Wireless
 Semiconductor Solutions
 Device Data-Vol.I

"Creating the World of Tomorrow
with Technology Today."

Contents at a Glance

VOLUME I
Device Index (Alphanumeric) viii
Chapter One
Selector Guide 1.1-1
Chapter Two
RF Monolithic Integrated Circuits 2.0-1
Section One: Selector Guide, Section Two: Data Sheets
Chapter Three
RF/IF Integrated Circuits 3.0-1
Section One: Selector Guide, Section Two: Data Sheets
VOLUME II
Device Index (Alphanumeric) viii
Chapter Four
RF Discrete Transistors 4.0-1
Section One: Selector Guide, Section Two: Data Sheets
Chapter Five
RF Amplifier Modules 5.0-1
Section One: Selector Guide, Section Two: Data Sheets
Chapter Six
RF CATV Distribution Amplifiers 6.0-1
Section One: Selector Guide, Section Two: Data Sheets
Chapter Seven
Tape and Reel Specifications 7.1-1
Chapter Eight
Surface Mount Package Information 8.1-1
Chapter Nine
Packaging Information 9.1-1
Chapter Ten
Applications and Product Literature 10.1-1
Chapter Eleven
Motorola Distributor and Worldwide Sales Offices 11.1-1

Wireless Semiconductor Solutions Device Data - Vol. I and II

Table of Contents

Foreword v
About This Revision vi
Data Classification vi
On-Line Access to Wireless Semiconductor Data vii
Device Index (Alphanumeric) viii
Volume I Chapter One Selector Guide 1.1-1
RF Monolithic Integrated Circuits 1.1-3
RF/IF Integrated Circuits 1.1-10
RF Discrete Transistors 1.1-29
RF Amplifier Modules 1.1-48
RF CATV Distribution Amplifiers 1.1-53
Chapter Two
RF Monolithic Integrated
Circuits 2.0-1
Section One: Selector Guide 2.1-1
RF Monolithic Integrated Circuits 2.1-1
Switching 2.1-2
Antenna Switches 2.1-2
Receiver Functions 2.1-2
General Purpose Integrated Circuits 2.1-2
900 MHz Front End 2.1-2
1.5-2.2 GHz Front End 2.1-3
2.4 GHz Front End 2.1-3
Transmitter Functions 2.1-3
General Purpose Integrated Circuits 2.1-3
900 MHz Transmit Chain 2.1-4
1.5-2.2 GHz Transmit Chain 2.1-5
2.4 GHz Transmit Chain 2.1-6
Section Two: Data Sheets 2.2-1
Page Page
Chapter Three
RF/IF Integrated Circuits 3.0-1
Section One: Selector Guide 3.1-1
RF/IF Integrated Circuits 3.1-1
RF/IF Monolithic Integrated Circuits 3.1-2
RF Front End ICs 3.1-2
Wideband IFs 3.1-2
Wideband Single Conversion Receivers 3.1-2
Narrowband Single Conversion
Receivers 3.1-3
Narrowband Dual Conversion
Receivers 3.1-3
Universal Cordless Phone Subsystem ICs 3.1-3
Transmitters 3.1-4
Balanced Modulator/Demodulator 3.1-4
Infrared Transceiver 3.1-4
Phase-Locked Loop Components 3.1-16
PLL Frequency Synthesizers 3.1-16
Phase-Locked Loop Functions 3.1-17
Section Two: Data Sheets 3.2-1
Volume II
Chapter Four
RF Discrete Transistors 4.0-1
Section One: Selector Guide 4.1-1
RF Discrete Transistors 4.1-1
RF Small Signal Transistors 4.1-2
Selection by Package 4.1-2
Plastic 4.1-2
Ceramic SOE Case 4.1-4
Selection by Application 4.1-5
Low Noise 4.1-5
CATV, MATV and Class A Linear 4.1-6
RF Medium Power Transistors 4.1-7
Page Page
Volume II
Chapter Four (continued)
RF Discrete Transistors 4.0-1
Section One: Selector Guide 4.1-1
Discrete Wireless Transmitter Devices 4.1-7
RF High Power Transistors 4.1-8
RF Power MOSFETs 4.1-8
RF Power Bipolar Transistors 4.1-11
HF Transistors 4.1-11
VHF Transistors 4.1-11
UHF Transistors 4.1-12
900 MHz Transistors 4.1-13
1.5 GHz Transistors 4.1-14
Microwave Transistors 4.1-14
Linear Transistors 4.1-15
Section Two: Data Sheets 4.2-1
Chapter Five
RF Amplifier Modules 5.0-1
Section One: Selector Guide 5.1-1
RF Amplifier Modules 5.1-1
Land Mobile/Portable 5.1-2
Base Stations 5.1-3
Wideband Linear Amplifiers 5.1-4
Section Two: Data Sheets 5.2-1
Chapter Six
RF CATV Distribution
Amplifiers 6.0-1
Section One: Selector Guide 6.1-1
RF CATV Distribution Amplifiers 6.1-1
Forward Amplifiers 6.1-2
Reverse Amplifiers 6.1-5
Section Two: Data Sheets 6.2-1

MOTOROLA

Wireless Semiconductor Solutions

FOREWORD

This publication includes technical information for the several product families that comprise the Motorola portfolio of Wireless Semiconductor RF and RF/IF Products. The product families include bipolar, LDMOS, MOSFET RF Power, and gallium arsenide chip technologies in a variety of ceramic and plastic surface mount packages. Discrete components, hybrid modules, and integrated circuits provide different levels of complexity in an effort to provide solutions for our customers' needs.

All devices are in alphanumeric order in the Device Index of this book. Just turn to the appropriate page for technical details of the known device. Complete device specifications are provided in the form of Data Sheets which are categorized by product type into five chapters for easy reference. Selector Guides by product family are provided at the beginning of the book as well as in the beginning of each chapter to enable quick
comparisons of performance characteristics and to aid you in identifying devices that meet your functional performance requirements of frequency, output power, gain, or other parameters.

Chapters on Tape and Reel Options, Packaging Information, Applications and Product Literature include additional information to aid you in the design process.

Applications assistance is only a phone call away call the nearest Semiconductor Sales office or 1-800-521-6274. Please refer to our section on On-line Access to Wireless Semiconductor Data so that you will always have easy access to the most current information available on Motorola's Wireless Semiconductor product portfolio.

The information in this book has been carefully checked and is believed to be accurate; however, no responsibility is assumed for inaccuracies.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (4 are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

ABOUT THIS REVISION

The Wireless Semiconductor Solutions Device Data Book is contained in two volumes. This edition encompasses a considerable number of changes that have occurred since our last printing. Some devices have been removed from this book due to package changes or new technology replacements and many new devices have been added.

Application Notes, Engineering Bulletins and Article Reprints of special interest to designers of RF and RF/IF equipment are available on the Motorola Semiconductor Product Sector Web site or are available through the Motorola Literature Distribution Center. Phone and fax numbers for ordering literature are listed on the back cover of this book and in our Accessing Data On-line section. The majority of the documents are available in one book, titled RF Applications Report (order by HB215/D). See Section Ten for a complete listing of Application Literature.

For Cross Reference information on Motorola replacement devices, please consult your local Distributor or Motorola Sales Office. See Section Eleven in this data book for a complete listing of Motorola Distributor and Worldwide Sales Offices.

Annular Semiconductors patented by Motorola, Inc. BitGrabber is a trademark of Motorola, Inc. BitGrabber Plus is a trademark of Motorola, Inc. InterActiveApNote is a trademark of Motorola, Inc. MECL 10 H is a trademark of Motorola, Inc. Mfax is a trademark of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor MOSAIC III is a trademark of Motorola, Inc. MOSAIC V is a trademark of Motorola, Inc. Sleep-Mode is a trademark of Motorola, Inc. SORF is a trademark of Motorola, Inc.
Teflon is a registered trademark of du Pont de Nemours \& Co., Inc. Thermal Clad is a trademark of the Bergquist Company
TMOS is a registered trademark of Motorola, Inc.

DATA CLASSIFICATION

Product Preview

This heading on a data sheet indicates that the device is in the formative stages or in design (under development). The disclaimer at the bottom of the first page reads: "This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice."

Advance Information

This heading on a data sheet indicates that the device is in sampling, pre-production, or first production stages. The disclaimer at the bottom of the first page reads: "This document contains information on a new product. Specifications and information herein are subject to change without notice."

Fully Released

A fully released data sheet contains neither a classification heading nor a disclaimer at the bottom of the first page. This document contains information on a product in full production. Guaranteed limits will not be changed without written notice to your local Motorola Semiconductor Sales Office.

Technical Summary

The Technical Summary is an abridged version of the complete device data sheet that contains the key technical information required to determine the correct device for a specific application. Complete device data sheets for these more complex devices are available from your Motorola Semiconductor Sales Office or authorized distributor.

ACCESS MOTOROLA SEMICONDUCTOR TECHNICAL INFORMATION

Access Data On-Line! - Use Motorola's SPS Internet Server

Motorola SPS's Electronic Data Delivery organization has set up a World Wide Web Server to deliver Motorola SPS's technical data to the global Internet community. Technical data such as the complete Master Selection Guide along with the OEM North American price book are available on the Internet server with full search capabilities. Other data on the server include data sheets, application notes, selector guides, and textbooks. All have easy text search capability. Ordering literature from the Literature Center is available on line. Other features of Motorola SPS's Internet server include the availability of a searchable press release database, technical training information, with on-line registration capabilities, complete on-line access to the Mfax system for ordering faxes, an on-line technical support form to send technical questions and receive answers through email, information on product groups, full search capabilities of device models, a listing of the Domestic and International sales offices, and links directly to other Motorola world wide web servers.

How to reach us:

After accessing the Internet, use the following URL:
http://motorola.com/sps/
http://motorola.com/sps/rf/
http://motorola.com/wireless-semi/
How to reach MFAX directly on-line:
After accessing the Internet, use the following URL:
http://motorola.com/sps/mfax

Mfax ${ }^{\text {TM }}$ - Touch-Tone Fax

Mfax offers access to over 30,000 Motorola documents for faxing to customers worldwide. With menus and voice instruction, customers can request the documents needed, using their own touch-tone telephones from any location, 7 days a week and 24 hours a day. A number of features are offered within the Mfax system, including product data sheets, application notes, engineering bulletins, article reprints, selector guides, Literature Order Forms, Technical Training Information, and HOT DOCS (4-digit code identifiers for currently referenced promotional or advertising material).

A fax of complete, easy-to-use instructions can be obtained with a first-time phone call into the system, entering your FAX number and then, pressing 1.

How to reach us:
Email: RMFAX0@email.sps.mot.com Phone: Motorola Fax Back System: TOUCHTONE 1-602-244-6609 US \& Canada ONLY 1-800-774-1848 Internet: http://sps.motorola.com/mfax/

Literature Centers

Printed literature can be obtained from the Literature Centers upon request. For those items that incur a cost, the U.S. Literature Center will accept Master Card and Visa.

How to reach us:

USA/EUROPE/Locations Not Listed:
Motorola Literature Distribution P.O. Box 5405

Denver, Colorado 80217
Phone: 1-800-441-2447 or 1-303-675-2140

JAPAN:

Nippon Motorola Ltd.
SPD, Strategic Planning Office
4-32-1, Nishi-Gotanda, Shinagawa-ku
Tokyo 141, Japan
Phone: 81-3-5487-8488

ASIA/PACIFIC:

Motorola Semiconductors H.K. Ltd. 8B Tai Ping Industrial Park
51 Ting Kok Road
Tai Po, N.T., Hong Kong
Phone: 852-26629298

DEVICE INDEX

Device Number	Page Number	Device Number	Page Number
2N6439	4.2-3	MC12080	3.2-193
BFR92ALT1	4.2-8	MC12083	3.2-196
BFR93ALT1	4.2-10	MC12089	3.2-199
BFS17LT1	4.2-12	MC12093	3.2-202
CA901	6.2-3	MC12095	3.2-204
CA901A	6.2-3	MC12098	3.2-208
CA912	6.2-5	MC12100	3.2-212
CA922	6.2-7	MC12101	3.2-218
CA922A	6.2-7	MC12147	3.2-224
CA2810C	5.2-3	MC12148	3.2-235
CA2830C	5.2-6	MC12149	3.2-238
CA2832C	5.2-9	MC12179	3.2-249
MC1350	3.2-3	MC12181	3.2-259
MC1490	3.2-7	MC12202	3.2-270
MC1496, B	3.2-14	MC12206	3.2-280
MC2833	3.2-24	MC12210	3.2-290
MC3356	3.2-31	MC13055	3.2-300
MC3357	3.2-37	MC13109	3.2-307
MC3359	3.2-41	MC13110A/B	3.2-333
MC3361C	3.2-47	MC13111A/B	3.2-333
MC3371	3.2-53	MC13135	3.2-397
MC3372	3.2-53	MC13136	3.2-397
MC3374	3.2-70	MC13142	3.2-409
MC3418	3.2-77	MC13143	3.2-422
MC12002	3.2-96	MC13144	3.2-429
MC12009	3.2-102	MC13145 MC13146	$3.2-436$ $3.2-441$
MC12011	3.2-102	MC13146 MC13150	$3.2-441$ $3.2-444$
MC12013	3.2-102	MC13155	$3.2-444$ $3.2-461$
MC12015	3.2-116	MC13156	3.2-476
MC12016	3.2-116	MC13158	3.2-494
MC12017	3.2-116	MC13159	3.2-516
MC12018	3.2-118	MC13173	3.2-522
MC12019 ${ }_{\text {MC12022A }}$	$3.2-120$ $3.2-122$	MC13175	3.2-539
MC12022B	3.2-122	MC13176	3.2-539
MC12022LVA	3.2-127	MC33110	3.2-556
MC12022LVB	3.2-127	MC33128	$3.2-568$ $3.2-579$
MC12022SLA	3.2-132	MC33410	3.2-586
MC12022SLB	3.2-132	MC34016	3.2-604
MC12023	3.2-137	MC145026	3.2-617
MC12026A	3.2-138	MC145027	3.2-617
MC12026B	3.2-138	MC145028	3.2-617
MC12028A	3.2-143	MC145106	3.2-635
MC12028B	3.2-143	MC145145-2	3.2-642
MC12032A	3.2-147	MC145146-2	3.2-643
MC12032B	3.2-147	MC145151-2	3.2-645
MC12033A	3.2-151	MC145152-2	3.2-648
MC12033B	3.2-151	MC145155-2	3.2-652
MC12034A	3.2-154	MC145156-2	3.2-656
MC12034B	3.2-154	MC145157-2	3.2-660
MC12038A	3.2-157	MC145158-2	3.2-663
MC12040	3.2-161	MC145159-1	3.2-675
MC12052A	3.2-165	MC145162	3.2-676
MC12053A	3.2-168	MC145162-1	3.2-676
MC12054A	3.2-172	MC145165	3.2-699
MC12058	3.2-174	MC145166	3.2-700
MC12061	. 3.2-179	MC145167	3.2-700
MC12066	. 3.2-187	MC145168	3.2-709
MC12079	3.2-190	MC145169	3.2-709

DEVICE INDEX - continued

Device Number	Page Number	Device Number	Page Number
MC145170-1	3.2-710	MHW7205C	6.2-47
MC145170-2	3.2-734	MHW7222	6.2-48
MC145190	3.2-758	MHW7222A	6.2-50
MC145190EVK	3.2-780	MHW7242	6.2-52
MC145191	3.2-758	MHW7242A	6.2-53
MC145191EVK	3.2-780	MHW7272	6.2-54
MC145192	3.2-796	MHW7272A	6.2-55
MC145192EVK	3.2-818	MHW7292	6.2-56
MC145200	3.2-833	MHW8142	6.2-40
MC145200EVK	3.2-780	MHW8182	6.2-42
MC145201	3.2-833	MHW8182A	6.2-57
MC145201EVK	3.2-780	MHW8185	6.2-58
MC145202	3.2-854	MHW8185R	6.2-59
MC145202EVK	3.2-818	MHW8205	6.2-60
MC145220	3.2-876	MHW8222	6.2-48
MC145220EVK	3.2-901	MHW8242	6.2-61
MCH12140	3.2-917	MHW8242A	6.2-62
MCK12140	3.2-917	MHW8272	6.2-63
MFF124B	6.2-9	MHW8272A	6.2-64
MFF224B	6.2-11	MHW8292	6.2-65
MFF324B	6.2-13	MHW9142	6.2-40
MFF424B	6.2-15	MHW9182	6.2-42
MFF524B	6.2-17	MHW9242	6.2-66
MHL8015	5.2-12	MMBR521LT1	4.2-13
MHL8018	5.2-12	MMBR571LT1	4.2-20
MHL8115	5.2-14	MMBR901LT1, T3	4.2-33
MHL8118	5.2-14	MMBR911LT1	4.2-35
MHL9128	5.2-16	MMBR941LT1, T3	4.2-39
MHW913	5.2-18	MMBR941BLT1	4.2-39
MHW916	5.2-21	MMBR951LT1	4.2-54
MHW930	5.2-24	MMBR951ALT1	4.2-54
MHW1134	6.2-19	MMBR5031LT1	4.2-68
MHW1184	6.2-19	MMBR5179LT1	4.2-69
MHW1224	6.2-19	MRA0510-50H	4.2-70
MHW1244	6.2-19	MRA1000-7L	4.2-72
MHW1304L	6.2-21	MRA1000-14L	4.2-73
MHW1815	5.2-26	MRA1600-2	4.2-75
MHW1915	5.2-28	MRF134	4.2-77
MHW1916	5.2-30	MRF136	4.2-86
MHW2821-1	5.2-32	MRF136Y	4.2-86
MHW2821-2	5.2-32	MRF137	4.2-96
MHW5182A	6.2-22	MRF140	4.2-104
MHW5185B	. 6.2-24	MRF141	4.2-109
MHW5222A	6.2-26	MRF141G	4.2-115
MHW5342A	6.2-28	MRF148	4.2-120
MHW5342T	. 6.2-30	MRF150	4.2-125
MHW5382A	6.2-31	MRF151	4.2-130
MHW6142	6.2-33	MRF151G	4.2-136
MHW6182	6.2-34	MRF154	4.2-141
MHW6182-6	6.2-35	MRF157	4.2-147
MHW6185B	6.2-24	MRF158	4.2-153
MHW6222	. 6.2-36	MRF160	4.2-157
MHW6272	. 6.2-37	MRF166C	4.2-163
MHW6342	6.2-38	MRF166W	4.2-167
MHW6342T	. 6.2-39	MRF173	4.2-172
MHW7142	6.2-40	MRF174	4.2-177
MHW7182	. 6.2-42	MRF175GU	4.2-185
MHW7182A	. 6.2-44	MRF175GV	4.2-185
MHW7185C	6.2-45	MRF175LU	4.2-195
MHW7185CR . .	. 6.2-46	MRF175LV	4.2-195

DEVICE INDEX — continued

Device Number	Page Number	Device Number	Page Number
MRF176GU	4.2-202	MRF858S	4.2-450
MRF176GV	4.2-202	MRF859S	4.2-455
MRF177	4.2-210	MRF891	4.2-460
MRF182	4.2-215	MRF891S	4.2-460
MRF182S	4.2-215	MRF894	4.2-463
MRF183	4.2-221	MRF897	4.2-467
MRF183S	4.2-221	MRF897R	4.2-471
MRF184	4.2-230	MRF898	4.2-476
MRF184S	4.2-230	MRF899	4.2-479
MRF185	4.2-238	MRF917T1	4.2-484
MRF240	4.2-240	MRF927T1	4.2-494
MRF247	4.2-244	MRF927T3	4.2-494
MRF255	4.2-247	MRF947AT1	4.2-39
MRF275G	4.2-255	MRF947BT1	4.2-39
MRF282S	4.2-266	MRF947T1, T3	4.2-39
MRF282Z	4.2-266	MRF949T1	4.2-505
MRF284	4.2-275	MRF957T1	4.2-54
MRF284S	4.2-275	MRF959T1	4.2-517
MRF313	4.2-284	MRF1000MB	4.2-528
MRF314	4.2-286	MRF1004MB	4.2-531
MRF316	4.2-290	MRF1015MB	4.2-535
MRF317	4.2-294	MRF1035MB	4.2-538
MRF321	4.2-298	MRF1090MA	4.2-541
MRF323	4.2-302	MRF1090MB	4.2-541
MRF325	4.2-306	MRF1150MA	4.2-544
MRF326	4.2-310	MRF1150MB	4.2-544
MRF327	4.2-314	MRF1507	4.2-547
MRF329	. 4.2-318	MRF1507T1	4.2-547
MRF338	4.2-322	MRF1946	4.2-557
MRF392	4.2-326	MRF1946A	4.2-557
MRF393	4.2-329	MRF2628	4.2-561
MRF421	4.2-332	MRF2947AT1,T2	4.2-565
MRF422	4.2-336	MRF2947RAT1,T2	4.2-565
MRF426	4.2-340	MRF3010	4.2-575
MRF429	4.2-344	MRF3095	4.2-582
MRF448	4.2-348	MRF3866R2	4.2-585
MRF454	4.2-352	MRF4427R2	4.2-587
MRF455	4.2-354	MRF5015	4.2-591
MRF492	4.2-356	MRF5035	4.2-598
MRF553	4.2-359	MRF5211LT1	4.2-13
MRF555	4.2-363	MRF5711LT1	4.2-20
MRF557	. 4.2-367	MRF5811LT1	4.2-605
MRF559	4.2-371	MRF5812R1, R2	4.2-398
MRF571	4.2-20	MRF6401	4.2-612
MRF577T1	4.2-377	MRF6402	4.2-616
MRF579T1	4.2-387	MRF6404	4.2-620
MRF581	4.2-398	MRF6404K	4.2-620
MRF587	4.2-407	MRF6408	4.2-629
MRF641	. 4.2-414	MRF6409	4.2-636
MRF644	4.2-417	MRF6414	4.2-641
MRF650	4.2-420	MRF8372R1, R2	4.2-646
MRF652	4.2-424	MRF9411LT1	4.2-39
MRF652S	4.2-424	MRF9511LT1	4.2-54
MRF653	. 4.2-427	MRF9745T1	4.2-651
MRF654	4.2-431	MRF9811T1	4.2-653
MRF658	. 4.2-434	MRF9820T1	4.2-655
MRF842	. 4.2-438	MRF9822T1	4.2-658
MRF847	4.2-442	MRF10005	4.2-660
MRF857S	. 4.2-445	MRF10031	4.2-663
MRF858	4.2-450	MRF10120	4.2-666

DEVICE INDEX — continued

Device Number	Page Number	Device Number	Page Number
MRF10150	4.2-669	MRFIC1804	2.2-68
MRF10350	4.2-672	MRFIC1805	2.2-73
MRF10500	4.2-675	MRFIC1806	2.2-81
MRF10501	4.2-675	MRFIC1807	2.2-91
MRF15030	4.2-678	MRFIC1808	2.2-98
MRF15060	4.2-684	MRFIC1813	2.2-105
MRF15060S	4.2-684	MRFIC1814	2.2-111
MRF15090	4.2-691	MRFIC1817	2.2-114
MRF16006	4.2-698	MRFIC1818	2.2-121
MRF16030	4.2-702	MRFIC2001	2.2-128
MRF20030	$4.2-706$ $4.2-714$	MRFIC2002	2.2-134
MRF20060S	$4.2-714$ $4.2-714$	MRFIC2004	2.2-139
MRFIC0001	2.2-3	MRFIC2006	2.2-144
MRFIC0903	2.2-7	MRFIC2101	2.2-151
MRFIC0904	2.2-13	MRFIC2401	2.2-159
MRFIC0912	2.2-19	MRFIC2403	2.2-166
MRFIC0913	2.2-24	MRFIC2404	2.2-171
MRFIC0916	2.2-30	MRFIC2406	2.2-175
MRFIC0917	2.2-36	MRW54001	4.2-722
MRFIC0931	2.2-45	MXR9745T1	4.2-725
MRFIC1501	. 2.2-48	MXR9745RT1	4.2-725
MRFIC1502	2.2-55	SC41343	3.2-617
MRFIC1801	2.2-60	SC41344	3.2-617
MRFIC1803	2.2-63	TPV8100B	4.2-727

Chapter One

Wireless Semiconductor Solutions Selector Guide

Abstract

While Motorola is a worldwide leader in semiconductor products, there is not a category in which the selection is more diverse, or more complete, than in products designed for RF system applications. From MOS, bipolar power and signal transistors to integrated circuits, Motorola's RF components cover the entire spectrum from HF to microwave to personal communications. Yet, product expansion continues - not only to keep pace with the progressive needs of the industry, but to better serve the needs of designers for a reliable and comprehensive source of supply.

How to Use This Selector Guide

The products in this guide are separated FIRST into major categories by power level (RF Monolithic Integrated Circuits, RF/IF Integrated Circuits, Small Signal, Medium Power Transistors, Power FETs, Power Bipolar, Power Amplifier Modules and CATV Distribution Amplifiers). SECOND, within each category parts are listed by frequency band, except for medium power transistors, small signal transistors and monolithic integrated circuits, which are divided by application. Small signal transistor applications are low noise, linear amplifiers, switches, and oscillators. Monolithic integrated circuit application groupings are switching, receiver functions and transmitter functions. THIRD, within a frequency band, transistors are further grouped by operating voltage and, finally, output power.

To Replace Devices in an Existing Design

Call your local Motorola Sales Office or Distributor to determine Motorola's closest replacement device.

Applications Assistance

Applications assistance is only a phone call away - call the nearest Semiconductor Sales office or 1-800-521-6274.

Access Data On-Line!

Use the Motorola SPS World Marketing Internet Server to access Motorola Semiconductor Product data at http://motorola.com/sps/ or http://motorola.com/sps/rf/. The SPS World Marketing Server provides you with instant access to data sheets, selector guide information, package outlines, on-line technical support and much more.

Table of Contents

RF Monolithic Integrated Circuits 1.1-3
Switching . 1.1-4
Antenna Switches . 1.1-4
Receiver Functions 1.1-4
General Purpose Integrated Circuits 1.1-4
900 MHz Front End . 1.1-4
1.5-2.2 GHz Front End . 1.1-5
2.4 GHz Front End 1.1-5

Transmitter Function1.1-5
General Purpose Integrated Circuits 1.1-5
900 MHz Transmit Chain 1.1-6
1.5-2.2 GHz Transmit Chain 1.1-7
2.4 GHz Transmit Chain . 1.1-8

RF/IF Integrated Circuits 1.1-10
RF/IF Monolithic Integrated Circuits 1.1-11
RF Front End ICs1.1-11
Wideband IFs 1.1-11
Wideband Single Conversion Receivers 1.1-11
Narrowband Single Conversion Receivers ... 1.1-12
Narrowband Dual Conversion Receivers 1.1-12
Universal Cordless Phone Subsystem ICs ... 1.1-12
Transmitters . 1.1-13
Balanced Modulator/Demodulator 1.1-13
Infrared Transceiver . 1.1-13
Phase-Locked Loop Components 1.1-25
PLL Frequency Synthesizers 1.1-25
Phase-Locked Loop Functions 1.1-26
RF Discrete Transistors . 1.1-29
RF Small Signal Transistors 1.1-30
Selection by Package . 1.1-30
Plastic . 1.1-30
Ceramic SOE Case . 1.1-32
Selection by Application . 1.1-33
Low Noise . 1.1-33
CATV, MATV and Class A Linear 1.1-34
RF Medium Power Transistors 1.1-35
Discrete Wireless Transmitter Devices 1.1-35
RF High Power Transistors . 1.1-36
RF Power MOSFETs . 1.1-36
RF Power Bipolar Transistors 1.1-39
HF Transistors 1.1-39
VHF Transistors . 1.1-39
UHF Transistors . 1.1-40
900 MHz Transistors 1.1-41
1.5 GHz Transistors 1.1-42

Microwave Transistors 1.1-42
Linear Transistors 1.1-43

Chapter One

Wireless Semiconductor Solutions Selector Guide

Table of Contents - continued

	Page
RF Amplifier Modules	1.1-48
Land Mobile/Portable	1.1-49
Base Stations	1.1-50
Wideband Linear Amplifiers	1.1-51
RF CATV Distribution Amplifiers	1.1-53
Forward Amplifiers	1.1-54
Reverse Amplifiers	1.1-57

Motorola RF Monolithic Integrated Circuits

Motorola's RF monolithic integrated circuit devices provide an integrated solution for the personal communications market. These devices are available in plastic SOIC-8, SOIC-16, SOT-143, TSSOP-16, Micro-8, TSSOP-20, TSSOP-20HS, TQFP-48 or PFP-16 packages.

Evaluation Boards

Evaluation boards are available for RF Monolithic Integrated Circuits. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

Table of Contents

PageRF Monolithic Integrated Circuits 1.1-3
Switching 1.1-4
Antenna Switches 1.1-4
Receiver Functions 1.1-4
General Purpose Integrated Circuits 1.1-4
900 MHz Front End 1.1-4
1.5-2.2 GHz Front End 1.1-5
2.4 GHz Front End 1.1-5
Transmitter Functions 1.1-5
General Purpose Integrated Circuits 1.1-5
900 MHz Transmit Chain 1.1-6
1.5-2.2 GHz Transmit Chain 1.1-7
2.4 GHz Transmit Chain 1.1-8

Motorola RF Monolithic Integrated Circuits

Switching

Antenna Switches/Local Oscillator Switches

Device	Freq. Range MHz	Supply Volt. Range Vdc	Supply Current $\mu \mathbf{A (T y p)}$	Pin, 1 dB Compression dBm (Typ)	TX Insertion Loss dB (Typ)	Isolation dB (Typ)	Package	System Applicability
MRFIC1801(18b)	$1500-2500$	$2.7-5.5$	300	29	0.6	20	SO-8	DECT, PHS, PCS, ISM
MRFIC0903(18b)	$100-2000$	$2.7-5.0$	60	35.5	0.65	21	SO-8	AMPS, Class 4\&5 GSM, DCS1800, PHS, PCS

Receiver Functions

General Purpose Integrated Circuits

General Purpose Cascode Amplifier

Device	Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Small Signal Gain @ 900 MHz dB (Typ)	Noise Figure dB (Typ)	Reverse Isolation dB (Typ)	Package	System Applicability
MRFIC0915(18c,46a)	100-2000	2.7-5.0	2.2	16.5	1.9	38	SOT-143	AMPS,CT1,CT2,GSM,IS-54, ISM,DECT,PHS,PCS
MRFIC0916(18c)	100-2000	2.7-5.0	4.7	18.5	1.9	44	SOT-143	AMPS,CT1,CT2,GSM,IS-54, ISM,DECT,PHS,PCS

Device	RF Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Conv. Gain dB (Typ)	Input Third Order Intercept	Package	System Applicability
MRF9820T1 $(18 \mathrm{C}) \star$	$100-1500$	$2-5$	1.0	16	-3	SOT-143	AMPS,CT1,CT2,GSM,IS-54, ISM,DECT,PHS,PCS

900 MHz Front End

LNA + Mixer

Device	RF Freq. Range MHz	IF Freq. Range MHz	Supply Volt. Range Vdc	Supply Current $\mathbf{m A}($ Typ $)$	Conv. Gain dB (Typ)	Output Level, $\mathbf{1 d B}$ Comp. $\mathbf{d B m}($ Typ $)$	Package	System Applicability
MRFIC2001(18b)	$500-1000$	$0-250$	$2.7-5.0$	4.7	23	-10	SO-8	CT2, ISM

(18)Tape and Reel Packaging Option Available by adding suffix: a) $\mathrm{R} 1=500$ units; b) $\mathrm{R} 2=2,500$ units; c) $T 1=3,000$ units; d) $T 3=10,000$ units; e) $\mathrm{R} 2=1,500$ units;
f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.
${ }^{(46)}$ To be introduced: a) 1Q98; b) 2Q98
*New Product

Receiver Functions (continued)

1.5-2.2 GHz Front End

Integrated LNA

Device	Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Small Signal Gain dB (Typ)	Noise Figure dB (Typ)	Reverse Isolation dB (Typ)	Package	System Applicability
MRFIC1501 $(18 \mathrm{~b}) \star$	$1000-2000$	$3-5$	5.7	18	1.1	26	SO-8	GPS
MRFIC1808(18b) \star	$1700-2100$	$2.7-4.5$	5.0	17	1.6	37	SO-8	DECT, PHS, PCS
MRFIC1808DM $(18 \mathrm{~g}, 46 \mathrm{a})$	$1700-2100$	$2.7-4.5$	5.0	17	1.6	32	Micro-8	DECT, PHS, PCS

GPS Receiver

MRFIC1502	$1570-1580$	$4.5-5.5$	50	65	9.5	-	TQFP-48	GPS

Integrated LNA/Downconverter

	RF Freq. Range GHz	IF Freq. Range GHz	Supply Volt. Range Vdc	Supply Current RX Mode mA (Typ)	Mixer Conv. Gain dB (Typ)	LNA Gain (Typ)	LNA Noise (igure dB	Package	System Applicability
MRFIC1804(18b)	$1.8-2.0$	$70-325$	$2.7-3.3$	10	4	14	2.3	SO-16	DECT,PHS,PCS
MRFIC1814(18b) \star	$1.8-2.0$	$70-325$	$2.7-4.5$	13	8	17	2.5	TSSOP-16	DECT,PHS,PCS

2.4 GHz Front End

Integrated LNA/Downconverter

Device	RF Freq. Range MHz	IF Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Conv. Gain (Typ)	LNA Noise Figure dB (Typ)	Isolation Lo to RF, Lo to IF dB (Typ)	Package	System Applicability
MRFIC2401(18b)	$2400-2500$	$100-350$	$4.75-5.25$	9.5	21	1.9	20	SO-16	WLAN, MMDS, ISM

Transmitter Functions

General Purpose Integrated Circuits

Quadrature Modulator

Device	Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Gain Control dB (Typ)	Lo Leakage dBm (Typ)	SSB Pout, 1 dB Compression dBm (Typ)	Package	System Applicability
MRFIC0001(18b)	$50-260$	$2.7-5.5$	10	30	-55	-10	TSSOP-20	DCS1800, GSM, NADC PDC, PHS, PCS1900

General Purpose Cascode Amplifier

		Freq.						
Device	Supply Rolt. Range MHz	Small Vdc	Supply Current mA (Typ)	Gain @ 900 MHz dB (Typ)	Noise Figure dB (Typ)	Reverse Isolation dB (Typ)	Package	System Applicability
MRFIC0915(18c,46a)	$100-2000$	$2.7-5.0$	2.2	16.5	1.9	38	SOT-143	AMPS,CT1,CT2,GSM,IS-54, ISM,DECT,PHS,PCS
MRFIC0916(18c)	$100-2000$	$2.7-5.0$	4.7	18.5	1.9	44	SOT-143	AMPS,CT1,CT2,GSM,IS-54, ISM, DECT,PHS,PCS

[^0]
Transmitter Functions (continued)

900 MHz Transmit Chain

Transmit Mixer

Device	RF Freq. Range MHz	IF Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Standby Current $\mu \mathrm{A}$ (Typ)	Conv. Gain dB (Typ)	Output Level, 1 dB Comp. dBm (Typ)	Package	System Applicability
MRFIC2002(18b)	500-1000	0-250	2.7-5.0	5.5	0.1	10	-18	SO-8	AMPS,CT1,CT2, GSM, IS-54, ISM
MRFIC2101(18b)	800-1000	0-250	3-4.75	45	2	26.5	4.5	SO-16	AMPS,CT1,CT2, GSM, IS-54, ISM, USPCS, CDMA
MRFIC0931(18b) ${ }_{\text {̇ }}$	500-2000	0-250	2.7-4.8	38	-	25	1.0	SO-8	AMPS,CT1,CT2, GSM, IS-54, ISM, USPCS, CDMA

Driver Amplifier

Device	Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Standby Current mA (Typ)	Small Signal Gain dB (Typ)	Gain Control dB (Typ)	Pout, 1 dB Compression dBm (Typ)	Package	System Applicability
MRFIC2004(18b)	$800-1000$	$2.7-4.0$	11	0.7	21.5	34	-1	SO-16	AMPS,CT1,CT2, GSM,ISM
MRFIC2006(18b)	$500-1000$	$1.8-4.0$	46	-	23	-	15.5	SO-8	AMPS,CT1,CT2, GSM,ISM
MRFIC0904(18b)	$800-1000$	$2.7-5.0(47)$	280	0.05	27	24.5	25.5	SO-16	AMPS,GSM,ISM

Integrated Power Amplifiers

Low Power 900 MHz Power Amplifiers

Device	Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Small Signal Gain dB (Typ)	Return Loss Input/Output dB (Typ)	Pout, 1 dB Compression dBm (Typ)	Package	Semiconductor Technology
MRFIC2006(18b)	$500-1000$	$1.8-4.0$	46	23	15	15.5	SO-8	Silicon

Device	Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Standby Current mA (Typ)	Small Signal Gain dB (Typ)	Pout, 1 dB Compression dBm (Typ)	Package	Semiconductor Technology
MRFIC2101(18b)	$800-1000$	$3-4.75$	38	2	16	18	SO- 16	Silicon

Analog Cellular

Device	Freq. Range MHz	Supply Volt. Vdc	Power Added Efficiency $\%($ Min $)$	Power Gain dB (Min)	Harmonic Output 2fo dBc	Pout/Pin dBm (Min)	Package	Semiconductor Technology
MRFIC0910(18e,46a)	$824-905$	4.8	50	17.8	-40	$30.8 / 13$	PFP-16	LDMOS
MRFIC0912 $(18 \mathrm{e}) \star$	$824-905$	$4.6(47)$	55	23.8	-25	$30.8 / 7$	PFP-16	GaAs

[^1]Transmitter Functions: 900 MHz Transmit Chain: Integrated Power Amplifiers (continued)

GSM Cellular

Device	Freq. Range MHz	Supply Volt. Vdc	Power Added Efficiency \% (Min)	Power Gain dB (Min)	Harmonic Output 2fo dBc	$\begin{gathered} \mathrm{Pout} / \mathrm{P}_{\text {in }} \\ \mathrm{dBm}(\mathrm{Min}) \end{gathered}$	Package	Semiconductor Technology
MRFIC0913(18e) ${ }_{\text {¢ }}$	880-915	4.8(47)	48	24.5	-30	34.5/10	PFP-16	GaAs
MRFIC0917(18e) \star	880-915	3.6 (47)	43	22	-30	34/12	PFP-16	GaAs

DCS1800, PCS1900

Device	Freq. Range GHz	Supply Volt. Vdc	Power Added Efficiency $\%($ Min $)$	Power Gain dB (Min)	Harmonic Output 2fo dBc	Pout/Pin dBm (Min)	Package	Semiconductor Technology
MRFIC1818(18e) \star	$1.7-1.9$	$4.8(47)$	35	30	-30	$33 / 3$	PFP-16	GaAs
MRFIC1817(18e) ${ }_{\star}$	$1.7-1.9$	$3.6(47)$	35	27	-30	$32 / 5$	PFP-16	GaAs

Two-way Paging, ISM

Device	Freq. Range MHz	Supply Volt. Vdc	Power Added Efficiency $\%($ Min $)$	Power Gain dB (Min)	Harmonic Output 2fo dBc	Pout/Pin dBm (Typ)	Package	Semiconductor Technology
MRFIC0920(18b,46b)	$890-950$	3.4	35	28	-45	$30.5 / 2.5$	TSSOP- $20 H S$	LDMOS

1.5-2.2 GHz Transmit Chain

Upconverter

	RF Output Freq. Range GHz	Supply Volt. Range Vdc	Supply Current TX Mode mA (Typ)	Standby Current μ (Typ)	Conv. Gain (Typ)	Recommended IF Input MHz (Typ)	Pout, $\mathbf{d B}$ Comp. dBm (Typ)	Package	System Applicability
MRFIC1803(18b)	$1.7-2.5$	$2.7-5.0$	28	100	10	$70-350$	-2	SO-16	DECT,PHS, PCS
MRFIC1813(18b) \star	$1.7-2.5$	$2.7-4.5$	25	100	15	$70-350$	3	TSSOP-16	CDMA,PCS
MRFIC0931(18b) \star	$0.5-2.0$	$2.7-4.8$	38	-	20	$0-250$	-2	SO-8	CDMA,PCS

Power Amplifier

Device	RF Output Freq. Range GHz	Supply Volt. Range Vdc(47)	Supply Current mA (Typ)	Standby Current mA (Typ)	Small Signal Gain dB (Typ)	$P_{\text {out }} / P_{\text {in }}$ dBm (Typ)	1 dB Comp. dBm (Typ)	Pkg	System Applicability
MRFIC1805(18b) ${ }^{\text {® }}$	1.7-2.5	2.7-5.0	170	-	21	21.5/2	24	TSSOP-16	$\begin{gathered} \text { DECT,PHS, } \\ \text { PCS } \end{gathered}$
MRFIC1806(18b)	1.5-2.5	3.0-5.0	115	0.25	23	19.5/-3	21	SO-16	$\begin{gathered} \text { DECT,PHS, } \\ \text { PCS } \end{gathered}$
MRFIC1807(18b)	1.5-2.2	3.0-5.0	325	0.06	8	26.8/20	25	SO-16	$\begin{gathered} \text { DECT,PHS, } \\ \text { PCS } \end{gathered}$

[^2]Transmitter Functions: 1.5-2.2 GHz Transmit Chain (continued)

Power Amplifier

	RF Output Freq. Range GHz	Supply Volt. Range Vdc	PA Supply Current TX Mode mA (Typ)	Standby Current mA (Typ)	Small Signal Gain dB (Typ)	Insertion Loss RX Mode dB (Typ)	Pout, $\mathbf{d B}$ Compression dBm (Typ)	Package	System Applicability
MRFIC1807(18b) (Including TX/RX Switch)	$1.5-2.2$	$3.0-5.0$	325	0.06	8	1	25	SO-16	DECT, PHS, PCS

2.4 GHz Transmit Chain

Exciter Amplifier

Device	Freq. Range GHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Small Signal Gain dB (Typ)	Noise Figure dB (Typ)	Pout, 1 dB Compression dBm (Typ)	Package	System Applicability
MRFIC2404(18b)	$2.0-3.0$	$4.75-5.25$	9	17	4.3	5	SO-8	WLAN, MMDS, ISM

Power Amplifier

Device	Freq. Range MHz	Supply Volt. Range Vdc	Supply Current $\mathbf{m A}$ (Typ)	Small Signal Gain dB (Typ)	Power Control Range dB (Typ)	Pout, $\mathbf{1 ~ d B}$ Compression dBm (Typ)	Package	System Applicability
MRFIC2403(18b)	$2200-2700$	$4.75-5.25$	95	23	20	19	SO-16	WLAN, MMD, ISM

Upconverter

Device	RF Output Freq. Range GHz	Supply Volt. Range Vdc	Supply Current TX Mode mA (Typ)	Standby Current μ (Typ)	Conv. Gain dB (Typ)	Recommended IF Input MHz (Typ)	Pout, $\mathbf{1} \mathbf{d B}$ Comp. dBm (Typ)	Package	System Applicability
MRFIC1803(18b)	$1.7-2.5$	$2.7-5.0$	28	100	10	$70-350$	-2	SO-16	WLAN, ISM
MRFIC1813(18b) \star	$1.7-2.5$	$2.7-4.5$	25	100	15	$70-350$	3	TSSOP-16	WLAN, ISM
MRFIC2406(18b)	$2.4-2.5$	$3.0-5.0$	15	0.6	6	$100-370$	-10	SO-16	WLAN, MMDS,ISM

${ }^{(18)}$ Tape and Reel Packaging Option Available by adding suffix: a) $\mathrm{R} 1=500$ units; b) $\mathrm{R} 2=2,500$ units; c) $\mathrm{T} 1=3,000$ units; d) $\mathrm{T} 3=10,000$ units; e) $\mathrm{R} 2=1,500$ units; f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.
*New Product

RF Monolithic Integrated Circuit Packages

Motorola RF/IF Integrated Circuits

Radio communication has greatly expanded its scope in the past several years. Once dominated by public safety radio, the 30 to 1000 MHz spectrum is now packed with personal and low cost business radio systems. The vast majority of this equipment uses FM or FSK modulation and is targeted at short range applications. From mobile phones and VHF marine radios to garage door openers and radio controlled toys, these new systems have become a part of our lifestyle. Motorola has focused on this technology, adding a wide array of new products including complete receivers processed in our exclusive 3.0 GHz MOSAIC® 1.5 process. New surface mount packages for high density assembly are available for all of these products, as well as a growing family of supporting application notes.
Table of Contents
Page
RF/IF Integrated Circuits 1.1-10
RF/IF Monolithic Integrated Circuits 1.1-11
RF Front End ICs 1.1-11
Wideband IFs 1.1-11
Wideband Single Conversion Receivers 1.1-11
Narrowband Single Conversion Receivers 1.1-12
Narrowband Dual Conversion Receivers 1.1-12
Universal Cordless Phone Subsystem ICs 1.1-12
Transmitters 1.1-13
Balanced Modulator/Demodulator 1.1-13
Infrared Transceiver 1.1-13
Phase-Locked Loop Components 1.1-25
PLL Frequency Synthesizers 1.1-25
Phase-Locked Loop Functions 1.1-26

Motorola RF/IF Monolithic Integrated Circuits

Table 1. RF Front End ICs

Receiver												
Low Noise Amplifier					Mixer				Voltage Cont Osc	v_{CC} (V)	$\begin{aligned} & \mathrm{ICC} \\ & \text { (mA) } \end{aligned}$	Suffix/ Package
Device	Gain (dB)	Noise Figure (dB)	$\begin{gathered} \text { IIP3 } \\ (\mathrm{dBm}) \end{gathered}$	Input P1dB (dBm)	Gain (dB)	Noise Figure (dB)	$\begin{gathered} \text { IIP3 } \\ (\mathrm{dBm}) \end{gathered}$	P1dB (dBm)				
MC13142	17	1.8	-5.0	-15	± 3.0	12	-3 to +21	3.0	Yes	2.7 to 6.5	13	D/751B
MC13143	-	-	-	-	± 3.0	12	-3 to +21	3.0	-	1.8 to 6.5	1.0	D/751
MC13144	$\begin{gathered} 13 \text { to } \\ 19 \end{gathered}$	1.4	-1.0	-7.0	-	-	-	-	-	1.8 to 6.5	2 to 9	D/751
MC13145	14	1.8	-5.0	-8.0	0	13	9.0	-1.0	Yes	2.7 to 6.5	30	FTA/932
Transmitter												
Low Power Amplifier					Mixer							
Device	PA Gain (dB)	Noise Figure (dB)	$\begin{gathered} \text { IIP3 } \\ \text { (dBm) } \end{gathered}$	Output P1dB (dBm)	PIFOut (dB)	Noise Figure (dB)	$\begin{gathered} \text { IIP3 } \\ (\mathrm{dBm}) \end{gathered}$	P1dB (dBm)	Voltage Cont Osc	V_{CC} (V)	$\begin{aligned} & \mathrm{ICC} \\ & (\mathrm{~mA}) \end{aligned}$	Suffix/ Package
MC13146	15	-	-	8.0	15	-	10	-	Yes	2.7 to 6.5	25	FTA/977

NOTES: All devices operate over a wide range of RF input and IF frequencies, from dc to 2.0 GHz . Typical performance shown at 900 MHz .

