotation during stud torque application. A wrench flat is provided for this purpose.
Figure 19b shows a cross-section of a printed circuit board and heatsink assembly for mounting a stud type stripline device. H is the distance from the top surface of the printed circuit board to the D-flat heatsink surface. If H is less than the minimum distance from the bottom of the lead material to the mounting surface of the package, there is no possibility of tensile forces in the copper stud - BeO ceramic joint. If, however, H is greater than the package dimension, considerable force is applied to the cap to BeO joint and the BeO to stud joint. Two occurrences are possible at this point. The first is a cap joint failure when the structure is heated, as might occur during the lead-soldering operation; while the second is BeO to stud failure if the force generated is high enough. Lack of contact between the device and the heatsink surface will occur as the differences between H and the package dimension become larger, this may result in device failure as power is applied.
Figure 19c shows a typical mounting technique for flange-type stripline transistors. Again, H is defined as the distance from the top of the printed circuit board to the heatsink surface. If distance H is less than the minimum distance from the bottom of transistor lead to the bottom surface of the flange, tensile forces at the various joints in the package are avoided. However, if distance H exceeds the package dimension, problems similar to those discussed for the stud type devices can occur.

CLEANING CIRCUIT BOARDS

It is important that any solvents or cleaning chemicals used in the process of degreasing or flux removal do not affect the reliability of the devices. Alcohol and unchlorinated Freon solvents are generally satisfactory for use with plastic devices, since they do not damage the package. Hydrocarbons such as gasoline and chlorinated Freon may cause the encapsulant to swell, possibly damaging the transistor die.
When using an ultrasonic cleaner for cleaning circuit boards, care should be taken with regard to ultrasonic energy and time of application. This is particularly true if any packages are free-standing without support.

THERMAL SYSTEM EVALUATION

Assuming that a suitable method of mounting the semiconductor without incurring damage has been achieved, it is important to ascertain whether the junction temperature is within bounds.

In applications where the power dissipated in the semiconductor consists of pulses at a low duty cycle, the instantaneous or peak junction temperature, not average temperature, may be the limiting condition. In this case, use must be made of transient thermal resistance data. For a full explanation of its use, see Motorola Application Note, AN569.

Other applications, notably RF power amplifiers or switches driving highly reactive loads, may create severe current crowding conditions which render the traditional concepts of thermal resistance or transient thermal impedance invalid. In this case, transistor safe operating area, thyristor di/dt limits, or equivalent ratings as applicable, must be observed.

Fortunately, in many applications, a calculation of the average junction temperature is sufficient. It is based on the concept of thermal resistance between the junction and a temperature reference point on the case. (See Appendix A.) A fine wire thermocouple should be used, such as \#36 AWG, to determine case temperature. Average operating junction temperature can be computed from the following equation:
$T_{J}=T_{C}+R_{\theta J C} \times P_{D}$
where $\quad T_{J}=$ junction temperature $\left({ }^{\circ} \mathrm{C}\right)$
$\mathrm{T}_{\mathrm{C}}=$ case temperature (${ }^{\circ} \mathrm{C}$)
$\mathrm{R}_{\text {日JC }}=$ thermal resistance junction-tocase as specified on the data sheet (${ }^{\circ} \mathrm{C} W$)
$P_{D}=$ power dissipated in the device (W)
The difficulty in applying the equation often lies in determining the power dissipation. Two commonly used empirical methods are graphical integration and substitution.

Graphical Integration

Graphical integration may be performed by taking oscilloscope pictures of a complete cycle of the voltage and current waveforms, using a limit device. The pictures should be taken with the temperature stabilized. Corresponding points are then read from each photo at a suitable number of time increments. Each pair of voltage and current values are multiplied together to give instanta-
neous values of power. The results are plotted on linear graph paper, the number of squares within the curve counted, and the total divided by the number of squares along the time axis. The quotient is the average power dissipation. Oscilloscopes are available to perform these measurements and make the necessary calculations.

Substitution

This method is based upon substituting an easily measurable, smooth dc source for a complex waveform. A switching arrangement is provided which allows operating the load with the device under test, until it stabilizes
in temperature. Case temperature is monitored. By throwing the switch to the "test" position, the device under test is connected to a dc power supply, while another pole of the switch supplies the normal power to the load to keep it operating at full power level. The dc supply is adjusted so that the semiconductor case temperature remains approximately constant when the switch is thrown to each position for about 10 seconds. The dc voltage and current values are multiplied together to obtain average power. It is generally necessary that a Kelvin connection be used for the device voltage measurement.

APPENDIX A
 THERMAL RESISTANCE CONCEPTS

The basic equation for heat transfer under steady-state conditions is generally written as:

$$
\begin{equation*}
q=h A \Delta T \tag{1}
\end{equation*}
$$

where $\quad q=$ rate of heat transfer or power dissipation (PD)
$h=$ heat transfer coefficient,
A = area involved in heat transfer,
$\Delta T=$ temperature difference between regions of heat transfer.
However, electrical engineers generally find it easier to work in terms of thermal resistance, defined as the ratio of temperature to power. From Equation 1, thermal resistance, R_{θ}, is

$$
\begin{equation*}
R_{\theta}=\Delta T / q=1 / h A \tag{2}
\end{equation*}
$$

The coefficient (h) depends upon the heat transfer mechanism used and various factors involved in that particular mechanism.
An analogy between Equation (2) and Ohm's Law is often made to form models of heat flow. Note that T could be thought of as a voltage thermal resistance corresponds to electrical resistance (R); and, power (q) is analogous to current (I). This gives rise to a basic thermal resistance model for a semiconductor as indicated by Figure A1.
The equivalent electrical circuit may be analyzed by using Kirchoff's Law and the following equation results:

$$
T_{J}=P_{D}\left(R_{\theta J C}+R_{\theta C S}+R_{\theta S A}\right)+T_{A}
$$

(3)
where $\quad T_{J}=$ junction temperature,
$\mathrm{P}_{\mathrm{D}}=$ power dissipation
$\mathrm{R}_{\theta \mathrm{AJC}}=$ semiconductor thermal resistance (junction to case),
$\mathrm{R}_{\theta \mathrm{CS}}=$ interface thermal resistance (case to heatsink),
$\mathrm{R}_{\theta \mathrm{SA}}=$ heatsink thermal resistance (heatsink to ambient),
$T_{A}=$ ambient temperature.
The thermal resistance junction to ambient is the sum of the individual components. Each component must be minimized if the lowest junction temperature is to result.
The value for the interface thermal resistance, $\mathrm{R}_{\theta C S}$, may be significant compared to the other thermalresistance terms. A proper mounting procedure can minimize $\mathrm{R}_{\boldsymbol{\theta} \mathrm{CS}}$.
The thermal resistance of the heatsink is not absolutely constant; its thermal efficiency increases as ambient temperature increases and it is also affected by orientation of the sink. The thermal resistance of the semiconductor is also variable; it is a function of biasing and temperature. Semiconductor thermal resistance specifications are normally at conditions where current density is fairly uniform. In some applications such as in RF power amplifiers and short-pulse applications, current density is not uniform and localized heating in the semiconductor chip will be the controlling factor in determining power handling ability.

Figure A1. Basic Thermal Resistance Model Showing Thermal to Electrical Analogy for a Semiconductor

APPENDIX B

MEASUREMENT OF INTERFACE THERMAL. RESISTANCE

Measuring the interface thermal resistance $\mathrm{R}_{\theta \mathrm{CS}}$ appears deceptively simple. All that's apparently needed is a thermocouple on the semiconductor case, a thermocouple on the heatsink, and a means of applying and measuring DC power. However, $\mathrm{R}_{\theta C S}$ is proportional to the amount of contact area between the surfaces and consequently is affected by surface flatness and finish and the amount of pressure on the surfaces. The fastening method may also be a factor. In addition, placement of the thermocouples can have a significant influence upon the results. Consequently, values for interface thermal resistance presented by different manufacturers are not in good agreement. Fastening methods and thermocouple locations are considered in this Appendix.
When fastening the test package in place with screws, thermal conduction may take place through the screws, for example, from the flange ear on a TO-3 package directly to the heatsink. This shunt path yields values which are artificially low for the insulation material and dependent upon screw head contact area and screw material. MIL-I-49456 allows screws to be used in tests for interface thermal resistance probably because it can be argued that this is "application oriented."
Thermalloy takes pains to insulate all possible shunt conduction paths in order to more accurately evaluate insulation materials. The Motorola fixture uses an insulated clamp arrangement to secure the package which also does not provide a conduction path.
As described previously, some packages, such as a TO-220, may be mounted with either a screw through the tab or a clip bearing on the plastic body. These two methods often yield different values for interface thermal resistance. Another discrepancy can occur if the top of the package is exposed to the ambient air where radiation and convection can take place. To avoid this, the package should be covered with insulating foam. It has been estimated that a 15 to 20% error in $\mathrm{R}_{\theta \mathrm{CS}}$ can be incurred from this source.
Another significant cause for measurement discrepancies is the placement of the thermocouple to measure

Figure B1. JEDEC TO-220 Package Mounted to Heatsink Showing Various Thermocouple Locations and Lifting Caused by Pressure at One End
the semiconductor case temperature. Consider the TO-220 package shown in Figure B1. The mounting pressure at one end causes the other end - where the die is located - to lift off the mounting surface slightly. To improve contact, Motorola TO-220 Packages are slightly concave. Use of a spreader bar under the screw lessens the lifting, but some is inevitable with a package of this structure. Three thermocouple locations are shown:
a. The Motorola location is directly under the die reached through a hole in the heatsink. The thermocouple is held in place by a spring which forces the thermocouple into intimate contact with the bottom of the semi's case.
b. The JEDEC location is close to the die on the top surface of the package base reached through a blind hole drilled through the molded body. The thermocouple is swaged in place.
c. The Thermalloy location is on the top portion of the tab between the molded body and the mounting screw. The thermocouple is soldered into position.
Temperatures at the three locations are generally not the same. Consider the situation depicted in the figure. Because the only area of direct contact is around the mounting screw, nearly all the heat travels horizontally along the tab from the die to the contact area. Consequently, the temperature at the JEDEC location is hotter than at the Thermalloy location and the Motorola location is even hotter. Since junction-to-sink thermal resistance must be constant for a given test setup, the calculated junction-to-case thermal resistance values decrease and case-to-sink values increase as the "case" temperature thermocouple readings become warmer. Thus the choice of reference point for the "case" temperature is quite important.

There are examples where the relationship between the thermocouple temperatures are different from the previous situation. If a mica washer with grease is installed between the semiconductor package and the heatsink, tightening the screw will not bow the package; instead, the mica will be deformed. The primary heat conduction path is from the die through the mica to the heatsink. In this case, a small temperature drop will exist across the vertical dimension of the package mounting base so that the thermocouple at the EIA location will be the hottest. The thermocouple temperature at the Thermalloy location will be lower but close to the temperature at the EIA location as the lateral heat flow is generally small. The Motorola location will be coolest.

The EIA location is chosen to obtain the highest temperature on the case. It is of significance because power ratings are supposed to be based on this reference point. Unfortunately, the placement of the thermocouple is tedious and leaves the semiconductor in a condition unfit for sale.

The Motorola location is chosen to obtain the highest temperature of the case at a point where, hopefully, the case is making contact to the heatsink. Once the special heatsink to accommodate the thermocouple has been fabricated, this method lends itself to production testing and does not mark the device. However, this location is not easily accessible to the user.

The Thermalloy location is convenient and is often chosen by equipment manufacturers. However, it also blemishes the case and may yield results ciffering up to $1^{\circ} \mathrm{C} / \mathrm{W}$ for a TO-220 package mounted to a heatsink without thermal grease and no insulator. This error is small when compared to the thermal resistance of heat dissipaters often used with this package, since power dissipation is usually a few watts. When compared to the specified junction-to-case values of some of the higher power semiconductors becoming available, however, the difference becomes significant and it is important that the semiconductor manufacturer and equipment manufacturer use the same reference point.
Another EIA method of establishing reference temper-
atures utilizes a soft copper washer (thermal grease is used) between the semiconductor package and the heatsink. The washer is flat to within 1 mil/inch, has a finish better than 63μ-inch, and has an imbedded thermocouple near its center. This reference includes the interface resistance under nearly ideal conditions and is therefore application-oriented. It is also easy to use but has not become widely accepted.
A good way to improve confidence in the choice of case reference point is to also test for junction-to-case thermal resistance while testing for interface thermal resistance. If the junction-to-case values remain relatively constant as insulators are changed, torque varied, etc., then the case reference point is satisfactory.

APPENDIX C
 Sources of Accessories

Manufacturer	Joint Compound	Adhesives	Insulators						Heatsinks
			BeO	AlO_{2}	Anodize	Mica	Plastic Film	Silicone Rubber	
Aavid Eng.	X	X	-	-	-	-	-	X	X
AHAM-TOR	-	-	-	-	-	-	-	-	X
Astrodynamis	X	-	-	-	-	-	-	-	X
Delbert Blinn	-	-	X	-	X	X	X	X	X
IERC	X	-	-	-	-	-	-	-	X
Staver	-	-	-	-	-	-	-	-	X
Thermalloy	X	X	X	X	X	x	X	X	X
Tran-tec	-	-	X	X	X	X	一	X	X
Wakefield Eng.	X	X	X	-	X	-	-	X	X

Other sources for silicone rubber pads: Chomerics, Berquist

Suppliers Addresses

Aavid Engineering, Inc., 30 Cook Court, Laconia, New Hampshire 03246
(603) 524-4443

AHAM-TOR Heatsinks, 27901 Front Street, Rancho, California 92390
(714) 676-4151

Astro Dynamics, Inc., 2 Gill St., Woburn, Massachusetts 01801
(617) 935-4944

Berquist, 5300 Edina Industrial Blvd., Minneapolis, Minnesota 55435
(612) 835-2322

Chomerics, Inc., 16 Flagstone Drive, Hudson, New Hampshire 03051

1-800-633-8800
Delbert Blinn Company, P.O. Box 2007, Pomona, California 91769
(714) 629-3900

International Electronic Research Corporation, 135 West Magnolia Boulevard, Burbank, California 91502
(213) 849-2481

The Staver Company, Inc., 41-51 Saxon Avenue, Bay Shore, Long Island, New York 11706
(516) 666-8000

Thermalloy, Inc., P.O. Box 34829, 2021 West Valley View Lane, Dallas, Texas 75234
(214) 243-4321

Tran-tec Corporation, P.O. Box 1044, Columbus, Nebraska 68601
(402) 564-2748

Wakefield Engineering, Inc., Wakefield, Massachusetts 01880
(617) 245-5300

PACKAGE INDEX

PREFACE

When the JEDEC registration system for package outlines started in 1957, numbers were assigned sequentially whenever manufacturers wished to establish a package as an industry standard. As minor variations developed from these industry standards, either a new, non-related number was issued by JEDEC or manufacturers would attempt to relate the part to an industry standard via some appended description.
In an attempt to ease confusion, JEDEC established the present system in late 1968 in which new packages are assigned into a category, based on their general physical appearance. Differences between specific packages in a category are denoted by suffix letters. The older package
designations were re-registered to the new system as time permitted.
For example the venerable TO-3 has many variations. Can heights differ and it is available with $30,40,50$, and 60 mil pins, with and without lugs. It is now classified in the TO-204 family. The TO-204AA conforms to the original outline for the TO-3 having 40 mil pins while the TO-204AE has 60 mil pins, for example.
The new numbers for the old parts really haven't caught on very well. It seems that the DO-4, DO-5 and TO-3 still convey sufficient meaning for general verbal communication.

$\left.\begin{gathered} \text { Motorola } \\ \text { Cesse } \\ \text { Number } \end{gathered} \right\rvert\,$	sedec Ocrins		Notes	$\begin{gathered} \text { Mountlog } \\ \text { Cless } \end{gathered}$	$\begin{array}{\|l\|} \hline \text { See } \\ \text { Pege } \\ \hline \end{array}$
	Origtad System	Revtsed 8ytuem			
001	TO-3	10-2044		Flange	9
003	T0-3		2	Renge	9
009	T0-61	70-210AC		Stud	8
011	T0-3	10.204AA	-	Flange	9
0114	T0.3	-	2	Flange	9
012	T0.3	-	2	Flango	9
035	T0-80	10-210as	-	Stud	0
042A	D0. 5	D0-203A8	-	Stud	8
044	DO-4	00-203A4	-	Stud	8
054	T0.3	-	2	Ftenge	9
056	D0-4	-	-	Stud	8
058	D0.5	-	2	Stud	8
01.03				Flange	9
83-02	T0-64	10-203Aa		Stud	3
63-03	TO-54	T0.2083AB		Stud	8
077	70-128	T0.225AA	-	Plestic	12
090	TO-68	T0-213AA	-	Flange	9
088	-	T0.208	1	Stud	8
0881	-	T0.298	1	Stud	8
1448-05				Stud	8
1454.69				Stud	8
145A-10				Stud	8
145C	10.232		1	Stud	θ
157	-	00.203	1	Stud	B
160-03	T0.59	TO-2t0AA	-	Stud	8
167	-	D0-203	1	Stud	0
174-04				Pressfi	9
175-03				Stud	8
197	-	T0.204AE	-	Fisnge	9
211.07				Flange	9
211-03				Flange	9

$\left\lvert\, \begin{gathered} \text { Motorota } \\ \text { Cespe } \\ \text { Number } \end{gathered}\right.$	sebec Outine		Notes	MountingClessa	$\begin{array}{\|l\|} \hline \text { See } \\ \hline \text { Page } \\ \hline \end{array}$
	Originas Systam	Revised Syztem			
211.11				Flange	9
215-02	\%			Flange	9
221	-	70-2204B	\rightarrow	Teb	11
221C-02				Plestic	12
2210-01	-	-	$\begin{aligned} & \text { tsolatod } \\ & \text { T0-220 } \end{aligned}$	Plastic	12
235	-	10-208	1	Stud	8
235-03				Stud	8
238	-	T0-208	1	Stud	8
239	-	T0-200	-	Stus	8
244-04				Stud	8
245	D0-4	-	-	Stud	8
257.01	D0-5	-	-	Stud	3
263	-	70.208	-	Stud	3
263-04				Stuad	8
283	D0-4	-	-	Stud	8
289	-	T0.209	1	Stud	8
305.01				Stud	8
310.02				Pressfit	9
311-01			Izoleted	Stud	8
311.02				Pressfit	9
311.02				Stud	8
3148-01				Tsb	11
3140-01				Tab	11
316-01				Fisnge	9
319-04				Flange	9
3284.01				Flange	9
332.04				Stud	8
333-03				Fiange	9
3334-01				Flange	9
338.03				Flange	9

	JEDEC Oution		Notes	$\begin{gathered} \text { Mounting } \\ \text { Cless } \end{gathered}$	$\begin{array}{\|c\|} \mathbf{S e n} \\ \text { Pege } \end{array}$
	$\begin{aligned} & \text { Orginal } \\ & \text { System } \end{aligned}$	Revised Sybtem			
337-02				Flango	9
340		T0.218AC		Tab	11
340A-02				Plastic	12
3408-03			$\begin{gathered} \text { tsolated } \\ \text { TO.218 } \end{gathered}$	Plastic	12
342-01				Flange	9
3578-01				Flange	9
381-01				Flange	9
368-01				Flange	9
369-03		10.251		Insertion	14
3594-04		10.252		Surface	13
373-01			holsted	Flange	9
383.01			isolsted	Flango	10
387.01		TO-254AA	tsolstod 2	Tab	11
388A.01		TO-258AA	Isolatod 2	Tab	11
744-02				Fienge	9
744A-01				Flange	9
800-02			tsolated	Flange	9
807-01			Isolated	Flange	9
807-02			tsoleted	Flange	9
8074-01			Itolated	Flange	9
808-01			tsolated	Flange	9
809.01			tsolated	Flange	9
812.01			Isolsted	Flange	9
813-01			trolated	Fienge	9
814-01			Isolatod	Flange	9
814A-01			Isoleted	Flange	9
0848.01			Izolated	Fiange	9
$815-01$			Isoleted	Fiange	9
819-01			Isolated	Flange	0
043.02	DO-21	D0-208AA		Pressfit	9

[^32]
AN1041

Mounting Procedures for Very High Power RF Transistors

Prepared by
Helge O. Granberg
RF Engineering
Advanced Products Group

FiF power semiconductors such as MRF153, MRF154, MRF155, MRF156 and MRF430 are housed in Case 368 01, whereas MRF141G, MRF151G, MRF175G and MRF176G use Case 375-01 (both shown below). All of these are high power devices (200-600 W), which results in an abnormally large amount of heat dissipated within a small physical area. For such high power transistors, special attention must be paid to the heat sink material as well as the finish and flatness of the mounting surface. The material should have at least a thermal conductivity equal to or better than copper and for the mounting surface flatness $\pm 0.0005^{\prime \prime}$ can be considered sufficient. The heat sink can be made of material with lower thermal conductivity such as aluminum, but in that case a copper heat spreader should be used. The heat spreader should have a minimum thickness of $0.25^{\prime \prime}$ for case 375-01 and $0.375^{\prime \prime}$ for 368-01 and should extend at least $0.5^{\prime \prime}$ to $1 . \mathbf{0}^{\prime \prime}$ beyond the flange edges, depending on the device type and the amount of dissipation involved. For die temperature calculations of devices in case 368-01, the Δ temperature between the mounting screw areas and the bottom center of the flange is approximately $5^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$ under normal operating conditions and dissipations of 150 W and 300 W respectively.

Although the data sheets contain information on the subject above as well as the mounting procedures of these devices, very few designers actually follow them. The maximum recommended torque on the \#4 size mounting screws is 4-5 in.-lbs. along with split lock- and flat-washers, of which the latter should be in immediate contact with the flange's top surface. Experiments have shown that merely compressing the split lock washer to its full flatness produces enough torque for sufficient pressure against the heat sink. The split lock washers are available with various spring tensions. Bell type compression washers would be an even better choice if found with 5 in.-lbs. or lower torque specifications.

Calculations indicate that the length of the case 368-01 copper flange increases in excess of two thousands of an inch with a temperature change of $75^{\circ} \mathrm{C}$. In such case, if the mounting screws are torqued too tight, the flange cannot expand in length but will bend upwards in the mid section, cracking the Beryllium Oxide insulators as well as the dice. It must also be noted that the thickness of the flange increases with temperature. For the excur-
sion mentioned above, the amount is around 0.25 mils, which results in further tightening of the mounting screws, thus increasing the effective torque from the initial value. However the amount of increase is difficult to measure and depends on the exact type of mounting hardware used. The copper-tungsten flange of case $375-$ 01 has a much lower expansion coefficient than copper, but if mounted on a copper or aluminum heat sink, it can be similarly bent during a cooling cycle as the heat sink material contracts.

Deformation can also occur during the initial mounting of the device if an excessive amount of thermal compound is applied along with sufficient screw torque. The thermal compound will squeeze out of the mounting hole areas, but will remain under the center of the flange, deforming it in a similar manner. Depending on the amount of thermal compound and its type, deflections of 2-3 mils have been measured between the flange center and corners created by such conditions. The same can happen with all flange mounted RF devices, but with thicker Beryllium Oxide insulators and lower dissipation levels the problem is less severe.
The maximum operating junction temperature and the total dissipation are usually given in the data sheets. It should be able for the device to be operated within these limits if the case temperature can be kept at $25^{\circ} \mathrm{C}$ or the derating factor is taken into account. The $150^{\circ} \mathrm{C}$ storage temperature indicated implies that the device can be operated at that case temperature, which is true but at a much derated dissipation rating. However good engineering practices would limit the case temperature to $70-80^{\circ} \mathrm{C}$ and the die temperature to not higher than twice that.

Applying Power MOSFETs in Class D/E RF Power Amplifier Design

Reprinted by permission from RF DESIGN, June. 1985 issue c 1985 Cardiff Publishing Co., a subsidiary of Argus Press Holdings, Inc.

By H.O. Granberg
 Motorola Semiconductor Products, Inc.

Class D and E are variations of switching mode amplifiers which are designated in the literature at least up to Class S. Switching means that the amplifying devices are either conducting or "open" during each half cycle and the switching from one state to the other is done as fast as possible. In some systems the switching is done at other than the carrier frequencies for modulation or other purposes. Class D and E usually refer to carrier switched amplifiers and are best suited for high frequency applications where the rise and fall times of the switching waveform are of main importance. They are directly adaptable to CW or FM, but other types of modulation are also possible by pulse width or amplitude modulation (1, 2, 3, 4, 5). The theoretical aspects rave been well covered by F.H. Raab anc N. Sokal in numerous publications over the years, and practical low power designs have also been shown. The author feels that since the evolution of the RF power FET, high power switching amplifiers can be designed at least up to 30 MHz and possibly 50 MHz .

Currently, Class D or E transmitters are marketed at up to 10 kW power levels for the broadcast band ($.55 \mathrm{MHz}-1.6 \mathrm{MHz}$) and at 1 kW for shortwave (up to 15 MHz). All use power FETs as the switches and advertise high efficiency and reliability. When the efficiency is higher, the reliability is better since the transistor (FET) die operates at a lower temperature. Efficiencies of at least 70 percent to 80 percent in Class D and 80 percent to 90 percent in Class E are possible with the present RF power FETs at moderate power levels. Efficiency in Class D is limited mainly by the saturation resistance of the devices and the output capacitance. The objective in Class E is to use the device output capacitance as part of a tuned circuit,
thus eliminating its effect as a load capacitance. In an ideal form it also ensures that the switching voltage and current waveforms are not overlapping (6,7).

An obvious advantage of high efficiency is the smaller amount of heat generated compared to power output. This results in a smaller heat sink and more compact design, leading to smaller output devices and reduced cost. An important application of high efficiency amplifiers is in battery powered transmitters, where battery lifetimes 25 percent to 30 percent longer than Class C should be possible. Another advantage is simplified circuit design, since interstage matching networks are not required, as they are with Class A. B and C, where the amplifying devices act as current sources rather than switches. From the low level limiter to the P.A. the power gain can be as high as 40 dB to 50 dB and the system bandwidth is limited only by the response of the output transformer or matching network. Assuming a constant pulse width from the limiter on, extremely wide-band amplifiers can be designed with no variation in power gain. Figure 1 shows an estimated power level vs. frequency curve of Class D/E feasibility with today's technology.

FIGURE 1. Estimated maximum power levels with a push-pull or single ended Class DIE amplifier based on present technology.

Preparing the Carrier Input Signal
Since the emphasis here is on relatively high power levels (up to 300W-400W per push-pull pair), the signal processing circuitry is only designed to operate up to 50 MHz . At higher frequencies it may be desirable to employ single ended designs in order to avoid any possible phase errors, which become exponentially more difficult to control with increasing frequency. The phase errors can be minimized in a push-pull circuit by providing the P.A. input drive through a transformer with bandwidth characteristics that will not affect the input rise and fall times considerably. Due to the difficulty in designing such transformers, which would require a bandwidth of one to several hundred MHz for a 2 MHz to 50 MHz carrier, it was decided to create the required 180 degree out-of-phase signals with ECL integrated circuits (Fig. 2).
The RF drive is first limited in a pair of cross coupled hot carrier diodes and then in three sections of ECL line receivers (MC 10H116). The limiter has approximately 50 dB dynamic range for amplitude modulated signals such as SSB. A peak detector circuit, shown at the upper left, was included, although the scope of this article is not to describe a modulated system.
The detector was designed to operate at audio frequencies, 300 Hz to 3 kHz , with an RF carrier down to 2 MHz . The detector output with two-tone RF input is shown in Figure 3.

The output audio envelope can be fed to an audio amplifier which can drive an emitter-follower or switchmode regulator that supplies the $V_{D O}$ to the Class D P.A. The principle is to provide the amplitude information through this audio chain and the phase information through the RF chain. They are then combined in the output stage to provide a restored AM or SSB signal. This technique is called Envelope

FIGURE 2. Schematic of the signal processor used in all the Class D experiments described. If the input is in sine wave, the amplitude can vary from 5 to 100 peak to peak. The output duty cycle is independent of the frequency.

Elimination and Restoration (EER) (2, 3, 4, 5). Pulsewidth modulation techniques can also be used to amplify AM and SSB signals with a Class D amplifier (1); however, the technique involves generating an inverse sine reference signal at the carrier frequency, and the distortion would be directly reflected to the output. The finite switching speeds also limit the dynamic range in this system. Both problems make the pulse width modulation technique practical only up to a few MHz . In contrast, distortion in an EER system is generated only by phase errors between the audio and RF chains $(4,5)$.

Although the circuit in Figure 2 is not intended for pulse width modulation, a provision was made to adjust the pulse width manually to allow the power output to be varied and to ensure that the P.A. drive signals would not be overlapping. The objective was to provide a constant duty cycle with frequencies anywhere between 2 MHz and 50 MHz . This was difficult to achieve, and the final result was that the frequency was split into two segments: $2-25 \mathrm{MHz}$ and $25-50 \mathrm{MHz}$. Adjustments in the MC10198 (one shot) timing as well as the LM307 and the comparator biases were necessary to cover each band. The problem was mainly with the limited capacitance range of the MVAM108 tuning diodes in the integrator. Their capacitance should track the frequency in order to provide a constant
amplitude triangular wave output from the integrator. It must be pointed out that the physical circuit layout of the integrator is critical for low distortion output. All lead lengths should be minimized and elsewhere proper ECL wiring techniques should be followed.
The circuit of Figure 2 was intended to be used with a number of Class D P.A.s studied. It is remotely located from the driver and the P.A. assembly, and the signals between the two are connected by twisted wire lines. The pull down resistors in the ir1C10195 outputs are provided only for testing purposes, white the terminations are tocated at the driver and P.A. assembly.

The Driver

Because of direct coupling between the stages, each side of the push-pull circuit requires its own driver and pre-driver. This has the advantage that the high peak current requirement from the driver is divided between two circuits, which will be discussed later in detail. For this reason also the push-pull configuration was chosen. A single ended design would require an output FET twice as large, having proportionally higher gate input capacitance.

The ECL level limited signal must be converted first to a voltage swing of at least 2 to 3 volts above ground to feed the driver, which may have a FET or bipolar input. The circuit shown in Figure 4E can
be used for this, or 4F, if the ECL is operated between ground and +5 volts. Atternatively, integrated circuits, such as the MC10G125 ECL to TTL converter or MC10177 MOS clock driver, can be used for this function, as shown in Figure 5. These ICs can be operated with single phase inputs as well as two phase. The voltage swing must be increased to 8 to 10 volts above ground to ensure that the P.A. FETs will be fully "turned on."

Figure 4 gives examples of drivers that are fairly simple and can drive heavy capacitance loads. Figure 4 A is the most complex, but it performs well providing the devices are correctly selected and the gate threshold voltages of Q3 and Q5 are equal. Without a load no current should flow through Q2 and Q3. The last statement applies to 4 B also, if Q2 and Q3 are switched correctly. This basic circuit is used in the output stages of many TTL gates and buffers, and in integrated form the transistor base-emitter forward and saturation voltages can be controlled closely. In a discrete form the value of Q1 emitter resistor must be adjusted according to the parameters above. In addition, Q3, which is in common emitter configuration, must be of a fine geometry, high frequency design to minimize the baseemitter junction stored charge effect. Such devices in the NPN polarity are currently available in many package configurations.

FIGURE 3. The peak detector output waveform (Fig. 2) with a two tone SSB drive signal. This can be used to control the P.A. supply voltage for amplitude modulation.

Circuits in 4 C and 4 D are the simplest and least critical, although both have some drawbacks. 4D uses a passive pull down, where the resistor value can be calculated for the desired turn off time when the voltage and FET input capacitances are known. A typical value for a 50 W FET operating at 50 MHz would be around 3 to 4 ohms. The resistor current will be added to the input capacitance $\left(\mathrm{C}_{155}\right)$ charge current, requiring a doubled current capability from the emitter follower $\left(Q_{2}\right)$, although the average power dissipated is equal to that of circuits with active pull down. The complementary emitter follower in 4C is probably the most efficient driver, considering its simplicity. It is tolerant against variations in device parameters and has the lowest output impedance if the transistors are properly selected. The only disadvantage is the scarcity of high frequency PNP transistors with sufficient current capabilities. In all Figure 4 circuits the pre-driver (Q_{1}) can be a bipolar transistor or a FET depending on the exact requirements and the input signal amplitude.

Power MOSFET HF Switching Characteristics

At low frequencies the MOSFET gate should present a purely capacitive load to the driver. In switching applications, however, the rise and fall times represent a much higher frequency component than the fundamental. For example, if at 30 MHz carrier 4 nanosecond switching times can be tolerated, at 80 percent amplitude the 4 ns represents roughly a 100 MHz sine wave. Examining the MRF150 Smith Chart (data sheet) and converting the information into parallel form we find that the input capacitance remains a constant 800 pF up to 150 MHz . This is an average value under biased and linear operating conditions, but it indicates that the wire bond and package inductances have a minimal effect at that frequency. For switching applications,

FIGURE 4. Various Class D driver configurations. E and F are intended for ECL to positive level conversion, while A, B, C and D are designed to operate from higher voltage inputs to drive capacitive loads, such as the FET fates.
where the FET goes into saturation, the input capacitance is more difficull to define.

As shown in Figure 5, the $\mathrm{C}_{\text {iss }}$ varies with gate and drain voltages. At left (zero gate voltage) we can see the value under the conditions where the parameter is normally specified. At increased gate voltage the capacitance goes down to its lowest value, just before reaching the threshold voltage. When the FET begins to draw drain current, there is a point where the device gain is at its highest value. At that time the drain voltage is also lowered, resulting in reduction of the depletion area and causing an overlap between the gate and the bulk material. This in turn increases the value of drain to gate capacitance ($\mathrm{C}_{\text {rss }}$), which will be multiplied further by the gain and reflected back to the gate. As a result, a sharp peak in the $\mathrm{C}_{\text {ss }}$ will occur. When the FET is fully saturated, the $\mathrm{C}_{\text {ss }}$ settles to its value under zero drain voltage and positive gate conditions. A similar effect is present with all power MOSFETs to some extent depending on their exact parameters. The data was taken at 1 MHz but is not expected to change considerably at higher frequencies.

Figure 6 shows two input drive waveforms superimposed at 25 MHz repetition rate: the driver waveform without a load (A) and when loaded by the FET gate (B).

The notches in B are the result of the $\mathrm{C}_{\text {iss }}$ peak in both turn on and turn off. In low frequency switching applications this may not be directly noticeable due to the much slower transition times involved. For HF, the peak value of the $\mathrm{C}_{\text {iss }}$ must definitely be taken into consideration when designing the driver. Assuming the driver pulse amplitude is 8 volts, the driver has a relatively easy task in turning the FET on. The $\mathrm{C}_{\text {iss }}$ is low up to the threshold point, approximately 3.5 volts, increasing to 4.5 volts. After this, the voltage only has to increase another 3.5 volts, loaded by the high capacitance. Since this period falls within the "on" cycle of the FET, a slower rise time is of lesser importance. In turning the FET off the driver must supply the highest current at the beginning of the cycle. Its dissipation is also at the peak at this point and high until the first 3.5 volts of discharge is completed, the load capacitance lowered and the voltage across the driver gradually reduced. This is the most critical part of the cycle since it can result in a

FIGURE 5. Typical TMOS (MRF-150) gate-source capacitance versus gate and drain voltages. All power MOSFETs behave more or less similarly, depending on their die structures, geometries and electrical parameters.
delay in the turn off of the FET, causing both sides of a push-pull circuit to draw current simultaneously for a part of the cycle. The delay can be prevented or minimized by adjusting the driver voltage amplitude only to a level necessary to switch the output FETs to a full saturation and completely off. Any excess voltage swing increases the delay and also the dissipation in the driver.
Considering the complex nature of the FET $C_{\text {iss }}$, a most realistic figure for the required driver output impedance can be obtained if it is calculated for the peak capacitance value and the gate voltage swing between saturation and threshold:
$\frac{-t}{C \times L_{n}\left(1-\frac{V_{2}}{V_{1}}\right)}$
where:
$-\mathrm{t}=$ required switching time (4ns).
$\mathrm{C}=\mathrm{FET}$ input capacitance at the peak (1300 pF).
$\mathrm{V}_{1}=$ gate voltage at saturation $(8 \mathrm{~V})$.
$V_{2}=$ gate voltage between saturation and threshold (4.5 V).
then:
$\frac{-4 \times 10^{-9}}{1.3 \times 10^{-9}(-.82)}=\frac{-4}{1.3 \times(-.82)}$
$=3.74$ ohms

This translates to 1.2 amperes up to where the driver transistors (NPN and PNP) must have a linear $h_{\text {FE }}$. As stated earlier, the 4 ns transition times represent about a 100 MHz sine wave, which means that an HF beta of 10 would require an f_{s} of 1000 MHz for the driver transistors according to the $6 \mathrm{~dB} /$ octave slope (8). The DC beta (h_{FE}) is not critical but must be greater than 10

For the complementary emitter follower, the PNP half may be difficult to find with
the above specifications. In fact, some special units were built for experimental purposes using a multiple die similar to the 2N5583. The NPN counterpart was an MRF630. This combination worked well except that heat sinking of the TO-39 packages was difficult because of the close proximity of the pair, which is necessary to minimize all inductances.

Output Impedance Matching

In low voltage Class A, B and C designs the output impedance matching becomes difficult due to the low impedance levels involved at 100 W and higher output levels, if broadband operation is required at HF . The matching is usually done with broadband transformers, of which the transmission line types offer the best broadband performance. For many applications, however, they are considered impractical and bulky in higher than 9:1 or 16:1 impedance ratios (9). There are other transformer types that are more convenient in physical aspects but lack the bandwidth characteristics. This poses a real problem, especially for Class D where bandwidths from 1 MHz to 100 MHz or higher may be required. A transformer type which is fairly good for impedance ratios to 25:1 and higher is one where the low impedance winding is formed by metal tubes inside ferrite sleeves and the high impedance widing is threaded through the tubes (7,9). Such a transformer was used in the design of Figure 7 , where the power output specification was 100 W , requiring the closest integer of $16: 1$ impedance ratio.

Two points in its behavior must be noted.

1. The high leakage inductance of this type transformer requires an unusually large capacitance for compensation limiting the bandwidths. These capacitances, of which the device output capacitance will be a part, are normally located across the primary or secondary windings, or both (Figure 7, C_{1} and C_{2}). The required compensation can be cal-
culated from the measured leakage inductance, and the maximum frequency will be limited by the device output and stray capacitances. At the resonant frequency the transformer VSWR will be 1.2:1, increasing to approximately $6: 1$ an octave higher (10). The leakage inductance can be measured across the secondary with the primary shorted. The connection inductances must be added to this and the maximum tolerable value is:
$L_{1}=\frac{R_{L}}{2 \pi f}$
where:
$\mathrm{L}_{1}=$ Leakage inductance ($\mu \mathrm{H}$)
$\mathrm{R}_{\mathrm{L}}=$ Load impedance (50 ohms)
$\mathrm{f}=$ Maximum frequency (Mhz)
In Class D, the limited bandwidth will slow down the output rise and fall times. Since the transformer acts as a low Q resonant circuit, this can be used to place the amplifier in Class E mode of operation by moving the resonance down to the carrier frequency, although the Q cannot be properly controlled and the system may not be optimized.
2. The coupling between the two halves of the low impedance primary winding is only provided through the secondary and is very poor at higher frequencies due to the leakage inductances. If the amplifier is designed for voltage switching configuration, the transformer center tap is bypassed to ground. Due to the decreasing coupling the effect of the center tap is lost and at higher frequencies the amplifier will turn into current switching mode. With these two configurations the drain voltage and current waveforms are reversed (7), resulting in unpredictable waveshapes at the between frequencies. This will not affect the amplifier's efficiency, which theoretically should be equal for voltage and current switching modes, but makes its operation more difficult to analyze. If the transformer is properly designed, e.g., the tube diameter to
length ratio is high for increased couplings and the inductances between the transformer and FET drains are low, satisfactory operation up to 50 MHz is possible, depending on the impedance ratio in question.

Efficiency Considerations

The efficiency of an amplifier is defined as the ratio of DC input power to RF output power and is usually expressed in percentage. There are three main device parameters that affect the efficiency of a Class D amplifier:

1. Saturation voltage, in some data sheets given as saturation resistance, is directly proportional to the current and more linear with FETs than with bipolar transistors due to the latter's nonlinear diode characteristics. In contrast to the bipolar the FET has a highly positive temperature coefficient slope (saturation voltage increases with temperature), approximately 1 percent $/{ }^{\circ} \mathrm{C}$. The DC value starts higher with FETs than with comparable devices. At RF the saturation voltage is further increased by the package and wire bond inductances and is more noticeable with low voltage devices due to the low impedances and high current levels involved. The RF saturation voltage can be more accurately measured than calculated. Typical values for MRF140 and MRF150, for example, are 1.7 volts and 3.0 volts, respectively, at 10 amperes and 30 MHz . From these numbers the efficiency can be calculated simply as:
$\frac{V_{D D}-V_{E \pm 1}}{V_{D D}}$
2. The switching speed of a transistor or a FET is mainly related to its high frequency characteristics, as discussed earlier in the driver paragraph. The internal capacitances have a large effect, but they in turn are a function of f_{t}, except for small differences between various FET structures such as interdigitated and overlay or TMOS and VMOS. For comparable geometries the FET has about three times higher f_{t} than the BPT. This means that some of the low frequency switching FETs can be used as RF switches up to 20 MHz to 30 MHz if a low output impedance driver is provided. In case of a sine-wave driving signal (7) the switching speed relies totally on the device high frequency gain and the input signal amplitude, whereas with a square-wave drive, it is affected by the input rise and fall times as well. Assuming a linear ramp with no distortion, the effect of transition times on efficiency can be calculated as:
$360 \times \sin \theta s$

$2 \pi \times 0 s$

where: Θ s is the phase angle portion of a full cycle that the Iransition time covers.
3. The device output capacitance, or any external capacitance shunting the output, reduces the efficiency of an amplifier. This capacitance must be charged to nearly twice the supply voltage during each cycle, and the power used is dissipated in the amplitying device. In narrowband designs and Class E switching it can be tuned out but not completely since its value varies with the output voltage swing. With power transistors and power FETs, the C_{∞} or $\mathrm{C}_{\text {oss }}$ is usually dominant and stray capacitances can be disregarded for practical purposes. Their values in data sheets are specified at DC and at the recommended supply voltage for RF, or mostly at 25 volts for LF switching. For example, the $\mathrm{C}_{\text {oss }}$ for the MRF150 is given as 250 pF at 50 volts but is higher at lower voltage and increases sharply at voltages below 5 ; thus, for accurate calculations a higher $\mathrm{C}_{\text {oss }}$ value should be used for an average, but it can only be obtained from a Coss vs voltage curve. According to the formula in Reference 7, (p.446) the power loss for a push-pull amplifier is:
$P_{s}=C_{s}\left(2 V_{\text {ett }}\right)^{2}(2 f)=8 C_{s} V_{\text {etl }}{ }^{2 f}$ where:
$P_{s}=$ Power loss
$\mathrm{C}_{5}=$ Device output capacitance
$V_{\text {elf }}=V_{D O}-V_{\text {sat }}$
$i=$ Frequency
From this we can see that power loss depends mostly on supply voltage and on
capacitance and frequency to a lesser degree. The output rise and fall times for these calculations are irrelevant since they only affect the peak power dissipated in charging the load capacitance, the average power remaining constant.
For a pair of MRF150s operating at 50 volts and a power output of 300 watts the power loss would be $8\left(250 \times 10^{-12}\right)(47)^{2}$ (30×10^{6}), considering the worst case at 30 MHz . $\left(2 \times 10^{-3}\right)(2200)(30)=132$ watts and the efficiency is:

300
$132+300$
$=69$ percent.
If the same die (MRF140), with its 450 pF output capacitance, were used in a similar 28 volt system, the efficiency would be (3.6 $\left.\times 10^{-3}\right)(692)(30)=75$ percent. This is in contrast to the beliel that a higher supply voltage automatically results in higher etficiency except when the circuit losses become high at very low output impedances. Considering this, it would seem that Class D efficiency is not much better than Class B or Class C, at least at higher supply voltages. If we calculate the total efficiency, taking all the above factors into account. it is only about 60 percent, However, efficiencies up to 80 percent have been demonstrated in practice in similar systems, using the MRF150s or comparable devices.
It is obvious that load capacitance is the one factor that limits amplifier efficiency most seriously, unless it can be compensated for. Assuming a perfect output transformer in a Class D push-pull amplifier,

the compensation could be done by inserting a required amount of series inductance between the drains and the transformer primary. This would form a resonant circuit with the device $\mathrm{C}_{\text {oss }}$, limiting the bandwidth to some extent, and the advantage of the perfect transformer would be lost. This inductance can be used and sometimes is used unintentionally to tune out the device output capacitance, but since the effective $\mathrm{C}_{\text {oss }}$ varies within the RF cycle, total compensation can hardly be achieved. Thus, in practical amplifier circuits of this type, there is a tradeoff between efficiency and bandwidth, which also applies to Classes B and C.

Conclusion

Commercial Class D and E transmitters up to 1 kW and 10 to 15 MHz are on the market. The author demonstrated a 1 kW , 10 MHz amplifier in 1981 (11), which was later evaluated by the National Bureau of Standards. Other designs since then include an 800 W amplifier at 13.54 MHz with four MRF150 FETs, a 100 W unit for 25 to 50 MHz operating at 12 volts and a $2 \mathrm{~kW}, 50$ volt system (Fig. 8) which did not function as expected at frequencies above 15 MHz . The main problem was increasing inductance in the power FET drain connections to the output transformer. The component physical size undoubtedly places a limit for high power designs of this type, unless multidimensional constructions can be made feasible.

The importance of the physical layout must be emphasized, since it is the key to a properly operating system no matter how good the electrical design is. We must remember that we are dealing with frequency components of 100 MHz and higher in a 30 to 50 MHz carrier system,
where even a nanosecond difference in delays between each side of a push-pull circuit drive signal will noticeably affect efficiency.
Since high power Class D and E designs up to 15 MHz with efficiencies far exceeding those at Class B have been shown, the author feels that the frequency range can be extended to at least 30 MHz with proper physical design, leading to high efficiency linear and other applications.

About the Author

Helge Granberg is Principal Staff Engineer at Motorola Semiconductor Products, Inc., P.O. Box 20912, Phoenix, AZ 85036.

References

1. FH. Raab, "Radio Frequency Pulsewidth Modulation," IEEE Trans. Commun. Aug 1973
2 L. . Kahn, "Single.Sideband Transmission by Envelope Elimination and Restoration," IRE Proceedings, July 1953
3 L.A. Kahn. "Comparison of Linear Single-Sideband Transmitters with Envelope Elimination and Restoration Single-Sideband Transmitters," IRE Proceedings, Dec. 1956.

4 A D Sokal and NO Sokal, "High-Etticiency Linear Power Amplification of Modulated Carrier Signals by Envelope Elimination and Restoration," Report: April 6, 1981 Design Automation, Inc., 809 Massachusetts Ave., Lexington, Mass. 02173
5 FH. Raab, "Intermodulation Products in EER Systems," Report: Aprit 1, 1982. Green Mountain Radio Research Co. 50 Vermont Ave Ft. Ethan Allen, Winoosky, VT 05404.
6. NO Sokal and A D Sokal, "Class E Switching - Mode RF Power Amplifiers," RF Design magazine, summer 1980.
7. Krauss, Bostian, Raab, "Solid State Radio Engineering," Wiley \& Sons, Inc 1980
8 A.B. Phillips, "Transistor Engineering," McGraw-Hill, 1962.
9. H. Granberg. "Broadband Transtormers and Power Combining Techniques for RF," Motorola Semiconductor Sector Application Note AN-749, and all references cited in this publication.
10. G.S. Pondian, "Broadband RF Transformers and Components Constructed with Twisted Multiwire TransmissionLines," Thesis, Indian Institute of Technology, Delhi, Dec. 1983
11. H. Granberg. "Power MOSFETs versus Bipolar Transistors," RF Design magazine, Nov/Dec. 1981
H.O. Granberg

Motorola Semiconductor Products inc.
Phoenix, Arizona

Many designers of RF equipment with vacuum tubes or solidstate small signal equipment are not familiar with solid-state RF power design, and the importance of many aspects in developing the hardware. It is true that the same rules adply in each case. but the physical construction of RF power circuits is much more critical due to the low input impedance levels involved. The importance of these aspects are frequency, supply voltage and power level dependency. For a given supply voltage the input impedances are about equal for UHF at $10-15$ watts. VHF at $35-40$ watts and HF at around 100 watts. This means that the impedance levels of properly selected devices for each application (except the output) are nearly equal. but the RF currents are a function of the power level. Thus. it can be deduced for example that equal emitter inductances, in common emitter operation, can be tolerated in each case.

Selecting The Device

RF power transistors are being made for three basic supply voltages: 12.5 V (12-15.5V) for land mobile and marine applications: 28 V (24.32V) and $50 \mathrm{~V}(40.50 \mathrm{~V})$ for aircraft. military and base stations. The high voltage devices have higher collector resistivities than the ones designed for low voltage operation, and the emitter ballast resistors have higher values. Devices designed for high voltage operation can be used at lower voltages. but not vice-versa. This would result in saturation at a lower power level than normal. but will give a rugged design. An example of this is a high level AM modulated amplifier, where the breakdown voltages must be high enough not to be exceeded by the modulation peaks.

UHF devices have a thinner epitaxial layer than parts designed for VHF and the same is true from VHF to HF. The higher frequency devices also use much finer geometries than the lower frequency devices. resulting in higher f_{T} and higher power gain. It is not recommended in general. that a UHF or VHF device be used at HF frequencies. except at reduced supply voltages and reduced power levels. Even then. stability problems may be encountered due to the high power gain. A 2 N 3866 is a popular

Good RF Construction Practices and Techniques

Reproduced with permission from September/October 1980 RF Design

> Categories considered include Device Selection; Emitter Inductance; Amplifier Instability; Single, Parallel or Push-Pull Configurations and Thermal Design.
low level driver at $H F$, but some power gain must be sacrificed by heavy emitter feedback. Going the opposite way. HF devices are often used at VHF and VHF devices at UHF in applications where a low gain stage (3.6 dB) is required. Most newer RF power transistors are specified to withstand infinite load mismatches under a variety of operating conditions. However, this is providing that the maximum total dissipation rating is not exceeded. This can happen if the device goes into self oscillation, usually a circuit oriented problem. The total dissipation is specified under RF conditions. and does not mean that the device can be DC biased up to that point at the operating voltage. although some devices could survive it. All transistors can be used for linear operation providing the power output is kept low to avoid the saturation knee. Devices specified for linear operation employ a much larger die for this reason, and have been specially processed to improve the linearity of the transfer curve.

Other important factors to consider are the input O and matcning of devices for push-pull or paraliel systems. The input 0 determines the broadband performance of the device. especially at the higher frequencies. For broadband application a low Q device should be selected. The Q is primarily determined by the ratio of the reactive and resistive components (X_{S} / R_{s}). The output Q is usually
much lower and is not the limiting factor in most cases. Device matching should be done on power gain for class B and C , and in addition on h_{FE} and V_{BE} forward voltage for class A and AB. The power gain follows the $h_{\text {fe }}$ to a great extent as long as the device is not saturated. and in most instances, at lower frequencies 10.15 percent hae matching is considered sufficient.

The Emitter Inductance

For simplicity we will only discuss the common emitter amplifier configuration. It should be realized that in a common base circuit, the base inductance is equally critical. To obtain the maximum power gain of a given device, the emitter-to-ground inductance must be kept as small as possible. This inductance outside the transistor consists of the transistor lead inductance to ground and the impedance of the circuit board ground plane. In most good designs it is necessary to employ a double-sided circuit board where a continuous ground plane is provided at the bottom side of the board. This is electrically accessible by feed-through eyetets or ptated-through hotes around the transistor mount opening, near the emitter area. For even better performance, the transistor mount opening in the board can be wrapped around with straps of metal foil. connecting areas on the top of the
board to the ground plane. To minimize the lead inductance, the transistor mount opening in the circuit board, which is necessary to allow the device to be attached to a heat sink, should not be made larger than necessary for a given package type. If the lead inductance is converted to reactance at the frequency of operation, its effect can be compared to that of an equal value resistance between the emitter and ground. This will allow us to calculate the actual gain loss in each case.

The transistor wire bond and lead frame inductance are fixed parameters, and can only be changed by selecting a device in the physically smallest package that will do the job. Sometimes the same transistor die is available in various package styles such as the standard .380 SOE, .500 SOE, or plastic TO-220. For a given die, it would be possible to obtain the highest power gain out of the .380 style since the internal package inductance is lower than in the two other cases. Also, the studmounted packages, although not as good thermally as a flange type. allows closer access to the ground plane, since openings for the flange ears in the circuit board are not required.
In a push-pull configuration the emitter-to-ground inductance becomes non-important. and this path only provides the $D C$ supply to the devices. Analyzing the pusn-pull operation reveals that the RF current is now flowing from emitter to emitter. For this reason. the devices should be physically mounted as close to each other as possible. If this cannot be done due to an existing circuit layout or other reasons, some improvernent can be obtained by connecting all the emitters together with a wide metal strip over the transistor caps. With flange-mounted parts, each emitter can be connected to the flange using solder lugs or wire loops under the mounting screws, enabling the heat sink to provide a low inductance connection between the emitters. For push-pull operation at UHF, special eight lead packages have been developed, where the two transistor die are attached next to each other, thus limiting the emitter to emitter inductance to that of the bonding wires. This is probably the only practical approach to UHF pushpull techniques at higher power levels.

Amplifier Instability

There are many reasons for an amplifier stage to reach conditions
of instability. Sometimes it is device oriented, depending upon the amount of feedback capacitance compared to the electrical size of the device, and the phase angle of the feedback. Somewhere higher than the operating frequency the feedback phase angle will be 360°, and if the device F_{T} is high enough, it will oscillate. The oscillations may occur only at reduced drive levels or reduced supply voltage. In most cases it can be remedied by lowering the Q of the input circuit or making the tank circuit Q higher.

The so called half F_{0} instability is fairly common with VHF and UHF amplifiers. It is more or less device oriented and is caused by a varactor effect in the base-collector junction diode or a combination of it and the base-emitter junction diode. The half F_{0} usually occurs at reduced supply voltages in 12.5 V systems, at some specific drive level, which indicates that when the diode DC bias is reduced, the junction capacitance will be increased. and the RF voltage swing will drive it into a parametric mode. The amplitude of the half F_{0} can be reduced or sometimes totally eliminated by narrowing the system bandwidth.

Another possibie cure for both problems above is de.Q'ing the base bias choke (Class B. C). This can be done with a high μ ferrite bead in line with the choke or an external low value resistor in parallel with it.

Low frequency instability is probably the most troublesome mode of selfoscillation. It usually occurs at audio frequencies or VLF, where the device has extremely high power gain. Since its oscillation is broadband in nature. it results in high collector currents. and often the device is destroyed by overdissipation. Causes for the low frequency instability are usually inadequate collector DC feed bypassing or an extremely poor ground in that area. Two or three RF chokes together with various values of bypass capacitors from 1000 pF to several $\mu \mathrm{F}$ may be required in the DC line to-stabilize the circuit. (See examples in Reference 1.)

Negative feedback through an RLC network from the collector to the base will reduce the device gain at low frequencies. and is found to be helpfut on many occasions. The above modes of instability can be present when the amplifier is operated into a proper toad. In addition, instabilities usually occur when operated into a mismatched or reactive load. The general rule is: The higher the stage gain. the less stable it can be under these conditions. This naturally
assumes, that the amplifier is not unstable for reasons discussed earlier. A reactive load can be present in the form of a low-pass filter, and if not properly designed, will cause amplifier instabilities. A good solution to analyze the stability is presented in Reference 2. An amplifier can be tested for stability using a load mismatch simulator. (Figure 1).
L and C values will of course depend on the frequency of operation. Typically C_{1} and C_{2} are equal and L_{1} has twice the value of L_{2}. The circuit should have a point, which presents a complete short and a complete open circuit and all phase angles between, which can be verified using a vector impedance meter. Attenuators can be connected between the simulator and the amplifier to limit the maximum mismatch. For example: A 3 dB attenuator would represent 6 dB return loss, limiting the VSWR to $3: 1$. Similarly a 2 dB attenuator would give about 4.5:1 maximum mismatch. A directional coupler and a spectrum analyzer can be used to monitor the amplifier behavior. Stability under a $3: 1$ mismatch is usually considered sufficient for most purposes.

Single-Ended, Parallel or Push-Pull

Each of the above configurations has its own application with regards to frequency spectrum, bandwidth and power level. A singleended narrow-band amplifier design usually produces optimum performance of the device. These circuits are employed when power gain or other information is compiled for a device data sheet, or if an amplifier for single frequency operation is required. Lump constant matching networks can be used up to about 200 MHz and stripline designs are common at 150 MHz and up, and in fact are the most practical design concepts at UHF and microwave. With proper techniques, it is possible to achieve bandwidths of one octave or more. Tapered line or step line approach, where the line impedance varies exponentially per unit length, or a number of quarter wave lines in series, having various characteristic impedances, is widely used for this purpose. A disadvantage is that the physical layouts become rather bulky at frequencies below 500 MHz , unless substrate material with a high dielectric constant is used. (Reference 3.)

At lower frequencies, up to 100 MHz , broadband transformer matching

[^33]techniques are only practical at 40 50 W power levels at 12.5 V or 90 100W levels at higher supply voltages. The low impedance levels and the high RF currents involved, make it difficult to adequately by-pass the transformer ground returns.

Between 100 and 200 MHz , broadband designs are difficult to implement. Lumped constant matching networks can be used, but since several sections in the input and output are required. production repeatibility may be poor. The etched air line inductors described in Reference 4 may be the best solution to this problem.

In the past it was considered poor practice to directly parallel transistors in order to obtain higher power levels. This was mainly because of uneven current sharing

between the devices. which usually led to thermal runaway and destruction of one device. However. most RF power transistors are now emiter ballasted with a built-in resistor for each emitter site. This minimizes the problem. but it is also difficult to design low loss matching networks for the reduced input and output impedance levels. Thus. the direct paralleling of transistors is not recommended in general. Paralleling may be done in such manner. that the input and output impedance of each unit are first transformed to some intermediate level or directly to 100 ohms. where the inputs and outputs are then paralleled. The best way to generate higher power levels with low power transistors is
to use 50 ohm in-out "building blocks" of which any number can be combined by in-phase. quadrature or hybrid couplers. (Reterences 5.6.7. 8.) This also provides isolation between the individual amplifier units.

Push-pull configuration nas several advantages over single-ended amplifiers:

1. Even harmonic suppression.
2. Easier input-output matcning due to higher impedance levels.
3. Emitter grounding and collector DC feed by-passing less critical.
4. Autornatically combines the powers of two devices.

A push-pull circuit can be designed as a narrow-band system using lumped constant elements. or using stripline techniques at higher frequencies. These circuits are rather critical however, and require extreme symmetry between each side. A broadband circuit. using RF transformers is much more tolerable in this respect due to the tignt coupling possible between the transformer windings. Push-pull circuits of this type have been designed up to 150 MHz or higher. depending on the power level and supply voltage. With proper transformer design. several octave bandwidths can be achieved. Other means of designing push-pull circuits include: a) A quarter-wave balun 10 provide the unbalanced to balanced function and 180° phase shift for two single-ended amplifiers. b) Two singleended amplifiers. of which one is fed directly, while the other one is fed through a delay line. providing a 180° lag in phase at the frequency of interest. The same must be done at the output. Quarter-wave lines are commonly used for this purpose. Both a) and b) operate only within a narrow bandwidth, since the phase angle varies with frequency. The latter method is especially adaptable to UHF and higher frequencies. where the lines will be of moderate length. a) and b) also differ from conventional pushpull designs. discussed earlier. in that the phase shifting is done at the 50 ohm impedance levels rather than at the base and collector directly.

Thermal Considerations

On the reliability viewpoint it is important that the transistor die temperature is kept below a certain limit. This varies slightly with different geometries, but $160.165^{\circ} \mathrm{C}$ is usually considered the maximum rec. ommended. Take the MRF422 as an example, which has a junction-to-case thermal resistance $\left(\mathrm{R}_{\leftrightarrow, \mathrm{J}}\right)$ of $0.6^{\circ} \mathrm{C} / \mathrm{W}$. If the transistor is operated at 150 W dissipation, the case temperature should not exceed: $\left(T_{J}-\left(P_{0} R_{\Theta J C}\right)=\right.$ $165-(150 \times 0.6)=75^{\circ} \mathrm{C}$. The R RJc number published in data sheets is an average, and actually varies with power dissipation (Reference 9). Considering the thermal resistance of the heat sink. which most manufacturers specify as from the mounting surface to ambient. but do not specify the mounting suface area. the heat sink ambient temperature must be considerably cooler than $75^{\circ} \mathrm{C}$. Thus. the $R_{9\lrcorner C}$ of a heat sink actually depends on the transistor package siyle. An aluminum heat sink with surface inickness of $0.25^{\prime \prime}$ was tested. Its temperature was measured three inches from the transistor. which was mounted directly on the surface. The temperature was kept at $25^{\circ} \mathrm{C}$ with forced air cooling. With the 150 W dissipation the transistor case temperature rose to $72^{\circ} \mathrm{C}$. The case to ambient temperature then is:
$\frac{\Delta T_{S A}}{P d}=\frac{72.25}{150}=0.31^{\circ} \mathrm{C} / \mathrm{W}$.

The die temperature is $T_{J}-\left(T_{C}-\right.$ $\left.T_{C^{\prime}}\right)=165-(75-72)=162^{\circ} \mathrm{C}$. The same measurement was done using a copper biock of $2^{\prime \prime} \times 2^{\prime \prime} \times 0.125^{\prime \prime}$ as a heat spreader under the transistor. The case temperature was measured at $58^{\circ} \mathrm{C}$, and the thermal resistance decreased to $(58-25) / 150=0.22^{\circ} \mathrm{CWW}$. and the die temperature was lowered to $148^{\circ} \mathrm{C}$. The 150 W dissipation is hardly realistic under normal operating conditions. but can be reached during a load mismatch. Regarding the above data. more attention shoutd be paid to the heat sink material and not only its size.

RF power MOSFETs

since their introduction in the mid-70s, power Mosfets have found major use in switching power supplies and in motor control circuits. More recently, however, they are being considered more and more for use as RF power amplifiers because they offer certain advantages over bipolar transistors. These advantages include higher input impedance (in all circuit configurations), gain control by varying the DC gate voltage bias, and immunity to thermal runaway. They do have some disadvantages, though probably the biggest is their higher cost. Other disadvantages of mosFETS include a higher saturation voltage than bipolars and their susceptibility to gate punch-through.

RF and switching MOSFETs differ

Power mosfets made for RF applications differ in a number of ways from those made for switching applications. For example, RF power mosfets usually have much finer die geometries than switching mosfers. Also, their die metallization pattern is divided into a number of segments, with each segment having separate gate and source bonding wires. This reduces wire bonding inductances and lowers the mos capacitances within the die,

While switching type
MOSFETs gather all the acclaim, RF types are quietly starting to find their niche

Helge Granberg Principal Staff Engineer Motorola Semiconductor Products Phoenix AZ

greatly increasing their operating frequency capabilities.

RF power mOSFETS are generally n -channel, enhancement-mode devices, which means that the drain is positive with respect to the source and the gate must be biased to a positive voltage with respect to the source for drain-source current to flow. Some other rf devices, such as GaAs FETS, are depletion-mode devices and must be turned off by a negative bias like electron tubes.

While most designers are very familiar with bipolar transistor parameters, this isn't so for power mosfet types. The table, "Comparison of bipolar and power MOSFET DC parameters," explains the various MOSFET parameters and their importance to the designer, and relates them to bipolar parameters.

One important DC parameter not listed in the table is thermal stability. A mosfet is almost always biased to some level of idle current, while the bipolar must be biased for linear operation. The forward voltage variations in a base-emitter junction are 1 to $2 \mathrm{mV} /{ }^{\circ} \mathrm{C}$, and always have a negative temperature coefficient. Gate threshold voltage must be measured against a constant drain current and also has a negative coefficient at low current levels. However, the material bulk resistance of an FET has a positive coefficient, which becomes dominant at higher current levels. Thus, an FET's $g_{\text {FS }}$ goes down as temperature goes up.

Stabilizing RF transistors

Looking at bipolar collector and MOSFET drain currents versus temperature at constant base and gate voltages (Fig. 2), it can be seen that the bipolar transistor has a negative coefficient up to high current levels but the FET "turns around" before the device dissipation rating is exceeded. Since these parameters are $\mathrm{h}_{\mathrm{FE}}, \mathrm{g}_{\mathrm{Fs}}$, and current dependent, it is not easy to provide temperature stabilization for biased devices. For the bipolars, a forward-biased diode with suitable

All rights reserved. Reproduced by permission.

Fig. 1. Unity gain frequency versus ic or lo. Curve (a) represents a 150-W RF power MOSFET. Curve (c) is a bipolar having the same basic die geometry. Curve (b) is a standard switching power MOSFET with approximately equal gate periphery for comparison purposes.
characteristics kept at or near the transistor case temperature is usually considered a sufficient bias voltage source. In mOSFETs the required voltage can vary by several volts and the rate of change can be several times that of a bipolar at low drain currents. Thus, the fets require more sophisticated methods for their temperature compensation. Resistor-thermistor combinations, together with regulators or op amps, are typical of these methods.

Despite the power mosfet's parameter and cost-related drawbacks, its advantages still make it the choice over bipolars in certain applications. At VHF and UHF, the high gate-input impedance and the high power gain of the MOSFET make it possible to design broadband amplifiers with simpler input matching networks. Since the gatesource impedance remains capacitive to much higher frequencies, it makes internal matching networks unnecessary at least up to vHF even for devices of 100 to 150 W power ratings. On the other hand, vHF bipolar transistors with power ratings of 50 W and higher commonly employ internal matching networks, which means that the first section
of the total network is built inside the device to transform the die impedance up to practical levels.

In general, at frequencies below vHF, the input and output matching for power FETS and bipolars are very similar. Only the network element values differ in most cases. At high frequency (2 to 90 MHz),
where the configuration is mostly push-pull, ferrite broadband transformers or lumped-constant balanced l.c transformers can be used depending on the exact requirements.

Amplifier circuit configurations such as common base (bipolar) and common drain (mOSFET) are also possible and practical. The common base circuit may be useful where more constant input impedance-ver-sus-frequency or wider gain control range with gate voltage is required.

The mosfets common drain circuit configuration represents an emitter follower in bipolar circuits. Its specific merits are exceptional stability and linearity. However, these are attained at the cost of low nower gain and at the danger of exceeding the $V_{\boldsymbol{r}}$.

A MOSFET source follower cannot be considered as having current gain like an emitter follower. Rather, the amplification is achieved through impedance transformation. Note that the FET gate, which consists mostly of mos capacitance, normally presents a high Q input to any matching network. This will impair the broadband performance and stability of the amplifier unless the Q is lowered by artificial means. A

Fig. 2. Collector and drain idle current versus temperature at constant base or gate voltages. (a) and (c) represent a bipolar device at collector currents of 100 mA and 10 A respectively. (b) and (d) is a power MOSFET at drain currents of 100 mA and 10 A respectively.

AR165S

gate shunt resistor, which can be part of the biasing circuit, serves this purpose.

A more sophisticated method of achieving broadband performance and stability is to employ negative feedback, which can be easily implemented only in the common source configuration. The feedback can be brought to the gate through an RLC network which, in combination with the shunt resistor, allows easier tailoring of the gain slope. In each case some power gain will be sacrificed, but this can be minimized at the high frequency end of the band (where the power gain is the lowest to begin with) by proper choice of component values in the feedback network.

The FET gate should never be connected to only inductive reactances in an attempt to use the inductance to control the gate Q. The $\mathrm{C}_{18 s}$ is highly drain-source voltage dependent and under certain conditions the total Q may be high enough to allow transients to exceed the V_{g}, thereby causing instant device failure.

Compare linearity and noise

It's commonly believed that power mOSFETs have more linear transfer characteristics than bipolars. This is only true if the FET is operated at a reduced power level and high bias (near or in class A). Based on two-tone linearity tests, the low order distortion products (3rd, 5th and 7 th) fall faster wlth mosfets than with bipolars at reduced amplifier power outputs. However, FCC specifications are relaxed on low order distortion - -31 dB below the transmitter peak power - a figure easy to achieve with both types of transistors. It's when it comes to high-order distortion - 9th order and up - that mosFets are superior to bipolars (see Fig. 3).

High-order distortion causes disturbances to adjacent communication channels, whereas low-order distortion only relates to the quality of the modulation. High-order distortion results from phase nonlinearities between the input and output, from amplitude nonlinearities at low drive levels, and from

Comparison of bipolar and power MOSFET DC parameters

"Equivalent" Paramelers

Eipolar	MOSFET	Deseription
BVeco	BVoso	Not specified or measurable with MOSFETs. In case of low gate-source leakage. the gate can charge to voltages exceeding the punch-through.
BVas	BVoss	Normal method of measuring the MOSFET breakdown voltage. It refers to the maximum drain to source voltage the FET is allowed with the gate DC biased or in the same potential as the source.
BVato	BVOSO	Not specified or measurable with MOSFETs. Gate-source rupture voltage would be exceeded in case of any drain-source leakage present.
BVito	Vg	Not specified or measurable with MOSFETs unless done carefully at low current levels. Gate rupture can be compared to exceeding a capacitor's maximum voltage rating.
V_{1} (forward)	Vg(th)	Not specfied or necessary in most cases for BPTs. For a MOSFET. this parameter determines the turn-on gate voltage and must be known for biasing the device.
Iers	less	Drain-source leakage current with gate shorted to source. BPT and FET parameters equal and normally only refer to wasted DC power and reliability.
lto	I_{8}	Normally not given in BPT dala sheets, but important for MOSFETs for biasing purposes. Both affect their associated device's long term reliability.
$V_{\text {ceisati }}$	$V_{\text {Osisati }}$ or Rosion:	Not usually given in BPT data sheets but important in certain applicalions. With power MOSFETs this parameter is of main importance. The numbers are assumably higher than with BPTs, and are material and die geometry dependent.
hre	grs	These are parameters for low frequency current and voltage gain, respectively. In a MOSFET the gis is more an indication of device electrical size and to a certain extent depends on processing.
f_{r}	(r)	Unity current or voltage gain frequency. Not given in many of the BPT or MOSFET data sheels. The figure can be two to tive times higher for the MOSFET for an equivalent basic geometry and electrical size (see Fig. 1). The figure of merit of a MOSFET is usually consldered as the ratio of the gate-source capacitance to the Grs, but other parameters such as the Ros (on) have some effect on the figure of merit.
G8t	Grs	Power gain in common emitter or common source configeration. This pasameter is equal for both types of devices, except normally regarded as current gain for the BPT and voltage gain for the FET. At lower trequencies, where the FET gain is extremely high, the number may be merely an indication of how much stable and useable gain is available.
Cis	Ciss	Base to emitter or gate to source capacitance. Rarely given for BPTs. In RF power FETs the Ciss has a larger effect on the gate-source impedance. In fact. if stray inductances from the die metal pattern, wire bonds, and package were absent, the gate impedance would be a pure capacitive reactance. The Ciss consists mostly of die MOS capacitance, whereas the Ca of BPT is a combination of MOS and diode junction capacitance. Since the diode(s) are forward biased during one half cycle and reverse biased during the other, it is obvious that the base impedance is largely drive level dependent.
Cos	Coss	Collector to emitter or drain to source capacitance. Both are usually specilied and are approximately equal in value for a given device rating and voltage Both are combinations of MOS and diode capacitances. Each effect the device efficiency since this capacitance must be charged and discharged at the rate of the operating frequency.
Cnz	Cass	Collector to base or drain to gate capacitance. Rarely specified for BPTs. Normally referred to as the feedback capacitance and very important for MOSFETs considering their lower gate-source capacitance and superior high frequency performance. At low frequencies $C_{\text {sss }}$ provides a 180° out of phase feedback to the gate, but can turn to positive feedback at high frequencies depending on stray inductances and the Ciss. The results will be noticed as parasitic oscillations, unless Ctss is low or the resonances fall outside the device's Irequency capabilities.

nonlinear feedback. Most of the nonlinear phase and amplitude feedback in the bipolars is delivered through the emitters, which are coupled to the collectors through diodes and mos capacitance. The emitter ballast resistors, although very low in value, allow enough feedback to the emitters to cause distortion. These ballast resistors in FETS are unnecessary, and the source is directly grounded. Thus, high-order distortion in a mOSFET is only possible through the $\mathrm{C}_{\text {nss }}$, which is very, very low.

Much like the high-order distortion in SSB communications, the broadband noise generated in any transmitter causes adjacent channel interference. The noise can be generated by the signal source, mixers, or any stage in the amplifier chain. The noise generated in the low level stages is amplified in all succeeding stages, and is of most concern. In linear amplifiers, where all stages are biased, the bias current alone can generate sufficient noise to block a nearby receiver. Both MOSFETS and bipolars generate thermal noise, which comes from the moving electrons. In addition, the forward-biased diode(s) in bipolars generate white noise, which is not present in mosfets. The two types of noise is usually measured together, and since a bipolar
typically has about three times higher noise figure than a comparable FET, it appears that a majority of the noise generated comes from the base-emitter junction.

When higher current levels or higher amplifier power outputs are required than one semiconductor device can provide, paralleling devices is often the first thing that comes to mind. Bipolars are often paralleled at DC and low frequencies, where their balance can be assured with external ballast resistors. At RF, however, this technique can not be used due to excessive losses in power gain. Instead the devices must be closely matched. At VHF and UHF, where the base impedance is very low and mostly inductive in reactance, added

Fig. 4. In this experimental RF MOSFET four die are connected in parallel. Chip-type silicon gate resistors are located at the center.
inductance in the form of the interconnections would make the design of matching networks difficult. So, in practical designs, the low impedance of each device is transformed to a higher level, before the point where the parallel connection is made.

The above problem is present with mosfets also, but they are more tolerant of gain mismatches because of the large amount of drain ballasting inherent in their structure. The mOSFET's higher, and capacitive, input impedance allows direct paralleling of higher power devices up to 150 to 200 MHz . However, a new problem arises when the mosfets are paralleled. When mosFETS are paralleled directly, a multivibrator type oscillator is formed, in which the feedback is derived through the $\mathrm{C}_{\mathrm{nss}}$ and the time constant is the cross-coupled $\mathrm{C}_{18 s}$ plus wire bond and interconnect inductances in series. This may also occur when individual die are paralleled in the same package unless the C_{IS} is low and the resonances fall outside the device limits. A commonly used cure for these parasitic oscillations is to de-Q all gates with series resistors (see Fig. 4) but this lowers the frequency response, making this technique impractical for truly high frequency applications.

rf design feature

New MOSFETs Simplify High Power RF Amplifier Design

By H.O. Granberg Motorola Semiconductor Products Inc.

There are many applications for high power solid state RF amplifiers in the 1 to 120 MHz range. Past designs have consisted of a number of $200-300$ watt modules combined to produce power outputs in the multikilowatt level. Power combiners and splitters are expensive and difficult to design for extremely wide bandwidths, and at low frequencies are bulky as well. It is always desirable to combine as few modules for a given power output as possible, although system cooling becomes more difficult with thermal energy concentrated in a smaller area. There is obviously a practical limit to the point where this philosophy is valid.

M
otorola has recently introduced high power MOSFETs MRF153 and MRF154, which are rated for 300 watt and 600 watt power output, respectively. A 600 watt bipolar transistor (MRF430) is also in this family of RF power devices. The MRF154, which is the subject of this article, is usable up to 100 MHz with a power gain of $8-10 \mathrm{~dB}$. Special design techniques result in a junction to ambient thermal resistance as low as $0.13^{\circ} \mathrm{C} / \mathrm{w}$. The transistor housing is designed for conduction cooling, and has 1.4 square inch flange surface area. A mounting surface of high conductivity material such as copper is recommended, since up to 900 watts of power may be dissipated in each device. The heat dissipator itself can be forced air or liquid cooled.

The 1 kW push-pull amplifier described here is designed to cover a frequency range of 10 to 90 MHz . Its applications include military communications, jammer, low channel TV, etc. Although the point of saturation is well over 1000 watts, the amplifier was tested for linearity at 800 watts. The available output transformer

Figure 1. One kilowatt $10-90 \mathrm{MHz}$ amplifier. The two FETs, input and output boards are mounted to a copper plate, which is then attached to the main heat sink.
impedance ratios ($9: 1$ or $16: 1$) are the limiting factor: the $16: 1$ impedance ratio would be optimum at around 1500 watts power output, but the 9:1 was chosen in order to achieve a better overall CW efficiency at the 1 kW level. In pulsed applications such as Nuclear Magnetic Resonance, linear operation is possible up to 1000 watts per device due to the low average dissipation and lowered thermal limits. In such case the output impedance matching can be modified accordingly.

Circuit Description

In contrast to a single ended amplifier circuit, in a push-pull configuration only the device mutual inductance (source to source in this case) is critical, and must be as low as possible for good high frequency performance. The common mode inductance (from each source to ground) is less important, reducing the requirement for low inductance grounding between the input and the output circuits. Input and output sections of the circuit
board can be split and grounded only through metal spacers to the heat sink. The source of the MRF154 is internally connected to the mounting flange, which is also grounded to the heat sink. This provides a good, low inductance path between the two sources. The arrangement (Figure 1) results in a convenient and compact mechanical layout and makes the unit easily serviceable, since each board can be removed separately.

In addition to the matching network, the input circuit board includes the FET bias regulator, making the bias current insensitive to supply voltage variations. With the component values shown in Figure 2, excursions of 30 to 50 volts result in less than 1 percent changes in the bias current. The regulator also provides a convenient point for connecting a thermistor for bias current temperature tracking purposes. The thermistor must be of NTC type, and can be thermally connected to one of the FETs or to any central location at the heat sink, depending on the ther-

Figure 2. Schematic of the 1 kW FET amplifier. The MRF154 is supplied in matched pairs for g_{fs} and gain. it is necessary to have gate bias voltages individually adjustable.
mal time constant desired. The stope can be adjusted with R8, for which the exact value is determined by the $\operatorname{FET} \mathrm{g}_{\text {fs }}$. The value shown typically results in bias current tracking of less than 20 percent for 25° to $75^{\circ} \mathrm{C}$. The bias can be turned completely off by grounding R8. However, this cannot be used for high speed switching of the amplifier due to the limiting time constant of the FET input capacitances and the bias voltage source path. Since the bias voltages are individually adjustable with R1 and R2 in addition to a common adjustment R3, the FET gate threshold voltages do not need to be matched. The power gain of an FET is mainly dictated by the g_{Fs} and not by the $\mathrm{V}_{0}(\mathrm{th})$.
The bias setting procedure is as follows: 1) adjust R1 and R2 to minimum; 2) adjust R3 for a voltage higher than the dovice $V_{0}(t h)$ at pin 3 of IC1. This should be typically 7.9 volts in order to place the R1 and R2 settings in the middle of the tuning range; 3) measure current at 50 volt supply point; 4) with power supply connected, advance R1 for desired current reading; 5) advance R2 until the current reading is doubled; 6) R1 and R2 need no adjustment atter this, and the blas currents of both FETs can now be set with R3. During this operation (1-6) the input
and output should be both terminated into 50 ohms with no RF drive applied.
On the output side of the circuit board design, the DC paths must be able to handie current levels of 50 amperes and more, and the maximum RF currents are in the order of 15 amperes RMS at the low impedance points. The DC current would require almost 10^{4} mils ${ }^{2}$ for the conductor cross sectional area in free air, but since the conductor will be heat sunk to the circuit board surface, a number about one fourth of this is adequate. Even then, circuit board material with at least 2 ounces of copper is required, and should be solder plated for added conductor thickness. In regards to the skin effect, a certain foil thickness is also necessary for the conductors carrying the RF currents. The skin depth at the high frequency end (90 MHz) is about 0.40 mils, and the foil thickness in the RF conducting paths should be at least five times that, or 2.0 mils, according to a rule of thumb. Since the skin depth varies as an inverse function of the frequency, it is really only meaningful at high frequencies, where the dimensional conditions can be met. It is then desirable to have a conductor with a large surface area and a thickness that meets the minimum requirement. Normar-
ly this will also be sufficient for low frequencies, where the conductor losses become nearly purely resistive.

Input-Output Impedance Matching

Since the output impedance matching and transformer design are far more critical than the input side, they will be discussed first. According to (1) and (2) dips in transmission line transformer response will occur when the physical line length reaches $1 / /$ wavelength, if the Z_{0} differs from the optimum required value or if the terminating impedances are incorrect. These dips, which actually are changes in the transformer impedance characteristics, have been noticed with $1 / 8$ and $1 / 18$ wavelength increments as well. Their magnitude also strongly relates to the amount of leakage inductance present, which has the same effect as an incorrect line impedance. Standard practice is to keep the line lengths as short as possible to reduce the IR losses, preferably shorter than $1 / 3$ wavelength at the highest operating frequency. Although operation between the incremental frequencies is possible, the bandwidth would be limited to less than one octave.
The effective line length varies with the transformer configuration. In a balanced

4:1 as shown in Figure 3B, the two lines are electrically in series, making the effective line length twice the actual. Cascading these for $16: 1$ impedance ratio further doubles the effective line length, making the total four times the length of one line. In a 9:1 impedance ratio transformer (Figure $3 A$) the two lines a and b are electrically in parallel, making the effective line length equal to the length of one line. However, since a balun is required for the balanced to unbalanced function, its length must be added to the total.
In high power solid state RF amplifiers it is desirable to eliminate the need for output DC blocking capacitors. Even if they are located at the 50 ohm points, they must be able to handle large RF currents (4.5 A at 1 kW) and should be chip type to minimize the series inductance. This can be done either by replacing the typical autotransformer configuration with a design as in Figure 3C, or replacing the balun with a $1: 1$ isolating transformer (Figure 3Ad and 3Dh). A disadvantage with 3D is that an impractically low characteristic impedance may be required for line h, but its high frequency performance is excellent due to the equal delay unbalanced $9: 1$ section.

The design shown in Figure 3C is probably the most practical one for its simplicity and ease of manufacture. It lends itself to high impedance ratios such as 16:1 and up, which would be difficult to implement with other types. The impedance transformation is achieved by parallel connection of one conductor of the lines and series connection of the other. In principle it resembles the multifilar type transformers described in references (3) and (4), and must be considered a conventional (nontransmission line) transformer, although the low impedance line provides most of the coupling between the primary and secondary at high frequencies. The line impedance is not defined in the same manner as in transmission line transformers, and is not as critical. For increased coupling and low IR losses it can be lowered to a point where the resonance of the line capacitance and the leakage inductance falls outside the highest frequency of operation.

As discussed earlier, the high frequency limit of an RF transformer is set by the physical length of the line or the winding on the high impedance side. Considering the $1 / \mathrm{s}$ wavelength rule, mentioned in several of the references, the maximum total line length at 90 MHz would be:

$$
\frac{\lambda}{8} \times V_{p}=\frac{333}{8} \times 0.63=26.2 \mathrm{~cm}
$$

Figure 3. Wideband RF transformer configurations for balanced to unbalanced impedance matching at high power levels. Coaxial transmission lines are most convenient for compact physical designs.

Figure 3E. Physical construction of RF transformers used in the amplifier. The electrical details are shown in Figure 3C.

Where: V_{p} a velocity factor (0.63 for low impedance TFE co-axial cable).
Figure 3E shows the amplifier frequency versus power gain characteristics, A with a 9:1 transmission line output transformer, and C with a transformer shown in Figure 3C. Both were designed to have equal line or winding lengths of 16 ohm TFE insulated coax cable (Type CXN 1848 W.L. Gore Co.), except for the added 50 ohm balun in A. The balun and the higher leakage inductance resulting from the interconnections and the blocking capacitors in A possibly cause the slight roll-off at the high end. The type C transformer was also tried with 50 ohm coax line, which resulted in a 0.8 dB gain reduction across the band, plus an additional 0.3 dB at the high end compared to the unit made with 16 ohm cable. This indicates that the IR losses in the cable with a smaller center conductor are dominant over the line impedance.

Both transformer types reached temperatures of $80^{\circ} \mathrm{C}$ in a five minute CW test at the full power output, although type A had twice the ferrite cross sectional area. This leads us to determine that the ferrite dielectric losses are a problem in high power and high frequency applications such as this. Lower permeability materia! could be a solution, but larger cross sectional area would be required, making it more difficult to meet the maximum line length criteria. This could be a major problem and limiting factor in designing wide band amplifiers of this type, unless ferrite materials with lower dielectric losses can be developed. It would also be worth investigating how powdered iron material would behave in broadband power transformers, although suitable core shapes have not been available thus far.
The input transformer used in this design is of similar type and design as the output unit, except having a smaller physical size. The primary winding is made of 25 ohm miniature coax cable (Microdot 260-4118). It must be able to handle less than 100 watts of power, and its losses only affect the power gain, whereas the quality of the output transformer determines the overall system efficiency as well.

The high values of the gate and drain capacitances of the FETs make both the input and output matching difficult for large bandwidths. The effect of the drain capacitance can especially be noticed at frequencies above 50 to 60 MHz in reduced efficiency. Part of this capacitance can be compensated for with small values of series inductance or stripline. The

Figure 4. Power gain versus frequency \mathbf{A} and \mathbf{C} without negative feedback. See text E with feedback, component values as shown in Figure 2.

Figure 5. $1 \mathrm{~kW}, 10-90 \mathrm{MHz}$ amplifier typical performance. The numbers may vary sllghtly depending on the exact device parameters within specified Itmits.
stripline would be of extremely low characteristic impedance, and probably practical only in the output where high RF currents are also involved. Using calculated and measured drain parameters to be matched into the 9:1 transformer and computer optimization, values as shown for X1 and X2 were obtained. As an etched line on a 62 mil G10 substrate, the line width is 0.7 inches. In practice the lines had to be folded into a form of U, but this allows part of the line to be conveniently shorted for adjustment purposes. The effect of the output lines can be no-
ticed in increased efficiency at 90 MHz (6% to 8%), but at a cost of reduced power gain by approximately 0.5 dB .

Similarly, using the data sheet numbers converted to parallel form, indicated values for input lines L1 and L2 were obtained. They are high impedance etched lines on similar G10 substrate. They act as inductors and their values are also adjustable by shorting part of the line or by moving the input transformer connection points. The values of L1 and L2 will finally depend on the amount of negative feedback necessary for the desired gain slope.

Although not adapted to this design, a dummy resistor (R16) can be used to make the input look more resistive and improve the input VSWR. A suitable amount of L in series with it, combined with negative feedback, is a common technique in applications requiring extremely large bandwidths.

Gain Leveling with Negative Feedback

The negative feedback term usually refers to a condition where part of the output power (voltage) is fed back to the input out of phase. Out of phase generally means 180° phase difference, although in practical systems the voltage fed back usually lags the input voltage due to delays in the circuitry. Any inductance in the feedback path causes a delay and a phase error, but seldom has effects large enough to cause instability. Sometimes an amount of inductance is intentionally included in the feedback circuit in order to prevent the feedback from affecting the high end. In most circult configurations the phase shift is close to 180° between the input and the output, in which case the feedback is easy to implement. Otherwise a phase reversing component, such as a transformer must be employed.
Here the series inductances L3 and L4 are limited to their minimum values of $20-25 \mathrm{nH}$ by the physical distance between the input and the output, although they can be controlled to a degree by varying the conductor diameter. Their reactances are about 8 ohms at the midband, where lower values would result in increased feedback and a flatter gain response than shown in Figure 5. It must be noted that the reactances at 10 MHz may be also significant, and should be deducted from the values of $R_{t b}$ to be calculated.
In addition to gain reduction, negative feedback lowers the effective input impedance. Ideally the amount of feedback voitage should be inversely proportional to the frequency in such amplitude that the gain would be reduced just the correct amount at all frequencies below the high end. This is not possible with simple feedback networks consisting only of L and R. Even with more sophisticated networks the feedback voltage source should be adjustable in some manner. Such a system is described in (6), but due to the high frequencies and higher power level involved it would be difficult to implement in this design. Here the feedback voltage is derived directly from the FET drains, which will limit the optimization of the system in this respect.
The MRF 154 data sheet shows a power gain of $\mathbf{2 2 ~ d B}$ for the device at 10 MHz , and a one to four difference in the gate input impedance from 10 to 90 MHz , or 12 ohms and 3 ohms composite parallel, respectively, from gate to gate. The 22 dB

Figure 6. A simplifled model of the negative feedback natwork can be used to figure the loop parameters with sufficient accuracy.
can be considered typical, and can vary as much as 3 dB at 30 MHz . However, the devices are supplied in matched pairs for operation in push-pull systems. The 22 dB translates to a power input of 6.5 watts for two devices at 1 kW output. Assuming a 10 dB gain reduction, the power input then would be 65 watts. Since the device power gain is not affected by the feedback and part of the input power is cancelled by the feedback voltage, the difference power must be dissipated somewhere. Most of this occurs in the feedback resistors, which also control the amount of feedback.
A $16: 1$ impedance ratio input transformer was selected with an idea in mind that the feedback would bring the low frequency gate to gate impedance down to the 90 MHz value (3 ohms). Because of the reasons discussed ahead, the gain slope cannot be controlled, and since no loss of gain in the high end can be afforded the feedback is limited to an amount that results in a low VSWR at to MHz . The computer analysis of the input matching mentioned earlier assumed a constant 3 ohm
impedance, but this will deviate considerably at the mid-band. A computer program with all these variables would be very complex, and since the system could not be totally optimized anyway it was decided to discard the effort at this point.

Since an FET is a voltage-controlled device, the feedback loop can be modeled at low frequencies or DC as shown in Figufe 6 , where:

$$
\begin{aligned}
& \text { R1 }= \text { Transiormer source impedance } \\
& \text { R2 }= \text { FET gate to gate impedance } \\
& \text { R3 }= \text { Feedback resistor (Divided into } \\
& \text { two equal values in the } \\
& \text { amplifier.) } \\
& \text { V1 }= \text { input voltage } \\
& \text { V2 }=\text { FET gate to gate voltage } \\
& \text { V3 }= \text { Drain to drain output voltage } \\
& \text { across R4 }
\end{aligned}
$$

For a given level of power output, the values of R1, V2 and V3 will remain virtually unchanged regardless of the amount of feedback.
It is assumed for simplification, that the value of R2 will be reduced by the feedback from 12 ohms to equal R1. Then:

$$
\text { R1, R2 = } 3.12 \text { ohms. }
$$

$$
\begin{aligned}
& V 1=14.23 \text { volts }(-10 \mathrm{~dB}) \\
& \mathrm{V} 2=4.5 \text { volts }(22 \mathrm{~dB}) \\
& \mathrm{V} 3=-74.2 \text { volts }(R 4=5.5 \mathrm{ohms}) \\
& R 3=\frac{(V 2+V 3)}{\left(\frac{V 1-V 2}{R 1}\right)-\left(\frac{V 2}{R 2}\right)}-\mathrm{R} 4= \\
& \frac{(4.5+74.2)}{\left(\frac{14.23-4.5}{3.12}\right)-\left(\frac{4.5}{3.12}\right)}-5.5=
\end{aligned}
$$

$$
\frac{78.7}{1.70}-5.5=40.8 \text { ohms }
$$

or 20.4 ohms each.

Figure 7. Intermodulation distortion versus power output of $1 \mathbf{k W}$ amplifier. Output impedance matching is optimum only at 800 watts with the transformer impedance ratio employed.

Figure 8a. Component layout.

The feedback resistors then must be able to dissipate $65-6.5$ watts plus any excess power resulting from the nonoptimum voltage source. In this case the dissipation is $78.7 \times 1.70=133.8$ watts, or 66.9 watts per resistor. It is obvious that they must be of a type with a provision for heat sinking, and with low parasitic inductance (8).

Design and Construction Summary

The amplifier performance, shown in Figures 5 and 7 can be affected by circuit parameters such as type of components, their values and exact locations. In this respect, it can be compared to a low power UHF design if the impedance levels are scaled down with frequency. Although the layout resembles that of a typical 2 to 30 MHz amplifier, considerable differences in the construction techniques are essential to ensure proper operation, especially at the high frequencies.

Figure 8(b). Underside of p.c. board.

Due to the high gate capacitance ($\mathrm{C}_{\text {iss }}$) of the devices, the input matching is critical for good broadband performance. The values of L1 and L2, as well as the physical locations of T1 and C13, have a dominant effect in the input VSWR. The above is also true concerning the output matching, where these variables affect the power gain, efficiency, saturated power, and the IM distortion. Special attention must be paid to the location and quality of C14, which is essential to the amplifier operation above 50 MHz . Once all these criteria have been established, duplication of the system should not be a problem, although it is not possible to give physical details with sufficient accuracy in an article of this proportion to guarantee the exact results without minor adjustments.
The RF currents associated with the high power level and low impedances also introduce new problems to the designer in the form of passive components. The weakest link probably is the capacitors, which in certain locations must be com-
posed of several paralleled smaller values in order to achieve the current carrying capability required and reduce the series inductance. Other limitations associated with the passive components have been discussed earlier. One of these is the circuit board itself, where the DC currents and the skin effect place a minimum limit to the foil thickness.

The low impedance levels are not new to a solid state power designer, but their association with a kW power level in a single amplifier is unique at these frequencies. This places new requirements on all passive components and presents challenges in thermal design.

Finally, it must be pointed out that the component values given or the mechanical design may not be exactly optimum for the specific goals described. The intent was to make the circuit board layout, including the output section, as universal as possible to allow its use for designs with other devices and frequency ranges.

References

1. Pitzalis-Couse, "Broadband Transformer Design for RF Transistor Amplifiers," ECOM-2989, U.S. Army Electronics Command, Fort Monmouth, NJ.., July 1968 2. Roderick K. Blocksome, "Practical Wideband RF Power Transformers, Combiners and Splitters," Proceedings of RF Expo, February 1986.
2. Krauss-Allen, "Designing Toroidal Transformers to Optimize Wideband Performance," Electronics, August 16, 1973.
3. T.A.O. Gross, "Broaden Transformer Frequency Response," Electronics, August 24, 1982.
4. A.H. Hilbers, "Design of HF Wideband Power Transformers," Amperex (Philips) Application Laboratory Report ECO6907 and ECO7213.
5. Mueller-Vatis-Edelstein-Bottomley, "RF Technology for NMR Imaging," Proceedings of RF Expo, February 1986.
6. H.O. Granberg, "A Two-Stage 1 kW Solid-State Linear Amplifier," Motorola Application Note AN-758.
7. KDI Electronics, "RF/Microwave Components \& Sub-Assemblies," Catalog 1985.

About the Author

Helge H. Granberg is a member of the technical staff at Motorola Semiconductor Products, Inc., Box 20912, Phoenix, AZ 85036. Mr. Granberg is a leading authority on HF and VHF solid state power amplifier design.

BUILDING PUSH-PULL, MULTIOCTAVE, VHF POWER AMPLIFIERS

By choosing the right feedback network and wideband transformers, users will have a powerful amp.

Reprinted with permission of Microwaves \& RF. November 1987 issue. © 1987 Hayden Publishing Co. Inc. All Rights Reserved.

the heart of a unique, push-pull 300 W power amplifier. With a 50 -V power supply, this broadband amplifier is easy to implement, and has excellent impedance-matching characteristics and low DC-current levels.