Table 2. Wideband (FM/FSK) IFs

$\left.$| Device | VCC | ICC | Sensitivity
 (Typ) | IF | Mute | RSSI | Max
 Data
 Rate | | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | :---: | | Suffix/ |
| :---: |
| Package | \right\rvert\,

Table 3. Wideband Single Conversion Receivers - VHF

Device	Vcc	Icc	Sensitivity (Typ)	$\begin{gathered} \text { RF } \\ \text { Input } \end{gathered}$	IF	Mute	RSSI	Max Data Rate	Notes	Suffix/ Package
MC3356	3-9 V	25 mA	$30 \mu \mathrm{~V}$	200 MHz	10.7 MHz	\checkmark	\checkmark	500 kb	Includes front end mixer/L.O.	P/738, DW/751D
MC13156	2-6 V	5.0 mA	$2.0 \mu \mathrm{~V}$	500 MHz	21.4 MHz	-			CT-2 FM/Demodulator	DW/751E, FB/873
MC13158	2-6 V	6.0 mA						$>1.2 \mathrm{Mb}$	FM IF/Demodulator with split IF for DECT	FTB/873
MC13159	$\begin{aligned} & 2.7- \\ & 5 \mathrm{~V} \end{aligned}$	5.5 mA		600 MHz				500 kb	FM IF for PHS	DTB/948F

RF/IF Monolithic Integrated Circuits (continued)

Table 4. Narrowband Single Conversion Receivers - VHF

Device	Vcc	Icc	12 dB SINAD Sensitivity (Typ)	RF Input	IF	Mute	RSSI	Max Data Rate	Notes	Suffix/ Package
MC3357	4-8 V	5.0 mA	$5.0 \mu \mathrm{~V}$	45 MHz	455 kHz	\checkmark	-	>4.8kb	Ceramic Quad Detector/Resonator	$\begin{aligned} & \text { P/648, } \\ & \text { D/751B } \end{aligned}$
MC3359	4-9 V	7.0 mA	$2.0 \mu \mathrm{~V}$						Scan output option	P/707, DW/751D
MC3371	2-8V	6.0 mA		60 MHz			\checkmark	>4.8kb	RSSI	P/648,
MC3372									RSSI, Ceramic Quad Detector/Resonator	$\begin{gathered} \text { D/751B, } \\ \text { DTB/948F } \end{gathered}$
MC13150	3-6 V	1.8 mA	$1.0 \mu \mathrm{~V}$	500 MHz			$\begin{gathered} V \\ 110 \\ d B \end{gathered}$	>9.6 kb	Coilless Detector with Adjustable Bandwidth	FTB/873, FTA/977

Table 5. Narrowband Dual Conversion Receivers - FM/FSK - VHF

Device	VCC	Icc	12 dB SINAD Sensitivity (Typ)	$\begin{gathered} \text { RF } \\ \text { Input } \end{gathered}$	IF1	IF2 (Limiter In)	Mute	RSSI	Data Rate	Notes	Suffix/ Package
MC3362	2-7 V	3.0 mA	$0.7 \mu \mathrm{~V}$	$\begin{aligned} & 180 \\ & \mathrm{MH} \end{aligned}$	$\begin{aligned} & 10.7 \\ & \mathrm{MHz} \end{aligned}$	455 kHz	-	\checkmark	$\begin{gathered} >4.8 \\ \mathrm{~kb} \end{gathered}$	Includes buffered VCO output	P/724, DW/751E
MC3363		4.0 mA	$0.4 \mu \mathrm{~V}$				\checkmark			Includes RF amp/mute	DW/751F
MC13135			$1.0 \mu \mathrm{~V}$				-			Voltage buffered RSSI, LC Quad Detector	$\begin{gathered} \text { DW/751E, } \\ \text { P/724 } \end{gathered}$
MC13136										Voltage Buffered RSSI, Ceramic Quad Detector	DW/751E

Table 6. Universal Cordless Phone Subsystem ICs

Device	$V_{C c}$	Icc	Dual Conversion Receiver	Universal Dual PLL	Compander and Audio Interface	Voice Scrambler	Low Battery Detect	Programmable $\mathrm{R}_{\mathbf{X}}, \mathrm{T}_{\mathbf{X}}$ Trim Gain and LBD Voltage Reference	Suffix/ Package
MC13109	$2.0-5.5 \mathrm{~V}$	Active Mode 6.7 mA Inactive Mode $40 \mu \mathrm{~A}$	\checkmark	\checkmark	\checkmark	-	1	-	FB/848B, FTA/932
MC13110	$2.7-5.5 \mathrm{~V}$	Active Mode 8.2 mA Inactive Mode $60 \mu \mathrm{~A}$	\checkmark	\checkmark	\checkmark	\checkmark	2	\checkmark	FB/848B
MC13111	2.7-5.5 V	Active Mode 8.2 mA Inactive Mode $60 \mu \mathrm{~A}$	\checkmark	\checkmark	\checkmark	-	2	\checkmark	FB/848B

RF/IF Monolithic Integrated Circuits (continued)
Table 7. Transmitters - AM/FM/FSK

Device	V_{cc}	Icc	Pout	Max RF Freq Out	Max Mod Freq	Notes	Suffix/ Package
MC2833	3-8V	10 mA	$\begin{gathered} -30 \mathrm{dBm} \\ \mathrm{to} \\ +10 \mathrm{dBm} \end{gathered}$	150 MHz	50 kHz	FM transmitter. Includes two frequency multiplier/amplifier transistors	$\begin{aligned} & \hline \text { P/648, } \\ & \mathrm{D} / 751 \mathrm{~B} \end{aligned}$
MC13175	2-5 V	40 mA	8.0 dBm	500 MHz	5.0 MHz	AM/FM transmitter. Single frequency PLL $\mathrm{f}_{\text {out }}=8 \times \mathrm{f}_{\text {ref }}$, includes power down function	D/751B
MC13176				1.0 GHz		$\mathrm{f}_{\text {out }}=32 \times \mathrm{f}_{\text {ref }}$, includes power down function	

Table 8. Balanced Modulator/Demodulator

Device	VCC	ICC		Function	Suffix/ Package
MC1496	$3-5 \mathrm{~V}$	10 mA	General purpose balanced modulator/demodulator for AM, SSB, FM detection with Carrier Balance $>50 \mathrm{~dB}$	P/646, D/751A	

Table 9. Infrared Transceiver

Device	VCC	ICC	12 dB SINAD Sensitivity (Typ)	Max IF Freq	Carr Det	RSSI	Data Rate	Notes	Suffix/ Package
MC13173	$3-5 \mathrm{~V}$	6.5 mA	$5.0 \mu \mathrm{~V}$	10.7 MHz	\checkmark	\checkmark	200 kb	Includes Single Frequency PLL for T_{X} Carrier and $\mathrm{R}_{\mathrm{X}} L_{\mathrm{O}}$	FTB/873

Universal Cordless Telephone Subsystem IC

MC13109FB, FTA

$\mathrm{T}_{\mathrm{A}}=-20^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case $848 \mathrm{~B}, 932$

The MC13109 integrates several of the functions required for a cordless telephone into a single integrated circuit. This significantly reduces component count, board space requirements, and external adjustments. It is designed for use in both the handset and the base.

- Dual Conversion FM Receiver
- Complete Dual Conversion Receiver - Antenna Input to Audio Output 80 MHz Maximum Carrier Frequency
- RSSI Output
- Carrier Detect Output with Programmable Threshold
- Comparator for Data Recovery
- Operates with Either a Quad Coil or Ceramic Discriminator
- Compander
- Expander Includes Mute, Digital Volume Control and Speaker Driver
- Compressor Includes Mute, ALC and Limiter
- Dual Universal Programmable PLL
- Supports New 25 Channel U.S. Standard with No External Switches
- Universal Design for Domestic and Foreign CT-1 Standards
- Digitally Controlled Via a Serial Interface Port
- Receive Side Includes 1st LO VCO, Phase Detector, and 14-Bit Programmable Counter and 2nd LO with 12-Bit Counter
- Transmit Section Contains Phase Detector and 14-Bit Counter
- MPU Clock Output Eliminates Need for MPU Crystal
- Supply Voltage Monitor
- Externally Adjustable Trip Point
- 2.0 to 5.5 V Operation with One-Third the Power Consumption of Competing Devices

Universal Cordless Telephone Subsystem IC with Scrambler

MC13110FB

$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case 848 B

The MC13110 integrates several of the functions required for a cordless telephone into a single integrated circuit. This significantly reduces component count, board space requirements, and external adjustments. It is designed for use in both the handset and the base.

- Dual Conversion FM Receiver
- Complete Dual Conversion Receiver - Antenna In to Audio Out 80 MHz Maximum Carrier Frequency
- RSSI Output
- Carrier Detect Output with Programmable Threshold
- Comparator for Data Recovery
- Operates with Either a Quad Coil or Ceramic Discriminator
- Compander
- Expander Includes Mute, Digital Volume Control, Speaker Driver, 3.5 kHz Low Pass Filter, and Programmable Gain Block
- Compressor Includes Mute, 3.5 kHz Low Pass Filter, Limiter, and Programmable Gain Block
- Dual Universal Programmable PLL
- Supports New 25 Channel U.S. Standard with New External Switches
- Universal Design for Domestic and Foreign CT-1 Standards
- Digitally Controlled Via a Serial Interface Port
- Receive Side Includes 1st LO VCO, Phase Detector, and 14-Bit Programmable Counter and 2nd LO with 12-Bit Counter
- Transmit Section Contains Phase Detector and 14-Bit Counter
- MPU Clock Outputs Eliminates Need for MPU Crystal
- Supply Voltage Monitor
- Provides Two Levels of Monitoring with Separate Outputs
- Separate, Adjustable Trip Points
- Frequency Inversion Scrambler/Descrambler
- Can Be Enabled/Disabled Via MPU Interface
- Programmable Carrier Modulation Frequency
- 2.7 to 5.5 V Operation with One-Third the Power Consumption of Competing Devices

Universal Cordless Telephone Subsystem IC with Scrambler (continued)

MC13111FB

$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case 848B, 932
The MC13111 integrates several of the functions required for a cordless telephone into a single integrated circuit. This significantly reduces component count, board space requirements, external adjustments, and lowers overall costs. It is designed for use in both the handset and the base.

- Dual Conversion FM Receiver
- Complete Dual Conversion Receiver - Antenna In to Audio Out 80 MHz Maximum Carrier Frequency
- RSSI Output
- Carrier Detect Output with Programmable Threshold
- Comparator for Data Recovery
- Operates with Either a Quad Coil or Ceramic Discriminator
- Compander
- Expander Includes Mute, Digital Volume Control, Speaker Driver, 3.5 kHz Low Pass Filter, and Programmable Gain Block
- Compressor Includes Mute, 3.5 kHz Low Pass Filter, Limiter, and Programmable Gain Block
- Dual Universal Programmable PLL
- Supports New 25 Channel U.S. Standard with No External Switches
- Universal Design for Domestic and Foreign CT-1 Standards
- Digitally Controlled Via a Serial Interface Port
- Receive Side Includes 1st LO VCO, Phase Detector, and 14-Bit Programmable Counter and 2nd LO with 12-Bit Counter
- Transmit Section Contains Phase Detector and 14-Bit Counter
- MPU Clock Outputs Eliminates Need for MPU Crystal
- Supply Voltage Monitor
- Provides Two Levels of Monitoring with Separate Outputs
- Separate, Adjustable Trip Points
- Programmable Corner Frequency Selection
- MC13111 is Pin-for-Pin Compatible with MC13110
- 2.7 to 5.5 V Operation with One-Third the Power Consumption of Competing Devices
- AN1575: Refer to this Application Note for a List of the "Worldwide Cordless Telephone Frequencies" (List can also be found in Chapter 8 Addendum of DL128 Data Book)

Narrowband FM Receiver

MC13135P,DW, MC13136DW

$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case $724,751 \mathrm{E}$

The MC13135 is a full dual conversion receiver with oscillators, mixers, Limiting IF Amplifier, Quadrature Discriminator, and RSSI circuitry. It is designed for use in security systems, cordless phones, and VHF mobile and portable radios. Its wide operating supply voltage range and low current make it ideal for battery applications. The Received Signal Strength Indicator (RSSI) has 65 dB of dynamic range with a voltage output, and an operational amplifier is included for a dc buffered output. Also, an
improved mixer third order intercept enables the MC13135 to accommodate larger input signal levels.

- Complete Dual Conversion Circuitry
- Low Voltage: 2.0 to 6.0 Vdc
- RSSI with Op Amp: 65 dB Range
- Low Drain Current: 3.5 mA Typical
- Improved First and Second Mixer 3rd Order Intercept
- Detector Output Impedance: 25Ω Typically

Low Power DC - 1.8 GHz LNA, Mixer and VCO

MC13142D

$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case 751 B

The MC13142 is intended to be used as a first amplifier, voltage controlled oscillator and down converter for RF applications. It features wide band operation, low noise, high gain and high linearity while maintaining low current consumption. The circuit consists of a Low Noise Amplifier (LNA), a Voltage Controlled Oscillator (VCO), a buffered oscillator output, a mixer, an Intermediate Frequency amplifier ($\mathrm{IF}_{\mathrm{amp}}$) and a dc control section. The wide mixer IF bandwidth allows this part also to be used as an up converter and exciter amplifier.

- Wide RF Bandwidth: DC-1.8 GHz
- Wide LO Bandwidth: DC-1.8 GHz
- Wide IF Bandwidth: DC-1.8 GHz
- Low Power: $13 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CC}}=2.7-6.5 \mathrm{~V}$
- High Mixer Linearity: Pi1.0 dB $=3.0 \mathrm{dBm}$
- Linearity Adjustment Increases IP3in Up to 20 dBm
- Single-Ended 50Ω Mixer Input
- Double Balanced Mixer Operation
- Open Collector Mixer Output
- Single Transistor Oscillator with Collector, Base and Emitter Pinned Out
- Buffered Oscillator Output

Ultra Low Power DC - 2.4 GHz Linear Mixer

MC13143,D
$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case 751

The MC13143 is a high compression linear mixer with single-ended RF input, differential IF output and differential LO inputs which consumes as little as 1.8 mW . A new circuit topology is used to achieve a high third order intermodulation intercept point, high linearity and high 1.0 dB output compression point while maintaining a linear 50Ω input impedance. It is designed for Up or Down conversion anywhere from dc to 2.4 GHz .

Ultra Low Power: $1.0 \mathrm{~mA} @$ VCC = 1.8 - 6.5 V

- Wide Input Bandwidth: DC-2.4 GHz
- Wide Output Bandwidth: DC-2.4 GHz
- Wide LO Bandwidth: DC-2.4 GHz
- High Mixer Linearity: $\mathrm{P}_{\mathrm{i} 1.0 \mathrm{~dB}}=3.0 \mathrm{dBm}$

Linearity Adjustment of up to $\mathrm{IP}_{3 \text { in }}=\mathbf{2 0} \mathbf{~ d B m}$

- 50Ω Mixer Input
- Single-Ended Mixer Input
- Double Balanced Mixer Operation
- Differential Open Collector Mixer Output

VHF - 2.0 GHz Low Noise Amplifier with Programmable Bias

MC13144,D

$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case 751

The MC13144 is designed in the Motorola High Frequency Bipolar MOSIAC $V^{\top}{ }^{\top}$ wafer process to provide excellent performance in analog and digital communication systems. It includes a cascoded LNA usable up to 2.0 GHz and at 1.8 Vdc, with 2 bit digital programming of the LNA bias. Targeted applications are in the UHF Family Radio Services, UHF and 800 MHz Special Mobile Radio, 800 MHz Cellular and GSM, PCS, DECT and PHS at 1.8 to 2.0 GHz and Cordless Telephones in the 902 to 928 MHz band covered by FCC Title 47; Part 15. The MC13144 offers the following features:

- 17 dB Gain at 900 MHz
- 1.4 dB Noise Figure at 900 MHz
- 1.0 dB Compression Point of -7.0 dBm ; Input Third Order Intercept Point of -5.0 dBm
- Low Operating Supply Voltage (1.8 to 6.0 Vdc)
- Programmable Bias with Enable 1 and Enable 2
- Enable 1 and Enable 2 Programmed High for Optimal Noise Figure and Gain Associated with NF
- Can Override Enable and Externally Program In Up to 15 mA

Narrowband FM Coilless Detector IF Subsystem

MC13150FTA, FTB
$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case 977,873

The MC13150 is a narrowband FM IF subsystem targeted at cellular and other analog applications. Excellent high frequency performance is achieved, with low cost, through use of Motorola's MOSAIC 1.5™ RF bipolar process. The MC13150 has an onboard Colpitts VCO for Crystal controlled second LO in dual conversion receivers. The mixer is a double balanced configuration with excellent third order intercept. It is useful to beyond 200 MHz . The IF amplifier is split to accommodate two low cost cascaded filters. RSSI output is derived by summing the output of both IF sections. The quadrature detector is a unique design eliminating the conventional tunable quadrature coil.

Applications for the MC13150 include cellular, CT-1 900 MHz cordless telephone, data links and other radio systems utilizing narrowband FM modulation.

- Linear Coilless Detector
- Adjustable Demodulator Bandwidth
- 2.5 to 6.0 Vdc Operation
- Low Drain Current: < 2.0 mA
- Typical Sensitivity of $2.0 \mu \mathrm{~V}$ for 12 dB SINAD
- IIP3, Input Third Order Intercept Point of 0 dBm
- RSSI Range of Greater Than 100 dB
- Internal $1.4 \mathrm{k} \Omega$ Terminations for 455 kHz Filters
- Split IF for Improved Filtering and Extended RSSI Range

Wideband FM IF System

MC13156DW, FB

$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case 751E, 873

The MC13156 is a wideband FM IF subsystem targeted at high performance data and analog applications. Excellent high frequency performance is achieved, with low cost, through use of Motorola's MOSAIC 1.5™ RF bipolar process. The MC13156 has an onboard Colpitts VCO for PLL controlled multichannel operation. The mixer is useful to beyond 200 MHz and may be used in a differential, balanced, or single-ended configuration. The IF amplifier is split to accommodate two low cost cascaded filters. RSSI output is derived by summing the output of both IF sections. A precision data shaper has a hold function to preset the shaper for fast recovery of new data.

Applications for the MC13156 include CT-2, wideband data links, and other radio systems utilizing GMSK, FSK or FM modulation.

- 2.0 to 6.0 Vdc Operation
- Typical Sensitivity of $6.0 \mu \mathrm{~V}$ for 12 dB SINAD
- RSSI Dynamic Range Typically 80 dB
- High Performance Data Shaper for Enhanced CT-2 Operation
- Internal 300Ω and $1.4 \mathrm{k} \Omega$ Terminations for 10.7 MHz and 455 kHz Filters
- Split IF for Improved Filtering and Extended RSSI Range

Wideband FM IF Subsystem

MC13158FTB

$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case 873

The MC13158 is a wideband IF subsystem that is designed for high performance data and analog applications. Excellent high frequency performance is achieved, with low cost, through the use of Motorola's MOSAIC 1.5™ RF bipolar process. The MC13158 has an on-board grounded collector VCO transistor that may be used with a fundamental or overtone crystal in single channel operation or with a PLL in multi-channel operation. The mixer is useful to 500 MHz and may be used in a balanced differential or single ended configuration. The IF amplifier is split to accommodate two low cost cascaded filters. RSSI output is derived by summing the output of both IF sections. A precision data shaper has an Off function to shut the output "off" to save current. An enable control is provided to power down the IC for power
management in battery operated applications.
Applications include DECT, wideband wireless data links for personal and portable laptop computers and other battery operated radio systems which utilize GFSK, FSK or FM modulation.

- Designed for DECT Applications
- 1.8 to 6.0 Vdc Operating Voltage
- Low Power Consumption in Active and Standby Mode
- Greater than 600 kHz Detector Bandwidth
- Data Slicer with Special Off Function
- Enable Function for Power Down of Battery Operated Systems
- RSSI Dynamic Range of 80 dB Minimum
- Low External Component Count

UHF, FM/AM Transmitter

MC13175/176D

$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$, Case 751 B

The MC13175 and MC13176 are one chip FM/AM transmitter subsystems designed for AM/FM communication systems operating in the 260 to 470 MHz band covered by FCC Title 47; Part 15. They include a Colpitts crystal reference oscillator, UHF oscillator, $\div 8$ (MC13175) or $\div 32$ (MC13176) prescaler, and phase detector forming a versatile PLL system. Another application is as a local oscillator in a UHF or 900 MHz receiver. MC13175/176 offer the following features:

- UHF Current Controlled Oscillator
- Use Easily Available 3rd Overtone or Fundamental Crystals for Reference
- Low Number of External Parts Required
- Low Operating Supply Voltage (1.8-5 Vdc)
- Low Supply Drain Currents
- Power Output Adjustable (Up to +10 dBm)
- Differential Output for Loop Antenna or Balun Transformer Networks
- Power Down Feature
- ASK Modulated by Switching Output "On"/"Off"
- MC13175-fo $=8 \times f_{\text {ref }}$
- MC13176-for $=32 \times f_{\text {ref }}$

Phase-Locked Loop Components

Motorola offers a choice of phase-locked loop components ranging from complete functional frequency synthesizers for dedicated applications to a wide selection of general purpose PLL circuit elements. Technologies include CMOS for lowest
power consumption and bipolar for high speed operation. Typical applications include TV, CATV, radios, scanners, WLANs, cordless telephones plus home and personal computers.

Table 1. PLL Frequency Synthesizers

* Dual PLL

Phase-Locked Loop Components (continued)

PLL Frequency Synthesizers (continued)

Frequency (MHz)	Supply Voltage (V)	Nominal Supply Current (mA)	Phase Detector	Standby	Interface	Device	Suffix/ Case
1100	4.5 to 5.5	7 @ 5 V	Current source/sink, double-ended	Yes	Serial	MC145190	F/751J, DT/948D
						MC145191	F/751J, DT/948D
1100	2.7 to 5	6 @ 2.7 V				MC145192	F/751J, DT/948D
1100	2.7 to 5.5	12	Two current source/sink, double-ended			MC145220*	$\begin{aligned} & \hline \text { F/803C, } \\ & \text { DT/948D } \end{aligned}$
$\begin{gathered} \hline 1200, \\ 400 \end{gathered}$	1.8 to 3.6	5	Loop 1 = Current source/sink Loop 2 = Three-state			MC145225*	FTA/873C
2000	4.5 to 5.5	12 @ 5 V	Current source/sink, double-ended			MC145200	F/751J, DT/948D
2000	4.5 to 5.5	12 @ 5 V				MC145201	$\begin{aligned} & \hline \text { F/751J, } \\ & \text { DT/948D } \end{aligned}$
2000	2.7 to 5.5	4 @ 3 V				MC145202	$\begin{aligned} & \text { F/751J, } \\ & \text { DT/948D } \end{aligned}$
$\begin{gathered} 2600, \\ 400 \end{gathered}$	1.8 to 3.6	7	Loop 1 = Current source/sink Loop 2 = Three-state			MC145230*	FTA/873C

* Dual PLL

NOTE: Evaluation kits available for the MC145190, MC145191, MC145192, MC145200, MC145201, MC145202, and MC145220. Order part number MC145___EVK.

Table 2. Phase-Locked Loop Functions

Device	Function	Pins	DIP	SM
MC12002	Analog Mixer	14	P	-
MC12009	$480 \mathrm{MHz} \div 5 / 6$ Dual Modulus Prescaler	16	P	-
MC12011	$550 \mathrm{MHz} \div 8 / 9$ Dual Modulus Prescaler	16	P	-
MC12013	$550 \mathrm{MHz} \div 10 / 11$ Dual Modulus Prescaler	16	P	-
MC12015	$225 \mathrm{MHz} \div 32 / 33$ Dual Modulus Prescaler	8	P	D
MC12016	$225 \mathrm{MHz} \div 40 / 41$ Dual Modulus Prescaler	8	P	D
MC12017	$225 \mathrm{MHz} \div 64 / 65$ Dual Modulus Prescaler	8	P	D
MC12018	$520 \mathrm{MHz} \div 128 / 129$ Dual Modulus Prescaler	8	P	D
MC12019	$225 \mathrm{MHz} \div 20 / 21$ Dual Modulus Prescaler	8	P	D
MC12022LVA	1.1 GHz $\div 64 / 65, \div 128 / 129$ Low Voltage Dual Modulus Prescaler	8	P	D
MC12022LVB	1.1 GHz $\div 64 / 65, \div 128 / 129$ Low Voltage Dual Modulus Prescaler	8	P	D
MC12023	$225 \mathrm{MHz} \div 64$ Prescaler	8	P	D
MC12026A	$1.1 \mathrm{GHz} \div 8 / 9, \div 16 / 17$ Dual Modulus Prescaler	8	P	D
MC12026B	$1.1 \mathrm{GHz} \div 8 / 9, \div 16 / 17$ Dual Modulus Prescaler	8	P	D
MC12028A	$1.1 \mathrm{GHz} \div 32 / 33, \div 64 / 65$ Dual Modulus Prescaler	8	P	D
MC12028B	1.1 GHz $\div 32 / 33, \div 64 / 65$ Dual Modulus Prescaler	8	P	D
MC12033A	$2.0 \mathrm{GHz} \div 32 / 33, \div 64 / 65$ Low Voltage Dual Modulus Prescaler	8	P	D
MC12033B	$2.0 \mathrm{GHz} \div 32 / 33, \div 64 / 65$ Low Voltage Dual Modulus Prescaler	8	P	D

Phase-Locked Loop Components (continued)

Phase-Locked Loop Functions (continued)

Device	Function	Pins	DIP	SM
MC12034A	$2.0 \mathrm{GHz} \div 32 / 33, \div 64 / 65$ Dual Modulus Prescaler	8	P	D
MC12034B	$2.0 \mathrm{GHz} \div 32 / 33, \div 64 / 65$ Dual Modulus Prescaler	8	P	D
MC12038A	$1.1 \mathrm{GHz} \div 64 / 65, \div 127 / 128, \div 255 / 256$ Low Power Dual Modulus Prescaler	8	P	D
MC12040	Phase-Frequency Detector	14,20	P	-
MC12052A	$1.1 \mathrm{GHz} \div 64 / 65, \div 128 / 129$ Super Low Power Dual Modulus Prescaler	8	-	D, SD
MC12053A	$1.1 \mathrm{GHz} \div 64 / 65, \div 128 / 129$ Super Low Power Dual Modulus Prescaler With Stand-By Mode	8	-	D, SD
MC12054A	$2.0 \mathrm{GHz} \div 64 / 65, \div 128 / 129$ Super Low Power Dual Modulus Prescaler	8	-	D, SD
MC12058	$1.1 \mathrm{GHz} \div 126 / 128 . \div 254 / 256$ Low Power Dual Modulus Prescaler	8	-	D, SD
MC12061	Crystal Oscillator	16	P	-
MC12066	$1.3 \mathrm{GHz} \div 64 / 256$ Prescaler	8	-	D
MC12079	$2.8 \mathrm{GHz} \div 64 / 128 / 256$ Prescaler	8	P	D
MC12080	$1.1 \mathrm{GHz} \div 10 / 20 / 40 / 80$ Prescaler	8	P	D
MC12089	$2.8 \mathrm{GHz} \div 64 / 128$ Prescaler	8	P	D
MC12093	$1.1 \mathrm{GHz} \div 2 / 4 / 8$ Low Power Prescaler With Stand-By Mode	8	-	D, SD
MC12095	2.5 GHz $\div 2 / 4$ Low Power Prescaler With Stand-By Mode	8	-	D, SD
MC12098	$2.5 \mathrm{GHz} \div 8192$ Prescaler	8	-	D, SD
MCH/K12140	Phase-Frequency Detector	8	-	D
MC12147	Low Power Voltage Controlled Oscillator Buffer	8	-	D, SD
MC12148	Low Power Voltage Controlled Oscillator	8	-	D, SD, P
MC12149	Ultra Low Power Voltage Controlled Oscillator	8	-	D, SD
MC12179	$500-2800 \mathrm{MHz}$ Single Channel Frequency Synthesizer	8	-	D
MC12181	125-1000 MHz Frequency Synthesizer	16	-	D

RF/IF Integrated Circuits Packages

Motorola RF Discrete Transistors

Motorola offers the most extensive group of RF Discrete Transistors offered by any semiconductor manufacturer anywhere in the world today.
From Bipolar to FET, from Low Power to High Power, the user can choose from a variety of packages. They include plastic, metal can and ceramic that are microstrip circuit compatible or surface mountable. Many are designed for automated assembly equipment.
Major sub-headings are Small Signal, Medium Power, Power MOSFETs and Bipolar Transistors.

Table of Contents
Page
RF Discrete Transistors 1.1-29
RF Small Signal Transistors 1.1-30
Selection by Package 1.1-30
Plastic 1.1-30
Ceramic SOE Case 1.1-32
Selection by Application 1.1-33
Low Noise 1.1-33
CATV, MATV and Class A Linear 1.1-34
RF Medium Power Transistors 1.1-35
Discrete Wireless Transmitter Devices 1.1-35
RF High Power Transistors 1.1-36
RF Power MOSFETs 1.1-36
RF Power Bipolar Transistors 1.1-39
HF Transistors 1.1-39
VHF Transistors 1.1-39
UHF Transistors 1.1-40
900 MHz Transistors 1.1-41
1.5 GHz Transistors 1.1-42
Microwave Transistors 1.1-42
Linear Transistors 1.1-43

Motorola RF Small Signal Transistors

Motorola's broad line of RF Small Signal Transistors includes NPN and PNP Silicon Bipolar Transistors characterized for low noise amplifiers, mixers, oscillators, multipliers, non-saturated switches and low-power drivers.
These devices are available in a wide variety of package types: plastic Macro-X, ceramic and surface mounted. Most of these transistors are fully characterized with s-parameters.

RF Small Signal Transistor Gain Characteristics

Curve numbers apply to transistors listed in the subsequent tables.

Selection by Package

In small-signal RF applications, the package style is often determined by the end application or circuit construction technique. To aid the circuit designer in device selection, the Motorola broad range of RF small-signal amplifier transistors is organized by package. Devices for other applications such as oscillators or switches are shown in the appropriate preceding tables. These devices are NPN polarity unless otherwise designated.

Plastic Packages

Table 1. Plastic

Case 317/2 - MACRO-X

MRF571	8	50	12	1.5	1000	12	1000	10	70
MRF559	3	100	10	-	-	13	512	18	150
MRF581	5	75	11	2	500	15.5	500	18	200

Case 317D/2

MRF553	-	-	-	-	-	13	175	16	500
	MRF555	-	-	-	-	-	12.5	470	16
MRF557		-	-	-	-	9	870	16	400

Selection by Package (continued)

Table 1. Plastic (continued)

Case 318-08/6 - SOT-23

MMBR521LT1(17,18c)	3.4	-35	-	1.5	500	15	500	-10	-70
MMBR5031LT1(18c)	1	5	-	2.5	450	17	450	10	20
BFS17LT1(18c)	1.3	25	-	-	-	-	-	15	-
BFR92ALT1(18c)	4.5	14	-	-	-	15	-	15	25
MMBR901LT1(18c)	4	15	7	1.9	1000	12	1000	15	30
MMBR901LT3(18d)	4	15	7	1.9	1000	12	1000	15	30
BFR93ALT1(18c)	3.4	30	-	2.5	30	-	-	12	35
MMBR5179LT1(18c)	1.4	5	4	-	-	15	200	12	50
MMBR941LT1(18c)	8	15	15	2.1	2000	8.5	2000	10	50
MMBR941LT3(18d)	8	15	15	2.1	2000	8.5	2000	10	50
MMBR941BLT1(18c)	8	15	15	2.1	2000	8.5	2000	10	50
MMBR911LT1(18c)	6	30	8	2	500	17	500	12	60
MMBR571LT1(18c)	8	50	12	2	500	16.5	500	10	80
MMBR951LT1(18c)	8	30	16	2.1	2000	7.5	2000	10	100
MMBR951ALT1(18c)	8	30	16	2.1	2000	7.5	2000	10	100

Case 318A/1 - SOT-143

MRF5711LT1(18c)	8	50	12	1.6	1000	13.5	1000	10	70
MRF5211LT1(17,18c)	4.2	-50	-	2.8	1000	11	1000	-10	-70
MRF9411LT1(18c)	8	15	15	2.1	2000	9.5	2000	10	50
MRF5811LT1 18 c$)$	5	75	11	2.0	500	18.4	500	18	200
MRF9511LT1(18c)	8	30	16	2.1	2000	9	2000	10	100

Case 419/3 - SC-70/SOT-323

MRF917T1 ${ }^{(18 c)} \star$	6	20	8	2.3	1000	10	1000	12	60
MRF577T1(18c) \star	7	40	12	1.5	1000	10	1000	10	80
MRF927T1(18c)	8	5	14	1.7	1000	9.8	1000	10	10
MRF927T3(18d)	8	5	14	1.7	1000	9.8	1000	10	10
MRF947T1(18c,d)	8	15	15	2.1	2000	10.5	1500	10	50
MRF947T3(18d)	8	15	15	2.1	2000	10.5	1500	10	50
MRF947AT1(18c)	8	15	15	2.1	2000	10.5	1500	10	50
MRF947BT1(18c,d)	8	15	15	2.1	2000	10.5	1500	10	50
MRF957T1(18c)	9	30	16	2.0	2000	9	1500	10	100

Case 419B/16, 17 - SC-70ML/SOT-363

MRF2947AT1 $10,18 \mathrm{c})_{\star}$	9	15	15	1.5	1000	14	1000	10	50	
MRF2947RAT1 $(10,18 \mathrm{c}) \star$	9	15	15	1.5	1000	14	1000	10	50	

Case 463/1 - SC-90/SC-75

MRF579T1 ${ }^{\text {(18c) }}$ ネ	8	40	12	1.5	1000	12	1000	-	80		
MRF949T1 ${ }_{\text {(18c) }}$ „	9	15	15	1.5	1000	14	1000	-	50		
MRF959T1 ${ }^{(18 \mathrm{C}}$ ¢ $_{\star}$	9	30	15	1.6	1000	8	1000	-	100		

(10)Package contains two transistors.
${ }^{(17)}$ PNP
(18) Tape and Reel Packaging Option Available by adding suffix: a) $R 1=500$ units; b) $R 2=2,500$ units; c) $T 1=3,000$ units; d) $T 3=10,000$ units; e) $R 2=1,500$ units; f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.

ڤNew Product

Selection by Package (continued)

Table 1. Plastic (continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Device} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Gain-Bandwidth \\
@
\end{tabular}} \& \multirow[b]{2}{*}{Curve No. Page 1.1-30} \& \multicolumn{2}{|l|}{NF \({ }_{\text {min }}\) @ f} \& \multicolumn{2}{|l|}{} \& \multicolumn{2}{|l|}{Maximum Ratings} \& \multirow[b]{2}{*}{Package} \\
\hline \& \begin{tabular}{l}
\({ }^{\mathrm{f}}{ }^{\mathbf{T}}\) \\
Typ \\
GHz
\end{tabular} \& \[
\begin{gathered}
\mathrm{IC} \\
\mathrm{~mA}
\end{gathered}
\] \& \& NFmi

Typ

dB \& MHz \& $$
\begin{aligned}
& \text { Typ } \\
& \text { dB }
\end{aligned}
$$ \& MHz \& \[

\underset{\substack{(BR)CEO
 Volts}}{ }

\] \& \[

$$
\begin{gathered}
\mathrm{Ic} \\
\mathrm{~mA}
\end{gathered}
$$
\] \&

\hline
\end{tabular}

Case 751/1 - SO-8

MRF3866R2(18b)	0.8	50	1	-	-	10.5	400	30	400	
MRF5812R1,R2(18a,b)	5.5	75	11	2	500	15.5	500	15	200	
MRF8372R1,R2(18a,b)	5	75	11	-	-	10	870	16	200	

Ceramic SOE Case

Table 2. Ceramic SOE Case

Device	Gain-Bandwidth @		Curve No. Page 1.1-30	$$		Gain @ f Typ dB MHz		Maximum Ratings		Package
	${ }^{\mathrm{f}} \mathrm{T}$ Typ GHz	IC mA				$\begin{gathered} \text { V(BR)CEO } \\ \text { Volts } \end{gathered}$	$\underset{\mathrm{mA}}{\mathrm{IC}}$			

Case 244A/1

MRF587	5.5	90	11	3	500	13	500	15	200

[^3] f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.

Selection by Application

Table 3. Low Noise

The Small-Signal devices listed are designed for low noise and high gain amplifier mixer, and multiplier applications. Each transistor type is available in various packages. Polarity is NPN unless otherwise noted.

Package	Name	Case Number	Curve Number (See figure below)					
			1	$2{ }^{(17)}$	3	4	5	6
	MACRO-X	317/2	-	-	MRF571	MRF581	-	-
N	SOT-23	318-08/6	MMBR941LT1 MMBR941LT3 MMBR941BLT1 MMBR951LT1 (20)	MMBR521LT1	MMBR571LT1	-	MMBR901LT1 MMBR901LT3	MMBR911LT1
Δ	$\begin{gathered} \text { SC-70/ } \\ \text { SOT-323 } \end{gathered}$	419/3	MRF917T1 MRF577T1 MRF927T1 MRF927T3 MRF947AT1 MRF947T1 MRF947T3 MRF947BT1 MRF957T1(20)	-	-	-	-	-
\hat{N}	$\begin{aligned} & \text { SC-70ML/ } \\ & \text { SOT-363 } \end{aligned}$	$\begin{aligned} & 419 \mathrm{~B} / \\ & 16,17 \end{aligned}$	$\begin{aligned} & \text { MRF2947AT1 } \\ & \text { MRF2947RAT1 } \end{aligned}$	-	-	-	-	-
Fnc	$\begin{aligned} & \text { SC-90/ } \\ & \text { SC-75 } \end{aligned}$	463/1	MRF579T1 MRF949T1 MRF959T1	-	-	-	-	-
$\Delta+$	SOT-143	318A/1	$\begin{array}{\|c} \text { MRF9411LT1 } \\ \text { MRF9511LT1 } 20) \end{array}$	MRF5211LT1	MRF5711LT1	MRF5811LT1	-	-
	SO-8	751/1	-	-	-	MRF5812R1,R2	-	-

(17)PNP
(20)Higher Current Version

Gain and Noise Figure versus Frequency

Selection by Application (continued)

Table 4. CATV, MATV and Class A Linear
For Class A linear CATV/MATV applications. Listed according to increasing gain bandwidth ($\mathrm{f} T$).

Device	Nominal Test Conditions $\mathrm{V}_{\mathrm{CE}} / \mathrm{I}_{\mathrm{C}}$ Volts/mA	$\begin{gathered} \mathrm{fT}_{\mathrm{T}} \\ \mathrm{Typ} \\ \mathrm{MHz} \end{gathered}$	Noise Figure	Distortion Specifications		$\underset{V}{V_{(B R)}} \mathbf{C E O}$	Package/ Style
			Typ/Freq. $\mathrm{dB} / \mathrm{MHz}$	3rd Order IMD dBc	Output Level dBmV		
MMBR5179LT1 ${ }^{\text {(18c) }}$	6/5	1500	4/450			12	318-08/6
MMBR5031LT1 (18c,d)	6/5	2000	1.9/450			10	318-08/6
MRF5812R1,R2(18a,b)	10/75	5000	1.8/500	-65	+50	15	751/1
MRF581	10/75	5000	2.7/300	-65	+50	18	317/2
MRF587	15/90	5500	3/500	-72	+50	17	244A/1

(18) Tape and Reel Packaging Option Available by adding suffix: a) $\mathrm{R} 1=500$ units; b) $\mathrm{R} 2=2,500$ units; c) $\mathrm{T} 1=3,000$ units; d) $\mathrm{T} 3=10,000$ units; e) $\mathrm{R} 2=1,500$ units; f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.

RF Small Signal Transistors Packages

Motorola RF Medium Power Transistors

RF Medium Power Transistors are used in portable transmitter applications and low voltage drivers for higher power devices. They can be used for analog cellular, GSM and the newer digital handheld cellular phones. GaAs, LDMOS and Bipolar devices are available. RF Medium Power Transistors are supplied in industry standard SOT packages as well as Motorola's high performance PLD line of surface mount power RF packages. Other applications include talkback pagers, wireless modems and LANs, cable modems, highspeed drivers and instrumentation.

Discrete Wireless Transmitter Devices

Device	Freq. MHz	VDD V	Typical Output Power dBm	Typical Drain Eff. $\%$	Typical Gain dB	Semiconductor Technology	Package

3.5 V Applications

MRF9822T1(18f) \star	850	3.5	31.0	70	11	GaAs PHEMT	PLD-1			
4.8 V Applications										
MRF9242T1(18f,46a) 900 4.8 31.5 65 9.5 LDMOS MRF9282T1(18f,46a) 900 4.8 34.0 60 8 PLD-1								$. l$	LDMOS	PLD-1
:---	:---									

5.8 V Applications

MXR9745T1(18f) \star	850	5.8	31.5	60	8.5	LDMOS	SOT-89
MXR9745RT1(18f) \star	850	5.8	31.5	60	8.5	LDMOS	SOT-89
MRF9251T1(18c,46a)	900	5.8	23.5	60	10.5	LDMOS	SOT-143
MRF9811T1(18c) \star	900	5.8	22	60	15	GaAs MESFET	SOT-143
MRF9745T1(18f) \star	900	5.8	30	55	10	LDMOS	PLD-1

${ }^{(18)}$ Tape and Reel Packaging Option Available by adding suffix: a) $R 1=500$ units; b) $R 2=2,500$ units; c) $T 1=3,000$ units; d) $T 3=10,000$ units; e) $R 2=1,500$ units; f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.
(46) To be introduced: a) 1Q98; b) 2Q98

ڤNew Product

RF Medium Power Transistors Packages

Motorola RF High Power Transistors

RF Power MOSFETs

Motorola RF Power MOSFETs are constructed using a planar process to enhance manufacturing repeatability. They are N -channel field effect transistors with an oxide insulated gate which controls vertical current flow.
Compared with bipolar transistors, RF Power FETs exhibit higher gain, higher input impedance, enhanced thermal stability and lower noise. The FETs listed in this section are specified for operation in RF Power Amplifiers and are grouped by frequency range of operation and type of application. Arrangement within each group is first by order of voltage then by increasing output power.

Table 1. To 54 MHz - Vertical MOSFETs
Designed for broadband HF/SSB commercial and industrial applications. The high gain, broadband performance and linear characterization of this device makes it ideal for large-signal, common-source amplifier applications in 12.5 volt mobile and amateur radio transmitters.

	Pout Output Power Watts	Pin Input Power Typical Watts	$\begin{gathered} \mathrm{G}_{\mathrm{ps}} \text { (Typ)/Freq. } \\ \mathrm{dB} / \mathrm{MHz} \end{gathered}$	$\stackrel{\eta}{\text { Eff., Typ }}$\%	Typical IMD		$\theta_{\mathrm{JC}}$${ }^{\circ} \mathrm{C} / \mathrm{W}$	Package/Style
Device					$\begin{aligned} & d_{3} \\ & d B \end{aligned}$	$\begin{aligned} & \mathrm{d}_{5} \\ & \mathrm{~dB} \end{aligned}$		

$V_{C C}=12.5$ Volts, Class AB

MRF255	55	0.8	$16 / 54$	45	-30	-30	1.0	$211-11 / 2$

Table 2. To 150 MHz HF/SSB - Vertical MOSFETs
For military and commercial HF/SSB fixed, mobile and marine transmitters.

Device	Pout Output Power Watts	$P_{\text {in }}$ Input Power Typical Watts	$G_{p s}$ Typical Gain dB @ $30 \mathrm{MHz}$	Typical IMD		$\begin{gathered} { }^{\theta} \mathrm{JC} \\ { }^{\circ} \mathbf{C} / \mathrm{W} \end{gathered}$	Package/Style
				$\begin{aligned} & d_{3} \\ & d B \end{aligned}$	$\begin{aligned} & d_{11} \\ & d B \end{aligned}$		

VDD = 28 Volts, Class AB

MRF140	150	4.7	15	-30	-60	0.6	$211-11 / 2$
MRF171A(46a)	30	0.45	19	-32	-	1.52	$211-07 / 2$

VDD = 50 Volts, Class AB

MRF148	30	0.5	18	-35	-60	1.5	$211-07 / 2$
MRF150	150	3	17	-32	-60	0.6	$211-11 / 2$
MRF154	600	12	17	-25	-	0.13	$368 / 2$
MRF157	600	6	20	-25	-	0.13	$368 / 2$

${ }^{(46)}$ To be introduced: a) 1Q98; b) 2Q98

RF Power MOSFETs (continued)

Table 3. To 225 MHz VHF AM/FM - Vertical MOSFETs
For VHF military and commercial aircraft radio transmitters.