Applications include low-band and VHF communications base stations, FM broadcast, low-band TV, and certain medical uses. For these uses, a frequency coverage of at least 10 to 175 MHz is required. However, for a particular application, the required bandwidth can be narrowed for increased circuit efficiency.
The development of high-power VHF/UHF power FETs make the amplifier possible. These FETs have recently become available in a pushpull package configuration-commonly called the Gemini. A pushpull Gemini package is a flangemounted transistor header capable of accommodating two individual transistors-either FETs or bipo-
H.O. GRANBERG. Member of the Technical Staff, 5005 East McDowell Rd., Motorola Semiconductor Products Sector, Phoenix. AZ: (602) 2444373

Transformer characieristics		
Frequency (MHz)	$R_{p}(\Omega)$	$X_{p}(\Omega)$
10	12.85	$+J 30$
30	12.20	$+J 58$
50	11.90	$+J 95$
100	10.20	$+J 150$
175	8.70	$+J 9.60$

lars. One of the three transistor electrodes is connected to the normally grounded flange.
On first observation, it seems that a push-pull header would not be as advantageous as separate headers for each transistor. Separate headers provide better thermal distribution, improved circuit design and layout versatility, and higher production yields. The result is lower cost per watt of output power.

In addition, operating parameters
of the two transistors in a push-pull header must be.closely matched before assembly. If there is even the slightest mismatch in any of the several DC parameters, the device must be rejected. Another drawback of the push-pull header is that the adja-cent-transistor configuration results in reduced thermal ratings, leading to a decrease in electrical ruggedness.

But there are important advan-

1. For this high-power VHF amplifier, separate circuit boards are used for the input and output. The magnetic core has been removed from the output transformer for clarity. Note the thermisfor (upper middle) attached to one end of the transistor flange.

HIGH-POWER AMP

tages to the push-pull design. For example, the power gain performance of this design is difficult to duplicate in single-ended configurations because power gain is directly related to the emitter- or source-toground inductance. Also, in pushpull designs, the common-mode inductance is completely insignificant; mutual inductance between each emitter, or source, becomes the critical factor. This mutual inductance is much easier to control and minimize.
There are several different design approaches that can be used for sol-id-state power amplifiers. A trans-former-based push-pull design is the best approach for multioctave devices, but such circuits are not easily implemented for frequency ranges higher than 50 to 100 MHz . If transformers are used, their locations and connecting points, as well as the locations of any associated capacitances, are extremely critical. These parameters must be tightly controlled.
Control of input and output impedances to the matching networks is also required. These impedances must be kept constant over the entire operating range. Internal im-pedances-which are directly proportional to the frequency-cannot be easily adjusted. However, some designs mitigate the effect of this frequency-dependent internal impedance. These practices include inserting special correcting elements between the matching network and the device, designing the matching networks for the proper impedance-versus-frequency slope, and introducing negative-feedback series re-sistor-inductor-capacitor (RLC) net-

2. At the heat of the $\mathbf{3 0 0}-\mathrm{W}$ amplifiet is the Gemini push-pull transistor configuration. This broadband amplitier operotes in the 10 -to- 175 - MHz ronge.
works for controlling the feedback over the desired frequency band. Often, the negative-feedback technique is used with special, correct-ing-element techniques.
Negative feedback is the output voltage returned to the input at 180 deg. out of phase. In series RLC networks, the series resistor limits the overall amount of feedback voltage and also lowers the Q of the inductor. The capacitance is mostly used for DC blocking.

With these networks, the series inductive reactance results in phase lag. This phase lag is maximum at high frequencies, where the effect of the negative feedback is the least. As a result, the out-of-phase voltage must be obtained from either side of the push-pull circuit-or through a specially designed network-which allows the impedance of the voltage source to be optimized.

3. Building the amplifiet is easy using this compe nent loyoul.

A resistive network eliminates the reduced efficiency of the feedback power. This power is dissipated in the series resistor. Power loss can be considerable-up to 15 percent at the low end of the spectrum-where the feedback is highest.
Another factor in negative-feedback system design is that the out-of-phase feedback voltage must be injected after the input-matching network. This will not affect the device input impedance, but will lower the load impedance to the inputmatching network. Also, there will be an additional load to the device output at low frequencies, where the output impedance is higher and less reactive.
In addition to the correct use of negative feedback, the basis for good, multioctave, RF power-amplifier design is well-designed wideband transformers and correct matching elements. With proper design, this combination yields a lowinput circuit VSWR over many octaves and results in a system with level power output.
Proper push-pull design requires a noncritical, source-to-ground inductance that provides a DC current path. This allows the circuit board to be split into two sections: an input

4. Correct construction of the wideband transform. ers makes the amplifier work property.

HICH-POWER AMP

and an output board (Fig. 1). The input section carries the inputmatching network and part of the gate-bias circuit.
The first parts of the bias cir-cuit-the output matching network and the drain-source voltage (V_{DS}) filtering and bypassing compo-nents-are mounted on the output board. This configuration allows each board to be changed independently for matching-network modifications or for other purposes. Furthermore, the input matching is almost identical for a $28-\mathrm{V}$ powersupply counterpart, requiring the change of only one chip capacitor and the output board (Fig. 2).

Component locations can be seen in Fig. 3. The board material is G10, which is adequate for frequency ranges as high as 200 to 250 MHz , especially since no high-Q elements are incorporated. For a two-sided board, the lower side is a continuous ground plane, although not necessarily in all locations. This means that no through-holes are provided for components such as resistors, trimpots, and inductors. These com-ponents-as well as chip capacitors and wideband transformers-must be surface-mountable. The total number of feedthroughs to the bot-
tom ground plane is 16 .
Gate-bias voltage is obtained from the main DC supply voltage through two voltage dividers. The first divider includes a trimpot for the bias adjustment. The second divider accommodates a thermistorresistor combination ($\mathrm{R}_{5}, \mathrm{R}_{6}$) for temperature stabilization of FET biases. Without this stabilization, the drain idle current would have an approximate temperature coefficient of $+15 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. With this temperature coefficient, idle current would increase by a factor of three if the case temperature was doubled.

The FET and circuit boards are mounted on a milled copper plate, measuring $115 \times 75 \times 6 \mathrm{~mm}$. Input/ output SMA-type connectors are mounted at the end of this plate. The result is a self-contained, single structure that can be fastened to a properly cooled heatsink. In laboratory tests, the copper plate-called the heat spreader-was pressed against an air-cooled heatsink by its own weight with a thermal compound interface. The $V_{D S}$ feed circuitry consists of standard high- and low-frequency filtering and bypassing. In Fig. 2, it is clear that components L_{1} and C_{7} handle the high-frequency end; the low-frequency end is handled by the $\mathrm{L}_{2}, \mathrm{C}_{8}$ components.
Normally it is desirable to filter down to very low frequencies to pre-

vent any RF energy from feeding back to the power supply, in case of load mismatches and instabilities. But this type of filtering applies primarily to single-ended circuits. In push-pull circuits, the DC feed is usually at a balanced point, with no RF potential. In this push-pull circuit, such an elaborate filtering network is not necessary, except when partially damaged devices cause excessive unbalances between the two sides.

IMPEDANCE MATCHING

Input- and output-impedance matching is done with unique wideband transformers (Figs. 4 and 5). ${ }^{1}$ Advantages of using these transformers include DC isolation between the primary and secondary turns, automatic balanced-to-unbalanced functions, and compact size vis-a-vis the power-handling capability. The principle is the same as in ordinary low-frequency transformers. However, the tight coupling coefficient is achieved between the transformers' windings by the use of a low-impedance transmission line, in this case, semirigid coaxial cable.

The low-impedance side always has one turn, and consists of parallel, connected segments of the coax outer conductor. The high-impedance side has inner conductor segments that are connected in series. This arrangement permits only integer impedance ratios that are perfect squares, such as $1,4,9$, and 16 . The coupling coefficient between the primary and secondary turns can be controlled by varying the coax impedance. The optimum line impedance formula, Eq. 1, also applies to the transmission-line transformers:

$$
\begin{equation*}
\mathrm{Z}_{0}=\sqrt{\mathrm{R}_{\mathrm{L}}(\mathrm{R})^{1 / 2}} \tag{1}
\end{equation*}
$$

High line impedance results in loss of high frequency response, whereas a very low impedance would further lower the R_{P} at the middle frequencies (see table).

There is a trade-off between the cable diameter and the length of the board. Depending on where the lines

HIGH-POWER AMP

are stacked, using large-diameter cable results in lessdefinable connection points to the low-impedance winding. This results in an increased leakage inductance. The areas of the coax inner conductor-where the winding series connections are made-are uncontrollable and contribute to the leakage inductance.

In an optimum configuration, the low-impedance winding connection points should be brought together as close as possible. This minimizes the lengths of the uncovered inner-conductor segments, but the physical format would be difficult to accomplish.
The optimum value for the R_{p} would be exactly 12.5 Ω, with a high value for the X_{p}. In fact, if X_{p} is equal to, or greater than, the high-impedance termination, it can be omitted. Then, only the R_{p} becomes the determining factor. The worst case is at 100 MHz , at which the R_{p} is low and the X_{P} is high (see table).
This means the transformer ratio is greater than 1:4 at that frequency, resulting in a dip in the drain efficiency . It is the result of the leakage inductance and can be observed at frequencies as low as 50 MHz . The compensation capacitor, C_{9}, is optimized at 175 MHz , but its influence diminishes at 130 to 150 MHz . Despite all of this, the overall performance of the transformer was considered satisfactory.

Variations of the output impedance with frequency, compared to those of the input, are usually several times smaller. Therefore, impedance-sloping networks are rarely seen. Such networks should be able to handle high RF currents and voltages and would be difficult to design with low losses. Negative feedback, however, tends to present an artificial load to the device output and it can be designed to decrease with frequency.

The parallel, equivalent gate-to-gate input impedance of the push-pull network is $1.28-\mathrm{J} 3.12 \Omega$ at 175 MHz , making the normalized impedance value equal to 3.37Ω. At 10 MHz , the normalized impedance would be 15.7Ω. At 175 MHz , a $16: 1$ impedance ratio would result in a closer input-impedance match, but it was decided that a 9:1 ratio would provide a closer match at lower frequencies. The high end can be corrected with an adjustment of C_{1} and C_{2}. At 10 MHz , the input transformer would see a 15.7Ω load, which represents a VSWR of almost 5:1.

Therefore, if no correction network or feedback is employed, negative feedback will level the power gain as well. But, with simple RLC networks, only the highand low-frequency ends can be equalized, leaving a "hump" at the middle frequencies. In most cases, this hump is only 2 to 3 dB -tolerable for most applications. The series resistor should lower the Q of the inductor. But real optimization requires a variable source for the feedback voltage. ${ }^{1}$ The feedback resistor values can also be calculated. ${ }^{2}$

A simplified model of the feedback network can be seen in Fig. 6. Only the series inductor, which is used to
shape the gain slope, is omitted. This inductor can be treated as an additional variable. Its value for the spectrum in question would be lower than the minimum limit achievable with the physical layout, regarding the minimum lead lengths. In other words, the model only allows the calculation of the feedback resistor values at a single frequency. In most instances, the minimum series inductor is limited by the physical size of the circuitry. Ideally, its reactance should be infinite at the high end of the band and should be zero at 10 MHz . From the data sheet and by simple calculations, it is possible to obtain the following values:

- G_{PS} at $10 \mathrm{MHz}=26 \mathrm{~dB}$.
- G G ${ }_{\text {PS }}$ at $175 \mathrm{MHz}=16 \mathrm{~dB}$ (lowered to 15 dB with feedback).
- $\mathrm{P}_{\text {in }} 1\left(\mathrm{f}=10 \mathrm{MHz}, \mathrm{P}_{\text {out }}=300 \mathrm{~W}\right)=0.75 \mathrm{~W}, \mathrm{~V}_{\text {in }}(\mathrm{RMS})=$ $2.03 \mathrm{~V}\left(\mathrm{~V}_{2}\right)$.
$\bullet \mathrm{P}_{\text {in }} 2\left(\mathrm{f}=175 \mathrm{MHz}, \mathrm{P}_{\text {out }}=300 \mathrm{~W}\right)=9.50 \mathrm{~W}, \mathrm{~V}_{\text {in }}(\mathrm{RMS})$ $=7.23 \mathrm{~V}\left(\mathrm{~V}_{1}\right)$.
- $\mathrm{V}_{3}=$ RMS output voltage (drain to drain) $=-61.25 \mathrm{~V}$.
- R_{1}, R_{2} (transformer source and gate-to-gate impedances) $=5.5 \Omega$.
- $\mathrm{R}_{3}=$ feedback resistor.
- R_{4} (output load) $=12.5 \Omega$.

The value of the feedback resistor is given by:

$$
\begin{align*}
& R_{3}=\frac{V_{2}+V_{3}}{\left[\left(\frac{V_{1}-V_{2}}{R_{1}}\right)-\left(\frac{V_{2}}{R_{2}}\right)\right]}-R_{4} \\
& =48.3 \Omega \text { (each resistor) } \tag{2}
\end{align*}
$$

Total power dissipated (R_{8} and R_{9}) $=63.28 \times 0.58=$ 36.70 W , or 18.35 W per resistor. The values can be rounded to 50Ω, allowing the use of stock resistors. The resistors used here are rated for 25 W . They have a onesided flange for heatsinking purposes, which is mounted on $6.35-\times 6.35 \times-4-\mathrm{mm}$-high copper blocks in each end of the FET. Holes are provided through the blocks, and common screws are used to mount the resistors and the FET.
The purpose of the copper blocks is to conduct the heat away from the resistors to the heatsink through the ends of the FET flange and to raise their height to more than the top surface of the ceramic lids of the FET, allowing the resistors to be mounted directly on top of each lid. This design provides the shortest path between the drain and the gate, still leaving about 20 mm of lead length, which is the practical minimum for the series inductance.
On the top of one of the resistor flanges, fastened with the common resistor-FET mounting screw, is a solder lug into which one end of a thermistor ($\mathrm{R}_{\boldsymbol{\beta}}$) has been attached. Together with R_{3}, it tracks the FET gatethreshold voltage variations with the FET flange and heatsink temperature. Similar thermistors come in pill or cylinder forms, and are 3 to 4 mm in diameter and 4 to

5 mm long. Normally they have wires soldered to each end, of which one was removed and replaced with the solder lug. The lug is the electrical contact to the ground and the thermal contact to the heatsink. Thermistors with similar mounting may be commercially available.

Since the output-load impedance is fixed and set for a nominal 12.5Ω, the optimum supply voltage would be approximately 45 V for the best combination of drain efficiency and saturated power. If good linearity is required, higher voltage will give better results. In most applications, such as single sideband (where the duty cycle is low), the efficiency is less important. Other factors that affect efficiency are the amount and type of magnetic material in the output transformer, the amount of negative feedback introduced, and the magnitude of drain idle current.
It would be difficult to design an amplifier covering the $1-$ to $-175-\mathrm{MHz}$ range in one segment, since highly permeable magnetic material is excessively lossy at VHF. Transmis-sion-line transformers would allow multiturn windings and the use of material with lower permeability, but could easily lead to excessive physical line length. For extremely broadband designs, a low overall efficiency must be accepted, as well as reduced power output from the specified device values. In such cases, efficiencies of 40 to 45 percent are typical.

However, if the band is split into segments such as 1 to 75 MHz and 75 to 175 MHz , magnetic material in the output transformer is not required for the high segment, resulting in 10 -to- 15 -percent higher efficiency. Amplifiers, for even narrower bandwidths such as the 88-to-108MHz FM broadcast band, have been designed with efficiencies up to 70 percent using the same devices and design technique.

Some power is absorbed by the feedback networks at the high end of the band as a result of the finite reactance of the series inductances.

6. A negativoloedbock network plays an Impor tant rofe in the umplifier's operation. Design of this DC model is based on a series RLC crruli.

The reactance decreases in proportion with the frequency and reaches its minimum value at the lowest frequency of operation, which is where maximum power loss due to feedback occurs. The numbers previously determined from the feedback resistor calculations permits a determination: The power loss is $P_{\text {in }} 2$ $\mathrm{P}_{\mathrm{in}} 1+36.7 \mathrm{~W}=45.45 \mathrm{~W}$, which converts to 7.5 percent, assuming 50-percent initial efficiency.

Linear amplifiers usually operate at a lower efficiency than amplifiers designed for CW or FM service. For good linearity, the output-matching network is designed for a higher transform ratio than that which is optimum for efficiency, which also results in higher saturated power output. Linearity is affected by the amount of quiescent idle current as well, of which a certain amount is always required. In a FET amplifier, going from class B to class C has a larger effect on efficiency than in a bipolar design, since the gatethreshold voltage is usually higher than the base-emitter forward voltage. Zero gate voltage would lower the amplifier's power gain, but would also increase its efficiency by more than that accounted for by the idle current, and could actually be thought of as setting the operating point closer to class D.
Stability is a concern with all sol-id-state amplifiers. It is easier to achieve with FETs than bipolar
transistors, mainly due to a higher ratio of feedback capacitance to input impedance. The "half f_{0} oscillation" phenomenon is unknown with FETs, since the nonlinear diode junctions are not present. However, at low frequencies the FET inputimpedance is almost a pure capacitance with high reactance, resulting in extremely high power gain. If the FET gate is not properly terminated due to input mismatches, low-frequency instabilities may take place-especially if the frequency response of the input circuit is low enough to sustain the activity:
For push-pull RF FET amplifiers, the two gates must have sufficient isolation between each other at the frequency at which the device internal capacitances, wirebond inductances, and external inductances resonate. If the gate inductance is low compared to the device's internal inductances, oscillations at the resonant frequency will occur. ${ }^{35}$
Depending on the exact conditions and device type, relatively lowlevel parasitic oscillations can occur; in worst-case scenarios, a latching. type condition will destroy the FET instantly. This can be prevented by lowering the Q of the resonant circuit with series resistance or inductance at the gates. Unfortunately, this seriously affects the high frequency performance of the amplifier. A more practical solution is simply to load the input transformer itself with magnetic material, which in this design is required to extend the frequency response down to 10 MHz in any case, and would be required for any amplifier of this type regardless of the frequency range.

The input VSWR can be optimized for lower frequencies by increasing the value of C_{2} and adjusting C_{1} (Fig. 2). The optimum value for C_{2} at 150 MHz is approximately 180 pF .

HIGH-POWER AMP

Its location, which is critical, should be inside T_{1} (Fig. 3). The C_{2} capacitor should be soldered in place before the mounting of T_{1}. Some designers allow a fair amount of input reflected power at low frequencies to compensate for excessive power gain. However, this may result in instabilities with the driver, unless biased into class A.
In this design, the input and output magnetic cores are heatsunk to the copper heat spreader. In the case of E- and I-type cores, the I section is pressed flat against the heat spreader, and the E section is cemented to it through a rectangular opening in the circuit board. Since the cemented joints have high thermal resistance, this is not a perfect way to remove the heat from the core, but it lowers the temperature
by 20 to $30^{\circ} \mathrm{C}$ from no cooling at all. Cooling is only necessary for certain types of ferrites with low Curie points. The powdered iron transformer core does not have a Curie point in that sense and can be operated at high temperatures without changes in its magnetic properties.
The efficiency is lowest with full bandwidth and high supply voltage. Although the data was taken under CW conditions, continuous operation of the unit is not recommended, except with reduced duty cycle such as SSB or linear pulse. For applications above 50 to 70 MHz , it is recommended that no magnetic material is inserted in T_{2} (Fig. 6). This applies especially to FM and other CW modes, at which the unit should be run at reduced power levels and voltages. At full power output (Fig.
7) and worst-case efficiency, power dissipation gets dangerously close to the derated limit, assuming a 60 to $-70^{\circ} \mathrm{C}$ flange temperature.
Overtightening the device mounting screws will bow the relatively thin and long flange. Split lockwashers should be used, with enough mounting torque to fully compress the washer. Silicone thermal compound must be applied to the flange/heat-spreader interface. A thin layer wiped only to the flange bottom is sufficient and will spread evenly under the pressure. This interface, the mounting torque, and the flatness and type of mounting surface are some of the most important aspects in high-power transistor amplifier design because heat is the number one enemy of any solidstate device. ••

References

1. H. O. Granberg. "New NOSFETs Simplify High Power RF Amplifier Design, RF Detign, October 1936 Tronsformers, Combiners and Splitters," Proceedings of RF Expo. February 1986.
2. Edwin 5 . Oxner. - Controlling Oscillation in Parellel Power MOSFETs,- Silicinix frehnical Article TAB3-2. Soptember 1983
3. Semiconductors David Giendorn, June 3. 1985.
of Power MOSFET Anco, el. al. "Analysis and Prevention of Power MOSFET Anomalous Ozeillation. ${ }^{-}$Procerding: of Powercon II. Power Concepts, Inc. 1984
Bill Olson' 'Solid State Construction Practices, Parts 1-3. ${ }^{-1}$ QEX, A.R.R.L. Janizary-March, 1987. H. O. Granbers Good RF Conatruction Practices and Tochnigues," RF Design, September-October, 1980 and Motarola Inc. Reprint AR16t.
H. O. Granberg A Two Stage 1 kW Solid State Linear Amplifier" Motorola Inc. Application Nole AN. 758. cation 366.15 , 1586 . Mc. Microwave Composents," Pub
4. KDI Electronics, "RF/Mierow.

Ffeature technology

Wideband RF Power Amplifier

This Amplifier Operates Over A Wide Range Of Supply Voltages.

Reprinted with permission of R.F. Design Feb. 1988 issue. © 1988 Cardiff Publishing Co. All Rights Reserved.

By H.O. Granberg
 Motorola Semiconductor Products

A single amplifier covering frequencies from HF to VHF at a power output level of 300 watts would have been considered impossible or impractical a few years ago. This would still be true if not for the advances in power FET technology.
This article covers the design aspects of a 300 watt unit with a frequency range of 10 to 150 MHz .

The MRF141G, used in this design, is housed in a special push-pull header commonly known as "Gemini" (twins), meaning that there are two identical transistors mounted next to each other on a common carrier or a flange. There are transistors (mainly FETs) available in the Gemini type packages rated from 20 watts to 300 watts. The lower power units can be used to frequencies of 1 GHz and higher, while the 100-150 watt units are designed to operate up to $500-600 \mathrm{MHz}$.
The advantages of a push-pull package such as the Gemini become apparent at higher frequencies, where the normal push-pull configuration with discrete devices would be impractical. In the pushpull circuit configuration the critical factor is the mutual inductance between the two push-pull halves, and not the device to ground inductance, as is the case in single ended designs. The Gemini or any other push-pull transistor housing permits the minimization of the mutual inductance to a level that approaches the ultimate in physical terms.

There are a couple of penalties we must pay for all this. One is a slightly higher cost when compared to two discrete units due to matching procedures involved and lower production yields resulting from double the possible reject rate. Another one is the reduced thermal characteristics. Twice as much dissipated power is concentrated virtually in the same area as in the case of a discrete design, leading to special cooling requirements.

About Power FETs

There have been designs of high power HF amplifiers using the TO-3 packages,

Figure 1. Overall view of the 300 watt, $10-150 \mathrm{MHz}$ amplifier. Separate circuit boards are used for the input (left) and the output.
and lower power versions with the T0-220 plastic units. With a given die geometry, a FET has approximately four times higher unity gain frequency than a bipolar transistor. This explains the fact that even the larger low frequency power FETs may have 10 dB or more power gain at 30 MHz , where a similar bipolar counterpart would be totally unusable. The difference is mostly in the figure of merit of the die itself, which is the ratio of feedback capacitance to the input capacitance or impedance. (This should not be confused with the more common base area/emitter periphery figure of merit die design formula.) With bipolar transistors the feedback capacitance (collector to base) is not usually specified, but it is $15-20$ times higher than the drain to gate capacitance of a comparable FET, while the base/gate input impedances become about equal at increased frequencies. This feedback capacitance normally produces feedback within the device itself, whose exact phase angle depends on the capacitance values and other parameters.
In FETs designed specifically for RF, the die geometry is usually finer (larger ratio
of the gate periphery to the channel area) than in the switching power FETs. This reduces the device capacitances automatically. Further reduction is achieved by splitting the die into a multiple of cells (groups of source sites and gate fingers) where the gates and sources are connected in groups of two or four by individual bonding wires to the common package terminals. For example, in the MRF141G one of the two die consists of 36 cells each having around 70 individual small FETs, making the total about 2,500 .

In switching power FETs, the connections to the numerous source sites and gates are made with metal pattern on the die surface which allows the use of single large diameter bonding wires for the source and gate contacts. The increased metal area results in increased MOS capacitance and reflects to the device input ($\mathrm{C}_{\text {ISS }}$), feedback ($\mathrm{C}_{\text {RSS }}$) and output ($\mathrm{C}_{\text {oss }}$) capacitances. The transconductance of a MOSFET $g_{\text {ts }}$ is a measure of its electrical size. Thus, a good indication of the high frequency performance can be obtained by comparing the capacitance values (especially $\mathrm{C}_{\text {RSS }}$) of devices with

Figure 2. Schematic of the amplifier.
similar transconductances.
Another fact to mention is the gate resistance. Most modern power FETs use a gate structure of polycrystal silicon. which can have a bulk resistance comparable to carbon. It is also used as a conductor between the metal pattern and each individual gate. In the RF power FETs, each gate is fed through a separate contact having a resistance of approx-
imately 0.1 ohms. In the switching power FETs, the polycrystal silicon is applied in a sheet form in a separate layer, but the distance between the metallization and the farthest gate still results in at least $30-40$ times higher gate resistance with a die of comparable size.
In high frequency applications the high gate resistance permits a part of the drainsource RF voltage or transients to be fed

Figure 3. The component layout diagram. The only critical component locations are those of C2 and C13. They must be soldered in place ($1 / 2$ of C 13) before the mounting of the input-output transformers.
back to the gate through $C_{\text {RSs }}$ in amplitudes that can rupture the gatesource oxide layer. The rupture will first occur in the far end of the die, away from the gate terminal. Since the gate resistance is internal to the FET die, external limiting or clamping circuits at the gate are of no help. The gate of a MOSFET is the most sensitive part of the device, which can be permanently damaged even by static charges during the handling. Although the larger FETs (100-150 W), due to their higher gate capacitance, are no: as vulnerable as the smaller ones, proper precautions should be exercised.

Design and Construction

As discussed earlier, the common mode inductance in a push-pull circuit is not critical, and the ground path is only used for DC feed to the amplifier. The input and output impedance levels are established from gate to gate and drain to drain respectively. This allows the circuit board, which is made of the standard 1.6 mm G10 material, to be split into two sections. One carries the input matching network and part of the bias circuit, while the second section holds the output matching network, the bias set and the drain voltage feed and filtering circuitry. (See Figures 1 and 2). In addition to allowing wider design flexibility, this arrangement also simplifies the repair and maintenance of the unit, if required.
The two circuit boards including the space between them for the FET measures $115 \times 75 \mathrm{~mm}$. They are mounted on a copper plate with the same dimensions having a thickness of 6 mm . The input and output connectors (SMA) are mounted to the edges of the copper plate. They can also be placed at a remote location with coax connections to the amplifier utilizing any connectors that have good RF characteristics such as BNC.

Due to the large amount of heat concentrated in a small area in the form of dissipated power, it is important that the copper plate be employed as a heat spreader unless the heat sink itself is made of copper. The heat spreader can then be bolted to a piece of aluminum extrusion with thermal resistance of $1^{\circ} \mathrm{C} / \mathrm{W}$ or less for normal intermittent operation without forced air cooling. The heat spreader and the extrusion surfaces should be flat without any burrs, and silicone thermal compound must be applied to the interface. The same practices should be followed in mounting the FET into the heat spreader. If the FET gate and drain leads are bent sharply up along the package sides, they will be aligned along
the edges of the circuit boards. This makes the board spacing from the heat spreader less critical, which then can be anywhere from 1 to 3 mm . The FET lead lengths to the board connection points are variable by the same amount, but they have a minimal effect on the impedance matching and performance at these frequencies.

Details of the electrical design concepts of a similar amplifier are given in reference 1. The input-output transformers require a special low impedance semi-rigid coax cable making construction difficult in single quantities. The output transformer only requires a magnetic core if operation below 75 MHz is desired. In contrast, the input transformer always requires one regardless of the frequency of operation. In a push-pull FET amplifier design the gates of the two halves must be isolated by sufficient inductance or resistance $(7,8)$. In order to prevent instabilities which will occur at the resonant frequency of the device capacitances, the internal wire bond inductances and the external inductances, sufficient isolation is required between the two gates which the magnetic core will provide. Without this, the two FETs of the push-pull circuit would see a parallel connection at some resonant frequency, which would result in serious instability problems.

The importance of the negative feedback (L3, L4-R8, R9-C10, C11) must be emphasized. Without it the power gain would exceed 30 dB at low frequencies, resulting in increased conditions for instabilities. The feedback is designed to lower the low frequency power gain close to the 150 MHz level it is at. L3 and L4, which consist of the lead lengths of R8 and R9 represent a reactance of 20 ohms each at 150 MHz . It also controls the frequency-amplitude slope. This in series with the 25 ohm resistor values lowers the power gain by one dB at 150 MHz but increases to as much as 15 dB at 10 MHz . C10 and C11 are only used for DC blocking and their values are not critical as long as their reactances are less than 10-15 percent of $\mathrm{R} 8+\mathrm{R9}$. C 10 and C 11 are ceramic chip capacitor that are mounted vertically on the circuit board (Figure 1). Although unusual, it allows the feedback resistor leads to be soldered directly to the capacitor top terminals. This provides a much lower inductance path than the conventional mounting technique and saves board space. Since R8 and R9 must be able to dissipate up to 15 Watts each depending on the frequency of operation, they must be of a type that can be easily heat sunk. The type resistors designated

Fgure 4. Amplifier power output versus the supply voltage at various input levels. Solid lines represent 150 MHz and dashed lines 10 MHz .
have mounting lugs which are terminally connected to the copper heat spreader through 5 mm high spacers.

These are mounted on top of the ends of the FET flange, allowing the use of common screws for fastening the resistors and the FET. The spacers must be of material with low terminal resistance like aluminum, brass or copper, and must have a larger surface area than thin wall tubing. A couple of stacked brass nuts, one size larger than the mounting screws is a good solution. Although not very pro-
fessional it works rather well. If the unit is used for other than intermittent modes of operation such as voice communication, a thermistor (R6) can be used for bias stabilization. Without it the drain idle current will approximately triple if the FET case temperature is doubled, and would result in decreased efficiency. The thermistor can be attached to a solder lug, which is fastened with one of the resistorFET mounting screws.
The input and output impedance matching is achieved with unique wide-

Figure 5. Output harmonic contents versus frequency. $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=\right.$ 300W.) The benefit of the push-pull configuration can be seen in the suppressed even order products. The data does not change considerably with varying the supply voltage or power output.

Low Frequency end MHz	μ_{1}	Manufacturer and type \#	Drain Eff. at 300 W, $75-100 \mathrm{MHz}$
75	1	No magnetic core	$62-66 \%$
25	20	Micrometals 101-2	$59-63 \%$
15	35	Micrometals 101-8	
7.5	125	Fair-Rite Prod. Corp. $9461014002 / 9361020002$	$54-59 \%$
2	850	Fair-Rite Prod. Corp. $9443014002 / 9343020002$	$36-52 \%$

Table 1. Effect of the output transformer magnetic core material on amplifier bandwidth and efficiency.
band transformers described in References 1 and 2. Some of their advantages are: DC isolation between the primary and the secondary, automatic balanced to unbalanced function and compact size in comparison to the power handling capability. Their principle is the same as in ordinary low frequency transformers, except that tight coupling between the windings is achieved through the use of low impedance transmission line, in this case semi-rigid coax cable. The low impedance side always has one turn and consists of parallel connected segments of the coax outer conductor. The inner conductor forms the high impedance winding, where the segments are connected in series.
This arrangement only permits impedance ratios with integers such as 1:4, 9,16 . The magnetic cores employed are the old E and I types. They can be inserted around the transformer after the windings are made up and mounted to the board. Rectangular openings in the boards are required to allow the I section to be laid against the heat spreader with thermal compound interface. The E and I cores are then cemented together and to the edges of the board openings. Special heat conductive epoxy would be preferable, but not mandatory. If there is no air flow on top of the amplifier, the output transformer can reach temperatures in excess of $100^{\circ} \mathrm{C}$ in continuous operation.
As a rule, the high frequency losses in magnetic material such as ferrite or powdered iron, are more or less directly related to its permeability, and appear as heat generated within the core. Since this part of the RF energy is not delivered to
the output terminal, and the drain current is equal in each case, the result is lowered overall efficiency.
From the above we can conclude that the magnetic core material should be selected according to the lowest desired frequency of operation. For example, from 2 to 150 MHz , initial permeability (u_{i}) of over 600 and cross sectional area of about $1 \mathrm{~cm}^{2}$ would be required. Ferrites in this category have Curie temperatures of $130-140^{\circ} \mathrm{C}$, above which temperature they become paramagnetic and causes serious malfunctions in the operation of at lower frequencies. In such case special cooling structures would be required (See Table 1).
The amplifier described was originally designed for operation from a constant 28 volt power supply, for which reason regulation of the gate bias voltage was omitted. If the supply voltage is varied by more than 2 volts, the bias will have to be reset by R4 for a nominal $400-500 \mathrm{~mA}$ drain idle current. This can be avoided by connecting a 6.8-8.2 V zener diode (1N5921A-1N5923A) from the junction of R3 and R4 to ground. The idle current can then be set once, and would not change considerably from a supply of 12 to 28 V . The $\mathrm{V}_{D S}$ feed circuitry consists of the standard high and low frequency filtering to prevent any RF from feeding back to the power supply. C5, C6, L1 and C7 handle the high frequency end, while the low frequencies are taken care of by the L2-C8 combination.

Performance

With the 1:9 impedance ratio output transformer employed, the optimum
power output at 12 and 28 V supplies would be only 50 and 265 watts respectively.

$$
P_{0}=\frac{2 V^{2} D S-V_{D S_{0 N}}}{50 / 9}
$$

At these power levels the IM distortion is better than -30 dB at all frequencies, the worst case being at $50-100 \mathrm{MHz}$. From Figure 4 it can be seen that higher output levels are possible with increased drive power, but the amplifier will be close to saturation and can be only used for nonlinear applications such as FM or CW. For the best IMD, the idle current should be $500-800 \mathrm{~mA}$ total, but disregarding the linearity, it can be as low as 100-200 mA. Lower idle current will result in loss of power gain by $0.5-1.0 \mathrm{~dB}$, while increasing the efficiency.

The stability of any RF power amplifier (especially solid state) under mismatched load conditions is always a concern. The power MOSFETs have been proven superior in this respect to the BJTs, although the stability is also circuit dependent to a great extent. The stability of the amplifier described here has been tested against load mismatches using a simulator of 30:1 at all phase angles and a 3 dB power attenuator to the amplifier output, which results in approximately $3: 1$ VSWR. Unconditional stability was shown at a combination of any power output level and supply voltage at 10,50 and 150 MHz . Stability into a $3: 1$ mismatched load is almost considered a standard specification in the industry, meaning that the harmonic filter-antenna combination (if applicable) should have its input VSWR equal or lower. Normally $2: 1$ is easy to achieve over a fraction of an octave bandwidth, unless the filters are improperly designed. Figure 5 shows that at 150 MHz and beyond the output harmonics are well suppressed to start with, but a filter is still required to meet the FCC regulations. More elaborate filtering is necessary at lower frequencies, where the 3rd harmonic is only $12-13 \mathrm{~dB}$ below the fundamental. For most industrial applications, however, harmonic filtering may not be necessary. Although data is not shown, the amplifier can be used up to 175 MHz with a power gain of $10-11 \mathrm{~dB}$. C1 should be adjusted for lowest input VSWR and C9 for the peak power output at the highest desired frequency of operation.

As the MRF 141G basically operates from a 28 V supply, lowering the voltage down to 20 or below would make the unit almost indestructible against load mismatches in case of an open coax or broken antenna. Figure 4 shows that the power output is still almost 200 watts at

20 V and 150 watts at 16 V . The ruggedness criterion does not apply against possible transients to the input from the signal source and assumes that the FET is properly mounted to the heat sink. A normal guideline is that a transistor should have its break down voltage $\left(\mathrm{BV}_{\mathrm{dss}}\right) 2-25$ times the operating voltage. The break down voltage is set by choosing the starting material (silicon) with proper resistivity or doping. If the break down voltage is too low, the output voltage swing may exceed it and cause an avalanche. If it is too high, the transistor will saturate at a low power level, but it will be harder to blow up since the device is less likely to exceed its dissipation limits. For the same reason, devices made for 50 V operation are often used at $30-40 \mathrm{~V}$ and at reduced power levels in applications like laser drivers and magnetic resonance imaging, where they must momentarily withstand a large output load mismatch. The circuit boards and other components for this design are available from Communication Concepts, Inc., 121 Brown Street, Dayton, OH 45402.

References

1. H.O. Granberg, "Building Push-Pull, Multioctave, VHF Power Amplifiers," Microwaves \& RF, November 1987.
2. H.O. Granberg, "New MOSFETs Simplify High Power RF Amplifier Design," RF Design, October 1986.
3. Bill Olson, "Solid State Construction Practices, Parts 1-3," QEX, A.R.R.L. January-March, 1987.
4. H.O. Granberg, "Good RF Construction Practices and Techniques," RF Design, September-October, 1980 and Motorola, Inc. Reprint AR164.
5. Motorola Semiconductor Products, Inc., "RF Power MOSFETs," Publication AR165S
6. Edwin S. Oxner, "Controlling Oscillation in Parallel Power MOSFETs," Siliconix Technical Article TA83-2, September 1983.
7. David Giandomenico, et. al., "Analysis and Prevention of Power MOSFET Anomalous Oscillation," Proceedings of Powercon II, Power Concepts, Inc. 1984.
8. Motorola Semiconductor Products, Inc. "RF Device Data," Publication DL110, Rev. 2.
9. EMC Technology, Inc. "Microwave Components," Publication 386-15, 1986.

About the Author

Helge Granberg is a member of the technical staff at Motorola Semiconductor Products, Inc., P.O. Box 20912, M/S B320, Phoenix, AZ 85036. He can be reached at (602) 244-4373.

FIGURE 1 - UHF POWER MODULE TEST INFORMATION (MHW709 AND MHW710)

TEST CIRCUIT

Motorola's UHF Power Modules use thin film construction to minimize parasitics, and for manufacturing consistency. They're flange mount for easy, one-sided assembly. They reduce your system inventory, eliminate the need for special production equipment. But even though the MHW709/MHW710 are "complete" UHF power drivers and reduce RF design and production to a new level of ease, there are a few operation and testing considerations to follow for best results.

The modules are conservatively rated. Actual output power capability is 50 to 70% above rated power. However, the equipment designer should not design a product using the module above the rated output power. In some cases, if smaller margins are acceptable and certain other conditions are met, some of the reserve power output can be used. In this case, please contact your Motorola representative for specific recommendations.

When operated within published specifications, the maximum device current density seen in a limit module will be $1.5 \times 10^{5} \mathrm{~A} / \mathrm{cm}^{2}$. Maximum die temperature with a $100^{\circ} \mathrm{C}$ base plate temperature will be $165^{\circ} \mathrm{C}$:
Nominal ratings are for a 12.5 Vdc supply (V_{S} at pin 5) and control $\left(\mathrm{V}_{\mathrm{sc}}\right.$ at pin 3) voltage. Specifications such as power gain, efficiency, and input VSWR are measured with the nominal 12.5 Vdc supply and an output power of 13 W (MHW710) and 7.5 W (MHW709).

Gain Control

The preferred method of operation is to apply 12.5 Vdc to both pin 3 and pin 5 through the recommended decoupling network. (In general, the module output power should be limited to 14 W, MHW710; 8.5 W , MHW709.) The output of the module is then set by adjusting the input drive level. Operation in this manner will result in the best performance with temperature variation.

Pin 5 supplies collector voltage to the input stage in the module. This pin is internally bypassed by a $.018 \mu \mathrm{~F}$ chip capacitor effective for frequencies from 5 MHz through the operating frequency. Due to size limitations in the module, additional external low frequency decoupling effective below 5 MHz is required (as is required with discrete UHF transistors). If pin 5 is used to reduce the module output, two characteristics may cause an application problem.

One is that with the drive power appreciably above that required (+2 dB or so) for 13 watts output, the voltage on the first stage may be as low as four or five volts. This low voltage tends to increase the slump in output power with increasing temperature as opposed to the condition of pin $5=\operatorname{pin} 3=12.5 \mathrm{~V}$ and drive adjusted for desired power output. Second, if voltage to pin 5 is derived from a series dropping resistor and the value of the resistor is
above 10 to 20 ohms, the output power will tend to rise with decreasing drive which could cause problems in an application using an automatic gain or output leveling circuit. If pin 5 is fed from a regulated voltage source, as opposed to a series dropping resistor, this problem does not arise, however, the temperature slump characteristic is still present.

Typically, the MHW7 10 slump at $80^{\circ} \mathrm{C}$ from rated output at $25^{\circ} \mathrm{C}$ with V3 $=\mathrm{V} 5=12.5 \mathrm{Vdc}$ is 9 to 12%. With pin 5 voltage set for rated output power and rated drive applied, the typical slump will be 10 to 16% at $80^{\circ} \mathrm{C}$. Slump in the MHW709 under the same conditions is typically 5% less than the above figures.

Decoupling

As mentioned, size limitations in the module make it necessary to provide external coupling for frequencies below 5 or 10 MHz . This can take the form of a network as shown on the data sheet. All decoupling capacitors internal to the module are $.018 \mu \mathrm{~F}$ chips. Output and interstage blocking capacitors are 39 pF NPO chips. This chip type has a nominal reactance to 9 ohms in the UHF band and was selected to decrease the module gain at frequencies below the pass band. Also, the base return chokes in all stages were selected to degrade gain slightly at UHF with greater effect at lower frequencies. The use of small coupling and blocking capacitors along with low impedance base returns reduces the loop gain at low frequencies to minimize low frequency problems from the increased device gains below the operating frequency.

The decoupling network shown on the data sheet is used during final test of the module and has been found effective for our test setup. Differences in test circuit layout, ground current paths or other low frequency feedback circuits could require a modified decoupling network. Some applications may benefit from the use of a series R-C damping circuit connected to ground from pins 5 or 3. This can consist of a 5 to 10 ohm carbon resistor in series with a 1 to $10 \mu \mathrm{~F}, 25$ volt electrolytic or tantalum capacitor.

Source and Load Impedances

The modules are designed for proper operation with source and load impedances of 50 ohms resistive. With proper decoupling, they will be stable with $2: 1$ VSWR source and load impedances, any phase angle and any combination of phase angles at nominal drive and power output. In addition, the rf drive and supply voltage can be varied over wide ranges. Typically, during this test, no spurious outputs are seen except with drive powers above 300 mW taken simultaneously with supply voltages below 4 or 5 volts. This condition of simultaneous high drive and low voltage will most likely never be seen in actual applications.

Most problems with module instabilities are a function of poor source impedance or poor decoupling. If a tendency is seen for the module to "snap on" or have hysteresis in the output power versus input power curve, the problem is most likely due to a source VSWR above 2:1 relative to 50 ohms. To check this, put a 3 dB or 6 dB

FIGURE 2 - UHF POWER MODULE TEST SETUP

[^34]matched pad between the source and the module. The hysteresis or "snap" should disappear if the problem is source impedance. If "jumps" are noticed during varying input power conditions, the problem is most likely low frequency breakup due to insufficient low frequency de-coupling-this can be seen on a spectrum analyzer sampling the output power. If a spectrum analyzer is not available, an ac-coupled 10 MHz oscilloscope on the dc feed pins at the module will usually detect low frequency breakup.
a spectrum analyzer. It has been found that at least 90 percent of semiconductor failures during load mismatch tests are due to spurious breakup during the test. When the spurious problems are solved, the burnout problems are also solved.

The MHW modules are 100% tested for burnout and spurious breakup two times during the production process. One test is performed after the module is com-

FIGURE 3 - UHF POWER MODULE TEST FIXTURE PRINTED CIRCUIT BOARD

When using the module as a drop-in for other modules, it has been found that circuit "tweaks" made to compensate for antenna switching and output filter VSWR to provide optimum performance with a particular type module may degrade the performance of the MHW series modules. The output circuit in this module is a low-pass Chebyshev impedance transforming network. It is carefully designed to provide a 50 ohm source impedance with a VSWR of less than 1.3:1 at 13 watts power output and 12.5 V supply. The power available to the load (forward power as measured by a directional coupler) with this module will not degrade more than 20% from the power set into a 50 ohm load when a load with a VSWR of 2:1 is placed on the output and varied through all phase angles. This characteristic holds true throughout the rated frequency range of the module.

Load Mismatch

When performing a load mismatch capability test with any semiconductor device, especially in a new environment where all sources of regeneration are not yet identified, one should monitor the output of the device with a directional sampling scheme and display this output on
pleted and on the heatsink, another is performed after the module is capped and marked. The 13 watt modules are tested at 17 to 20 watts output into a load with a return loss of less than 0.7 dB at all phase angles (greater than 25:1 VSWR) and the 7.5 watt modules are tested at 10 to 12 watts into the same load.

In summary, it is recommended that the MHW709/710 series modules be operated under the following conditions:

1. Source and load VSWR <2:1 with respect to 50 ohms.
2. Proper low frequency decoupling.
3. Supply voltage of 12.5 volts applied to both pin 5 and pin 3 with driver power adjusted for desired output power.
4. Sufficient heatsinking so that module flange does not exceed $100^{\circ} \mathrm{C}$ (preferably $80^{\circ} \mathrm{C}$).
5. Flange at rf ground potential. The "ground" pins 2 , 4, and 6 are not sufficient to establish a good rf ground at UHF by themselves.
When these rules are followed, the MHW709/710 series modules will provide the performance you expect.

CONTROLLED - Q RF TECHNOLOGY — WHAT IT MEANS, HOW ITS DONE

Abstract

The difficult transfer of high frequency energy from a signal source to the control element of an RF power transistor is efficiently achieved by a new design philosophy. Both monolithic and hybrid IC techniques are used to include a matching network in the transistor package and overcome this tough design problem.

TThe insertion of a matching network into an RF power transistor package has cured many evils encountered in high frequency circuit design. Devices using such an internal impedance matching network have been dubbed Controlled Q because that is exactly what the added package circuitry does - it gives the power transistor a consistent and highly controlled electrical quality (Q) factor. In a nutshell controlled Q increases guaranteed gains from previously available 4 dB to 5 or 6 dB in the 470 MHz region at 12.5 V . The controlled Q means that these devices are easier to match into circuit networks, and offer better consistency of high frequency parameters than other, non-controlled Q RF power devices.

FIGURE 1 - Each base region has an internal matching network included in the CO package.

The Old and the New
There are no panaceas for the complexities of broadband RF circuit design. With or without controlled Q , circuit networks must be designed to impedance-match the different stages. Gain and power output has to be optimized for the particular application, while maintaining a specified overall circuit bandwidth.

With older RF power devices, such as the 2N6136, a complete interstage matching network had to be provided using discrete passive components external to the transistor package. Not only did the circuit take up a lot of space, but its overall series component reactance limited design capability - especially in bandwidth. In addition, parasitic elements caused by the extra components, and package geometries interfered with establishing a solid signal ground.

With newer controlled \mathbf{Q} devices, "inside-thepackage" construction of some of the network matching elements brings the network closer to the active transistor die. Not only does this eliminate the number of required external components, but it also means that a small amount ofcapacitance can minimize the imaginary part of the input impedance for maximum bandwidth. Internal construction techniques help establish a better signal ground by removing most parasitic reactance.

A Closer Look

Controlled Q transistors use both monolithic and hybrid techniques in their construction. The active transistor die is fabricated using monolithic integrated circuit methods. A small MOS chip capacitor is wire bonded to the active transistor' die thus incorporating hybrid technology. The
resulting total transistor package can be thought of as an active transmission line element for high frequency (to 500 MHz) amplifier design. Figure 1 shows a portion of the device circuit.

To meet the high power handling requirements the controlled Q transistors are specially constructed with each of its multiple emitters having its own ballast resistor. These nichrome (NiCr) resistors, shown in the close-up of Figure 2 , have different resistance values to compensate for thermal differences of various portions of the transistor chip. This prevents overloading of some emitters due to temperature difference. This Isothermal* resistor design technique assures balanced current distribution throughout the transistor for more consistent operation at various power levels.

Emitter inductance and its undesirable gain reducing negative feedback are minimized in controlled Q devices, by establishing a solid ground for the transistor emitters. This is accomplished by using the lead frame to extend the ground plane completely around the device. Emitter wires are then attached to this ground plane. Such an emitter bonding technique has been shown to contribute more than 50% of the gain increase of a controlled Q device in the 470 MHz region. Its total gain of 5.22 dB is significantly higher than a non-CQ device of the same 25 W version that gives around 4.0 dB gain.

Controlled Q transistors also have bonding wires extending from each transistor base region to the MOS capacitor chip and then out to the package base lead. These bonding wires and the MOS capacitor interconnect one half of an input impedance matching network as in Figure 3.

FIGURE 2-A close up view of the emitter ballasting resistors.

FIGURE 3 - Part of the transmission network inductance and capacitance is provided in CO transistor packages.

Controlled Q production methods not only increase device yield, but also allow all final factory testing to be done in fixed-tuned test equipment. This means ease of final test for the semiconductor manufacturer, but more importantly, insures the consistency of controlled Q transistors from device to device. To the RF equipment manufacturer, this means that once a piece of communications gear has been designed, controlled Q devices can be dropped into amplifier modules with a minimum of circuit adjustment and tuning.

What's Available

Motorola's MRF series of high frequency power devices are available in stripline opposed emitter packages which offer excellent thermal characteristics along with controlled Q operation. Available in both 12.5 V and 28 V devices, these transistors listed in Table I are capable of operating at frequencies to 900 MHz with power outputs to 50 watts.

GET 300 WATTS PEP LINEAR ACROSS 2 TO 30 MHz FROM THIS PUSH-PULL AMPLIFIER

Prepared by

Helge Granberg
Circuits Engineer, SSB

(The heat sink shown with amplifier is sufficient only for short test periods under forced air cooling.)

This bulletin supplies sufficient information to build a push-pull linear amplifier for 300 watts of PEP or CW output power across the $2-$ to $30-\mathrm{MHz}$ band. One of Motorola's new high-power transistors developed for single-sideband, MRF422, is used in this application.

Like all transistors in its family of devices, MRF422 combines single-chip construction that is advancing the state-of-the-art, and improved packaging to accommodate the low collector efficiencies encountered in class B operation. Rated maximum output power is 150 watts CW or PEP with intermodulation distortion spec'd at -30 dB maximum, -33 dB typical. Although not recommended, a saturated power level of $240-$ to $250-\mathrm{W}$ is achievable. Maximum allowable dissipation is 300 W at $25^{\circ} \mathrm{C}$.

Because of its excellent load and line voltage regulating capabilities, an integrated circuit bias regulator is used in the amplifier. The MPC1000, originally described in this bulletin, consisted of a MC1723 chip and a built-in pass transistor. The manufacture of this device has been discontinued however, and the board lay-out was modified to incorporate the above two in separate packages. The load regulation typically measures less than 2% at current levels up to 0.5 A , which assumes an h_{FE} of 40 for the RF power devices. The board surface provides a sufficient heat sink for the 2 N 5990 pass transistor, but a separate heat dissipator, such as Thermalloy 6107 can be added if necessary. With the component values shown, the bias is adjustable from 0.4 to 0.8 volts.

Transformer Construction
Gain flatness over the band is achieved using base input networks $\mathrm{R}_{1} \mathrm{C}_{2}$ and $\mathrm{R}_{2} \mathrm{C}_{3}$ and negative feedback through R_{3} and R_{4}. The networks represent a series reactance of 0.69 ohms at 30 MHz rising to 1.48 ohms at 2 MHz . A single-turn winding in the collector choke provides a low-impedance negative feedback source, thus R_{3} and R_{4} determine the amount. The reactance of C_{4} reduces feedback at high frequencies with the result that feedback increases an average of 4 dB per octave at decreasing frequency.

For continuous operation at full power CW, it is recommended that heat sink compound, such as Dow Corning \#340, be applied between the board surface and R_{3} and R_{4}, and if possible have air circulating over the top of the circuit board as well.

The effective base-to-base impedance, increased by the RC networks is about 5 ohms at midband. As a result of this and the 9:1 impedance ratio in the input transformer TI, the input VSWR is limited to 1.9:1 or less across the band. Transformer T2, in addition to providing a source for the feedback and carrying the de collector current, acts as the rf center tap of the output transformer. To construct T2, wind 5 turns of 2 twisted pairs of AWG No. 22 enameled wire on a Stackpole 57-9322 toroid (Indiana General F627-8QI).

Figure 1 - Collector Efficiency. Power Gain and VSWR vs Frequency
A Stackpole dual balun ferrite core $57-1845-24 \mathrm{~B}$ is used for T1. The secondary is made of $1 / s^{\prime \prime}$ copper braid. through which three turns of the primary winding (No. 22 Teflon ${ }^{8}$ insulated hook-up wire) are threaded. The construction of T3 is similar to that of T1. It employs two Stackpole 57-3238* ferrite sleeves which are cemented together for easier construction. The primary is made of $1 / 4^{\prime \prime}$ copper braid, through which three turns of No. 16 Teflon ${ }^{8}$ insulated wire are threaded for the secondary.

B.

300-Watt Linear Amplifier Schematic Diagram

C1-100 pF
C2, C3-5600 pF
C4, C5 - 680 pF
C6, C7-0.10 $\mu \mathrm{F}$
C11-470 pF
C12, C $13-0.33 \mu \mathrm{~F}$
C14-10 $\mu \mathrm{F}-50 \mathrm{~V}$ elactrolyzic
C15-500 $\mu \mathrm{F}-3 \mathrm{~V}$ electrolytic C16-1000 pF

R1, $R 2-2 \times 3.3 \Omega, 1 / 2 \mathbf{W}$ in parallal
R3, R4-2 $2 \times 3.9 \Omega, 1 / 2 \mathrm{~W}$ in parallel
R5-47 Ω, 5 W
R6-1.0, $1 / 2 \mathrm{~W}$
R7, R8-1.0k. $1 / 2 \mathrm{~W}$
R9-18k, 1/2 W
R10-8.2 k, $1 / 2 \mathrm{~W}$
R11-1.0k Trimpot D1-2N5190
L1, L2 - Ferroxcubo
VK200 20/4B
L3, L4-6 ferrita beads
each, Forroxcubo 56590 65/38

For production quantities, the braid in T_{3} may be made of brass or copper tubes with their ends soldered to pieces of PC board laminate. See cover picture and Motorola AN-749 for details.

The bandwidth characteristics of these transformers do not equal those of the transmission line type, but they're much easier to duplicate.

The measured performance of the amplifier is shown in figures 1,2 , and 3 and harmonic rejection data in table I.

Q1, O2-MRF422, O3-2N5990
T1, T2, T3-Seo text

All capacitors except sloctrolytics and C16 are chips -

Union Carbide typa 1813 and 1225,
or Varedyne slzo 18 or 14, or equivalent
Table I. Output harmonic contents, measured at 300-W CW (all test data taken using a tuned output, narrow band signal source).

	2nd	3rd	4th	5th
f (Mhz)	(dB below the carrier)			
30.0	-38	-25	-34	-48
20.0	-33	-13	-43	-45
15.0	-50	-10	-51	-47
7.50	-40	-30	-55	-47
4.0	-37	-22	-55	-37
2.0	-36	-18	-45	-37

*A similar product is available from Fair-Rite Products Corp., Wallkill, N.Y.. 1.2589
${ }^{\text {R }}$ Registered trademark of DuPont
PCB, chips capacitors, transformers T_{1}, T_{2}, T_{3}, and ferrite beads are available from:
COMMUNICATIONS CONCEPTS. 2648 N. Aragon Ave.. Kettering. Ohio 45420.
Telephone: (513) 294-8425.

NOTE: The Printed Circuit Board shown is 75% of the original.

Figure 3 - IMD vs Power Output
Figure 2 - IMD vs Frequency

THE COMMON EMITTER TO-39 AND ITS ADVANTAGES

Prepared By Rich Potyka

Two important advantages can be derived from the common emitter TO-39: By connecting the case to the rf circuit ground, emitter inductance is reduced and gain increased by 3 to 5 dB over that of comparable, conventionally wired transistors. And the case may be directly pressed, clipped, or soldered to the heat sink with no effect on rf performance. This feature may eliminate the need for the heat radiating "coolers" because soldering the transistor bottom to the circuit, typically a PC board, improves dissipation by removing heat through the thick metal base rather than the thin can.

Fixture for Functional Testing of the Common Emitter TO-39

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	8.89	9.40	0.350	0.370
B	8.00	8.51	0.315	0.335
C	6.10	6.60	0.240	0.260
D	0.406	0.533	0.016	0.021
E	0.229	3.18	0.009	0.125
F	0.406	0.483	0.016	0.019
G	4.83	5.33	0.190	0.210
H	0.711	0.864	0.028	0.034
J	0.737	1.02	0.029	0.040
K	12.70	-	0.500	-
L	6.35	-	0.250	-
M	$45^{\circ} \mathrm{NOM}$		$45^{\circ} \mathrm{NOM}$	
P	-	1.27	-	0.050
0	$90^{\circ} \mathrm{NOM}$		$90^{\circ} \mathrm{NOM}$	
R	2.54	-	0.100	-

All JEDEC dimensions and notes apply.
CASE 79.02
TO. 39

For example, the MRF227 was mounted in this manner and a θ_{jc} of $15^{\circ} \mathrm{C} / \mathrm{W}$ was measured using a Barnes RM-2A Infrared Microscope. Compared to an MRF607 in a conventional package operating under identical conditions, this is greater than a $2: 1$ reduction in thermal resistance. And as side benefits, the lower θ_{jc} also reduces power slump and improves reliability.

In many mobile radios CE-TO39 devices can replace stud or flange mounted stripline parts used for 1 - to 4 -watt drivers. This conversion should normally offer a significant savings in the cost of parts as well as the costs of mounting hardware and labor.

The designer of compact handheld radio equipment will

find the CE-TO39 offers a real advantage from the elimination of interstage RFI or coupling because the can is at ff ground. Stability is usually improved and the higher available gain may reduce the number of transmitter stages. Simplified and improved cooling may also be obtained by connecting the can directly to the radio housing or chassis.

To sum it up: The emitter-to-can wired TO-39 known as the CE-TO39 offers the designer significant improvements in both gain and thermal performance. Because of its price, compared to SOE and TO- 60 packages, the designer can use the CE-TO39 to reduce costs. And he can make his design easier to assemble with no loss in rf performance.

AMPLIFIER GAINS 10 dB OVER NINE OCTAVES

Prepared by:
Mike Hadley
Industrial Applications Engineer

The introduction of Motorola encapsulated transistors fabricated with ion-implanted arsenic emitters has made a reality of economical small-signal amplifiers with bandwidths exceeding 1 GHz . The recently developed MRF901, an example of this technology, has an f_{T} exceeding 4.5 GHz , and a maximum noise figure at 1 GHz of 2.5 dB . The device package (case 302) employs the Motorola dual emitter bonding concept to minimize parasitic inductance and enhance high-frequency performance.

Using the MRF901, an amplifier has been developed which exhibits a nominal gain of 10 dB over nine octaves of bandwidth. The circuit design is a class A amplifier employing both ac and dc feedback. Bias is stabilized at 15 mA of collector current using dc feedback from the collector. The ac feedback from collector to base, and in each of the partially bypassed emitter circuits, compensates for the increase in device gain with decreasing frequency, yielding a flat response over a maximum bandwidth. Transistor S parameters, as provided by the MRF901 data sheet, and computer-aided circuit optimization techniques were used to choose component values for gain flatness, input VSWR and output VSWR. The described performance was achieved using common high-frequency amplifier construction techniques and a standard printed circuit board substrate. Even better results could be expected from the use of today's hybrid circuit technology.

Evaluation of the amplifier shows a nominal 10 dB power gain from 3 MHz to 1.4 GHz . With only a minimum

matching network used at the amplifier input, the input VSWR remains less than 2.5:1 to approximately 1 GHz while the output VSWR stays under 2:1 to approximately 1.4 GHz (figure 2). If input impedance matching were of prime consideration, connecting a 2.1 pF capacitor from the junction of Cl and $\mathrm{Z1}$ to ground (C6 in figure 1) would hold input VSWR below 2.2:1 over the complete frequency range (figure 3). Note that a slight degradation in gain flatness and output VSWR occurs with the addition of C6. A more elaborate network design would probably optimize impedance matching while maintaining gain flatness.

The amplifier was built on a glass Teflon ${ }^{\circledR}$ printed circuit board $1.8^{\prime \prime} \times 1.2^{\prime \prime}$. A $2: 1$ reproduction of the circuit pattern is provided in figure 4. The type OSM215 50-ohm input and output connectors were mounted opposite the component side to facilitate laboratory measurements. Board size could be reduced to approximately half by reducing the ground plane around the circuit perimeter. A combination of chip capacitors, chip resistors and standard carbon resistors were used to obtain maximum performance at minimum cost.

Extra care was taken to keep all component lead lengths to an absolute minimum and to provide a good ground plane. In the interest of maintaining a good ground, copper foil was soldered at the board edges to connect the top and bottom circuit grounds, and an eyelet was inserted near each emitter lead.

Figure 1. Schematic Diagram

Figure 2.
Gain and VSWR vs Frequency

Figure 4. Amplifier PCB Artwork

MEASURING THE INTERMODULATION DISTORTION OF LINEAR AMPLIFIERS

Prepared by
Helge Granberg
Circuits Engineer, SSB

The measured distortion of a linear amplifier, normally called Intermodulation Distortion (IMD), is expressed as the power in decibels below the amplifier's peak power or below that of one of the tones employed to produce the complex test signal.

A signal of three or more tones is used in certain video IMD tests, but two tones are common for HF SSB. The two-tone test signal provides a standard, controlled test method, whereas the human voice contains an unknown number of frequencies of various amplitudes and couldn't be used for accurate power and linearity measurements. Separation of the two tones, for voice operation equipment, may be from 300 Hz to $3 \mathrm{kHz}, 1 \mathrm{kHz}$ being a standard adopted by the industry.

Generation of the Test Signal

The two-tone IMD test signal can be generated by a number of means of which the following three are the most common:

System A-A two-tone audio signal is formed by algebraically adding two sine wave voltages of equal amplitude which are not harmonically related, e.g., 800 Hz and 1.8

SYSTEM A
kHz . This two-tone audio signal is fed into a balanced modulator together with an RF carrier, one sideband filtered out, and the resultant further mixed to the desired frequency and then amplified. The system is useful in testing complete SSB transmitters. A commercial transmitter can also be used as a signal source for testing linear amplifiers.

System B-In this method, a signal of approximately 500 Hz is fed into a balanced modulator together with an RF carrier and amplified to the required power level.

SYSTEM B

The resultant is a double-sideband signal that resembles a single-sideband signal generated under two-tone sine wave conditions. Viewed on a scope screen, the envelope produced by this method appears the same as a SSB twotone pattern. However, unlike the System A test signal, there is a controlled and fixed phase relationship between the two output tones. This system is widely employed to generate the test signal for linearity measurements.

System C-Two equal amplitude RF signals, separated in frequency by 1 kHz , are algebraically added in a hybrid coupler. The isolation between input ports must be high enough to avoid interaction between the two RF signal generators. Short-term stability (jitter) should be

SYSTEM C

less than one part per million at 30 MHz . The carrier is nonexistent as compared to A and B , and the two-tone signal is generated as the RF voltages cancel or add at the rate of their difference frequency according to their instantaneous phase angles. Because no active components are involved, very low IM distortion is achievable. This system is useful in applications where low distortion and low power levels are required.

Except for the position of the carrier in respect to the two tones, displays of the signals produced by systems A, B and C appear identical on a spectrum analyzer screen. Sometimes, however, the suppressed carrier may remain below the noise level of the instrument. Any spectrum analyzer used for SSB linearity measurements must have an IF bandwidth of less than 50 Hz to allow the two closely spaced tones to be displayed with good resolution. Figure 1 shows a low distortion, two-tone envelope displayed on a scope screen. On a spectrum analyzer screen the same signal displays as two discrete frequencies separated by the difference of the audio frequency or frequencies. See figure 2. The display represents the rate at which peak power occurs when the two frequencies are in phase and the voltages add. Thus, one peak contains one-fourth (-6 dB) of the peak envelope power (PEP). An average reading power meter would read the combined power of the tones, or half the PEP, assuming the envelope distortion is negligible. The third order distortion products (d_{3}), fifth order (d_{5}), etc., can be seen on each side of the tones. The actual power (PEP) of each distortion product can be obtained by deducting the number of decibels indicated by the analyzer from the average power. This value may be useful in determining the linearity requirements of the signal source. While the maximum permissible distortion levels of the driver stages in a multi-stage amplifier may be difficult to specify, a $5-$ to $6-\mathrm{dB}$ margin is usually considered sufficient.

Types of Distortion

The nonlinear transfer characteristics of active devices are the main cause of amplitude distortion, which is
both device and circuit dependent. On the other hand, harmonic and phase distortion, also present in linear amplifiers, are predominantly circuit dependent. Even order harmonics, particularly noticeable in broadband designs, cause the harmonic distortion. Push-pull design will eliminate most of the even-order-caused harmonic distortion and the driver stages, where efficiency is of less concern, can be biased to class A.

Phase distortion can be caused by any amplitude or frequency sensitive components, such as ceramic capacitors or high-Q inductors, and is usually present in multi-stage amplifiers. This distortion may have a positive or negative sign, resulting in occasions where the level of some of the final IMD products (d_{3} or d_{5}, or both) may be lower than that of the driving signal, due to cancelling effects of opposite phases. Actual levels depend on the relative magnitude of each distortion product present.

From the above it is apparent that the distortion figures presented by the spectrum analyzer represent a combination of amplitude, harmonic and phase distortion.

Measurement Standards

As indicated earlier, there are two standard methods of measuring the IM distortion:

Method 1-In military standard (1131 A-2204B), the distortion products are referenced to one of the two tones of the test signal. The maximum permissible IMD is not specified but, numbers like -35 dB are not uncommon in some equipment specifications. However, when this measuring system is employed in industrial applications, the IMD requirement $\left(\mathrm{d}_{3}\right)$ is usually relaxed to -30 dB . Figure 3 shows the frequency spectrum of IM distortion products and their relative amplitudes for a typical class AB linear amplifier. Biasing the amplifier more toward class B will cause the lower order distortion products to go down and the amplitudes of the higher order products to increase. There is a bias point where the d_{3} and d_{5} products become equal resulting in $2-5 \mathrm{~dB}$ improvement in the lower order IMD readings.

Method 2-In the proposed EIA standard, the amplitude of the distortion products is referenced to the peak envelope power, which is 6 dB higher in power than that represented by one of the two tones. The amplifier or device indicating a maximum distortion level of -30 dB in Method 1 represents -36 dB with the EIA proposed standard. Conversely, a -30 dB reading with EIA's PEP reference would be -24 dB when measured with the more conservative military method. In practical measurements, the two tones can be adjusted 6 dB down from the zero dB line, and direct IMD readings can be obtained on the calibrated scale of the analyzer. Alternatively, the tone peaks can be set to the zero dB level and 6 dB deducted from the actual reading.

EB38

FIGURE 1. Two-tone test pattern generated by A, B or C.

FIGURE 2. Test signal of figure 1 displayed by a spectrum analyzer. 3rd and 5 th order distortion products are visible.

FIGURE 3. Typical distribution of distortion product amplitudes
compared to the two fundamental frequency components.

The military standard, with the relaxed -30 dB IMD specification, is employed by most manufacturers of high power commercial transmitters and marine radio base stations. *The EIA measuring method is used by the majority of ham radio equipment and CB radio manufacturers. It is also used to measure IMD in various mobile radio applications operating from a $12.5-\mathrm{V}$ nominal dc supply.
Because of the importance to your design, data sheets of the newer generation Motorola devices specify linearity tests appropriate to the expected application of the particular device and test conditions are always indicated.
*FCC specifications are now in effect covering maximum permissible distortion up to the 11 th order products.

REFERENCES:
Pappenfus, Brueue \& Schoenike, "Single-Sideband Principles and Circuits," McGraw-Hill.

William I. Orr, "Radio Handbook," 18th Edition, Editors and Engineers, Ltd.

Stoner, Goral, "Marine Single-Sideband," Editors and Engineers, Ltd.

Hooton, "Single-Sideband, Theory and Practice," Editors and Engineers, Ltd.

140W (PEP) AMATEUR RADIO LINEAR AMPLIFIER 2-30 MHz

The popularity of 2.30 MHz , SSB, Solid State, linear amplifiers is increasing in the amateur market. This EB describes an inexpensive, easy to construct amplifier and some pertinent performance information. The amplifier uses two MRF454 devices. These transistors are specified at 80 Watts power output with 5 Watts of input drive,

30 MHz , and 12.5 Vdc . The MRF454 is used because it is a readily available device and has the high saturation power and ruggedness desired for this application. This device is not characterized for SSB. However, IMD specs for the amplifier are shown in Figures 2 and 3.

THE AMPLIFIER

The performance of the amplifier can be seen in Figures $1,2,3,5,6,7$ and 8 . The quiescent current is 500 mA on each device. This amount of bias was needed to prevent "cross over" at the higher output powers during SSB operation. The amplifier operates across the $2-30 \mathrm{MHz}$ band with relatively flat gain response and reaches gain saturation at approximately 210 Watts of output power. Figure 5 depicts the amplitude modulated waveform with respect to a 100 -Watt carrier. Figure 6 depicts the increased amplitude modulation at 50 -Watt carrier. In both cases the peak output power is equal to approximately 210 Watts due to the saturation of the MRF454. The 50Watt carrier is thus recommended in any amplitude modulated applications.

The bias diode D2 has been mounted in the heatsink for temperature tracking. The cathode is pressed into the heatsink and the anode extends through the circuit board. (See Figure 9.) Both input and output transformers are 4:1 turns ratio (16:1 impedance ratio) to achieve low input SWR across the specified band and a high saturation capability. T1* is made from FairRite Products, ferrite beads, material \#77, .375" O.D. $\times .187 /$.200" I.D. $\times .44 \mathrm{~L}$ ". T2* is made from Stackpole Co. ferrite sleeves \#57-3238-7D.

When using this design, it is important to interconnect the ground plane on the bottom of the board to the top; especially at the emitters of the MRF454s. Eyelets were used in this design, which are easier to apply, but \#18 AWG wire can be used. On the photomask, (see Figure 10) ":" signifies where the ground plane has been interconnected. The letter " 0 " designates where the 4-40 screws are installed to fasten the board to the heatsink. 6-32 nuts are used as spacers on the 4-40 screws between the board and the heatsink to keep the board from touching the heatsink.

THE DESIGN

This amplifier was designed for simplicity. The design goal was to allow repeatability of assembly and reduce the number of components used. The amplifier will accept Single Side Band or Amplitude Modulation without external switching. A carrier operated relay circuit is on the same layout to make this an easy amplifier to add on to any suitable radio with an RF output of 1.0-5.0 Watts. All components used are readily available at most distributors and are relatively inexpensive.

- Aef: Application Notes

AN749 BroadBand Transformars and Power Combining Techniques for RF - H. Granberg
AN762 Linear Amplifiert for Moblla'Oporation - H. Granberg

NOTE: Parts and Kits for this amplifier are available from:

Communications Concepts
121 Brown St.
Dayton, Ohio 45402
(513) 220-9677

FIGURE 2-Intermodulation Distortion Versus
$P_{\text {out, }}{ }^{30 \mathrm{MHz}, 13.6 \mathrm{Vdc}}$

FIGURE 3-IMD vs. Frequency, Pout $=140$ Watt PEP 13.6 Vde

FIGURE 5

Amplitude Modulated Waveform with Superimposed Carrier. Carrier Condi-
tions: $f=30 \mathrm{MHz}$; $\mathrm{P}_{\text {in }}=1.3 \mathrm{Watt}$;
$P_{\text {out }}=50$ Watts; $\mathrm{V}_{\mathrm{CC}}=13.6 \mathrm{Vdc}$

FIGURE 6

Frequency Spectrum, $30 \mathrm{MHz}(\mathrm{F}(0), 2 \mathrm{nd}$, 3rd, and 5th harmonics are visible). Vertical resolution: $10 \mathrm{~dB} /$ div. Horizontal $20 \mathrm{MHz} /$ div.

FIGURE 7

INTERMODULATION DISTORTION, 30, 30.001 MHz (3rd, 5 th, 7 th, 9 th) order distortion products are visible. Vertical resolution: $10 \mathrm{~dB} / \mathrm{div}$. Horizontal: 1 KHz /div.

FIGURE 8

FIGURE 9 - Mounting Detail of IN4997 and 6.32 Nut (Spacer)

NOTE: The Printed Circuit Board shown is $\mathbf{7 5 \%}$ of the original.

FIGURE 10-Photomaster (Positive)

Note: The use of this amplifler is iliegal for Class D Citizen Band servico.

Prepared by

 Dave Hollander RF Power EngineeringThis bulletin describes a broadband amplifier covering the $225-400 \mathrm{MHz}$ military communications band producing 10 watt RF output power and operating from a 28 volt supply. The amplifier can be used as a driver for higher power devices such as 2 N 6439 and MRF327. Typical performance curves are shown in Figures 5, 6 , and 7.

Circuit Description

The circuit is designed to be driven by a 50 ohm source and operate into a nominal 50 ohm load. The input matching network ${ }^{1}$ consists of a π-section composed of C3, C4, Z2, C5 and C6. C2 is a dc blocking capacitor, and T 1 is a $4: 1$ impedance ratio coaxial transformer. Z 1 is a 50 ohm transmission line. A compensation network consisting of $\mathrm{R} 1, \mathrm{C} 1$, and Ll is used to improve the input VSWR and flatten the gain response of the amplifier. L2 and a small ferrite bead make up the base bias choke.

The output network is made up of a microstrip L-section consisting of Z3 and C7, and a high pass section consisting of C8 and L3. C8 also serves as a dc blocking capacitor.

FIGURE 1 - Component Layout of the Amplifier

Collector decoupling is accomplished through the use of $\mathrm{L} 4, \mathrm{L5}, \mathrm{C} 9, \mathrm{C} 10, \mathrm{C} 11, \mathrm{C} 12$, and C13.

Construction

The circuit is constructed on a 3.375×2.5 inch ($8.57 \times 6.35 \mathrm{~cm}$) double sided PC board. Board material is 3 M Glass Teflon,* with a thickness of 0.031 inch $(0.0787 \mathrm{~cm})$. Glass Teflon was selected for its low loss and dielectric consistency. Figure 2 is a $1: 1$ scale photomaster print of the top side of the board. Eyelets are placed at the points marked by plus signs. The eyelets are soldered to both sides of the PCB to control ground current return paths. The edges of the transistor mounting hole beneath the emitter leads are also wrapped, using copper foil soldered in place to insure a solid emitter ground. 2,3 Due to a ground imbalance caused by the transformer, a component placement layout of the RF circuitry is shown in Figure 1. It is important that this layout is followed in order to duplicate performance. Construction details of the $4: 1$ transformer are shown in Figure 4.
*Registered Trademark of Dupont

NOTE: The Printed Circuit Board shown is 75% of the original.
FIGURE 2 - Printed Circuit Board Layout

FIGURE 3 - Schematic Diagram and Component List

FIGURE 4 - Construction Details of
4:1 Impedance Ratio Transformer

EB74

AMPLIFIER PERFORMANCE

FIGURE 6 - Output Power versus Input Power

FIGURE 8 - Amplifier Assembly

References

1. Roy Hejhall, "Systemizing RF Power Amplifier Design," Motorola Application Note AN-282A, Motorola Semiconductor Products Inc., Phoenix, Arizona.
2. "Mounting Stripline - Opposed Emitter (SOE) Transistors," Motorola Application Note AN-555, Motorola Semiconductor Products Inc., Phoenix, Arizona.
3. Glenn Young, "Microstrip Design Techniques for UHF Amplifiers," Motorola Application Note AN-548A, Motorola Semiconductor Products Inc., Phoenix, Arizona.

A 60-WATT 225-400 MHz AMPLIFIER — 2N6439

Prepared by

Dave Hollander

This bulletin describes a 60 watt, 28 volt broadband amplifier covering the $225-400 \mathrm{MHz}$ military communications band. The amplifier may be used singly as a 60 watt output stage in a $225-400 \mathrm{MHz}$ transmitter, or by using two of these amplifiers combined with quadrature couplers, a 100 watt output amplifier stage may be constructed. Typical performance curves of gain, efficiency, and input SWR are shown in Figures 5, 6, and 7.

Circuit Description

This circuit is designed to be driven from a 50 ohm source and work into a nominal 50 ohm load. The input network consists of two microstrip L-sections composed of $\mathrm{Z} 1, \mathrm{Z} 2$ and C 2 through $\mathrm{C} 6 . \mathrm{C} 1$ serves as a dc blocking capacitor. A 4:1 impedance ratio coaxial transformer T1 completes the input matching network. L1 and ferrite bead serve as a base decoupling choke.

The output circuit consists of shunt inductor L2 at the collector, followed by two microstrip L-sections composed of $\mathrm{Z} 3, \mathrm{Z} 4$ and C 8 through $\mathrm{C} 11 . \mathrm{C} 12$ serves as

FIGURE 1 - Component Layout of the Amplifier
a dc blocking capacitor, and is followed by another $4: 1$ impedance ratio coaxial transformer.

Collector decoupling is accomplished through the use of L3, L4, C14 through C16 and R1.

Construction

The circuit is constructed on a 3.375×2.5 inch (8.57 $\times 6.35 \mathrm{~cm}$) double sided PC board. Board material is 3M Glass Teflon*, with a thickness of 0.031 inch (0.0787 $\mathrm{cm})$. Glass Teflon was selected for its low loss and dielectric consistency. Figure 2 is a photomaster print of the top side of the board. Eyelets are placed at the points marked by a plus sign to carry the top ground to the bottom side ground return. The edges of the transistor mounting hole beneath the emitter leads are also wrapped, using copper foil soldered in place to insure a solid emitter ground. (1,2) Construction details of the $4: 1$ transformers are shown in Figure 4.
*Registered Trademark of DuPont

NOTE: The Printed Circuit Board shown is 75% of the original. FIGURE 2 - Photomaster of Circuit Board

FIGURE 3 - 2N6439 60 Watt Building Block 225-400 MHz

FIGURE 4 - Construction Detaits of the 4:1 Unbalanced to Unbalanced Transformers

AMPLIFIER PERFORMANCE

FIGURE 5 - Power Gain versus Frequency Efficiency versus Frequency

FIGURE 6 - Output Power versus Input Power

FIGURE 7 - Input VSWR versus Frequency

FIGURE 8 - Amplifier Assembly

Bibliography

1. "Mounting Stripline - Opposed Emitter (SOE) Transistors," Motorola Application Note AN-555, Motorola Semiconductor Products Inc., Phoenix, Arizona.
2. Glenn Young, "Microstrip Design Techniques for UHF Amplifiers," Motorola Application Note AN-548A, Motorola Semiconductor Products Inc., Phoenix, Arizona.
3. Roy Hejhall, "Systemizing RF Power Amplifier Design," Motorola Application Note AN-282A, Motorola Semiconductor Products Inc., Phoenix, Arizona.

NOTE: A 10 Watt $225-400 \mathrm{MHz}$ Amplifier-MRF331 is described in Engineering Bulletin EB-74.

A 1-WATT, 2.3 GHz AMPLIFIER

Prepared by

Mike Miceli

Introduction

Simplicity and repeatability are featured in this 1 -watt S -band amplifier design. The design uses an MRF2001 transistor as a common base, Class C amplifier. The amplifier delivers 1 -watt output with 8 dB minimum gain at 24 V , and is tunable from 2.25 to 2.35 GHz . Applications include microwave communications equipment and other systems requiring medium power, narrow band amplification. A photograph of the amplifier is shown in Figure 1.

Circuit Description

The amplifier circuitry consists almost entirely of distributed microstrip elements. A total of six additional components, including the MRF2001, are required to build a working amplifier. Refer to Figure 2 for the schematic diagram of the amplifier.

FIGURE 1 - 1.W, 2.3 GHz Amplifier

FIGURE 2 - Schematic Diagram

The input and output impedances of the transistor are matched to 50 ohms by double section low pass networks. The networks are designed to provide about $3 \% 1 \mathrm{~dB}$ power bandwidth while maintaining a collector efficiency of approximately 30%. There is one tuning adjustment in the amplifier - Cl in the output network. Ceramic chip capacitors, C2 ànd C3, are used for DC blocking and power supply decoupling. Additional low frequency decoupling is provided by capacitors C 4 and C5. Refer to Figure 3 for a 1:1 photomaster of the circuit boards.

NOTE: The Printed Circuit Board shown is 75% of the original. figure 3 - Circuit Photomaster

Amplifier Assembly

The circuit boards are mounted on a $3.125^{\prime \prime} \times 1.875^{\prime \prime}$ $\times 0.750^{\prime \prime}$ aluminum block. A $0.062^{\prime \prime}$ deep and $0.260^{\prime \prime}$ wide slot is milled in the heat sink as shown in Figure 4.

The transistor mounts in the slot with two $4-40$ screws. An alternate approach that would eliminate the need for milling is the laminated structure shown in Figure 5.

Using the laminated assembly, the transistor is mounted on the surface of the block and $0.062^{\prime \prime}$ aluminum shim stock is sandwiched between the block and the circuit boards. Connector mounting plates are required if SMA type connectors are used for the RF input and output. The SMA connectors can be fastened directly to the block if the milled approach is used. Either method results in the same performance for this 1 -watt design. The laminated structure, however, may not be suitable for higher power designs. With higher power levels the transistor impedances are lower. The RF ground impedance through the laminated metal may be sufficiently high to impair gain and stability. This point emphasizes the fact that the successful design of RF amplifiers is dependent not only on attention to electrical considerations, but to the physical construction as well. While construction related parasitics cannot be totally ignored at medium frequencies, they can pose serious problems at microwave frequencies. It is recommended that the following construction techniques be followed when building this amplifier. Refer to Figure 6 for the component placement diagram.

FIGURE 4 - Amplifier Heat Sink

FIGURE 6 - Assembly Diagram

Construction Notes

1. The transistor is fastened to the heat sink with two 4-40 screws. The mounting surface should be flat and clean. Thermal compound should not be used on the underside of this device; the flange provides the transistor base connection and must make good electrical contact with the heat sink. The wide lead is the emitter and the narrow lead is the collector.
2. The edges of the boards marked with an asterisk (see Figure 6) must be foil wrapped to the bottom ground plane to provide a low impedance RF ground connection for C3, C4, C5 and the emitter choke, Z9. This is accomplished by soldering a $1 / 4^{\prime \prime}$ - wide strip of 1- to 5 -mil thick copper foil to the top ground plane and then wrapping it around the edge of the board. The other edge of the foil is soldered to the bottom ground plane.
3. Use a \#31 drill bit to drill the board mounting holes. With the transistor already mounted to the heat sink, slide the boards into position so they butt up against the transistor. This will insure that the excess lead inductance of the transistor is kept to a minimum.

The boards can now be fastened to the heat sink and the remaining components mounted.
4. Use a minimum of heat when soldering C2 and C3. Excess heat could cause the end metal of the chip capacitor to separate from the ceramic.
5. C 1 is a miniature variable capacitor whose high self-resonant frequency makes it ideal for use at microwave frequencies. The package design makes it very convenient to use wherever a shunt capacitive element is des red and is used here to vary the capacitance of microstrip stub, $\mathrm{Z5}$. The capacitor is mounted by drilling a $0.120^{\prime \prime}$ diameter hole (\#31 drill bit) at the point indicated in Figure 6. Using the circuit board as a template, mark the point on the heat sink directly below the mounting hole. Since the capacitor is slightly longer than the thickness of the board, a clearance hole is needed at this point. The bottom of the capacitor is soldered to the ground plane on the bottom of the board. The flange of the capacitor is soldered to Z5. Avoid getting solder into the area above the flange as this will prevent the movement of the tuning piston.

Performance Data

Amplifier tune-up is accomplished by adjusting Cl for maximum output power with minimum collector current. The amplifier will tune from 2.25 to 2.35 GHz while maintaining an input VSWR of less than 2:1. Typical performance curves appear in Figure 7. Figures 7a and 7b show performance with the amplifier re-tuned for each frequency. Figure 7c shows performance without re-tuning. Note from Figure 7 c that the instantaneous 1 dB bandwidth is approximately 70 MHz with the amplifier tuned to a center frequency of 2.3 GHz .

FIGURE 7a - Output Power versus Input Power

FIGURE 7c - Output Power, Efficiency and VSWR versus Frequency

NOTE: Tho MRF2001 is one of a family of 2 GHz power transistors with RF output powers as indicated betow:

MRF2001 IW MRF2005 5 W
MRF2003 3 W MRF2010 10 W

LOW-COST VHF AMPLIFIER HAS BROADBAND PERFORMANCE

Prepared by
Ken Dufour

Introduction

This bulletin presents two VHF amplifier designs intended for FM or CW service in the $136-174 \mathrm{MHz}$ band. Both amplifiers feature the Motorola MRF260 and MRF262 plastic encased VHF transitors which are rated at 5.0 W and 15 W power output respectively. This new series is derived from a line of highly successful device types of similar capability, but packaged in a standard configuration, (i.e., stripline
packages). The MRF260 and MRF262 are in a standard TO-220 silicone epoxy case with the emitter wired to the metal tab and center lead of the device. This common emitter configuration results in good RF performance, improved thermal conductivity, and ease of mounting in an RF amplifier, by connecting the transistor mounting flange to RF and DC ground.

FIGURE 1 - Engineering Models. A Common Board Layout is Used for Both Versions

References

1. Hatchett, John: 25 Watt and 10 Watt VHF Marine Band Transmitters, AN-595, Motorola Semiconductor Products, Inc.
2. Granberg, H: A Simplified Approach to VHF Power Amplifier Design, AN-791, Motorola Semiconductor Products, Inc.
3. Hollander, D: A 15 Watt AM Aircraft Transmitter Power Amplifier Using Low Cost Plastic Transistors, AN-793, Motorola Semiconductor Products, Inc.

FIGURE $2-136-160 \mathrm{MHz}$ Amplifier

FIGURE 3-160-174 MHz Amplifier

FIGURE 4 - Schematic Diagram of Dipped Silvered Mica Capacitor Version ($136-160 \mathrm{MHz}$)

C1 - 200 pF
C2-33 pF
C3-47pF
C4-18 pF
C5, C8 -43 pF
C6-12 pF
C7. $\mathrm{C} 9-50 \mathrm{pF}$

C10-22 pF
C11-100 pF
$\mathrm{C} 12-1.0 \mu \mathrm{~F}$ Tantalum
$\mathrm{C} 13, \mathrm{C} 14-0.05 \mu \mathrm{~F}$ Erie Redcap
L1-L5 - Printed Inductor
L3 - $1.25^{-} \# 18$ AWG, 1-1/2 Turns, 9/64 ID
Q1 - MRF260

Q2 - MRF262
RFC1, RFC2 - 2 Turns \#26 Enameled
on Ferrite Bead Ferroxcube 56-590-65/3B
RFC3 - $10 \mu \mathrm{H}$ Molded Choke
RFC4 - $0.15 \mu \mathrm{H}$ Molded Choke
RFC5, RFC6 - VK200-4B
B - Bead, Ferroxcube 56-590-65/3B

C1 - 220 pF, TDK 100 mil Chip Capacitor
C2 - 43 pF , TDK 100 mil Chip Capacitor
C3 - 150 pF, TDK 100 mil Chip Capacitor
C4 - 15 pF , TDK 100 mil Chip Capacitor C5 - 63 pF, TDK 100 mil Chip Capacitor C6 - 27 pF. TDK 100 mil Chip Capacitor C7 - 22 pF. TDK 100 mil Chip Capacitor C8-100 pF, TDK 100 mil Chip Capacitor $\mathrm{C} 9-1.0 \mu \mathrm{~F}$ Tantalum
$\mathrm{C} 10-0.1 \mu \mathrm{~F}$ Erie Redcap, 100 V General Purpose $\mathrm{C} 11-0.05 \mu \mathrm{~F}$ Erie Redcap, 100 V General Purpose

L1-L5 - Printed Inductor
L3 - 5/8" \#18 AWG Wire formed into hairpin loop
Q1 - MRF260
Q2 - MRF262
RFC1, RFC2 -2 Turns \#26 Enameled Wire
through Ferrite Bead Ferroxcube 56-590-65/3B
RFC3 $-0.15 \mu \mathrm{H}$ Molded Choke
RFC4 $-10 \mu \mathrm{H}$ Molded Choke
RFC5, RFC6 - VK200-4B
B - Bead, Ferroxcube 56-590-65/3B

FIGURE 7 - Component Placement, $160-174 \mathrm{MHz}$ Amplifier

EB90

FIGURE 8 - Power Output versus Frequency. 136-160 MHz Amplifier

FIGURE 10 - Power Gain and laput VSWR versus Frequency. 136-160 MHz Amplifier

FIGURE 12 - Output Spectrum
136-160 MHz Model

FIGURE 9 - Power Output versus Frequency. 160-174 MHz Amplifier

FIGURE 11 - Power Gain and Input VSWR,
versus Frequency, $160-174 \mathrm{MHz}$ Amplifier

FIGURE 13 - PCB Photomaster

Note: Grounding eyelet locations are indicated by dots.
The Printed Circuit Board shown is 75% of the original.

Design Considerations

The lower frequencies ($136-160 \mathrm{MHz}$) are serviced by a design utilizing low-cost dipped silver mica capacitors. For a broadband response in the higher frequencies; ($160-174 \mathrm{MHz}$), low inductance, ceramic chip capacitors are used.
Ease of assembly, repeatability and fast economical construction received the utmost consideration in the design of this amplifier. TO-220 devices result in a low profile circuit which minimizes the volume occupied by the amplifier. Additionally, the MRF262 transistor used in the output stage is a rugged device, able to tolerate high load SWR conditions. Maximum use of printed inductors assures good repeatability.
Both amplifiers utilize stagger tuned networks to enhance bandwidth. Additionally, each design retains excellent gain and stability characteristics when narrow banded. All of these merits are attributed to optimum device gain and the reasonably high inter-stage impedance levels incurred at these power levels.

Circuit Description

The amplifier has two stages and uses 5.0 W and 15 W rated transistors to accomplish the desired gain and power output. Two stage transmission line Chebyshev networks accomplish coupling and impedance transformation at the input and output. Nominal impedance levels are 50 ohms, while the interstage network transforms device impedances directly. Values for the reactive elements of these networks were almost entirely generated by computer aided design. Although the interstage network is straight forward in design, it required some modification and refinement of computer generated values to achieve the final results and accomodate available component values.

Construction

The amplifier is assembled on double-sided G-10 fiberglass board with 1 oz . copper cladding. The format is $2.0^{\prime \prime} \times 3.5^{\prime \prime}$ and a photomask is provided (Figure 13). Some method of electrically connecting the upper and lower ground plane is required. Eyelets or plated through holes are recommended, but alternative measures such as short pieces of wire soldered to both planes can be used successfully. Failure to provide an adequate or consistent ground plane may result in poor RF performance, instability, and unpredictable tuning. The reverse side of the board retains all copper and forms the ground plane. Component placement and the recommended position of grounding eyelets is shown in Figures 13, 5 , and 7. All component leads are positioned and soldered above the board. There are no through connections other than grounding points. This facilitates component positioning, replacement, and accessability. The transistors are fitted into a $0.4^{\prime \prime}$ by $0.65^{\prime \prime}$ opening in the board and are installed directly against the heat sink. A coating of heat sink compound such as Dow Corning 340 between each device and the heat sink improves thermal contact and helps prevent power slump.

At frequencies beyond 100 MHz , dipped silver mica capacitors generally become inductive, and do so with a high degree of unpredictability. This phenomenon is also dependent upon component value and becomes more pronounced with an increase in frequency. (Ref: 1, 2, 3). To maintain predictable performance beyond 160 MHz , a second. layout featuring ceramic chip capacitors is offered (Figure 3, 6, 7). The design of these capacitors allows them to remain capacitive beyond the VHF frequencies. Maintaining the bandwidth of $160-174 \mathrm{MHz}$ with this circuit board, the networks become lossy and power output suffers slightly. Variable capacitors may make this condition more tolerable and can be installed in the input and interstage networks. In some cases the ease of adjustment and added flexibility would justify the added cost of the variable capacitors.

Performance

Normally, this amplifier will not require tuning provided that components are as described and are positioned as shown on Figure 5 and 7. If an accurate method of measuring power is available, a quick check of amplifier performance can be accomplished by comparing its parameters with the performance data of Figures 8 through 11. Drive must be maintained at $220 \mathrm{~mW}(\pm 20 \mathrm{~mW})$ and VCC held to 12.5 Vdc to accurately reproduce the overall response noted here. Allow some degree of tolerance (10\%) in output power to account for differences inherent in component values and transistor performance. To assure broadband performance and tailored frequency response, the amplifier should be checked using a swept frequency generator capable of $200-300 \mathrm{~mW}$ output. Tuning for maximum power out and minimum reflected power at band centers will not necessarily provide a broadband response. Figures 8 through 11 graphically depict typical levels of performance achieved with this amplifier. Either version is stable into higher than 3:1 VSWR load mismatch at all phase angles. The output device is tolerant of short term operation into an open or short circuit load at full drive.

Harmonic content of a 150 MHz signal at the output of the dipped silver mica version is illustrated in Figure 12. The 2nd harmonic is approximately -50 dB with respect to the fundamental. This level of performance cannot be maintained across the entire band, therefore, some additional filtering of the output signal will be required to meet more stringent requirements.

With the amplifier mounted on aluminum stock, $2.0^{\prime \prime} \times 8.5^{\prime \prime}$ and $0.090^{\prime \prime}$ thick, a 25% duty cycle (1 min on, 4 min off) produced a temperature of $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ after two hours of operation. A 50% duty cycle (1 min on, 1 min off) raised this temperature to $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ and full key down operation caused a stabilized temperature of $80^{\circ} \mathrm{C}\left(176^{\circ} \mathrm{F}\right)$. All temperatures were measured on the heat sink at the final device with output power maintained at 15 watts. One can safely assume that a panel on the outside edge (i.e., backside) of a transceiver could be successfully used as a heat sink for this amplifier.

60 WATT VHF AMPLIFIER USES SPLITTING/COMBINING TECHNIQUES

Prepared by

Ken Dufour
RF Product Group

Using proven combining techniques to obtain higher output power or added reliability at VHF can be accomplished with excellent results. Simple matching networks and power transistors featuring moderate gain capability can produce a level of performance comparable to that of a single-stage amplifier using a larger, more expensive device. Though not the ultimate answer in VHF amplifier design, the splitter/ combiner method does have distinct advantages over designs that brute force the transistors into a parallel configuration. Current hogging and reduced impedance level problems associated with that technique
are minimized. The exotic materials or expensive board layout required to produce a true push-pull design operating at VHF again makes combining techniques more appealing.
This 60 W amplifier operates from 150 to 175 MHz and features two, low-cost Motorola MRF264 transistors. These devices are designed for operation at VHF and individually produce 30 watts of rated output power and 6.0 dB of gain with a 12.5 volt supply. The amplifier design makes use of a modified Wilkinson combiner technique to produce 60 watts output with a drive level of 15 watts.