Device	Pout Output Power Watts	$P_{\text {in }}$ Input Power Typical Watts	$\begin{aligned} & \mathrm{G}_{\mathrm{ps}} \text { (Typ)/Freq. } \\ & \mathrm{dB} / \mathrm{MHz} \end{aligned}$	η Efficiency Typical \%	$\begin{gathered} { }^{\theta} \mathrm{J} \mathbf{C} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	Package/Style

VDD = 28 Volts, Class AB

MRF134	5	0.2	$14 / 150$	55	10	$211-07 / 2$
MRF136	15	0.38	$16 / 150$	60	3.2	$211-07 / 2$
MRF136Y	30	1.2	$14 / 150$	54	1.8	$319 B / 1$
MRF137	30	0.75	$16 / 150$	60	1.8	$211-07 / 2$
MRF171A(46a)	45	0.56	$19 / 150$	65	1.52	$211-07 / 2$
MRF173	80	4	$13 / 150$	65	0.8	$211-11 / 2$
MRF175LV	100	4	$14 / 225$	65	0.65	$333 / 1$
MRF174	125	8.3	$118 / 150$	60	0.65	$211-11 / 2$
MRF141	150	15	$10 / 175$	55	0.6	$211-11 / 2$
MRF175GV	200	8	$14 / 225$	65	0.44	$375 / 2$
MRF141G	300	30	$10 / 175$	55	0.35	$375 / 2$

VDD = 50 Volts, Class AB

MRF151	150	7.5	$13 / 175$	45	0.6	$211-11 / 2$
MRF176GV	200	4	$17 / 225$	55	0.44	$375 / 2$
MRF151G	300	7.5	$16 / 175$	55	0.35	$375 / 2$

Table 4. To 500 MHz VHF/UHF AM/FM
For VHF/UHF military and commercial aircraft radio transmitters.

	Pout Output Power Watts	Pin Input Power Typical Watts	Gps (Typ)/Freq. dB/MHz	η Eff., Typ $\%$	$\eta \mathrm{JC}$ ${ }^{\circ} \mathbf{C} / \mathrm{W}$	Package/Style

VDD = $\mathbf{2 8}$ Volts, Class AB - Vertical MOSFETs

MRF158	2	0.035	$17.5 / 500$	52	13.2	$305 \mathrm{~A} / 2$
MRF160	4	0.08	$17 / 500$	55	7.2	$249 / 3$
MRF166C	20	0.62	$15 / 500$	54	2.5	$319 / 3$
MRF166W	40	1	$13 / 500$	50	1.0	$412 / 1$
MRF175LU	100	10	$10 / 400$	55	0.65	$333 / 1$
MRF177	100	9.4	$12 / 400$	50	0.65	$744 \mathrm{~A} / 2$
MRF175GU	150	12.5	95	0.44	$375 / 2$	
MRF275L(46a)	100	13.5	10.500	55	0.65	$333 / 2$
MRF275G \star	150			55	0.44	$375 / 2$

VDD $=50$ Volts, Class $A B$

MRF176GU	150	6	$14 / 400$	50	0.44	$375 / 2$

(46)To be introduced: a) 1Q98; b) 2Q98
*New Product

RF Power MOSFETs (continued)

Table 5. To 520 MHz
Designed for broadband VHF \& UHF commercial and industrial applications. The high gain and broadband performance of these devices make them ideal for large-signal, common-source amplifier applications in 12.5/7.5 volt mobile, portable and base station operation.

Device	Pout Output Power Watts	$P_{\text {in }}$ Input Power Typical Watts	Gps (Typ)/Freq. dB/MHz	$\begin{gathered} \eta \\ \text { Eff., Typ } \\ \% \end{gathered}$	$\begin{gathered} { }^{\theta \mathrm{JJC}} \\ { }^{\circ} \mathbf{C} / \mathbf{W} \end{gathered}$	Package/Style

VCC = 7.5 Volts, Class AB - Lateral MOSFET

MRF1507(18f) ${ }_{\star}$	8	0.6	$11 / 520$	65	2.0	$466 / 1$

$V_{C C}=12.5$ Volts, Class AB - Lateral MOSFET

MRF1508(18f,46a)	8	0.3	$15 / 520$	65	2.0	$466 / 1$

VCC = 12.5 Volts, Class AB - Vertical MOSFETs

MRF5015	15	1.1	$11.5 / 512$	55	3.5	$319 / 3$
MRF5035	35	6.3	$7.5 / 512$	55	1.8	$316-01 / 3$

Table 6. To 1.0 GHz - Lateral MOSFETs

	Pout Output Power Watts	Pin Input Power Typical Watts	$\mathrm{G}_{\text {ps }}$ (Typ)/Freq. $\mathrm{dB} / \mathrm{MHz}$	η Eff., Typ $\%$	θ_{JC} ${ }^{\circ} \mathbf{C} / \mathrm{W}$	Package/Style

$1.0 \mathrm{GHz}, \mathrm{V}_{\mathrm{DD}}=26$ Volts, Class AB - LDMOS Die

MRF6522-5(18a,46a)	5	0.06	$19 / 960$	55	15	$458 \mathrm{~A} / 1$
MRF6522-10(18a,46a)	10	0.16	$18 / 960$	55	6.0	$458 \mathrm{~A} / 1$

800 - 1.0 GHz, VDD $=28$ Volts, Class AB - LDMOS Die

MRF181S(46a)	4	0.16	$14 / 1000$	40	3.6	$458 / 1$
MRF181Z(46a)	4	0.16	$14 / 1000$	40	3.6	$458 \mathrm{~A} / 1$
MRF182	30	1.2	$14 / 1000$	60	1.75	$360 \mathrm{~B} / 1$
MRF182S	30	1.2	$14 / 1000$	60	1.75	$360 \mathrm{C} / 1$
MRF183(25)	45	2.3	$13 / 945$	36	1.5	$360 \mathrm{~B} / 1$
MRF183S(25)	45	2.3	$13 / 945$	36	1.5	$360 \mathrm{C} / 1$
MRF184	60	1.9	$15 / 1000$	60	1.1	$360 \mathrm{~B} / 1$
MRF184S	60	1.9	$15 / 1000$	60	1.1	$360 \mathrm{C} / 1$
MRF185 (3)	85	3.4	$14 / 1000$	55	0.7	$375 \mathrm{~B} / 2$
MRF186(3,46a)	120	7.6	$12 / 1000$	55	0.6	$375 \mathrm{~B} / 2$

[^4]
RF Power Bipolar Transistors

Motorola's broad line of bipolar RF power transistors are characterized for operation in RF power amplifiers. Typical applications are in base stations, military and commercial landmobile, avionics and marine radio transmitters. Groupings are by frequency band and type of application. Within each group, the arrangement of devices is by major supply voltage rating, then in the order of increasing output power. All devices are NPN polarity except where otherwise noted.

HF Transistors

Table 1. 1.5 - $\mathbf{3 0} \mathrm{MHz}$, HF/SSB
Designed for broadband operation, these devices feature specified Intermodulation Distortion at rated power output.
Applications include mobile, marine, fixed station, and amateur HF/SSB equipment, operating from 12.5, 13.6, 28, or 50 volt supplies.

	Pout Output Power Watts	Pin (Max) Input Power Watts	GPE (Min) Gain @ 30 MHz Device	${ }^{\ominus} \mathrm{JC}$ ${ }^{\circ} \mathbf{C} / \mathrm{W}$	Package/Style

VCC = 12.5 or 13.6 Volts, Class AB

MRF421	100 PEP/CW	10	10	0.6	$211-11 / 1$

$V_{C C}=28$ Volts, Class AB

MRF426 25 PEP/CW 0.16 22 2.5 $211-07 / 1$ MRF422 150 PEP/CW
VCC $=\mathbf{5 0}$ Volts, Class AB MRF429
MRF448 150 PEP/CW 7.5 10 0.6

Table 2. 14 - 30 MHz , CB/Amateur Band
These HF transistors are designed for economical, high-volume use in CW, AM and SSB applications.
$V_{C C}=12.5$ or 13.6 Volts, Class AB

MRF455	60	3	13	1	$211-07 / 1$
MRF454	80	5	12	0.7	$211-11 / 1$

Table 3. 27 - 50 MHz , Low-Band FM Band
For use in the FM "Low-Band," for Mobile communications.

	Pout Output Power Watts	Pin (Max) Input Power Watts	GPE (Min) Gain @ 50 MHz Device	$\theta \mathrm{JC}$ ${ }^{\circ} \mathbf{C} / \mathrm{W}$	Package/Style

$V_{C C}=12.5$ or 13.6 Volts, Class AB

MRF492	70	5.6	11	0.7	$211-11 / 1$

VHF Transistors

Table 4. $30-200 \mathrm{MHz}$ Band
Designed for Military Radio and Commercial Aircraft VHF bands, these 28-volt devices include the all-gold metallized MRF314/16/17 high-reliability series.

Device	Pout Output Power Watts	$P_{\text {in }}$ (Max) Input Power Watts	GPE (Min)/Freq. Power Gain dB/MHz	$\begin{gathered} { }^{\theta} \mathrm{J} \mathbf{C} / \mathrm{W} \end{gathered}$	Package/Style
VCC = 28 Volts, Class AB					
MRF314	30	3	10/150	2.2	211-07/1
MRF316(2)	80	8	10/150	0.8	316-01/1
MRF317(2)	100	12.5	9/150	0.65	316-01/1

[^5]
VHF Transistors (continued)

Table 5. 136-174 MHz High Band
The "workhorse" VHF FM High-Band is served by Motorola with the broadest range of devices and package combinations in the industry.

	Pout Output Power Watts	Pin (Max) Input Power Watts	GPE (Min) Gain @ 175 MHz Device	$\theta_{\text {JC }}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	Package/Style

$V_{C C}=12.5$ Volts, Class C

MRF4427R2(18b)	1	0.016	$18(19)$	$125(1)$	$751 / 1$
MRF553	1.5	0.11	11.5	25	$317 \mathrm{D} / 2$
MRF2628	15	0.95	12	$244 / 1$	
MRF1946	30	3	10	1.6	1.8
MRF1946A	30	3	10	$211-07 / 1$	
MRF240	40	5	9	$145 A-09 / 1$	
MRF247(2)	75	15	0.2	$145 A-09 / 1$	

UHF Transistors

Table 6. 100 - 400 MHz Band

Stringent requirements of the UHF Military band are met by MRF325, 326, 327, 329 and 2N6439 types, with all-gold metal systems, specified ruggedness and programmed wirebond construction, to assure consistent input impedances for internally matched parts.

	Pout Output Power Watts	Pin (Max) Input Power Watts	GPE (Min) Gain @ 400 MHz Device	${ }^{\prime} \mathrm{JC}$ ${ }^{\circ} \mathbf{C} / \mathrm{W}$	Package/Style

VCC = 28 Volts, Class C

MRF325(2)	30	4.3	8.5	2.2	$316-01 / 1$
MRF326(2)	40	5	9	1.6	$316-01 / 1$
2N6439(2)	60	10	7.8	1.2	$316-01 / 1$
MRF327(2)	80	14.9	7.3	0.7	$316-01 / 1$
MRF329(2)	100	20	7	0.7	$333 / 1$
MRF392(3)	125	19.8	8	0.7	$744 \mathrm{~A} / 1$

Table 7. 400 - 500 MHz Band

Similar to the $100-400 \mathrm{MHz}$ transistors, these devices have bandwidth capabilities operating up to 500 MHz . All have nitride passivated die, gold metal systems, specified ruggedness and controlled wirebond construction to meet the stringent requirements of military space applications.

Device	Pout Output Power Watts	$P_{\text {in }}$ (Max) Input Power Watts	GPE (Min)/Freq. Power Gain $\mathrm{dB} / \mathrm{MHz}$	$\begin{gathered} { }^{\theta} \mathrm{JC} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	Package/Style
VCC $=28$ Volts, Class C					
MRF313	1	0.03	15/400	28.5	305A/1
MRF321	10	0.62	12/400	6.4	244/1
MRF323	20	2	10/400	3.2	244/1
MRF338(2)	80	15	7.3/470	0.7	333/1
MRF393(3)	100	18	7.5/500	0.7	744A/1

${ }^{(1)} \mathrm{R}_{\theta J \mathrm{JA}}$. Thermal Resistance Junction to Ambient.
(2) Internal Impedance Matched
(3) Internal Impedance Matched Push-Pull Transistors
(18) Tape and Reel Packaging Option Available by adding suffix: a) $R 1=500$ units; b) $R 2=2,500$ units; c) $T 1=3,000$ units; d) $T 3=10,000$ units; e) $R 2=1,500$ units; f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.
(19)Typical

UHF Transistors (continued)

Table 8. 470 - 512 MHz Band
Higher power output devices in this UHF power transistor series feature internally input-matched construction, are designed for broadband operation, and have guaranteed ruggedness under output mismatch and RF overdrive conditions. Devices are specified for handheld, mobile and base station operation.

	Pout Output Power Watts	Pin (Max) Input Power Watts	GPE (Min)/Freq. Power Gain dB/MHz	${ }^{\circ} \mathrm{Jc}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	Package/Style

VCC = 12.5 Volts, Class C

MRF581(4)	0.6	0.03	$13 / 500$	40	$317 / 2$
MRF555	1.5	0.15	$10 / 470$	25	$317 D / 2$
MRF652	5	0.5	$10 / 512$	7	$244 / 1$
MRF652S	5	0.5	$10 / 512$	$249 / 1$	
MRF653	10	2	$7 / 512$	$244 / 1$	
MRF641(2)	15	2.5	$4.8 / 470$	4	$316-01 / 1$
MRF654(2)	15	2.5	$7.8 / 512$	$244 / 1$	
MRF644(2)	25	5.9	$6.2 / 470$	1.7	$316-01 / 1$
MRF650(2)	50	$5.0 / 512$	1.3	$316-01 / 1$	
MRF658(2)	65	25	1	$316-01 / 1$	

900 MHz Transistors

Table 9. 870 - 960 MHz Band

Designed specifically for the 900 MHz mobile radio band, these devices offer superior gain, ruggedness, stability and broadband operation. Devices are for mobile and base station applications.

Device	Pout Output Power Watts	Pin (Max) Input Power Watts	GPE (Min)/Freq. Power Gain dB/MHz	日JC ${ }^{\circ} \mathbf{C / W}$	Package/Style

VCC = 12.5 Volts — Class C — Si Bipolar
MRF559(5)

MRF581(5)
(2) Internal Impedance Matched
${ }^{(4)}$ Small signal gain. P_{0} is Typ.
${ }^{(5)}$ Common Emitter Configuration
${ }^{(6)}$ Common Base Configuration
(18) Tape and Reel Packaging Option Available by adding suffix: a) $R 1=500$ units; b) $R 2=2,500$ units; c) $T 1=3,000$ units; d) $T 3=10,000$ units; e) $R 2=1,500$ units; f) $T 1=1,000$ units; g) $R 2=4,000$ units; h) $R 1=1,000$ units.
${ }^{(19)}$ Typical

900 MHz Transistors (continued)

Table 9. 870 - 960 MHz Band (continued)

	Pout Output Power Watts	Class	Pin (Max) Input Power Watts	Gp (Min)/Freq. Power Gain dB/MHz	${ }^{\theta} \mathbf{J C}$ ${ }^{\circ} \mathbf{C} / W$	Package/Style

VCC = 24 Volts - Si Bipolar

MRF857S	2.1 (CW)	A	0.4	$12.5 / 900$	8.4	$305 \mathrm{D} / 1$
MRF858	3.6 (CW)	A	0.29	$11 / 900$	6.9	$319 / 2$
MRF858S	3.6 (CW)	A	0.29	$11 / 900$	6.9	$319 \mathrm{~A} / 2$
MRF891	5	AB	0.63	$9 / 900$	7	$319 / 2$
MRF891S	5	AB	0.63	$9 / 900$	7	$319 \mathrm{~A} / 2$
MRF859S	$6.5 \mathrm{~W}(\mathrm{CW})$	A	0.46	$11.5 / 900$	3.9	$319 \mathrm{~A} / 2$
MRF894(2)	30	C	6	$7 / 900$	1.5	$319 / 1$
MRF897(3)	30	AB	3	$10 / 900$	1.7	$395 B / 1$
MRF897R(3)	30	AB	3	$10.5 / 900$	1.7	$395 \mathrm{~B} / 1$
MRF898(2)	60	C	12	$7 / 900$	1	$333 A / 1$

VCC = 26 Volts - Si Bipolar

MRF6409	20	$A B$	$26 / 50$	$10 / 960$	3.8	$319 / 2$
MRF6414	50	$A B$	$26 / 200$	$8.5 / 960$	1.3	$333 A / 2$
MRF899(3)	150	$A B$	24	$8 / 900$	0.8	$375 A / 1$

1.5 GHz Transistors

Table 10. 1600 - 1640 MHz Band

Device	Pout Output Power Watts	Class	η Eff. (Min) $\%$	Gp (Min)/Freq. Power Gain dB/MHz	$\theta \mathbf{~ J C ~}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	Package/Style
MRA1600-2	2	C	40	$8.4 / 1600$	15	$394 / 1$
MRF16006	6	C	40	$7.4 / 1600$	6.8	$395 C / 2$
MRF3010	10	AB	45	$9.5 / 1600$	3.6	$360 B / 1$ (LDMOS)
MRF16030	30	C	40	$7.5 / 1600$	1.7	$395 C / 2$

Microwave Transistors

Table 11. L-Band Pulse Power

These products are designed to operate in short pulse width, $10 \mu \mathrm{~s}$, low duty cycle, 1%, power amplifiers operating in the $960-1215 \mathrm{MHz}$ band. All devices have internal impedance matching. The prime application is avionics equipment for distance measuring (DME), area navigation (TACAN) and interrogation (IFF).

Device	Pout Output Power Watts	$P_{\text {in }}($ Max) Input Power Watts	$\begin{gathered} \text { Gp }^{(M i n)} \\ \text { Gain @ } 1090 \mathrm{MHz} \\ \text { dB } \end{gathered}$	$\begin{gathered} { }^{\theta} \mathrm{JC} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	Package/Style

VCC = 18 Volts - Class A \& AB Common Emitter

MRF1000MB	0.2	0.02	10	25	$332 \mathrm{~A} / 2$

VCC = 35 Volts - Class B \& C Common Base

MRF1004MB	4	0.4	10	25	$332 A / 1$

(2) Internal Impedance Matched
(3)Internal Impedance Matched Push-Pull Transistors
^New Product

Microwave Transistors (continued)

Table 11. L-Band Pulse Power (continued)

	Pout Output Power Watts	Pin (Max) Input Power Watts	GP (Min) Gain @ 1090 MHz Device	$\theta \mathbf{J C}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	Package/Style

VCC = 50 Volts - Class C Common Base

MRF1015MB	15	1.5	10	10	$532 A / 1$
MRF1035MB	35	3.5	10	5	$332 A / 1$
MRF1090MA	90	9	10	0.6	$332-04 / 1$
MRF1090MB	90	9	10	$332 A / 1$	
MRF1150MA	150	25	7.8	0.3	$332-04 / 1$
MRF1150MB	150	25	7.8	$332 A / 1$	

Table 12. L-Band Long Pulse Power
These products are designed for pulse power amplifier applications in the $960-1215 \mathrm{MHz}$ frequency range. They are capable of handling up to 10μ s pulses in long pulse trains resulting in up to a 50% duty cycle over a 3.5 millisecond interval. Overall duty cycle is limited to 25% maximum. The primary applications for devices of this type are military systems, specifically JTIDS and commercial systems, specifically Mode S. Package types are hermetic.

	Pout Output Power Watts	Pin $($ Max Input Power Watts	GPB (Min) Gain @ 1215 MHz DB	${ }^{\circ} \mathrm{JC}$ ${ }^{\circ} \mathbf{C} / \mathrm{W}$	Package/Style

VCC = 28 Volts - Class C Common Base

MRF10005	5	0.71	8.5	8	$336 \mathrm{E} / 1$

VCC = 36 Volts - Class C Common Base

MRF10031	30	3	10	3	$376 \mathrm{~B} / 1$
MRF10120	120	19	8	0.6	$355 \mathrm{C} / 1$

$V_{C C}=50$ Volts

MRF10150	150	15	$10(7)$	0.25	$376 B / 1$
MRF10350	350	44	$9(7)$	0.11	$355 \mathrm{~F} / 1$
MRF10500	500	63	$9(7)$	0.12	$355 \mathrm{D} / 1$
MRF10501	500	63	$9(7)$	0.12	

Linear Transistors

The following sections describe a wide variety of devices specifically characterized for linear amplification. Included are medium power and high power parts covering frequencies from $100 \mathrm{MHz}-4 \mathrm{GHz}$.
Table 13. To 1 GHz, Class A
These devices offer a selection of performance and price for linear amplification to 1 GHz . The "MRA" prefix parts are input matched and feature high overdrive and extreme ruggedness capability.

Device	P_{o} @ 1 dB Comp. Point Watts	GSS (Min)/Freq. Small Signal Gain dB/MHz	Bias Point (Vdc/A)	$\begin{gathered} { }^{\theta \mathrm{J} \mathbf{C}} \\ { }^{\circ} \mathbf{C} / \mathbf{W} \end{gathered}$	Package/Style

VCC $=19$ Volts

MRA1000-7L MRA1000-14L	$\begin{gathered} 7 \\ 14 \end{gathered}$	$\begin{aligned} & 9 / 1000 \\ & 8 / 1000 \end{aligned}$	$\begin{aligned} & \hline 19 / 1.2 \\ & 19 / 2.4 \end{aligned}$	$\begin{array}{r} 4 \\ 2.1 \end{array}$	$\begin{aligned} & 145 \mathrm{D}-02 / 1 \\ & 145 \mathrm{D}-02 / 1 \end{aligned}$
Device	Pout Output Power Watts	Gp (Min)/Freq. Power Gain $\mathrm{dB} / \mathrm{MHz}$	Bias Point Per Side (Vdc/MA)	$\begin{gathered} { }^{\theta} \mathrm{JC} \\ { }^{\circ} \mathbf{C} / \mathrm{W} \end{gathered}$	Package/Style

VCC $=\mathbf{2 8}$ Volts

MRA0510-50H	50	$7 / 1000$	$28 / 120$	1.4	$391-01 / 1$

${ }^{(7)}$ Typical @ 1090 MHz

Linear Transistors (continued)

Table 14. To 2 GHz, Class A
These parts offer low cost alternatives to matched devices used primarily as pre-drivers to 2 GHz .

Device	Po @ 1 dB Comp. Point Watts	Gss (Min)/Freq. Small Signal Gain dB/MHz	Bias Point (Vdc/A)	$\begin{aligned} & { }^{\theta} \mathbf{J C} \mathbf{C} \\ & { }^{\circ} \mathbf{C} / \mathbf{W} \end{aligned}$	Package/Style
VCC = 20 Volts					
MRF3095(9)	0.8	9/2000	20/0.12	35	328A/2

Table 15. UHF Ultra Linear For TV Applications
The following device has been characterized for ultra-linear applications such as low-power TV transmitters in Band IV and Band V and features diffused ballast resistors and an all-gold metal system to provide enhanced reliability and ruggedness.

	Pref (Min) Watts	Gp (Min)/Freq. Small Signal Gain dB/MHz	3 Tone IMD (8) dB	${ }^{\theta} \mathrm{JC}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	Package/Style

VCC = $\mathbf{2 8}$ Volts, Class AB

TPV8100B	$100(11)$	$8.5 / 860$	-	0.7	$398 / 1$

${ }^{(8)}$ Vision Carrier: - 8 dB ; Sound Carrier: -7 dB ; Sideband Carrier: - 16 dB
${ }^{(9)}$ Former Prefix was "RF"
(11)Output power at 1 dB compression in Class $A B$

Linear Transistors (continued)

Table 16. Microwave Linear for PCN Applications
The following devices have been developed for linear amplifiers in the $1.5-2 \mathrm{GHz}$ region and have characteristics particularly suitable for PDC, PCS or DCS1800 base station applications.

			Bias Pout	Class	Point Vdc/mA	Gain (Typ)/Freq dB/MHz
Device	${ }^{\ominus} \mathrm{JC}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$	Package/Style				

VCC = 20 Volts-Bipolar Die

MRF6401(12)	0.5	A	$20 / 80$	$10 / 1880$	30	$305 \mathrm{C} / 1$

VCC $=\mathbf{2 6}$ Volts-Bipolar Die

MRF6402(13)	4.5	$A B$	26/40	10/1880	5	319/2
MRF6404(16)	30	$A B$	26/150	8.5/1880	1.4	395C/1
MRF6404K	30	$A B$	26/150	8.5/1880	1.4	395C/1
MRF6408	12	$A B$	26/100	8.8/1880	2.8	395C/1
MRF15030	30	A, AB	26/125	9/1490	1.4	395C/1
MRF15060	60	$A, A B$	26/200	10/1490	0.7	451/1
MRF15060S	60	$A, A B$	26/200	10/1490	0.7	451A/1
MRF15090	90	$A, A B$	26/250	7.5/1490	0.7	375A/1
MRF20030 ${ }^{\text {* }}$	30	$A, A B$	26/120	10.5/2000	1.4	395D/1
MRF20060*	60	$A, A B$	26/200	9.4/2000	0.7	451/1
MRF20060S \star	60	$A, A B$	26/200	9.4/2000	0.7	451A/1

VDD = $\mathbf{2 6}$ Volts-LDMOS Die - Lateral MOSFETs

MRF281S(46a)	4	A, AB	$26 / 25$	$13.6 / 2000$	8.75	$458 / 1$
MRF281Z(46a)	4	A, AB	$26 / 25$	$13.6 / 2000$	8.75	$458 \mathrm{~A} / 1$
MRF6525-5(18a,46a)	5	AB	$26 / 70$	$11.5 / 2000$	15	$458 \mathrm{~A} / 1$
MRF6525-10(18a,46a)	10	AB	$26 / 130$	$10 / 2000$	6.0	$458 \mathrm{~A} / 1$
MRF282S \star	10	A, AB	$26 / 75$	$13 / 2000$	2.9	$458 / 1$
MRF282Z \star	10	A, AB	$26 / 75$	$13 / 2000$	2.9	$458 \mathrm{~A} / 1$
MRF284 \star	30	A, AB	$26 / 200$	$10.5 / 2000$	2.0	$360 \mathrm{~B} / 1$
MRF284S \star	A, AB	$26 / 200$	$10.5 / 2000$	2.0	$360 \mathrm{C} / 1$	
MRF286(46b)	30	A, AB	$26 / 500$	$11 / 2000$.73	$465 / 1$
MRF286S(46b)	60	A, AB	$26 / 500$	$11 / 2000$.73	$465 \mathrm{~A} / 1$

(12)Formerly known as "TP4001S"
(13)Formerly known as "TP4004"
(16)Formerly known as "TP4035"
${ }^{(18)}$ Tape and Reel Packaging Option Available by adding suffix: a) $R 1=500$ units; b) $R 2=2,500$ units; c) $T 1=3,000$ units; d) $T 3=10,000$ units; e) $R 2=1,500$ units; f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.
${ }^{(46)}$ To be introduced: a) 1Q98; b) 2 Q98
*New Product

RF Power MOSFETs and Bipolar Transistors Packages

CASE 145A-09 STYLE 1 (.380" STUD)

CASE 249
STYLE 1, 3
(.280" PILL)

CASE 316-01
STYLE 1,3 (.500" CQ)

CASE 333A
STYLE 1,2
(MAAC PAC)

CASE 145D-02 STYLE 1 (.380" SOE)

CASE 305 STYLE 1 (.204" STUD)

CASE 317 STYLE 1,2 (MACRO-X)

CASE 328A-03 STYLE 1, 2

CASE 336E STYLE 1

CASE 211-07 STYLE 1, 2 (.380" FLANGE)

CASE 305A STYLE 1, 2 (.204" PILL)

CASE 305C STYLE 1

CASE 319 STYLE 1, 2, 3
(CS-12)

CASE 332A STYLE 1, 2 (.280" PILL)

CASE 333 STYLE 1,2

CASE 355C STYLE 1

CASE 211-11 STYLE 1,2 (.500" FLANGE)

CASE 319A STYLE 2

CASE 332-04
STYLE 1, 2 (.280" STUD)

CASE 355D STYLE 1

CASE 355E STYLE 1
(

Motorola RF Amplifier Modules

Motorola's line of RF amplifiers designed and specified for use in land mobile radios and general purpose wideband amplification applications. They feature small size, matched inputs and outputs, high stability and guaranteed performance specifications. For the user, they offer the benefits of smaller and less complex system designs in less time and at lower overall cost.
Each amplifier uses modern transistor chips which are gold metallized and have silicon nitride passivation for increased reliability and long life. Chip and wire construction features MOS capacitors and laser trimmed nichrome resistors. Circuit substrates and metallization have been selected for optimum performance cost and reliablity.

Table of Contents

Page

RF Amplifier Modules . 1.1-48
Land Mobile/Portable . 1.1-49
Base Stations . 1.1-50
Wideband Linear Amplifiers 1.1-51

Motorola RF Amplifier Modules

Complete amplifiers with 50 ohm in/out impedances are available for a variety of applications including land mobile radios, base stations, and other uses requiring large-signal amplification, both linear and Class C. Frequencies covered range from $68-1990 \mathrm{MHz}$ with power levels extending to 180 watts.

Land Mobile/Portable

The advantages of small size, reproducibility and overall lower cost become more pronounced with increasing frequency of operation. These amplifiers offer a wide range in power levels and gain, with guaranteed performance specifications for bandwidth, stability and ruggedness.
Table 1. VHF/UHF, Class C

	Pout Output Power Watts	Pin Input Power Watts	f Frequency MHz	GP Power Gain, Min dB	VDD Supply Voltage Volts	Package/Style

136-174 MHz, VHF Band - (LDMOS Die) - Lateral MOSFETs

MHW2627-1(46b)	7	0.02	$136-174$	25.5	7.5	$420 \mathrm{AC} / 1$

Device	$P_{\text {sat }}$ Watts	ACP (Pout $=1.6 \mathrm{~W}$ @ $\mathrm{f}_{\mathrm{o}} \pm 25 \mathrm{kHz}$, 18 kHz BW) (dBc)	f Frequency MHz	Gp Power Gain, Min dB	VDD Supply Voltage Volts	Package/Style

380-470 MHz, Land Mobile Linear (for TransEuropean Trunked Radio - TETRA) — Class AB - (LDMOS Die) Lateral MOSFETs

MHW2701-1(46b)	4.5	-30	$380-430$	28	7	$420 Z / 1$
MHW2701-2(46b)	4.5	-30	$420-470$	28	7	$420 Z / 1$

Device	$P_{\text {sat }}$ Watts	ACP (Pout $=5 \mathrm{~W}$ @ $\mathrm{f}_{\mathrm{o}} \pm \mathbf{2 5} \mathrm{kHz}$, 18 kHz BW) (dBc)	f Frequency MHz	Gp Power Gain, Min dB	VDD Supply Voltage Volts	Package/Style

380-470 MHz, Land Mobile Linear (for TransEuropean Trunked Radio - TETRA) - Class AB - (LDMOS Die) Lateral MOSFETs

MHW2703-1(46b)	10	-30	$380-400$	28	7	$420 Z / 1$
MHW2723(46b)	12	-30	$380-470$	30	12.5	$420 Z / 1$

	Pout Output Power Watts	Pin Input Power Watts	f Frequency MHz	GP Power Gain, Min dB	VDD Supply Voltage Volts	Package/Style

400-520 MHz, UHF Band - Class D - A (Dynamic Bias via Gate Control) - (LDMOS Die) - Lateral MOSFETs

MHW2727-1(46b)	7	0.02	$400-470$	25.5	7.5	$420 \mathrm{AC} / 1$
MHW2727-2(46b)	7	0.02	$450-520$	25.5	7.5	$420 \mathrm{AC} / 1$

806-821 MHz, UHF Band (for Integrated Digital Enhanced Network - iDEN™) - Class AB - (LDMOS Die) Lateral MOSFETs

MHW2801 (46a)	0.8	0.00025	$806-821$	35	6	$420 \mathrm{~L} / 1$

Land Mobile/Portable (continued)

Table 1. VHF/UHF, Class C (continued)

	Pout Output Power	Pin Input Power Wats	frequency MHz	Gp Power Gain, Min	VDD Supply Voltage	
Device	Watts	dB	Volts	Package/Style		

806 - 960 MHz, UHF Band - Class AB (LDMOS Die) - Lateral MOSFETs

MHW2803(46a)	3.5	0.001	$806-824$	35.5	6	$420 \mathrm{~L} / 1$
MHW2805-1(46a)	5	0.004	$806-870$	31	7.5	$420 \mathrm{AB} / 1$
MHW2805-2(46a)	5	0.004	$890-950$	31	7.5	$420 \mathrm{AB} / 1$
MHW2820-1(46b)	20	<0.250	$806-870$	19	12.5	$301 \mathrm{G} / 1(42)$
MHW2820-2(46b)	18	<0.300	$890-950$	17.9	12.5	$301 \mathrm{G} / 1(42)$
MHW2821-1	20	<0.250	$806-870$	19	12.5	$301 \mathrm{AB} / 1$
MHW2821-2	18	<0.300	$890-950$	17.9	12.5	$301 \mathrm{AB} / 1$

Table 2. UHF, Linear - Lateral MOSFETs

	Pout Output Power Watts	Pin Input Power Watts	f Frequency MHz	Gp Power Gain, Min dB	VCC Supply Voltage Volts	Package/Style

824-849 MHz (for Amps) - Class AB (LDMOS Die)

MIM2901(46a)	1.41	0.004	$824-849$	25.5	3.6	TBD

880-915 MHz (for GSM) - Class AB (LDMOS Die)

Device	Pout Output Power Watts	Pin Input Power Watts	f Frequency MHz	GP Power Gain, Min dB	VDD Supply Voltage Volts	Package/Style
MIM2906(46a)	3.5	0.316	$890-915$	30.5	6	$467 \mathrm{~A} / 1$

Base Stations

Designed for applications such as a driver for a macro cell site or the final output in micro cell site, these class AB amplifiers are ideal for GSM based systems at 900 MHz and 2 GHz . These 50 ohm blocks provide 10 to 30 watt outputs with gains up to 30 dB in a compact hybrid module package.

Table 1. Base Stations

	Pout Output Power Watts	Pin Input Power Watts	f Frequency MHz	GP Power Gain, Min dB	VDD Supply Voltage Volts	Package/Style

925-960 MHz (for GSM) - Class AB (LDMOS Die) - Lateral MOSFETs

MHW910(46a)	10	0.050	$925-960$	23	24	$301 \mathrm{AB} / 1$
MHW913	14	0.1	$880-915$	21.5	12.5	$301 \mathrm{AB} / 1$
MHW916	16	0.036	$925-960$	26.5	26	$301 \mathrm{AB} / 1$
MHW930 \star	30	0.060	$925-960$	27	26	$301 \mathrm{AB} / 1$

	Pout Output Power Watts	Pin Input Power Watts	frequency MHz	Gp Power Gain, Min dB	VCC Supply Voltage Volts	Package/Style

1805-1880 MHz (for DCS1800) — Class AB (Silicon Bipolar Die)

MHW1815 ${ }^{\text {® }}$	15.0	0.015	1805-1880	30	26	301AK/1
1930-1990 MHz (for PCS1900) - Class AB (Silicon Bipolar Die)						
MHW1915*	15.0	0.019	1930-1990	29	26	301AK/1
MHW1916*	15.0	0.013	1930-1990	31	26	301AK/1

(42)Drop-in for bipolar MHW820
(46)To be introduced: a) 1Q98; b) 2 Q98
*New Product

Base Stations (continued)

Table 2. Cellular Base Station Pre-Drivers
These 50 ohm amplifiers are recommended for modern, multi-tone, CDMA and/or TDMA base-station pre-driver applications. Their high third-order intercept, tight phase control and excellent group delay characteristics make these amplifiers ideal for use in high-power feedforward loops.

Ultra-Linear - Class A (Silicon Bipolar Die)

Device	$\begin{aligned} & \text { BW } \\ & \text { MHz } \end{aligned}$	$V_{C C}$ (Nom.) Volts	ICC (Nom.) mA	Gain (Nom.) dB	Gain Flatness (Typ) $\pm \mathrm{dB}$	$P_{1 d B}$ (Typ) dBm	3rd Order Intercept (Typ) dBm/MHz	$\begin{gathered} \mathrm{NF} \\ \text { (Typ) } \\ \mathrm{dB} \end{gathered}$	Case/ Style
MHL9128	800-960	28	400	20	0.5	31	43	7.5	448/1

Ultra-Linear - Class A (LDMOS Die) - Lateral MOSFETs

Device	BW MHz	VDD (Nom.) Volts	IDD (Nom.) mA	Gain (Nom.) dB	Gain Flatness (Typ) \pm dB	(TyB (Typ) (Bm	3rd Order (ntercept (Typ) dBm/MHz	NF (Typ) dB	Case/ Style
MHL9236(46a)	$800-960$	26	525	30	.1	34	47	4.5	$301 \mathrm{AP} / 1$
MHL9236M(46a)	$800-960$	26	525	30	.1	34	47	4.5	$301 \mathrm{AP} / 2$

Wideband Linear Amplifiers

Table 1. Standard 50 Ohm Linear Hybrids
This series of RF linear hybrid amplifiers have been optimized for wideband, 50 ohm applications. These amplifiers were designed for multi-purpose RF applications where linearity, dynamic range and wide bandwidth are of primary concern. Each amplifier is available in various package options. The MHL series utilizes a new case style that provides microstrip input and output connections.

Device	BW MHz	VCC (Nom.) Volts	IcC (Nom.) mA	Gain/Freq. (Typ) $\mathrm{dB} / \mathrm{MHz}$	$\begin{aligned} & \text { Gain } \\ & \text { Flatness } \\ & \text { (Typ) } \\ & \pm \mathrm{dB} \end{aligned}$	$\mathrm{P}_{1 \mathrm{~dB}}$ (Typ) dBm	3rd Order Intercept Point/Freq. (Typ) dBm/MHz	NF/Freq. (Typ) $\mathrm{dB} / \mathrm{MHz}$	Case/ Style
CA2832C	1-200	28	435	35.5/100	0.5	33	47/200	5/200	714F/1
CA2830C	5-200	24	300	34.5/100	0.5	29	46/200	4.7/200	714F/1
CA2810C	10-450	24	310	34/50	1.5	30	43/300	5/300	714F/1
MHL8118	40-1000	28	400	17.5/900	1	30	41.5/1000	8.5/1000	448/1
MHL8115	40-1000	15	700	17.5/900	1	30	41.5/1000	8.5/1000	448/2
MHL8018	40-1000	28	210	18.5/900	1	26	38/1000	7.5/1000	448/1
MHL8015	40-1000	15	380	18.5/900	1	26	38/1000	7.5/1000	448/2

${ }^{(46)}$ To be introduced: a) 1Q98; b) 2Q98

RF Amplifier Modules Packages

Motorola RF CATV Distribution Amplifiers

Motorola Hybrids are manufactured using the latest generation technology which has set new standards for CATV system performance and reliability. These hybrids have been optimized to provide premium performance in all CATV systems up to 152 channels.

Table of Contents
Page
RF CATV Distribution Amplifiers 1.1-53
Forward Amplifiers
1.1-54

Reverse Amplifiers
1.1-57

Motorola RF CATV Distribution Amplifiers

Motorola Hybrids are manufactured using the latest generation technology which has set new standards for CATV system performance and reliability. These hybrids have been optimized to provide premium performance in all CATV systems up to 152 channels.