FIGURE 1 - Engineering Model

Design Considerations

Experimental work with 90° (quadrature) couplers proved unsuitable for this application. Generally, they are sensitive to mismatch and tend to create instability and loss of power when used in an amplifier. In-phase (Wilkinson) couplers provide an adequate solution to this problem. (Ref: 1) They are relatively insensitive to phase changes and offer good bandwidth. characteristics.

Printed transmission lines for the frequency of interest can become somewhat cumbersome on standard circuit board material. Therefore, lumped reactances ($\mathrm{L} 1,2,9,10$ and $\mathrm{C} 1,2,3,14,15,16$, Figure 5) are used to simulate $70.7 \mathrm{ohm} 1 / 4$ wave transmission lines, the main element in the couplers. This approach not only conserves board space, but provides a means to compensate for small variations in associated component values.
Microstrip techniques are incorporated in the amplifier networks to balance RF performance and promote reproducibility. Because of the lower circulating currents and reduced component heating in the collector circuitry of low-powered stages, smaller capacitors can be used in the networks at that point than would be required for a single-ended 60 watt design. Separating the major heat producing devices to two areas on the heatsink produces a more even heat transfer to the ambient air. The combined amplifier presented here has good harmonic suppression (Figure 8). A low-pass filtering effect is noticeable with the Wilkinson combiners.

Construction and Alignment

A 1:1 photomask of the circuit is provided in Figure 9 and double-sided $G-10$ fiberglass board with two-ounce copper cladding is recommended for construction. The ground points are indicated on the PCB photomask.
The inductors required for the splitter/combiner are constructed by winding the appropriate number of
turns (closewound) on a temporary $1 / 8$ inch form and then separating the individual turns by 0.020 inch. An Xacto number 11 knife blade was used for this purpose and provides the correct turns spacing. The $100-\mathrm{hm}$ isolation resistors, R1 and R2, must be noninductive and carbon composition resistors proved to be entirely adequate. In a properly tuned and balanced amplifier these resistors should remain fairly cool to the touch during normal operation. Each amplifier and coupler input and output port is designed to be terminated into 50 -ohms to facilitate testing into a 50.0 hm system.

A PCB bridge (Figures 3 and 9) is used to carry all of the de feed circuitry. It acts as a continuation of the ground plane and enhances circuit stability. Solid copper (0.027 inch) and double-sided circuit board were used as a construction medium and no difference in performance was noted with either material.

Initial alignment is accomplished by driving the amplifier with a 5 watt CW source at approximately 160 MHz . The applied voltage is set at 12.5 volts and the variable capacitors, C 4 and C 5 , are adjusted in an alternating manner to provide maximum output power. Full drive (15 watts) is then applied and the capacitor adjustments are repeated. At this point, the circuitry should be delivering 60 watts or more to the 50 ohm load with the 15 watts input. After the final adjustments are made, the isolation resistor temperature in either coupler should be relatively cool to the touch and the input VSWR should be at a minimum. Best results will be obtained if the transistors are beta matched $(\pm 10 \%)$ prior to installing them in the circuit.

Additional Comments

This amplifier has been extensively tested for rug. gedness and reproducibility. The 15 watt input level makes it compatible with the EB-90 two-stage VHF amplifier as a driver. Together they form a chain requiring 200 mW of input power for a 60 watt or more output.

References

1. Lawrence R. Laveller; "Two Phased Transistors Shortchange Class C Amps," Microwaves, Pg. 4854, February, 1978.
2. Ernest J. Wilkinson; "An N-Way Hybrid Power Divider," PGM TT Transactions, pg. 116-118, January, 1960.

FIGURE 2 - Amplifier Layout - Top View

FIGURE 3 - Component Placement

FIGURE 4 - PCB Bridge Details

C1. C16-25 pF Unelco (J101)
C2, C3-15 pF CMO4 Mica
C4. C5 - 68 pF Standex
C6, C7 - Arco 404 Variable
C8, C9 - 150 pF Standex
C10. C11-56 pF Standex
C12, C13-39 pF Standex
C14, C15-15 pF Standex
C17-100 $\mu \mathrm{F} @ 16 \mathrm{~V}$ Electrolytic
C18, C19, C20 - 680 pF Allen Bradley Feedthru

L1, L2 - 7 Turns \# $18,0.125^{-1 D}$
L3, L4, L5, L6 - Printed Inductors
L7, L8 - Printed Inductors
L9. L10 - 7 Turns \#18 AWG, 0.125 ID
L11. L12-4 Turns \#18 AWG, 0.250 iD w/Bead
Q1, 02 - MRF264
RFC1, RFC2 - $0.15 \mu \mathrm{H}$ Molded Choke w/Bead,
Ferroxcube 56-590 65/3B
RFC3, RFC4 - 4 Ferrite Beads each on \#18 AWG
R1 - $100 \Omega 1 / 2 \mathrm{~W}$ Carbon
R2-100 \cap 2.0 W Carbon

FIGURE 6 - Schematic - 60 W Amplitier

FIGURE 6 - Output Power, Efficiency, and Input VSWR versus Frequency

FIGURE 7 - Output Power versus Input Power

NOTE: The Printed Circuit Board shown is $\mathbf{7 5 \%}$ of the original.

FIGURE 8 - PCB Photomaster

GET 600 WATTS RF FROM FOUR POWER FETs

Prepared by

Helge Granberg
Circuits Engineer, SSB

This unique push-pull/parallel circuit produces a power output of four devices without the added loss and cost of power splitters and combiners. Motorola MRF150 RF power FET makes it possible to parallel two or more devices at relatively high power levels. This technique is considered impractical for bipolar transistors due to their low input impedance. In a common-source amplifier configuration, a power FET has approximately five to ten times higher input impedance than a comparable bipolar transistor in a common emitter circuit. The output impedance in both cases is determined by the dc supply voltage and power level. The limit to the number of FETs that can be paralleled is dictated by physical, rather than electrical restrictions, where the mutual inductance between the drains is the most critical aspect, limiting the upper frequency range of operation. The magnitude of these losses is relative to the impedance levels involved, and becomes more serious at lower supply voltages and higher power levels. Since the minimum mounting distance of the transistors is limited by the package size, the only real improvement would be a multiple die package. For higher frequency circuits, these mutual inductances could be used as a part of the matching network, but it would seriously limit the bandwidth of the amplifier. This technique is popular with many VHF bipolar designs.

In paralleling power FETs another important aspect must be considered: If the unity gain frequency ($\mathrm{f} \alpha$) of the device is sufficiently high, an oscillator will be created, where the paralleling inductances together with the gate and drain capacitances will form resonant circuits. The feedback is obtained through the drain to gate capacitance ($\mathrm{C}_{\mathrm{rss}}$), which will result in 360° phase shift usually somewhere higher than the amplifier bandwidth. Thus, the oscillations may not be directly noticed in the amplifier output, but may
have high amplitudes at the drains. This can be cured by isolating the paralleling inductance, which consists of the dc blocking capacitors (C7-C10, Figure 2) and their wiring inductance from the gates. Low value noninductive resistors which do not appreciably affect the system gain can be used for this purpose.

FIGURE 1 - Photograph of the 600 Watt $2.0-30 \mathrm{MHz}$ MOSFET Linear Amplifier

CIRCUIT DESCRIPTION

Figure 2 shows a detailed schematic of the 600 W RF FET amplifier. It can be operated from supply voltages of 40 to 50 depending on linearity requirements. The bias for each device is independently adjustable, therefore no matching is required for the gate threshold voltages. Since the power gain of a MOSFET is largely dependent on the drain bias current, only g_{m} matching is required, and it can be only $\pm 10 \%$.

The circuit board was designed to allow several different gate biasing configurations (Figure 3). In circuit " a ", which is used in the amplifier described here, D1 serves a purpose of preventing positive voltage from getting fed back to the bias source in case of a draingate short in a FET. This protects the other three devices from gate overvoltage. C1-R2 combination establishes an RF shunt from the gate to ground, which is necessary for stabilization. R4 could also be used for this purpose, but it would have to be a relatively low value, resulting in unnecessary high current drain from the bias supply. Normally R4 is only a de return
to ground, which is required with D1 preventing an open circuit in one direction. R3 is a low value resistor to prevent parasitic oscillations in a parallel FET circuit, as discussed earlier. Variations " b " and " c " are basically the same, except for $R 2$, which can be used to control the amount of RF rectified by D1. In addition to blocking the de in one direction, D1 can be used for proportional biasing, in which the bias voltage increases with RF drive. This allows the initial idle current to be set to a lower than normal value, increasing the system efficiency.

FIGURE 3 - Various Bias Configurations

a.

c.

The gate de-Qing in these circuits is done with R4. Circuit " d " is another variation, where D1 is moved in series with R1 eliminating R4. The value of R1 must be high to prevent destruction from a drain-gate short. The common bias is derived from IC1 (MC1723CP) which provides both line and load regulation. The line voltage regulation is defeated when the voltage to Pin 12 falls below 24 V , and the bias input can be used for Automatic Level Control (ALC) shut-down or linear ALC function. The regulator output voltage is adjustable from 0.5 to 9.0 volts with R5, which can be permanently set to $7.0-8.0 \mathrm{~V}$. This voltage is also controlled by the combination of R10 and R25. R25 is a ther-

b.

d.
mistor, and is tied to the heat sink for bias temperature compensation.
In Figure 2, the input from T1 is fed to the gates through C7-C10 and R15-R18. The input matching is initially done at the high end of the band (30 MHz). In contrast to a bipolar push-pull circuit, where the base-to-base impedance varies with class of operation, the gate-to-gate impedance of a common source FET circuit is always twice that from gate to ground. In this case, where two FETs are in parallel on each side, the gate-to-gate impedance equals the gate-to-ground impedance of one device. From the Smith chart information (Figure 4) this can be established as 3.45 ohms.

FIGURE 4 - Series Equivalent Impedance

The effect of R11-R14 and R21-R24 is minimal and can be disregarded. Considering the standard integers for T1 impedance ratio, $9: 1$ with its 5.55 ohms secondary appears to be the closest. This would set the values of R15-R18 at 2.0 ohmseach, which would result in 3.5 dB gain loss, and about 1.0 W would be dissipated in each resistor. For this reason it was decided to reduce their values to 1.0 ohm , and trim the values of C 1 and C 2 for lowest input VSWR. As a trade-off, the VSWR will peak slightly at $15-20 \mathrm{MHz}$, but still remain below $2: 1$.

Negative feedback is derived from a winding in T2 through R19 and R20. Its purpose is to equalize the load impedance for T 1 and reduce the amplifier gain at low frequencies. Since the gate to source capacitance of a MOSFET is fairly constant with frequency, the amount of feedback voltage is inversely proportional to its reactance. This function should be more or less linear, unless the inductive reactance of T is too low, or if resonances occur somewhere in the circuit. No computer analysis (as in Reference 2) was performed on the negative feedback system. Instead a simple approach described in Reference 1 was taken, where the gain difference between 2.0 and 30 MHz determines the feedback voltage required to equalize the voltages of the secondary of T1 at these frequencies. With an input impedance of 45 ohms at 2.0 MHz , and the feedback source delivering 15 V (RMS), (Pout $=600 \mathrm{~W}$) the values of R19 and R20 will be around 10 ohms each.
A ferrite toroid or a two hole balun type core can be used for T2. Relatively low μ i material with high curie temperature is recommended, since the minimum inductance requirement for the dc feed winding is less than $2.0 \mu \mathrm{H}$. Depending on the material, $T 2$ can reach temperatures of $200-250^{\circ} \mathrm{C}$, which the wire insulation
must also be able to withstand. Several different output transformer configurations (T3) were tried, including a transmission line type in Figure 5. Although difficult to make, it has the advantage that low $\mu \mathrm{i}$, low loss ferrite can be used with multiple turn windings. At this power level, heat in the output transformer was a major problem. High permeability materials, required in the metal tube and ferrite sleeve transformers could not be used because of their higher losses and low curie temperature. On the other hand, low μ i cores with larger cross sectional areas were not readily available. To reach the minimum inductance required for 2.0 MHz , t wo of these transformers, with low permeability ferrite cores were connected in series. Both have $9: 1$ impedance ratios. Alternatively the secondaries can be connected in parallel with twice the number of turns (6) in each. C11 must withstand high RF currents, and must be soldered directly across the transformer primary connections. Regular mica or ceramic capacitors cannot be used, unless several smaller values are paralleled.

PERFORMANCE

Due to the mechanical proximity of the four MOS FET devices, the RF ground of the circuit board is poor, and results in $1.0-1.5 \mathrm{~dB}$ gain loss at 30 MHz , which can be seen in Figure 6. The ground plane can be improved by connecting all source leads together with a metal strap over the transistor caps. Another method is to place solder lugs under each transistor mounting screw, and solder each one to the nearest source lead. In this case, the heat sink will serve as the $R F$ ground. Although the 3rd order IM distortion is not exceptionally good, (Figures 6,7) the worst case 5th order

FIGURE 5 - Number of Turns Shown is not Actual

products are better than -30 dB at all frequencies, and as can be expected with FETs, the 9 th and higher order products are in the -50 to -60 dB level. It can also be noticed from Figure 6, that the IMD does not increase at reduced power levels, as common with bipolar amplifiers. The even order output harmonic content depends greatly on the device balance as in any push-pull circuit. The worst case is at the low frequencies, where numbers like -30 to -40 dB for the 2nd harmonic is typical. The highest 3 rd harmonic amplitude of -12 dB is at $6.0-8.0 \mathrm{MHz}$ carrier frequency. Information on suitable harmonic filters is available in Reference 3. The stability of the amplifier has been tested into a 3:1 load mismatch at all phase angles. It was found to be completely stable, even at reduced supply voltages.

In a MOSFET (common source) the ratio of feedback capacitance to the input impedance is several times higher than that of a bipolar transistor (common emitter). As a result, a properly designed FET circuit should be inherently more stable, especially under varying load conditions.

It must be noted, that special attention must be given to the heat sink design for this unit. With the 200-300 watts of heat generated by the transistors in a small physical area, it must be conducted into a heat sink efficiently. This can be only done with high conductance material, such as copper. If aluminum heat sink is used, a copper heat spreader is recommended between the transistor flanges and the heat sink surface.

FIGURE 6

figure 7

X denotes feed-through eyelets
Q denotes terminal pins
(O) denotes board spacers

FIGURE 8 - Component Locations

NOTE: The Printed Circuit Board shown is 75% of the original.

REFERENCES

1. "A Two-Stage 1.0 kW Solid-State Linear Amplifier," AN-758, Motorola Semiconductor Products, Inc.
2. "Low-Distortion 1.6 to 30 MHz SSB Driver Designs," AN-779, Motorola Semiconductor Products, Inc.
3. H. Granberg, "MOS FET Power in the kW Level," QST, Dec., 1982, Jan., 1983

BIBLIOGRAPHY

1. O'Hern, Simple Low-Pass Filter Design, QST, Oct. 1958
2. Wetherhold, Low-Pass Filters for Amateur Radio Transmitters, QST, Dec., 1979
3. Granberg, Power MOS FETs versus Bipolar Transis. tors, RF Design, Nov. - Dec., 1981.
4. Hejhall, VHF MOS Power Applications, MIDCOM Paper, Dec., 1982
5. DeMaw, Practical Class-A and Class-C Power FET Applications at HF, MIDCOM Paper, Dec., 1982

A 30 WATT, 800 MHz AMPLIFIER DESIGN

Prepared by
Alan Wood
Semiconductor Product Sector

INTRODUCTION

Simplicity and compactness mark the design of this 30 Watt amplifier designed for the 800 MHz mobile communications band. The amplifier uses the internally matched MRF844 transistor in a common base Class C configuration providing a minimum of 5.0 dB gain over a fixed tuned bandwidth of 800 to 870 MHz at 12.5 volts.

Lower manufacturing costs are of prime concern to land mobile equipment suppliers and single-board, fixed tuned transmitter amplifier designs are becoming increasingly common. Two versions are therefore presented, one using glass teflon laminate and the second using less expensive G-10 board. (Figure 1).

Figure 1 - Two Versions of MRF844 Broadband Circuit

B1, B2-	Ferroxcube Bead 56-590-65/38
C1-15 pF	Mini-Underwood Mica
C2-12 pF	Mini-Underwood Mica
C3, C4-18 pF	Mini-Underwood Mica
C5-91 pF	Mini-Underwood Mica
C6-1000 pF	Unelco Mice
C7-1.0 $\mu \mathrm{F}$	Electrolytic
C8-36 pF	Mini-Underwood Mica

L1, L2 - 4 Turns, \#20 AWG Enameled Wire 0.15" ID
Z1-Z4 - Microstrip; See Photomasters
Board Material - See Text

Flgure 2 - Circult Schematic of 30 Watt $806-870 \mathrm{MHz}$ Amplifier

CIRCUIT DESCRIPTION

The circuit is designed to be driven from a 50 ohm source and be terminated in a nominal 50 ohm load. Both input and output matching networks are similar in design and consist of two element short-step Chebyshev transmission line transformations fabricated as microstrip lines (Reference 1). Mini-Underwood mica capacitors are used at the input and output of the transistor, transforming the complex inductive impedance to an essentially non-reactive real impedance over most of the band. A minimum of additional components provide the dc biasing and RF decoupling. Refer to Figure 2 for a schematic diagram of the amplifier.

Design of microstrip circuits using a G-10 board material is complicated by several factors. This is discussed in detail in Reference 2. The main points to be considered are, the lack of control over the dilectric constant in the manufacturing process; a greater tolerance in the dilectric thickness than in the case of higher quality substrates intended for microstrip applications, and changes in relative dilectric constant with frequency. Despite these apparent disadvantages, G-10 board can be used successfully if the ultimate in bandwidth is not sought.
Frequency dependence of the relative dilectric constant was determined by characterizing a nominal 25 ohm microstrip line over a wide range of frequencies using an automatic network analyser. Compensation for the coaxial to microstrip transitions was established using a computer optimized model (Reference 3). Figure 3 is a graph of the relative dilectric constant versus frequency determined for the laminate used by this method. It should be noted that differences in epoxy composition could affect both the low frequency dilectric constant and its frequency dependence.

CONSTRUCTION PROCEDURES

Both amplifiers were mounted on $0.5^{\prime \prime}$ thick copper blocks, $2.25^{\prime \prime}$ by $2^{\prime \prime}$ in the case of the G-10 board design
and $3^{\prime \prime}$ by $2^{\prime \prime}$ for the glass teflon board. The blocks were slotted to a depth of $0.130^{\prime \prime}$ to enable mounting the transistor leads level with the top of the circuit board. Thermal compound was used between the transistor flange and the mounting block to ensure low thermal resistance. With the block held in contact with a larger heatsink this configuration proved adequate for test purposes. In a production design, the transistor would normally be thermally connected to the case of the transmitter. However, care should be taken to operate the device under all conditions within the Power Dissipation limits shown on the data sheet.
As with any circuit designed to work at UHF frequencies, good grounding is essential for best performance and stability. Copper foil was wrapped around the board adjacent to the transistor mounting to connect the underside ground plane to the transistor common leads.

Fgure 3 - Relative Dilectric Constant (G-10) versus Frequency

Additional copper foil was wrapped around the board to connect the 1000 pF Unelco capacitor pad to the lower ground plane.
Positioning of the emitter and collector shunt capacitors is critical to the resulting amplifier performance. The capacitors should be mounted as close to the transistor case as possible. Minor tuning of the circuit can be achieved by lateral movement of these components. Larger tuning adjustments can be incorporated by replacing part of the fixed shunt capacitance by a variable trimmer.

Figure 4 a - Typical Performance in Broadband Circuit

Flgure 4b - Output Power versus Input Power

Figure 4 - Output Power versus Supply Voltage

Both circuits use 28 mil dilectric 2 ounce copper clad laminate. Refer to Figure 6 for a 1:1 Photomaster of the circuit boards.

PERFORMANCE DATA

Similar performance was measured for the same part soldered in either circuit. Typical performance curves for this broadband design are shown in Figures 4a, 4b, and 4 c for the glass teflon design and Figures $5 \mathrm{a}, 5 \mathrm{~b}$, and 5 c for the G-10 based circuit. Circuit losses in the G-10 board were less than expected and were certainly minimized by the short fractional wavelength transmission lines employed.

Flgure 5a - Typtcal Performance in Broadband Circuit

Figure 5b - Output Power versus Input Power

Figure 5c - Output Power versus Supply Voltage

EB105

NOTE: The Printed Circuit Board shown is 75% of the original.

a. Photomaster Using Glass Teflon Laminate

b. Photomaster Using G-10 Board

Figure 6 - Two Photomaster Versions of MRF844 Broadband Circult

REFERENCES

1. G. L. Mattheai. Short-Step Impedance Transformers. IEEE Transactions on Microwave Theory and Techniques. Vol. MTT-14 No 8 August 1966.
2. Glenn Young. UHF Microstrip Amplifiers Utilizing G-10 Epoxy Glass Laminate. Motorola Application Note AN-578.
3. M. L. Majewski. Modeling and Characterization of Microstrip to Co-axial Transistions. IEEE Transactions on Microwave Theory and Techniques. Vol. MTT-29 No 8 August 1981.

MOUNTING CONSIDERATIONS FOR MOTOROLA RF POWER MODULES

Prepared by:
Henry Pfizenmayer and Sam Coffman
RF Power Modules

INTRODUCTION

The packaging used for standard Motorola RF Power modules consists of a copper flange on which the substrates are soldered and a non-conductive cover which is either of a "snap-on" or epoxy attached design. The ceramic substrates are either 96% alumina $\left(\mathrm{Al}_{2} \mathrm{O}_{3}\right)$, $\mathbf{9 9 . 5 \%}$ alumina or 99% Beryllium oxide (BeO). These substrates are attached to the copper flange using either lead-tin or indium based soft solders. Typical liquidus temperatures of these solders are in the $149^{\circ} \mathrm{C}$ to $163^{\circ} \mathrm{C}$ range.
The purpose of this paper is to present the mechanical factors which should be considered in mounting these modules in equipment.

MAJOR MOUNTING FACTORS

There are three major considerations in mounting an RF power module. First, the flange is used for the RF electrical ground reference. Typical inductance of the connection pins used on these modules is about 18 nanohenries per inch or 1.8 nanohenries per 100 mils. Since at 800 MHz a nanohenry has about 5.0 ohms reactance, it is easy to see that it would be almost impossible to achieve a low reactance ground through the use of pins alone. Second, the copper flange provides the thermal path for the removal of the heat produced in the active devices present in the module. Thus, proper thermal handling must be considered in mounting the module. Finally, we must consider the mechanical stresses placed on the module by the mounting techniques used. Here we consider stresses placed on the leads and bending or twisting of the mounting flange which would cause ceramic fractures.

MODULE FLANGE FLATNESS

During the processing of the module, consideration has to be given to the various stresses produced. Through analysis of these stresses and the materials used we can arrive at the maximum allowable flange bending which can be tolerated from a mechanical standpoint. In determining the allowable flange flatness conditions, both analytical and empirical analyses were performed. Agreement between both of these analyses was very good. The theoretical analysis was performed by Motorola Government Electronics Group, Mechanical Engi-
neering Laboratory. GEG was selected to do this work because they have done extensive work in the area of laminate stresses and have available several proven computer programs which apply directly to this problem. The assigned task was to provide an estimate of the maximum amount of initial bow (curvature) in the mounting flange which would not subsequently cause the ceramic substrate to fracture in the final assembled state. For the results of this analysis, see Table 1.

MOUNTING CONSIDERATIONS

The theoretical analysis shows that some of the responsibility for proper mounting rests on the user. Proper consideration should be given to the following items:

1. Flatness of the mounting area must be such that the final mounting of the module will not bend the flange beyond the limits given in Table 1.
2. Attention must be given to surface finish and cleanliness of the mounting surface. For instance, if one mounts the module with thermal compound and uses a dirty work area which allows 3 to 5 mil particles to be present in the compound, a failure mode can be produced.
3. Another consideration is the movement of material around tapped or punched holes. A tapped or punched hole which leaves a burr on the mounting surface can lead to failure modes.
4. In addition, rigidity of the mounting surface and its material should be considered. For instance, the copper flange on an aluminum heatsink will result in a bimetallic system which can create a bending problem. Consideration of the direction of ribs in a heatsink should be made to maximize stiffness in the direction of bending or adequate thickness of the heatsink must be provided to control bending.
It is not desirable to mechanically constrain the ends of the module so that no "slip" is possible between the module flange and its mounting surface. If the ends are constrained and the temperature differential between the module and the heatsink is significant, there can be enough bending of the module flange to break the ceramic. An example calculation is shown below to demonstrate this problem.
Assume that the ends of the flange are constrained at the centerline of the mounting holes. (2.4 inches for MHW612A/MHW710/MHW720 series modules). Assume
that the module is mounted on a machined aluminum heatsink.

Thermal expansion coefficients in μ inch/inch $/{ }^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \text { Aluminum } 25 \times 10^{-6} \\
& \text { Copper } 17 \times 10^{-6} \\
& \mathrm{~L}=2.4 \text { inches }
\end{aligned}
$$

For a reasonable approximation assume the thermally induced bending creates an isosceles triangle as shown in Figure 1.

FIGURE 1

Assume that the module flange changes temperature from $25^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ and the heatsink changes temperature from $25^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ in the same time (obviously the heat input to the system comes from the copper flange - more on this later).

Heatsink $\Delta \mathrm{L}$ (aluminum) $=2.4^{\prime \prime} \times 5^{\circ} \mathrm{C} \times 25 \times 10^{-6}$

$$
=0.0003^{\prime \prime}
$$

Flange $\Delta \mathrm{L}$ (copper) $=: 2.4 \times 25^{\circ} \mathrm{C} \times 17 \times 10^{-6}$
$=0.00102^{\prime \prime}$
So length $A B C=2.40102, A B=1.20051^{*}$
length $A C=2.4003^{\prime \prime}, A D=1.20015$ And $\mathrm{AB}^{2}=\mathrm{AD}^{2}+\mathrm{BD}^{2}$

$$
\mathrm{BD}=\sqrt{\mathrm{AB}^{2}-\mathrm{AD}^{2}}
$$

So $B D=0.029397$ inches which far exceeds the allowable flange bend.
This analysis also points out the advantage of keeping the heatsink and the flange at lowest possible temperature differential through the use of thermally conducting compounds between the surfaces.
For instance, in the example given above with an aluminum/copper system, the copper flange will remain in tension at any temperature above the temperature at which the system was constrained as long as the temperature ratio between the heatsink and flange is kept less than the ratio of the thermal expansion coefficients or 25/17. Incidentally, this assumes that the heat input source to the system originates in the copper flange. This situation points out the folly in some types of temperature cycling testing. For instance, if the aluminum/copper system is constrained at $25^{\circ} \mathrm{C}$ and is uniformly heated to say $125^{\circ} \mathrm{C}$, the copper remains in tension - if the system is cooled below $25^{\circ} \mathrm{C}$, the copper will go into compression. This is exactly the opposite situation obtained when the heat input to the system comes from the copper flange.
The above is a rather elementary analysis of the thermal effects on the module/heatsink system. Many other factors are involved such as relative strengths of the materials involved, bending of the mounting screws and so forth.

What should be derived from this discussion is that the design of the mounting for the module/heatsink system is not a simple one and should not be done in a casual manner.

Our recommendation is that a mock version of the system be constructed early in the equipment design and thermal cycling performed both with external heat input to the system and with heat input to the system from the module. This is a very effective "analog computer" and direct measurements of the flange/heatsink deflections can be made. In this manner the actual expected flange excursions can be compared to the recommended maximum flange bending to determine whether the design is adequate. Incidentally, the recommended maximum deflection values given in Table 1 have a safety factor of approximately 2 . That is, the deflection required to crack the ceramic is approximately twice the value given. Table 1 includes data showing the empirical deflections required to fracture a ceramic board in the module.
5. We strongly recommend the use of a good thermal compound between the mounting surface. Sufficient material must be used to fill all gaps which may be present. We have not been able to create any mechanical problem with excess compound as long as there is a path for the excess material to escape as the module is tightened down with the mounting screws. At this point it should be pointed out that unless both the module flange and the heatsink were lapped to absolute gauge block flatness, there will always be a significant air gap between areas of the flange and the heatsink. Since it is obviously not practical to achieve a lapped surface of this quality, this portion of the mounting problem resolves to one of mechanical rather than thermal considerations. As an aside, some of the Motorola modules also have machined surfaces which may be oxidized to some degree. Infrared thermography of the active die was performed to see if there was any thermal degradation due to this oxide layer and no degradation could be found. This has also been found true on lapped discrete transistor flange mount parts.
Several manufacturers of thermally conductive heatsink compound exist. We have used products from Wakefield and Dow Corning with success.

MOUNTING HARDWARE

Obviously an ideal mounting hardware scheme would be one in which the clamping pressure remained constant with age. One way of achieving this is through the use of conical washers - one trade name is Belleville washers. Another possibility is "wavy" washers. Proper selection of mounting hardware and torque is also necessary. We recommend the following mounting hardware sizes and torques:

$$
\begin{array}{ll}
4-40 & 3 \mathrm{in} / l \mathrm{~b} \\
6-32 & 5 \mathrm{in} / \mathrm{b} \\
8-32 & 5 \mathrm{in} / \mathrm{b}
\end{array}
$$

TIGHTENING SEQUENCE

A very important factor to be considered in mounting the module is the proper torquing sequence. The personnel involved in mounting the modules should be given careful instruction and their procedures monitored at regular intervals. Since the flanges are punched from a
roll of material, there can sometimes be a small "roll-up" at the end of the mounting flange. If one considers what can happen if the mounting hardware were tightened completely at one end first, it is easy to see that the other end could be "lifted" off the mounting surface well in excess of the allowable flange bending tolerance.
This should be avoided by first lightly alternately snubbing down the mounting hardware "finger-tight." Next, the hardware can be torqued to its final specification again in at least two sequential steps.

THE IMPORTANCE OF THIS TORQUING SEQUENCE CANNOT BE STRESSED TOO HIGHLY

LEADS

The leads used on the standard Motorola RF Power Modules are of either tinned copper, gold or silver plated KOVAR, or pure silver strap, typically 5 to 10 mils thick and 15 to 20 mils wide. The leads are intended for making electrical connections to the modules only and are not intended to support the module at any time in the assembly process. Consideration should be given to the stresses which may occur during mounting or testing. Poorly designed test fixtures can create lead stresses far above those encountered in the end-use equipment. It is recommended that the fixture be designed so the leads are always clamped after the flange is clamped and the tolerances be such that an upward force is never placed
on the leads, even as the fixture wears. Motorola's specification for lead pull in shear and peel are 908 gm shear and 454 gm peel for BeO boards and 1500 gm shear and 750 gm peel for alumina boards. Modules from PC86, 90, and 91 product lines use BeO boards. Modules from the PC87, PC103 line use one alumina and one BeO board. PC41, PC64, and PC104 use alumina boards.

DEFLUXING

These modules are designed to be manually soldered into an assembly. The modules have a silicone die coat over the active die, MOS capacitors, and nichrome resistors. The die coat used will not withstand the normal flux removal fluids and severe reliability problems could be incurred if the flux removal fluids or solder fluxes penetrate the inside of the module. We recommend a flux activity of no more than R or RMA be used.

CONCLUSION

In mounting RF power modules, the following major areas should be considered:

1. Heatsink flatness.
2. Use thermal compound - eliminate dirt or grit in the compound or on mounting surfaces, use an adequate amount to fill gaps.
3. Tighten modules down in an alternate manner "finger-tight" before final torquing.
4. Be careful with defluxing operations.
5. Consider lead stresses, both in mounting and testing.

TABLE 1 - Maximum Deflection

DEVICES	THEORETICAL DEFLEGTION TO BREAK		$\begin{aligned} & \text { DEMPIRICAL } \\ & \text { DEFLECTION TO } \\ & \text { BREAK } \end{aligned}$		MAXIMUM RECOMMENDED DEFLECTION COMBINED HEATSINK \& FLANGE		OUTGOING QA SPEC. (MAX)	
	LINE		MIN	AVG	CONVEX	CONCAVE	CONVEX	CONCAVE
MHW709, 710	PC41	0.015	0.0190	0.0218	0.008	0.010	0.005	0.005
MHW720 *	PC64	0.015	0.0190	0.0206	0.008	0.010	0.005	0.005
MHW720 **	PC64	0.011	0.0075	0.0079	0.007	0.0085	0.003	0.005
MHW720A	PC104	-	0.0180	0.0206	0.008	0.010	0.005	0.005
MHW612, 613 \dagger	PC86	0.0025	0.0019	0.0028	0.0015	0.002	0.001	0.002
MHW612A, 613AT	PC87	0.011	0.0103	0.0108	0.007	0.0085	0.003	0.005
M HW 808	PCSO	-	0.0025	0.0034	0.0015	0.002	0.001	0.002
M ${ }^{\text {WW808A }}$	PC103	-	0.0065	0.0070	0.0035	0.004	0.0015	0.0025
MHW820	PC91	0.005	0.0073	0.0084	0.004	0.005	0.002	0.003
ALL UNITS IN INCHES								
- PC84 was changad to alumina board - BeO carrier transistor construction similar to PCA1 in Februery, 1983. All product with date code .883 and after has this construction.								
-- Old construction of PC64 with total BeO output board.								
-.- Measured deflection to break a substrate within 3 to 5 seconds of epplication of force.								
t These devices will be obsolete on September 30, 1983. Contact Motorola for the current availability and recommended discrete transistor replacement lineup.								

LOW COST UHF DEVICE GIVES BROADBAND PERFORMANCE AT 3.0 WATTS OUTPUT

Prepared by
Dan Moline and Dan Bennett
Motorola RF Circuits Engineering

INTRODUCTION

The major cost element in low-to-medium power (1.0$5.0 \mathrm{~W}) \mathrm{RF}$ transistors is the package. Several years ago Motorola took a major step in limiting cost increases by introducing the common emitter TO-39 package. Through the use of appropriate circuit design and construction techniques, use of the CE TO-39 can be extended to broadband UHF amplifiers producing up to 3.0 W output power.

This bulletin describes a broadband circuit application of the low cost MRF630 - an all gold metallized, emitter ballasted, high figure of merit transistor capable of 3.0 W output power with 10 dB gain at 512 MHz . A photo of the amplifier is shown in Figure 1. Emphasis is placed on mounting techniques which minimize parasitic inductances and maximize heat transfer.

CONSTRUCTION

TO-39's user! as RF amplifiers are most commonly found in transmitter exciter chains mounted on printed circuit boards. The parts are seated on small disc shaped insulators and are heatsunk using press-fit "top hat" style radiators (Figure 2). Heat is inefficiently conducted upwards through the metal can (Figure 3) and radiated by commercially available heatsinks, called "top hats". As a result, the 0 JA is excessive, causing elevated junction temperatures and thermal slump problems. Because the TO-39 is situated above the PC board resulting in long leads, input Q's are also excessive and combine to limit broadband performance and device gain. In low power applications $(<1.0 \mathrm{~W})$ and VHF frequencies or lower, the problems mentioned above may not be noticeable. Higher power devices

FIGURE 1

FIGURE 2

such as the MRF630, however, should be treated with the same considerations as any other RF power transistor (i.e., provisions for proper heatsinking and grounding).

When using an SOE power transistor, heatsinking is simplified with the inclusion of a stud or flange. Since TO-39's have neither, some modifications are required. Figure 4 depicts a means of heatsinking by soldering a "flange" to the bottom side of the TO.39 package, thus providing a path for heat flow directly beneath the transistor die. The "flange" is secured to the amplifier heatsink by one or two screws. With this arrangement, maximum heat dissipation can be provided with a minimum amount of space consumption. This method also creates better electrical grounding as the package is now mechanically connected to chassis ground. The attachment of this "flange" provides improvements in both grounding and heatsinking. Both are fundamental requirements to obtain the expected performance from an RF power T ().:39 such as the MRF6i30.

CIRCUIT DESCRIPTION

The circuit, which was optimized for the MRF630, uses a distributed element design. 'Tight tolerance control is achieved by substituting transmission lines for inductors and specifying capacitor placement carefully. With this approach, good broadband performance is possible.

Since transmission line characteristics are dependent on line widths, dielectric properties and circuit board thickness. glass teflon circuit board is generally selected, as it offers the best tolerance control over the latter two variables. The major drawbacks of glass teflon circuit board are its low dielectric constant and relatively high price. A less expensive alternative. which was used in the construction of the MRF630 implifier, is (ilo printed circuit board. Its lower price coupled with its higher dielectric constant results in a smaller circuit and lower overall cost. The dielectric constant of (B 10 is not a controlled parameter, yet Glo is consistent enough to be useful for many applications at UHF frequencies.

"Mini" clamped mica capacitors were chosen for the matching components in this amplifier design because of their low cost, availability and very high " $(\mathbb{Q}$ ". Mica is an extremely good dielectric and these capacitors. if carefully soldered (minimizing capacitor series lead inductance), boast a higher series reasonant frequency than some chip capacitors.
The use of G10 printed circuit board, "mini" clamped mica capacitors and the MRF630, enhance component repeatability, affordability, and availability.

PERFORMANCE

Broadband circuit performance is displayed in Figure 5 and a typical gain curve is shown in Figure 6. As can be seen, the MRF6:30 has excellent turn-on characteristics and saturated power capability. The normal gain roll-off above 490 MH \% is expected but was minimized by optimizing both input and output impedance matching net works above that frequency. By adding additional matching sections, broadhand performance down to 400 MHz could be achieved with respectable input VSWR's.
With the addition of the copper "flange" in the circuit assembly, average device 0 J -HS was limited to $12.3^{\circ} \mathrm{C} / \mathrm{W}$ (dissipated power $=4.0 \mathrm{~W}, \mathrm{~T}_{\mathrm{C}}=60^{\circ} \mathrm{C}$). The MRF630 was also mounted directly to the bottom of the printed circuit board, which was placed directly against the heatsink. The of-HS degraded to only $15.6^{\circ} \mathrm{C} / \mathrm{W}$ under the same conditions of power dissipation. If the PC board were "floating" using the same technique, higher θ_{J} J-HS's would be observed. Assuming all circuit components were to be mounted in strip. line fashion, allowing the PC board to be mounted directly to the heatsink, adequate heatsinking could be obtained without the addition of the "flange". The copper "flange" method of heatsinking is highly recommended for standard printed circuit boards which are isolated from the chassis heatsink.
An exploded view of the amplifier showing printed circuit board, flange and heatsink is shewn in ligure 7 . Figure 8 is a circuit schematic including parts list, while Figure 9 shows details of part location on the P'C board. Finally, as an aid to duplication of the amplifier described herein. Figure 10 is a $1: 1$ photo master of the printed circuit board.

FIGURE 5 - Broadband Performance

FIGURE 6 - Output Power versus Input Power

SUMMARY

Outlined in this article are methods of assuring the hest possible performance from a low cost package; specifically, the MRF6i31 T()-i9. If good construction practices are followed to ensure proper heatsinking and hrounding. performance comparable to an SOE can be demonstrated, taking advantage of the cost benefits oflered by a TO:39.

FIGURE 7 - Exploded View of Amplifier Assembly

FIGURE 8 - Circuit Schematic and Parts List

C1. C3-10 pF Mini-Unelco
C2 - 36 pF Mini-Unelco
C4. C5 -0.018μ F Chip Capacitor
C6 - 0.1μ F Dipped Capacitor
C7-1.0 $\mu \mathrm{F}$ Electrolytic
R1-12 $\Omega-1 / 4$ W Resistor

RFC1 $-0.15 \mu \mathrm{H}$ Mini-Molded Choke
RFC2 - $1.0 \mu \mathrm{H}$ Mini-Molded Choke
RFC3 - $0.15 \mu \mathrm{H}$ Molded Choke
TL1 - Transmission Line $0.105 \times 1.110^{\prime \prime}(W \times$ L)
TL2 - Transmission Line $0.053 \times 0.987^{*}(\mathrm{~W} \times \mathrm{L}$)
Board Material - $2 \mathrm{Oz} .0 .0625^{\prime \prime}$ Epoxy Fiberglass (G-10)

FIGURE $10-1: 1$ Photo Master

NOTE: The Printed Circuit Board shown is 75% of the original.

RELIABILITY AND QUALITY ASSURANCE

QUALITY LEVELS

RF Products are available from Motorola in three quality levels:

1. Industrial/commercial grade, identified by a prefix such as 2 N , MRF, or MHW on the part number and tested to a published Corporate, JEDEC, or Proelectron specification.
2. Military grade, built and tested per MIL. S-19500 and identified by a 2N prefix and JAN, JTX, or JTXV suffix.
3. Customer-specified grade with screening, testing, and marking determined by the customer to meet his particular requirements. These may range from a custom-marked industrial/commercial grade product to a product which is subjected to the most stringent tests required for space or submarine applications.

POST-ASSEMBLY PROCESSING

After assembly, a produčtion lot is first sent to Final Test, then is transferred to Quality Assurance.

Final Test Processing

In Final Test, 100% of a lot is processed. This processing may be as simple as electrical testing to a data sheet specification or as complex as a series of mechanical and environmental screening tests preceded and followed by electrical tests.

Quality Assurance Processing

Once in QA, high-rel lots may undergo additional 100% screening prior to testing. Using the popular 2N3866* family as an example, Table 1 compares the varying degrees of preconditioning and screening that are done on the 2N3866, 2N3866JAN, 2N3866JANTX and the 2N3866JTXV transistors. For testing, QA uses test sample groups A, B, and C as defined in MIL-STD 19500. Individual tests are defined in MIL-STD-202, 750, and 883. All lots, including industrial/commercial, receive Group A testing, usually to the same specification which is used by Final Test. In addition to the Group A tests, military and customer-specified high-rel specifications usually require Group B and C tests. Table 2 lists the standard LTPD, sample size and lot acceptance number used for Group A testing of standard products at Motorola. Military and high-rel specifications may call for a tighter Group A sample plan. Tables 3 and 4 list the Group B and C test requirements of the 2N3866JAN and 2N3866JANTXV specifications.

Special Processing

Three additional tests that may be specified at extra cost by a high-rel customer are:

1. Scanning electron microscope inspection of a wafer.
2. X-ray examination of metal can transistors.
3. Particle Inclusion Noise Detection (PIND) test to detect loose particles trapped in a package.
[^35]TABLE 1 - 100\% PRECONDITIONING AND SCREENING (2N3866 Family)

Test	MIL-S-750 Method	Condition	2N3866/JAN	2N3866JTX/V
Final Test 1. Electrical Tests (Same as Group A) 2. High Temperature Storage 3. Temperature Cycling 4. Constant Acceleration 5. Hermetic Seal Fine Leak Gross Leak 6. HT R B 7. Electrical Tests (Similar to Group A)	$\begin{aligned} & 1051 \\ & 2006 \\ & 1071 \end{aligned}$	Go/No Go Remove Rejects $200^{\circ} \mathrm{C}, 24$ hours C. 10 cycles $20,000 \mathrm{G} \mathrm{Y}_{1}$ G or H A, B, C, D or F $150^{\circ} \mathrm{C}, 48 \mathrm{hr}, 24 \mathrm{~V}$	100\% Omit Omit Omit Omit Omit Omit	100\% 100\% 100\% 100\% 100\% 100\% 100\%
QA 8. Electrical Tests 9. Establish Identity 10. Electrical Tests 11. Burn In 12. Electrical Tests	ICBO and hfe with Deltas	Go/No Go $\begin{aligned} & 168 \mathrm{hr}, 1.0 \mathrm{~W} \\ & \mathrm{PDA}=10 \% \end{aligned}$	Omit Omit Omit Omit Omit	$\begin{aligned} & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \\ & 100 \% \end{aligned}$

TABLE 2 - STANDARD GROUP A SAMPLING PLANS (Discrete Products)

Characteristic (By Subgroup)	LTPD	Sample Size	Accept Number
Discrete Devices Visual and Mechanical DC Parameters AC and Temperature Parameters Opens/Shorts	3.0	129	1
Discrete Wafers and Dice	3.0	129	1
Visual and Mechanical Multipack and Decca Pack (100\% Sorted) Wafer Sales and Vial Package (no 100\% Sort)	7.0	55	1
DC Parameters AC and Temperature Parameters	1.75	129	0

RELIABILITY AND QUALITY ASSURANCE

TABLE 3 - GROUP B TESTS (2N3866 Family)

Inspection or Test	$\begin{gathered} \text { MIL-S. } 750 \\ \text { Method } \end{gathered}$	Condition	LT P D (Accapt No.)	
			2N3866JAN	2N3868.JTX/V
Subgroup B-1 Physical Dimensions	2066		2011)	2011)
Subgroup B-2 Solderability Temperature Cycling Thermal Shock Hermeticity Fine Leak Gross Leak Moisture Resistance	$\begin{aligned} & 2026 \\ & 1051 \\ & 1056 \\ & 1071 \\ & \\ & 1021 \end{aligned}$	$\begin{gathered} \text { C } \\ \text { B } \\ \text { Illa G,or H } \\ \text { A, B, C, D or F } \end{gathered}$	15(1)	15(1)
Subgroup B-3 Shock Variable Freq. Vib Constant Acceleration	$\begin{aligned} & 2016 \\ & 2056 \\ & 2006 \end{aligned}$	$\begin{aligned} & 1500 \text { G } \\ & 20,000 \text { G } \end{aligned}$	15(1)	15(1)
Subgroup B-4 Lead Fatigue	2036	E	20(1)	2011)
Subgroup B-5 Salt Atmosphere	1041		20(1)	2011)
Subgroup B-6 High Temperature Storage Life	1031	$200^{\circ} \mathrm{C}$	7(1) (340 hours)	5(1) (1000 hours)
Subgroup B-7 Steady State Operating Life	1026	$\begin{gathered} T_{A}=25^{\circ} \mathrm{C} V_{C B}=25 \mathrm{~V} \\ P_{T}=1 \mathrm{~W} \end{gathered}$	7(1) (340 hours)	5(1) (1000 hours)

TABLE 4 - GROUP C TESTS (2N3866 Family)

Inspection or Test	MIL-S-750 Method	Condition	LTPD (Accept No.)	
			2N3866JAN	2N3866JTX/V
Subgroup C-1 Barometric Pressure Thermal Resistance	$\begin{aligned} & 1001 \\ & 3151 \end{aligned}$		10(1)	10(1)
Subgroup C-2 Burnout by Pulsing	3005		10(1)	10(1)
Subgroup C-3 High Temperature Storage Life	1031	Extension of B-6 to $1000 \mathbf{h r s}$	10(1)	-
Subgroup C-4 Steady State Operating Life	1026	Extension of B.7 to 1000 hrs	10(1)	-

Test Descriptions

The following tests are frequently used for screening, acceptance and evaluation of semiconductor devices.

A. Steady State Operating Life (SSOL)

The purpose of this test is to evaluate the bulk stability of the die and to generate defects resulting from manufacturing aberrations that are manifested as time and stressdependent failures.
Conditions: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{PD}=\max$ rated power
B. Intermittent Operating Life (IOL)

The purpose of this test is the same as Operating Life in addition to checking the integrity of both the wire and die bonds by means of thermal stressing.
Conditions: $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{PD}=\max$ rated power. $\mathrm{T}_{\text {(on) }}$ $=T_{\text {(off) }}=1 \mathrm{~min}$.
C. High Temperature Storage Life

The purpose of this test is to generate time/temperature failure mechanisms and to evaluate long-term storage stability.
Conditions: $T_{A}=150^{\circ} \mathrm{C}$ no blas applied
D. High Temperature Reverse Bias (HTRB)

The purpose of this test is to align mobile ions by means of temperature and voltage stresses to form a high-current leakage path between two or more terminals.
Conditions: $T_{A}=150^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CB}}=80 \%$ max rated V_{CB},
E. High Temperature High Humidity Reverse Blas (H^{3} TRB)
The purpose of this test is to evaluate the moisture resistance of non-hermetic components. The addition of voltage bias accelerates the corrosive effect after moisture penetration has taken place. With time, this is a catastrophically destructive test.
Conditions: $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}, \mathrm{RH}=85 \%, \mathrm{~V}_{\mathrm{CB}}=80 \%$ max rated V_{CB}.