Forward Amplifiers

40-1000 MHz Hybrids, VCC = $\mathbf{2 4}$ Vdc, Class A

Device	Hybrid Gain (Nom.) dB	Channel Loading Capacity	Maximum Distortion Specifications				Noise Figure 860 MHz dB Max	Package/ Style
			Output Level dBmV	2nd Order Test dB	Composite Triple Beat dB	Cross Modulation dB		
					152 CH	152 CH		
MHW9182	18	152	+38	-59(40)	-59	-59	8.0	714Y/1
MHW9242	24	152	+38	-59(40)	-58	-59	8	714Y/1

40-860 MHz Hybrids

Device	$\begin{aligned} & \text { Gain } \\ & d B \\ & \text { Typ } \end{aligned}$	Frequency MHz	v_{CC} Volts	2nd Order IMD $@ \mathrm{~V}_{\text {out }}=\underset{\text { Max }}{50 \mathrm{dBmV} / \mathrm{ch}}$	$\begin{aligned} & \text { DIN45004B } \\ & \text { @ } \mathrm{f}=860 \mathrm{MHz} \\ & \mathrm{~dB} \mu \mathrm{~V} \\ & \mathrm{Min} \end{aligned}$	Noise Figure @ 860 MHz dB Max	Package/ Style
CA901	17	40-860	24	-60	120	8	714P/2
CA901A	17	40-860	24	-64	120	8	714P/2

Power Doubling Hybrids

CA912	17	$40-860$	15	-63	123	9.5	$714 \mathrm{P} / 3$
CA922	17	$40-860$	24	-63	123	9.5	$714 \mathrm{P} / 2$
CA922A	17	$40-860$	24	-67	123	$714 \mathrm{P} / 2$	

Hybrid Jumper

CATHRU	0	$1-1000$	75 Ohm Broadband Hybrid Jumper	714 V

40-860 MHz Hybrids, VCC = $\mathbf{2 4}$ Vdc, Class A

Device	Hybrid Gain (Nom.) dB	Channel Loading Capacity	Maximum Distortion Specifications				Noise Figure @ 860 MHz dB Max	Package/ Style
			Output Level dBmV	2nd Order Test dB	Composite Triple Beat dB	Cross Modulation $\begin{gathered} \mathrm{FM}=55.25 \mathrm{MHz} \\ \mathrm{~dB} \end{gathered}$		
					128 CH	128 CH		
MHW8182	18	128	+38	-60(40)	-60	-60	7	714Y/1
MHW8182A ᄎ	18.3	128	+38	-63(40)	-62	-64	8.0	714Y/1
MHW8222	22	128	+38	-60(40)	-60	-60	7.5	714Y/1
MHW8242	24	128	+38	-60(40)	-60	-60	7.5	714Y/1
MHW8242A」	24	128	+38	-62(40)	-64	-62	7.5	714Y/1
MHW8272	27	128	+38	-60(40)	-60	-60	7.0	714Y/1
MHW8272A ${ }^{\text {® }}$	27.2	128	+38	-64(40)	-64	-62	7.0	714Y/1
MHW8292	29	128	+38	$-56(40)$	-60	-60	7.0	714Y/1

[^6]40-860 MHz Hybrids, VCC = $\mathbf{2 4}$ Vdc, Class A (continued)

Device	Hybrid Gain (Nom.)	Channel Loading Capacity	Maximum Distortion Specifications				Noise Figure @ 860 MHz dB	Package/ Style
			Output LeveldBmV	2nd Order Test	Composite Triple Beat dB	Cross Modulation $\begin{gathered} \mathrm{FM}=55.25 \mathrm{MHz} \\ \mathrm{~dB} \end{gathered}$		
	dB			dB	128 CH	128 CH	Max	

Power Doubling Hybrids

MHW8185	18.8	128	+40	$-62(39)$	-64	-64	8.0	$714 \mathrm{Y} / 1$
MHW8185L(21,46b,52a)	18.9	128	+40	$-62(39)$	-63	-64	8.0	$714 \mathrm{Y} / 1$
MHW8185R $(14)_{\star}$	18.8	128	+40	$-62(39)$	-64	-64	8.0	$814 \mathrm{Y} / 2$
MHW8205	19.8	128	+40	$-60(39)$	-63	-64	$714 \mathrm{Y} / 1$	
MHW8205L(22,46b,52a)	19.8	128	+40	$-62(39)$	-63	-64	$714 \mathrm{Y} / 1$	

Feedforward Hybrids

MFF524B	24	128	+44	$-68(36)$	-66	-	13.0	$825 \mathrm{~A} / 2$

40-750 MHz Hybrids, VCC = 24 Vdc, Class A

Device	Hybrid Gain (Nom.) dB	Channel Loading Capacity	Maximum Distortion Specifications				Noise Figure 750 MHz dB Max	Package/ Style
			Output Level dBmV	2nd Order Test dB	Composite Triple Beat dB	Cross Modulation $\begin{gathered} \mathrm{FM}=55.25 \mathrm{MHz} \\ \mathrm{~dB} \end{gathered}$		
					110 CH	110 CH		
MHW7142	14	110	+40	-60(39)	-62	-66	8.0	714Y/1
MHW7182	18	110	+40	-62(39)	-62	-64	6.5	714Y/1
MHW7182A \star	18.3	110	+40	-62(39)	-62	-64	6.5	714Y/1
MHW7222	22	110	+40	-55(39)	-60	-60	7	714Y/1
MHW7222A	22	110	+40	-57(39)	-60	-60	7	714Y/1
MHW7242	24	110	+40	-60(39)	-60	-60	7	714Y/1
MHW7242A ${ }^{\text {® }}$	24	110	+40	-62(39)	-63	-61	7	714Y/1
MHW7272	27	110	+40	-60(39)	-60	-60	6.5	714Y/1
MHW7272A ${ }^{\text {® }}$	27.2	110	+40	-64(39)	-64	-60	6.5	714Y/1
MHW7292	29	110	+40	-60(39)	-60	-60	6.5	714Y/1

Power Doubling Hybrids

MHW7185C \star	18.8	110	+44	$-64(36)$	-62	-63	7.5	$714 \mathrm{Y} / 1$
MHW7185CR (15)	18.8	110	+44	$-64(36)$	-62	-63	7.5	
MHW7185L(23,46b,52a)	18.9	110	+44	$-64(36)$	-61	-63	7.5	
MHW7205C \star	19.8	110	+44	$-63(36)$	-61	-62	$714 \mathrm{Y} / 1$	
MHW7205L(24,46b,52a)	19.8	110	+44	$-63(36)$	-61	-62	$714 Y / 1$	
$714 Y / 1$								

Feedforward Hybrids

MFF424B	24	110	+44	$-70(36)$	-68	-	13	$825 \mathrm{~A} / 2$

(14)Forward Mirror Amplifier Version of MHW8185
(15) Forward Mirror Amplifier Version of MHW7185C
(21)Low DC Current Version of MHW8185
(22) Low DC Current Version of MHW8205
(23)Low DC Current Version of MHW7185C
(24)Low DC Current Version of MHW7205C
(36) Composite 2nd order; $\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch}$
(39) Composite 2nd order; $\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}$
${ }^{(46)}$ To be introduced: a) 1Q98; b) 2Q98
(52) Engineering samples available: a) 2Q98
*New Product

40-600 MHz Hybrids, VCC = 24 Vdc, Class A

Device	Hybrid Gain (Nom.) dB	Channel Loading Capacity	Maximum Distortion Specifications				Noise Figure 600 MHz dB Max	Package/ Style
			Output Level dBmV	2nd Order Test dB	Composite Triple Beat dB	Cross Modulation dB		
					87 CH	87 CH		
MHW6182-6	18	87	+44	-56(36)	-57	-55	6	714Y/1

Feedforward Hybrids

MFF324B	24	85	+44	$-86(38)$	-73	-68	12.5	$825 \mathrm{~A} / 2$

40-550 MHz Hybrids, VCC = 24 Vdc , Class A

Device	Hybrid Gain (Nom.)	Channel Loading Capacity	Maximum Distortion Specifications				Noise Figure 550 MHz dB Max	Package/ Style
			Output Level dBmV	2nd Order Test dB	Composite Triple Beat dB	Cross Modulation dB		
	dB				77 CH	77 CH		
MHW6142	14	77	+44	-72(35)	-59	-62	7.5	714Y/1
MHW6182	18	77	+44	-72(35)	-58	-62	7	714Y/1
MHW6222	22	77	+44	-66(35)	-57	-57	6	714Y/1
MHW6272	27	77	+44	-64(35)	-57	-57	6.5	714Y/1
MHW6342	34	77	+44	-64(35)	-57	-57	6.5	714Y/1
MHW6342T ${ }^{\text {® }}$	34	77	+44	-64(35)	-57	-57	6.5	714AA/1

Feedforward Hybrids

MFF224B	24	77	+44	$-86(35)$	-75	-70	11	$825 \mathrm{~A} / 2$

40-450 MHz Hybrids, VCC = 24 Vdc, Class A

Device	Hybrid Gain (Nom.) dB	Channel Loading Capacity	Maximum Distortion Specifications				Noise Figure 450 MHz dB Max	Package/ Style
			Output Level dBmV	2nd Order Test dB	Composite Triple Beat dB	Cross Modulation dB		
					60 CH	60 CH		
MHW5182A	18	60	+46	-72(31)	-61	-59	6.5	714Y/1
MHW5222A	22	60	+46	-72(31)	-60	-59	5.5	714Y/1
MHW5342A	34	60	+46	-68(31)	-59	-59	6.0	714Y/1
MHW5342T^	34	60	+46	-68(31)	-59	-59	6.0	714AA/1
MHW5382A	38	60	+46	-64(31)	-59	-59	5.0	714Y/1

Power Doubling Hybrids

MHW5185B	18	60	+46	$-67(32)$	-67	-67	7.0	$714 \mathrm{Y} / 1$

Feedforward Hybrids

MFF124B	24	60	+46	$-84(31)$	-79	-75	10	$825 A / 2$

[^7]
Reverse Amplifiers

5-200 MHz Hybrids, VCC = 24 Vdc, Class A

Device	Hybrid Gain (Nom.) dB	Channel Loading Capacity	Maximum Distortion Specifications						Noise Figure @ 175 MHz dB Max	Package/ Style
			Output Level dBmV	$\begin{gathered} \text { 2nd } \\ \text { Order } \\ \text { Test }(30) \\ \\ \text { dB } \end{gathered}$	Composite Triple Beat dB		Cross Modulation dB			
					22 CH	26 CH	22 CH	26 CH		
MHW1134	13	22	+50	-72	-73	-71(19)	-65	-65(19)	7	714Y/1
MHW1184	18	22	+50	-72	-70	-70(19)	-64	-64(19)	5.5	714Y/1
MHW1224	22	22	+50	-72	-69	-68.5(19)	-62	-62(19)	5.5	714Y/1
MHW1244	24	22	+50	-72	-68	-67.5(19)	-61	-61(19)	5	714Y/1

Low Current Amplifiers - 5-50 MHz Hybrids, VCC = 24 Vdc, Class A

					Maximum	ortion Speci	ons		
	Hybrid Gain (Nom.)	Channel Loading Capacity	IDC	Output Level	2nd Order Test ${ }^{(30)}$	Composite Triple Beat dB	Cross Modulation dB	Figure @ 50 MHz dB	
Device	dB		Max	dBmV	dB	4 CH	4 CH	Max	Style
MHW1304L	30	4	135	+50	-70	-66	-57	4.5	714Y/1

(19) Typical
(30)Channels 2 and A @ 7

RF CATV Distribution Amplifiers

Chapter Two RF Monolithic Integrated Circuits

Section One 2.1-0
RF Monolithic Integrated Circuits Selector Guide
\section*{Section Two

2.2-0}
RF Monolithic Integrated Circuits Data Sheets

Section One Selector Guide

Motorola RF Monolithic Integrated Circuits

Motorola's RF monolithic integrated circuit devices provide an integrated solution for the personal communications market. These devices are available in plastic SOIC-8, SOIC-16, SOT-143, TSSOP-16, Micro-8, TSSOP-20, TSSOP-20HS, TQFP-48 or PFP-16 packages.

Evaluation Boards

Evaluation boards are available for RF Monolithic Integrated Circuits. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

Table of Contents

Page
RF Monolithic Integrated Circuits 2.1-1
Switching 2.1-2
Antenna Switches 2.1-2
Receiver Functions 2.1-2
General Purpose Integrated Circuits 2.1-2
900 MHz Front End 2.1-2
1.5-2.2 GHz Front End 2.1-3
2.4 GHz Front End 2.1-3
Transmitter Functions 2.1-3
General Purpose Integrated Circuits 2.1-3
900 MHz Transmit Chain 2.1-4
1.5-2.2 GHz Transmit Chain 2.1-5
2.4 GHz Transmit Chain 2.1-6

Motorola RF Monolithic Integrated Circuits

Switching

Antenna Switches/Local Oscillator Switches

Device	Freq. Range MHz	Supply Volt. Range Vdc	Supply Current $\mu \mathbf{A (T y p)}$	Pin, 1 dB Compression dBm (Typ)	TX Insertion Loss dB (Typ)	Isolation dB (Typ)	Package	System Applicability
MRFIC1801(18b)	$1500-2500$	$2.7-5.5$	300	29	0.6	20	SO-8	DECT, PHS, PCS, ISM
MRFIC0903(18b)	$100-2000$	$2.7-5.0$	60	35.5	0.65	21	SO-8	AMPS, Class 4\&5 GSM, DCS1800, PHS, PCS

Receiver Functions

General Purpose Integrated Circuits

General Purpose Cascode Amplifier

Device	Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Small Signal Gain @ 900 MHz dB (Typ)	Noise Figure dB (Typ)	Reverse Isolation dB (Typ)	Package	System Applicability
MRFIC0915(18c,46a)	100-2000	2.7-5.0	2.2	16.5	1.9	38	SOT-143	AMPS,CT1,CT2,GSM,IS-54, ISM,DECT,PHS,PCS
MRFIC0916(18c)	100-2000	2.7-5.0	4.7	18.5	1.9	44	SOT-143	AMPS,CT1,CT2,GSM,IS-54, ISM,DECT,PHS,PCS

Device	RF Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Conv. Gain dB (Typ)	Input Third Order Intercept	Package	System Applicability
MRF9820T1 $(18 \mathrm{C}) \star$	$100-1500$	$2-5$	1.0	16	-3	SOT-143	AMPS,CT1,CT2,GSM,IS-54, ISM,DECT,PHS,PCS

900 MHz Front End

LNA + Mixer

Device	RF Freq. Range MHz	IF Freq. Range MHz	Supply Volt. Range Vdc	Supply Current $\mathbf{m A}($ Typ $)$	Conv. Gain dB (Typ)	Output Level, $\mathbf{1 d B}$ Comp. $\mathbf{d B m}($ Typ $)$	Package	System Applicability
MRFIC2001(18b)	$500-1000$	$0-250$	$2.7-5.0$	4.7	23	-10	SO-8	CT2, ISM

(18)Tape and Reel Packaging Option Available by adding suffix: a) $\mathrm{R} 1=500$ units; b) $\mathrm{R} 2=2,500$ units; c) $\mathrm{T} 1=3,000$ units; d) $\mathrm{T} 3=10,000$ units; e) $\mathrm{R} 2=1,500$ units;
f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.
${ }^{(46)}$ To be introduced: a) 1Q98; b) 2Q98
*New Product

Receiver Functions (continued)

1.5-2.2 GHz Front End

Integrated LNA

Device	Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Small Signal Gain dB (Typ)	Noise Figure dB (Typ)	Reverse Isolation dB (Typ)	Package	System Applicability
MRFIC1501 $(18 \mathrm{~b}) \star$	$1000-2000$	$3-5$	5.7	18	1.1	26	SO-8	GPS
MRFIC1808(18b) \star	$1700-2100$	$2.7-4.5$	5.0	17	1.6	37	SO-8	DECT, PHS, PCS
MRFIC1808DM $(18 \mathrm{~g}, 46 \mathrm{a})$	$1700-2100$	$2.7-4.5$	5.0	17	1.6	32	Micro-8	DECT, PHS, PCS

GPS Receiver

MRFIC1502	$1570-1580$	$4.5-5.5$	50	65	9.5	-	TQFP-48	GPS

Integrated LNA/Downconverter

	RF Freq. Range GHz	IF Freq. Range GHz	Supply Volt. Range Vdc	Supply Current RX Mode mA (Typ)	Mixer Conv. Gain dB (Typ)	LNA Gain (Typ)	LNA Noise (igure dB	Package	System Applicability
MRFIC1804(18b)	$1.8-2.0$	$70-325$	$2.7-3.3$	10	4	14	2.3	SO-16	DECT,PHS,PCS
MRFIC1814(18b) \star	$1.8-2.0$	$70-325$	$2.7-4.5$	13	8	17	2.5	TSSOP-16	DECT,PHS,PCS

2.4 GHz Front End

Integrated LNA/Downconverter

Device	RF Freq. Range MHz	IF Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Conv. Gain (Typ)	LNA Noise Figure dB (Typ)	Isolation Lo to RF, Lo to IF dB (Typ)	Package	System Applicability
MRFIC2401(18b)	$2400-2500$	$100-350$	$4.75-5.25$	9.5	21	1.9	20	SO-16	WLAN, MMDS, ISM

Transmitter Functions

General Purpose Integrated Circuits

Quadrature Modulator

Device	Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Gain Control dB (Typ)	Lo Leakage dBm (Typ)	SSB Pout, 1 dB Compression dBm (Typ)	Package	System Applicability
MRFIC0001(18b)	$50-260$	$2.7-5.5$	10	30	-55	-10	TSSOP-20	DCS1800, GSM, NADC PDC, PHS, PCS1900

General Purpose Cascode Amplifier

		Freq.						
Device	Supply Rolt. Range MHz	Small Vdc	Supply Current mA (Typ)	Gain @ 900 MHz dB (Typ)	Noise Figure dB (Typ)	Reverse Isolation dB (Typ)	Package	System Applicability
MRFIC0915(18c,46a)	$100-2000$	$2.7-5.0$	2.2	16.5	1.9	38	SOT-143	AMPS,CT1,CT2,GSM,IS-54, ISM,DECT,PHS,PCS
MRFIC0916(18c)	$100-2000$	$2.7-5.0$	4.7	18.5	1.9	44	SOT-143	AMPS,CT1,CT2,GSM,IS-54, ISM, DECT,PHS,PCS

[^8]
Transmitter Functions (continued)

900 MHz Transmit Chain

Transmit Mixer

Device	RF Freq. Range MHz	IF Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Standby Current $\mu \mathrm{A}$ (Typ)	Conv. Gain dB (Typ)	Output Level, 1 dB Comp. dBm (Typ)	Package	System Applicability
MRFIC2002(18b)	500-1000	0-250	2.7-5.0	5.5	0.1	10	-18	SO-8	AMPS,CT1,CT2, GSM, IS-54, ISM
MRFIC2101(18b)	800-1000	0-250	3-4.75	45	2	26.5	4.5	SO-16	AMPS,CT1,CT2, GSM, IS-54, ISM, USPCS, CDMA
MRFIC0931(18b) ${ }_{\text {̇ }}$	500-2000	0-250	2.7-4.8	38	-	25	1.0	SO-8	AMPS,CT1,CT2, GSM, IS-54, ISM, USPCS, CDMA

Driver Amplifier

Device	Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Standby Current mA (Typ)	Small Signal Gain dB (Typ)	Gain Control dB (Typ)	Pout, 1 dB Compression dBm (Typ)	Package	System Applicability
MRFIC2004(18b)	$800-1000$	$2.7-4.0$	11	0.7	21.5	34	-1	SO-16	AMPS,CT1,CT2, GSM,ISM
MRFIC2006(18b)	$500-1000$	$1.8-4.0$	46	-	23	-	15.5	SO-8	AMPS,CT1,CT2, GSM,ISM
MRFIC0904(18b)	$800-1000$	$2.7-5.0(47)$	280	0.05	27	24.5	25.5	SO-16	AMPS,GSM,ISM

Integrated Power Amplifiers

Low Power 900 MHz Power Amplifiers

Device	Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Small Signal Gain dB (Typ)	Return Loss Input/Output dB (Typ)	Pout, 1 dB Compression dBm (Typ)	Package	Semiconductor Technology
MRFIC2006(18b)	$500-1000$	$1.8-4.0$	46	23	15	15.5	SO-8	Silicon

Device	Freq. Range MHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Standby Current mA (Typ)	Small Signal Gain dB (Typ)	Pout, 1 dB Compression dBm (Typ)	Package	Semiconductor Technology
MRFIC2101(18b)	$800-1000$	$3-4.75$	38	2	16	18	SO- 16	Silicon

Analog Cellular

Device	Freq. Range MHz	Supply Volt. Vdc	Power Added Efficiency $\%($ Min $)$	Power Gain dB (Min)	Harmonic Output 2fo dBc	Pout/Pin dBm (Min)	Package	Semiconductor Technology
MRFIC0910(18e,46a)	$824-905$	4.8	50	17.8	-40	$30.8 / 13$	PFP-16	LDMOS
MRFIC0912 $(18 \mathrm{e}) \star$	$824-905$	$4.6(47)$	55	23.8	-25	$30.8 / 7$	PFP-16	GaAs

[^9]Transmitter Functions: 900 MHz Transmit Chain: Integrated Power Amplifiers (continued)

GSM Cellular

Device	Freq. Range MHz	Supply Volt. Vdc	Power Efficiency $\%$ (Min)	Power Gain dB (Min)	Harmonic Output 2fo dBc	Pout/Pin dBm (Min)	Package	Semiconductor Technology
MRFIC0913(18e) \star	$880-915$	$4.8(47)$	48	24.5	-30	$34.5 / 10$	PFP-16	GaAs
MRFIC0917(18e) \star	$880-915$	$3.6(47)$	43	22	-30	$34 / 12$	PFP-16	GaAs

DCS1800, PCS1900

Device	Freq. Range GHz	Supply Volt. Vdc	Power Added Efficiency $\%($ Min $)$	Power Gain dB (Min)	Harmonic Output 2fo dBc	Pout/Pin dBm (Min)	Package	Semiconductor Technology
MRFIC1818(18e) \star	$1.7-1.9$	$4.8(47)$	35	30	-30	$33 / 3$	PFP-16	GaAs
MRFIC1817(18e) ${ }_{\star}$	$1.7-1.9$	$3.6(47)$	35	27	-30	$32 / 5$	PFP-16	GaAs

Two-way Paging, ISM

Device	Freq. Range MHz	Supply Volt. Vdc	Power Added Efficiency $\%($ Min $)$	Power Gain dB (Min)	Harmonic Output 2fo dBc	Pout/Pin dBm (Typ)	Package	Semiconductor Technology
MRFIC0920(18b,46b)	$890-950$	3.4	35	28	-45	$30.5 / 2.5$	TSSOP- $20 H S$	LDMOS

1.5-2.2 GHz Transmit Chain

Upconverter

Device	RF Output Freq. Range GHz	Supply Volt. Range Vdc	Supply Current TX Mode mA (Typ)	Standby Current $\mu \mathrm{A}$ (Typ)	Conv. Gain dB (Typ)	Recommended IF Input MHz (Typ)	Pout, 1 dB Comp. dBm (Typ)	Package	System Applicability
MRFIC1803(18b)	1.7-2.5	2.7-5.0	28	100	10	70-350	-2	SO-16	$\begin{gathered} \text { DECT,PHS, } \\ \text { PCS } \end{gathered}$
MRFIC1813(18b) ${ }^{\text {® }}$	1.7-2.5	2.7-4.5	25	100	15	70-350	3	TSSOP-16	CDMA,PCS
MRFIC0931(18b) ᄎ	0.5-2.0	2.7-4.8	38	-	20	0-250	-2	SO-8	CDMA,PCS

Power Amplifier

Device	RF Output Freq. Range GHz	Supply Volt. Range Vdc(47)	Supply Current mA (Typ)	Standby Current mA (Typ)	Small Signal Gain dB (Typ)	$P_{\text {out }} / P_{\text {in }}$ dBm (Typ)	$\begin{gathered} 1 \mathrm{~dB} \\ \text { Comp. } \\ \mathrm{dBm} \text { (Typ) } \end{gathered}$	Pkg	System Applicability
MRFIC1805(18b) ${ }^{\text {® }}$	1.7-2.5	2.7-5.0	170	-	21	21.5/2	24	TSSOP-16	$\begin{gathered} \text { DECT,PHS, } \\ \text { PCS } \end{gathered}$
MRFIC1806(18b)	1.5-2.5	3.0-5.0	115	0.25	23	19.5/-3	21	SO-16	$\begin{gathered} \text { DECT,PHS, } \\ \text { PCS } \end{gathered}$
MRFIC1807(18b)	1.5-2.2	3.0-5.0	325	0.06	8	26.8/20	25	SO-16	$\begin{gathered} \text { DECT,PHS, } \\ \text { PCS } \end{gathered}$

[^10]Transmitter Functions: 1.5-2.2 GHz Transmit Chain (continued)

Power Amplifier

	RF Output Freq. Range GHz	Supply Volt. Range Vdc	PA Supply Current TX Mode mA (Typ)	Standby Current mA (Typ)	Small Signal Gain dB (Typ)	Insertion Loss RX Mode dB (Typ)	Pout, $\mathbf{d B}$ Compression dBm (Typ)	Package	System Applicability
MRFIC1807(18b) (Including TX/RX Switch)	$1.5-2.2$	$3.0-5.0$	325	0.06	8	1	25	SO-16	DECT, PHS, PCS

2.4 GHz Transmit Chain

Exciter Amplifier

Device	Freq. Range GHz	Supply Volt. Range Vdc	Supply Current mA (Typ)	Small Signal Gain dB (Typ)	Noise Figure dB (Typ)	Pout, 1 dB Compression dBm (Typ)	Package	System Applicability
MRFIC2404(18b)	$2.0-3.0$	$4.75-5.25$	9	17	4.3	5	SO-8	WLAN, MMDS, ISM

Power Amplifier

Device	Freq. Range MHz	Supply Volt. Range Vdc	Supply Current $\mathbf{m A}$ (Typ)	Small Signal Gain dB (Typ)	Power Control Range dB (Typ)	Pout, $\mathbf{1 ~ d B}$ Compression dBm (Typ)	Package	System Applicability
MRFIC2403(18b)	$2200-2700$	$4.75-5.25$	95	23	20	19	SO-16	WLAN, MMD, ISM

Upconverter

Device	RF Output Freq. Range GHz	Supply Volt. Range Vdc	Supply Current TX Mode mA (Typ)	Standby Current μ (Typ)	Conv. Gain dB (Typ)	Recommended IF Input MHz (Typ)	Pout, $\mathbf{1} \mathbf{d B}$ Comp. dBm (Typ)	Package	System Applicability
MRFIC1803(18b)	$1.7-2.5$	$2.7-5.0$	28	100	10	$70-350$	-2	SO-16	WLAN, ISM
MRFIC1813(18b) \star	$1.7-2.5$	$2.7-4.5$	25	100	15	$70-350$	3	TSSOP-16	WLAN, ISM
MRFIC2406(18b)	$2.4-2.5$	$3.0-5.0$	15	0.6	6	$100-370$	-10	SO-16	WLAN, MMDS,ISM

${ }^{(18)}$ Tape and Reel Packaging Option Available by adding suffix: a) $\mathrm{R} 1=500$ units; b) $\mathrm{R} 2=2,500$ units; c) $\mathrm{T} 1=3,000$ units; d) $\mathrm{T} 3=10,000$ units; e) $\mathrm{R} 2=1,500$ units; f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.
*New Product

RF Monolithic Integrated Circuit Packages

Section Two

Motorola RF Monolithic Integrated Circuits Data Sheets

Page
Device Number
MRFIC0001 . 2.2-3
MRFIC0903 2.2-7
MRFIC0904 2.2-13
MRFIC0912 2.2-19
MRFIC0913 2.2-24
MRFIC0916 2.2-30
MRFIC0917 .. . 2.2-36
MRFIC0931 2.2-45
MRFIC1501 .. 2.2-48
MRFIC1502 .. 2.2-55
MRFIC1801 2.2-60
MRFIC1803 . 2.2-63
MRFIC1804 2.2-68
MRFIC1805 2.2-73
MRFIC1806 2.2-81
MRFIC1807 2.2-91
MRFIC1808 2.2-98
MRFIC1813 2.2-105
MRFIC1814 2.2-111
MRFIC1817 2.2-114
MRFIC1818 2.2-121
MRFIC2001 2.2-128
MRFIC2002 2.2-134
MRFIC2004 2.2-139
MRFIC2006 2.2-144
MRFIC2101 2.2-151
MRFIC2401 2.2-159
MRFIC2403 2.2-166
MRFIC2404 2.2-171
MRFIC2406 2.2-175

Advance Information

The MRFIC Line Quadrature Modulator

The MRFIC0001 is an integrated Quadrature Modulator designed for operation in the 50 to 260 MHz frequency range. The design utilizes Motorola's advanced MOSAIC 3 silicon bipolar RF process to yield superior performance in a cost effective monolithic device. Applications include DQPSK for PDC, NADC, and PHS; GMSK for GSM and DCS1800; and QPSK for CATV.

- Linear I/Q Ports
- On Chip LO Phase Shifter
- I/Q Phase Imbalance $=2$ degrees $($ Typ)
- I/Q Amplitude Imbalance $=0.3 \mathrm{~dB}$ (Typ)
- Gain Control $=30 \mathrm{~dB}$ (Typ)
- Single Source Low Operating Supply Voltage
- Low Power Consumption
- Low-Cost, Low Profile Plastic TSSOP Package

QUADRATURE MODULATOR INTEGRATED CIRCUIT

- Order MRFIC0001R2 for Tape and Reel.

R2 Suffix = 2,500 Units per $16 \mathrm{~mm}, 13$ inch Reel.

- Device Marking = M001

ABSOLUTE MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameter	Symbol	Value	Unit
Supply Voltage	V_{CC}	6.5	Vdc
Control Voltages	TX EN, VCNTL	6.5	Vdc
LO Input Power	PLO	0.0	dBm
Differential I/Q Input Voltage	V_{D}	2.0	V_{pp}
I, I, Q, and Q DC Bias Voltage	V_{B}	2.0	Vdc
Ambient Operating Temperature	T_{A}	-30 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +125	${ }^{\circ} \mathrm{C}$

This document contains information on a new product. Specifications and information herein are subject to change without notice.
REV 4

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Supply Voltage	V_{CC}	2.7 to 5.5	Vdc
LO Input Power	PLO	-10	dBm
LO Frequency	flo	50 to 260	MHz
Differential I/Q Input Voltage	V_{D}	0 to 1.0	Vdc
I, I, Q, and Q DC Bias Voltage	V_{B}	1.5 to 1.7	Vdc
Variable Gain Amplifier Control Voltage	$\mathrm{V}_{\text {cntl }}$	0 to V_{CC}	Vdc
Transmit Enable Low Voltage	TX EN	0 to 0.2	Vdc
Transmit Enable High Voltage	TX EN	$\mathrm{V}_{\mathrm{CC}}-0.2$ to V_{CC}	Vdc

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{TX} E N=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CntI}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=0.8 \mathrm{~V} \mathrm{PP}, \mathrm{V}_{\mathrm{B}}=1.6 \mathrm{~V}, \mathrm{P}_{\mathrm{LO}}=-10 \mathrm{dBm}\right.$, $\mathrm{f}_{\mathrm{LO}}=248 \mathrm{MHz}, \mathrm{f}_{\mathrm{D}}=100 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Min	Typ	Max	Unit
Supply Current	-	10	12	mA
Standby Current (TX EN = 0.0V)	-	40	100	$\mu \mathrm{A}$
Single Sideband Output Power Level	-15	-13	-	dBm
Single Sideband Output Power 1dB Compression Point	-	-10	-	dBm
LO Leakage ${ }^{(2)}$	-	-55	-45	dBm
Undesired Sideband Level	-	-35	-30	dBc
Output Level Dynamic Range ($\mathrm{V}_{\text {cntl }}=0$ to 2.2V) ${ }^{(2)}$	-	30	-	dB
Turn-on/off Time	-	2	-	$\mu \mathrm{s}$
I/Q Data Input 3dB Bandwidth Amplitude Imbalance Phase Imbalance	-	$\begin{gathered} 5 \\ 0.3 \\ 2 \end{gathered}$	-	$\begin{gathered} \mathrm{MHz} \\ \mathrm{~dB} \\ \text { degree } \end{gathered}$

(1) All electrical characteristics measured in test circuit schematic shown in Figure 1.
V_{B} is the bias voltage on the input data ports.
V_{D} is the sinusoidal differential voltage on the input data ports when testing the part in a single sideband mode.
Above power levels are the single-ended output power.
(2) LO leakage power is unaffected by $\mathrm{V}_{\mathrm{cnt}}$ setting.

EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

Impedance Ω						
	LO		IF or -IF		I, -I, Q, -Q	
MHz	R	jX	R	jX	R	jX
50	924	-694	164	-2330	181	-2448
60	825	-716	110	-1913	121	-2003
70	715	-713	83.2	-1661	88.1	-1709
80	635	-690	81.4	-1422	87.0	-1470
90	576	-691	86.8	-1312	93.4	-1361
100	509	-668	69.2	-1172	74.2	-1213
110	453	-651	56.0	-1055	72.2	-1091
120	400	-623	56.9	-969	60.3	-998
130	355	-595	47.3	-884	67.5	-913
140	330	-576	49.4	-835	38.3	-871
150	291	-551	49.8	-784	47.0	-815
160	259	-525	37.7	-730	41.2	-763
170	239	-509	32.5	-678	35.9	-712
180	225	-489	30.0	-651	33.0	-683
190	206	-473	30.4	-613	29.4	-644
200	187	-452	17.0	-579	22.7	-612
210	172	-440	33.1	-544	23.8	-580
220	158	-416	27.7	-521	24.5	-549
230	149	-402	20.5	-503	14.2	-530
240	137	-392	26.1	-482	18.3	-508
250	130	-375	19.5	-461	11.9	-485
260	119	-374	19.5	-437	17.1	-458
270	114	-353	20.1	-423	12.0	-443
280	105	-343	18.7	-408	11.1	-426
290	103	-332	20.7	-394	10.4	-412
300	93.5	-320	19.3	-380	9.65	-397
310	88.0	-312	17.9	-366	8.86	-380
320	84.8	-302	18.0	-354	6.91	-368
330	82.5	-296	19.4	-342	7.71	-354
340	76.1	-288	18.2	-332	6.02	-343
350	72.4	-282	15.0	-322	6.74	-331

Table 1. Selected Port Impedances

Figure 1. Typical Biasing Configuration

The MRFIC Line Broadband GaAs Switch

The MRFIC0903 is an integrated GaAs SPDT switch designed for transceivers operating in the 100 MHz to 2.0 GHz frequency range. The design utilizes Motorola's advanced GaAs RF process to yield superior performance in a cost effective monolithic device. Applications for the MRFIC0903 include Class 4 and 5 GSM, Class 1 and 2 DCS1800, DCS1900, DAMPS, PDC, digital cellular systems as well as analog cellular systems.

- 2.8 W Transmitting Capability through the Transmit Path with a 5.0 Volt Differential Control Signal
- 1.25 W Transmitting Capability through the Transmit Path with a 3.0 Volt Differential Control Signal
- Single Source Operating Supply Voltage
- Low Power Consumption
- Low-Cost, Low Profile Plastic SOIC Package
- Order MRFIC0903R2 for Tape and Reel. R2 Suffix = 2,500 Units per $12 \mathrm{~mm}, 13$ inch Reel.
- Device Marking = M0903

MRFIC0903

ANTENNA SWITCH
GaAs MONOLITHIC INTEGRATED CIRCUIT

ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Supply Voltage	V_{DD}	10	Vdc
Control Voltage	$\mathrm{V}_{\mathrm{C} 1}, \mathrm{~V}_{\mathrm{C} 2}$	$\mathrm{~V}_{\mathrm{DD}}+0.8, \mathrm{~V}_{\mathrm{DD}}-12$	Vdc
Power Dissipation	P_{D}	1.0	W
Power Input (Non-selected Port)	P_{in}	0.325	W
Ambient Operating Temperature	T_{A}	-35 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

Pin Connections and Functional Block Diagram

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
Supply Voltage	V_{DD}	0 to 5.0	Vdc
Control Voltage Range	$\mathrm{V}_{\mathrm{C} 1}, \mathrm{~V}_{\mathrm{C} 2}$	$\mathrm{~V}_{\mathrm{DD}}-5.0$ to $\mathrm{V}_{\mathrm{DD}}+0.5$	Vdc
RF Frequency Range	f_{RF}	100 to 2000	MHz

ELECTRICAL CHARACTERISTICS (VD $=5.0 \mathrm{~V}, \mathrm{P}_{\text {in }}=2.5 \mathrm{~W}(34 \mathrm{dBm}), \mathrm{f}=900 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Min	Typ	Max	Unit
Supply Current				
IDD	-	100	170	$\mu \mathrm{~A}$
IControl	-	150	300	$\mu \mathrm{~A}$
VSWR	-	$1.5: 1$	-	
Insertion Loss (RFC/RF1, RFC/RF2)	-	0.55	0.8	dB
Isolation (RFC/RF2, RFC/RF1)	18	20	-	dB
Output Power at 0.1 dB Compression	-	34.5	-	dBm

Electrical Characteristics at 900 MHz measured in test circuit schematic shown in Figure 1 with board losses removed.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}, \mathrm{P}_{\mathrm{in}}=2.0 \mathrm{~W}(33 \mathrm{dBm}), \mathrm{f}=1800 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Min	Typ	Max	Unit
Supply Current				
IDD	-	100	170	$\mu \mathrm{~A}$
IControl	-	150	300	$\mu \mathrm{~A}$
VSWR	-	$1.5: 1$	-	
Insertion Loss (RFC/RF1, RFC/RF2)	-	0.7	0.85	dB
Isolation (RFC/RF2, RFC/RF1)	18	20	-	dB
Output Power at 0.1 dB Compression	-	34	-	dBm

Electrical Characteristics at 1800 MHz measured in test circuit schematic shown in Figure 2 with board losses removed.

$\mathbf{V}_{\mathbf{C} 1}$ and $\mathbf{V}_{\mathbf{C} 2}$ Input Voltage	Min	Typ	Max	Unit
High	V_{DD}	-	$\mathrm{V}_{\mathrm{DD}}+0.5$	Vdc
Low	$\mathrm{V}_{\mathrm{DD}}-10$	-	$\mathrm{V}_{\mathrm{DD}}-5$	Vdc

$\mathbf{V}_{\mathbf{C} 1}$	$\mathbf{V}_{\mathbf{C} 2}$	RFC $-\mathbf{R F} 1$	RFC $-\mathbf{R F} 2$
High	Low	Insertion Loss	Isolation
Low	High	Isolation	Insertion Loss

Table 1. Logic Levels

Note: Decoupling capacitors on pins 5, 6 and 8 must be as close as possible to the pins.
Figure 1. 300 MHz to 1600 MHz Test Circuit Configuration

Note: Decoupling capacitors on pins 5, 6 and 8 must be as close as possible to the pins.
Figure 2. 1600 MHz to $\mathbf{2 0 0 0}$ MHz Test Circuit Configuration

TYPICAL CHARACTERISTICS

Figure 3. Insertion Loss at 0.1 dB Compression versus Supply Voltage

Figure 5. Input Power at 0.1 dB Compression versus Supply Voltage

Figure 7. Dissipated Power at 0.1 dB Compression versus Supply Voltage

Figure 4. Isolation at 0.1 dB Compression versus Supply Voltage

Figure 6. Output Power at 0.1 dB Compression versus Supply Voltage

Figure 8. Supply Current at 0.1 dB Compression versus Supply Voltage

TYPICAL CHARACTERISTICS

Figure 9. Control Current at Vc Pins at 0.1 dB Compression versus Supply Voltage

Figure 11. Isolation at 0.1 dB Compression versus Supply Voltage

Figure 13. Output Power at 0.1 dB Compression versus Supply Voltage

Figure 10. Insertion Loss at 0.1 dB Compression versus Supply Voltage

Figure 12. Input Power at 0.1 dB Compression versus Supply Voltage

Figure 14. Dissipated Power at 0.1 dB Compression versus Supply Voltage

Figure 15. Insertion Loss versus Frequency

Figure 16. Input Return Loss versus Frequency

APPLICATIONS INFORMATION

DESIGN INFORMATION

The MRFIC0903 SPDT antenna switch was designed for low cost, flexibility and ease of use. This is accomplished by its internal topology that allows control of the switch through its TTL/CMOS compatible (0 to $V_{D D}$) control pins. Operating on a single positive supply, the switch was designed for a minimum supply voltage, minimum power consumption and low current TTL/CMOS compatible control signals.

THEORY OF OPERATION

The MRFIC0903 can be used as a transmit and receive or antenna diversity switch in the frequency range from 100 MHz to 2 GHz with incident power levels as high as 4 watts.

The frequency behavior can be optimized by resonating the DC blocking capacitor's position and value with the parasitic inductance of the package lead. Operation from 300 MHz to 1.6 GHz can be optimized with a high Q 100 pF blocking capacitor. For the higher frequency band from 1.6 GHz to 2.0 GHz , a 8.2 pF capacitor is suggested. Further improvements can be achieved by resonating the inductance of $\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{C} 1}$, and $\mathrm{V}_{\mathrm{C} 2}$ pins with the appropriate capacitor values.
The power handling capability and linearity of the MRFIC0903 is dependent only on the supply voltage. With a 3 V supply, the device handles 1.25 W (1.6 W PEP) of incident power while maintaining good linearity and low harmonic distortion. The power transmitting capability increases to 3 W of incident power with a 5 V supply and up to 4 W with a 7.5 V supply.

Due to the device's inherently low harmonic distortion, the switch requires little harmonic filtering at its outputs. It also has a high reverse third-order intercept point for use in nonTDMA antenna diversity applications (analog cellular systems).

BIASING CONSIDERATIONS

The MRFIC0903 is based on a floating "cold FET" topology. With this topology, the differential voltage between $\mathrm{V}_{\mathrm{C} 1}$ and $\mathrm{V}_{\mathrm{C} 2}$ dictates the power handling capability. For example, the device's power handling capability is the same with the device biased with 5 V at $\mathrm{V}_{\mathrm{C} 1}$ and 0 V at $\mathrm{V}_{\mathrm{C} 2}$, with 0 V at $\mathrm{V}_{\mathrm{C} 1}$ and -5 V at $\mathrm{V}_{\mathrm{C} 2}$, or with 3 V at $\mathrm{V}_{\mathrm{C} 1}$ and -2 V at $\mathrm{V}_{\mathrm{C} 2}$.

POSSIBLE APPLICATIONS

The MRFIC0903 can be used in a number of cellular and cordless phone applications. The part is applicable for analog cellular phones in systems such as AMPS, TACS, NAMPS, ETACS and NMT900; for digital cellular phones in systems such as GSM, PDC, DAMPS, DCS1800, PCS and NADC; and for cordless phones in systems such as DECT, PHS, ISM, CT1 and CT2. In general it can fit into any application where high power handling capability is required for frequencies ranging from 100 MHz to 2 GHz .

EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

The MRFIC Line 900 MHz GaAs Two-Stage Driver Amplifier

The MRFIC0904 is an integrated driver amplifier designed for class A/B operation in the 800 MHz to 1 GHz frequency range. The design utilizes Motorola's Advanced GaAs FET process to yield superior performance and efficiency in a cost effective monolithic device. Off-chip output matching provides maximum flexibility in design. Applications for the MRFIC0904 include GSM, AMPS, and ISM band transmitters.

- GSM Ramping/Gain Control of 45 dB with Power Control Function (PCNTRL)
- Class 4 Pout (1 dB Gain Compression) $=26 \mathrm{dBm}$ @ 4.8 V (Typical)
- Class 4 Supply Current $(1 \mathrm{~dB})=120 \mathrm{~mA} @ 4.8 \mathrm{~V}$ (Typical)
- Class 5 Pout (1 dB Gain Compression) $=24 \mathrm{dBm} 3.6 \mathrm{~V}$ (Typical)
- Class 5 Supply Current (1 dB) $=120 \mathrm{~mA} @ 3.6 \mathrm{~V}$ (Typical)
- Low Cost Surface Mount Plastic Package
- Order MRFIC0904R2 for Tape and Reel.

R2 Suffix = 2,500 Units per 16 mm, 13 inch Reel.

- Device Marking = M0904

CASE 751B-05 (SO-16)

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Limit	Unit
Supply Voltage	V_{DD}	6.0	Vdc
	V_{SS}	-3	$\mathrm{~V}_{\mathrm{DD}}$
Power Control Voltage	PCNTRL	V_{DD}	Vdc
Enable Voltage	ENABLE	5	dBm
Input Power	$\mathrm{P}_{\text {in }}$	-35 to +85	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	T_{A}	-65 to +150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	60	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Case	θ_{JC}		

Pin Connections and Functional Block Diagram

REV 2

RECOMMENDED OPERATING RANGES ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Parameter	Symbol	Value	Unit
Supply Voltage	VDD	2.7 to 5.0	Vdc
	VSS	-2.75 to -2.25	
Bias Voltage Range	BIAS	0 to 1.0	Vdc
Power Control Voltage Range	PCNTRL	0 to 3.0	Vdc
Enable Voltage ON State	ENABLE	2.5	Vdc
Enable Voltage OFF State	ENABLE	0.5	Vdc
RF Frequency	f	800 to 1000	MHz

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V} \mathrm{SS}=-2.5 \mathrm{~V}, \mathrm{BIAS}=0.0 \mathrm{~V}, \mathrm{PCNTRL}=3.0 \mathrm{~V}\right.$, ENABLE $=3.0 \mathrm{~V}, \mathrm{P}_{\mathrm{in}}=-2 \mathrm{dBm}$, $\mathrm{f}=900 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Min	Typ	Max	Unit
Supply Current IDD ISS	-			mA
Standby Current: Off-mode (ENABLE = 0 V) IDD ISS	-	120	160	
Output Power	-		1.75	
Output Power at 1 dB Gain Compression	-	60	130	MA
Input Return Loss	22.5	24	-	
PCNTRL Current	-	24.5	-	dBm
ENABLE Current	-	14	-	dB
Gain Control Range	-	200	-	$\mu \mathrm{A}$
Enable/Control Input 3 dB Bandwidth	-	200	-	$\mu \mathrm{A}$

(1) All electrical Characteristics are measured in test circuit schematic as shown in Figure 1.

$\mathrm{C} 1-2.7 \mathrm{pF}$	$\mathrm{C} 7-1000 \mathrm{pF}$
$\mathrm{C} 2, \mathrm{C}, \mathrm{C8}-100 \mathrm{pF}$	$\mathrm{T} 1-90^{\circ} @ 900 \mathrm{MHz}, \mathrm{Z}_{0}=100 \Omega$
$\mathrm{C} 3-1 \mu \mathrm{~F}$	T2 $-9^{\circ} @ 900 \mathrm{MHz}, \mathrm{Z}_{0}=50 \Omega$
$\mathrm{C} 5, \mathrm{C} 6-10 \mathrm{pF}$	BOARD MATERIAL $=\mathrm{FR} 4$

Figure 1. Applications Circuit Configuration

TYPICAL CHARACTERISTICS

Figure 2. Output Power versus Input Power

Figure 4. Output Power versus Input Power

Figure 6. Output Power versus PCNTRL

Figure 3. Supply Current versus Input Power

Figure 5. Supply Current versus Input Power

Figure 7. Supply Current versus PCNTRL

Figure 8. Output Power versus PCNTRL

Figure 10. Quiescent Supply Current versus BIAS

Figure 9. Supply Current versus PCNTRL

Figure 11. Quiescent Supply Current versus PCNTRL

Table 1. Scattering Parameters
$(\mathrm{V} D \mathrm{DD}=3.6 \mathrm{~V}, \mathrm{~V} S=-2.5 \mathrm{~V}, \mathrm{BIAS}=0.0 \mathrm{~V}, \mathrm{PCNTRL}, \mathrm{ENABLE}=3 \mathrm{~V}, 50 \Omega$ System $)$

\mathbf{f} $\mathbf{M H z}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
500	0.922	-40.93	12.201	-76.39	0.002	72.64	0.276	166.48
550	0.887	-52.05	16.242	-98.58	0.002	62.03	0.276	169.80
600	0.826	-65.21	21.133	-116.66	0.003	44.52	0.297	175.47
650	0.698	-81.22	28.039	-140.66	0.004	26.65	0.342	173.06
700	0.419	-99.95	33.973	174.46	0.004	6.35	0.360	169.94
750	0.206	-106.43	32.195	145.72	0.006	-9.10	0.393	163.65
800	0.073	-56.19	31.685	121.12	0.006	-31.13	0.392	154.83
850	0.146	-4.45	29.419	85.45	0.006	-47.59	0.351	146.93
900	0.170	-1.59	25.996	64.50	0.006	-61.44	0.305	145.90
950	0.183	10.82	24.115	45.18	0.007	-80.54	0.276	152.91
1000	0.232	27.47	22.091	16.72	0.007	-107.22	0.287	162.87
1050	0.302	34.19	19.995	-5.08	0.007	-116.06	0.310	167.00
1100	0.395	34.85	17.411	-26.64	0.006	-125.77	0.337	170.51
1150	0.522	29.21	14.15	-52.28	0.006	-146.60	0.380	169.57
1200	0.607	23.25	11.961	-71.38	0.005	-154.46	0.403	167.34
1250	0.675	17.30	9.76	-88.04	0.005	-177.16	0.419	163.73
1300	0.743	9.17	7.951	-108.01	0.004	160.61	0.436	159.33

Table 2. Scattering Parameters
$\left(\mathrm{V} D \mathrm{DD}=4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V}, \mathrm{BIAS}=0.0 \mathrm{~V}, \mathrm{PCNTRL}, \mathrm{ENABLE}=3 \mathrm{~V}, 50 \Omega\right.$ System $)$

\mathbf{f} $\mathbf{M H z}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
500	0.910	-41.17	12.58	-78.69	0.0012	65.66	0.228	168.72
550	0.873	-51.75	17.09	-99.91	0.0024	43.49	0.232	172.87
600	0.807	-64.98	22.33	-118.28	0.0032	48.13	0.252	177.75
650	0.671	-81.03	29.24	-142.97	0.0041	17.29	0.293	174.31
700	0.409	-100.12	35.95	172.30	0.0040	-10.22	0.326	172.83
750	0.200	-104.83	34.04	143.18	0.0055	-14.65	0.349	164.57
800	0.080	-53.72	33.08	118.78	0.0056	-28.05	0.345	156.12
850	0.142	-6.52	30.64	83.58	0.0057	-45.38	0.307	147.87
900	0.165	0.32	27.22	62.36	0.0065	-62.81	0.248	146.40
850	0.187	14.68	24.95	41.95	0.0066	-86.95	0.226	146.72
1000	0.252	28.28	22.30	14.13	0.0062	-100.71	0.257	167.95
1050	0.323	32.92	20.06	-7.52	0.0057	-113.16	0.279	172.05
1100	0.409	32.35	17.37	-28.14	0.0049	-121.71	0.310	173.62
1150	0.527	26.77	14.03	-53.24	0.0051	-152.49	0.349	171.86
1200	0.606	21.18	11.89	-71.66	0.0051	-159.64	0.365	169.36
1250	0.669	15.59	9.74	-87.41	0.0043	-155.55	0.381	163.46
1300	0.735	8.10	7.96	-107.51	0.0039	171.99	0.397	161.81

APPLICATIONS INFORMATION

DESIGN PHILOSOPHY

The MRFIC0904 is a versatile driver amplifier designed to operate in the 800 MHz to 1 GHz frequency range for cellular phone and Industrial, Scientific, and Medical (ISM) applications. The amplifier is designed using depletion mode GaAs MESFETs to perform at high efficiency at battery voltages of 3.6 and 4.8 Volts. While designed as a driver amplifier for a discrete transistor final stage, the device can act as a power amplifier for lower power systems such as ISM applications in telemetry and cordless telephones.