F. Molsture Resistance

The purpose of this test is to evaluate the moisture resistance of components under temperature/humidity conditions typical of tropical environments.
Conditions: Mil-Std-750, Method 1021.

G. Pressure Cooker

The purpose of this test is to evaluate the moisture resistance of non-hermetic components under pressure/ temperature conditions.
Conditions: $\mathrm{T}=121^{\circ} \mathrm{C}, \mathrm{P}=1$ atmosphere (15 psig)
H. Temperature Cycle (Air to Air)

The purpose of this test is to evaluate the ability of the device to withstand both exposure to extreme temperatures and the transition between temperature extremes, and to expose excessive thermal mismatch between materials.
Conditions: Mil-Sid-750, Method $1051,-55^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$, 15 minutes dwell time at each temperature
I. Thermal Shock (Liquid to Liquid)

This test is an accelerated version of temperature cycle.
Conditions: Mil-Std-750, Method 1056, $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}, 15$ seconds dwell time at each temperature

J. Terminal Strength

The purpose of this test is to evaluate the ability of the device terminals to withstand the lead forming and tension associated with component installation into a circuit.
Conditions: Mil-Std-750, Method 2036, Condition E.

K. Solderability

The purpose of this test is to determine the solderability of the device terminals.
Conditions: Mil-Std-750, Method 2026.
L. Salt Atmosphere (Corrosion)

The purpose of this test is to accelerate the corrosion effects of an environment in which salt (NaC 1) is present.
Conditions: Mil-Std-750, Method 1041
M. Mechanical Stress Tests

Vibration, shock and constant acceleration tests are infrequently used since they rarely generate failures in smallsignal transistors. However, they are still specified for acceptance of military product.

HIGH RELIABILITY PROCESSING OF RF TRANSISTORS

1 WAFER PROCESSING

Atter wafers are processed, they are subjected to Motorola visual inspection spectifcations then probe tested to determine compllance with Group A specifications upon completion. Probe tests inciude the following: (1) Class Probe performed to determine device type and yield; (2) Unit Probe each unit is subjected to Group A electrical tests - rejects are inked. Following the class and unit probe tosts, the wafer is scribed and broken.

II ASSEMBLY

The die are attached to headers and then wire bonded. Wire pull tests are performed by Quality Control inspectors on a sample basis to ensure assembly process controls.
Units are stored in dry air until ready for capping.

III CAN WELD OR LID SEAL

Completed headers are loaded into a vacuum chamber for can weld or processed thru a furnace for metal top attachments on ceramic packages with solder preforms.

PROCESSING AND QUALITY CONTROL FLOW CHART

VII 100\% HIGH POWER DIE VISUAL
The high power portion of the inspection is performed to assure good die construction and front metal conditions. Individual reject criteria includes the following: Metalilization defects such as scratches, volds, corrosion, adherence, bridging and ellignment. Poor die construction conditions such as oxide and diffusion tautts are also rejected.

VII 100\% LOW POWER ASSEMBLY VISUAL

The low power visual inspection controls workmanship, i.e., die attachment, intemal fead-wire attachment, and package defects. Die attachment inspection includes assuring good adherence, cie placement and proper orientation. Intemal lead wires must have proper arc and all attachment bonds must be property placed and In good condition. Package defect inspection includes checking for foreign material, improper construction and cracked glass conditions.

RELIABILITY AND QUALITY ASSURANCE

IV FINAL ELECTRICAL TEST

pleted units are selected for a Group A electest. Hand screening is performed where ssary. Electrical fallout units and over-runs ubject to future screening.

v QUALITY CONTROL

Samples are taken for complete electrical analysis of the lot. Group A and B tests are performed on JAN devices. Group A and B tests and 100\% processing are performed on JANTX devices. Some devices also require Group C inspection tests.

VI WAREHOUSE

Upon completion, the finished product is ready for shipping. Purchase order requirements are carefully checked again prior to shipping. Overruns are kept for future orders. Warranty tests (Group A) are performed every 24 months on military devices.

IX 100\% QUALITY CONTROL

a. High temperature storage
b. High temperature reverse bias
c. Temperature cycling
d. Thermal shock
e. Hermetic seal
f. Acceleration
g. Read \& Record parameters
h. Room temperature burn-in
X GROUP B AND GROUP C INSPECTION
Typlcal Group B
Processing
(Sample Basis)
a. Physical dimensions
b. Moisture resistance
c. Terminal strength
d. Hermetic seal
e. Solderability
f. Vibration tatigue
g. 1000 hr . storage life
h. 1000 hr . operating life

Glossary of Reliability and Quality Terms

Acceptable Quality Level (AOL) - A measure of quality for which a given lot will be accepted most of the time. This is usually established at a probability of acceptance equal to $\mathbf{9 5 \%}$. It is referred to as the producer's risk because the probability of rejecting a good lot is 5%.

Acceptance Number (Ac) - The largest number of defectives in an inspection sample under consideration that will permit acceptance of the lot.

Acceptance Tests - Tests to determine conformance to specification requirements as a basis for lot acceptance.

Average Outgoing Quality (AOO) - The average quality of outgoing product after 100% screening of rejected lots. This is usually measured in parts per million (PPM).

Average Outgoing Quality Limit (AOQL) - The maximum average outgoing quality that is possible for a given sampling plan.

Defect - Any deviation of a device that does not conform to specified requirements. One device may contain more than one defect.

Defective - A device which contains one or more defects.
Double Sampling - Sampling inspection in which the inspection of the first sample leads to a decision to accept, to reject, or to take a second sample. The inspection of a second sample, when required, always leads to a decision to accept or to reject.

Failure - The inability of a device to perform a specified function within previously-established limits.

Failure Rate - The statistical probability of a failure occurring within a stated period of time. For electronic components it is usually assumed that failures follow an exponential distribution, in which case the failure rate over any stated period of time is constant. The failure rate of semiconductor devices is generally given in percent per thousand hours.

Infant Mortality - Premature failures occurring at a failure rate substantially greater than that observed during subsequent life prior to wear-out.

Lot - A group of devices from which samples are drawn and inspected to determine compliance with acceptance criteria (inspection lot).

Lot Tolerance Percent Defective (LTPD) - A measure of quality for which a given lot will be rejected most of the time. This is usually established at a probability of acceptance equal to 10%. It is referred to as the consumer's risk because the probability of accepting a bad lot is 10%.

Mean Time Between Failures (MTBF) - The total measured operating time of a group of equipments divided by the total number of failures of a repairable equipment. In the case of an exponential failure distribution, this ratio is the reciprocal of failure rate.

Operating Characteristic Curve (OC curve) - A graph of the probability of acceptance as a function of the lot quality or process average quality, whichever is applicable.

Percent Defective - The number of defective devices in a lot divided by the total number of devices in that lot, multiplied by 100.

Probability of Acceptance (Pa) - The fractional probability that a lot will be accepted, usually expressed as a decimal.

Process Average Quality - The expected quality of product from a given process, usually estimated from first sample results of previous inspection lots.

Quality - A measure of the degree to which a product conforms to specification and workmanship requirements.

Rejection Number (Re) - The smallest number of defectives in an inspection sample under consideration that will prevent acceptance of the lot.

Reliability - A measure of the performance of a product over a specified period of time.

Sample - One or more devices selected at random from an inspection lot to represent that lot for acceptance purposes.

Sampling Pian - A specific plan which defines the sample size and the criteria for accepting or rejecting a lot.

Screening Tests - Tests employing nondestructive environmental, electrical, thermal and/or mechanical stresses, for the purpose of identifying anomalous devices.

Single Sampling - Sampling inspection in which a decision to accept or to reject is reached after the inspection of a single sample.

Wearout Failures - Those failures which occur as a result of deterioration processes and whose probability of occurrence increases with time.

100\% Inspection - Inspection of every device, in which each device is accepted or rejected individually for the characteristic concerned, on the basis of its own inspection only.

Volume II

Case Dimensions

Case Dimensions

CASE 297C-02

STME 1: RF INPUTN CONT 2. VSI 3. VS2 5. RF OUTPUT

CASE

CASE DIMENSIONS (continued)

Volume II

Alphanumeric Cross Reference

Considerable judgment is necessary in creating a crossreference for RF devices. The only real proof of a replacement is through direct substitution in a particular circuit or system. Guidelines used to compare low power parts were dc voltage ratings, cutoff frequency, current rating, junction capacitance and noise figure. For high power parts the parameters used were dc voltage ratings, output power, gain, frequency of operation and output capacitance.
A direct replacement will always be in a package that is the same as or for all practical purposes equivalent to the
package of the original device. Similar replacement are generally but not always in packages that are identical or can be readily substituted; for example a $.280^{\prime \prime}$ stud package in place of a $380^{\prime \prime}$ stud package or a 100 mil ceramic package in place of a 80 mil ceramic package.

A similar replacement may also be somewhat different in electrical specifications such as lower gain or higher noise figure. However, it is Motorola's closest device to the original and is considered sufficiently similar to warrant further investigation by the device user.

Industry Part Number	Motorola Direct Replacement	Motorcla Similar Replacement	Page No.
4006		MRF464	2-654
40080		MRF476	2.666
40081		MRF476	2-666
40082		WRF475	2.662
40240	MRF501		2-690
40279		2N5641	2.64
40280	2N4427		2-23
40281		MRF485	2.678
40282		2N6081	2.100
40290	2N3553		2.8
40291		PT9734	2-1123
40292		PT9734	2-1123
40340		MRF342	2.581
40341		MRF497	2.687
40446		MRF475	$2 \cdot 662$
40578	2N3866		$2 \cdot 10$
40581		MRF475	$2 \cdot 662$
40582		MRF475	2.662
40608	2N5843		$2 \cdot 83$
40665		2N5641	$2 \cdot 64$
40666		PT9734	2-1123
40893	2N5946		2.90
40894		2N5179	2.54
40895		2N5179	2.54
40896		2N5179	2.54
40697		2N5179	2.54
40915	2N5031		$2 \cdot 36$
40934	TP2502		2-1162
40936		MRF401	$2-601$
40940	MRF5175		2-1028
40941		MRF313	2.531
40953	MRF207		1.7
40954	MRF212		1.6
40955	MRF1946A		$2 \cdot 1000$
40964	MRF515		2.697
40965	MRF515		$2 \cdot 697$
40967	2N5944		290
40968	2N5946		2.90
40970	MRF644		2.798
40971	MRF646		2.802

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.
40972	MRF607		2.784
40973	2N6081		$2 \cdot 100$
40974	2N6082		2-103
40975	2N6083		2-106
40976	2N3553		$2-8$
40977	2N5642		$2 \cdot 67$
41009	TP2502		2-1162
41010	2N5946		$2-90$
41024	2N5108		$2 \cdot 40$
41025	MRF321		2.549
41026	MRF323		2.553
41027	MRF321		2.549
41028	MRF323		2-553
41038	MRF905		2.917
80091	MRF511		2.692
80099	MRF525		2.712
80167	MRF511		2.692
80231	MRF511		2-692
2 C 2857	2 C 2857		4.21
2C3866	2C3866		4-21
$2 C 4957$	$2 \mathrm{C4957}$		4.21
$2 \mathrm{C5108}$	$2 \mathrm{C5108}$		4-21
2 C 5160	2C5160		$4-21$
2C5883	2C5883		4-21
2 C 5943	$2 \mathrm{C5943}$		$4 \cdot 21$
2N1491		MRF586	2.772
2N2631		2N3553	$2-8$
2N2857	2N2857		2.2
2N2876		2N5641	2.64
2N2947		MRF485	2.678
2N3118		MRF544	2.722
2N3119		MRF544	2.722
2N3296		2N5641	264
2N3309A		2N3553	2.8
2N3375		2N5641	2.64
2N3478		2N5179	2.54
2N3553	2N3553		$2-8$
2N3600	2N5179		2.54
2N3632		PT9734	2.1123
2N3733		PT9734	$2 \cdot 1123$

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Direct Replacement	Molorola Similar Replacement	Page No.	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.
2N3818		PT9734	2.1123	2N5643	2N5643		2.70
2N3866	2N3866		2-10	2N5644		2N5944	2.90
2N3866A	2N3866A		$2 \cdot 10$	2N5645		MRF652	2.816
2N3880		2N5032	$2 \cdot 36$	2N5646		MRF653	2.820
2N3924	2 N 3924		2-14	2N5687	MRF607		2.784
2N3925		2N5589	-	2N5688		2N6081	2.100
2N3926		MRF485	2.678	2N5689		2N6081	2.100
2N3927		2N6081	2-100	2N5690		MRF234	2.502
2N3948	2N3948		2-17	2N5691		MRF450A	2.79
2N3950		MRF497	$2-687$	2N5697	MRF515		2.597
2N3959	2N3959		$2 \cdot 19$	2N5698		2N5944	$2 \cdot 90$
2N3960	2N3960		$2 \cdot 19$	2N5699		2N5945	2.90
2N3961		2N5641	2.64	2N5710	2N4073		-
2N4012		2N5641	2.64	2N5711		2N5641	2.64
2N4040		MRF321	2.549	2N5712		2N5642	2.67
2N4041		MRF5174	2-1025	2N5713		2N5643	2.70
2N4072		MRF515	2-697	2N5773		MRF5174	2-1025
2N4073	2N4073		-	2N5774		MRF321	2.549
2N4127		2N5642	2.67	2N5775		MRF325	2.557
2N4128		2N5642	$2 \cdot 67$	2N5829		2N4957	2.27
2N4130		MRF464	$2-654$	2N5834	2N3553		$2-8$
2N4416	2N4416		-	2N5835	2N5835		2.73
2N4427	2N4427		$2 \cdot 23$	2N5836	2N5836		2.73
2N4428	2N4428		$2-25$	2N5837	2N5837		2.73
2N4440		MRF5175	$2-1028$	2N5841		MRF914	2.922
2N6932		2N6081	2.100	2N5842		MRF914	2.922
2N4933		MRF342	2.581	2N5846		MRF433	2.640
2N4957	2N4957		2-27	2N5847		MRF232	$2-674$
2N4958	2N4958		2-27	2N5848	MRF234		2.502
2N4959	2N4859		2-27	2N5849	2N5849		2.79
2N5016		MRF323	2.553	2N5862	2N5862		-
2N5031	2N5031		$2 \cdot 36$	2N5913	MRF607		2.784
2N5032	2N5032		$2 \cdot 36$	2N5914		2N5944	2.90
2N5053	2N6305		2.116	2N5915		2N5946	2.90
2N5054	2N6304		2-116	2N5916		MRF5174	$2 \cdot 1025$
2N5070		MRF401	2-601	2N5917		MRF5174	2.1025
2N5071		MRF342	2-581	2N5918		MRF321	2.549
2N5090		MRF5174	2-1025	2N5919A		MRF323	2.553
2N5102		MRF342	2.581	2N5941	MRF466		2.658
2N5108	2N5108		2-40	2N5942		MRF464	$2 \cdot 654$
2N5109	2N5109		2-44	2N5943	2N5943		2-83
2N5160	2N5160		2.50	2N5944	2N5944		$2 \cdot 90$
2N5161		2N6096	-	2N5945	2N5945		2.90
2N5162		2N6096	-	2N5946	2N5946		2.90
2N5179	2N5179		2.54	2N5947	MRF511	-	2.692
2N5180	2N5179		2.54	2N5992		MRF232	$2 \cdot 494$
2N5262	MRF544		2.722	2N5993		MRF234	2.502
2N5421	2N4427		2.23	2N5994		MRF315	2.537
2N5422	MRF607		2.784	2N5995		MRF212	1.6
2N5423		MRF261	2.519	2N5996		2N5591	-
2N5424		2N6081	2-100	2N6080	2N6080		2.97
2N5583	2N5583		2.60	2N6081	2N6081		2-100
2N5589	2N5589		-	2N6082	2N6082		2.103
2N5590	2N5590		-	2N6083	2N6083		$2 \cdot 106$
2N5591	2N5591		-	2N6084	2N6084		2.109
2N5635		MRF5174	$2 \cdot 1025$	2N6093		MRF464	2.654
2N5636		MRF321	2.549	2N6094	2N6094		-
2N5637		MRF323	2.553	2N6095	2N6095		-
2N5641	2N5641		2.64	2N6096	2N6096		-
2N5642	2N5642		2.67	2N6097	2N6097		-

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motarola Direct Replacement	Motorola Similar Replacement	Page No.	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Paga No.
2 N 6104		MRF325	2.557	$2 \mathrm{SC1297}$		2N5643	2.70
$2 \mathrm{N6105}$		MRF325	2.557	2SC1298		MRF315A	2.537
2×6136		MRF644	2.798	2SC1306		MRF485	2.678
2N6166	2N6166		2.112	$2 \mathrm{SC1307}$	MRF485		2.678
$2 \mathrm{N6197}$	2N5641		2.64	2SC1329	2N5849		2.79
2N6198	2 N 5642		2.67	2SC1336		MRF572	2.754
$2 N 6199$	2N5643		2.70	2SC1365	MRF586		2.772
2N6200		2N5643	2.70	2SC1366	MRF586		2.772
2N6201		2N6166	2.112	2SC1424	MRF914		2.922
2N6202		MRF5174	2-1025	2SC1426		MRF965	2-153
2 N 6203		MRF321	2.549	2SC1560		MRF572	2.754
${ }^{2} \mathrm{~N} 6204$		MRF323	2.553	2SC1589		MRF260	2.515
${ }^{2} \mathrm{~N} 6205$		MRF325	2.557	2SC1590		MRF262	2.523
2N6206		MRF891	2.891	2SC1591		MRF262	2.523
2 N 6207		MRF892	2.895	2SC1592		MRF587	2.772
${ }^{2} \mathrm{~N} 6255$		MRF237	2.506	2SC1593		MRF587	2.772
2 N 6256		MRF559	2-747	$2 \mathrm{SC1594}$		MRF587	2.772
2 N 5304	${ }^{2} \mathrm{~N} 6304$		2.116	2SC1600		MRF586	2.772
2N6305	2N6305		2.116	2SC1603		MRF752	2.836
2N6366		2N6080	2.97	2SC1604		MRF750	$2-832$
${ }^{2} \mathrm{NG367}$		MRF433	$2 \cdot 640$	$2 \mathrm{SC1605A}$		MRF2628	$2 \cdot 1009$
2N6368		MRF455	2.652	2SC1606		2N6080	2.97
2N6370	MRF410		2.608	2SC1678	MRF476		2.666
2N6439	2N6439		2.121	2SC1689		MRF315A	2.537
${ }^{2 N 6455}$	2N6082		2.103	$2 \mathrm{SC1729}$		MRF2628	2.1009
2N6456	MRF450A		2648	2SC1763		MRF464	2.654
2N6457		MRF492	2.684	2SCi764	MRF464		2.654
2N6458	MRF406		2.604	2SC1804		MRF321	2.549
2N6459	MRF450		2.648	2 2S1805		MRF323	2.553
2N6450	MRF492		6 6684	2SC1807		BFY90	2.166
2 N 6603	2 N 6603		2.125	2SC1808		MRF652	$2-816$
$2 N 6604$	2×6604		2.129	$2 \mathrm{SC1945}$	MRF479		2.674
2 N 6618	2N6618		2.133	2SC1946		MRFT946	2.1000
$2 \mathrm{N6679}$	2N6679		2.135	2SC1946A		MRF1946A	2.1000
2N6985	2 N 6985		2.137	2SC1947	MRF237		2.506
2N6986	2N6986		2.141	2SC1949		MRF962	2.153
2SA1161		MM4049	2-216	2SC1955	MRF237		2.506
2SA1233		MRF536	2-216	$2 \mathrm{SC1966}$		2N5945	2.90
$25 A 1228$	M144049		2-216	2SC1967		2 N5946	2.90
2SA1230		MRF536	2.216	2SC1968A		MRF641	2.794
2SAi245	MMBR84957		2.231	2SC1969	MRF475		2.662
2 2A711	2N3959		2.19	2SC1970		MRF553	2.733
254800	MM4049		2-216	2SC1971	MRF260		2.515
$2 \mathrm{SC1043}$	MRF587		2.772	$2 \mathrm{SC1972}$	MRF262		2.523
2SC1044	2N6304		2.116	2SC1988	MRF914		2.922
2SC1081		MRF654	2.824	2SC2025		MRF965	2-153
${ }^{2 S C 1090-1}$		2N6604	2-129	2SC2026	MPS911		2-251
${ }^{2} \mathrm{SC1119}$		MRF501	2.907	$25 C 2040$	MRF587		2-772
${ }_{2} \mathrm{SCl}_{1239}$		MRF475	2.662	2SC2065		MRF587	2.772
2SC1251		MRF587	2.772	2SC2075	MRF476		2666
$2 \mathrm{SC1252}$		MRF586	2.772	25 C 2081	2N5944		2.90
$2 \mathrm{SC1253}$		MRF586	2.772	2SC2082			2.90
$2 \mathrm{SC1254}$	2N6304		2.116	2SC2083		MRF654	2.824
2SC1256		MRF237	2.506	2SC2098	MRF475		2.662
$2 \mathrm{SC1257}$		2N6081	2.100	2SC2099	MRF406		2.604
$2 \mathrm{SC1258}$	2N6081		2.100	2SC2100	MRF492		6-684
2SC1259		2N6083	2.106	2SC2101		2N6081	2-100
2SC1260	2 N 2857		2.2	2SC2102	MRF2628		2.1009
${ }^{2 S C 1268}$		MRF572	2.754	2SC2103A	MRF1946A		2.1000
$2 \mathrm{SC1275}$	2 N 2857		2.2	2SC2104		MRF652	2.816

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.	Industry Part Number	Molorola Direct Replacement	Motorola Similar Replacement	Page No.
2SC2105		MRF653	2.820	2SC2896	2N6439		2.121
2SC2106		MRF654	2.824	2SC2697	MRF327		2-565
2SC2131	MRF629		1.9	2SC2905		MRF646	2.802
2SC2132		MRF646	2-802	2SC2906AK		MRF754	2.840
2SC2148		2N6604	2-129	2SC2906AM		MRF754	2-840
2SC2149		MRF572	2.754	2SC2915	MRF648		2-806
2SC2174	MRF572		2.754	$2 \mathrm{SC2917}$	MRF247		2.512
2SC2178		MRF221	2-100	2SC2931		MRF557	2.742
2SC2181	MRF224		2-109	$2 \mathrm{SC2932}$		MRF840	$2-859$
2SC2207	MRF475		2-662	$2 \mathrm{SC2933}$		MRF842	2869
2SC2217		MRF572	2.754	2SC2946A		MRF646	2.802
$2 \mathrm{SC2218}$		MRF572	2.754	2SC2952		MRF586	2.772
2SC2222		2N5346	2.90	2SC2953		MRF587	2.772
2SC2280		2N5944	2.90	2 SC 2954		MRFQ19	2-1065
$2 \mathrm{SC2281}$		2N5946	$2 \cdot 90$	$2 \mathrm{SC3011}$		MMBRPOOIL	2.225
2SC2282	MRF2628		$2 \cdot 1009$	2SC3019	MRF559		2.747
2SC2290	MRF454		2.650	2SC3020		MRF652	2.816
$2 \mathrm{SC2329}$		MRF607	2.784	2SC3021		MRF653	2.820
2SC2350	MRF911		2.919	2SC3022		MRF644	2.798
2SC2351	MMBR571L		2-241	2SC3099	MMBRSO1L		2.225
2SC2367		MRF572	2.754	2SC3101	MRF630		2.790
2SC2369	MRF2369		2-1004	2SC3102		MRF648	2.806
2SC2395	MRF433		2.640	2SC3103		MRF752	2-836
2SC2420	MRF1946		$2 \cdot 1000$	2SC3104		MRF754	$2-840$
2SC2494K		MRF750	2.832	2SC3105		MRF844	2.873
2SC2494M		MRF750	2.832	2SC3120		MMBR911L	2.251
2SC2495K		MRF752	2.836	2SC3133	MRF479		2.674
2SC2495M		MRF752	2-836	2SC3139		MRF890	2-887
2SC2496A		MRF646	2.802	2 SC3147		MRF247	2.512
2SC2498	MPS911		$2 \cdot 251$	$2 \mathrm{SC319}$	2N4427		$2 \cdot 23$
2 C 2499	MPS901		2-247	2SC320	MRF607		2.784
2SC2508	MRF1946		2-1000	2SC3268		MRF5711L	2.1033
2SC2509	MRF479		2.674	2SC3282	MRF842		2.869
2SC2510	MRF422		2-616	2SC3283	MRF844		2.873
2SC2570	MPS571		2-241	2SC3301		MRF5711L	$2 \cdot 1033$
2 C 2586	MRF629		1.9	2SC3302	MRF571		2.754
2SC2627	.	2N6080	2.97	2SC3355		MPS571	2.241
2SC2628		MRF2628	2-1009	2SC3356		MMBR571L.	2.241
2SC2629		MRF1946A	2-1000	2SC3358		MRF572	2.754
2SC2630		MRF247	2.512	2SC3429	MMBR57IL		$2-241$
2SC2642		MRF641	2.794	2SC3445		MMBR571L	2.241
$2 \mathrm{SC2643}$		MRF644	2.798	2SC3484		MRF571	2.754
2SC2652		MRF448	2.642	2SC3582		MPS571	2-241
2SC2694	MRF247		2.512	$2 \mathrm{SC3583}$		MMBR571L	2.241
2SC2753	MPS571		2-241	2SC3604		MRF572	2.754
2SC2759	MMBR911L		2-251	2SC3660A		TPV8200B	2-1339
2SC2782	MRF247		$2-512$	2SC567	MRF502		2.690
2SC2783	MRF646		2.802	2SC568	MRF501		2.690
2 SC 2876		MRF571	2.754	2SC571	2N3924		$2 \cdot 14$
2SC2879	MRF421		2.612	2SC572		MRF485	2.678
2SC2886		MRF321	2.549	$2 \mathrm{SC573}$		2N6081	$2-100$
2SC2887		MRF321	2.549	2SC585		PT9734	2.1123
2SC2888		MRF314A	2.533	2SC597	2N3553		2.8
2SC2889		MRF315A	2.597	2SC598		MRF5175	$2 \cdot 1028$
$2 \mathrm{SC2890}$		MRF316	2.541	2SC600		PT9734	2.1123
2SC2891	MRF317		2.545	2SC628	MRF607		2-784
$2 \mathrm{SC2892}$	MRF5174		2-1025	$2 \mathrm{CC635}$		2N5641	2.64
2SC2693	MRF321		2.549	2SC636		PT9734	2.1123
2SC2894		MRF323	2.553	$2 \mathrm{SC637}$		MRF485	$2-678$
2SC2895	MRF325		2-557	$2 \mathrm{SC638}$		2N6081	2-100

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorcla Direct Replacement	Motorola Similar Replacement	Page No.	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.
$2 \mathrm{SC651}$	2 N 4428		2.25	A523		MRF521	2.705
$2 \mathrm{SC652}$		2N4428	2.25	A528		MRF521	2.705
2SC730	2 N 4427		2.23	A551	MRF942		2.933
${ }^{25 C 821}$		2 N 4427	2.23	A561	MRF962		2.153
$2 \mathrm{SC822}$	2 N 4427		2.23	A573	MRF942		2.933
${ }^{25 C 823}$		2N5109	2.44	A574		MRF572	2.754
${ }^{2 S C 824}$		2×5943	2.83	A8S-12		MRF492	2.684
$2 \mathrm{SC831}$		MRF321	2.549	A80-12G		MRF492	2.684
${ }^{2 S C 852}$		2N5943	283	ABC900-60E		AMR $900 \cdot 60$	5.7
2SC890		MRF515	2.697	ACR900-30E	ACA900-30E		5-2
$2 \mathrm{SC891}$		MRF652	2-816	ACR900-30U		ACR900-30E	5-2
2SC892		MRF653	2.820	AMR175-60	AMR175-60		5-3
$25 C 988$		MRF914	2.922	AMR225-60	AMR225-60		5-4
2sc988A	MRF914		2.922	AMR440-60	AMR 440.60		$5 \cdot 5$
2SC990		MRF323	2.553	AMP470-60	AMR470-60		56
$2 \mathrm{SC994}$		2 24427	2-23	AMR900-30		ACR900-30E	5-2
$2 \mathrm{SC998}$		MRF237	2.506	AMR900-60	AMR900-60		$5-7$
358218		2N6603	2.125	AMR900-60A	AMR900-60A		5-10
35825E		2N6603	2.125	AMR900-80	AMR900.80		4.4
40637A		MRF515	2.697	AMR960-100	AMR960-100		4-4
41009A	2 N 5344		2.90	AMR960-35E		ACR900-30E	5-2
8BSE10	MRF892		2.895	AMR960-70E		AMR960-80	44
88SE30	MRF894		2.899	AMR960-70U		AMR960-80	4.4
8 8081	MRF838A		2850	AMR960-80	AMR960-80		$4 \cdot 4$
$8 \mathrm{MOB10}$		MRF840	2859	AP15-12	MRF261		2.519
8MOB15	MRF842		2-869	AP30-12	MRF477		2.670
840815E	MRF873		2.883	AP30-12L	MRF477		2.670
$8 \mathrm{MOB2}$		MRF839	2.854	AT0017	MRF904		2.913
8M0825	MRF644		2.873	AT0017A	MRF904		$2 \cdot 913$
8MOB30		MRF844	2.873	AT004		MRF904	2.913
$8 \mathrm{MOB45}$	MRF846		2.876	AT0045	MRF904		2.913
$8 \mathrm{MOB5}$		MRF840	2859	AT1425		BFR90	2.145
8M085E	MRF839F		2854	AT1825	2N6604		2.129
9BSE10		MRF892	2.895	AT1845	2N6603		2.125
98SE2	MRF890		2.887	AT1845A	2N6603		2.125
98SE35		MRF894	2899	AT25		MRF901	2.907
9BSE55		MRF898	2.903	AT25A		MRF901	2.907
A-AU12		MHW806A1	5-142	AT25B		MRF901	2.907
A-AUSO			5-142	AT2625		2N6603	2.125
A15-12	MRF406		2.604	AT2645		2N6603	2.125
A210	MRF517		2.700	AT2645A		2N6603	2-125
A234	MRF581		2.764	AT2715	MRF962		2-153
A25-28	MRF314A		2.533	AT50	BFF90		2-145
A3-12		$2 \mathrm{N6081}$	2-100	AT51	BFR90		2.145
A3-28		2N5641	264	AT52	BFR90		$2 \cdot 145$
A400	MRF904		2.913	ATV5030	ATV5030		$5 \cdot 12$
A401	MRF914		2-922	ATV5090B	ATV5090B		5-15
A402		MRF904	2.913	ATV6030	ATV6031		5-16
A403		MRF914	2.922	ATV6031	ATV6031		5-16
A406		MRF965	2.153	ATV7050	ATV7050		5-17
A440		MM4049	2.216	ATV7050	ATV7060		5-19
A485		BFX89	2.166	B1-12		MRF553	2.733
A486		BFW92A	2.161	B12.12	2N6081		$2 \cdot 100$
A490	BFX89		2-166	B12-28	2N5642		2.67
A500		2N6603	$2 \cdot 125$	82-87		2N6080	2.97
A501	2×6603		2.125	B25-28	2 N 5643		2.70
A510		2N6604	2-129	B2512	2 N 6082		2-103
A511	2N6604		2.129	B3-12	2N6080		2.97
A516		MRF581	2.764	83-28	2N5641		2.64
A522		MRF521	2.705	830-12	2N6083		2.106

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Direct Replacement	Motorcla Similar Replacement	Page No.	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.
B40-12A	2N6084		2-109	BFR96	BFR96		$2 \cdot 153$
$840-124$	$2 N 603$	2N5643	2.70	8FR96S	MRF580A		2.764
845-12	2N6084	$2 N$	2-109	BFR99	BFR99		4.21
B5-12	2N6081		$2 \cdot 100$	BFRC90	BFRCSO		4.21
B5-8Z	2 N 0001	2N6080	2.97	BFRC91	BFRC91		4-21
870-28		2N6166	2.112	BFRC96	BFRC96		$2 \cdot 153$
B8-12	MRF212		1.6	BFS 17		BFR93	2.152
BAL0105-100		MRF392	2.593	BFS17S		BFR93	$2 \cdot 152$
BAL0105-50		MRF390	2.569	BFS22A		2N3924	14
BAM100SR		MRF317	2.545	BFT24	MRF931		2.925
BAM120		MRF317	2.545	BFT50	MRF904		2.913
BAM120SR		MRF317	2.545	BFT95		MRF536	2.216
BAM20	MRF314		2.533	BFT96		MRF536	2.216
BAM40	MRF315		2.537	BFW16A	MRF517		2.700
BAM4OSR	MRF315		2.537	BFW17A	MRF517		2700
BAM80		2N6166	$2-112$	BFW46	2N3924		$2 \cdot 14$
BAMBOSR		2N6166	2-112	BFW47	2N3553		$2 \cdot 8$
BF100-35		MRF174	2.452	BFW92A	BFW92A		-161
BF14-35	MRF136		2.345	BFW93		MRF	2.919
BF25-35		MRF137	$2 \cdot 355$	BFW94	MRF559		7
BF50-35	MRF172		$2 \cdot 444$	BFX89	BFX89		2-166
BF679		MRF536	2.216	BFY90	BFY90		2-166
BF7.35	MRF134		2.337	B641C	MHW710-3		5-120
BFG195	MRF571		2.754	BGD102	NHW5185		5-175
BFG90A		MRF901	2.907	BGD502	MHW6185		175
BFG91A	MRF2369		2.1004	BGX885	CA901		.20
BFG96	MRF961		2-153	BGY40A	MHW709-1		5-116
BFP10		MPF914	2.922	BGY408	MHW709.2		$5 \cdot 116$
BFP91A	MRF2369		2-1004	BGY40C	MHW709-3		$5 \cdot 112$
BFP96		MRF581	2.764	BGY41A	MHW710-1		$5 \cdot 120$
BFO17		MRFQ17	2.1053	BGY418	MHW710-2		5.120
BFQ18A		MRF5812	2-1037	BGY41C	MHW710-3		5-120
BFQ19		MRFQ19	2-1065	BGY49A	MHW720A1		$5 \cdot 128$
BFQ22		MRF904	2.913	BGY498	MHW720A2		5-128
BFO22S	MRF914		$2-922$	BGY50		MHW5122A	-165
8FO23		MRF536	$2 \cdot 216$	BGY51		MHW5122A	$5 \cdot 165$
BFO34	TP3401		2.1222	BGY52		MHW5171A	5-171
BFQ34T	MRF580		2.764	BGY53		MHW5172A	5-171
BFQ42	MRF607		2.784	BGY54	MHW5171A		$5 \cdot 171$
BFQ43	MRF237		2.506	BGY55	MHW5172A		5-171
BFO51		MRF536	2-216	BGY56		M ${ }^{\text {WW5222A }}$	5.178 5
BFQ63	MRF914		2.922	BGY57	MHW5222A		5-178
BF066		MRF572	2.754	BGY584	MHW6171		5.133
BF068	TP3402		2.1225	BGY584A	MHW6181		5-194
BF085	MRF571		2.754	BGY585	MHW6172		5-193
BFP36	MRF517		2.700	BGY585A	MHW6182		5-194
BFR38	2N4959		2-27	BGY587	MHW6222		5-196
BFR49	2N6603		2.125	BGY58A	MHW5342A		5-185
BFR53		MMBR920L	$2-226$	BGY59	MHW5382A		5-187
BFR63	MRF511		2-692	BGY61	MHW1134		5-161
BFR64	MRF511		2-692	8GY65	MHW1184		5-161
BFR65	MRF511		2.692	BGY67	NHW1224		5-161
GFR90	BFR90		$2 \cdot 145$	BGY67A	MHW1244	MHW5122A	5-161
BFRSOA	BFR90		2.145	BGY70		MhW5122A	5-165 5-165
BFR91	BFR91		2.148	BGY71	MHW5122A		5-185
BFR91A		MRF571	2.754	BGY78	MHW5342A		5-185 $5-165$
BFR92	BFFP9		2.151	BGY81	MHW5122A		5-165
BFR93	BFR93		2.152	BGY84	MHW5171A		5-171
8FR94	MRF587		2.772	BGY84A	MHW5181A MHW5172A		5-173 5-171
BFR95	MRF517		2.700	BGY85	MHW5172A		5-171

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Direct Replacement	$\begin{gathered} \text { Motorola } \\ \text { Similar } \\ \text { Replacement } \end{gathered}$	Page No.	Industry Part Number	Motorola Direct Replacement	$\begin{aligned} & \text { Motorola } \\ & \text { Similar } \\ & \text { Replacement } \end{aligned}$	Page No.
BGY85A	MHW5182A		5-173	BLW64	MRF208		
BGY86	MHW5222A		5-178	BLW75	MRF226		1.7 2.484
BGY87	MHW5222A		5.178	BLW76	MRF464		2.484
BGY88	MHW5342A		5-185	BLW77		MRF422	2.616
BGY91A		MHWBOGA2	$5-142$	BLW78		MRF464	2.654
BGY91B			5-142	BLW79	2 N 5944		2.90
BGY92C	MHN812A3		5-152	BLWBO	MRF652		2-816
BLF145	MRF138		2.363	BLWB1	2N5946		$2 \cdot 90$
BLF147	MRF140		2.368	BLWB2		MRF644	2.798
BLF175	MRF148		2.384	BLW83	MRF426		2.620
BLF177	MRF150		2.389	BLW84	MRF314		2.533
BLF242	MRF134		2.337	BLW85		MRF224	2.109
BLF244	MRF136		2.345	BLW86	MRF315		2.537
BLF245	MRF137		2.355	BLW87	2N6082		2-103
BLF246	MRF172		2.444	BLW69	MRF5174		2-1025
BLF278	MRF151G		2.400	BLW90	MRF5175		2-1028
BLF368 BLT90		MRF175GV	2.460	BLW91	MRF321		2-549
BLT90		MRF557	2.742	BLWS5	MRF429		2-632
BLTYOSL BLU20/12		MRF557	2.742	BLW96		MRF448	2.642
BLU20/12	MRF644		2.798	BLW97		MRF422	$2 \cdot 616$
8LU45/12	MRF646		2.802	BLW988		TPV598	$2 \cdot 1312$
BLU52	MRF390		2.589	BLW99	MRF421		2612
BLU53		MRF392	2.593	BLX13		MRF426	2620
BLU60012 BLUs8	MRF648 MRF581		2806	8LX13C		MRF426	2620
BLU999	MRF581		2.764	BLX14		MRF464A	2.654
BLU99 BLV10		MRF839	2854	BLX39	MRF315A		2.537
BLV11	MRF212 MRF221		1.6 2.100	BLX65		MRF629	1.9
BLV15/12	MRF2I		$2 \cdot 100$	BLX66		2N5944	2.90
BLV20		MRF221	$2 \cdot 100$	BLX67		2N5946	2.90
		2N5641	2.64	BLX68		2N5946	2.90
BLV21	MRF314		2.533	BLX69A		MRF654	2.824
BLV25		TP9383	2.1243	BLX91		MRF313	2.531
BLV30		MRF5175	2.1028	BLX91A		MRF313	2.531
BLV31	TPV394A		2.1291	BLX92		MRF5174	2-1025
${ }_{\text {BLV33 }}$		TPV385 TPV376	2.1287 1.16	BLX92A		MRF5174	2-1025
BLV33F		TPV376	1.16	BLX93		MRF321	2.549
BLV36		TPV387	2.1289 2.1324	BLX93A		MRF321	2.549
BLV38		TPV1325B	${ }^{2} 1.16$	BLX94C		MRF325	2.557
BLV45/12		MRF433	2.640	BLX95		MRF325	2.553 2.557
BLV57	TPV657		2.1314	BLX96		TPV596	1-16
${ }^{\text {BLV59 }}$		TPV695B	2.1322	BLX97		TPV597	2.1309
BLV75/12 BLV5/12	MRF247 MRF247		2-512	BLX98		TPV598	2.1312
BLV7512 BLV8028	MRF247		2.512	BLY53A		2N5946	2.90
BLV80288 BLV90	MRF316		2.541	BLY57		MRF485	2.678
BLV90 BLV92	MRF838A		2850	BLY58		2N6081	$2 \cdot 100$
8LV93		MRF840	2859	BLY59		2N5641	264
8LV94		MRF840	2859	BLY60		PT9734	2-1123
BLI94 BLV94	MRF873 TP3012		2888	BLY87A		MRF212	1.6
BLV94	TP3012		2.1179	BLY87C	MRF2628		2-1009
BLV95		MRF844	2873	BLY88A		2N6081	2-100
BLV96		MRF846	2.876	BLY8BC	2N6081		2.100
BLV97	MRF894		2.899	BLY89A		2N6082	2-103
BLW29	MRF2628		2.1009	BLY89C	2N6082		2-103
ELW31	MRF1946A		$2 \cdot 1000$	BLY89C	TP2325		2.1157
BLW32		TPV596	1.16	BLY91A		2N5641	264
8LH33		TPV597	2.1309	BLY91C		2N5641	2.64
BLW34	TPV693		2.1319	BLY92A		2N5642	2-67
BLW60		$2{ }^{2} 6034$	2-109	BLY92C	2N5642		2.67
BLHEOC		2N6084	2.109	BLY93A		MRF314A	2.533

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.	tndustry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.
BLY93C	MRF314A		2.533	CA2818B		CA2818	5-31
BLY94		MRF315A	$2 \cdot 537$	CA2818H	CA2818H		5-31
BM100-28	MRF317		$2 \cdot 545$	CA2820	CA2820		5-34
BM45-12		MRF247	2.512	CA2820B		CA2820	5-34
BM70.12	MRF247		2.512	CA 282 OH	CA2820H		5-34
BM80-12	MRF247		2.512	CA2830	CA2830		$5 \cdot 37$
BP15-12	MRF262		2-523	CA2830B		CA2830	5-37
BP30-12	MRF264		2.527	CA2830H	CA 2830 H		5-37
BP30-12L		MRF264	2-527	CA2832	CA2832		5-40
BP8-12		MRF262	2.523	CA2832B		CA2832	5-40
BT500	BT500		$2 \cdot 170$	CA2832H	CA2832H		5-40
8T500F	BT500F		$2 \cdot 171$	CA2833	CA2833		5-37
C 1.12	TP2502		2-1162	CA2838	CA2838		-
C1-28	MRF313		2.531	CA2839	CA2839		-
C1/2-12		MRF627	2.786	CA2839H	CA2839H		-
C12.28		MRF321	2.549	CA2840	CA2842		5-43
C2-82	MRF752		$2-836$	CA 2840 H		CA2842	$5 \cdot 43$
C25-28		MRF323	2.553	CA2842	CA2842		5-43
C2M100-28	MRF329		2.569	CA28428		CA2842	5-43
C2M100-28A	MRF329		2.569	CA2842H	CA2842H		5-43
C2M50-28		MRF326	2.561	CA2846		CA2842	$5-43$ $5-173$
C2M50-28R		MRF326	2.561	CA2850	MHW5182A CA2850R		$\begin{gathered} 5-173 \\ 5-46 \end{gathered}$
C2M60-28	2N6439		2.121	CA2850R	CA2850R	CA2850R	5-46
C2M60-28R	2N6439		$2 \cdot 121$	CA2850RH		CA2850R	5-46
C2M70-28R	MRF327		2.565	CA2851R	CA2851R		5-46
C3-12		MRF652	2816	CA2870	CA2870	MHW5342A	5-185
C3-28	MRF5174		$2 \cdot 1025$	CA2870B	CA2870H	Mrw 3 2A	5.49
C40-28		MRF325	2.557 2.816	CA28875R	CA2875R		5-52
C5-12 C5-82	MRF652	MRF754	2.840	CA2875RH	CR275	CA2875R	5-52
CA100		MHW5171A	5-171	CA2076R		CA2875R	5-52
CA200		MHW5172A	5-171	CA2876RH		CA2875RH	5-52
CA2100	MHW5171A		5-171	CA2880R		CA2875R	5-52
CA2101R	MHW5171R		-	CA2885		MHW6185	5-175
CA2200	MHW5171A		5-171	CA2885R		MHW6185	5-175
CA2201R	MHW5172R		-	CA2888		CA2832	5-40
CA2300	MHW5222A		5-178	CA2888H		CA2832H	5-40
CA2300R		MHW5222R	1.	CA2889		CA2832	5-40
CA2301	MHW5222A		5-178	CA2889H		CA2832H	5-40
CA2301R		MHW5222R	1.	CA2890		CA2870	5-49
CA2418	MHW1184		5-161	CA2890B		CA2870	5-49
CA2422	MHW1224		5-161	CA2890H		CA2870H	5-49
CA2600	MHW5342A		$5 \cdot 185$	CA2891		CA2820	5-34
CA2700	MHW5382A		5-187	CA2891H		CA2820H	5-34
CA2800	CA2800		$5 \cdot 22$	CA3100	MHW5171A		5-171
CA28008		CA2800	5-22	CA3101	MHW5172A		5-171
CA 2800 H		CA2600	5-22	CA3101R		MHW5172R	-
CA2810	CA2810C		5-25	CA3170	MHW5171A		5-171 -
CA2810B		CA2810C	5-25	CA3170R		MHW5141A	5-167
CA2810C	CA2810C		$5-25$	CA3180		MHW5141A	5-167
CA 2810 H		CA2810C	5-25	CA3200	MHW5172A		5-171
CA2812		MHW593	$5-100$	CA3201	MHW5172A		5-171
CA2812B		MHW593	5-100	CA3201R		MHW5172R	-
CA2812H		MHW593	5-100	CA3218	MHW5182A		$5-173$ 5.173
CA2813	CA2813C		5-28	CA3220		MHW5181A	$5 \cdot 173$
CA2813B		CA2813C	5-28	CA3220R		MHW5182R	-
CA2813C	CA2813C		$5-28$	CA3270	MHW5172A		$5-171$ -
$\mathrm{CA}^{\text {C2813CH }}$	CA 2813 CH		$5-28$ $5-28$	CA3270R		MHW5172R MHW5141A	-
CA2813H	CA2813CH CA2818		5-28 5-31	CA3280 CA3300	MHW5222A	MHW5141A	- 5-178
CA2818	CA2818		5-31	Ca330			