THEORY OF OPERATION

The MRFIC0904 has various control features making it versatile and applicable to both linear and saturated applications. The BIAS pin allows the setting of drain quiescent current. For non-linear applications such as GSM cellular, the pin can be grounded. For better gain and linearity, a positive voltage up to about 0.6 Volts can be applied. The PCNTRL pin allows
the control of the output power over a wide dynamic range with low AM to AM distortion such as is required in GSM and other cellular systems. As shown in Figures 6 through 9, PCNTRL affects both the output power and the drain current thus maintaining good efficiency over a range of output power. The ENABLE pin is used to control the on-off state of the device and is useful as a reduced current standby control. A logic high signal of more than 2.5 Volts turns the device on. A logic low signal of less than 0.5 Volts reduces total supply current to typically less than $200 \mu \mathrm{~A}$.

EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

The MRFIC Line 900 MHz GaAs Integrated Power Amplifier

Designed primarily for use in high efficiency Analog Cellular applications, the MRFIC0912 is a two-stage power amplifier in Motorola's proprietary Power Flat Pack 16-lead package. This integrated circuit requires minimal off-chip matching while allowing for the maximum in flexibility in optimizing gain and efficiency. The design employs Motorola's planar, self-aligned GaAs MESFET IC process to give the highest efficiency possible.

- Usable Frequency Range $=800-1000 \mathrm{MHz}$, Specified for $824-905 \mathrm{MHz}$
- 30.8 dBm Minimum Output Power
- 470 mA Maximum Supply Current at 30.8 dBm Output
- 23.8 dB Minimum Gain
- Simple Off-chip Matching for Maximum Power/Efficiency Flexibility
- 4.6 Volt Supply
- $45 \mathrm{~dB} /$ Volt Typical Power Output Control
- Order MRFIC0912R2 for Tape and Reel Option. R2 Suffix = 1,500 Units per $16 \mathrm{~mm}, 13$ inch Reel.
- Device Marking = M0912

MRFIC0912

CASE 978-02 (PFP-16)

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Ratings	Symbol	Limit	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}$	8	Vdc
RF Input Power	P_{RF}	20	dBm
Gate Voltage	$\mathrm{V}_{\mathrm{G} 1}, \mathrm{~V}_{\mathrm{G} 2}, \mathrm{~V}_{\mathrm{GG}}$	-5	Vdc
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Case Temperature	T_{C}	-35 to +100	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	18	${ }^{\circ} \mathrm{C} / \mathrm{W}$

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
RF Frequency	f_{RF}	$824-905$	MHz
Supply Voltage	$\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}$	$4.0-6.0$	Vdc
Gate Voltage	$\mathrm{V}_{\mathrm{G} 1}, \mathrm{~V}_{\mathrm{G} 2}$	-2.3 to -1.5	Vdc

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}=4.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{RF}}=840 \mathrm{MHz}, \mathrm{P}_{\mathrm{in}}=7 \mathrm{dBm}, \mathrm{V}_{\mathrm{GG}}\right.$ set for $\mathrm{I}_{\mathrm{D} 2 \mathrm{Q}}=200 \mathrm{~mA}$, Tested in Circuit Shown in Figure 1)

Characteristic	Min	Typ	Max	Unit
RF Output Power	30.8	31.2	-	dBm
Power Slump ($\left.\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}=4.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=100^{\circ} \mathrm{C}\right)$	28.5	-	-	dBm
Load Mismatch Survival $\left(\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}=7 \mathrm{~V}\right.$, Load $\mathrm{VSWR}=10: 1$, all phases, 10 sec)	No Degradation			
Spurious Output $\left(\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}=0\right.$ to $7 \mathrm{~V}, \mathrm{P}_{\text {in }}=5$ to 9 dBm , Load VSWR = 10:1)	-	-	-60	dBc
Input Return Loss	-	10	-	dB
```Harmonic Output ( \(\mathrm{P}_{\text {out }}=30.8 \mathrm{dBm}\) ) \(2 f_{0}\) \(3 f_{0}\) \(4 f_{0}\)```	-	-	$\begin{aligned} & -25 \\ & -40 \\ & -40 \end{aligned}$	dBc
Noise Power (VDD $=0$ to $7 \mathrm{~V}, 45 \mathrm{MHz}$ Above fRF at 30 kHz BW )	-	-	-93	dBm
Maximum Power Control Voltage Slope (Change in $P_{\text {out }}$ for Change on $\mathrm{V}_{\mathrm{D} 1}$ )	-	45	-	dB/V
Total Supply Current ( $\mathrm{V}_{\mathrm{D} 1}$ set for $\mathrm{P}_{\text {out }}=30.8 \mathrm{dBm}$ )	-	430	470	mA
$\mathrm{V}_{\mathrm{GG}}$ Required for ID2Q $=200 \mathrm{~mA}$	-2.3	-2.0	-1.7	Vdc
Gate Current during RF Operation	-2	-	2	mA

## DESIGN AND APPLICATIONS INFORMATION

The MRFIC0912 has been designed for high efficiency 900 MHz applications such as analog cellular and Industrial, Medical and Scientific (ISM) equipment. The two stage MESFET design utilizes Motorola's planar refractory gate process to allow high performance GaAs to be applied to consumer applications. The proprietary PFP-16 package assures good grounding and low thermal resistance.
As shown in Figure 1, the gate voltage pins can be ganged together and one voltage applied to both gates to set the quiescent operating current. Alternatively, $\mathrm{V}_{\mathrm{G} 1}$ and $\mathrm{V}_{\mathrm{G} 2}$ can be set separately. $\mathrm{V}_{\mathrm{D} 1}$ can be used as power control with a 45 dB per volt sensitivity. The placement of C 3 in the $\mathrm{V}_{\mathrm{D} 1}$ supply line can be varied to optimize RF performance since T2 is part of a shunt $L$ matching section. On the output, pins

11, 12 and 13, the placement of C11 is adjusted for best RF performance.

Layout is important for amplifier stability and RF performance. Ground vias must be located as close to circuit ground connections as possible. Power supply bypassing C3, C6, C9, and C10 must be included to reduce out-ofband gain and prevent spurious output.

## Evaluation Boards

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.


Figure 1. Applications Circuit Configuration

TYPICAL CHARACTERISTICS


Figure 2. Output Power versus Input Power


Figure 3. Output Power versus Input Power

TYPICAL CHARACTERISTICS


Figure 4. Output Power versus Control Voltage


Figure 6. Power Added Efficiency versus Input Power


Figure 8. Power Added Efficiency versus Control Voltage


Figure 5. Output Power versus Control Voltage


Figure 7. Power Added Efficiency versus Input Power


Figure 9. Power Added Efficiency versus Control Voltage

TYPICAL CHARACTERISTICS


Figure 10. Output Power versus Frequency


Figure 12. Power Added Efficiency versus Frequency


Figure 11. Output Power versus Frequency


Figure 13. Power Added Efficiency versus Frequency


Figure 14. Drain Current versus Control Voltage

## The MRFIC Line $\mathbf{9 0 0} \mathbf{~ M H z}$ GaAs Integrated Power Amplifier

This integrated circuit is intended for GSM class IV handsets. The device is specified for 2.8 watts output power and $48 \%$ minimum power added efficiency under GSM signal conditions at 4.8 Volt supply voltage. To achieve this superior performance, Motorola's planar GaAs MESFET process is employed. The device is packaged in the PFP-16 Power Flat Package which gives excellent thermal performance through a solderable backside contact.

- Usable Frequency Range 800 to 1000 MHz
- Typical Output Power:
36.0 dBm @ 5.8 Volts
35.0 dBm @ 4.8 Volts
31.5 dBm @ 3.6 Volts
- $48 \%$ Minimum Power Added Efficiency
- Low Parasitic, High Thermal Dissipation Package
- Order MRFIC0913R2 for Tape and Reel Option.

R2 Suffix = 1,500 Units per $16 \mathrm{~mm}, 13$ inch Reel.

- Device Marking = M0913

ABSOLUTE MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}$	9	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	15	dBm
Gate Voltage	$\mathrm{V}_{\text {SS }}$	-6	Vdc
Ambient Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JCC}}$	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$



Pin Connections and Functional Block Diagram

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}$	2.7 to 7.5	Vdc
Gate Voltage	$\mathrm{V}_{\mathrm{SS}}$	-5 to -3	Vdc
RF Frequency Range	$\mathrm{f}_{\mathrm{RF}}$	800 to 1000	MHz
RF Input Power	P $_{\mathrm{RF}}$	6 to 13	dBm

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}=4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4 \mathrm{~V}, \mathrm{P}_{\mathrm{in}}=10 \mathrm{dBm}\right.$, Peak Measurement at $12.5 \%$ Duty Cycle, 4.6 ms Period, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted. Measured in Reference Circuit Shown in Figure 1.)

Characteristic	Min	Typ	Max	Unit
Frequency Range	880	-	915	MHz
Output Power	34.5	35	-	dBm
Power Added Efficiency	48	-	-	\%
Input VSWR	-	2:1	-	VSWR
$\begin{aligned} & \text { Harmonic Output } \\ & \text { 2nd } \\ & \text { 3rd } \end{aligned}$	-		$\begin{aligned} & -30 \\ & -35 \end{aligned}$	dBc
Output Power at Low voltage ( $\left.\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}=4.0 \mathrm{~V}\right)$	33.3	33.5	-	dBm
Output Power, Isolation ( $\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}=0 \mathrm{~V}$ )	-	-20	-15	dBm
Noise Power in 100 kHz , 925 to 960 MHz	-	-	-90	dBm
Stability - Spurious Output ( $\mathrm{P}_{\text {in }}=10$ to $13 \mathrm{dBm}, \mathrm{P}_{\text {out }}=5$ to 35 dBm , Load VSWR $=6: 1$ at any Phase Angle, Source VSWR $=3: 1$, at any Phase Angle, $\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}$ adjusted for Specified $\mathrm{P}_{\text {out }}$ )	-	-	-60	dBc
Load Mismatch stress ( $\mathrm{P}_{\text {in }}=10$ to $13 \mathrm{dBm}, \mathrm{P}_{\text {out }}=5$ to 35 dBm , Load VSWR $=10: 1$ at any Phase Angle, $\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}$ Adjusted for Specified $\mathrm{P}_{\text {out }}$ )	No Degradation in Output Power after Returning to Standard Conditions			
$3 \mathrm{~dB} \mathrm{~V}_{\mathrm{DD}}$ Bandwidth ( $\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}=0$ to 6 V )	1	-	-	MHz
Negative Supply Current	-	-	1.25	mA


C1, C3, C10	47 pF, ATC
C2, C9	47 nF, Vitramon
C5	10 pF, ATC
C6	22 nF, Vitramon
C8	6.8 pF, ATC

L1
L2
R1 10 Turn MicroSpring,
R3 $1.8 \mathrm{k} \Omega$
R4 $2.7 \mathrm{k} \Omega$
T1 $\quad 5 \mathrm{~mm} 30 \Omega$ Microstrip Line
$330 \Omega$
BOARD MATERIAL Glass/Epoxy, $\varepsilon_{r}=4.45$

Figure 1. 900 MHz Reference Circuit


Note: Use of a Schottky diode such as MMBD701LT1 for CR1 is mandatory below 3.6 V. A general purpose silicon diode can be used above 3.6 V .

Figure 2. GSM Application Circuit Configuration with Drain Switch and MC33169 GaAs Power Amplifier Support IC


Figure 3. Output Power versus Frequency


Figure 5. Output Power versus Frequency


Figure 7. Output Power versus Frequency


Figure 4. Power Added Efficiency versus Frequency


Figure 6. Power Added Efficiency versus Frequency


Figure 8. Input Return Loss versus Frequency

## TYPICAL CHARACTERISTICS



Figure 9. Output Power versus Drain Voltage


Figure 11. Output Power versus Input Power


Figure 10. Power Added Efficiency versus Drain Voltage


Figure 12. Power Added Efficiency versus Input Power

f   (MHz)	Zin   Ohms		ZOL   Ohms	
	$\mathbf{R}$	$\mathbf{j X}$	$\mathbf{R}$	$\mathbf{j X}$
880	13.65	-44.05	3.15	5.06
885	13.64	-44.74	3.13	4.97
890	13.65	-45.44	3.10	4.89
895	13.64	-46.14	3.08	4.80
900	13.64	-46.84	3.06	4.71
905	13.65	-47.55	3.04	4.63
910	13.66	-48.27	3.02	4.54
915	13.66	-49.00	3.00	4.45

Table 1. Device Impedances Derived from Circuit Characterization

## APPLICATIONS INFORMATION

## Design Philosophy

The MRFIC0913 is a two-stage Integrated Power Amplifier designed for use in cellular phones, especially for those used in GSM Class IV, 4.8 V operation. With matching circuit modifications, it is also applicable for use in GSM Class IV 6 V and Class $V 3.6 \mathrm{~V}$ equipment. Due to the fact that the input, output and some of the interstage matching is accomplished off chip, the device can be tuned to operate anywhere within the 800 to 1000 MHz frequency range. Typical performance at different battery voltages is:

- $\quad 36.0 \mathrm{dBm}$ @ 5.8 V
- $\quad 35.0 \mathrm{dBm}$ @ 4.8 V
- $\quad 31.5 \mathrm{dBm}$ @ 3.6 V

This capability makes the MRFIC0913 suitable for portable cellular applications such as:

- 6 and 4.8 V GSM Class IV
- $\quad 3.6 \mathrm{~V}$ GSM Class V
- $\quad 3.6 \mathrm{~V}$, 1.2 W Analog Cellular


## RF Circuit Considerations

The MRFIC0913 can be tuned by changing the values and/ or positions of the appropriate external components. Refer to Figure 2, a typical GSM Class IV applications circuit.

The input match is a shunt-C, series-L, low-pass structure and can be retuned as desired with the only limitation being the on-chip 12 pF blocking capacitor. For saturated applications such as GSM and analog cellular, the input match should be optimized at the rated RF input power.

Interstage matching can be optimized by changing the value and/or position of the decoupling capacitor on the VD1 supply line. Moving the capacitor closer to the device or reducing the value increases the frequency of resonance with the inductance of the device's wirebonds and leadframe pin.

Output matching is accomplished with a one-stage lowpass network as a compromise between bandwidth and harmonic rejection. Implementation is through chip capacitors mounted along a 30 or $50 \Omega$ microstrip transmission line. Values and positions are chosen to present a $3 \Omega$ loadline to the device while conjugating the device output parasitics. The network must also properly terminate the second and third harmonics to optimize efficiency and reduce harmonic output. When low-Q commercial chip capacitors are used for the shunt capacitors, loss can be reduced by mounting two capacitors in parallel, as shown in Figure 2, to achieve the total value needed

Loss in circuit traces must also be considered. The output transmission line and the bias supply lines should be at least 0.6 mm in width to accommodate the peak circulating currents which can be as high as 2 amperes. The bias supply line which supplies the output should include an RF choke of at least 8 nH , surface mount solenoid inductors or equivalent length of microstrip lines. Discrete inductors will usually give better efficiency and conserve board space.

The DC blocking capacitor required at the output of the device is best mounted at the $50 \Omega$ impedance point in the circuit where the RF current is at a minimum and the capacitor loss will have less effect.

## Biasing Considerations

Gate bias is supplied to each stage separately through resistive division of the $\mathrm{V}_{\mathrm{SS}}$ voltage. The top of each divider is brought out through pins 12 and $13\left(\mathrm{~V}_{\mathrm{G} 2}\right.$ and $\mathrm{V}_{\mathrm{G} 1}$ respectively) allowing
gate biasing through use of external resistors or positive voltages. This allows setting the quiescent current of each stage separately.

For applications where the amplifier is operated close to saturation, such as GSM and analog cellular, the gate bias can be set with resistors. Variations in process and temperature will not affect amplifier performance significantly in these applications. The values shown in the Figure 1 will set quiescent currents of 80 to 160 mA for the first stage and 400 to 800 mA for the second stage.

For linear modes of operation which are required for PDC, DAMPS and CDMA, the quiescent current must be more carefully controlled. For these applications, the $\mathrm{V}_{\mathrm{G}}$ pins can be referenced to some tunable voltage which is set at the time of radio manufacturing. Less than 1.25 mA is required in the divider network so a DAC can be used as the voltage source. Typical settings for 6 V linear operation are $100 \mathrm{~mA} \pm 5 \%$ for the first stage, and $500 \mathrm{~mA} \pm 5 \%$ for the second stage.

## Power Control Using the MC33169

The MC33169 is a dedicated GaAs power amplifier support IC which provides the - 4 V required for $\mathrm{V}_{\mathrm{SS}}$, an $\mathrm{N}-\mathrm{MOS}$ drain switch interface and driver and power supply sequencing. The MC33169 can be used for power control in applications where the amplifier is operated in saturation since the output power in non-linear operation is proportional to $\mathrm{V}_{\mathrm{D}}{ }^{2}$. This provides a very linear and repeatable power control transfer function. This technique can be used open-loop to achieve 20-25 dB dynamic range over process and temperature variation. With careful design and selection of calibration points, this technique can be used for GSM phase II control where 29 dB dynamic range is required, eliminating the need for the complexity and cost of closed-loop control.

The transmit waveform ramping function required for systems such as GSM can be implemented with a simple Sallen and Key filter on the MC33169 control loop. The amplifier is then ramped on as the $\mathrm{V}_{\text {RAMP }}$ pin is taken from 0 V to 3 V . To implement the different power steps required for GSM, the $V_{\text {RAMP }}$ pin is ramped between 0 V and the appropriate voltage between 0 V and 3 V for the desired output power.

For closed-loop configurations using the MC33169, MMSF4N01HD N-MOS switch and the MRFIC0913 provide a typical 1 MHz 3 dB loop bandwidth. The STANDBY pin must be enabled ( 3 V ) at least $300 \mu \mathrm{~s}$ before the VRAMP pin goes high and disabled ( 0 V ) at least $20 \mu$ s before the $\mathrm{V}_{\text {RAMP }}$ pin goes low. This STANDBY function allows for the enabling of the MC33169 one burst before the active burst thus reducing power consumption.

## Conclusion

The MRFIC0913 offers the flexibility in matching circuitry and gate biasing required for portable cellular applications. Together with the MC33169 support IC, the device offers an efficient system solution for TDMA applications such as GSM where saturated amplifier operation is used.

## Evaluation Boards

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

## The MRFIC Line General Purpose RF Cascode Amplifier

The MRFIC0916 is a cost-effective, high isolation cascode silicon monolithic amplifier in the industry standard SOT-143 surface mount package designed for general purpose RF applications. On chip bias circuitry sets the bias point while matching is accomplished off chip affording the maximum in application flexibility.

- Usable Frequency Range = 100 to 2500 MHz
- 18.5 dB typical gain at $850 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=2.7$ Volts
- 2.3 dBm typical Output Power at 1 dB Gain Compression at $850 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=2.7$ Volts
- 44 dB Typical Reverse Isolation at 850 MHz
- 5.6 mA Max Bias Current at $\mathrm{V}_{\mathrm{CC}}=2.7$ Volts
- 2.7 to 5 Volt Supply
- Available in Tape and Reel by Adding T1 Suffix to Part Number. T1 Suffix $=3,000$ Units per $8 \mathrm{~mm}, 7$ inch Reel.
- Device Marking = 16


SILICON GENERAL PURPOSE RF CASCODE AMPLIFIER


CASE 318A-05
(SOT-143)

MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Limit	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	6	Vdc
RF Input Power	$\mathrm{P}_{\mathrm{RF}}$	10	dBm
Power Dissipation	$\mathrm{P}_{\mathrm{DIS}}$	100	mW
Supply Current	$\mathrm{I}_{\mathrm{CC}}$	20	mA
Thermal Resistance, Junction to Case	$\mathrm{R}_{\text {日JC }}$	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Case Temperature	$\mathrm{T}_{\mathrm{C}}$	-35 to +100	${ }^{\circ} \mathrm{C}$



Pin Connections and Functional Block Diagram

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
RF Frequency	$\mathrm{f}_{\mathrm{RF}}$	100 to 2500	MHz
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	2.7 to 5	Vdc

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{RF}}=850 \mathrm{MHz}\right.$, Tested in Circuit Shown in Figure 1)

Characteristic	Min	Typ	Max	Unit
Small Signal Gain	16.5	18.5	20.5	dB
Noise Figure	-	1.9	-	dB
Power Output at 1dB Gain Compression	0	2.3	-	dBm
Output 3rd Order Intercept Point	-	11	-	dBm
Reverse Isolation	-	44	-	dB
Supply Current	3.8	4.7	5.6	mA



C1 - 100 pF
C2 - $0.01 \mu \mathrm{~F}$
C3 - 1.4 pF
C4 - 100 pF
L1 - 8.2 nH
L2 - 6.8 nH

Figure 1. 850 MHz Applications Circuit Configuration


Figure 2. GU max versus Frequency


Figure 3. Output Power versus Input Power


Figure 4. Supply Current versus Input Power

$\mathbf{f}$   $\mathbf{( M H z )}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \boldsymbol{\phi}$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \boldsymbol{\phi}$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \boldsymbol{\phi}$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \boldsymbol{\phi}$
100	0.806	-17.01	12.03	162.32	0.001	-0.14	0.956	-4.69
200	0.765	-33.28	11.18	145.74	0.001	71.58	0.948	-8.69
300	0.713	-47.99	10.18	130.99	0.002	69.67	0.945	-13.23
400	0.652	-61.35	9.06	118.01	0.003	64.61	0.930	-17.35
500	0.574	-70.94	8.06	106.50	0.003	62.93	0.904	-20.85
600	0.533	-81.00	7.09	96.50	0.003	61.94	0.891	-24.71
700	0.493	-89.33	6.36	87.60	0.003	63.16	0.875	-28.18
800	0.469	-97.65	5.62	79.57	0.003	66.33	0.857	-31.89
900	0.432	-103.64	5.16	72.38	0.002	80.79	0.845	-35.21
1000	0.409	-110.68	4.70	65.39	0.002	100.33	0.831	-38.86
1100	0.396	-116.17	4.29	58.75	0.002	127.72	0.815	-42.52
1200	0.383	-122.20	3.91	52.55	0.003	152.57	0.799	-45.77
1300	0.373	-126.00	3.66	46.34	0.004	164.39	0.789	-49.49
1400	0.369	-131.29	3.38	40.61	0.006	169.63	0.776	-53.23
1500	0.366	-134.46	3.14	35.29	0.008	172.81	0.762	-56.86
1600	0.366	-140.07	2.93	29.63	0.011	172.47	0.751	-60.74
1700	0.364	-143.07	2.75	23.86	0.013	172.79	0.738	-64.66
1800	0.368	-147.48	2.58	18.42	0.016	171.54	0.727	-68.29
1900	0.377	-148.91	2.42	13.15	0.020	170.15	0.719	-72.29
2000	0.381	-153.42	2.27	7.58	0.023	167.89	0.707	-76.58
2100	0.394	-155.23	2.15	2.46	0.027	165.86	0.695	-80.50
2200	0.396	-158.91	2.03	-3.00	0.032	163.46	0.685	-84.85
2300	0.416	-160.43	1.90	-8.32	0.037	161.00	0.672	-88.93
2400	0.424	-162.98	1.81	-13.30	0.042	158.00	0.662	-93.38
2500	0.434	-166.35	1.68	-18.45	0.047	155.58	0.654	-97.89

Table 1. Scattering Parameters ( $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, 50 \Omega$ System)

$\begin{gathered} \mathbf{f} \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$				
	\|S11		$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	\|S12		$\angle \phi$	\|S22		$\angle \phi$
100	0.744	-17.43	16.979	160.38	0.001	-2.89	0.955	-4.40			
200	0.691	-33.58	15.442	142.46	0.001	83.36	0.950	-8.33			
300	0.627	-47.53	13.633	127.28	0.002	76.39	0.946	-12.79			
400	0.558	-59.50	11.851	114.52	0.002	70.12	0.931	-16.75			
500	0.482	-67.02	10.284	103.51	0.002	67.02	0.907	-20.11			
600	0.440	-75.50	8.957	94.12	0.002	66.00	0.895	-23.85			
700	0.401	-81.87	7.930	85.95	0.002	68.71	0.880	-27.22			
800	0.377	-88.89	7.003	78.57	0.002	73.50	0.863	-30.83			
900	0.348	-93.11	6.348	71.96	0.002	90.55	0.852	-34.06			
1000	0.328	-98.88	5.747	65.59	0.002	113.74	0.838	-37.62			
1100	0.317	-103.27	5.223	59.57	0.002	146.45	0.822	-41.18			
1200	0.306	-108.54	4.765	53.98	0.003	165.49	0.808	-44.34			
1300	0.301	-111.30	4.425	48.39	0.004	175.51	0.798	-47.95			
1400	0.297	-116.30	4.082	43.18	0.006	177.46	0.785	-51.59			
1500	0.298	-118.89	3.790	38.32	0.008	179.45	0.771	-55.11			
1600	0.298	-124.58	3.531	33.13	0.011	178.69	0.760	-58.88			
1700	0.301	-127.19	3.300	28.02	0.014	178.02	0.748	-62.66			
1800	0.305	-131.73	3.093	23.10	0.016	176.25	0.737	-66.16			
1900	0.319	-133.16	2.901	18.34	0.020	174.44	0.729	-70.03			
2000	0.324	-137.94	2.724	13.33	0.023	172.03	0.717	-74.16			
2100	0.339	-140.09	2.575	8.67	0.027	169.82	0.706	-77.92			
2200	0.342	-143.98	2.434	3.79	0.032	166.99	0.696	-82.07			
2300	0.367	-146.00	2.278	-0.98	0.036	164.37	0.684	-86.04			
2400	0.375	-148.75	2.166	-5.56	0.042	161.35	0.674	-90.25			
2500	0.387	-152.75	2.020	-10.12	0.046	158.69	0.666	-94.64			

Table 2. Scattering Parameters ( $\mathrm{V}_{\mathrm{CC}}=4 \mathrm{~V}, 50 \Omega$ System)

$\mathbf{f}$   $\mathbf{( M H z )}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \boldsymbol{\phi}$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \boldsymbol{\phi}$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \boldsymbol{\phi}$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \boldsymbol{\phi}$
100	0.707	-17.56	20.04	159.03	0.001	-7.95	0.954	-4.25
200	0.648	-33.40	17.93	140.29	0.001	86.24	0.950	-8.15
300	0.579	-46.60	15.53	124.94	0.002	78.79	0.946	-12.54
400	0.509	-57.44	13.31	112.38	0.002	72.27	0.931	-16.42
500	0.438	-63.51	11.40	101.70	0.002	69.34	0.908	-19.68
600	0.397	-70.90	9.87	92.70	0.002	69.55	0.896	-23.35
700	0.363	-76.05	8.69	84.92	0.002	71.59	0.882	-26.64
800	0.340	-82.18	7.67	77.89	0.002	79.44	0.865	-30.20
900	0.316	-85.44	6.91	71.60	0.002	95.59	0.855	-33.36
1000	0.298	-90.52	6.24	65.56	0.001	121.55	0.841	-36.86
1100	0.290	-94.44	5.67	59.82	0.002	152.13	0.826	-40.37
1200	0.280	-99.17	5.17	54.53	0.003	169.84	0.811	-43.48
1300	0.277	-101.65	4.79	49.25	0.005	177.80	0.802	-47.02
1400	0.274	-106.49	4.42	44.27	0.006	-179.84	0.790	-50.59
1500	0.278	-109.07	4.10	39.65	0.008	-179.19	0.776	-54.04
1600	0.276	-114.88	3.82	34.68	0.011	-179.68	0.765	-57.73
1700	0.281	-117.46	3.56	29.88	0.013	179.47	0.753	-61.43
1800	0.285	-122.11	3.34	25.21	0.016	177.73	0.742	-64.85
1900	0.300	-123.94	3.14	20.70	0.019	175.80	0.734	-68.66
2000	0.305	-128.93	2.95	15.91	0.023	173.47	0.723	-72.71
2100	0.322	-131.48	2.78	11.50	0.027	171.04	0.712	-76.37
2200	0.324	-135.50	2.63	6.84	0.031	168.25	0.703	-80.42
2300	0.351	-138.04	2.47	2.33	0.036	165.47	0.691	-84.31
2400	0.358	-140.88	2.34	-2.05	0.041	162.71	0.681	-88.42
2500	0.371	-145.28	2.19	-6.40	0.046	160.19	0.674	-92.74

Table 3. Scattering Parameters ( $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, 50 \Omega$ System)

## The MRFIC Line 900 MHz GaAs Integrated Power Amplifier

This integrated circuit is intended for GSM class IV handsets. The device is specified for 2.5 Watts output power and $43 \%$ minimum power added efficiency under GSM signal conditions at 3.6 Volt supply voltage. To achieve this superior performance, Motorola's planar GaAs MESFET process is employed. The device is packaged in the PFP-16 Power Flat Pack package which gives excellent thermal performance through a solderable backside contact.

- Usable Frequency Range 800 to 1000 MHz
- Typical Output Power: 34.5 dBm @ 3.6 Volts
- $43 \%$ Minimum Power Added Efficiency
- Low Parasitic, High Thermal Dissipation Package
- Order MRFIC0917R2 for Tape and Reel.

R2 Suffix = 1,500 Units per $16 \mathrm{~mm}, 13$ inch Reel.

- Device Marking = M0917


## MRFIC0917

900 MHz
GSM CELLULAR
INTEGRATED POWER AMPLIFIER
GaAs MONOLITHIC
INTEGRATED CIRCUIT


ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Supply Voltage, Normal Conditions	$\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}$	6	Vdc
Supply Voltage under Load Stress	$\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}$	4.5	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	15	dBm
Gate Voltage	$\mathrm{V}_{\mathrm{SS}}$	-6	Vdc
Ambient Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JJC}}$	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$



Pin Connections and Functional Block Diagram

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}$	2.7 to 5.5	Vdc
Gate Voltage	$\mathrm{V}_{\mathrm{SS}}$	-5 to -3	Vdc
RF Frequency Range	$\mathrm{f}_{\mathrm{RF}}$	800 to 1000	MHz
RF Input Power	P $_{\mathrm{RF}}$	6 to 13	dBm

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4 \mathrm{~V}, \mathrm{P}_{\mathrm{in}}=12 \mathrm{dBm}\right.$, Peak Measurement at $12.5 \%$ Duty Cycle, 4.6 ms Period, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted. Measured in Circuit Configuration Shown in Figure 1.)

Characteristic	Min	Typ	Max	Unit
Frequency Range	880	-	915	MHz
Output Power	34	34.5	-	dBm
Power Added Efficiency	43	-	-	\%
Input VSWR	-	2:1	-	VSWR
Harmonic Output 2nd   3rd	-	-	$\begin{aligned} & -30 \\ & -35 \end{aligned}$	dBc
Output Power at low voltage ( $\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}=3.0 \mathrm{~V}$ )	32.5	33	-	dBm
Output Power, Isolation ( $\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}=0 \mathrm{~V}$ )	-	-20	-15	dBm
Noise Power in 100 kHz , 925 to 960 MHz	-	-	-90	dBm
Stability - Spurious Output ( $\mathrm{P}_{\text {in }}=10$ to 13 dBm , $\mathrm{P}_{\text {out }}=5$ to 34.5 dBm , Load VSWR $=6: 1$ at any Phase Angle, Source VSWR $=3: 1$, at any Phase Angle, $\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}$ Adjusted for Specified $\mathrm{P}_{\text {out }}$ )	-	-	-60	dBc
Load Mismatch Stress ( $\mathrm{P}_{\text {in }}=10$ to 13 dBm , $\mathrm{P}_{\text {out }}=5$ to 34.5 dBm , Load VSWR $=$ $10: 1$ at any Phase Angle, $V_{D 1}, V_{D 2}$ Adjusted for Specified Pout)	No Degradation in Output Power after Returning to Standard Conditions			
$3 \mathrm{~dB} \mathrm{~V}_{\mathrm{DD}}$ Bandwidth ( $\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}=0$ to 4.5 V )	1	-	-	MHz
Negative Supply Current	-	-	1	mA



C1, C3, C10 33 pF	C8	6.8 pF	R1, R3 $330 \Omega$	
C2, C6, C9 33 nF	L1	5.6 nH	R4	$1 \mathrm{k} \Omega$
C4	4.7 pF	L2	10 Turn MicroSpring,	T1
C5	10 pF		Coilcraft $1606-10$ or	T2
			$18 \mathrm{~mm} 50 \Omega$ MICROSTRIP	BICROSTRIP
				BOARD MATERIAL FR4

Figure 1. 900 MHz Reference Circuit


Figure 2. GSM Application Circuit Configuration with Drain Switch and MC33169 GaAs Power Amplifier Support IC

TYPICAL CHARACTERISTICS


Figure 3. Output Power versus Frequency


Figure 5. Output Power versus Frequency


Figure 7. Output Power versus Frequency


Figure 4. Power Added Efficiency versus Frequency


Figure 6. Power Added Efficiency versus Frequency


Figure 8. Output Power versus Drain Voltage


Figure 9. Power Added Efficiency versus Drain Voltage


Figure 10. Output Power versus Input Power


Figure 11. Power Added Efficiency versus Input Power

$\mathbf{f}$	$\mathbf{Z}_{\mathbf{i n}}(\Omega)$		$\mathbf{Z}_{\mathbf{O L}}{ }^{*}(\Omega)$	
$\mathbf{M H z}$	$\mathbf{R}$	$\mathbf{j X}$	$\mathbf{R}$	$\mathbf{j X}$
880	20.2	8.63	2.49	7.04
885	20.5	8.57	2.48	6.98
890	20.8	8.5	2.45	6.91
895	21.2	8.42	2.43	6.81
900	21.5	8.36	2.42	6.74
905	21.9	8.3	2.4	6.64
910	22.3	8.23	2.37	6.58
915	22.6	8.17	2.36	6.51

Table 1. Device Impedances Derived from Circuit Characterization

Table 2. Scattering Parameters
$\left(\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{G} 1}, \mathrm{~V}_{\mathrm{G} 2}\right.$ Set for $\mathrm{I}_{\mathrm{DQ}} 1=150 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{DQ} 2}=750 \mathrm{~mA}, 50 \Omega$ System $)$

$\mathbf{f}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
500	0.738	-86	12.71	-82	0.002	147	0.891	173
600	0.786	-83	5.05	-102	0.003	132	0.874	170
700	0.799	-113	11.56	-79	0.004	153	0.858	173
800	0.681	-115	8.44	-113	0.005	138	0.885	171
820	0.671	-116	7.93	-115	0.005	138	0.887	170
840	0.669	-117	7.54	-117	0.005	133	0.885	170
860	0.668	-118	7.30	-119	0.005	130	0.888	170
880	0.673	-119	7.18	-121	0.006	129	0.885	169
900	0.672	-120	7.07	-123	0.006	131	0.883	169
920	0.672	-122	6.90	-127	0.006	130	0.883	168
940	0.672	-123	6.65	-130	0.006	130	0.882	168
960	0.673	-124	6.37	-133	0.007	127	0.881	168
980	0.682	-126	6.10	-136	0.007	130	0.88	168
1000	0.679	-127	5.83	-138	0.006	123	0.881	167
1100	0.685	-134	4.81	-145	0.007	120	0.874	166
1200	0.705	-143	4.67	-152	0.008	121	0.868	165
1300	0.703	-152	4.06	-165	0.010	113	0.855	164
1400	0.704	-161	3.69	-175	0.011	106	0.838	163
1500	0.646	-174	3.19	160	0.011	86	0.826	166

Table 3. Scattering Parameters
$\left(\mathrm{V}_{\mathrm{DD}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{G} 1}, \mathrm{~V}_{\mathrm{G} 2}\right.$ Set for $\mathrm{I}_{\mathrm{DQ} 1}=150 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{DQ} 2}=750 \mathrm{~mA}, 50 \Omega$ System $)$

$\mathbf{f}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
500	0.737	-85	14.12	-84	0.002	135	0.887	174
600	0.792	-83	5.47	-103	0.002	130	0.866	170
700	0.799	-112	12.69	-80	0.004	157	0.853	174
800	0.687	-115	9.13	-115	0.005	131	0.881	171
820	0.681	-116	8.56	-117	0.005	131	0.882	171
840	0.680	-117	8.12	-119	0.005	132	0.882	170
860	0.678	-118	7.83	-121	0.005	131	0.883	170
880	0.680	-119	7.69	-123	0.005	129	0.882	170
900	0.681	-120	7.53	-125	0.006	133	0.882	169
920	0.680	-122	7.36	-129	0.006	127	0.879	169
940	0.681	-123	7.09	-132	0.006	130	0.878	169
960	0.681	-125	6.77	-135	0.006	121	0.878	168
980	0.688	-126	6.47	-137	0.006	123	0.878	168
1000	0.684	-128	6.18	-139	0.006	123	0.876	168
1100	0.690	-135	5.08	-147	0.007	116	0.870	166
1200	0.707	-143	4.90	-153	0.007	123	0.862	165
1300	0.701	-153	4.24	-167	0.009	112	0.852	164
1400	0.704	-162	3.83	-176	0.010	107	0.833	164
1500	0.643	-174	3.26	160	0.010	84	0.828	167

Table 4. Scattering Parameters
$\left(\mathrm{V}_{\mathrm{DD}}=4.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}, \mathrm{V}_{\mathrm{G} 1}, \mathrm{~V}_{\mathrm{G} 2}\right.$ Set for $\mathrm{I}_{\mathrm{DQ}}=150 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{DQ}}=750 \mathrm{~mA}, 50 \Omega$ System $)$

$\mathbf{f}$   $\mathbf{M H z}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
500	0.740	-85	15.59	-86	0.002	139	0.880	174
600	0.798	-84	5.71	-103	0.002	135	0.859	171
700	0.802	-112	13.82	-81	0.004	154	0.851	174
800	0.694	-116	9.82	-116	0.005	137	0.879	171
820	0.688	-116	9.20	-119	0.005	132	0.883	171
840	0.684	-117	8.70	-121	0.004	137	0.877	171
860	0.688	-119	8.37	-123	0.005	133	0.879	170
880	0.684	-120	8.20	-125	0.005	129	0.879	170
900	0.686	-121	8.03	-127	0.005	127	0.879	169
920	0.685	-123	7.82	-131	0.006	130	0.879	169
940	0.682	-124	7.53	-134	0.005	127	0.875	169
960	0.687	-126	7.18	-137	0.006	126	0.874	169
980	0.694	-127	6.84	-139	0.006	124	0.875	168
1000	0.686	-129	6.53	-141	0.006	123	0.873	168
1100	0.692	-137	5.34	-149	0.006	116	0.866	167
1200	0.704	-145	5.12	-155	0.007	122	0.861	165
1300	0.698	-154	4.41	-168	0.009	113	0.847	165
1400	0.695	-163	3.94	-178	0.010	104	0.835	164
1500	0.638	-175	3.34	159	0.009	84	0.828	167

## APPLICATIONS INFORMATION

## Design Philosophy

The MRFIC0917 is a two-stage Integrated Power Amplifier designed for use in cellular phones, especially for those used in GSM Class IV, 3.6 V operation. Due to the fact that the input, output and some of the interstage matching is accomplished off chip, the device can be tuned to operate anywhere within the 800 to 1000 MHz frequency range.

This capability makes the MRFIC0917 suitable for portable cellular applications such as:

- $\quad 3.6 \mathrm{~V} 900 \mathrm{MHz}$ DAMPS
- $\quad 3.6 \mathrm{~V} 900 \mathrm{MHz}$ PDC


## RF Circuit Considerations

The MRFIC0917 can be tuned by changing the values and/ or positions of the appropriate external components. Refer to Figure 2, a typical GSM Class IV applications circuit.

The input match is a shunt-C, series-L, low-pass structure and can be retuned as desired with the only limitation being the on-chip 12 pF blocking capacitor. For saturated applications such as GSM and analog cellular, the input match should be optimized at the rated RF input power.

Interstage matching can be optimized by changing the value and/or position of the decoupling capacitor on the VD1 supply line. Moving the capacitor closer to the device or reducing the value increases the frequency of resonance with the inductance of the device's wirebonds and leadframe pin.

Output matching is accomplished with a two-stage low-pass network as a compromise between bandwidth and harmonic rejection. Implementation is through chip capacitors mounted along a 30 or $50 \Omega$ microstrip transmission line. Values and positions are chosen to present a $2 \Omega$ loadline to the device while conjugating the device output parasitics. The network must also properly terminate the second and third harmonics to optimize efficiency and reduce harmonic output. When low-Q commercial chip capacitors are used for the shunt capacitors, loss can be reduced by mounting two capacitors in parallel to achieve the total value needed.

Loss in circuit traces must also be considered. The output transmission line and the bias supply lines should be at least 0.6 mm in width to accommodate the peak circulating currents which can be as high as 2 amperes. The bias supply line which supplies the output should include an RF choke of at least 8 nH , surface mount solenoid inductors or equivalent length of microstrip lines. Discrete inductors will usually give better efficiency and conserve board space.

The DC blocking capacitor required at the output of the device is best mounted at the $50 \Omega$ impedance point in the circuit where the RF current is at a minimum and the capacitor loss will have less effect.

## Power Control Using the MC33169

The MC33169 is a dedicated GaAs power amplifier support IC which provides the -4 V required for $\mathrm{V}_{\mathrm{SS}}$, an $\mathrm{N}-\mathrm{MOS}$ drain switch interface and driver and power supply sequencing. The MC33169 can be used for power control in applications where the amplifier is operated in saturation since the output power in non-linear operation is proportional to $\mathrm{V}^{2}$. This provides a very linear and repeatable power control transfer function.

This technique can be used open-loop to achieve 20-25 dB dynamic range over process and temperature variation. With careful design and selection of calibration points, this technique can be used for GSM phase II control where 29 dB dynamic range is required, eliminating the need for the complexity and cost of closed-loop control.

The transmit waveform ramping function required for systems such as GSM can be implemented with a simple Sallen and Key filter on the MC33169 control loop. The amplifier is then ramped on as the $\mathrm{V}_{\text {RAMP }}$ pin is taken from 0 V to 3 V . To implement the different power steps required for GSM, the $V_{\text {RAMP }}$ pin is ramped between 0 V and the appropriate voltage between 0 V and 3 V for the desired output power.

For closed-loop configurations using the MC33169, MMSF4N01HD N-MOS switch and the MRFIC0917 provide a typical 1 MHz 3 dB loop bandwidth. The STANDBY pin must be enabled ( 3 V ) at least $800 \mu \mathrm{~s}$ before the $\mathrm{V}_{\text {RAMP }}$ pin goes high and disabled ( 0 V ) at least $20 \mu$ s before the $\mathrm{V}_{\text {RAMP }}$ pin goes low. This STANDBY function allows for the enabling of the MC33169 one burst before the active burst thus reducing power consumption.

## Biasing Considerations

Gate bias is supplied to each stage separately through resistive division of the $\mathrm{V}_{\mathrm{SS}}$ voltage. The top of each divider is brought out through pins 12 and $13\left(\mathrm{~V}_{\mathrm{G} 2}\right.$ and $\mathrm{V}_{\mathrm{G} 1}$ respectively) allowing gate biasing through use of external resistors or positive voltages. This allows setting the quiescent current of each stage separately.

For applications where the amplifier is operated close to saturation, such as GSM and analog cellular, the gate bias can be set with resistors. Variations in process and temperature will not affect amplifier performance significantly in these applications. The values shown in the Figure 1 will set quiescent currents of 100 to 200 mA for the first stage and 600 to 1200 mA for the second stage.

For linear modes of operation, the quiescent current must be more carefully controlled. For these applications, the $\mathrm{V}_{\mathrm{G}}$ pins can be referenced to some tunable voltage which is set at the time of radio manufacturing. Less than 1.0 mA is required in the divider network so a DAC can be used as the voltage source. Typical settings for 3.6 V linear operation are 150 mA $\pm 5 \%$ for the first stage, and $750 \mathrm{~mA} \pm 5 \%$ for the second stage.

## Conclusion

The MRFIC0917 offers the flexibility in matching circuitry and gate biasing required for portable cellular applications. Together with the MC33169 support IC, the device offers an efficient system solution for TDMA applications such as GSM where saturated amplifier operation is used.

## Evaluation Boards

Evaluation boards are available for RF Monolithic Integrated Circuits. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

## Advance Information <br> The MRFIC Line Balanced Transmit Mixer

The MRFIC0931 is a balanced Gilbert cell mixer with LO buffer amplifier intended for transmit upmixer application. The device is usable for Industrial, Scientific and Medical (ISM), Cellular and PCS applications and is packaged in a low-cost surface mount package.

- Usable $500-2000 \mathrm{MHz}$
- High Output Power @ 1 dB Gain Compression, 3.6 Volts 0.9 dBm (Typ) @ 900 MHz
-2 dBm (Typ) @ 1800 MHz
- 2.7-4.8 Volts Operation
- Balanced Design for Good LO Rejection
- 47 mA (Max) Current @ 4.5 Volts 45 mA (Max) Current @ 3.6 Volts
- Low Cost Surface Mount Package
- Order MRFIC0931R2 for Tape and Reel. R2 suffix $=2,500$ Units per $12 \mathrm{~mm}, 13$ inch Reel.
- Device Marking = M0931


## MRFIC0931

BALANCED TRANSMIT MIXER SILICON MONOLITHIC INTEGRATED CIRCUIT


CASE 751-06 (SO-8)

ABSOLUTE MAXIMUM RATINGS

Ratings	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	5	Vdc
Input Power, IF and LO	$\mathrm{P}_{\mathrm{IF},}, \mathrm{P}_{\mathrm{LO}}$	+10	dBm
Operating Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	-35 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$



Pin Connections and Functional Block Diagram

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Supply Voltages	$\mathrm{V}_{\mathrm{CC}}$	2.7 to 4.5	Vdc
RF Frequency Range	$\mathrm{f}_{\mathrm{RF}}$	500 to 2000	MHz
IF Frequency Range	$\mathrm{f}_{\mathrm{IF}}$	0 to 250	MHz

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, measured in circuit shown in Figure 1 or 2 as
frequency indicates)

Parameter	Min	Typ	Max	Unit
RF Output Power ( $\mathrm{f}_{\mathrm{f} F}=88 \mathrm{MHz}, \mathrm{fLO}=815 \mathrm{MHz}, \mathrm{PLO}=-10 \mathrm{dBm}$, $P_{\text {IF }}=-20 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ )	2	4	8	dBm
$\begin{gathered} \text { LO Feed Through ( } \mathrm{f}_{\mathrm{IF}}=88 \mathrm{MHz}, \mathrm{f} \mathrm{LO}=815 \mathrm{MHz}, \mathrm{P}_{\mathrm{LO}}=-10 \mathrm{dBm}, \\ \left.\mathrm{P}_{\mathrm{IF}}=-20 \mathrm{dBm}, \mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right) \end{gathered}$	-	-	-16	dBc
Undesired Sideband Output ( $\mathrm{f} \mid \mathrm{F}=88 \mathrm{MHz}, \mathrm{f} \mathrm{LO}=815 \mathrm{MHz}$, $\left.\mathrm{P}_{\mathrm{LO}}=-10 \mathrm{dBm}, \mathrm{P}_{\mathrm{IF}}=-20 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}\right)$	-	-	-25	dBc
$\begin{aligned} & \text { Small Sigal Conversion Gain (fIF } \left.=100 \mathrm{MHz}, \mathrm{P}_{\mathrm{IF}}=-25 \mathrm{dBm}, \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V}\right) \\ & 900 \mathrm{MHz}(\text { PLO }=-10 \mathrm{dBm}) \\ & 1800 \mathrm{MHz}(\text { PLO }=-5 \mathrm{dBm}) \end{aligned}$	-	$\begin{aligned} & 25 \\ & 20 \end{aligned}$	-	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Power Output at 1 dB Gain Compression ( $\mathrm{f}_{\mathrm{I}}=100 \mathrm{MHz}, \mathrm{P}_{\mathrm{IF}}=-25 \mathrm{dBm}$, $\begin{aligned} \mathrm{V}_{\mathrm{CC}}= & 3.6 \mathrm{~V}) \\ & 900 \mathrm{MHz}\left(\mathrm{PLO}_{\mathrm{LO}}=-10 \mathrm{dBm}\right) \\ & 1800 \mathrm{MHz}\left(\mathrm{PLO}^{2}=-5 \mathrm{dBm}\right) \end{aligned}$	-	$\begin{aligned} & 0.9 \\ & -2 \end{aligned}$	-	dBm dBm
Supply Current $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=3.6 \mathrm{~V} \end{aligned}$	-	$\begin{aligned} & 38 \\ & 30 \end{aligned}$	$\begin{aligned} & 47 \\ & 45 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$



Figure 1. 903 MHz Configuration Test Circuit


Figure 2. 1800 MHz Applications Circuit

## The MRFIC Line GPS GaAs Low Noise Amplifier

The MRFIC1501 is a low cost yet high performance two-stage, low-noise amplifier designed primarily for use in Global Positioning Satellite System (GPS) and other L-band satellite receivers. The broadband nature of the design makes the device applicable to a variety of L-band applications where high performance at reasonable current and cost are required. Supply current is minimized through a current sharing DC cascode circuit configuration. Supply voltage can be applied to either the VDD pin or the RF output pin for remote antenna applications. The integrated circuit requires minimal off-chip matching while allowing for maximum flexibility in optimizing gain and noise figure. An ENABLE pin is provided to allow for a reduced supply current standby mode. The design employs Motorola's low cost planar self-aligned MESFET process to assure repeatable characteristics at minimal cost.

- Usable Frequency Range $=1$ to 2 GHz
- 18 dB Typ Gain at VDD $=5$ Volts
- 1.1 dB Typ Noise Figure at $\mathrm{V}_{\mathrm{DD}}=5$ Volts
- Simple Off-chip Matching for Maximum Gain/Noise Figure Flexibility
- Single Bias Supply $=3$ to 5 Volts
- Low Power Consumption $=30 \mathrm{~mW}$ (Typ) at 5 Volts
- Low Cost Surface Mount Plastic Package
- Order MRFIC1501R2 for Tape and Reel. R2 Suffix = 2,500 Units per $12 \mathrm{~mm}, 13$ inch Reel.
- Device Marking = M1501


## MRFIC1501

1.6 GHz GaAs LOW NOISE AMPLIFIER


CASE 751-06 (SO-8)


Pin Connections and Functional Block Diagram

MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Ratings	Symbol	Limit	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	6	Vdc
RF Input Power	$\mathrm{P}_{\mathrm{RF}}$	3	dBm
ENABLE Voltage	ENABLE	6	Vdc
V DD Current Sourcing (With Supply Connected to Pin 7) $^{\text {Storage Temperature Range }} \quad \mathrm{I}_{\mathrm{PIN} 2}$	20	mA	
Operating Ambient Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
RF Frequency	fRF	1 to 2	GHz
ENABLE "ON" (Device Operational) Voltage	ENABLE	$\mathrm{V}_{\mathrm{DD}} \pm 0.5$	Vdc
ENABLE "OFF" (Device in Standby Mode) Voltage	ENABLE	0 to 0.5	Vdc
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	3 to 5	Vdc

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V} D \mathrm{DD}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RF}=1.575 \mathrm{GHz}\right.$, ENABLE $=5 \mathrm{~V}$, Circuit Configuration Shown in Figure 1)

Characteristic	Min	Typ	Max	Unit
RF Gain	17	18	-	dB
SSB Noise Figure	-	1.1	-	dB
RF Output 3rd Order Intercept Point	-	10	-	dBm
Output 1 dB Gain Compression	-	0	-	dBm
Reverse Isolation (s12)	-	30	-	dB
Input Return Loss	-	10	-	dB
Output Return Loss	-	10	-	dB
Supply Current	-	5.9	7.5	mA



Figure 1. Applications Circuit Configuration


Figure 2. Small Signal Gain versus Frequency


Figure 4. Drain Current versus Drain Voltage


Figure 6. Output Power versus Input Power


Figure 3. Small Signal Gain versus Frequency


Figure 5. Output Power versus Input Power


Figure 7. Noise Figure versus Frequency


Figure 8. Noise Figure versus Frequency


Figure 9. Gain versus ENABLE Voltage

## APPLICATIONS INFORMATION

## DESIGN CONSIDERATIONS

The circuit configuration employs a DC cascode arrangement which allows current sharing between two FETs. This gives excellent noise figure at reduced supply current. Since GPS applications often require the downconverter to be remotely mounted at the antenna, the output is DC coupled so that the drain voltage can be supplied through the coax feed. The $V_{D D}$ pin can actually supply other components in the equipment at less than 20 mA of current. On-chip bias circuitry tracks changes in device threshold voltage and temperature and is externally controlled through the ENABLE pin. This feature allows for a low current standby mode or for gain reduction. Refer to Figure 9 for control characteristics.

## CIRCUIT CONSIDERATIONS

As shown in Figure 1, impedance matching of the MRFIC1501 is quite simple. Through use of an on-chip
source inductor in the first stage, $\Gamma_{\mathrm{opt}}$ and and $\Gamma_{\mathrm{in}}{ }^{*}$ are approximately equal. A single inductor at the input will give good input match and noise figure. This inductor can be implemented with a high impedance microstrip line or a chip inductor.

As with all RF active circuit designs, bypassing the supply pin is recommended. Layout and ground via location is important. Vias should be located as close as possible to ground pins and the ground side of off-chip components.

## EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" to the device type. For a complete list of currently available boards and ones in development for newly introduced products, please consult your local Motorola Distributor or Sales Office.

Table 1. Scattering Parameters (VDD = 3 Volts, ENABLE $=3$ Volts, $50 \Omega$ System)

f	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
(MHz)	\|S ${ }_{11} \mid$	$\angle \phi$	$\left\|\mathrm{S}_{21}\right\|$	$\angle \phi$	\| $\mathbf{S}_{12}$ \|	$\angle \phi$	\|S22		$\angle \phi$
795	0.958	-28.07	3.218	28.76	0.011	179.98	0.358	21.08	
825	0.959	-29.71	3.448	23.95	0.011	176.45	0.336	15.36	
855	0.954	-31.16	3.534	18.42	0.012	172.43	0.311	9.65	
870	0.951	-32.04	3.535	16.03	0.011	171.06	0.297	6.67	
900	0.945	-33.63	3.502	11.26	0.012	166.26	0.273	1.19	
930	0.935	-35.48	3.528	6.47	0.013	166.48	0.250	-5.16	
960	0.932	-37.28	3.689	2.07	0.014	164.19	0.227	-11.04	
990	0.921	-39.03	3.867	-2.41	0.016	163.33	0.203	-18.26	
1020	0.912	-40.69	3.954	-7.56	0.018	160.39	0.181	-25.17	
1050	0.901	-42.28	3.975	-12.01	0.019	158.58	0.158	-33.18	
1080	0.892	-44.16	4.039	-16.73	0.020	154.26	0.138	-40.98	
1110	0.879	-46.05	4.154	-21.72	0.021	151.91	0.119	-49.98	
1140	0.865	-47.91	4.296	-27.64	0.022	147.91	0.101	-58.85	
1170	0.846	-49.35	4.320	-32.73	0.022	147.32	0.086	-71.10	
1200	0.825	-51.34	4.224	-36.64	0.022	147.46	0.077	-87.14	
1230	0.800	-51.92	4.125	-40.14	0.026	152.91	0.070	-118.39	
1260	0.798	-52.57	4.224	-42.75	0.029	141.81	0.053	-155.35	
1290	0.782	-53.50	4.371	-47.81	0.030	135.50	0.051	169.35	
1320	0.775	-55.70	4.554	-53.11	0.031	132.76	0.049	140.94	
1350	0.758	-57.05	4.525	-57.58	0.030	128.85	0.052	126.02	
1380	0.742	-58.70	4.501	-61.64	0.031	125.89	0.061	114.60	
1410	0.721	-60.03	4.511	-66.70	0.030	123.70	0.073	105.25	
1440	0.703	-60.76	4.538	-71.38	0.031	121.40	0.083	97.32	
1470	0.686	-61.48	4.553	-75.65	0.030	119.75	0.095	89.55	
1500	0.668	-62.72	4.497	-79.44	0.031	116.74	0.107	82.70	
1530	0.652	-63.71	4.436	-83.00	0.031	115.52	0.119	77.82	
1560	0.633	-63.91	4.437	-87.36	0.030	115.29	0.132	72.37	
1575	0.629	-64.01	4.458	-89.76	0.030	114.23	0.139	69.33	
1590	0.621	-63.94	4.474	-91.54	0.030	112.50	0.147	66.71	
1620	0.604	-64.46	4.477	-95.21	0.031	112.56	0.159	62.76	
1650	0.586	-63.98	4.425	-98.51	0.030	111.63	0.172	58.00	
1680	0.576	-64.45	4.330	-102.11	0.031	108.93	0.185	54.00	
1710	0.559	-64.36	4.264	-105.61	0.030	106.34	0.198	50.85	
1740	0.549	-64.02	4.227	-108.90	0.030	106.33	0.208	47.46	
1770	0.538	-63.89	4.219	-112.08	0.030	106.56	0.222	43.54	
1800	0.527	-63.69	4.172	-114.95	0.029	104.83	0.233	40.56	
1830	0.523	-63.58	4.046	-118.53	0.030	104.72	0.244	37.76	
1860	0.511	-62.83	3.965	-121.26	0.028	102.55	0.256	34.88	
1890	0.503	-62.92	3.925	-124.29	0.029	103.12	0.266	32.47	
1920	0.495	-62.26	3.917	-126.71	0.029	102.20	0.275	29.95	
1950	0.485	-60.97	3.843	-129.24	0.029	102.70	0.283	27.89	
1980	0.479	-60.47	3.759	-132.13	0.029	101.50	0.290	25.95	
2010	0.474	-59.93	3.631	-135.13	0.027	98.87	0.300	24.27	

Table 2. Scattering Parameters (VDD = 4 Volts, ENABLE $=4$ Volts, $50 \Omega$ System)

	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
(MHz)	\|S ${ }_{11} \mid$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	$\left\|S_{22}\right\|$	$\angle \phi$
900	0.927	-34.45	4.901	4.43	0.011	167.24	0.210	-4.75
930	0.915	-36.30	4.962	-0.21	0.012	166.66	0.185	-12.35
960	0.908	-38.22	5.164	-4.86	0.013	165.06	0.160	-20.80
990	0.895	-39.78	5.383	-9.68	0.015	161.65	0.135	-30.56
1020	0.883	-41.42	5.485	-14.72	0.016	158.86	0.112	-42.22
1050	0.869	-43.05	5.514	-19.31	0.017	158.43	0.092	-55.71
1080	0.858	-44.69	5.573	-24.34	0.018	155.12	0.078	-73.31
1110	0.840	-46.48	5.695	-29.10	0.019	151.63	0.068	-94.03
1140	0.822	-48.23	5.813	-35.10	0.020	149.83	0.063	-115.86
1170	0.804	-49.58	5.817	-40.03	0.020	149.25	0.066	-136.79
1200	0.783	-51.19	5.741	-43.83	0.020	149.99	0.077	-153.70
1230	0.750	-51.37	5.625	-47.36	0.023	155.59	0.102	-172.32
1260	0.753	-51.39	5.762	-49.92	0.026	144.73	0.114	165.51
1290	0.747	-52.29	5.894	-55.24	0.028	137.19	0.122	150.89
1320	0.741	-54.09	6.078	-60.53	0.028	134.63	0.123	139.00
1350	0.727	-55.80	5.998	-65.01	0.028	131.72	0.129	131.12
1380	0.709	-57.17	5.957	-68.70	0.028	128.11	0.137	124.50
1410	0.692	-58.13	5.921	-73.18	0.027	126.13	0.144	117.65
1440	0.676	-59.05	5.928	-77.75	0.027	126.40	0.153	111.32
1470	0.661	-59.68	5.909	-81.80	0.028	122.94	0.162	105.05
1500	0.641	-60.62	5.821	-85.30	0.027	122.00	0.169	98.79
1530	0.628	-61.62	5.715	-88.81	0.028	119.28	0.179	93.52
1560	0.613	-61.52	5.686	-93.11	0.028	119.11	0.190	87.97
1575	0.606	-61.90	5.667	-95.29	0.028	119.48	0.196	85.31
1590	0.599	-61.76	5.667	-97.03	0.029	117.97	0.201	82.57
1620	0.587	-62.04	5.635	-100.45	0.028	117.17	0.209	78.01
1650	0.570	-61.74	5.550	-103.32	0.027	117.04	0.222	73.51
1680	0.560	-62.07	5.423	-106.67	0.028	114.76	0.233	69.07
1710	0.543	-62.20	5.318	-110.16	0.028	112.28	0.243	65.48
1740	0.534	-61.92	5.250	-113.26	0.028	113.29	0.253	61.42
1770	0.527	-61.70	5.212	-116.15	0.028	112.91	0.264	58.10
1800	0.516	-61.84	5.146	-118.66	0.029	113.11	0.274	54.22
1830	0.511	-61.24	4.991	-121.89	0.027	112.07	0.285	50.97
1860	0.501	-60.19	4.848	-124.80	0.027	111.64	0.295	47.95
1890	0.491	-60.35	4.783	-127.80	0.027	110.45	0.304	45.16
1920	0.484	-59.86	4.747	-130.12	0.028	109.45	0.315	42.60
1950	0.474	-58.58	4.697	-132.44	0.028	109.35	0.323	40.11
1980	0.471	-58.40	4.605	-134.97	0.028	111.10	0.329	38.15
2010	0.462	-57.51	4.407	-138.30	0.026	108.25	0.339	35.69

Table 3. Scattering Parameters (VDD =5 Volts, ENABLE =5 Volts, $50 \Omega$ System)

f	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
(MHz)	${ }^{\text {S }}$ 11\|	$\angle \phi$	${ }^{\text {S } 21}$ \|	$\angle \phi$	\| $\mathrm{S}_{12} \mid$	$\angle \phi$	${ }^{\text {S }} \mathbf{2 2}$ \|	$\angle \phi$
900	0.909	-35.17	6.271	-1.16	0.011	168.82	0.163	-11.03
930	0.892	-37.01	6.337	-6.08	0.011	165.10	0.137	-21.39
960	0.882	-38.73	6.583	-10.74	0.012	163.68	0.109	-33.61