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	$\begin{gathered} \text { Motorola } \\ \text { Direct } \\ \text { Replacement } \end{gathered}$	Motorola Similar Replacement	Page No.	Industry Part Number	Motorola Direct Replacement	Motarola Similar Replacement	Page No.
CA3300R		MHW5222R	-	CA5520		MHW5185	5-175
CA3301	MHW5222A		5-178	CA5520R		MHW5185R	5-175
CA3301R		MHW5222R	-	CA5600	MHW5342A		5-185
CA3500	MHW5342A		5-185	CA5700	Mriw 3882 A		5.187
CA3700	MHW5382A		5.187	CA5800	CA5800		$5 \cdot 64$
CA401B		NHW1182	-	CA5800	CA5800 H		5.64
CA4101	MHW5171A		5-171	CA5815	CA5815		$5-67$
CA4101R		MHW5172A	$5-171$	CA5815	CA5815		$5-67$
CA416		MHWI184	5-161	CA601BU		MHW5342A	5-185
CA4170	MHW5171A		$5 \cdot 171$	CA6101	MHW6181		5-194
CA4170R		MHW5172R	-	CA6201	MHW6182		5-194
CA418	MHW1184		5-161	CA6220		MHW6181	5-194
CA4180	MHW5141A		5-167	CA636	Mhw5342A	M,	5-185
CAA200R		MHW5172R	-	CA6501	MHW6185		5-175
CA4201	MHW5172A		5-171	CA6501R		MHW6185R	49
CA4201R		MHW5172A	-	CA6520		MHW6185	5-175
CA4220		MHW5181A	5-173	CA6520A		MHW6185R	4.9
CA4220R		MHW5182R	-	CA7901	Ca7901		5.74
CA4270	MHW5171A		5-171	CABO1	MHW590		$5 \cdot 91$
CAA270R		MHW5172R	-	CA804		MHW590	$5 \cdot 91$
CA4280	MHW5141A		5-167	CA850	MHW592		5.97
CA4300	MHW5222A		5-178	CA870	MHW590		5.91
CA4300R		MHW5222R	-	CA900	CASOI		5-20
CA4301	MHW5222A		5.178	CA901	CA901		5.20
CA4301R		MHW5222R	-	CAB914		CA901	5-20
CA4411	MHW1134		5.161	CAR2424H	CAR2424H		4.13
CA4412	MHW1134		5-161	CAR2800	CAR2800		4.11
CA4418	MHW1184		5.161	CAR2810	CAR2810		4.11
CA4448R	MFW5182R		-	CAR2812	CAR2812		-
CA4422	MHW1224		$5 \cdot 161$	CAR2813	CAR2813		4.11
CA4422R	MHW5222R		-	CAR2818	CAR2818		4.11
CA4424	MHW1244		5-161	CAR2820	CAR2820		4.11
CA4600	MHW5342A		5-185	CAR2830	CAR2830		4.11
CA4700	MhH55342A		5.185	CAR2832	CAR2832		4.11
CA4800	CA4800		5.55	CAR2839	CAR2839		4
CA4800H	CA4800H		5.55	CAR2842	CAR2842		4.11
CA4812	CA4812		5.58	CAR2850R	CAR2850R		4.11
CA4812H	CA4812H		5.58	CAR2870	CAR2870		4.11
CA4815	CA4815		5-62	CAR2875R	CAR2875R		4.11
CA4815H	CA4815		5-62	CAR2876R	CAR2876R		-
CA5001	MHW5182A		$5-173$	CAR4800	CAR4800		4.11
CA5001R	MHW5182R		-	CAR4812	CAR4812		4.11
CA5100R	MHW5181R		-	CAR4815	CAR4815		4.11
CA5101	MHW5181A		5.173	CAR5800	CAR5800		4.11
CA5101R	MHW5181R		-	CAR5815	CAR5815		4.11
CA5170	M-WW5171A		5.171	CD1752		MRF317	2.545
CA5170R		MHW5172R	-	CD1802	MRF226		2-484
CA5180	MHW5141A		$5 \cdot 167$	CD1880	C01880		
CA5200R		MHW5182R	-	C01979		MRF325	2.557
CA5201		MHW5182A	5.173	CD2035	MRF5175		2.1028
CA5201R		MHW5182R	5-173	C02087		MRF5175	2.1028
CA5270	MHW5172A		5-171	C02088	MRF321		2.549
CA5270R		MHW5172R	-	C02089	M ${ }^{\text {PF3 } 323}$		2.553
CA5280	MHW5142A		5-167	CD2505	MRF5175		2.1028
CA5300	MHW5222A		5-178	CD2514		2N6081	2.100
CA5300R		MHW5222R	-	C02545		MRF450	2.648
CA5301	MHW5222A		5-178	CD2810		MRF321	2.549
CA5301R		MHW5222R	-	C02811		MRF321	2.549
CA5501	MHW5185		5.175	CO2812		MRF321	2.549
CA5501R		MHW5185R	5-175	CD2813		MRF321	2.549

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Direct Replacement	$\begin{aligned} & \text { Motorola } \\ & \text { Similar } \\ & \text { Replacement } \end{aligned}$	Page No:	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.
CO3025	2N5946		$2 \cdot 90$	CZ8230	MWA230		5-229
CO3240	CD3240		\bigcirc	CZ8390	MWA310		5.237
CO3400		MRF315	2.537	CZ8320	MWA320		5-237
CO3401		MRF316	2.541.	CZ8330	MWA330		5-237
CD3403		MRF317	2.545	CZ8401		MWAIT0	5-214
C03463	MRF421		2.612	CZ8402		MWA120	5.214
CD3660	MRFC901		4.21	CZ8403		MWA230	5-229
CO4024	MRF224		$2 \cdot 109$	CZ8404		MWA230	5-229
CD4880	CD4880		-	CZ8461		MWA110	5-214
CD5890	CD5890		-	CZ8462		MWA120	5-214
CD5916	MRF5174		2.1025	CZ8463		MWA230	5-229
CD5918	MRF321		2.549	CZ8464		MWA230	5.229
CO5919A	MRF323		2.553	DI-12E		MRF838A	2-850
CO5944	2255944		$2 \cdot 90$	D1-28		MRF313	2.531
CD5945	2N5945		$2 \cdot 90$	D12.12		MRF838A	2.850
CD5946	2N5946		2.90	D10-28	MRF321		2.549
C06105		MRF325	2.557	D10P		MRF1015MA	2.972 2.854
CD6105A		MRF325	2.557	D2.12E D20.28		MRF839	2.854 2.553
C07012	MRF454		2.650	D20.28	MRF323		2.1025
CF4.28	MRF161		2.412	03.28		MRFSI74	2.1025
CG125	2N6603		$2 \cdot 125$	DHPO2-36-40	DHPO2-36-40		$5-82$
CG125A		2N6603	2.125	DHPO5-18-20	DHPO5-18-20		$5-83$ $5-84$
CG125B		MRF572	2.754	DHPO5-36-10	DHPO5-36-10		$5 \cdot 84$
CG125C		MRF572	2.754	DHP10-14-15	DHP10-14.15		5-85
CG125D	2N6604		2.129	DHP10-32-08	DHP10-32.08		5-86
CG125L		2N6604	2.129	DM10P		MRFt015MB	2.972
CG127	MRF572		2.754	DM33-12BA	MRF844		2.873
CG127A		MRF572	2.754	DM30P		MRF1035MB	2-976
CG127B		MRF572	2.754	DM50P		MRF1090MB	2.980
CHEO		TP2502	2-1162	DMB10-12	MRF840		2.859
CM10-12A		MRF641	2.794	DME10-12BA	MRF840		2.859
CM10-28		MRF321	2.549	DMB10-25	MRF892		$2-895$
CM20-12A	MRF641		2.794	DMB15-12		MRF842	2.869
CM25-28	MRF325		2.557	DMB20-12	MRF842		2.869
CN25-28A		MRF325	2.557	DMB20-128A	MRF842		2869
CM30-12A	MRF644		2.798	DMB30-12	MRF844		2873
CM45-12A	MRF646		2.802	DMB30-25	MRF894		2 2-899
CM45-28		MRF326	2.561	DM845-12	MRF846		2.876
CM60-12A	MRF648		2806	OMB45-12BA	MRF846		2.876
CM80-28	MRF327		2.565	DMB5-12		MRF840	2.859
CH50-28R	MRF327		2.565	DMB5-12BA		MRF840	2.859
CME50-12		MPF648	2806	DME10		MRF1015MA	2.972
CP5-12	MRF660		$2-828$	DME120L		MRFII50MA	2.988
CR2424	CR2424		5.78	DME150	MRF1450M		2.984
CR2424H	CR2424H		5.78	DME2		MRF51002MA	2.960
CR2424R	CR2424R		413	DME25		MRF1035MA	2.976
CR2425	CR2425		5.78	DME250		MRFF1250M	2.992
CTC1775M	MRF150M		2.984	DME30L		MRF1035MA	2.976 2.996
CTC1350M	MRF1325M		2.996	DME375		MRF1325M	2.996 2.996
CTC14		MRF464A	2.654	DME375A		MRF1325M	2.996
CTC15		MRF428	2.628	DME50		MRF1090MA	2.880
CTC2001A	MRW2001		2-1067	DME6L		MRF1008MA	2.968
CTC2003A	MRW2003		2.1067	DME7		MRF 1008 MMA	2.968
CTC2005A	MRW2005		$2 \cdot 1067$	DME75		MRFFIOSOMB	2.980
CTC2010	MRW2010		2.1067	OMEG250		MRF1250M	2.992
CZ8110	MWA110		5-214	DMEG70		M FF1090MA	2.980
Cz8120	MWA120		5-214	DV1006	MRF137		2.355
Cz8130	MWA130		5-214	DV1007	MRF171		2.436
C78210	MWA210		5-229	DV1008	MRF172		2-444
CZ8220	MWA220		5-229	DV10i0	MRF174		2-452

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.
DV2805S	MRF134		2.337	501006		MRF317	2.545
DV2810S	MRF136		2.345	102000		MRF325	2.557
DV28120U	MRF174		2-452	J02005		MRF325	2.557
DV2820S	MRF171		2.436	502007A	2N6439		$2 \cdot 121$
DV28800	MRF172		$2-444$	J02009	MRF325		2.557
ESM269	MRF914		2.922	502014	MRF326		2.561
FF124	FF124		5-87	J02015A	J02015A		2.172
FF124B	FF124B		5-87	502016		MRF327	2.565
FF224	FF224		5-89	502017		TP5060	2.1239
FF224B	FF2248		5-89	J02017		TP5060	2.1239
FM150		TP9383	$2 \cdot 1243$	J03012		MRF641	2.794
FM175		TP9383	2-1243	J03015	MRF641		2.794
FR1030	RF5030		2.1136	J03025	MRF644		2.798
GM-104-100		MRF329	2.569	J03028		MRF644	2.798
GM-104-1A		MRF313	2.531	103030		MRF646	2-802
GMM-104-20		MRF323	2.553	103035		MRF646	2802
GM.104-4		MRF5174	2-1025	503037	103037		2.173
GPA1001		MWA310	5-237	503040		MRF646	2.802
GPA1002		MWА320	5-237	J03045	MRF646		2.802
GPA1003		MWA330	5-237	J03050	MRF650		2.810
GPA1004		MWA320	5-237	J03055		MRF648	2.806
GPA1005		MWA320	5-237	503060	MPF648		2.806
GPA1006	MWA320		5-237	503401	MRF840		2.859
GPA1007		MWA320	5-237	503402	MRF842		2869
GPA501		MWA210	5-229	503403		MRF844	2.873
GPP502		M M A2ZO	5-229	J03404	MRF844		2.873
GPA503		MWA230	5-229	$\downarrow 03405$		MRF846	2.876
GPA510	M ${ }^{\text {HA2 }}$		5-229	503406	MRF846		28876
GPA511	MWA220		5-229	J03501	MRF692		2.895
GPA512	MWA230		$5 \cdot 229$	J03502	MRF894		2-899
GPD110	MWA110		5-214	504020		MRF216	-
GPP120	NWA120		5-214	J04028		MRF216	
GPD130	MWA130		5-214	504030		MRF216	-
GPD310	MWA310		5-237	504036		MRF240A	2.508
GPD320	MWA320		5-237	504040	MRF216		-
GPD330	MWA330		5-237	504045		MRF240A	2.508
GPD401		MWA110	5-214	504070	MRF4070		2-1015
GPD402		MWAI2O	5-214	504075	MRF247		2.512
GPD403		MWA230	5-229	504080		MRF247	2.512
GPD404		MWA230	5-229	LMLI	MRF890		2.887
GPD461		MWA110	5-214	LNA1001		MWA310	5-237
GPD462		MWA120	5-214	LTI001A	LTt001A		2.182
GPD463		MWA230	5-229	LT1739	LT1839		2.189
GPD464		MWA230	$5-229$	LT1814	LTI814		2-185
H100-28		MRF422	2.616	LT1817	LT1817		2-187
H100-50		MRF428	2.628	LT1839	LT1839		2-189
H175-50		MRF428	2.628	LT2001	LT2001		2.191
H50-28	MRF464		2654	LT3005	LT3005		2.195
HMIL-100-28	MRF422		2.616	LT3014	LT3014		2-198
HMIL-150-50	MRF429		2.632	LT3046	LT3046		2.202
HXTR2102	2N6604		2.129	LT3047		MRF904	2.913
HXTR6104	2N6603		2.125	LT3072	MRF904		2.913
HXTR6105		2N6603	2-125	LT3203	MRF580		2.764
IMD2001	MRW2001		2-1067	LT3204	MRF581		2.764
1 MDD2003	MRW2003		2.1067	LT3700	2N6603		2.125
${ }_{\text {M M } 2005 ~}^{\text {a }}$	MRW2005		$2 \cdot 1067$	LT3703		MRF901	2.907
MD2010	MRW2010		2.1067	LT3704	MRF901		2.907
CMD604HA		MRW2001	2.1067	LT3746	MRF905		$2 \cdot 917$
CMD604HB		MRW2003	2.1067	LT3772	MRF904		2.913
mDS604HC		MRW2005	2.1067	LT4217	LT4217		4.21

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.
LT4239	LT4239		4.21	MC5813	MHWII34		5-161
LT4403	BFR96		$2 \cdot 153$	MC5814		MHW5222A	$5 \cdot 178$
LT4404	MRF961		2.153	MC5815	MHW5222A		5-178
LT4485		MRF962	2.153	MC5816		MHW6222	5-196
LT4700	2N6603		2.125	MC5817	MHW6222		5-196
LT4703	BFR91		$2 \cdot 148$	MC5818	MHW1184	,	5-161
LT4704	MRF571		2.754	MC5819	MHW6181		5-194
LT4746.		MRF965	2.153	MC5820	MHW6182		5-194
LT4772		MRF914	2.922	MC5821	MHW5342A		5-185
LT5217		MRF522	2.705	MC5822	MHWI224		5-161
LT5239		MRF524	2.705	MC5824	MHW1244		5-161
LT5817	LT5817		2-206	MD4957	MD4957		2.210
LT5839	LT5839		2-208	MHW10000	MHW10000		5-200
M57704H		NHW710-2	5-120	MHW10001	MHW10001		5.200
M57704L		MKW710-1	5-120	MHW10002	MHW10002		5-200
M57704L/M		MRW710-1	5-120	MHW10003	MHW10003		$5 \cdot 200$
M57704M		MHW710-1	5-120	MHW1121	MHW5122A		$5-165$
M57704UHSH		MHW710-3	5-120	MHW1122	MHW5122A		5-165
M57714		MHW709-2	5-116	NHW1184	MHW1184		5-161
M57714LM		MHW709-1	5-116	NHW1222	MHW5222A		5-178
M57714UH/SH		MHW709-3	5-146	MHW1224	MHW1224		5-161
M57729/L		MHWT20A1	5-128	NHW1244	MHW1244		5-161
M57729H		MHW720A2	5-128	MHW1341	MHW5342A		5-185
M57734		MHW720A2	5-128	MHW1342	MHW5342A		5-185
M57739	MHW806A2		5.142	MHW2172	MHW5172A		5-171
M57739A	MHW806A2		5.142	MHW3171	MHW5171A		$5 \cdot 171$
M57744		MHW812A3	5-152	NHW3172	NHW5172A		5-171
M57752		MHW710-1	5-120	MHW3181	M $\mathrm{HWW5181A}$		5-173
M57764		MHWB20-2	5-156	MHW3182	MHW5182A		5-173
M57768		M ${ }^{\text {WW812A3 }}$	5-152	MHW3222	MHW5222A		$5 \cdot 178$
M57769		MHW806A4	5.142	MHW3272A	MHW5272A		5-181
M57773		MHW803-1	5-137	MHW3342	MHW5342A		5-185
M57782	MHW807-1		5-147	MHW3382A	M $\mathrm{HWW5382A}$		$5-187$
M57783H		MHW607.2	5-103	MHW4524F		FF124	$5-87$
K¢57783L		MHW607-1	5-103	MHW5122A	MHW5122A		$5-165$
M57765 H		MHW607-2	5-103.	MHW5141A	MHW5141A		5-167
M57785L		MHW607-1	5-103	MHW5142	MHW5142A		5-167
M57785M		MHW607.2	$5 \cdot 103$	MHW5142A	MHW5142A		5-167
M57766M		MHW707-2	5-111	MHW5171	MHW5171A		5-171
M57789		MHW812A3	$5 \cdot 152$	MHW5171A	MHW5171A		5-171
M57791	MHW807-2		5-147	MHW5171R	MHW5171R		
M57792		MHW820-1	5-156	MHW5172	MHW5172A		$5-171$
M57794	M ${ }^{\text {WW806A3 }}$		5:142	MHW5172A	MHW5172A		5-171
M57795		MHW803-2	$5 \cdot 137$	MHW5172R	MKW5172R		-
M57799M		MHW707-2	5-111	MHW5181	MHW5181A		5-173
M67709		MHW710.2	5-120	MHW5181A	MHW5181A		5.173
M67709M		MHW710-1	5-120	MHW5182	MHW5182A		$5 \cdot 173$
M67717	MHW807-2		5-147	MHW5182A	MHW5182A		5-173
M67720		MHW8820-3	5-156	MHW5i82R	MHW5182R		-
M67729H		MHW720A2	5-128	M HWW 5185	MHW5185	-	5-175
M67729L.		MRW720A1	5-128	MHW5185R	MHW5185R		4.9
MC5381	MHW5181A		5-173	MHW5222	MHW5222A		$5 \cdot 178$
NC5382	MHW5182A		$5 \cdot 173$	MHW5222A	MHW5222A		5-178
MC5383	MHW5342A		5-185	MHW5222R	MHW5222R		-
MC5384	MHW5181A		5-173	MHW5272A	MHW5272A		5-181
MC5385	MHW5182A		5-173	MHW5341	MHW5342A		5-185
MC5386	MHW5342A		5-185	MHW5342	MHW5342A		5-185
MC5387	MHW6181		5-194	M ${ }^{\text {LWW5342A }}$	MHW5342A		5.185
MC5388	MHW6182		5-194	MHW5382	MHW5382A	-	5-187
MC5389	MHW5342A		5-185	MHW5382A	MHW5382A		5-187

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorala Direct Replacement	Motorola Similar Replacement	Page No.	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.
MHW580	MHW5342A		5-185	MKE12100WS		MRF1090MA	2.980
NHW590	MHW5so		5.91	MKB12140W		MRFt090MA	2.880
M HW 591	MHW591		5-94	M M 1500		MRF905	2.917
MHW592	MHW592		5.97	MM1500A		MRF905	$2 \cdot 917$
MHW593	MHW593		5-100	MM1501A		MRF905	$2 \cdot 917$
MrW5594	MLHW5171A		5-171	MM1549		MRF5174	$2 \cdot 1025$
MHW595	MHW5172A		5-171	MM1550		MRF321	2.549
MHW607-1	MFW607.1		$5 \cdot 103$	MM1551		MRF323	2.553
MHW607-2	MHW607.2		5-103	M M1557	2 N 5641		2.64
MHW6141	MHW6141		5-191	MM1558	2N5642		2.64
Mrw6142	MHW6142		5-191	MM1559	2N5643		2.70
MHW6171	MHW6171		5-193	MM1561	2 N 6166		2.112
M-W6172	MHW6172		5-193	MM1601	2N5569		2112
MHW6181	MHW6181		5-194	MM1602	2N5590		-
MHW6182	MHW6182		5-194	MM1603	2N5591		-
MHW66185	MHW6185		5-175	MM1605		MRF914	2.922
MHW66185	MHN66185R		4.9	MM1606		MRF914	2.922
MHW622?	MHW6222		5-196	MM1607		MRF914	2-922
MHW6272		MHW5272A	5-181	MM1608		2N6080	2.97
MHW6342F		MHW5342A	5-185	MM1612		MRF237	2.506
M H W707-2	MHW707-2		5-111	MM1620	2N5849		2.79
MFWW709-1	MHW709-1		5-116	4M1622	2 N 5849		2.79
MHW709-2	MHW709-2		5-116	MM1632	2N5941		-
MHW7093	MFW7093		5-116	мM1623	2 N 5942		-
MHW710.1	MFW7710.1		5-120	MM1646	2N5849		2.79
MHWT70-2	MAW710-2		5-120	MM1660		2N5944	2.90
MHW710-3	MFW710-3		5-120	MM1661		MRF652	28816
MHWT20-1	MHWT20-1		5-124	MM1662		MRF653	2.820
MHW720-2	MHW720-2		5-124	MM1665		MRF644	2.798
MFIW720A1	MHW720A1		5-128	MM1666	216082		$2 \cdot 103$
MHWT20A2	MHW720A2		5-128	MM1667	2N6083		$2 \cdot 106$
MHW801-1	MHW801-1		5-132	MM1668	2N6084		2-109
MHFW801-2	MHW801-2		5-132	MM1669	2 N 6084		2.109
MHWEO1-3	M $\mathrm{HWWBO1-3}$		5-132	MM1680	2N6080		2.97
MHW801-4	MHW801-4		5-132	MM1681	2N6081		2.100
MFWW802-1		MHWSOS-1	5-137	мMM1713		MRF515	2697
MHW $602-2$		MHW803-3	5-137	MM1943		MRF515	2697
MHW803-1	M $\mathrm{HWBOO}-1$		5-137	MM1945		MRF515	2.697
MHW803-2	MHWB03-2		5-137	M M 4018	MM4018		2.214
M M Wheos-3	NHW803-3		5-137	MM4020	2N6094		2
NHW806-1		MHW806A1	5-142	mM4021	2×6095		-
MHW806-2		MHW806A2	5-142	MM4022	2N6096		-
MHW806-3		NHWSO6A3	5-142	M M 4 4023	2 N 6097		-
MHW806-4		NHWBOCA4	5-142	MM4049	mı4049		2-216
MHWBO6A1	MHW806AI		5-142	MM439		2N4959	2.27
	MHW806A2		5-142	MM4500	2N5583		2-60
МННвобA3	MHW806A3		5-142	MM517		MPF325	2.557
MHW806A4	MHW806A4		5-142	MM48000	MM88000		2-220
MHW807.1	MHW807-1		5.147	MM8001	MM8001		2.220
MHW807-2	MHW807.2		5-147	MM8002	2 N 5943		$2 \cdot 83$
MHW809-1		MHW80GA1	5.142	MM8003	MRF511		2692
MKW809-2		MHW80GA2	5-142	MMM8004		MRF475	2.662
MLWWS083		MHNBO6A3	5-142	M M 48006	2N5031		2.36
NHW808-4		MFHESO6A4	5-142	MM88007	2N5032		2.36
MHW812-3		MhW812A3	5-152	MM8008		MRF905	2.917
MHW8i2A3	NHW812A3		5-152	MM8009	M148009		2-222
KHHW820-1			5-156	MMS010		MRF905	$2-917$
MHWHESO-2	MHW82O-2		5-156	M488011		MRF905	2.917
MHW820-3	MHW820-3		5-156	MM8012	MRF511		2.692
MKB12040WS		MRF1035MA	2-976	M M88020	2×5836		2.73

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Direct Replacement	$\begin{aligned} & \text { Molarola } \\ & \text { Similar } \\ & \text { Replacement } \end{aligned}$	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
MM8021	2N5837		2.73	MRA1014-2	MRA1014-2		2.278
M148023		2N5943	2-83	MRA1014-2H	MRA1014-2H		2.285
MMBR2060	MMBR2060L		2-225	MRA1014-35	MRA1014-35		2-278
MMER2060L	MMBR2060L		2.225	MRA1014-6	MRA1014-6		2.278
MMPR2857	MMBR2857L		2.230	MRA $1014-6 \mathrm{H}$	MRA1014-6H		2.285
MMBR2857L	MMBR2857L		2.230	MRA1214.55H	MRA1214.55H		2.287
MM684957	MMBR4957L		2-231	MRA $1300-10 \mathrm{~L}$	MRA $1300-10 \mathrm{~L}$		2.290
MMBR4957L	MMBR4957L		2.231	MRA1417-11	MRA1417-11		2.292
MMBR5031	MMBR5031L		2.233	MRA1417-11H	MRA1417.11H		2.236
MMBR5031L	MMBR503iL		2.233	MRA1417-2	MRA1417-2		2.292
MMBR5179	MMBR5179L		2-234	MRA1417-25A	MRA1417-25A		2.292
MMBR5179L	MMBR5179L		2.234	MRA1417.2H	MRA1417-2H		2.296
MMBR536	MMBR536L		2.235	MRA1417-6	MRA1417-6		2-292
MMBR536L	MMBR536L		2.235	MRA1417.6H	MRA1417.6H		2.296
MMBR571	MM.BR571L		2.241	MRA ${ }^{\text {6 }}$ (170-13	MRA1600-13		2.298
MMER571L	MMBR571L		2-241	MRA1500-2	MRA1600-2		2.298
MMBR901	MMBRP901L		2.225	MRA1600-30	MRA1600.30		2.298
MMBR901L	MMBR901L		2.225	MRA1720-2	MRA1720-2		2.302
MMBR911	MMBR911L		2.251	MRA1720-20	MRA1720-20		2.302
MMBR911L	MMBR91IL		2-251	MRA1720-5	MRA1720.5		$2 \cdot 302$
MMBR920	MMBR92OL		2.226	MRA1720-9	MRA1720-9		2.302
MMBR920L	MMBR920L		2-226	MRAL1417-11	MRAL1417-11		2.309
MMBR930	MMBRS330L		2.227	MRAL1417.2	MRAL 1417-2		2.309
MMBR930L	MMBR930L		2.227	MRAL1417-25	MRAL1417.25		2.309
MMBR931	MMBR93IL		2.228	MRAL1417-6	MRAL1417-6		2.309
MMBRSSIL	MMBR931L		2.228	MRAL1720-2	MRALLI720-2		2.312
MMBRS41	MMBR94IL		2.927	MRAL1720-20	MRAL1720-20		$2 \cdot 312$
MMBR94IL	MMER94IL		2.927	MRAL1720-5	MRAL1720-5		$2 \cdot 312$
MMBR951	MMBR951L		2.938	MRAL 1720-9	MRAL1720-9		2.312
MMBR95IL	MMBR95IL		2-938	MRAL $2023-1.5$	MRAL2023-1.5		2-318
M HC 4049	MMC4049		$2 \cdot 216$	MRAL2023-1.5H	MRAL2023-1.5H		2.327
MO10118150Y		MRF150MA	2.988	MRAL2023.12	MRAL2023-12		$2 \cdot 318$
MO10118250Y		MRF1250M	2.992	MRAL 2023 -12H	MRAL $2023-12 \mathrm{H}$		2.327
MPS1983	MPS901		2-247	MRAL2023-18	MRAL2023-18		2.325
MPS3866	MPS3866		2-257	MRAL $2023-18 \mathrm{H}$	MRAL 2023 -18H		2.325
MPS536	MPS536		2-225	MRAL2023-3	MRAL 2023.3		2.318
MPS571	MPS571		2-241	MRAL 2023 3H	MRAL2023.3H		2.327
MPS901	MPS901		2.247	MRAL2023-6	MRAL2023-6		$2 \cdot 318$
MPS911	MPS911		2.251	MRAL $2023-6 \mathrm{H}$	MRAL2023-6H		$2 \cdot 327$
MR10118150Y		MRF150MA	2.988	MRAL2327-1.3	MRAL2327-1.3		$2 \cdot 332$
MR10118300Y		MRF1325M	2.996	MRAL2327-12	MRAL2327-12		2.332
MRAO204-30V	MRF325		2.557	MPAL2327-3	MRAL2327-3		2.332
MRA0204.60	2N6439		$2 \cdot 121$	MRAL2327.6	MRAL2327-6		2.332
MRA020460V	2×6439		$2 \cdot 121$	MRB12175YR		MRF1150MA	2.988
MRA020460VH		2N6439	2.121	MR812350YR		MRFI325M	2.996
MRA0204.70		MRF327	2.565	MRF0211	MRFO211L		2.480
MRA0500-19L	MRA0500-19L		2.258	MRF0211L	MRF0211L		2.480
MRAO5 $50-50 \mathrm{H}$	MRAO510.50		2.260	MRFT0005	MRF10005		2.1055
MRA0610-18A	MRA0610-18A		$2 \cdot 262$	MRF1000MA	MRF1000MA		2.956
MRA0610-18AH	MRA0610-18AH		2-268	MRF1000MB	MRF1000MB		2.956
MRA0610.3	MRA0610-3		2.262	MRF 1000 MC		MRF1000MA	2.956
MRA0610-3H	MRAO610-3H		2.268	MRF1002MA	MRF1002MA		2.960
MRA0610-40A	MRA06 $10-40 \mathrm{~A}$		2-262	MRF1002MB	MRF1002MB		2.960
MRA0610-9	MRA0610-9		2-262	MRF1002MC		MRF1002MA	2.960
MRA0610-9H	MRA0610-9H		2.268	MRF10030	MRF10030		2.1059
MRA1000-14L	MRA1000-14L		2-276	MRF1004MA	MRF 1004MA		2.964
MRA1000-3.5L	MRA1000-3.5L		2.270	MRF1004MB	MRF1004MB		2.954
MRAT000-7L	MRA $1000-71$		2.273	MRF1004MC		MRF1004MA	2.954
MPA1014-12	MRA1014-12		2-278	MRF 1008MA	MRF1008MA		2.968
MRA1014-12H	MRA1014-12		2-285	MRF 1008 M ${ }^{\text {P }}$	MRF1008MB		2.968

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Direct Replacement	Motorcla Similar Replacement	Page No.	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.
MRF1008MC	MRF1008MA		2.968	MRF2016M	MRAL2023-18H		$2 \cdot 325$
MRF10120	MRF10120		1-12	M.RF203		MRF247	2.512
MRF1015MA	MRF1015MA		2.972	MRF207	MRF207		1.7
MRF1015MB	MRF1015MB		2.972	MRF208	MRF208		1.7
MRF1015MC		MRF1015MA	$2-972$	MRF212	MRF212		$1-6$
MRF1035MA	MRF1035MA		2.976	MRF216	MRF216		-
MRF1035MB	MRF1035MB		2.976	MRF220	MRF220		1-6
MRF1035MC		MRF1035MA	2.976	MRF221	MRF221		$2 \cdot 100$
MRFiogowa	MRF1090MA		2.880	MRF2C2		MRF1946	2-1000
MRF1090MB	MRF1090MB		2.980	MRF223		MRF1946	2-1000
MRF1090MC		MRF1090MA	2.980	MRF224	MRF224		$2 \cdot 109$
MRF1150M	MRF1150M		2.984	MRF225	MRF607		2.784
MRF1950MA	MRF1150MA		2.988	MRF226	MRF226		2.484
MRF1150MB	MRFI150MB		2.988	MRF227	MRF227		2-486
MRFIT50MC		MRFIISOMA	2.988	MRF229	MRF229		2.490
MRF1250M	MRF1250M		2.992	MRF231		2N6080	2.97
MRF1325M	MRF1325M		2.996	MRF232	MRF232		2.494
MRF134	MRF134		2.337	MRF233	MRF233		2498
MRF136	MRF136		$2 \cdot 345$	MRF234	MRF234		2.502
MRF136Y	MRF136Y		$2 \cdot 345$	MRF2369	MRF2369		2-1004
MRF137	MRF137		$2 \cdot 355$	MRF237	MRF237		2.506
MRF138	MRF138		2.363	MRF238	MRF238		1.7
MRF140	MRF140		2.368	MRF239	MRF239		1.7
MRF141	MRF141		$2 \cdot 373$	MRF240	MRF240		2.508
MRF141G	MRF141G		2.379	MRF240A	MRF240A		2.508
MRF148	MPF148		2-384	MRF243		MRF247	2.512
MRF150	MRF150		2.369	MRF245	MRF245		2512
MRFI51	MRF151		2.394	MRF247	MRF247		2-512
MRF151G	MRF151G		2.400	MRF248	MRF247		2.512
MRF153		MRF154	2.406	MRF260	MRF260		2.515
MRF154	MRF154		2.406	MRF261	MRF261		2.519
MRF158R	MRF158R		1-3	MRF262	MRF262		2.523
MRF16CR	MRF160R		$1 \cdot 3$	MRF2628	MRF2628		2-1009
MRF161	MRFt61		$2-412$	MRF264	MRF264		2-527
MRF162	MRF162		2-420	MRF305	MRF325		2.557
MAF163	MRF163		2428	MRF306	2N6439		2-121
MRF171	MRF171		$2-436$	MRF309	2 N 6439		2.121
MRF172	MRF172		2.444	MRF313	MRF313		2.531
MRF174	MRF174		2.452	MRF313A		MRF313	2.531
MRF175GU	MRF175GU		2.460	MRF314	MRF314		2.533
MRF175GV	MRF175GV		2460	MRF314A	MRF314A		2-533
MRFI75LU	MRF175LU		2467	MRF315	MRF315		2.537
MRF175LV	MRF175LV		2.467	MRF315A	MRF315A		2.537
MRF176GU	MRF176GU		$2-473$	MRF316	MRF316		2.541
MFF176GV	MRF176GV		2473	MRF317	MRF317		2.545
MRF1946	MRF1946		$2 \cdot 1000$	MRF321	MRF321		2.549
MRF1946A	MRF1946A		2-1000	MRF323	MRF323		2.553
MRF2001	MRW2001		2-1067	MRF325	MRF325		2.557
MRF20018	MRW2001F		2-1067	MRF326	MPRF326		2.561
MRF2001M	MRAL2023-1.5H		$2 \cdot 327$	MRF327	MRF327		2.565
MRF2003	MRW2003		$2 \cdot 1067$	MRF329	MRF329		2.569
MRF2003B	MRW2003F		2.1067	MRF331		MRF321	2.549
MRF2003M	MRAL2023-3H		$2 \cdot 327$	MRF338	MRF338		2.573
MRF2005	MRW2005		$2 \cdot 1067$	MRF340	MRF340		2-577
MRF20058	MRW2005		2.1067	MRF342	MRF342		2.581
MRF2005M	MRAL2023-6H		2-327	MRF344	MRF344		2.585
MRF201		MRF237	2.506	MRF3866	MRF3866		2.1013
MRF2010	MFW2010		2.1067	MRF390	MRF390		2.589
MRF20108	MRW2010F		2-1067	MRF392	MRF392		2.593
MRF2010M	MRAL2023-12H		2.327	MRF393	MRF393		2.597

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.	Indusiry Part Number	Motorola Direct Replacement	Matorola Similar Replacement	$\begin{aligned} & \text { Page } \\ & \text { No. } \end{aligned}$
MRF401	MRF401		2.601	MRF511	MRF511		2-692
MRF402		2 N 4427	2.23	MRF515	MRF515		2.697
MRF406	MRF406		2.604	MRF5160	MRF5160		2.1023
MRF4070	MRF4070		2.1015	MRF517	MRF517		2.700
MRF410	MRF410		2.608	MRF5174	MRF5174		2.1025
MRF410A		MRF410	2.608	MRF5175	MRF5175		2.1028
MRF412	MRF492		6-684	MRF5176		MRF323	2.553
MRF412A		MRF492	2.684	MRF5177		MRF325	2-557
MRF415		2N6080	2.97	MRF5177A		MRF325	2.557
MRF416		MRF433	2.640	MRF5178		2N6439	2-121
MRF417		MRF455	2.652	MRF519		MRF517	2.700
MRF418		MRF455	2.652	MRF521	MRF521		2.705
MRF419	MRF410		2.608	MRF5211	MRF5211L		2.705
MRF420	MRF454		2.650	MRF5211L	MRF5211L		2.705
MRF421	MRF421		2.612	MRF522	MRF522		2.705
M FF_{422}	MRF422		2.616	MRF524	MRF524		2.705
MRF422A		MRF422	2.616	MRF525	MRF525		2.712
MRF426	MRF426		2.620	MRF526		MRF586	2.772
MRF426A		MRF426	2.620	MRF531	MRF531		2.716
MRF427	MRF427		2.624	MRF532	MRF532		-
MRF427A		MRF427	$2 \cdot 624$	MRF534		MM4049	2-216
MRF428	MRF428		2628	MRF536	MRF536		2-216
MRF428A		MRF423	2628	MRF542	MRF542		2.718
MRF429	MRF429		2.632	MRF543	MRF543		2.720
MRF430	MRF430		2.636	MRF544	MRF544		2.722
MRF432	MRF432		-	MRF545	MRF545		2.725
MRF433	MRF433		2.640	MRF546	MRF546		2.729
MRF435	MRF422		2.616	MRF547	MRF547		2.731
MRF4427	MRF4427		2-1019	MRF548	MRF548		2.718
MFF448	MRF448		2.642	MRF549	MRF549		2.720
MRF449		2N6082	2.103	MRF553	MRF553		2.733
MRF449A	2N6082		2.103	MRF555	MRF555		2.738
MRF450	MRF450		2.648	MRF557	MRF557		2.742
MRF450A	MRF450A		2.648	MRF5583	MRF5583		2.1031
MRF451		MRF455	2.652	MRF559	MRF559		2.747
MRF452		MRF455	2652	MRF571	MRF571		2.754
MRF453		MRF455	2652	MRF5711	MRF5711L		2.1033
MRF453A		MRF455A	2.652	MRF5711L	MRF5711L		2.1033
MRF454	MRF454		2.650	MRF572	MRF572		2.754
MRF454A		MRF454	2.650	MRF580	MRF580		2.764
MRF455	MRF455		2.652	MRF580A	MRF580A		2.764
MRF455A	MRF455A		2.652	MRF581	MRF581		2.764
MRF458	MRF454		2650	MRF5812	MRF5812		$2 \cdot 1037$
MRF458A		MRF454	$2 \cdot 650$	MRF581A	MRF581A		2.764
MRF460		MRF455	2.652	MRF586	MRF586		2.772
MRF464	MRF464		2.654	MRF587	MRF587		2.772
MRF464A	MRF464A		2.654	MRF5943	MRF5943		2.1041
MRF466	MRF466		2.658	MRF601		MRF559	2.747
MRF475	MRF475		2662	MRF602		MRF644	2.788
MRF476	MRF476		2.666	MRF603	MRF212		1-6
MRF477	MRF477		2.670	MRF604	MRF604		2.782
MRF479	MRF479		$2 \cdot 674$	MRF605	2 2N6439		2.121
MRF485	MRF485		2.678	MRF606	MRF607		2.784
MRF486	MRF486		2.681	MRF607	MRF607		2.784
MRF492	MRF492		6.684	MRF616	MRF616		-
MRF492A		MRF492	2.684	MRF648	MRF641		2.794
MRF497	MRF497		2.687	MRF619	MRF644		2.798
MRF501	MRF501		2.650	MRF620	MRF644		2.798
MRF502	MRF502		2.690	MRF621	MRF646		2.802
MRF504		MRF511	2.692	MRF626	MRF626		-

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.	Industry Part Number	Motorcla Direct Replacement	Motorola Similar Replacement	Page No.
MRF627	MRF627		2.786	MRF9511L	MRF951IL		2-938
MRF628		MRF559	2.747	MRF952	MRF952		2.946
MRF629	MRF629		1.9	MRF961	MRF961		2-153
MRF630	MRF630		2.790	MRF962	MRF962		2.153
MRF641	MRF641		2.794	MRF965	MRF965		2.153
MRF644	MRF644		2.798	MRF966	MRF966		2.951
MRF646	MRF646		2802	MRFC2369	MRFC2369		421
MRF648	MRF648		2.606	MRFC544	MRFC544		2.722
MRF650	MRF650		2810	MRFC545	MRFC545		2.725
MRF652	MRF652		$2 \cdot 816$	MRFC559	MRFC559		4-21
MRF653	MRF653		2820	MRFC901	MRFC901		$4 \cdot 21$
MRF654	MRF654		2.824	MRFC904	MRFC904		4.21
MRF660	MRF660		2.828	MRFG9661	MRFG9661		-
MRF750	MRF750		2.832	MRFG9661R	MRFG9661R		-
MRF752	MRF752		28836	MRFG980	MRFG980		-
MRF754	MRF754		2848	MRFG9801	MRFG9801		-
MRF8003		MRF476	2 2666	MRFG9801R	MPFG9801R		-
MRF8004		MRF475	$2-662$	MRFO17	MRFQ 17		2-1063
MRF816	MRF837		2.844	MRFO19	MRFQ19		2.1065
MRF837	MRF837		2.844	MRT0105-75		MRF393	2.597
MRF8372	MRF8372		2-043	MRT0105.75V		MRF393	2.597
MRF838	MFF838		28550	MRTO204-110V		MRF392	2-593
MRF838A	MRF838A		2850	MRTO204-125		MRF392	2.593
MRF839	MRF839		2854	MRW2001	MRW2001		2.1067
MRF83sF	MRF839F		2854	MRW2003	MRW2003		2.1067
MRF840	MRF840		2.859	MRW2005	MRW2005		2-1067
MRF841		MRF840	2.859	MRW2010	MRW20to		2-1067
MRF841F		MRF840	2.859	MRW2015	MRW2015		2-1067
MRF842	MRF842		2.869	MRW2020	MRW2020		2.1067
MRF843		MPF842	2.869	MRW2301	MRW2301		2-1074
MRF843F		MRF842	2.869	MRW2304	MRW2304		2-1076
MRF844	MRF844		2.873	MRW2307	MRW2307		2.1078
MRF846	MRF846		2.876	MRW3001	MRW3001		2.1080
MRF847	MRF847		2.880	MRW3003	MAW3003		2 2-1080
MRF870		MRF839	2.854	MRW3005	MRW3005		$2 \cdot 1080$
MRF870A	MRF839		2.854	MRW52001	MRW52001		2-1085
MRF873	MRF873		2.883	MRW52101	MRW52101		2.1085
MRF890	MRF890		2.887	MRW52102	MRW52102		2.1090
MRR891	MRF991		2.891	MRW52104	MRW52104		2.1093
MRF892	MRF892		2885	MRW52201	MRW52201		2.1085
MRFE94	MRF894		2899	MRW52202	MRW52202		$2 \cdot 1090$
MRF898	MRF898		2.903	MRW52204	MRW52204		2-1093
MRF901	MRF901		2.907	MRW52401	MRW52401		2-1085
MRF9011	MRF9011L		2-1047	MRWS2402	MRW52402		2.1090
MRF9011L	MRF9011L		2-1047	MRW52501	MRW52501		$2 \cdot 1085$
MRF902	2N6603		2.125	MRW52502	MRW52502		$2 \cdot 1090$
MRF904	MFF904		2.913	MRW52504	MRW52504		2-1093
MFF905	MRF905		2.917	MRW52601	MRW52601		2.1085
MRF911	MRF911		2.919	MRW52602	MRW52602		2.1090
MRF912	2N6604		2.129	MRW52604	MRW52604		2.1093
MRF914	MRF914		2.922	MRW53001	MRW53001		2.1096
MRF931	MRF931		2.925	MRW53101	MRW53101		2.1096
MRF9331	MRF9331L		2.1051	MRW53102	MRW53102		$2 \cdot 1100$
MRF9331L	MRF9331L		2.1051	MRW53201	MRW53201		2-1096
MRF941	MRF941		2.927	MRW53202	MRW53202		2-1100
MRF9411	MRF941IL		2.927	MRW53401	MRW53401		2.1096
MRF9411L	MRF9411L		$2 \cdot 927$	MRW53501	MRW53501		2-1096
MRF942	MRF942		2.933	MRW53502	MRW53502		2.1100
MRF951	MRF951		2.938	MRW53505	MRW53505		2.1103
MRF9511	MRF951IL		2.938	MRW53601	MRW53601		2.1096

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.
MRW53602	MRW53602		2.1100	M $\times 20.1$	MX20-1		$5 \cdot 245$
MRW53605	MRW53605		2.1103	M $\times 20-2$	MX20-2		5-245
MRW54001	MRW54001		2.1106	MX7.5	MHW709-1		$5 \cdot 116$
MRW54201	MRW54201	.	$2 \cdot 1106$	MXR100		MRF5812	2-1037
MRW54501	MRW54501		2-1106	M \times P3866		MRF3866	$2 \cdot 1013$
MRW54601	MRW54601		$2 \cdot 1106$	MXR5160		MRF5160	2.1023
MSC1000M	MRFT000MA		2.956	MXR5583		MRF5583	2-1031
MSCiOO2M	MRF1002MA		2.960	MXR571		MRF5711L	2-1033
MSC1004M	MRF1004MA		2.964	MXR5943		MRF5943	2-1041
MSC1015M		MRF1015MA	2.972	MXR911		MMBR911L	$2 \cdot 251$
MSC1035M		MRF1035MA	2.976	NE020214-12		MRF607	2.784
MSC1075		MRF1090MA	2.980	NE020320-12		2N5944	2.90
MSC1090M		MRF1090MA	2.980	NE020320-28		MRF321	2.549
MSC1175M		MRF1150M	2.984	NE020620-07		2N5946	2.90
MSC1250M	MRF1250M		2.992	NE021020-12		2N5946	2.90
MSC1325M	MRF1325M		2-996	NE021020-28		MRF321	2.549
MSC2001	MRW2001		$2 \cdot 1067$	NE02107	MRF572		2.754
MSC2003	MRW2003	.	2.1067	NE02132	MPS571		2-241
MSC2005	MRW2005		2-1067	NE02133	MMBR571L		2-241
MSC2010	MRW2010		2-1067	NE02137	MRF2369		2-1004
MSC2302	MRW2301		2-1074	NE022025-12		2N6081	2.100
MSC2304	MRW2304		2-1076	NE022025-28		MRF314A	2.533
MSC2307	MRW2307		$2 \cdot 1078$	NE022526-12		2N6082	2-103
MSC8020M	MRAL2023-18H		$2 \cdot 325$	NE024027-28		MRF315A	2.537
MSC82001	MRW2001		2-1067	NE028029-12	MRF247		2.512
MSCA2003	MRW2003		2-1067	NE028029-28		MRF316	2.541
MSC82005	MRW2005		2-1067	NE050214-12	MRF629		1.9
MSC82005M	MRAL2023-6H		2.327	NE050320-12	2N5944		2.90
MSC82010	MRW2010		$2 \cdot 1067$	NE050490-07		MRF752	2.836
MSC82012M	MRAL2023-12H		2.327	NE050491-07		MRF752	2-836
MSC82201	MRW2001		$2 \cdot 1067$	NE050690-07		MRF754	$2-840$
MSC82203	MRW2003		2-1067	NE051020-28	MRF321		2.549
MSC82304M	MRAL2023-6H		2.327	NE051025-12		2N5946	2.90
MSC82310M	MRAL2023-12H		$2 \cdot 327$	NE051525-12		MRF654	$2-824$
MSC82313M	MRAL2023-18H		2.325	NE052025-28		MRF323	2-553
MWA0204	MWA0204		$5 \cdot 203$	NE080420-12		MRF839	$2-854$
MWA0211	MWA0211L		$5 \cdot 203$	NE21937		MRF571	2.754
MWA0211L	MWA0211L		5-203	NE22120		MRF587	2.772
MWA0270	MWA0270		5-203	NE24615		MRF586	2.772
MWA0304	MWA0304		$5-208$	NE24620		MRF587	2.772
MWA0311	MWA0311L		5-208	NE32702		2N6604	2.129
MWA031IL	MWAO311L		5-208	NE32707	2N6604		2-129
MWA0370	MWA0370		5-208	NE41603		MRF962	2.153
MWA110	MWA110		5-214	NE41607		MRF962	2.153
MWA11OH	MWA110H		-	NE4i610	MRF965		2.153
RWW 120	MWA120		5-214	NE41612		MRF965	2.153
MWAI2OH	MWAizOH		-	NE41615		MRF965	$2 \cdot 153$
MWA130	MWA130		5-214	NE41620		MRF587	2.772
MWA130H	MWA13OH		-	NE41635		MRF962	$2 \cdot 153$
MWA210	MWA210		5-229	NE57510		MRF586	2.772
MWA210H	MWA210H		5-229	NE57520		MRF587	2.772
MWA220	MWA22O		5-229	NE57803		MRF942	2.933
MWA220H	MWA22OH		-	NE57807	MRF942		2.933
MWA230	MWA230		5-229	NE59312	MM4049		$2 \cdot 216$
NWA23OH	MWA23OH		-	NE59335		MRF536	$2 \cdot 216$
MWA310	M ${ }^{\text {NA3 }}$ IO		5-237	NE59503		MRF581	2.764
MWA320	MWA320		5-237	NE64310		MRF586	2.772
MWA330	MWA330		$5 \cdot 237$	NE64320		MRF587	2.772
MX12	MHW710-1		5-120	NE68132		MPS571	2.241
MX15		MHW710-1	5-120	NE68133		MMBR571L	2-241