990	0.869	-40.38	6.808	-15.88	0.014	161.24	0.088	-49.68
1020	0.855	-41.71	6.927	-21.01	0.015	160.19	0.072	-71.47
1050	0.840	-43.22	6.925	-25.76	0.016	157.93	0.065	-98.66
1080	0.828	-44.84	6.996	-30.74	0.017	156.01	0.067	-124.50
1110	0.807	-46.50	7.081	-35.59	0.018	152.69	0.076	-144.89
1140	0.791	-47.98	7.172	-41.40	0.019	151.04	0.088	-161.86
1170	0.769	-49.03	7.150	-45.93	0.019	150.32	0.103	-174.42
1200	0.745	-50.40	7.082	-49.82	0.018	149.54	0.120	178.54
1230	0.716	-49.79	6.940	-53.44	0.021	156.21	0.149	168.88
1260	0.726	-49.58	7.070	-56.18	0.024	146.99	0.165	154.85
1290	0.724	-50.16	7.183	-61.43	0.025	140.13	0.175	144.80
1320	0.721	-52.48	7.285	-66.39	0.027	136.54	0.177	136.23
1350	0.707	-54.20	7.176	-70.78	0.025	133.27	0.183	130.59
1380	0.690	-55.55	7.102	-74.39	0.026	131.27	0.191	124.77
1410	0.675	-56.53	7.006	-78.73	0.026	129.73	0.198	119.51
1440	0.660	-57.13	6.962	-82.74	0.026	127.44	0.204	113.76
1470	0.646	-57.73	6.936	-86.50	0.026	126.66	0.212	108.23
1500	0.629	-58.40	6.822	-89.92	0.026	124.54	0.219	102.92
1530	0.618	-59.69	6.687	-93.31	0.026	122.48	0.227	98.15
1560	0.601	-59.69	6.606	-97.38	0.026	121.63	0.235	93.28
1575	0.594	-59.80	6.573	-99.55	0.027	122.68	0.243	90.64
1590	0.592	-59.78	6.548	-101.29	0.027	122.13	0.246	88.16
1620	0.577	-60.13	6.477	-104.22	0.027	120.48	0.254	84.10
1650	0.562	-59.69	6.366	-106.82	0.027	119.01	0.263	79.24
1680	0.552	-60.13	6.218	-110.11	0.027	118.15	0.272	75.16
1710	0.543	-60.34	6.094	-113.45	0.026	117.67	0.282	71.64
1740	0.529	-59.65	6.000	-116.40	0.027	118.05	0.291	67.99
1770	0.523	-59.54	5.945	-119.10	0.026	116.25	0.301	64.28
1800	0.515	-59.87	5.845	-121.60	0.027	117.55	0.311	60.73
1830	0.507	-59.61	5.676	-124.69	0.027	116.91	0.320	57.22
1860	0.497	-58.77	5.488	-127.65	0.027	115.88	0.330	54.18
1890	0.491	-58.79	5.414	-130.43	0.027	114.66	0.339	51.39
1920	0.478	-58.39	5.376	-132.53	0.028	117.05	0.348	48.34
1950	0.472	-57.29	5.324	-134.66	0.029	114.84	0.356	45.85
1980	0.466	-56.94	5.193	-137.20	0.028	114.82	0.363	43.87
2010	0.461	-56.18	4.972	-140.40	0.027	114.81	0.372	41.56

Table 4. Noise Parameters (VDD = 5 Volts, ENABLE $=5$ Volts, $50 \Omega$ System)

$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{NF}_{\text {min }}$ (dB)	$\Gamma_{0}$		$\mathrm{R}_{\mathrm{N}}$
		MAG	$\angle \phi$	
1.000	0.8	0.859	26.36	0.98
1.575	1.0	0.793	43.87	0.70
2.000	1.3	0.713	55.80	0.56

## The MRFIC Line Integrated GPS Downconverter

This integrated circuit is intended for GPS receiver applications. The dual conversion design is implemented in Motorola's low-cost high performance MOSAIC 3 silicon bipolar process and is packaged in a low-cost surface mount TQFP-48 package. In addition to the mixers, a VCO, a PLL and a loop filter are integrated on-chip. Output IF is nominally 9.5 MHz .

- 65 dB Minimum Conversion Gain
- 5 Volts Operation
- 50 mA Typical Current Consumption
- Low-Cost, Low Profile Plastic TQFP Package
- Order MRFIC1502R2 for Tape and Reel. R2 Suffix = 1,500 Units per $16 \mathrm{~mm}, 13$ inch Reel.
- Device Marking = M1502

MRFIC1502
1.575 GHz GPS DOWNCONVERTER


CASE 932-02 (TQFP-48)


MAXIMUM RATINGS

Rating	Symbol	Limit	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	+6.0	$\mathrm{Vdc}^{\prime}$
DC Supply Current	$\mathrm{I}_{\mathrm{DD}}$	60	mA
Operating Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Lead Soldering Temperature Range (10 seconds)	-	+260	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$, Tested in Circuit shown in Figure 1 unless otherwise noted)

Characteristic	Min	Typ	Max	Unit
Supply Voltage	4.75	-	5.25	Vdc
Supply Current	-	-	60	mA
L-Band Gain (Measured from L-Band Input to 47 MHz Output)	-	20	-	dB
IF Gain (Measured from 47 MHz Input to 9.5 MHz Output with Gain Control at Maximum)	-	45	-	dB
Conversion Gain (Measured from L-Band Input to 9.5 MHz Output with Gain Control at Maximum)	65	-	-	dB
Gain Control (Externally Adjustable 0 to 5.0 V , Maximum at 0 V )	-	40	-	dB
Noise Figure (Double Sideband)	-	9.5	-	dB
L-Band Input VSWR (Measured into $50 \Omega$; $1575.42 \pm 5.0 \mathrm{MHz}$ )	-	2:1	-	-
First IF Output VSWR (Measured into $50 \Omega ; 47.74 \pm 5.0 \mathrm{MHz}$ )	-	2:1	-	-
Second IF Output VSWR (Measured into $50 \Omega$; $9.5 \pm 5.0 \mathrm{MHz}$ )	-	2:1	-	-
Input Impedance @ 1st IF $47.7 \pm 5 \mathrm{MHz}$ (For Reference Only)	-	2000	-	$\Omega$
Output 1.0 dB Compression Point	-	-7	-	dBm
First LO (Measured at the First IF Output)	-	-20	-	dBm
All Other Harmonics (Measured at the First IF Output)	-	-45	-	dBm
38.1915 MHz Leakage at First IF Output	-	-50	-	dBm
Second LO (Measured at the Second IF Output)	-	-25	-	dBm
All Other Harmonics (Measured at Second IF Output)	-	-45	-	dBm
Reference Oscillator Input	400	-	4500	mVpp
Clock Output   Frequency   Amplitude   Low   HIgh   (Clock Amplitude Measured with the Output Loaded in 15 pF and $40 \mathrm{k} \Omega$ )   Duty Cycle	$\begin{gathered} \hline 2 \mathrm{Xf}_{\text {ref }} \\ - \\ 2.0 \\ 45 \end{gathered}$	-	$\begin{gathered} \hline 2 \mathrm{Xf}_{\mathrm{ref}} \\ 0.8 \\ - \\ 55 \end{gathered}$	V V \%
VCO Lock Voltage	1.2	-	3.0	V
Phase Detector Gain	-	0.16	-	V/Radian
VCO Modulation Sensitivity	-	15	-	MHz/V


C1, C8, C10, C12, C13, C15,		C24	68 pF, ATC
C19, C20, C37	$10,000 \mathrm{pF}$	C35	0.4 pF, ATC
C4, C5	5600 pF	CR1	2.7 pF, MA45233-123, MACOM
C6, C7, C31	1000 pF	L1, L4, L5, L10	$2.2 \mu \mathrm{H}, 1008 \mathrm{CS}-222$ KKBC, COILCRAFT
C2, C3	$1.0 \mu \mathrm{~F}$	L3	2.2 nH, LL2012-F2N2S, TOKO
C14	3.9 pF, ATC	L6	$2.2 \mu \mathrm{H}$
C16, C18, C36	27 pF , ATC	L7	220 nH
C17	15 pF, ATC	L8	$0.56 \mu \mathrm{H}$
C21	5.6 pF, ATC	L9	$0.27 \mu \mathrm{H}$
C9, C11, C34, C36	47 pF, ATC	R1	$10 \mathrm{k} \Omega$
C22, C23	120 pF , ATC	R3	$220 \Omega$

Figure 1. Test Circuit Configuration

Table 1. Port Impedance Derived from Circuit Characterization

			Zin   Ohms	
Pin Number	Pin Name            (MHz)	RF IN	1575.42	38.3
44		47.74	54.45	11.3
40	FROM BPF	47.74	43	1.5
39	IF OUT	9.5	560	-850
32				

$Z_{\text {in }}$ represents the input impedance of the pin.

## APPLICATION INFORMATION

## Design Philosophy

The MRFIC1502 design is a standard dual downconversion configuration with an integrated fixed frequency phaselocked loop to generate the two local oscillators and the buffer to generate the sampling clock for a digital correlator and decimator. The active device for the L-band VCO is also integrated on the chip. This chip is designed in the third generation of Motorola's Oxide Self Aligned Integrated Circuits (MOSAIC 3) silicon bipolar process.

## Circuit Considerations

The RF input to the MRFIC1502 is internally matched to 50 ohms. Therefore, only AC coupling is required on the input. The output of the amplifier is fed directly into the first mixer. This mixer is an active Gilbert Cell configuration. The output of the mixer is brought off-chip for filtering of the unwanted mixer products. The amplifier and mixer have their own $\mathrm{V}_{\mathrm{CC}}$ supply (pin 42) in order to reduce the amount of coupling to the other circuits. There are two bypass capacitors on this pin, one for the high frequency components and one for the lower frequency components. These two capacitors should be placed physically as close to the bias pin as possible to reduce the inductance in the path. The capacitors should also be grounded as close to the ground of the IC as possible, preferably through a ground plane.
The output impedance of the first mixer is 50 ohms, while the input impedance to the first IF amplifier is $1 \mathrm{k} \Omega$. There is a trap (zero) designed in at the second LO frequency to limit the amount of LO leakage into the high gain first IF amplifier.
The first IF amplifier is a variable gain amplifier with 25 dB of gain and 40 dB of gain control. The gain control pin can be grounded to provide the maximum gain out of the amplifier. If the baseband design utilizes a multi-bit A/D converter in the digital signal processing chip, this amplifier could be used to control the input to the A/D converter. The amplifier has an external bypassing capacitor. This capacitor should be on the order of $0.01 \mu \mathrm{~F}$, and again should be located near the package pin.
The second mixer design is also a Gilbert Cell configuration. The interface between the mixer and the second IF amplifier is differential in order to increase noise immunity. This differential interface is also brought off-chip so that some additional filtering could be added in parallel between the output of the mixer and input to the amplifier.

This filtering is primarily to reduce the amount of LO leakage into the final IF amplifier and is achieved using a single 3.9 pF capacitor across the differential ports. The value of the capacitor determines the high frequency of the low pass structure.

The supply pin for the IF circuits is pin 33. This supply pin should be isolated from the other chip supplies in order to reduce the amount of coupling. The recommended capacitors are a 47 pF and a $0.01 \mu \mathrm{~F}$, in parallel to bypass the supply to ground and should be placed physically as close to the pin as possible.

The output of the second IF amplifier is 50 ohms with a bandwidth of $\pm 5.0 \mathrm{MHz}$. This signal must be filtered before being digitized in order to limit the noise entering the A/D converter.

## VCO Resonator Design

The design and layout of the circuits around the voltage controlled oscillator (VCO) are the most sensitive of the entire layout. The active device and biasing resistors are integrated on the MRFIC1502. The external circuits consist of the power supply decoupling, the capacitors for the integrated supply superfilter, the resonator and frequency adjusting elements, and the bypassing capacitor on the emitter of the active device.

The VCO supply is isolated from the rest of the PLL circuits in order to reduce the amount of noise that could cause frequency/phase noise in the VCO. The supply should be filtered using a $22 \mu \mathrm{H}$ inductor in series and a 27 pF and 0.01 $\mu \mathrm{F}$ in parallel. The 27 pF capacitor should be series resonant at least as high as the VCO frequency to get the most Lband bypassing as possible. The on-chip supply filter requires two capacitors off-chip to filter the supply. The capacitors on the input (pin 8) and output (pin 10) of the filter are $1.0 \mu \mathrm{~F}$, and the output also has a high frequency bypass capacitor in parallel. The input capacitor should not be smaller than a $1.0 \mu \mathrm{~F}$ to insure stability of the supply filter.

The VCO design is a standard negative resistance cell with a buffer amplifier. The resonating structure is connected to the base of the active device and consists of a coupling capacitor, a hyper-abrupt varactor diode, and a wire wound chip inductor. With the values shown on the application
circuit, the VCO is centered at 1527.7 MHz , and the gain of the VCO is approximately $20 \mathrm{MHz} /$ Volt.

The above performance is heavily dependent on the capacitive structure that is used as the emitter bypass on pin 6. The total capacitance should be approximately 1.0 pF ; that can be achieved using either a discrete element or a microstrip open circuited stub. The evaluation circuit shown uses a 0.4 pF capacitor.

## Phase-locked Loop Design

The VCO signal at 1527.68 MHz is divided by 40 to get the second LO frequency of 38.19 MHz . In addition to providing the LO to the second mixer, the 38 MHz signal is output through a translator and is used as the sampling clock for the digital correlator and decimator circuits. There is an additional divide by two so the signal used by the phase detector is at 19.096 MHz . The reference input to the phase detector (pin 18) has an input sensitivity of 400 mVpp minimum and 2.5 Vpp maximum.
The loop filter design is the standard op-amp loop filter, resulting in a type 2 second order loop. The layout of the
discrete components around the loop filter and VCO is very critical to the performance of the phase-locked loop. Care should be taken in routing the VCO control voltage line from the output of the loop filter to the varactor diode.

The output of the divide by 40 is buffered by a clock translator that converts the low level sine wave into a TTL level square wave. The loading on the buffer is high so the peak currents can reach as high as 50 mA with the maximum load of $1.0 \mathrm{k} \Omega$ in parallel with 40 pF on the output. Therefore, the translator has a dedicated $\mathrm{V}_{\mathrm{CC}}$ supply, pin 28, which requires external bypassing and isolation. The recommended bypassing uses two capacitors in parallel, a 47 pF and a $0.01 \mu \mathrm{~F}$ capacitor.

## Conclusion

The MRFIC1502 offers a highly integrated downconverter solution for GPS receivers. For more detailed applications information on GPS system design refer to application note AN1610, "Using Motorola's MRFIC1502 in Global Positioning System Receivers."

## The MRFIC Line

### 1.8 GHz Antenna Switch

Designed primarily for use in DECT, Japan Personal Handy System (PHS), other wireless Personal Communication Systems (PCS) applications, and 2.4 GHz ISM band applications. The MRFIC1801 is a single pole, double throw reflective antenna switch featuring low insertion loss and high power handling capability in a low-cost SOIC-8 package. The integrated circuit requires no off-chip matching and provides for easy control circuit interface. The high power handling capability allows application in higher power wireless systems than traditional GaAs antenna switches.

Together with the rest of the MRFIC180X series, this GaAs IC family offers the complete transmit and receive functions, less LO and filters, needed for a typical 1.8 GHz cordless telephone.

- Usable Frequency Range 1.5 to 2.5 GHz
- High 1.0 dB Compression Point $=29 \mathrm{dBm}$ (Typ)
- Low Transmit Insertion Loss $=0.75 \mathrm{~dB}$ (Typ)
- High Transmit to Receive Isolation $=22 \mathrm{~dB}$ (Typ)
- Single Control Pin for Easy Switching Signal Interface
- Low Current Drain $=300 \mu \mathrm{~A}(\mathrm{Typ})$ in TX, $45 \mu \mathrm{~A}(\mathrm{Typ})$ in RX
- Low Cost Surface Mount Plastic Package
- Order MRFIC1801R2 for Tape and Reel. R2 Suffix $=2,500$ Units per $12 \mathrm{~mm}, 13$ inch Reel.
- Device Marking = M1801


## MRFIC1801

1.8 GHz TRANSMIT/RECEIVE ANTENNA SWITCH GaAs MONOLITHIC INTEGRATED CIRCUIT



Functional Block Diagram and Pin Assignment

MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Ratings	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	10	Vdc
Supply Voltage Difference	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	8	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	33	dBm
Switch Control Voltage	$\mathrm{V}_{\mathrm{C}}$	$\mathrm{V}_{\mathrm{DD}}+1, \mathrm{~V}_{\mathrm{SS}}-1$	Vdc
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	-30 to +85	${ }^{\circ} \mathrm{C}$

## RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	2.7 to 5.5	Vdc
Supply Voltage Difference	$\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}$	5.5	Vdc
Switch Control Voltage	$\mathrm{V}_{\mathrm{C}}$	$\mathrm{V}_{\mathrm{DD}}$ to $\mathrm{V}_{\mathrm{SS}}$	Vdc
Operating Frequency	f	1.5 to 2.5	GHz

ELECTRICAL CHARACTERISTICS ( $\left.\mathrm{V}_{\mathrm{DD}}-\mathrm{V}_{\mathrm{SS}}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.9 \mathrm{GHz}\right)$

Characteristic	Min	Typ	Max	Unit
Antenna to Receive Insertion Loss (RX Mode, $\mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}$ )	-	0.8	1	dB
Transmit to Antenna Insertion Loss (TX Mode, $\mathrm{P}_{\mathrm{IN}}=+27 \mathrm{dBm}$ )	-	0.6	1	dB
Transmit to Receive Isolation in TX Mode ( $\mathrm{P}_{\text {IN }}=+27 \mathrm{dBm}$ )	-	22	-	dB
Antenna to Transmit Isolation in RX Mode ( $\mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm}$ )	-	18	-	dB
Input Return Loss, all ports	-	15	-	dB
Transmit to Antenna Input 1.0 dB Compression	-	29	-	dBm
Leakage Current (RX Mode)	-	45	-	$\mu \mathrm{A}$
Total Supply Current (TX Mode)	-	300	-	$\mu \mathrm{A}$

## EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

## APPLICATIONS INFORMATION

The MRFIC1801 is a SPDT switch. A series-shunt pair of FETs are used in each path for improved isolation. The power handling capability of the MRFIC1801 is determined by the difference between $\mathrm{V}_{\mathrm{DD}}$ and $\mathrm{V}_{\text {SS }}$. Typical operating conditions are $\mathrm{V}_{\mathrm{DD}}=3.0$ V and $\mathrm{V}_{\mathrm{SS}}=-2.5 \mathrm{~V}$, but a negative $\mathrm{V}_{\mathrm{SS}}$ is not required. $\mathrm{V}_{\mathrm{SS}}$ can be grounded.

Mode	$\mathrm{V}_{\mathbf{C}}$
RX	$\mathrm{V}_{\mathrm{SS}}$
TX	$\mathrm{V}_{\mathrm{DD}}$

Table 1. Logic Table

TYPICAL CHARACTERISTICS
( $\mathrm{VDD}-\mathrm{V}_{\mathrm{SS}}=5.5 \mathrm{~V}$ )


Figure 1. Antenna to Receive Insertion Loss


Figure 3. Antenna to Transmit Isolation in RX Mode


Figure 5. Antenna Switch Insertion Loss versus Input Power (Large Signal)


Figure 2. Transmit to Antenna Insertion Loss (Small Signal)


Figure 4. Transmit to Receive Isolation in TX Mode


Figure 6. Return Loss

## The MRFIC Line 1.8 GHz Upconverter

Designed primarily for use in DECT, Japan's Personal Handy System (PHS), and other wireless Personal Communication Systems (PCS) applications at 1.8 GHz, but also applicable to Industrial, Scientific and Medical (ISM) applications at 2.5 GHz . The MRFIC1803 is a complete active upmixer, exciter amplifier, and LO buffer amplifier in a low-cost SOIC-16 package. The low power consumption design includes a single balanced active mixer, CMOS compatible receive and transmit enable inputs, a buffer/exciter amplifier, and a buffered LO output capable of driving the MRFIC1804 downconverter. IF, LO and RF ports are matched to $50 \Omega$ and no off-chip baluns are required. With both TX and RX enable pins low, the device is in standby mode and draws less than 0.3 mA .
Together with the rest of the MRFIC180X series, this GaAs IC family offers the complete transmit and receive functions, less LO and filters, needed for a typical 1.8 GHz cordless telephone.

- 10 dB IF to RF Conversion Gain
- Usable Frequency Range $=1.7$ to 2.5 GHz
- Low Power Consumption $=80 \mathrm{~mW}$ (Typ)
- Single Bias Supply = 2.7 to 3.3 V


## MRFIC1803

### 1.8 GHz UPMIXER, EXCITER AND LO AMP GaAs MONOLITHIC INTEGRATED CIRCUIT



CASE 751B-05
(SO-16)

- No External Baluns Required
- IF, LO and RF Ports Matched to $50 \Omega$
- Low LO Power Requirement $=-10 \mathrm{dBm}$ (Тyp)
- Low Cost Surface Mount Plastic Package
- Order MRFIC1803R2 for Tape and Reel.

R2 Suffix = 2,500 Units per $16 \mathrm{~mm}, 13$ inch Reel.

- Device Marking = M1803

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Ratings	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	5.5	Vdc
IF Input Power	$\mathrm{P}_{\mathrm{IF}}$	3	dBm
LO Input Power	$\mathrm{PLO}_{\mathrm{LO}}$	3	dBm
Transmit and Receive Enable Voltage	TX EN, RX EN	5.5	Vdc
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	-30 to +85	${ }^{\circ} \mathrm{C}$



Pin Connections and Functional Block Diagram

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
LO Input Frequency	$\mathrm{fLO}_{\text {LO }}$	1.5 to 2.4	GHz
LO Input Power	P LO	-10	dBm
IF Input Frequency	$\mathrm{f}_{\mathrm{IF}}$	70 to 350	MHz
RF Output Frequency	$\mathrm{f}_{\mathrm{RF}}$	1.7 to 2.5	GHz
Transmit and Receive Enable Voltage	TX EN, RX EN	2.7 to $\mathrm{V}_{\mathrm{DD}}$	Vdc
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	2.7 to 5	Vdc

ELECTRICAL CHARACTERISTICS $\left(V_{D D}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{LO}=1790 \mathrm{MHz} @-10 \mathrm{dBm}\right.$, $\mathrm{IF}=110 \mathrm{MHz} @-15 \mathrm{dBm}$,
TX EN = 3.0 V, RX EN = 0 V , unless otherwise noted)

Characteristic	Min	Typ	Max	Unit
IF to RF Conversion Gain	8	10	-	dB
RF Output 1 dB Compression	-	-2	-	dBm
RF Output 3rd Order Intercept	-	9	-	dBm
LO Feed Through to RF Port	-	-19	-	dBm
Auxiliary LO Output Power (TX EN = 0 V, RX EN = 3 Vdc)	-	-4	-	dBm
Supply Current, TX Mode	-	28	50	mA
Supply Current, RX Mode (TX EN = 0 V, RX EN = 3 Vdc)	-	3	-	mA
Standby Mode Current (TX EN = 0 V, RX EN = 0 Vdc)	-	0.1	0.3	mA


$\begin{array}{ll}\text { C1 } & 470 \mathrm{pF} \\ \text { C2 } & 100 \mathrm{pF} \\ \text { C3 } & 0.1 \mu \mathrm{~F} \text { (optional) }\end{array}$
Figure 1. Applications Circuit Configuration

Typical Characteristics


Figure 2. Conversion Gain versus LO Power


Figure 4. Conversion Gain versus RF Frequency


Figure 6. Conversion Gain versus RF Frequency


Figure 5. Conversion Gain versus RF Frequency


Figure 7. Output Power versus IF Input Power

## Typical Characteristics



Figure 8. RF Output Power versus IF Input Power


Figure 10. RF Output Power versus IF Input Power at 2.45 GHz


Figure 9. RF Output Power versus IF Input Power


Figure 11. LO to RF Feedthrough versus LO Frequency

Frequency (MHz)	RF Output	LO Input	LO Output
1500	$22.07-\mathrm{j} 11.36$	$41.98+\mathrm{j} 22.31$	$20.09+\mathrm{j} 31.15$
1550	$21.74-\mathrm{j} 4.69$	$50.60+\mathrm{j} 9.80$	$26.39+\mathrm{j} 40.79$
1600	$22.28+\mathrm{j} 2.16$	$41.93-\mathrm{j} 0.07$	$37.63+\mathrm{j} 52.47$
1650	$24.01+\mathrm{j} 8.25$	$32.74+\mathrm{j} 3.32$	$56.16+\mathrm{j} 63.47$
1700	$26.64+\mathrm{j} 14.13$	$28.78+\mathrm{j} 11.39$	$87.97+\mathrm{j} 67.31$
1750	$30.83+\mathrm{j} 20.11$	$28.98+\mathrm{j} 21.04$	$131.33+\mathrm{j} 40.34$
1800	$36.39+\mathrm{j} 25.30$	$32.13+\mathrm{j} 30.26$	$137.85-\mathrm{j} 16.48$
1850	$43.92+\mathrm{j} 29.26$	$37.68+\mathrm{j} 40.38$	$103.88-\mathrm{j} 50.81$
1900	$54.37+\mathrm{j} 30.98$	$48.31+\mathrm{j} 54.15$	$69.58-\mathrm{j} 53.97$
1950	$65.34+\mathrm{j} 28.57$	$68.80+\mathrm{j} 70.87$	$50.13-\mathrm{j} 46.24$
2000	$75.30+\mathrm{j} 21.12$	$118.18+\mathrm{j} 86.46$	$38.97-\mathrm{j} 36.86$
2050	$81.19+\mathrm{j} 8.43$	$220.83+\mathrm{j} 17.19$	$32.08-\mathrm{j} 27.58$
2100	$80.22-\mathrm{j} 4.24$	$148.91-\mathrm{j} 120.77$	$28.43-\mathrm{j} 19.86$
2150	$74.20-\mathrm{j} 14.00$	$58.50-\mathrm{j} 105.11$	$26.56-\mathrm{j} 12.82$
2200	$65.50-\mathrm{j} 19.72$	$27.23-\mathrm{j} 71.51$	$26.03-\mathrm{j} 5.89$
2250	$57.40-\mathrm{j} 21.38$	$17.22-\mathrm{j} 50.26$	$26.73-\mathrm{j} 0.03$
2300	$50.59-\mathrm{j} 20.61$	$13.00-\mathrm{j} 35.19$	$28.46+\mathrm{j} 5.10$
2350	$44.53-\mathrm{j} 18.16$	$10.95-\mathrm{j} 22.96$	$30.88+\mathrm{j} 9.86$
2400	$40.24-\mathrm{j} 14.78$	$10.23-\mathrm{j} 13.58$	$33.75+\mathrm{j} 13.92$
2450	$37.73-\mathrm{j} 10.54$	$10.20-\mathrm{j} 5.32$	$37.50+\mathrm{j} 17.32$
2500	$36.38-\mathrm{j} 6.72$	$10.62+\mathrm{j} 2.90$	$42.00+\mathrm{j} 20.34$

## Table 1. Selected Device Impedances

## DESIGN AND APPLICATIONS INFORMATION

The MRFIC1803 combines a single-balanced FET mixer with an LO pre-amp and an exciter amplifier to form a self-contained upconverter. The device is usable from RF frequencies of 1.7 to 2.5 GHz and at IF frequencies of 70 to 325 MHz . The design is optimized for low side injection in hetrodyne transmitter applications. In the upconversion process, modulation is imparted to an IF carrier which is converted to the RF transmit frequency by a mixer. By DC coupling the IF input, the device can be used for simple on-off keying (OOK) or bi-phase shift keying (BPSK) applications with no IF.
The MRFIC1803 design minimizes the need for off-chip components. An active balun is employed at the IF input and provides an excellent broadband $50 \Omega$ match over the full range of IF frequencies. The LO quadrature divider is passive and internal to the device. The LO buffer amplifier is equipped with a diversity switch which switches the amplified LO signal to the LO output pin during RECEIVE mode. The -5 dBm LO output is the appropriate level to drive the MRFIC1804 for 1.8 GHz applications or the MRFIC2401 for 2.4 GHz applications.
As shown in Figure 1, the device is easy to use with minimal off-chip components. More or less bypassing of the control and supply lines may be required depending on board layout and shielding. Careful layout of the RF
frequency portions of the board is critical to successful implementation. Controlled impedance lines must be used and any off-chip components must be mounted as close to the IC as possible. The applications circuit was used to gather the information displayed in the typical characteristics curves. Since the MRFIC1803 design was optimized for the 1.7 to 1.9 GHz frequency range, improved performance can be had with some off-chip matching at frequencies outside this range. In particular, matching of the LO port will supply higher LO drive and improve conversion gain. At the RF output, either better gain or better 1dB compression can be had with external matching.

Filtering is generally required in the upconversion process to reduce image and LO radiation. To minimize pin count, this filtering is accomplished external to the device at the exciter output. For the frequency ranges of application, two and three pole ceramic surface filters are available at reasonable cost and with less than 2 dB of loss.

## EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

## The MRFIC Line <br> 1.8 GHz LNA/Downmixer

Designed primarily for use in DECT, Japan Personal Handy Phone (JPHP), and other wireless Personal Communication Systems (PCS) applications. The MRFIC1804 includes a low noise amplifier and downmixer in a low-cost SOIC-16 package. The integrated circuit requires minimal off-chip matching while allowing for the maximum in flexibility and efficiency. The mixer is optimized for low side injection and offers reasonable intercept point as well as high efficiency and 4 dB of conversion gain. Image filtering is implemented off-chip to allow maximum flexibility. With both TX and RX enable pins low, the device is in standby mode and draws less than 0.5 mA .

Together with the rest of the MRFIC180X series, this GaAs IC family offers the complete transmit and receive functions, less LO and filters, needed for a typical 1.8 GHz cordless telephone.

- Usable Frequency Range $=1.5$ to 2.2 GHz
- 14 dB Gain, 2.3 dB Noise Figure LNA
- 4 dB Gain, 13 dB Noise Figure Mixer
- 0.9 dB Mixer Input Intercept Point
- Simple LO/IF Off-Chip Matching for Maximum Flexibility
- Low Power Consumption = 24 mW (Typ)
- Single Bias Supply = 2.7 to 3.3 V
- Low LO Power Requirement $=-5 \mathrm{dBm}$ (Typ)
- Low Cost Surface Mount Plastic Package
- Order MRFIC1804R2 for Tape and Reel. R2 Suffix $=2,500$ Units per 16 mm, 13 inch Reel.
- Device Marking = M1804


## MRFIC1804

### 1.8 GHz LOW NOISE AMPLIFIER AND DOWNMIXER GaAs MONOLITHIC INTEGRATED CIRCUIT



CASE 751B-05 (SO-16)


Pin Connections and Functional Block Diagram

MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Limit	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	5	Vdc
LNA Input Power (Standby Mode)	$\mathrm{LNA}_{\text {in }}$	10	dBm
LO Input Power	$\mathrm{P}_{\text {LO }}$	0	dBm
Receive Enable Voltage	RX EN	5	Vdc
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	-30 to +85	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
RF Input Frequency	$\mathrm{f}_{\mathrm{RF}}$	1.8 to 1.925	GHz
Mixer LO Frequency	$\mathrm{f}_{\mathrm{LO}}$	1.5 to 1.9	GHz
IF Output Frequency	$\mathrm{f}_{\mathrm{IF}}$	70 to 325	MHz
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	2.7 to 3.3	Vdc
Receive Enable Voltage	RX EN	2.7 to 3.3	Vdc

ELECTRICAL CHARACTERISTICS $\left(V_{D D}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{LO}=1790 \mathrm{MHz} @-5 \mathrm{dBm}, \mathrm{RF}=1.9 \mathrm{GHz}, \mathrm{RX}\right.$ EN $\left.=3 \mathrm{~V}\right)$

Characteristic	Min	Typ	Max	Unit
LNA Gain	-	14	-	dB
LNA Noise Figure	-	2.3	-	dB
LNA Input 3rd Order Intercept	-	-11	-	dBm
Mixer Conversion Gain (into 50 $\Omega$ )	-	4	-	dB
Mixer Noise Figure	-	13	-	dB
Mixer Input 3rd Order Intercept	-	0.9	-	dBm
Downconverter Gain (Less Image Filter Loss)	16	-	-	dB
Supply Current, RX Mode (RX EN = 3 V, LO Off)	-	7	10	mA
Standby Mode Current (RX EN =0 V, LO off)	-	-	0.5	mA



Figure 1. Applications Circuit Configuration (for 110 MHz and 240 MHz IF)

Freq (GHz)	$\mathbf{S}_{11}$		$\mathbf{S}_{21}$		$\mathbf{S}_{12}$		$\mathbf{S}_{22}$	
	Mag	Angle	Mag	Angle	Mag	Angle	Mag	Angle
	0.801	-64.71	5.65	-63.77	0.025	139.08	0.685	-62.55
1.6	0.741	-70.03	6.07	-80.96	0.033	128.21	0.622	-74.44
1.7	0.641	-73.54	6.63	-98.00	0.038	123.07	0.622	-83.36
1.8	0.559	-72.72	6.70	-113.87	0.047	113.17	0.560	-92.40
1.82	0.533	-71.10	6.58	-117.42	0.046	111.66	0.543	-93.20
1.84	0.512	-71.20	6.32	-120.25	0.046	109.36	0.530	-94.40
1.86	0.494	-69.93	5.92	-123.27	0.049	107.72	0.513	-95.19
1.88	0.478	-68.86	5.79	-126.51	0.052	106.52	0.498	-95.56
1.9	0.467	-67.50	5.88	-129.49	0.054	104.49	0.486	-96.35
1.92	0.452	-66.18	5.98	-132.33	0.055	103.55	0.476	-97.14
2.0	0.383	-57.10	5.57	-143.54	0.055	97.41	0.412	-96.10
2.1	0.326	-47.69	5.06	-155.69	0.058	92.26	0.344	-90.55
2.2	0.271	-35.10	4.61	-167.78	0.063	86.81	0.276	-83.89
2.3	0.205	-15.07	4.12	175.72	0.072	83.78	0.192	-63.78
2.4	0.708	-12.53	1.84	-155.83	0.073	45.03	0.406	-48.22
2.5	0.462	-34.07	3.18	-178.63	0.055	58.37	0.292	-66.60

Table 1. LNA S-Parameters


Figure 2. Equivalent IF Output Circuit


Figure 4. LNA Gain and Noise Figure versus Frequency


Figure 5. Mixer Conversion Gain and 1 dB Compression versus Temperature


Figure 6. Mixer RF to IF Conversion Gain versus LO Power


Figure 7. Mixer RF to IF Conversion Gain versus RF Frequency


Figure 8. Mixer LO to IF Feed Through versus RF Frequency

## DESIGN AND APPLICATIONS INFORMATION

The MRFIC1804 consists of a two-stage GaAs MESFET low noise amplifier and a single ended MESFET mixer. The LNA design conserves bias current through stacking of the two FETs, thus reusing the current. The mixer consists of a common gate stage driving a common source stage with the IF output being the drain of the common source stage shunted with 15 pF . The LNA output and mixer input have been separated to allow the addition of an external image filter. Such a filter, usually ceramic, is useful in improving the mixer noise figure and third order intercept performance. It also provides LO rejection to reduce the amount of LO power which may leak to the antenna. Alternatively, image trapping can be implemented at the LNA input or output with discrete or distributed components.
The design has been optimized for application in the PCS bands around 1.9 GHz but is usable from around 1.5 GHz to 2.2 GHz . For applications at 1.9 GHz and IFs of 110 MHz or 240 MHz , the circuit shown in Figure 1 can be used. This circuit was used to derive the characterization data shown in Figures 3 through 8. For other IF frequencies in the 100

MHz to 350 MHz range, use the IF equivalent circuit shown in Figure 2 for matching network design. As can be seen in the characterization curves, performance appears to degrade above about 1.85 GHz . This is partially a function of the circuit shown in Figure 1 and can be improved, first, by adjusting the LO input match, second, by matching LNA input and and the mixer input off chip.

As with all RF circuits, layout is important. Ground vias must be close to the component or lead to be grounded and vias must be plentiful. RF signal lines should be controlled impedance such as microstrip. Bypassing of power supply leads as shown in Figure 1 is essential to avoid oscillation of the circuits.

## EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

## The MRFIC Line <br> 1.9 GHz GaAs Power Amplifier

This two-stage class AB monolithic GaAs amplifier in a low-cost 16 lead plastic package is designed for output or driver applications in 1.9 GHz PCS handsets and basestations. The design is optimized for 3.0 Volt operation in systems such as Japan's PHS, Europe's DECT and the emerging North American PCS services. With modifications to the simple off-chip matching, the device can be used in other applications from 1.5 to 2.5 GHz .

- High Output Capability $=27 \mathrm{dBm}$ Typical $\mathrm{P}_{\text {sat }}$
21.5 dBm Typical with PHS Format
- High Gain $=21 \mathrm{~dB}$ Typical Small Signal, 20 dB at $\mathrm{P}_{\text {out }}=22$ dBm
- Low Current Drain $=170 \mathrm{~mA}$ Typical with PHS Format 250 mA Typical with DECT Format
- Low-Cost, Low Profile Plastic TSSOP Package
- Order MRFIC1805R2 for Tape and Reel. R2 Suffix = 2,500 Units per 16 mm, 13 inch Reel.
- Device Marking = M1805


## MRFIC1805

### 1.9 GHz POWER AMPLIFIER GaAs MONOLITHIC INTEGRATED CIRCUIT



CASE 948C-03
(TSSOP-16)

ABSOLUTE MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Ratings	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{D} 1}$,   $\mathrm{V}_{\mathrm{D} 2}$	6	Vdc
Supply Voltage	$\mathrm{V}_{\mathrm{SS}}$	-4	Vdc
RF Input Power	$\mathrm{RF}_{\mathrm{in}}$	+10	dBm
Drain Current	IDD	500	mA
Thermal Resistance, Junction to Air	$\mathrm{R}_{\theta \mathrm{JA}}$	240	W
Operating Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	+175	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-30 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +125	${ }^{\circ} \mathrm{C}$



Pin Connections and Functional Block Diagram

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}, \mathrm{V}_{\mathrm{D} 1}$,   $\mathrm{V}_{\mathrm{D} 2}$	2.7 to 5	Vdc
Supply Voltage	V SS	-2.5	Vdc
PA Control Voltage	PCNTRL	0.0 to $\mathrm{V}_{\mathrm{DD}}$	Vdc
RF Input Power	Pin	-20 to +10	dBm
Operating Frequency Range	fOP	1500 to 2200	MHz

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{D} 1}=\mathrm{V}_{\mathrm{D} 2}=3 \mathrm{Vdc}, \mathrm{V}_{\mathrm{SS}}=-2.5 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.9 \mathrm{GHz}, \mathrm{P}_{\text {in }}=+2 \mathrm{dBm}, \mathrm{PCNTRL}\right.$ set for ${ }^{\mathrm{I}} \mathrm{DQ}=125 \mathrm{~mA}$, circuit configuration as shown in Figure 1)

Characteristic	Symbol	Min	Typ	Max	Unit
Power Output, Saturation	PSAT	23	25	-	dBm
RF Output Power	$P_{\text {out }}$	20	21.5	-	dBm
Adjacent Channel Power Ratio ( $384 \mathrm{Kbps} \pi / 4$ DQPSK Signal, 600 kHz Offset, $\mathrm{P}_{\text {out }}=21 \mathrm{dBm}$	PACP	-	-58	-55	dBc
RF Output 1 dB Compression	$\mathrm{P}_{1 \mathrm{~dB}}$	22	24	-	dBm
2nd Harmonic Output	-	-	-40	-	dBc
3rd Harmonic Output	-	-	-40	-	dBc
Supply Current	IDD	-	170	210	mA
Supply Current	ISS	-	200	300	$\mu \mathrm{A}$
Supply Current	IPCNTRL	-	220	300	$\mu \mathrm{A}$
Input Return Loss	-	-	13	-	dB
Reverse Isolation	-	-	31	-	dB
Output Third Intercept	-	-	34	-	dBm
Turn On Time	-	-	1	-	$\mu \mathrm{S}$



Figure 1. Applications Circuit Configuration


Figure 2. Output Power versus Input Power


Figure 4. Output Power versus Input Power


Figure 6. Supply Current versus Input Power


Figure 3. Output Power versus Input Power


Figure 5. Supply Current versus Input Power


Figure 7. Supply Current versus Control Voltage

## TYPICAL CHARACTERISTICS



Figure 8. Output Power versus Control Voltage


Figure 10. Supply Current versus Frequency


Figure 9. Output Power versus Frequency


Figure 11. Output Power versus Freqency


Figure 12. Supply Current versus Frequency

Table 1. Small Signal S-Parameters
$\left(V_{D 1}=V_{D 2}=3 \mathrm{Vdc}, T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}=1.9 \mathrm{GHz}, \mathrm{PCNTRL}\right.$ set for $\mathrm{I} \mathrm{DQ}=125 \mathrm{~mA}$, no matching circuit $)$

$\stackrel{\mathbf{f}}{\mathbf{M H z}}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$			
	\| $\mathrm{S}_{11}$ \|	$\angle \phi$	\|S21		$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
1.50	0.744	-76	10.99	-104	0.013	167	0.494	-177		
1.55	0.697	-76	11.01	-114	0.014	164	0.520	179		
1.60	0.662	-75	10.39	-124	0.015	163	0.533	174		
1.65	0.645	-75	9.22	-132	0.015	160	0.528	170		
1.70	0.636	-75	8.93	-135	0.016	157	0.522	167		
1.75	0.623	-75	8.90	-141	0.017	157	0.515	164		
1.80	0.617	-75	8.24	-148	0.018	158	0.506	161		
1.85	0.612	-76	7.70	-152	0.018	155	0.497	159		
1.90	0.602	-76	7.06	-158	0.019	154	0.489	156		
1.95	0.599	-78	6.41	-160	0.019	154	0.481	154		
2.00	0.590	-79	6.16	-160	0.021	154	0.475	152		
2.05	0.581	-80	6.12	-165	0.022	152	0.469	150		
2.10	0.570	-81	5.83	-170	0.022	150.	0.461	148		
2.15	0.562	-83	5.57	-174	0.023	151.	0.458	146		
2.20	0.548	-84	5.27	-178	0.024	152	0.455	144		
2.25	0.538	-86	5.00	-179	0.025	152	0.450	142		
2.30	0.527	-88	4.81	-179	0.027	151	0.448	141		
2.35	0.512	-90	4.60	175	0.027	149	0.447	139		
2.40	0.499	-92	4.43	171	0.027	146	0.447	137		
2.45	0.485	-94	4.27	169	0.028	149	0.449	136		
2.50	0.471	-97	4.00	163	0.030	150	0.449	134		

Table 2. Small Signal S-Parameters
$\left(V_{D 1}=V_{D 2}=3 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.9 \mathrm{GHz}, \mathrm{PCNTRL}\right.$ set for $\mathrm{I}_{\mathrm{DQ}}=150 \mathrm{~mA}$, no matching circuit $)$

$\mathbf{f}$   $\mathbf{M H z}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
		$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
1.55	0.752	-75	11.90	-104	0.012	169	0.480	-178
1.60	0.699	-75	11.90	-114	0.013	167	0.509	178
1.65	0.643	-74	9.94	-132	0.015	162	0.519	170
1.70	0.628	-74	9.60	-135	0.016	160	0.514	167
1.75	0.616	-74	9.55	-141	0.017	159	0.507	163
1.80	0.607	-74	8.81	-148	0.018	158	0.498	160
1.85	0.598	-75	8.23	-152	0.018	156	0.490	158
1.90	0.590	-75	7.54	-157	0.019	156	0.483	156
1.95	0.584	-77	6.82	-159	0.020	156	0.476	154
2.00	0.573	-78	6.55	-159	0.021	156	0.471	152
2.05	0.564	-79	6.50	-164	0.022	153	0.463	149
2.10	0.550	-81	6.17	-170	0.022	152	0.458	147
2.15	0.541	-82	5.88	-173	0.023	154	0.453	146
2.20	0.529	-84	5.56	-178	0.024	153	0.448	143
2.25	0.518	-86	5.26	-179	0.026	154	0.447	141
2.30	0.507	-88	5.04	-179	0.027	153	0.444	140
2.35	0.492	-90	4.82	176	0.028	150	0.443	138
2.40	0.481	-93	4.62	172	0.028	149	0.442	136
2.45	0.468	-95	4.45	170	0.028	152	0.444	135
2.50	0.454	-97	4.17	165	0.030	152	0.445	133

Table 3. Small Signal S-Parameters
$\left(V_{D 1}=V_{D 2}=3.3 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.9 \mathrm{GHz}\right.$, PCNTRL set for $\mathrm{I} \mathrm{DQ}=125 \mathrm{~mA}$, no matching circuit)

$\begin{gathered} \text { f } \\ \text { MHz } \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$			
	${ }^{\text {\| }} \mathbf{S}_{11} \mid$	$\angle \phi$	\|S21		$\angle \phi$	${ }^{\text {S }}$ 12 $\mid$	$\angle \phi$	\|S22		$\angle \phi$
1.50	0.764	-73	11.50	-104	0.013	169	0.492	-177		
1.55	0.711	-74	11.49	-114	0.014	166	0.518	179		
1.60	0.674	-73	10.82	-124	0.014	164	0.528	174		
1.65	0.652	-73	9.60	-132	0.016	162	0.524	170		
1.70	0.641	-73	9.27	-135	0.016	158	0.519	167		
1.75	0.628	-73	9.24	-141	0.017	158	0.507	164		
1.80	0.616	-73	8.54	-148	0.017	158	0.495	161		
1.85	0.607	-74	7.99	-152	0.019	155	0.489	159		
1.90	0.598	-75	7.33	-157	0.019	155	0.480	157		
1.95	0.590	-76	6.63	-160	0.020	156	0.471	154		
2.00	0.580	-77	6.35	-160	0.021	154	0.461	153		
2.05	0.569	-79	6.30	-165	0.021	152	0.454	150		
2.10	0.556	-80	5.98	-170	0.023	151	0.445	148		
2.15	0.546	-82	5.70	-174	0.022	154	0.439	147		
2.20	0.534	-84	5.39	-178	0.024	152	0.436	144		
2.25	0.523	-86	5.11	-179	0.025	153	0.430	142		
2.30	0.510	-88	4.90	-179	0.026	150	0.427	141		
2.35	0.499	-90	4.70	175	0.027	149	0.424	139		
2.40	0.486	-93	4.48	171	0.027	148	0.422	137		
2.45	0.473	-95	4.31	169	0.027	150	0.422	135		
2.50	0.463	-98	4.05	164	0.029	151	0.420	133		

Table 4. Small Signal S-Parameters
$\left(\mathrm{V}_{\mathrm{D} 1}=\mathrm{V}_{\mathrm{D} 2}=3.3 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1.9 \mathrm{GHz}\right.$, PCNTRL set for $\mathrm{I} \mathrm{DQ}=150 \mathrm{~mA}$, no matching circuit)

$\mathbf{f}$   $\mathbf{M H z}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\mathbf{S}_{\mathbf{1 1}} \mid$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
1.55	0.756	-74	12.03	-105	0.012	168	0.483	-178
1.60	0.702	-75	12.02	-115	0.013	168	0.509	178
1.65	0.663	-74	11.33	-125	0.014	162	0.519	174
1.70	0.628	-73	10.03	-133	0.015	161	0.518	170
1.75	0.614	-73	9.62	-142	0.016	160	0.502	164
1.80	0.603	-74	8.88	-149	0.018	159	0.494	161
1.85	0.596	-74	8.30	-153	0.018	157	0.485	159
1.90	0.584	-75	7.59	-158	0.019	156	0.476	157
1.95	0.577	-76	6.87	-160	0.020	156	0.466	154
2.00	0.567	-77	6.58	-160	0.021	155	0.458	152
2.05	0.559	-79	6.50	-165	0.022	152	0.450	150
2.10	0.545	-80	6.17	-171	0.022	152	0.443	148
2.15	0.536	-82	5.87	-175	0.022	152	0.436	147
2.20	0.524	-84	5.54	-179	0.024	153	0.429	145
2.25	0.512	-86	5.25	-180	0.025	153	0.424	143
2.30	0.500	-88	5.03	180	0.026	152	0.422	141
2.35	0.486	-90	4.78	174	0.027	149	0.418	139
2.40	0.477	-93	4.58	170	0.027	149	0.414	137
2.45	0.462	-95	4.40	168	0.027	150	0.413	136
2.50	0.452	-98	4.13	163	0.029	151	0.412	134

## The MRFIC Line <br> 1.8 GHz PA Driver/Ramp

Designed primarily for use in DECT, Japan Personal Handy System (PHS), and other wireless Personal Communication Systems (PCS) applications. The MRFIC1806 includes a two stage driver amplifier and transmit waveform shaping circuitry in a low-cost SOIC-16 package. The amplifier portion employs depletion mode power GaAs MESFETs to produce +21 dBm output with 0 dBm input. The ramping circuit controls the burst-mode transmit rise and fall time and is adjustable through external components. This circuitry also places the amplifier in standby during TDMA receive mode. The MRFIC1806 is
sized to drive the MRFIC1807 PA/Switch.
Together with the rest of the MRFIC1800 GaAs ICs, this family offers the complete transmit and receive functions, less LO and filters, needed for a typical 1.8 GHz cordless telephone.

- Usable 1500-2500 MHz
- 23 dB Typical Gain
- +21 dBm Typical 1.0 dB Compression
- Simple Off-Chip Matching for Maximum Flexibility
- 3.0 to 5.0 Volt Supply
- Low Cost Surface Mount Plastic Package
- Order MRFIC1806R2 for Tape and Reel. R2 Suffix = 2,500 Units per $16 \mathrm{~mm}, 13$ inch Reel.
- Device Marking = M1806




Figure 1. Pin Connections and Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Limit	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	6.0	Vdc
Supply Voltage	$\mathrm{V}_{\text {SS }}$	-4.0	Vdc
Supply Voltage	REG $\mathrm{V}_{\mathrm{DD}}$	4.5	Vdc
Bias Control Voltage	PCNTRL	3.0	Vdc
RF Input Power	$\mathrm{PIN}^{2}$	10	dBm
Ramp Circuit Input Voltage (High)	TX RAMP	6.0	Vdc
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-10 to +70	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Case	$\theta_{\mathrm{JC}}$	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
RF Input Frequency	$f_{R F}$	$1.5-2.5$	GHz
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	3.0 to 5.0	Vdc
Supply Voltage	$\mathrm{V}_{\text {SS }}$	-2.75 to -2.25	Vdc
Supply Voltage	REG $\mathrm{V}_{\mathrm{DD}}$	2.9 to 3.1	Vdc
Bias Control Voltage	PCNTRL	0.5 to 1.5	Vdc
RF Input Power	PIN	-20 to +5	dBm
Transmit Burst Enable Voltage (High)	TX RAMP	2.8 to 3.5	Vdc
Transmit Burst Enable Voltage (Low)	TX RAMP	-0.2 to +0.2	Vdc

ELECTRICAL CHARACTERISTICS
DECT Application with Internal Logic Translator (See Figure 2. $\mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V}$, REG $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{SS}}=-2.5 \mathrm{~V}$,
TX RAMP $=3.0 \mathrm{~V}$, PCNTRL set for Quiescent $I_{D D}=120 \mathrm{~mA}, \mathrm{P}_{\mathrm{IN}}=-3.0 \mathrm{dBm} @ 1.9 \mathrm{GHz}$ unless otherwise stated.)

Characteristic	Min	Typ	Max	Unit
Small Signal Gain (PIN = 7.0 dBm )	21	23	-	dB
Input Return Loss	-	12	-	dB
Reverse Isolation	-	36	-	dB
Output Power	18	19.5	-	dBm
Harmonic Output	-	-36	-	dBc
Output Third Order Intercept	-	33	-	dBm
Supply Current, ISS (Pin 9)	-	0.35	0.6	mA
Supply Current, IDD (Pin 7)	-	115	135	mA
Supply Current, REG IDD (Pin 3)	-	0.6	0.9	mA
Ramp Circuit Dynamic Range	40	44	-	dB

STANDBY MODE (TX RAMP = 0 V)

Characteristic	Min	Typ	Max	Unit
Output Power	-	-25	-	dBm
Supply Current, ISS (Pin 9)	-	0.4	0.6	mA
Supply Current, REG IDD (Pin 3)	-	0.25	0.4	mA



Figure 2. Applications Circuit Details for DECT using Internal Logic Translator

## ELECTRICAL CHARACTERISTICS

General Application without Internal Logic Translator (See Figure 3. $\mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V}, \operatorname{REG} \mathrm{~V}_{\mathrm{DD}}$ (Pin 2) open, $\mathrm{V}_{\mathrm{SS}}=-2.5 \mathrm{~V}$,
TX RAMP (Pin 2) grounded, $\mathrm{V}_{\text {RAMP }}=3.0 \mathrm{~V}$, PCNTRL set for Quiescent $\mathrm{I}_{\mathrm{DD}}=120 \mathrm{~mA}, \mathrm{P}_{\mathrm{IN}}=0 \mathrm{dBm} @ 1.9 \mathrm{GHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise stated.)

Characteristic	Min	Typ	Max	Unit
Small Signal Gain (PIN $=-7.0 \mathrm{dBm})$	21	23	-	dB
Output Power (PIN $=0 \mathrm{dBm})$	20	22	-	dBm
Output Power (PIN $=+4.0 \mathrm{dBm})$	-	23	-	dBm
Supply Current, ISS (Pin 9)	-	0.3	0.5	mA
Supply Current, IDD (Pin 7)	-	130	145	mA

STANDBY MODE ( $\mathrm{V}_{\text {RAMP }}=-2.4 \mathrm{~V}$ )

Characteristic	Min	Typ	Max	Unit
Output Power	-	-25	-	dBm
Supply Current, ISS (Pin 9)	-	0.4	0.6	mA



Figure 3. 1.9 GHz General Application Circuit Details (Internal Translator Disabled)
Table 1. Small Signal S-Parameters
$\left(\mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=120 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, no matching circuit, reference plane at pins 6 and 11.)

Freq (GHz)	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	Mag	Angle	Mag	Angle	Mag	Angle	Mag	Angle
1.5	0.734	-76.8	13.11	-87.9	0.009	-176	0.278	-98.9
1.6	0.654	-82.4	13.01	-109.4	0.012	178	0.326	-116.4
1.7	0.620	-72.6	11.17	-117.4	0.011	152	0.344	-109.8
1.8	0.636	-79.8	12.25	-137.0	0.014	170	0.423	-134.1
1.9	0.607	-80.6	10.77	-151.3	0.017	169	0.421	-147.7
2.0	0.592	-79.4	10.88	-165.1	0.019	163	0.427	-161.8
2.1	0.581	-79.4	9.64	-174.9	0.024	163	0.432	-172.3
2.2	0.571	-78.9	9.30	174.1	0.026	158	0.429	178.8
2.3	0.560	-79.1	7.95	166.9	0.029	157	0.432	171.1
2.4	0.541	-79.8	7.80	155.7	0.033	153	0.442	164.6
2.5	0.521	-80.1	6.90	147.2	0.042	154	0.445	161.7

## DESIGN AND APPLICATIONS INFORMATION

## DESIGN PHILOSOPHY

The MRFIC1806 is designed to drive the MRFIC1807 Power Amplifier and Transmit/Receive Switch IC in Personal Communications System (PCS) applications such as Europe's DECT and Japan's Personal Handy System (PHS). The design incorporates not only a two-stage GaAs MESFET driver/exciter amplifier, but also externally controllable bias and ramping circuitry. The IC is designed to drive the MRFIC1807 with about +19 dBm which will, in turn, produce +26 dBm output, suitable for DECT. To reduce chip size (and cost) and to allow for flexibility of application, the amplifier has limited on-chip matching. The ramp circuitry is used to shape the drain voltage to the FETs for Time Domain Multiple Access (TDMA) applications and is comprised of a depletion mode pass device driven by a logic translator. Attack and release times are controllable through the use of external components. The IC is configured such that all, part or none of the ramping circuitry can be used, depending on the application.

## AMPLIFIER CIRCUIT APPLICATION

As can be seen in Figures 2 and 3, the off-chip matching is straight forward. At frequencies near 1.9 GHz , the input requires 4.7 nH in series and 1.5 pF in shunt. The 4.7 nH series inductance may be implemented with a highimpedance transmission line as shown. The output, being close to $25 \Omega$, requires only a shunt 1.5 pF capacitor. Drain voltage for stage 1 is supplied through pin 14 and for stage 2 through pin 11, the RF output. Pin 8, PCNTRL is used to set the quiescent bias point for both stages. While nominal IDDQ is 120 mA , it can be set as high as 180 mA for better linearity or lower for better efficiency. 120 mA is a good compromise for DECT and PHS. DECT, which employs GMSK constant envelope modulation can use RF amplifiers close to or in saturation without experiencing spectral regrowth of the signal. PHS, on the other hand, employs $\pi / 4$ DQPSK modulation which has some residual AM associated with the encoding. With AM present, RF amplifiers must be backed off from saturation so as not to regrow the filtered sidebands. The MRFIC1806 has plenty of backoff capability for PHS where the MRFIC1807 PA/switch must only produce about +21 dBm . With the 8.0 dB gain of the MRFIC1807, the MRFIC1806 need only produce +13 dBm output so the bias point can be reduced below the 120 mA suggested for DECT. As with all RF
circuits, board layout and grounding are important. All RF signal paths must be controlled impedance structures. RF chip components must be high quality. Bypassing capacitors must be close to the IC and to ground vias. Pins which are designated as ground connections must be as close as possible to ground vias.

## RAMPING CIRCUIT OPTIONS

The on-chip ramp circuit can be used to control the amplifier attack and release time for DECT applications through the use of a few external components as shown in Figure 2. This ramping is required to control the burst signal rise and fall time to avoid adjacent channel interference. At the same time, system specifications require the transmitter to reach full power in a minimum time. For DECT, it has been shown that a rise time of not greater than 2 microseconds will produce acceptable adjacent channel performance. The system requires full power in not greater than 10 microseconds. A good compromise, and the timing implemented in Figure 2, is 7 mi croseconds

The on-chip logic translator can be bypassed as shown in Figure 3 by applying a ramp voltage to Pin 1 through a $1.0 \mathrm{k} \Omega$ resistor. This configuration allows flexibility in ramping the amplifier. The regulated $V_{D D}$ voltage is not required so current consumption can be reduced. -2.3 V at Pin 1 turns the pass transistor, and the amplifier, off while a positive voltage will turn the pass transistor on. For full on state it is recommended that $\mathrm{V}_{\text {RAMP }}$ be close to $\mathrm{V}_{\mathrm{DD}}$. $\mathrm{V}_{\text {RAMP }}$ can also be used to on-off key the amplifier for simple telemetry applications or as transmit/receive control.

For more complex modulation schemes such as $\pi / 4$ DQPSK used in PHS, burst ramping can be implemented with the burst mode logic. Referring to Figure 3, the VRAMP voltage should be set to VDD to leave the pass transistor on. The on-chip pass transistor can also be bypassed and VDD applied to Pins 11 and 14.

## EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.


Figure 4. Output Power versus Frequency With Internal Logic Translator


Figure 6. Output Power versus Frequency With Internal Logic Translator


Figure 8. Output Power versus Input Power With Internal Logic Translator


Figure 5. Output Power versus Frequency Without Internal Logic Translator


Figure 7. Output Power versus Frequency Without Internal Translator


Figure 9. Output Power versus Input Power Without Internal Logic Translator


Figure 10. Output Power versus Input Power With Internal Logic Translator


Figure 12. Output Power versus Input Power With Internal Logic Translator