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorala Direct Replacement	Motorola Similar Replacement	Page No.
NE68137		MRF571	2.754
NE73412	MRF914		2.922
NE73432	MRF911		2.919
NE73433	MMER911L		2.251
NE73435		2N6604	2-129
NE73437	MRF911		2.919
NE74014		MRF586	2.772
NE74020		MRF587	2.772
NE74113	MRF586		2.772
NE74114		MRF586	2.772
NE77320		MRF587	2.772
NE85632		MPS571	2-241
NE85633		MMBP571L	2-241
NE85637		MRF571	2-754
NE88912	MM4049		2.216
NE88533	MMBR536L		2-235
NEL080120-24		MRF890	$2-887$
NEM020C29-28	MRF317		2-545
NEM050C29-28	MRF327		2-565
NEM054029-12	MRF646		2802
NEM054029-28	MRF325		2-557
NEM056029-12	MRF648		2.806
NEM056029-28	2N6439		2-121
NEM080481E-12	MRF839F		2854
NEM081081B-12	MRF840		2-859
NEM081081E-12	MRF873		$2-883$
NEM0820818-12	MRF842		$2-869$
NEM084081B-12	MRF844		2.873
NEM085081B-12	MRF846		2.876
NEM092081B-28	MRF892		2889
NEM0940818-28	MRF994		2.899
NEM20108-20		MRAL2023-18H	2.325
NEM2305B-20		MRAL2023-12H	2.327
PAA0105-29-6L	PAA0105-29-6L		5-248
PAAD105-45-25L	PAA0105-45-25L		5-249
PAADI05-50-501AS	PAA0105-50-50LAS		$5 \cdot 250$
PAAD200-34-1.5L	PAAO200-34-1.5L		5-251
PAA0200-34-3.1L	PAA0200-34-3.1L		5-252
PAA0450-33-0.4L	PAA0450-33-0.4L		5-254
PAA0500-17-1.0L	PAA0500-17-1.0L		5.255
PAA0500-17-2.0L	PAA0500-17-2.0L		5-256
PAA0500-35-1.0L	PAA0500-35-1.0L		5-257
PAA0810-24-5L	PAA0810-24-5L		5-259
PAA0810-31-25L	PAA0810-31-25L		5.260
PAA0810-32-10L	PAAO810-32-10L		5-261
PAA0810-38-100AB	PAA0810-38-100AB		5-263
PAA0810-38-5LAS	PAA0810-38-5LAS		5-262
PAA0810-40-50L	PAA0810-40-50L		5-264
PAA0810-40-50LAM	PAA0810-40-50LAM		5-265
PAA0810-52-100AM	PAA0810-52-100AM		5-267
PAA0810-54-50LAS	PAA0810-54-50LAS		5-268
PAA0810-54-50LSM	PAA0810-54-50LSM		5-269
PAA1000-14-0.6L	PAA1000-14-0.6L		5-270
PAA1000-14-1.3L	PAA1000-14-1.3L		5-271
PAA1000-30-0.6L	PAA1000-30-0.6L		5-272
PAA1000-42-5L	PAA1000-42-5L		5-273
PAA225-42-101	PAA225-42-10		5-280
PAE0105-29-6L	PAE0105-29-6L		$4-6$
PAE0105-45-25L	PAE0105-45-25L		4.6
PAE0105-50-50LAS	PAE0105-50-50LAS		4.6

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.
PAE0200-34-1.5L	PAE0200-34.1.5L		46
PAE0200-34-3.1L	PAE0200-34-3.1L		4.6
PAE0450-33-0.4L	PAE0450-33-0.4L		4.6
PAE0500-17-1.0L	PAEO500-17-1.0L		4.6
PAEO500-17-2.0L	PAEO500-17-2.0L		4.6
PAEO500-35-1.0L	PAE0500-35-1.0L		4.6
PAE0810-24.5L	PAE0810-24-5L		4.6
PAE0810-31-25L	PAE0810-31-25L		4.6
PAE0810-32-10L	PAE0810-32-10L		4.6
PAE0810-38-100AB	PAE0810-38-100AB		4.6
PAE0810-38-5LAS	PAE0810-38-5LAS		4.6
PAE0810-40-50L	PAE0810-40-50L		46
PAE0810-40.50LAM	PAE0810-40-50LAM		4.6
PAE0810-52-100AM	PAE0810-52-100AM		4.6
PAE0810-54-50LAS	PAE0810-54-50LAS		4.6
PAE0810-54-50LSM	PAE0810-54-50LSM		4.6
PAE1000-14-0.6L	PAE1000-14-0.6L		4.6
PAE1000-14-1.3L	PAE1000-14-1.3L		4.6
PAE1000-30-0.6L	PAE1000-30-0.6L		46
PAE1000-42-5L	PAE1000-42.5L		46
PAE225-42-10L	PAE225-42-10L		46
PAM0105-29-6L	PAM0105-29-6L		5-278
PAN0105-29.6LA	PAM0105-29-6LA		4.5
PAM01056-50	PAM01056-50L		5-274
PAN01056-50A	PAM01056-50LA		4.5
PAN0105-7.25L	PAM0105-7-25L		5-276
PAM0105-7-25LA	PAM01057-25LA		4.5
PAM0810-24-3L	PAM0810-24-3L		5-290
PAMO810-24-5LA	PAM0810-24.5LA		4.5
PAMC810-6-50L	PAM0810-6-50L		5-284
PAM0810-7.25L	PAM0810-7-25L		5-286
PAMO810-8-102	PAM0810-8-10,		5-288
PAM225-42-10	PAM225-42-10L		5-253
PAM225-42-10LA	PAM225-42-10LA		4.5
PEE0015U		MRF323	2.553
PEEOO2OU		MRF323	2.553
PEE0035U		MRF325	2.557
PH0105-100	MRF393		2.597
PH0401H	MRF5174		$2 \cdot 1025$
PH0403H	MRF5175		2.1028
PH0406H		MRF5175	2.1028
PH0412H	MRF321		2.549
PH0425H		MRF325	2.557
PH0450D	2N6439		2.121
PHO45OH	2N6439		2.121
PH0501H	MRF5174		2.1025
PHO503H		MRF5175	2.1028
PH0506H		MRF321	2.549
PH0512H		MRF321	2.549
PH0525	MRF325		2.557
PH0550H		2×6439	2-121
PHIIOOC		MRF 150 MA	2.988
PH1100H		MRF150MA	2.988
PH1110C		MRF1015MA	2.972
PHII5OC		MRF109OMA	2.980
PH1175		MRF1150MA	2.988
PH2001C	MRAL2023-1.5H		2.327
PH2003C	MRAL $2023-3 \mathrm{H}$		2.327
PH2005C	MRAL2023-6H		2.327
PH2010C	MRAL2023-12H		2-327

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.	Industry Part Number	Motarola Direct Replacement	Motorola Similar Replacement	Page No.
PH2020C	MRAL2023-18H		2.325	PT8825		MRF644	2.798
PH2301H	MRW2301		2-1074	PT8828A	MRF226		2.484
PH2303H	MRW2304		2-1076	PT8837	2N6081		2.100
PH2306H	MRW2307		2-1078	PT8838		2N6084	2.109
PH8193		MRF905	2.917	PT8850		MRF479	2-674
PHA3317.1	MKW5171A		5-171	PT8850A		MRF479	2.674
PHA3317-2	MHW5172A		5.171	PT8851	MRF221		$2 \cdot 100$
PHA3318-1	MHW5181A		5-173	PT8851A	MRF233		2-498
PHA3318-2	MHW5182A		5-173	PT8852		MRF234	2.502
PHA3334-2	MHW5342A		$5 \cdot 185$	PT8852A		MRF234	2.502
PHA4517-1	MHW5171A		5-171	PT8853		MRF497	2.687
PHA4517.2	MHW5172A		5-171	PT8853A		MRF497	2.587
PHA4518-1	MHW5181A		5-173	PT8854		MRF492	2-684
PHA4518-2	MKW5182A		$5 \cdot 173$	PT8854A		MRF492	2-684
PHA4534	MHW5342A		5.185	PT8860	2N4427		2.23
PHA5018-1	MHW6181		5-194	PT8861	MRF220		1.6
PHA5018-2	MHW6182		5-194	PT8861A	2N5589		-
PHA5034	M.HW5342A		5-185	PT8862		MRF221	$2 \cdot 100$
PKB20010U		MRW2010	2-1067	PT8862A	MRF233		2.498
PKB23001U	MRW2301		2-1074	PT8863		MRF234	2.502
PKB23003U	MRW2304		$2 \cdot 1076$	PT8663A	MRF234		2.502
PKB23005U	MRW2307		$2 \cdot 1078$	PT8854		MRF224	2-109
PME04030U	MRF325		2.557	PT8854A		2N6084	$2-109$
PT3501	2N4427		2.23	PT8865		MRF492	2.684
PT3502		MRF5174	$2 \cdot 1025$	PT8865A		MRF492	2.684
PT3503	2N5589		-	PT8866	MRF237		2.506
PT3535		2N4427	2.23	PT8870	MRF220		1.6
PT3536		MRF553	2.733	PT8870A	2N6081		$2 \cdot 100$
PT3537		2N5944	2.90	PT8871	TP2502		2.1162
PT3570	MRF511		$2-692$	PT8871A	2N5944		2.90
PT3571	2N5943		2.83	PT8873	MRF221		2-100
PT3571A	2N5943		2-83	PT8873A	2N6081		$2 \cdot 100$
PT3690		2N5641	2-64	PT8874	MRF224		$2 \cdot 109$
PT4537		2N5944	2.90	PT8874A	2N6084		2.109
PT4544		MRF226	2.484	PT8877	MRF237		2.506
PT4555		MRF234	2.502	PT8880	MRF517		2.700
PT4556		MRF450	2.648	PT8881	TP2502		2-1162
PT4570	MRF511		2-692	PT8881A		2N5944	2.90
PT4572A	PT4572A		$2 \cdot 1110$	PT8889		MRF586	2.772
PT4574	MRF511		2.692	PT90738	MRF321		2.549
PT4578	MRF517		2.700	PT9700		MRF5174	2-1025
PT4579	PT4579		2-1113	PT9701		MRF5175	2-1028
PT5695		MRF233	2.498	PT97018	PT9701B		2-1116
PT5701		2N4427	2-23	PT9702		MRF323	2.553
PT5740		2N5590	-	PT9702B	PT9702B		2-1116
PT5741	2N6082		2.103	PT9703		MRF321	2.549
PT5788		MRF464A	$2 \cdot 654$	PT97038	PT9703B		2.1116
PT6665A		MRF464	2-654	PT9704		MRF325	2.557
PT8549		2N5589	-	PT9704A		MRF325	2.557
PT8551		2N3553	2-8	PT9704B	PT9704B		2.1116
PT8554A		MRF492	2.684	PT9730	PT9730		$2-1123$
PT8717		2N6080	$2 \cdot 97$	PT9731	PT9731		2.1123
PT8740		MRF607	2.784	PT9732	PT9732		2-1123
PT8769		MRF233	2-498	PT9733	PT9733		2-1123
PT8809		2N5944	$2 \cdot 90$	PT9734	PT9734		2.1123
PT8809A	2N5944		2.90	PT9776		MRF492	2.684
PT8809S	MRF616		-	PT9776A		MRF492	2.684
PT8810	MRF652		2.816	PT9780		MRF422	2.616
PT8811	2N5946		$2 \cdot 90$	PT9780A		MRF422	2.616
PT8811A	MRF653		2.820	PT9782		MRF317	2.545

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.
PT9782A		MRF317	2.545
P19783		MRF464A	2.654
PT9783A		MRF464A	2-654
PT9784		MRF454	2.650
PT9784A		MRF454	2.650
PT9787		MRF410	2.608
PT9787A		MRF410	2.608
PT9788		MRF401	2.601
PT9788A		MRF426	2.620
PT9790	PT9790		2.1129
PT9795		MRF1946	2-1000
PT9795A	MRF233		2.498
PT9796		MRF1946	$2 \cdot 1000$
PT9796A	2N6083		2.106
PT9797	MRF450		2.648
PT9797A	MRF450A		2.648
PT9798	PT9798		2.1132
PT9847		MRF421	$2-612$
PTE801	MPF890		2.887
R47M10	MHW709-1		5-116
R47M13	MHW710-1		5-120
R47M15	MHW710-1		$5 \cdot 120$
RF1003	MRF221		$2 \cdot 100$
RF1004		MRF1946	$2 \cdot 1000$
RF1029	RF1029		2.1134
RF1031	RF1031		$2 \cdot 1138$
RF1032	RF1032		$2 \cdot 1141$
RF105	MRF421		2-612
RF110	MRF421		2-612
RF14	MRF455A		$2 \cdot 652$
RF15	MRF455		2.652
RF16		MRF455A	2.652
RF2081	MRF216		-
RF2092		MRF455	2.652
RF2123	MRF238		1.7
RF2125		MRF450	2.648
RF2127	MRF245		-
RF2135		MRF1946	2.1000
RF2142		MRF433	$2 \cdot 640$
RF2143		MRF454	$2 \cdot 650$
RF2144	MRF224		2.109
RF2146	MRF476		2.666
RF2147	MRF475		2.662
RF221	MRF221		2.100
RF23	MRF224		2.109
RF25		MRF455	2-652
RF260	MRF260		2.515
RF264	MRF264		2.527
RF35		MRF455A	$2-652$
RF45		MRF455	2-652
RF46		MRF1946	$2 \cdot 1000$
RF47		MRF479	2.674
RF48		2N6082	2.103
RF49		2N6084	$2 \cdot 109$
RF85	MRF454		2.650
S-AU11		MHW806A3	5-142
S-AU16H		MHW707-2	5-111
S-AU17A		MHW807-2	5-147
S-AU21		MHW807-1	$5-147$
S-AU22A		MHW807-2	5-147

Industry Part Number	Motorola Direct Replacement	Motorola Similar Raplacement	Page No.
S-AU25		NRW807-2	5-147
S-AU27L		MHW720A1	$5 \cdot 128$
S-AU27M		MHW720A2	5-128
S-AU3		NHW720-1	5-124
S-AU31	MHW806A3		5-142
S-AU33	MHW807-1		$5 \cdot 147$
S-AU4		MHW720-1	5.124
S.AU5H		MHW709-3	5-116
S-AU5L		MHW709-1	5-116
S-AUSH		NHW709-2	5-116
S-AU6H		MHW710-3	$5 \cdot 120$
S-AUSL		MHW710-1	5-120
S-AU6M		MHW710-2	5-120
S-AU7		MHW820-1	5-156
S.AUS		MHW812A3	5-152
S-AV16H		MHW607-2	5-103
S-AVI6L		MHW607-1	5-103
S-AVI6VH		MHW607-2	5.103
S10-12	MRF433		2.640
S10-28	MRF410		2608
S100-12	MRF421		2.612
S100-28		MRF422	2.616
S100-50		MRF428	2-628
S15-12	MRF433		2-640
S15-28	MRF410		$2-608$
S15-50		MRF427	2.624
S175-28		MRF422	2.616
S175-50		MRF428	2-628
S200-50	MRF448		2.642
S25-12		2N6082	2-103
S25-50	MRF427		2.624
S250-50		MRF448	2.642
530-28	MRF426		2.620
S50-12		MRF450	2.648
550-28	MRF464		2.654
S80-12	MRF454		2.650
SD1005	MRF511		2.692
SD1006	2N5943		2.83
SD1007-1	MRF511		2.692
SD1012	2N5590		-
SO1012.3	MRF220		1.6
SD1013	2N5642		$2 \cdot 67$
SD1013-3		2N5642	$2-67$
SD1014-1	MRF221		$2 \cdot 100$
SD1014-6	MRF221		$2-100$
SD1015	MRF314A		2.533
SD1018-15	MRF224		2.109
SD1018-4	MRF224		2.109
SD1018-6	MRF224		2.109
SD1019	2N6166		$2 \cdot 112$
SD102.6		MRF313	2.531
SD102-7	MRF313		2.531
SD1020		2N4427	2.23
SD1021	MRF212		1.6
SD1022	MRF1946A		2.1000
SD1074		MRF455	2.652
SD1076	MRF454		2-650
SD1077		MRF475	2.662
SD1079	MRF464		2.654
SD1080	MRF207		1.7

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.
SD1080-2		MRF559	2.747	SD1275	MRF240		2.508
SD1080-4	MRF604		2.782	SD1278	MRF240		2.508
SD1080-6	MRF627		2.786	SD1285		MRF406	2.604
SD1080-7		MRF627	2.786	SD1288		MRF455A	2-652
SD1087	MRF641		2.794	SD1289		MRF455	$2 \cdot 652$
SD1088	MRF644		2.798	SD1290		2N6084	2-109
SD1089	MRF646		2.802	SD1295	MRF421		$2 \cdot 612$
SD1095		MRF840	2.859	SD1299	MRF326		2.561
SD1096		MRF842	2.869	SD1300	BFY90		$2 \cdot 166$
SD1098		MRF844	2.873	SD1301	BFY90		2-166
SD1099		MRF846	2.876	SD1303	2N6304		2-116
SD1115-4	MRF607		2.784	SD1308	MRF905		2.917
SD1124	MRF245		-	SD1309	2N2857		2-2
SD1127	MRF237		2.506	SD1315	MRF511		2.692
SD1131	MRF629		1.9	SD1316	MRF586	gex	2.772
SD1132-4	TP251		$2 \cdot 1143$	SD1317	MRF587		2.772
SD1132.5	MRF838		2.850	SD1330		MRF572	2.754
SD1133	MRF212		1.6	SD1331		MRF571	2.754
SD1133-1		MRF212	1.6	SD1333	BFR96		2.153
SD1134	2N5944		2.90	SD1334	MRF580		2.764
SD1134-1		MRF227	2.486	SD1347-7		2N4427	$2 \cdot 23$
SD1135	MRF652		2.816	SD1375	2N4957		2.27
SD1136	MRF653		2.820	SD1400-2	MRF892		2.895
SD1143	MRF212		1.6	SD1400-3		MRF892	2.895
SD1143-1		MRF221	2-100	SD1401	MRF894		2.899
SD1147	MRF5175		$2 \cdot 1028$	SD1403	MRF428		2.628
SD1148	MRF321		2.549	SD1404	MRF427		$2 \cdot 624$
SD1149	MRF323		2.553	SD1405	MRF492		6.684
SD1167		MRF479	2.674	SD1407		MRF422	2.616
SD1168	MRF234		2.502	SD1407-8		MRF422	$2 \cdot 616$
SD1169	2N5849		2.79	SD1409	TP3010		2-1176
SD1174		MRF237	2.506	SD1410		MRF840	2.859
SD1177		2N5589	-	SD1410-3		MRF840	2.859
SD1200	2N3866		$2 \cdot 10$	SD1411		MRF842	2.869
SD1212-4		MRF476	2.666	SD14111-1	MRF842		2.869
SD1212.7	MRF475		2-662	SD1412		MRF842	2.869
SD1214-4		MRF475	$2 \cdot 662$	SD1412-3	MRF842		2.869
SD1214-6	MRF479		2.674	SD1414		MRF846	2-876
SD1216	2N5591		-	SD1415	MRF216		-
SD1218		MRF1946A	$2 \cdot 1000$	SD1416	MRF247		2.512
SD1220-1		2N5641	2.64	SD1418		TP3012	2-1179
SD1222.5		2N5642	2.67	SD1421	MRF844		2.873
SD1222.6	2N5642		2.67	SD1422	MRF644		2.798
SD1224-10		MRF426	2.620	SD1424	2N6082		2.103
SD1224-2	MRF315		2.537	SD1427		MRF247	2.512
SD1224-4		MRF466	2.658	SD1428	MRF216		-
SD1229	2N6083		$2 \cdot 106$	SD1429		MRF641	2.794
SD1229-1		MRF1946	2-1000	SD1429-3	MRF641		2.794
SD1232	MRF517		2.700	SD1433	MRF653		2.820
SD1242-5		2N5641	$2 \cdot 64$	SD1434	MRF646		2.802
SD1244-6		2N5642	$2 \cdot 67$	SD1438		MRF316	2.541
SD1245		MRF321	2.549	SD1438-2		MRF317	2.545
SD1256		2N5589	-	SD1444	MRF629		1.9
SD1262	MRF226		2.484	SD1446		MRF492	2.684
SD1272		MRF1946A	$2 \cdot 1000$	SD1449	MRF421		$2 \cdot 612$
SD1273	MRF240		2.508	SD1450	MRF422		2.616
SD1274	MRF1946A		2.1000	SD1451		MRF455	$2 \cdot 652$
SD1274	TP2330		$2 \cdot 1158$	SD1451-1		MRF455	2.652
SD1274-1	MRF1946		$2 \cdot 1000$	SD1452	MRF454	ST.	$2 \cdot 650$
SD1274-1	TP2330F		$2 \cdot 1158$	SD1455		TPV375	$2 \cdot 1284$

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Difect Replacement	Motorola Similar Replacement	Page No.	Indusiry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.
SD1456-2	TPV3100		$2 \cdot 1324$	SD1918	MRF148		2-384
SD1458		TPV385	2-1287	SD1920	MRF150		2-389
SD1459		TPV376	1-16	SD1920-2	MRF151G		2.400
SD1460		TP9383	2-1243	SHP02.36-20	SHP02-36-20		5-294
SD1461		MRF313	2.531	SHP05-20-10	SHPO5-20-10		5-295
SD1462		MRF313	2.531	SHP05-22-04	SHPO5-22-04		5-296
SD1464		MRF325	2.557	SHP05-34-04	SHPO5-34-04		5-297
SD1465		MRF325	2.557	SHPO6-18-04	SHP06-18-04		5-298
SD1466		MRF326	2.561	SHP10-15-08	SHP10-15-08		5-299
SD1467	MPF326		2.561	SHP10-15-08-15	SHP10-15-08-15		5-300
SD1468		MRF327	2.565	SHP10-17-04	SHP10-17-04		$5 \cdot 301$
SD1469		MRF329	2.569	SHP10-17-04-15	SHP10-17-04-15		5-302
SD1480		MRF317	2.545	TAN15		MRF1015MA	2.972
SD1482		MRF752	2836	TAN150H		MRF1150MA	2-988
SD1484-10	MRF604		2.782	TAN250A		MRF1250M	2-992
SD1485		TPV1325B	$1 \cdot 16$	TAN75		MRF1090MA	2-980
SD1485-3		MRF694	2899	TCC0105-100	MRF393		2.597
SD1486		TPV82008	2.1339	TCC0105-100	TPM4100		2-1277
SD1487	MRF421		2.612	TCC0204-125	MRF392		2-593
SD1488		MRF646	2.802	TCC0204-125	TPM4130		2-1278
SD1489	TPV5055B		2-1331	TCC598		TPV598	2-1312
SD1490		TPV7025	2-1334	TDS570		TPV595A	2-1303
SD1492		TPV8200B	2.1339	TOS595	TPV595A		$2 \cdot 1303$
SD1496		MRF888	2.903	TH1002	MRW2003		$2 \cdot 1067$
SD1496-3		MRF698	2.903	TH1005	MRW2005		2-1067
SD1499	MRF338		2.573	TH1010	MRW2010		2-1067
SD1499.1	MRF648		2800	TH20		MRF430	2.636
SD1512		MRF1090MA	2.980	TH2001	MRW2001		2-1067
SD1513		MRF1090MA	2.980	TH2003	MRW2003		2-1067
SD1514		MRF1150M	2.984	TH2005	MRW2005		2-1067
SD1520	MRF1000MA		2.956	TH416	MRF422		2-616
SD1522	MRF1000MA		2.956	TH417		MRF422	2.616
SD1522-2		MRF1002MA	$2-960$	TH430	MRF448		$2 \cdot 642$
SD1522-4	NRF1002MA		2.960	TH476		NRF5174	$2 \cdot 1025$
SD1524		MRF1004MA	2.964	TH478		MRF321	2-549
SD1526		MRF1008MA	2.968	TH480		MRF321	2.549
SD1528		MRF1035MA	2.976	TH513	MRF428		2.628
SD1530	MRF1035MA		2.976	TH5t8		MRF426	2.620
SD1532		MRF1090MA	$2 \cdot 980$	TH519		2N6439	2-121
SD1534	MRFIO90MA		2.980°	TH525	MRF323		2.553
SD1536		MRF 0 OSOMA	2.980	TH526		MRF325	2-557
SD1538	MRF1150MA		2.988	TH532		MRF325	$2 \cdot 557$
SD1540	MRF1325M		2.996	TH550		MRF321	2-549
SD1544		MRAL2023-1.5H	2-327	TH552	MRF321		2.549
SD1545		MRAL2023-3H	2.327	TH553	MRF323		2.553
SD1574	MRF260		2.515	TH562		MRF448	2.642
SD1575	MRF262		2.523	TH564	TP9386		2-1245
SD1577	MRF264		2.527	TH569	MRF427		$2 \cdot 624$
SD1732		TPV595A	2.1303	TH571	MRF426		2.620
SD1847	TP62602		2.1251	TH596		TPV596	1-16
SD1900	MRF134		$2 \cdot 337$	TH597		TPV597	2-1309
SD1901	MRF161		2-412	TH9031	TP62601		2-1248
SD1902	MRF136	.	2.345	THA13		MRF426	2.620
SD1903	MRF162		2.420	THA15	MRF429		2.632
SD1904	MRF137		2-355	THAS3	MRF314A		2-533
SD1905	MRF171		$2 \cdot 436$	THB13		MRF426	2.620
SD1907	MRF172		$2 \cdot 444$	THB84	MRF315		2.537
SD1909	MRF174		2-452	THM404		TPM405	2-1268
SD1912	MRF140		$2 \cdot 368$	THM425		TPM425	2.1272
SD1912-2	MRF141G		2.379	THY94	MRF315A		2.537

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorola Direct Replacement	Motorcla Similar Replacement	$\begin{aligned} & \text { Page } \\ & \text { Ko. } \end{aligned}$	Indusiry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.
TP1940	TP1940		2.1146	TP304S		MRF839	2-854
TP2007A		MRF754	2.840	TP3060	TP3060		2-1205
TP2031	MRF227		2.486	TP3061	TP3061		2.1209
TP2032	MRF208		1.7	TP3062	TP3062		2.1213
TP2032F		MRF221	2.100	TP3093	MRF586		2.772
TP2033	TP2033		2.1150	TP3098	TP3098		2.1217
TP2034		2N6084	2.109	TP312		BFR96	2.153
TP2034F		MRF224	$2 \cdot 109$	TP3400	TP3400		2-1219
TP2037	TP2037		2.1152	TP3401	TP3401		2-1222
TP212	MRF652		2.816	TP3401S	TP3401S		2-1222
TP212S		MRF220	1.6	TP3402	TP3402		2-1225
TP2180		MRF247	2.512	TP390	BFW92A		2.161
TP2300	2N6080		2.97	TP393	BFR91		2-148
TP2304	2N6084		2.109	TP394	MRF580		2.764
TP2306		MRF607	2.784	TP491	BFR91		2.148
TP2307		MRF607	2.784	TP5002	TP5002		2.1227
TP2314	MRF237		2.506	TP5002S	TP5002S		2.1227
TP2317	TP2317		$2 \cdot 1154$	TP5015	TP5015		2-1230
TP2325	TP2325		2.1157	TP5025	TP5025		2.1231
TP2330	TP2330		$2 \cdot 1158$	TP5040	TP5040		2-1233
TP2330F	TP2330F		2.1158	TP5050	TP5050		2.1236
TP2335	TP2335		2.1160	TP5060	TP5060		2.1239
TP2370		MRF247	2.512	TP8828	MRF212		$1-6$
TP2502	TP2502		2.1162	TP8828F		MRF221	$2 \cdot 100$
TP2503		MRF652	2.816	TP9380	TP9380		2.1241
TP2505	MRF652		$2-816$	TP9383	TP9383		2-1243
TP2505S		MRF652	2.816	TP9386	TP9386		2-1245
TP251	TP251		$2 \cdot 1143$	TP9390		TP1940	2-1146
TP2510	MRF653		2.820	TPA0102-130		TP9386	2.1245
TP2511		MRF653	$2-820$	TPM401	TPM401		2-1265
TP2520		MRF644	2.798	TPM4040	TPM4040		2-1274
TP254		MRF652	2.816	TPM405	TPM405		2-1268
TP254S		MRF752	2.836	TPM4100	TPM4400		2.127
TP3004	TP3004		2.1165	TPM4130	TPM4130		2.1278
TP3005	TP3005		2.1169	TPM425	TPM425		2.1272
TP3009	TP3009		2.1173	TPR10		MRF1015MB	2.972
TP3009S	TP3009S		2.1173	TPR150		MRF1150MB	2.988
TP301		MRF557	2.742	TPR50		MRF1090MB	2.980
TP3010	TP3010		2.1176	TPV13258	TPV1325B		-
TP3010S	TP3010S		2.1176	TPV3100	TPV3100		2.1324
TP3011		TP3013	$1 \cdot 10$	TPV32508		TPV13258	1.16
TP3011S		TP3013	1-10	TPV364	TPV364		2-1281
TP3012	TP3012		2.1179	TPV375	TPV375		2.1284
TP3013		MRF839	2.854	TPV376	TPV376		-
TP3015	TP3015		2-1182	TPV385	TPV385		2-1287
TP3019	TP3019		2.1186	TPV387	TPV387		2-1289
TP3019S	TP3019S		2.1186	TPV394A	TPV394A		2-1291
TP301S		MRF557	2.742	TPV5051	TPV5051		2.1329
TP3020A	TP3020A		2.1189	TPV50558	TPV5055B		2.1331
TP3021	TP3021		$2 \cdot 1190$	TPV590	TPV590		2.1294
TP3022A	TP3022A		$2 \cdot 1193$	TPV591	TPV591		2.1297
TP3023		TP3005	2.169	TPV593	TPV593		2.1300
TP3024A	TP3024A		2.1194	TPV595A	TPV595A		2-1303
TP3026	TP3031		2.1199	TPV595B	TPV6958		2.1322
TP303		MRF839	2.854	TPV596	TPV596A		2.1307
TP3030	TP3030		2.1195	TPV597	TPV597		2-1309
TP3031	TP3031		2.1199	TPV6080B		TPV8200B	2-1339
TP303S		MRF839	2.854	TPV657	TPV657		2.1314
TP304		MRF839	2.854	TPV693	TPV693		2.1319
TP3040	TP3040		2-1203	TPV695A	TPV695A		2-1320

ALPHANUMERIC CROSS REFERENCE (continued)

Industry Part Number	Motorela. Direct Replacement	Motorola Similar Replacement	Page No.	Industry Part Number	Motorola Direct Replacement	Motorola Similar Replacement	Page No.
TPV698	TPV698		$2 \cdot 1323$	TV30U		ATV6031	45
TPV7025	TPV7025		2-1334	TV60U		ATV7050	5-17
TPV8100B	TPV8100B		-	TX1001A	TX1001A		-
TPV8200B	TPV8200日		$2 \cdot 1339$	TX1814	TX1814		-
TPVT98	TPV598		$2 \cdot 1312$	TX1839	TX1839		-
TRF559	MRF559		2.747	TX3014	TX3014		-
TRW2001	MRW2001		2-1067	TX4239	TX4239		-
TRW2003	MRW2003		2-1067	TX52501	TX52501		-
TRW2005	MRW2005		2-1067	TX52502	TX52502		-
TRW2010	MRW2010		2-1067	TX52601	TX52601		-
TRW2015	MRW2015		2-1067	TX52604	TX52604		-
TRW2020	MRH2020		2-1067	TX53501	TX59501		-
TRW2301	MRW2301		$2 \cdot 1074$	TX53601	TX53601		-
TRW2304	MRW2304		2-1076	TX53602	TX53602		-
TRW2307	MRW2307		2-1078	TX54501	TX54501		-
TRW3001	MRW3001		2-1080	TX54601	TX54601		-
TRW3003	MRW3003		$2 \cdot 1080$	TX5839	TX5839		-
TRW3005	MRW3005		2-1080	T29401		MWA110	5-214
TRW52001	MRW52001		2.1085	T29402		MWA120	5-214
TRW52101	MRW52101		2-1085	TZ9403		MWA230	5-229
TRW52102	MRW52102		2-1090	TZ9404		MWA230	5-229
TRW52104	MRW52104		2-1093	UMIL-100		MRF329	2-569
TRW52201	MRW52201		2-1085	UMIL-100A		MRF329	2.569
TRW52202	MRW52202		$2-1090$	UMIL-60	2N6439		2-121
TRW52204	NRW52204		2-1093	UMIL-70	MRF327		2.565
TRW52401	MRW52401		$2 \cdot 1085$	UMILI		MRF313	2.531
TRW52402	MRW52402		2-1090	UMLL 10	MRF321		2-549
TRW52501	MRW52501		2-1085	UMIL20FT		MRF163	2-428
TRW52502	NRW52502		2-1090	UMIL25	MRF325		2.557
TRW52504	MRW52504		$2 \cdot 1093$	UMIL3		MRF5174	2.1025
TRW52601	MRW52601		2-1085	UMIL5		MRF321	2.549
TRW52602	MRW52602		2-1090	UMILSFT		MRF161	2-412
TRW52604	MRW52604		2-1093	UMOB-45	MRF646		28802
TRW53001	NRW53001		2-1096	UMOB-55	MRF648		28806
TRW53101	NRW53101		2-1096	UTV005	TPV596A		2-1307
TRW53102	MRW53102		2-1100	UTV010	TPV597		-
TRW53201	MRW53201		2-1096	UTV020		TPV593	$2 \cdot 1300$
TRW53202	MRW53202		2-1100	UTV040		TPV598	$2 \cdot 1312$
TRW53401	MRW53401	.	2-1096	UTVO80		TPV695A	2-1320
TRW53402	MRW53402	\cdots	$2 \cdot 1100$	UTV120		TPV695A	2-1320
TRW53501	MRW53501		2-1096	UTV150		TPV7025	2-1334
TRW53502	MRW53502		2.1100	UTV1500		TPV81008	2.1337
TRW53505	MRW53505		2-1103	UTV200		TPV50558	2-1331
TRW53601	MRW53601		2-1096	UTV200		TPV7025	2.1334
TRW53602	MRW53602		2-1100	V996		2N6603	2-125
TRW53605	MRW53605		2-1103	VAM-120		MRF317	2.545
TRW54001	MRW54001		2-1106	VAM-40		2N5643	2.70
TRW54101	MRW54101		2-1106	VAM-B0		2N6166	2-112
TRW54201	MRW54201		2-1106	VMIL-100	MRF317		2.545
TRW54501	MRW54501		2.1106	VMIL-50		MRF464	2-654
TRW54601	MRW54601		2-1106	VMILI20FT		MRF174	$2-452$
TRWP62601	TP62601		$2 \cdot 1248$	VMIL20FT	MRF137		2-355
TRW62602	TP62602		2-1251	WMIL 40FT	MRF171		2-436
TRW63601	TP66601		2-1254	VMIL60FT		MRF172	2.444
TRW63602	TP63602		$2 \cdot 1257$	VMIL80FT		MRF172	2-444
TRW64601	TP64601		2-1260	VMOB-70	MRF247		2.512
TRW64602	TP64602		2-1263	VTV075	TPV394A		2.1291
TSD0105-50		TPM4040	2-1274	VTV1250	MRF141		2.373
TSP150		MRF1150MA	2-988	VTV150	TPV385		2-1287
TSP350		MRF1325M	2.996	VTV300	TPV387		2-1289

MOTOROLA SALES OFFICES AND RF MARKETING HEADQUARTERS

USA

RF MARKETING HEADQUARTERS

Phoenix, AZ 5005 E. McDowell Road Phoenix, AZ 85008
Tel.: (602)244-6394
Fax: (602)244-4597
Lawndale, CA 14520 Aviation Boulevard Lawndale, CA 90260
Tel.: (213)536-0888
Torrance, CA
325 Maple Avenue
Torrance, CA 90503-2602
Tel.: (213)783-5600
Fax: (213)783-5790

SEMICONDUCTOR SALES OFFICES

ALABAMA, Huntsville	(205)830-1050	MICHIGAN, Detroit.	(313)347-6800
ARIZONA, Phoenix	(602)897-5056	MINNESOTA, Minneapolis	(612)941-6800
ARIZONA, Tempe	(602)438-3719	MISSOURI, St. Louis	(314)275-7380
CALIFORNIA, Agoura Hills.	(818)706-1929	NEW JERSEY, Fairfield	(201)808-2400
CALIFORNIA, Lawndale. . .	(213)536-0888	NEW YORK, Fairport	(716)425-4000
CALIFORNIA, Orange .	(714)634-2844	NEW YORK, Hauppauge	(516)361-7000
CALIFORNIA, Sacramento.	(916)922-7152	NEW YORK, Poughkeepsie/Fishk	(914)473-8102
CALIFORNIA, San Diego	(619)541-2163	NORTH CAROLINA, Raleigh	(919)876-6026
CALIFORNIA, Sunnyvale	(408)749-0510	OHIO, Cleveland	(216)349-3100
COLORADO, Colorado Springs	(719)599-7497	OHIO, Columbus/Worthington	(614)431-8492
COLORADO, Denver	(303)337-3434	OHIO, Dayton	(513)495-6800
CONNECTICUT, Wallingford.	(203)284-0810	OKLAHOMA, Tulsa	(918)664-5233
FLORIDA, Maitland	(407)628-2636	OREGON, Portland	(503)641-3681
FLORIDA, Pompano Beach/ Ft. Lauderdale.	(305)486-9776	PENNSYLVANIA, Philadelphia/ Horsham.	(215)957-4100
FLORIDA, St. Petersburg.	(813)576-6035	TENNESSEE, Knoxville	(615)690-5593
GEORGIA, Atlanta	(404)449-3875	TEXAS, Austin.	(512)873-2000
ILLINOIS, Chicago/		TEXAS, Houston	(713)783-6402
Hoffman Estates .	(708)490-9500	TEXAS, Houston	(713)251-1291
INDIANA, Fort Wayne	(219)436-5818	TEXAS, Richardson	(214)480-8100
INDIANA, Indianapolis	(317)571-0400	UTAH, Salt Lake City	(801)268-8440
INDIANA, Kokomo	(317)457-6634	WASHINGTON, Bellevue	(206)454-4160
10WA, Cedar Rapids	(319)373-1328	Seattle Access	(206)622-9960
KANSAS, Kansas City/Mission .	(913)451-8555	WISCONSIN, Milwaukee/Brookfie	(414)792-0122

[^36]
INTRA-COMPANY OFFICES

ARIZONA, Scottsdale
(602)949-3811

FLORIDA, Boynton Beach
(305)738-2535

FLORIDA, Ft. Lauderdale (305)475-6120

ILLINOIS, Schaumburg
(312)480-3525

ILLINOIS, Schaumburg/Industrial . . . (312)576-5518
TEXAS, Ft. Worth
(817)232-6256

CANADA

SEMICONDUCTOR SALES OFFICES
ONTARIO, Ottawa
(613)226-3491
QUEBEC, Montreal
(514)731-6881

EUROPE

RF MARKETING HEADQUARTERS
 Bordeaux, France 152, Avenue de la Jallere 33300 Bordeaux France
 Tel.: (56)43-6700
 SEMICONDUCTOR SALES OFFICES

car phone.	$\begin{array}{r} (0) 693-5840 \\ (49) 211501 \end{array}$
FRANCE, Paris	(1)4095-5900
GERMANY, Langenhagen/	
Hannover	(0511)78-99-11
GERMANY, Munich	(89)92103-0
GERMANY, Nuremberg	(911)64-3044
GERMANY, Sindelingen	(7031)83074
GERMANY, Wiesbaden	(6121)761921

ITALY, Milan. (2)82201
NETHERLANDS, Maarssen (4998)61-211
SPAIN, Madrid (1)457-8204
or . (1)457-8254
SWEDEN, Solna (8)734-8800
SWITZERLAND, Geneva (22)7991-111
SWITZERLAND, Zurich (1)730-4074
UNITED KINGDOM, Aylesbury (296)395-252

ASIA/PACIFIC

RF MARKETING HEADQUARTERS
Kwal Chung, 14-16/F, Prosperity Center Hong Kong 77-81 Container Port Road Kwal Chung, N.T., Hong Kong Tel.: (852)0-211-211

SEMICONDUCTOR SALES OFFICES

AUSTRALIA, Melbourne. (3)887-0711	KOREA, Seoul (2)554-5118-21
AUSTRALIA, Sydney (2)906-3855	MALAYSIA, Penang (4)374514
HONG KONG, Kwai Chung 480-8333	SINGAPORE 294 -5438
KOREA, Pusan (51)463-5035	TAIWAN, Taipei (2)717-7089

JAPAN

RF MARKETING HEADQUARTERS

Tokyo, Japan	Kowa Building
	5-2-32, Minami Azabu
	Minato-ku, Tokyo 106
	Japan
	Tel.: (3)440-3311

SEMICONDUCTOR SALES OFFICES
(241)272231
JAPAN, Alzu . (241)272231
JAPAN, Atsugi (462)23-0761
JAPAN, Nagoya

JAPAN, Osaka.
(6)305-1801

JAPAN, Sendai
(22)268-4333

JAPAN, Tokyo
(3)440-3311

REST OF WORLD

SEMICONDUCTOR SALES OFFICES

BRAZIL, Sao Paulo (11)813-1459
or .(11)813-1554
ISRAEL, Tel Aviv (3)753-8222
MEXICO, Mexico City (5)207-7880
or (5)207-7727
MEXICO, Guadalajara (36)21-89-77
OU (36)21-91-29
(809)793-2170

Volume I

Selector Guide

Discrete Transistor Data Sheets

3 Case Dimensions

Volume II

Selector Guide

5 Amplifier Data Sheets

Tuning, Hot Carrier and PIN Diode Data Sheets

Technical Information

Cross Reference and Sales Offices
(4) MOTOROLA

Literature Distribution Centers:
USA: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036.
EUROPE: Motorola Ltd.; European Literature Center; 88 Tanners Drive, Blakelands, Milton Keynes, MK14 5BP, England JAPAN: Nippon Motorola Ltd.; 4-32-1, Nishi-Gotanda, Shinagawa-ku, Tokyo 141 Japan.
ASIA-PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Center, No. 2 Dai King Street, Tai Po Industrial Este Tai Po, N.T., Hong Kong.

[^0]: (1) To be introduced
 (22) Class A device

[^1]: Note 1. Caso Temperature is measured at baso plate.

[^2]: Notes: 1. Case Tempersture is measured at base plate.

[^3]: Note: 1. Case Temperature is measured at base plate - on RF transistor flange.

[^4]: Magnitude in dB, Phase Angle in degrees.

[^5]: This document contains information on a new product. Specifications and information herein are subject to change without notice.

[^6]: This document contains information on a new product. Specifications and information herein are subject to change without notice.

[^7]: Note 1 and Note 2 - See Naxt Page.

[^8]: This document contains information on a new product．Specifications and information herein are subject to change without notice．

[^9]: (1) Adjust $V_{\text {Cont }}$ for specified $P_{\text {out }}$ -

[^10]: (1) Adjust $V_{\text {Cont }}$ for specified $P_{\text {out }}$

[^11]: (1) Adjust $\mathrm{V}_{\text {Cont }}$ for specified $\mathrm{P}_{\text {out }}$ -

[^12]: (1) Adjust $V_{\text {cont }}$ for specified $P_{\text {out }}$
 (2) $\mathrm{V}_{\text {Cont }}=0 \mathrm{~V}$ dc.

[^13]: (1) $\mathrm{P}_{\text {in }}=100 \mathrm{~mW}$; adjust $\mathrm{V}_{\text {Cont }}$ for specified $\mathrm{P}_{\text {out }}$.

[^14]: Note 1: Not designed for continuous operation. Duty cycle typical of Sonobuoy applications. Consult factory for other conditions of operation.

[^15]: **DIN $\left(\mathrm{dB}_{\mu} \mathrm{V}\right)=$ Reference Channel Level $(\mathrm{dBmV})+60 \mathrm{~dB}$

[^16]: ${ }^{*} \mathrm{D} \mid \mathrm{N}(\mathrm{dB} \mu \mathrm{V})=$ Reference Channel Loval $(\mathrm{dBmV})+60 \mathrm{~dB}$

[^17]: Note 1: Based on maximum junction temperature and assumed MTBF of at least 10 years.

[^18]: MMBV2101L $=$ M4G
 MMBV2103L $=4 \mathrm{H}$
 MMBV2104L $=4 \mathrm{Z}$
 MMBV2105L $=4 \mathrm{U}$
 MMBV2106L $=4 \mathrm{~V}$
 MMBV2107L $=4 \mathrm{~W}$
 MMBV2108L $=4 \mathrm{X}$
 MMBV2109L $=4 \mathrm{~J}$

[^19]: *Christiansen, Donald, "Semiconductors: The New Figures of Merit," EEE, October, 1965.

[^20]: Circuit diagrams external to Motorola products oro included as a means of tlustrating typlcal semiconductor applications; consequently complate information sufficient for construction purposes is not nocessarily given. The information in this Application Note hes been carefully checked and is belloved to be entirely rellable. Howovor, no rosponsiblity is assumed for inaccuracies. Furthermore, such information does not convoy to tho purchaser of the semiconductor davices described any license under the patent rights of Motarola Inc. or others.

[^21]: \dagger Refer to Seshu and Balabanian, "Linear Network Analysis," John Wiley and Sons, 1959, P321

[^22]: \dagger Application Note AN166 Motorola Semiconductor Products, Inc. Dept. TIC, 5005 E. McDowell Road, Phoenix, Arizona. See also reference 5 in the bibliography.

[^23]: *Class C, as used here, refers to operation with both the emitter and base at de ground potential and with the collector supply as the only de voltage applied, regardless of resulting device conduction

[^24]: angle. Usually, the emitter is connected directly to chassis ground and the base is de grounded through an inductive network element or choke.

[^25]: *For the purpose of this report a stability factor of 4 is chosen. Values of k less than 4 may not prove to be advantageous from the standpoint of regeneration and parameter spread.

[^26]: *General Radio Cable Connector 874-G58B.

[^27]: *The actual value of optimum source resistance was empirically determined to be 35Ω. Consequently this value was used for the input circuit design rather than 43Ω.

[^28]: *Noto the one major difference in thermal and electrical units; Q is in units of energy, whereas a is simply a charge. Hence H is in units of power and may bo equated to an eloctrical power dissipation.

[^29]: *Similar attenuators and terminations are available from Solitron, EMC Technology, Inc., and other manufacturers of microwave components.

[^30]: Markets
 Communications Networks
 Long Haul or Data Bus
 Coaxial or Fiber Cable
 Communications Radios HF, VHF, UHF Commercial or Military
 Satellite Ground Stations
 High Speed Facsimile
 Telemetry
 Radar
 ECM
 Instrumentation

[^31]: (1) MIL-HANDBOOK - 2178, SECTION 2.2.
 (2) "Navy Power Supply Reliability - Design ond Manufacturing Guidelines" NAVMAT P4855-1, Dec. 1982 NAVPUBFORCEN, 5801 Tabor Ave., Philadelphia, PA 19120.

 Cho-Therm is a registered trademark of Chromerics, Inc.
 Grafoil is a registered trademark of Union Carbide
 Kapton is a registered trademark of E.I. Dupont
 Rubton is a registered irademark of en. Duporing
 Rubber-Duc is a trademark of AAV
 Sil Pad is a trademark of Borquist
 Sil Pad is a trademark of Borquist
 Sync-Nut is a trademark of ITW Shakeproof
 Thermasil is a registered tradomark and Thermafilm is a trademark of Thermalloy, Inc.
 ICePAK, Full Pak, POWERTAP and Thermopad are trademarks of Motorola, Inc.

[^32]: . Not within att JEDEC Cimonaions.

[^33]: - Stripline Opposed Emitter

[^34]: NOTE: No Internal D.C. blocking on input pin.

[^35]: *The 2 N 3866 is a 400 MHz , 1.0 Watt NPN silicon transistor mounted in a TO-39 metal can.

[^36]: Field Applications Engineering
 Available Through All Sales Offices