Figure 14. Supply Current versus Frequency With Internal Logic Translator


Figure 11. Output Power versus Input Power Without Internal Logic Translator


Figure 13. Output Power versus Input Power Without Internal Logic Translator


Figure 15. Supply Current versus Frequency Without Internal Logic Translator


Figure 16. Supply Current versus Frequency With Internal Logic Translator


Figure 18. Supply Current versus Input Power With Internal Translator


Figure 20. Supply Current versus Input Power With Internal Translator


Figure 17. Supply Current versus Frequency Without Internal Logic Translator


Figure 19. Supply Current versus Input Power Without Internal Translator


Figure 21. Supply Current versus Input Power Without Internal Logic Translator


Figure 22. Supply Current versus PCNTRL Without Internal Logic Translator


Figure 24. Small Signal Gain versus Frequency With Internal Logic Translator


Figure 26. Dynamic Range versus Frequency With Internal Logic Translator


Figure 23. Pout versus PCNTRL Without Internal Logic Translator


Figure 25. Small signal Gain versus
Frequency Without Internal Logic Translator


Figure 27. Quiescent Supply Current versus PCNTRL With Internal Logic Translator


Figure 28. Output Power and Adjacent Channel Power Ratio versus Input Power Without Internal Logic Translator


Figure 29. Continuous and Burst Mode Output Power versus Input Power With Internal Logic Translator

## The MRFIC Line 1.8 GHz Power Amp/Switch

Designed primarily for use in DECT, Japan Personal Handy System (PHS) and other wireless Personal Communication Systems (PCS) applications. The MRFIC1807 includes a single-stage power amplifier and transmit/receive switch in a low-cost SOIC-16 package. The amplifier portion employs a depletion mode power GaAs MESFET and produces up to +27 dBm output with +19 dBm input. On-chip power control circuitry allows bias adjustment for optimum performance. The T/R switch is capable of handling up to +28 dBm through the transmit path without significant increase in insertion loss. The switch is controlled by CMOS logic level signals - no negative control voltage required. The MRFIC1807 is sized to be driven by the MRFIC1806 Driver/ Ramp IC.

Together with the rest of the MRFIC1800 GaAs ICs, this family offers the complete transmit and receive functions, less LO and filters, needed for a typical 1.8 GHz cordless telephone.

- Usable 1500-2200 MHz
- 8.0 dB Gain Including Switch
- +26 dBm Minimum Output Power at Antenna Port
- 1.0 dB Typ RX Path Insertion Loss
- Simple Off-Chip Matching for Maximum Flexibility


## MRFIC1807

### 1.8 GHz POWER AMPLIFIER AND TRANSMIT/RECEIVE SWITCH GaAs MONOLITHIC INTEGRATED CIRCUIT



CASE 751B-05
(SO-16)

- 3.0 to 5.0 V Supply
- No Spurious Outputs for Load VSWR up to 8:1
- CMOS Level Switching Signal for T/R Switch
- Order MRFIC1807R2 for Tape and Reel. R2 Suffix = 2,500 Units per 16 mm, 13 inch Reel.
- Device Marking = M1807


Figure 1. Pin Connection and Functional Block Diagram

ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ Unless Otherwise noted)

Rating	Symbol	Limit	Unit
PA Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	6.0	Var
Supply Voltage	REG $\mathrm{V}_{\mathrm{DD}}$	-4.0	Vdc
Supply Voltage	$\mathrm{V}_{\mathrm{SS}}$	+25	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	6.0	dBm
Switch Control Voltage	$\mathrm{TX} / \mathrm{RX}$	3.0	Vdc
PA Control Voltage	PCNTRL	-10 to +70	Vdc
Ambient Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	24	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Case	$\theta_{\mathrm{JC}}$	${ }^{\circ} \mathrm{C} / \mathrm{W}$	

## RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
RF Input Frequency	$\mathrm{f}_{\mathrm{RF}}$	1.5 to 2.2	GHz
PA Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	3.0 to 5.0	Vdc
Supply Voltage	REG $\mathrm{V}_{\mathrm{DD}}$	2.9 to 3.1	Vdc
Supply Voltage	$\mathrm{V}_{\text {SS }}$	-2.75 to -2.25	Vdc
RF Input Power	$\mathrm{P}_{\mathrm{IN}}$	+5.0 to +23	dBm
Switch Control Voltage, High (TX Mode)	TX/RX	2.8 to 3.5	Vdc
Switch Control Voltage, Low (RX Mode)	TX/RX	-0.2 to 0.2	Vdc
PA Control Voltage	PCNTRL	0.0 to 2.5	Vdc

ELECTRICAL CHARACTERISTICS (1)
Transmit Mode (VD $=3.5 \mathrm{~V}$, REG $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V} \mathrm{SS}=-2.5 \mathrm{~V}, \mathrm{PCNTRL} 0 \mathrm{~V}$ to $2.5 \mathrm{~V}, \mathrm{P}_{\mathrm{IN}}=20 \mathrm{dBm} @ 1.9 \mathrm{GHz}$, TX/RX = 3 V, POUT Measured at ANT Port)

Characteristic	Min	Typ	Max	Unit
Small Signal Gain (PIN = 0 dBm, PCNTRL set for IDDQ = 180 mA)	7.0	8.0	-	dB
Output Power (PCNTRL adjusted for efficiency $\geq 35 \%)$	26	26.8	-	dBm
Output 1.0 dB Compression (PCNTRL set for IDDQ $=180 \mathrm{~mA}$ )	-	25	-	dBm
Harmonic Output (PCNTRL set for POUT = 26 dBm )	-	-40	-	dBc
Switch RX to TX Switching Time	-	0.1	-	$\mu \mathrm{sec}$
TX/RX Control Input Current, Pin 10	-	0.2	-	mA
Drain Efficiency (Pout = 26 dBm) (2)	-	40	-	$\%$
Supply Current, ISS	-	0.8	1.2	mA
Supply Current, REG IDD	-	0.8	1.2	mA
PCNTRL Control Input Current (Pin 9)	-	15	-	$\mu A$
Leakage Power at RX Port	-	-1	+6	dBm

Receive Mode ( $\mathrm{V}_{\mathrm{DD}}=0 \mathrm{~V}, \mathrm{REG} \mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.5 \mathrm{~V}$, $\mathrm{TX} / \mathrm{RX}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Freq $=1.9 \mathrm{GHz}$ )

Characteristic	Min	Typ	Max	Unit
ANT to RX Insertion Loss	-	1.0	1.3	$d B$
Switch TX to RX Switching Time	-	1.0	-	$\mu \mathrm{sec}$
Supply Current, REG IDD	-	60	250	$\mu \mathrm{~A}$
Supply Current, ISS	-	60	250	$\mu \mathrm{~A}$

## NOTES:

1. Measured with circuit configuration shown in Figure 2.
2. Includes switch loss.


Figure 2. 1.9 GHz Applications Circuit Configuration

Table 1. Small Signal S-Parameters
$\left(\mathrm{V}_{\mathrm{DD}}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DDQ}}=180 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, no input or output matching $)$

Freq (GHz)	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	Mag	Angle	Mag	Angle	Mag	Angle	Mag	Angle
1.5	0.614	-171.5	2.203	82.6	0.104	74.5	0.741	175.4
1.6	0.695	175.7	1.871	71.7	0.110	69.2	0.746	171.5
1.7	0.747	167.3	1.647	63.4	0.108	64.0	0.745	167.4
1.8	0.777	160.3	1.473	56.2	0.106	58.7	0.746	163.0
1.9	0.799	154.2	1.341	49.2	0.120	54.0	0.753	158.9
2.0	0.814	148.3	1.230	43.0	0.118	49.6	0.758	154.8
2.1	0.826	142.5	1.128	36.8	0.114	45.2	0.764	150.6
2.2	0.835	137.0	1.041	31.2	0.120	40.6	0.767	146.7
2.3	0.842	131.4	0.959	26.4	0.127	37.0	0.780	143.4
2.4	0.856	126.6	0.895	21.1	0.124	33.8	0.796	139.8
2.5	0.870	121.7	0.840	16.0	0.126	30.4	0.808	136.4



Figure 3. Output Power versus Input Power


Figure 5. Output Power versus Input Power


Figure 7. Output Power versus Input Power


Figure 4. Supply Current versus Input Power


Figure 6. Supply Current versus Input Power


Figure 8. Supply Current versus Input Power


Figure 9. Supply Current versus Frequency


Figure 11. Quiescent Supply Current versus PCNTRL


Figure 13. Leakage Power at RX Port in TX Mode versus Frequency


Figure 10. Output Power versus Frequency


Figure 12. Small Signal Gain versus Frequency


Figure 14. RX Path Insertion Loss in RX Mode versus Frequency


Figure 15. Supply Current versus PCNTRL


Figure 16. Output Power versus PCNTRL


Figure 17. Output Power and Adjacent Channel Power Ratio versus Input Power

## DESIGN AND APPLICATIONS INFORMATION

## DESIGN PHILOSOPHY

The MRFIC1807 is designed to operate with the MRFIC1806 Driver/Ramp IC in 1.9 GHz Personal Communication System (PCS) applications such as Europe's DECT and Japan's PHS. The design incorporates a depletion mode GaAs power MESFET with a high-power transmit/receive switch and associated bias circuitry in one low-cost SOIC-16 package.

The power MESFET is sized to produce at least 27 dBm saturated output power, including switch loss, from a 3.5 V supply, but the output power can be controlled using the PCNTRL input. This control voltage also allows setting of the quiescent current of the FET. PCNTRL can be set to give best efficiency or linearity for the particular system application. The TX/RX control pin allows fast switching of the T/R switch for TDMA applications. When switching from transmit to receive, the battery supply voltage should be removed from the PA (Pin 4), to avoid excessive current drain. This is usually accomplished using an external pass transistor controlled by the TX/RX signal. Alternatively, if PCNTRL is reduced to 0 V during RX mode, the bias current is reduced to nearly zero.

The Transmit/Receive switch is a reflective MESFET design which is optimized for low loss and power handling in transmit mode. The design can handle 28 dBm of transmit power without significant increase in insertion loss. A regulated 3.0 Volt supply is required at pin 16 for the T/R switch and the bias and control circuitry.

## DECT APPLICATIONS

Figure 2 shows the component values for a DECT implementation of the MRFIC1807. For use in equipment designed for DECT, the power amplifier is operated close to saturation to improve device efficiency. Maximum power output at the antenna connector is 24 dBm during a burst. The constant envelope characteristics of the GMSK modulation allow non-linear amplification without spectral regrowth. The transmit signal must be shaped or "ramped" to meet system transmit turn on time requirements of $10 \mu \mathrm{sec}$ minimum while not splattering into adjacent channels. A turn on time on greater than
$2.0 \mu \mathrm{sec}$ has been shown to give adequate adjacent channel power performance. Most DECT realizations have the modulation applied to the transmit VCO so the most straight forward way of implementing this ramping function is at the power amplifier. The MRFIC1806 Driver/Ramp IC has an on-chip ramping circuit specifically designed for DECT. When ramped in this manner, the MRFIC1806 will supply the appropriately ramped RF signal to the MRFIC1807 which only has to be turned on and off with TX/RX. Alternate offchip ramping can be implemented either with external components or at baseband. Consult the MRFIC1806 datasheet for more information.

## PHS APPLICATIONS

For Japan's Personal Handy System applications, the modulation is $\pi / 4$ DQPSK. When amplified with a non-linear amplifier, the signal will regrow the sidebands which have been carefully filtered at baseband, resulting in adjacent channel interference. To avoid this spectral regrowth, the amplifier must be operated "backed off" from saturation. The amount of backoff required has been shown to be a function of amplifier saturated output capability and may be as high as 5.0 dB . The PHS specification calls for a maximum average power during a burst to be 19 dBm . This is consistent with 5.0 dB backoff from the DECT operating point so the same DECT operating condition could be used. Alternatively, PCNTRL can be adjusted for a lower bias point to improve efficiency or higher bias for better linearity. With $\pi / 4$ DQPSK modulation, ramping can be accomplished in the encoder so no external ramp circuit is needed. See the MRFIC1806 data sheet for further details.

## EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

## The MRFIC Line

1.9 GHz GaAs

## Low Noise Amplifier

Designed primarily for use in wireless Personal Communication Systems (PCS) applications such as Digital European Cordless Telephone (DECT), Japan's Personal Handy System (PHS) and the emerging North American systems as a preamp for discrete or integrated downmixers. The MRFIC1808 is a two-stage low noise amplifier in a low-cost SO-8 package. The amplifier can be matched to optimize gain or noise figure with simple off-chip input matching. The design employs a novel stacked MESFET design which reuses bias current for the highest gain at minimal current. A CMOS compatible RECEIVE ENABLE pin allows for very low standby current while the system is in transmit mode.

- Usable Frequency Range $=1.7$ to 2.1 GHz
- 19 dB Typ Gain
- 1.6 dB Typ Noise Figure
- Simple Off-chip Matching for Maximum Gain/Noise Figure Flexibility
- High Reverse Isolation $=-34 \mathrm{~dB}(\mathrm{Typ})$
- Low Power Consumption = 13 mW (Typ)

MRFIC1808


- Single Bias Supply = 2.7 to 4.5 Volts
- Low Standby Current $=8 \mu \mathrm{~A}$ (Typ)
- Low Cost Surface Mount Plastic Package
- Order MRFIC1808R2 forTape and Reel. R2 Suffix = 2,500 Units per $12 \mathrm{~mm}, 13$ inch Reel.
- Device Marking = M1808


Pin Connections and Functional Block Diagram

MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Limit	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	5.5	Vdc
RF Input Power	$\mathrm{P}_{\mathrm{RF}}$	3	dBm
Enable Voltage	RX ENABLE	5.5	$\mathrm{Vdc}^{(150}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	-30 to +85	${ }^{\circ} \mathrm{C}$

## RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
RF Frequency	frF	1.7 to 2.1	GHz
Supply Voltage	V $_{\text {DD }}$	2.7 to 4.5	Vdc
RX Enable Voltage, ON	RX ENABLE	2.7 to $V_{\text {DD }}$	Vdc
RX Enable Voltage, OFF	RX ENABLE	0 to 0.2	Vdc

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RF}=1.9 \mathrm{GHz}\right.$, RX ENABLE $=3 \mathrm{~V}$, Tested in Circuit Shown in Figure 1)

Characteristic	Min	Typ	Max	Unit
RF Gain	16.0	19	-	dB
SSB Noise Figure	-	1.6	-	dB
RF Output 3rd Order Intercept Point	-	13	-	dBm
Output 1 dB Gain Compression	-3.0	1	-	dBm
Reverse Isolation (s12)	-	-34	-	dB
Input Return Loss	-	-12	-	dB
Output Return Loss	-	-15	-	dB
Supply Current RX Mode	-	4.2	6.5	mA
Supply Current Standby Mode (RX ENABLE = O V)	-	8	25	$\mu \mathrm{~A}$



Figure 1. Applications Circuit Configuration


Figure 2. Gain versus Frequency


Figure 4. Output Power versus Input Power


Figure 6. Noise Figure versus Frequency


Figure 3. Gain versus Frequency


Figure 5. Output Power versus Input Power


Figure 7. Supply Current versus Voltage


Figure 8. Reverse Isolation versus Frequency


Figure 9. Reverse Isolation versus Frequency

Table 1. Scattering Parameters (VDD = 3 Volts, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, RX ENABLE $=3$ Volts, $50 \Omega$ System)

$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
	\|S ${ }_{11} \mid$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	\| $\mathrm{S}_{12} \mid$	$\angle \phi$	\|S22		$\angle \phi$
1500	0.859	-40.95	2.58	139.07	0.013	103.72	0.583	-79.05	
1530	0.870	-41.50	2.79	134.79	0.013	105.63	0.530	-80.94	
1560	0.866	-42.06	3.01	130.60	0.013	99.14	0.474	-82.85	
1590	0.871	-42.92	3.18	125.11	0.014	98.40	0.412	-83.57	
1620	0.873	-43.47	3.30	118.70	0.012	98.00	0.348	-83.11	
1650	0.876	-43.60	3.37	112.85	0.012	97.39	0.285	-80.54	
1680	0.877	-44.86	3.52	106.23	0.012	92.68	0.229	-73.01	
1710	0.880	-45.35	3.68	100.77	0.011	93.90	0.186	-60.35	
1740	0.876	-46.03	3.80	94.40	0.012	93.12	0.168	-40.74	
1770	0.876	-47.22	3.87	88.75	0.011	88.55	0.182	-20.50	
1800	0.885	-48.69	3.98	82.96	0.010	88.40	0.221	-6.82	
1830	0.879	-48.55	3.98	76.83	0.010	89.46	0.272	-0.29	
1860	0.881	-49.87	3.98	71.11	0.009	94.75	0.324	3.05	
1890	0.885	-50.71	4.00	66.38	0.009	97.00	0.376	4.39	
1920	0.878	-51.81	4.09	61.64	0.009	88.22	0.425	4.25	
1950	0.873	-52.42	4.19	56.66	0.008	87.57	0.474	3.79	
1980	0.860	-52.98	4.15	51.32	0.007	88.75	0.522	2.22	
2010	0.866	-54.24	3.98	44.93	0.006	100.17	0.564	0.85	
2040	0.859	-56.12	3.85	40.93	0.005	87.86	0.599	-0.87	
2070	0.861	-56.69	3.89	37.99	0.004	99.30	0.634	-3.01	
2100	0.850	-57.79	4.04	35.71	0.004	98.94	0.661	-4.59	
2130	0.844	-58.53	4.18	31.89	0.004	118.15	0.691	-6.96	
2160	0.834	-60.21	4.21	26.88	0.003	137.84	0.714	-8.94	
2190	0.834	-61.26	4.15	22.38	0.003	141.53	0.734	-11.49	
2220	0.830	-62.53	4.17	18.75	0.004	-164.13	0.760	-13.48	
2250	0.817	-63.84	4.22	14.85	0.004	-172.30	0.776	-15.27	
2280	0.812	-64.69	4.21	9.17	0.005	-165.76	0.787	-17.20	
2310	0.811	-66.64	4.14	4.09	0.006	-148.57	0.805	-19.42	
2340	0.800	-67.89	3.95	1.20	0.007	-153.96	0.808	-21.63	
2370	0.794	-69.40	3.83	0.29	0.008	-144.49	0.819	-23.38	
2400	0.791	-72.05	3.88	0.33	0.009	-133.12	0.822	-26.10	
2430	0.784	-73.59	4.09	-2.06	0.012	-138.06	0.826	-28.21	
2460	0.774	-75.60	4.30	-8.63	0.014	-138.55	0.824	-30.43	
2490	0.769	-78.81	4.33	-16.94	0.015	-146.05	0.821	-32.72	
2520	0.751	-80.46	4.31	-23.37	0.018	-148.25	0.815	-35.42	
2550	0.737	-83.20	4.23	-27.46	0.021	-149.08	0.798	-37.56	
2580	0.707	-86.12	4.08	-32.67	0.024	-155.44	0.767	-39.31	

Table 2. Scattering Parameters (VDD = 4 Volts, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, RX ENABLE $=3$ Volts, $50 \Omega$ System)

$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
	\|S $\mathrm{S}_{11} \mid$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\| $\mathbf{S}_{22}$ \|	$\angle \phi$
1500	0.849	-40.63	2.83	138.31	0.013	101.12	0.592	-78.76
1530	0.854	-41.00	3.07	134.02	0.012	99.54	0.537	-80.92
1560	0.852	-41.65	3.30	129.90	0.012	97.89	0.482	-82.91
1590	0.855	-42.76	3.50	124.44	0.013	103.09	0.421	-84.04
1620	0.861	-43.15	3.63	118.09	0.013	104.42	0.357	-84.20
1650	0.862	-43.22	3.73	112.01	0.012	95.75	0.293	-82.14
1680	0.861	-44.49	3.89	106.04	0.012	95.43	0.233	-75.91
1710	0.861	-44.93	4.07	100.17	0.011	99.73	0.187	-63.54
1740	0.869	-45.60	4.19	94.14	0.011	94.00	0.164	-43.94
1770	0.864	-46.48	4.30	87.75	0.011	95.67	0.173	-22.19
1800	0.870	-48.17	4.41	82.13	0.011	88.56	0.210	-7.42
1830	0.860	-48.09	4.41	75.97	0.010	88.92	0.258	0.31
1860	0.866	-49.28	4.41	70.37	0.010	96.31	0.313	3.91
1890	0.870	-50.19	4.46	65.24	0.009	93.39	0.367	5.28
1920	0.861	-50.75	4.54	60.65	0.008	90.74	0.417	5.60
1950	0.852	-51.77	4.66	55.96	0.008	89.58	0.468	4.75
1980	0.849	-52.40	4.56	50.46	0.007	84.42	0.518	3.22
2010	0.847	-53.50	4.40	44.25	0.006	94.48	0.561	1.68
2040	0.847	-55.19	4.25	39.96	0.005	88.62	0.597	-0.03
2070	0.847	-55.75	4.29	37.08	0.004	109.85	0.633	-2.25
2100	0.842	-56.92	4.47	34.67	0.005	103.26	0.664	-3.78
2130	0.830	-57.36	4.61	30.80	0.004	125.77	0.694	-6.23
2160	0.823	-59.26	4.66	26.03	0.004	122.00	0.717	-8.30
2190	0.820	-60.09	4.57	21.27	0.004	152.31	0.742	-10.87
2220	0.820	-61.37	4.57	17.70	0.002	160.02	0.762	-13.04
2250	0.812	-63.01	4.63	13.81	0.003	176.88	0.778	-14.80
2280	0.801	-63.88	4.61	8.47	0.004	-165.16	0.792	-17.00
2310	0.802	-65.68	4.54	2.90	0.005	-156.21	0.807	-19.20
2340	0.789	-67.07	4.32	0.38	0.007	-141.83	0.815	-21.21
2370	0.781	-68.28	4.21	-1.24	0.008	-144.89	0.821	-23.34
2400	0.775	-70.61	4.23	-0.61	0.010	-143.18	0.826	-25.75
2430	0.771	-72.01	4.47	-2.85	0.012	-140.04	0.829	-28.07
2460	0.764	-74.59	4.70	-9.44	0.012	-144.28	0.829	-30.56
2490	0.759	-77.25	4.72	-17.93	0.015	-149.63	0.826	-32.63
2520	0.743	-78.88	4.69	-24.28	0.017	-148.60	0.820	-35.12
2550	0.730	-81.98	4.58	-28.44	0.021	-148.70	0.802	-37.38
2580	0.700	-85.55	4.45	-33.64	0.022	-157.99	0.772	-39.29

Table 3. Scattering Parameters (VDD =5 Volts, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, RX ENABLE $=3$ Volts, $50 \Omega$ System)

$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
	${ }^{\mid S} \mathrm{~S}_{11} \mid$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	${ }^{\text {S }}$ 12 ${ }^{\text {\| }}$	$\angle \phi$	\|S $\mathbf{S 2}^{2} \mid$	$\angle \phi$
1500	0.830	-40.58	3.12	137.17	0.011	98.73	0.600	-78.51
1530	0.839	-41.24	3.39	132.69	0.011	101.93	0.548	-80.73
1560	0.836	-41.75	3.64	128.74	0.012	96.66	0.492	-82.85
1590	0.842	-42.35	3.85	123.33	0.013	99.33	0.433	-84.11
1620	0.848	-42.88	4.02	116.83	0.012	101.06	0.370	-84.63
1650	0.843	-43.41	4.11	110.95	0.012	95.15	0.306	-82.83
1680	0.844	-44.37	4.30	104.87	0.012	96.02	0.243	-77.32
1710	0.849	-45.07	4.49	99.42	0.012	96.86	0.193	-66.79
1740	0.852	-45.25	4.64	93.23	0.010	99.66	0.163	-48.45
1770	0.848	-46.18	4.75	87.02	0.012	88.90	0.164	-26.11
1800	0.856	-47.76	4.88	81.25	0.011	93.18	0.200	-9.04
1830	0.850	-47.99	4.87	75.09	0.010	90.25	0.247	-0.08
1860	0.850	-48.93	4.90	69.14	0.009	88.62	0.301	3.73
1890	0.849	-49.88	4.96	64.08	0.009	93.94	0.355	5.69
1920	0.846	-50.72	5.02	59.31	0.009	93.67	0.407	6.01
1950	0.837	-51.45	5.15	54.55	0.007	90.89	0.459	5.70
1980	0.830	-52.33	5.07	48.85	0.008	98.84	0.511	4.17
2010	0.831	-52.97	4.89	42.81	0.006	90.07	0.557	2.40
2040	0.831	-55.08	4.72	38.38	0.004	100.73	0.593	0.51
2070	0.829	-55.58	4.74	35.43	0.005	96.39	0.631	-1.55
2100	0.823	-56.53	4.95	32.95	0.004	122.68	0.661	-3.57
2130	0.815	-57.23	5.10	29.26	0.004	112.15	0.691	-5.96
2160	0.805	-58.81	5.14	24.21	0.004	132.80	0.718	-7.96
2190	0.802	-59.57	5.04	19.45	0.004	136.20	0.739	-10.56
2220	0.801	-60.70	5.05	15.80	0.003	178.25	0.762	-12.60
2250	0.791	-62.24	5.11	12.01	0.004	170.40	0.780	-14.52
2280	0.781	-62.95	5.08	6.42	0.005	-172.19	0.793	-16.63
2310	0.786	-64.98	4.97	1.09	0.006	-169.11	0.811	-18.96
2340	0.773	-66.05	4.74	-1.76	0.006	-150.31	0.818	-21.10
2370	0.766	-67.23	4.60	-2.91	0.008	-143.53	0.821	-23.29
2400	0.763	-69.83	4.64	-2.54	0.009	-146.46	0.827	-25.81
2430	0.757	-71.49	4.89	-4.89	0.011	-141.36	0.832	-27.88
2460	0.750	-73.61	5.12	-11.49	0.012	-147.16	0.832	-30.37
2490	0.742	-76.17	5.17	-19.88	0.014	-145.27	0.827	-32.68
2520	0.726	-78.01	5.10	-26.09	0.016	-145.14	0.820	-35.26
2550	0.712	-81.26	5.01	-30.13	0.018	-150.98	0.805	-37.48
2580	0.686	-84.54	4.81	-35.31	0.022	-155.55	0.771	-39.32

## The MRFIC Line <br> 1.9 GHz GaAs Upconverter

Designed primarily for use in wireless Personal Communication Systems (PCS) applications such as Digital European Cordless Telephone (DECT), Japan's Personal Handy System (PHS) and the emerging North American systems. The MRFIC1813 is also applicable to 2.4 GHz ISM equipment. The device combines a balanced upmixer and a transmit exciter amplifier in a low-cost TSSOP-16 package. Minimal off-chip matching is required while allowing for maximum flexibility and efficiency. The mixer is optimized for low-side injection and provides more than 12 dB of conversion gain with over 0 dBm output at 1 dB gain compression. Image filtering is implemented off-chip to allow maximum flexibility. A CMOS compatible ENABLE pin allows standby operation where the current drain is less than $250 \mu \mathrm{~A}$.

Together with other devices from the MRFIC180X or the MRFIC240X series, this GaAs IC family offers the complete transmit and receive functions, less LO and filters, needed for a typical 1.8 GHz cordless telephone or 2.4 GHz ISM band equipment.

- Usable Frequency Range $=1.7$ to 2.5 GHz
- 15 dB Typ IF to RF Conversion Gain
- 3 dBm Power Output Typ, 0 dBm Minimum at 1 dB Gain Compression
- Simple Off-chip Matching for Maximum Flexibility
- Low Power Consumption $=75 \mathrm{~mW}$ (Typ)
- Single Bias Supply = 2.7 to 4.5 Volts
- Low LO Power Requirement $=-5 \mathrm{dBm}$ (Typ)
- Low Cost Surface Mount Plastic Package
- Order MRFIC1813R2 for Tape and Reel. R2 Suffix = 2,500 Units per $16 \mathrm{~mm}, 13$ inch Reel.
- Device Marking = M1813

MRFIC1813
1.9 GHz UPMIXER AND EXCITER AMPLIFIER


CASE 948C-03
(TSSOP-16)


Pin Connections and Functional Block Diagram

MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Ratings	Symbol	Limit	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2}, \mathrm{~V}_{\mathrm{DD} 3}$	5.5	Vdc
IF Input Power	$\mathrm{P}_{\mathrm{IF}}$	3	dBm
LO Input Power	$\mathrm{P}_{\text {LO }}$	3	dBm
Enable Voltage	TX ENABLE	5.5	Vdc
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	-30 to +85	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
RF Output Frequency	$\mathrm{f}_{\mathrm{RF}}$	1.7 to 2.5	GHz
LO Input Frequency	f LO	1.5 to 2.4	GHz
IF Input Frequency	$\mathrm{f}_{\mathrm{IF}}$	70 to 350	MHz
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	2.7 to 4.5	Vdc
TX Enable Voltage, ON	TX ENABLE	2.7 to $\mathrm{V}_{\mathrm{DD}}$	Vdc
TX Enable Voltage, OFF	TX ENABLE	0 to 0.2	Vdc

ELECTRICAL CHARACTERISTICS (VDD1,2,3, TX ENABLE $=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f} \mathrm{LO}=1.65 \mathrm{GHz} @-5 \mathrm{dBm}, \mathrm{f}_{\mathrm{IF}}=250 \mathrm{MHz}$
@ - 15 dBm )

Characteristic	Min	Typ	Max	Unit
IF to RF Small Signal Conversion Gain (PRF = -35 dBm )	12	15	-	dB
RF Output 1 dB Gain Compression	0	3	-	dBm
RF Output 3rd Order Intercept	-	11	-	dBm
LO Feedthrough to RF Port	-	-15	-10	dBm
Noise Figure	-	11	-	dB
Lower Sideband Output Power at RF Port	-	-10	-6	dBm
Supply Current TX Mode	-	25	35	mA
Supply Current Standby Mode (TX ENABLE = 0 V, LO Off)	-	100	250	$\mu \mathrm{~A}$
TX Enable Current	-	3	-	$\mu \mathrm{A}$



Figure 1. Applications Circuit Configuration


Figure 2. Conversion Gain versus LO Power


Figure 4. Conversion Gain versus LO Power


Figure 6. Conversion Gain versus RF Frequency


Figure 3. Conversion Gain versus LO Power


Figure 5. Conversion Gain versus RF Frequency


Figure 7. Conversion Gain versus RF Frequency


Figure 8. RF Output versus Input Power


Figure 10. RF Output versus IF Input Power


Figure 12. Supply Current versus IF Input Power


Figure 9. RF Output Power versus IF Input Power


Figure 11. Output Power versus IF Input Power


Figure 13. Supply Current versus IF Input Power


Figure 14. Supply Current versus IF Input Power


Figure 16. Lower Side Band Power versus RF Frequency


Figure 15. LO to RF Feedthrough versus LO Frequency


Figure 17. Supply Current versus Transmit Enable Voltage

$f$	IF Input		LO Input		RF Output (1)	
(MHz)	R	jX	R	jX	R	jX
70	8.3	-452.4				
100	7.3	-318.5				
150	7.1	-211.3				
200	6.6	-156.4				
250	6.5	-123.1				
300	6.1	-100.7				
350	5.7	-84.2				
1100			62.5	3.1		
1200			58.1	4.3		
1300			53.7	4.7		
1400			50.2	4.2		
1500			47.3	3.9		
1600			44.4	3.2		
1700			42.0	1.6	30.4	33.6
1800			40.6	0.5	42.6	16.9
1900			39.6	-0.7	49.1	2.3
2000			38.7	-2.2	40.6	14.2
2100			38.2	-3.6	33.8	17.7
2200			38.4	-5.1	33.3	15.7
2300			38.9	-6.5	32.9	13.7
2400			39.5	-7.8	29.6	13.2
2500					27.4	11.9

(1) Includes T1 shown in Figure 1.

Table 1. Port Impedances versus Frequency
( $\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}, \mathrm{~V}_{\mathrm{D}}$, TX EN = 3 Vdc )

## APPLICATIONS INFORMATION

## DESIGN CONSIDERATIONS

The MRFIC1813 combines a single-balanced MESFET mixer with an exciter amplifier. It is usable for transmit frequencies from 1.7 to 2.5 GHz and IF frequencies from 70 to 350 MHz . The design is optimized for low-side local oscillator injection in hetrodyne transmit applications.

Minimal off-chip matching is required while allowing for flexibility and performance optimization. An active balun is employed at the IF port which gives good balance down to at least 70 MHz . A passive splitter is used at the LO input to complete the single-balanced configuration.

## CIRCUIT CONSIDERATIONS

Figure 1 shows the application circuit used to gather the data presented in the characterization curves. As shown in Table 1, the IF port impedance is very high. Three hundred ohms was chosen for R1 to shunt the IF port as a compromise of gain and bandwidth. A $50 \Omega$ resistor can be used and L1 and C5 eliminated to provide a broadband match. The
conversion gain is reduced to about 8 dB . Microstrip inductors T1 and T2 combine with inductance internal to the device to form RF chokes. Some tuning of the RF output can be achieved with T1.

As with all RF devices, circuit layout is important. Controlled impedance lines should be used for all RF and IF interconnects. As shown in Figure 1, power supply by-passing should be used to avoid device instability. Ground vias should be included near all ground connections indicated in the schematic. Off-chip components should be mounted as close to the IC leads as possible.

## EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" to the device type. For a complete list of currently available boards and one in development for newly introduced products, please contact your local Motorola Distributor or Sales Office.

## Advance Information <br> The MRFIC Line <br> 1.9 GHz GaAs Downconverter

Designed primarily for use in wireless Personal Communication Systems (PCS) applications such as Digital European Cordless Telephone (DECT), Japan's Personal Handy System (PHS), and the emerging North American systems. The MRFIC1814 includes a low noise amplifier and downmixer in a low-cost TSSOP-16 package. The integrated circuit requires minimal off-chip matching while allowing for the maximum in flexibility and efficiency. The mixer is optimized for low-side injection and offers reasonable intercept point as well as high efficiency with 9 dB of conversion gain. Image filtering is implemented off-chip to allow maximum flexibility. CMOS compatible ENABLE pins allow standby operation where the current drain is less than 0.1 mA .
Together with the rest of the MRFIC180X series, this GaAs IC family offers the complete transmit and receive functions, less LO and filters, needed for a typical 1.8 GHz cordless telephone.

- Usable Frequency Range $=1.8$ to 2.0 GHz
- 17 dB Typ Gain, 2.5 dB Typ Noise Figure LNA
- 8 dB Typ Gain, 10 dB Typ Noise Figure Mixer
- -5.5 dBm Typ Mixer Input Intercept Point
- Simple LO/IF Off-chip Matching for Maximum Flexibility
- Low Power Consumption = 39 mW (Typ)
- Single Bias Supply = 2.7 to 4.5 Volts
- Low LO Power Requirement $=-5 \mathrm{dBm}$ (Typ)
- Low Cost Surface Mount Plastic Package
- Order MRFIC1814R2 for Tape and Reel. R2 Suffix = 2,500 Units per 16 mm, 13 inch Reel.
- Device Marking = M1814


## MRFIC1814

1.8 GHz LOW NOISE AMPLIFIER AND DOWNMIXER


CASE 948C-03 (TSSOP-16)


Pin Connections and Functional Block Diagram

MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Limit	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	5.5	Vdc
LNA Input Power	LNA $_{\text {in }}$	10	dBm
LO Input Power	$\mathrm{P}_{\text {LO }}$	10	dBm
Enable Voltage	ENABLE	5.5	Vdc
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	-30 to +85	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
RF Input Frequency	$f_{\text {RF }}$	1.8 to 2.0	GHz
Mixer LO Frequency	$\mathrm{f}_{\mathrm{LO}}$	1.5 to 1.8	GHz
IF Output Frequency	$\mathrm{f}_{\mathrm{IF}}$	70 to 300	MHz
Supply Voltage	V $_{\text {DD }}$	2.7 to 4.5	Vdc
Enable Voltage, ON	MIXER, LNA ENABLE	2.7 to $\mathrm{V}_{\mathrm{DD}}$	Vdc
Enable Voltage, OFF	MIXER, LNA ENABLE	0 to 0.2	Vdc

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{LO}=1.65 \mathrm{GHz} @-5 \mathrm{dBm}, \mathrm{RF}=1.9 \mathrm{GHz} @-30 \mathrm{dBm}, \mathrm{MIXER} \& \mathrm{LNA}\right.$ ENABLE = 3 V)

Characteristic	Min	Typ	Max	Unit
LNA Gain (LNA ENABLE = 3 V)	14	17	-	dB
LNA Gain (LNA ENABLE = 0 V)	-	-19	-	dB
LNA Noise Figure	-	2.5	-	dB
LNA Input 3rd Order Intercept	-	-7	-	dBm
LNA Output 1 dB Gain Compression Point	-6	-3	-	dBm
Mixer Conversion Gain (into 50 $\Omega$ )	5	8	-	dB
Mixer Noise Figure	-	10	-	dB
Mixer Input 3rd Order Intercept	-8.5	-5.5	-	dBm
Mixer Output 1 dB Gain Compression Point	-	10	17	mA
Total Supply Current (ENABLE VOLTAGES = 3.0 V, LO off)	-	13	-	mA
Total Supply Current (ENABLE VOLTAGES = 3.0 V, LO on)	-	0.05	0.25	mA
Standby Mode Current (ENABLE VOLTAGES = 0 V, LO off)		-	-	-



Figure 1. Applications Circuit Configuration for $\mathbf{2 5 0} \mathbf{~ M H z ~ I F ~}$


Figure 2. Equivalent IF Output Circuit

## The MRFIC Line 1800 MHz GaAs Integrated Power Amplifier

Designed specifically for application in Pan European digital 1.0 watt DCS1800/PCS1900 handheld radios, the MRFIC1817 is specified for 32 dBm output power with power gain over 27 dB from a 3.6 volt supply. To achieve this superior performance, Motorola's planar GaAs MESFET process is employed. The device is packaged in the PFP-16 Power Flat Package which gives excellent thermal and electrical performance through a solderable backside contact while allowing the convenience and cost benefits of reflow soldering.

- Minimum Output Power Capabilities

32 dBm @ 3.6 Volts
30 dBm @ 3.0 Volts

- Typical Volt Characteristics

RF Input Power $=5.0 \mathrm{dBm}$
RF Output Power $=33.5 \mathrm{dBm}$
Typical PAE $=42 \%$

- Low Current required from Negative Supply - 2 mA max
- Guaranteed Stability and Ruggedness
- Order MRFIC1817R2 for Tape and Reel.

R2 Suffix = 1,500 Units per $16 \mathrm{~mm}, 13$ inch Reel.

- Device Marking = M1817


## MRFIC1817

1700-1900 MHz MMIC
DCS1800/PCS1900
INTEGRATED POWER AMPLIFIER
GaAs MONOLITHIC
INTEGRATED CIRCUIT



ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{O}}=50 \Omega\right.$, unless otherwise noted)

Rating	Symbol	Value	Unit
DC Positive Supply Voltage	$\mathrm{V}_{\mathrm{D} 1,2,3}$	6	Vdc
DC Negative Supply Voltage	$\mathrm{V}_{\text {SS }}$	-5	Vdc
RF Input Power	$\mathrm{P}_{\mathrm{in}}$	10	dBm
RF Output Power	$\mathrm{P}_{\text {out }}$	35	dBm
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-35 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$



Pin Connections and Functional Block Diagram

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{D} 1,2,3}$	2.7 to 5	Vdc
Gate Voltage	$\mathrm{V}_{\text {SS }}$	-3.5 to -4.5	Vdc
RF Frequency Range	$\mathrm{f}_{\mathrm{RF}}$	1700 to 1900	MHz
RF Input Power	P $_{\mathrm{RF}}$	0 to 6	dBm

ELECTRICAL CHARACTERISTICS $\left(V_{D 1,2,3}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4 \mathrm{~V}, \mathrm{P}_{\mathrm{in}}=5 \mathrm{dBm}\right.$, Peak Measurement at $12.5 \%$ Duty Cycle, 4.6 ms Period, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted. Measured in Reference Circuit Shown in Figure 1)

Characteristic	Min	Typ	Max	Unit
Frequency Range	1710	-	1785	MHz
Output Power	32	33.5	-	dBm
Power Added Efficiency	35	42	-	\%
Output Power (PCS 1900 Tuning $\mathrm{f}=1850$ to 1910 MHz )	-	33.5	-	dBm
Power Added Efficiency (PCS 1900 Tuning f = 1850 to 1910 MHz)	-	42	-	\%
Input VSWR	-	2:1	-	VSWR
Harmonic Output (2nd and 3rd)	-	-35	-30	dBc
Output Power at Low voltage ( $\left.\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}, \mathrm{~V}_{\mathrm{D} 3}=3.0 \mathrm{~V}\right)$	30	32	-	dBm
Output Power Isolation (V1, $\left.\mathrm{V}_{\mathrm{D} 2}, \mathrm{~V}_{\mathrm{D} 3}=0 \mathrm{~V}\right)$	-	-40	-30	dBm
Noise Power (In 100 kHz , 1805 to 1880 MHz )	-	-85	-80	dBm
Stability - Spurious Output ( $P_{\text {in }}=5 \mathrm{dBm}, \mathrm{P}_{\text {out }}=0$ to 33 dBm , Load VSWR $=6: 1$ at any Phase Angle, Source VSWR $=3: 1$, at any Phase Angle) (1)	-	-	-60	dBc
Load Mismatch stress (Pout $=33 \mathrm{dBm}$, Load VSWR $=10: 1$ at any Phase Angle) (1)	No Degradation in Output Power after Returning to Standard Conditions			
$3 \mathrm{~dB} \mathrm{~V}_{\mathrm{DD}}$ Bandwidth	-	2	-	MHz
Negative Supply Current	-	0.7	2	mA

(1) Adjust $\mathrm{V}_{\mathrm{D} 1,2,3}\left(0\right.$ to 3.6 V ) for specified $\mathrm{P}_{\text {out }}$; Duty Cycle $=12.5 \%$, Period $=4.6 \mathrm{~ms}$.


C1 1 nF		L1	18 nH , Coilcraft or 20 mm	T2	$6 \mathrm{~mm} 50 \Omega$ Microstrip Line
C2, C6, C8	822 pF , NPO/COG		$50 \Omega$ Microstrip Line	T3	$5 \mathrm{~mm} 40 \Omega$ Microstrip Line
C3, C7, C9	977 nF	L2	1.8 nH , Toko 2012	T4	$1 \mathrm{~mm} 40 \Omega$ Microstrip Line
C4	5.6 pF, AVX0603 ACCUF	R1	$2.7 \mathrm{~K} \Omega$	T5	$5.5 \mathrm{~mm} 50 \Omega$ Microstrip Line
C5	3.9 pF, AVX0603 ACCUF	R2	$2.2 \mathrm{~K} \Omega$		terial: Glass/Epoxy, $\varepsilon_{r}=4.45$,
C10, C11	1 pf	T1	$2.5 \mathrm{~mm} 50 \Omega$ Microstrip Line		$=0.5 \mathrm{~mm}$

NOTE: For PCS 1900 tuning the following values are changed.
$\mathrm{C} 5=2.7 \mathrm{pF}$, AVX0603 ACCUF
$\mathrm{L} 2=1.5 \mathrm{nH}$, Toko 2012
$\mathrm{~T} 3=1 \mathrm{~mm} 50 \Omega$ Microstrip Line
Figure 1. Reference Circuit Configuration


NOTE: For PCS1900 applications, the following component values are changed

L2 $=1.5 \mathrm{nH}$ Toko 2012
C4 $=6.8$ pF, AVX0603 ACCUF
C5 = 2.7 pF, AVX0603 ACCUF
C20 = Not Used
$\mathrm{T} 1=0.5 \mathrm{~mm} 50 \Omega$ Microstrip Line
T2 $=5 \mathrm{~mm} 50 \Omega$ Microstrip Line
$\mathrm{T} 3=1 \mathrm{~mm} 40 \Omega$ Microstrip Line
Figure 2. DCS1800/PCS1900 Applications Circuit Configuration

## Typical Characteristics



Figure 3. Output Power versus Frequency


Figure 5. Output Power versus Frequency


Figure 7. Output Power versus Frequency


Figure 4. Power Added Efficiency versus Frequency


Figure 6. Power Added Efficiency versus Frequency


Figure 8. Output Power versus Drain Voltage

Typical Characteristics


Figure 9. Power Added Efficiency versus Drain Voltage


Figure 11. Power Added Efficiency versus Input Power


Figure 13. Third Harmonic versus Drain Voltage


Figure 10. Output Power versus Input Power


Figure 12. Second Harmonic versus Drain Voltage


Figure 14. Output Power versus
Frequency - PCS Band

## Typical Characteristics



Figure 15. Power Added Efficiency versus
Frequency - PCS Band

Table 1. Optimum Loads Derived from Circuit Characterization

f   MHz	Zin   OHMS		ZOL $_{\text {OH }}{ }^{*}$   OHMS	
	R	$j \mathrm{X}$	R	$j \mathrm{X}$
1710	7.77	-34.15	4.89	9.50
1720	7.84	-34.37	4.87	9.34
1730	7.87	-34.67	4.86	9.18
1740	8.07	-34.79	4.78	8.94
1750	8.24	-35.05	4.77	8.70
1760	8.39	-35.22	4.73	8.51
1770	8.44	-35.56	4.70	8.32
1780	8.52	-35.79	4.67	8.12
1785	8.57	-35.82	4.65	7.95

$Z_{\text {in }}$ represents the input impedance of the device.
ZOL ${ }^{*}$ represents the conjugate of the optimum output load to present to the device.

Table 2. Optimum Loads Derived from Circuit Characterization - PCS Band

f   MHz	Zin   OHMS		$Z_{\text {OL }}{ }^{*}$   OHMS	
	R	$j \mathrm{X}$	R	$j \mathrm{X}$
1850	3.97	-39.68	7.49	3.07
1860	3.94	-40.31	7.42	2.81
1870	4.09	-40.65	7.38	2.51
1880	4.04	-40.92	7.31	2.28
1890	4.18	-41.21	7.28	2.02
1900	4.27	-41.48	7.28	1.73
1910	4.26	-41.71	7.23	1.56

$Z_{\text {in }}$ represents the input impedance of the device.
$\mathrm{Z}_{\mathrm{OL}}{ }^{*}$ represents the conjugate of the optimum output load to present to the device.

## APPLICATIONS INFORMATION

## Design Philosophy

The MRFIC1817 is a 3-stage integrated power amplifier designed for use in cellular phones, especially for those used in DCS1800 (PCN) 3.6 V operation. With matching circuit modifications, it is also applicable for use in DCS1900 (PCS) equipment. Due to the fact that the input, output and some of the interstage matching is accomplished off-chip, the device can be tuned to operate anywhere within the 1500 to 2000 MHz frequency range. Typical performance at different battery voltages is:

- 33.5 dBm @ 3.6 V
- 32.0 dBm @ 3 V

This capability makes the MRFIC1817 suitable for portable cellular applications such as:

- 3 V and 3.6 V DCS1800 Class I and II
- 3 V and 3.6 V PCS tag5


## RF Circuit Considerations

The MRFIC1817 can be tuned by changing the values and/or positions of the appropriate external components. Refer to Figure 2, a typical DCS1800 Class I applications circuit. The input match is a shunt-L, series-C, high-pass structure and can be retuned as desired with the only limitation being the on-chip 6 pF blocking capacitor. For saturated applications such as DCS1800 and PCS1900, the input match should be optimized at the rated RF input power. Interstage matching can be optimized by changing the value and/or position of the decoupling capacitor on the $\mathrm{V}_{\mathrm{D} 1}$ and $V_{\text {D2 }}$ supply lines. Moving the capacitor closer to the device or reducing the value increases the frequency of resonance with the inductance of the device's wirebonds and leadframe pin. Output matching is accomplished with a low-pass network as a compromise between bandwidth and harmonic rejection. Implementation is through high Q capacitors mounted along a $50 \Omega$ microstrip transmission line. Values and positions are chosen to present a 2 W loadline to the device while conjugating the device output parasitics. The network must also properly terminate the second and third harmonics to optimize efficiency and reduce harmonic output. All components used in this application are low-Q commercial chip capacitors, except for the output load line. Loss in circuit traces must also be considered. The output transmission line and the bias supply lines should be at least 0.6 mm in width to accommodate the peak circulating currents which can be as high as 2 amperes under worst case conditions. The bias supply line which supplies the output should include an RF choke of at least 18 nH , surface mount solenoid inductors or quarter wave microstrip lines. Discrete inductors will usually give better efficiency and conserve board space.

## Biasing Considerations

Gate bias lines are tied together and connected to the VSS voltage, allowing gate biasing through use of external resistors or positive voltages. This allows setting the quiescent current of all stage in the same time while saving some board space. For applications where the amplifier is operated close to saturation, such as with TDMA amplifiers, the gate bias can be set with resistors. Variations in process
and tempera-ture will not affect amplifier performance significantly in these applications. The values shown in the Figure 1 will set quiescent currents of 20 to 40 mA for the first stage, 150 to 300 mA for the second stage, and 400 to 800 mA for the final stage. For linear modes of operation which are required for CDMA amplifiers, the quiescent current must be more carefully controlled. For these applications, the $\mathrm{V}_{\mathrm{G}}$ pins can be referenced to some tunable voltage which is set at the time of radio manufacturing. Less than 1 mA is required in the divider network so a DAC can be used as the voltage source.

## Power Control Using the MC33169

The MC33169 is a dedicated GaAs power amplifier support IC which provides the -4 V required for $\mathrm{V}_{\mathrm{SS}}$, an $\mathrm{N}-\mathrm{MOS}$ drain switch interface and driver and power supply sequencing. The MC33169 can be used for power control in applications where the amplifier is operated in saturation since the output power in non-linear operation is proportional to VD2. This provides a very linear and repeatable power control transfer function. This technique can be used open loop to achieve 40-45 dB dynamic range over process and temperature variation. With careful design and selection of calibration points, this technique can be used for DCS1800 control where 30 dB dynamic range is required, eliminating the need for the complexity and cost of closed-loop control. The transmit waveform ramping function required for systems such as DCS1800 can be implemented with a simple Sallen and Key filter on the MC33169 control loop. The amplifier is then ramped on as the VRAMP pin is taken from 0 V to 3 V . To implement the different power steps required for DCS1800, the VRAMP pin is ramped between 0 V and the appropriate voltage between 0 V and 3 V for the desired output power. For closed-loop configurations using the MC33169, MMSF4N01HD N-MOS switch and the MRFIC1817 provide a typical 1 MHz 3 dB loop bandwidth. The STANDBY pin must be enabled $(3 \mathrm{~V})$ at least $800 \mu \mathrm{~s}$ before the $\mathrm{V}_{\text {RAMP }}$ pin goes high and disabled ( 0 V ) at least 20 ms before the $\mathrm{V}_{\text {RAMP }}$ pin goes low. This STANDBY function allows for the enabling of the MC33169 one burst before the active burst thus reducing power consumption

## Conclusion

The MRFIC1817 offers the flexibility in matching circuitry and gate biasing required for portable cellular applications. Together with the MC33169 support IC, the device offers an efficient system solution for TDMA applications such as DCS1800 where saturated amplifier operation is used.

For more information about the power control using the MC33169, refer to application note AN1599, "Power Control with the MRFIC0913 GaAs Integrated Power Amplifier and MC33169 Support IC."

## Evaluation Boards

Two versions of the MRFIC1817 evaluation board are available. Order MRFIC1817DCSTF for the 1.8 GHz version and order MRFIC1817PCSTF for the 1.9 GHz version. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

## The MRFIC Line 1800 MHz GaAs Integrated Power Amplifier

Designed specifically for application in Pan European digital 1.0 watt DCS1800 handheld radios, the MRFIC 1818 is specified for 33 dBm output power with power gain over 30 dB froma 4.8 volt supply. With minor tuning changes, the MRFIC1818 can be used for PCS1900 as well as PCS CDMA. To achieve this superior performance, Motorola's planar GaAs MESFET process is employed. The device is packaged in the PFP-16 Power Flat Package which gives excellent thermal and electrical performance through a solderable backside contact while allowing the convenience and cost benefits of reflow soldering.

- Minimum Output Power Capabilities

33 dBm @ 4.8 Volts
32 dBm @ 4.0 Volts

- Specified 4.8 Volt Characteristics

RF Input Power $=3.0 \mathrm{dBm}$
RF Output Power $=33 \mathrm{dBm}$
Minimum PAE $=35 \%$

- Low Current required from Negative Supply - 2 mA max
- Guaranteed Stability and Ruggedness
- Order MRFIC1818R2 for Tape and Reel.

R2 Suffix $=1,500$ Units per $16 \mathrm{~mm}, 13$ inch Reel.

- Device Marking = M1818

ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{O}}=50 \Omega\right.$, unless otherwise noted)

Rating	Symbol	Value	Unit
DC Positive Supply Voltage	$\mathrm{V}_{\mathrm{D} 1,2,3}$	7.5	Vdc
DC Negative Supply Voltage	$\mathrm{V}_{\mathrm{SS}}$	-5	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	10	dBm
RF Output Power	$\mathrm{P}_{\text {out }}$	36	dBm
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-35 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JJC}}$	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Pin Connections and Functional Block Diagram

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{D} 1,2,3}$	2.7 to 6	Vdc
Gate Voltage	$\mathrm{V}_{\text {SS }}$	-3.5 to -4.5	Vdc
RF Frequency Range	$\mathrm{f}_{\mathrm{RF}}$	1700 to 1900	MHz
RF Input Power	P $_{\mathrm{RF}}$	0 to 6	dBm

ELECTRICAL CHARACTERISTICS $\left(V_{\text {D1 }}, 2,3=4.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4 \mathrm{~V}, \mathrm{P}_{\mathrm{in}}=3 \mathrm{dBm}\right.$, Peak Measurement at $12.5 \%$ Duty Cycle, 4.6 ms Period, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted. Measured in Reference Circuit Shown in Figure 1.)

Characteristic	Min	Typ	Max	Unit
Frequency Range	1710	-	1785	MHz
Output Power	33	34.5	-	dBm
Power Added Efficiency	35	42	-	\%
Output Power (Tuned for PCS Band, 1850 to 1910 MHz)	-	34.5	-	dBm
Power Added Efficiency (Tuned for PCS Band, 1850 to 1910 MHz)	-	42	-	\%
Input VSWR	-	2:1	-	VSWR
Harmonic Output (2nd and 3rd)	-	-35	-30	dBc
Output Power at Low voltage ( $\left.\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}, \mathrm{~V}_{\mathrm{D} 3}=4.0 \mathrm{~V}\right)$	32	33	-	dBm
Output Power, Isolation ( $\mathrm{V}_{\mathrm{D} 1}, \mathrm{~V}_{\mathrm{D} 2}, \mathrm{~V}_{\mathrm{D} 3}=0 \mathrm{~V}$ )	-	-40	-35	dBm
Noise Power (In 100 kHz , 1805 to 1880 MHz )	-	-85	-80	dBm
$\begin{aligned} & \text { Stability - Spurious Output }\left(P_{\text {in }}=5 \mathrm{dBm}, \mathrm{P}_{\text {out }}=0 \text { to } 33 \mathrm{dBm}\right. \text {, Load } \\ & \text { VSWR }=6: 1 \text { at any Phase Angle, Source VSWR }=3: 1 \text {, at any Phase Angle) (1) } \end{aligned}$	-	-	-60	dBc
Load Mismatch stress (Pout $=33 \mathrm{dBm}$, Load VSWR $=10: 1$ at any Phase Angle) (1)	No Degradation in Output Power after Returning to Standard Conditions			
$3 \mathrm{~dB} \mathrm{~V}_{\mathrm{DD}}$ Bandwidth	-	2	-	MHz
Negative Supply Current	-	0.7	2	mA

(1) Adjust $\mathrm{V}_{\mathrm{D} 1,2,3}$ (0 to 4.8 V ) for specified $\mathrm{P}_{\text {out }}$; Duty Cycle $=12.5 \%$, Period $=4.6 \mathrm{~ms}$.


C1	6.8 nF	C 5	$3.9 \mathrm{pF}, \mathrm{NPO} / \mathrm{COG}$	T1	$1.4 \mathrm{~mm} 25 \Omega$ Microstrip Line
$\mathrm{C} 2, \mathrm{C} 6, \mathrm{C} 8$	$22 \mathrm{pF}, \mathrm{NPO} / \mathrm{COG}$	L 1	18 nH, Coilcraft	T2	$5 \mathrm{~mm} 50 \Omega$ Microstrip Line
$\mathrm{C} 3, \mathrm{C}, \mathrm{C} 9$	47 nF	L 2	1.8 nH, Toko 2012	T3	$4 \mathrm{~mm} \mathrm{50} \Omega$ Microstrip Line
C 4	$27 \mathrm{pF}, \mathrm{NPO} / \mathrm{COG}$	$\mathrm{R} 1, \mathrm{R} 2=2.7 \mathrm{~K} \Omega$	T4 $\quad 0.5 \mathrm{~mm} 50 \Omega$ Microstrip Line		
C 10	0.5 pF			Board Material: Glass/Epoxy, $\varepsilon_{\mathrm{r}}=4.45$,	
				Thickness $=0.5 \mathrm{~mm}$	

NOTE: For PCS/DCS1900 applications, the following components are used.
C5 $=2.7 \mathrm{pF}, 0603 \mathrm{NPO} / \mathrm{COG}$
L2 $=1.5 \mathrm{nH}$, Toko 2012
T3 $=1 \mathrm{~mm} 50 \Omega$ Microstrip Line
Figure 1. Reference Circuit Configuration


Figure 2. DCS1800 Applications Circuit Configuration

Typical Characteristics


Figure 3. Output Power versus Frequency


Figure 5. Output Power versus Frequency


Figure 7. Output Power versus Frequency


Figure 4. Power Added Efficiency versus Frequency


Figure 6. Power Added Efficiency versus Frequency


Figure 8. Output Power versus Drain Voltage

Typical Characteristics


Figure 9. Power Added Efficiency versus Drain Voltage


Figure 11. Power Added Efficiency versus Input Power


Figure 13. Third Harmonic versus Drain Voltage


Figure 10. Output Power versus Input Power


Figure 12. Second Harmonic versus Drain Voltage


Figure 14. Output Power Versus Frequency PCS Band

## Typical Characteristics



Figure 15. Power Added Efficiency versus Frequency - PCS Band


Figure 17. CDMA ACPR at 1980 kHz Offset versus Output Power


Figure 16. CDMA ACPR at 885 kHz Offset versus Output Power

Table 1. Optimum Loads Derived from Circuit Characterization

f   MHz	Z   OHMS		ZOL   OHMS	
	R	jX	R	jX
1710	9.19	-30.10	6.00	3.80
1720	9.35	-29.60	5.96	3.71
1730	9.50	-29.30	5.88	3.60
1740	9.65	-29.10	5.80	3.46
1750	9.60	-29.00	5.75	3.33
1760	9.42	-28.79	5.67	3.20
1770	9.11	-28.60	5.60	3.07
1780	8.77	-28.30	5.51	2.93
1785	8.54	-28.15	5.45	2.79

$Z_{\text {in }}$ represents the input impedance of the device.
$\mathrm{Z}_{\mathrm{OL}}{ }^{*}$ represents the conjugate of the optimum output load to present to the device.

Table 2. Optimum Loads Derived from Circuit Characterization - PCS Board

f   MHz	Zin   OHMS		ZOL *   OHMS	
	R	jX	R	jX
1850	3.92	-43.30	7.70	0.39
1860	4.01	-43.56	7.64	0.23
1870	4.08	-43.78	7.57	0.15
1880	4.19	-44.00	7.51	0.07
1890	4.29	-44.29	7.50	-0.04
1900	4.31	-44.49	7.44	-0.06
1910	4.37	-44.81	7.35	-0.19

$Z_{i n}$ represents the input impedance of the device.
$Z_{O L}{ }^{*}$ represents the conjugate of the optimum output load to present to the device.

## APPLICATIONS INFORMATION

## Design Philosophy

The MRFIC1818 is a 3-stage Integrated Power Amplifier designed for use in cellular phones, especially for those used in DCS1800 (PCN) 4.8 V operation. With matching circuit modifications, it is also applicable for use in DCS1900 (PCS) equipment. Due to the fact that the input, output and some of the interstage matching is accomplished off chip, the device can be tuned to operate anywhere within the 1500 to 2000 MHz frequency range. Typical performance at different battery voltages is:

- $36 \mathrm{dBm} @ 6.0 \mathrm{~V}$
- 34.5 dBm @ 4.8 V
- 32.0 dBm @ 3.6 V

This capability makes the MRFIC1818 suitable for portable cellular applications such as:

- 6V and 4.8 V DCS1800 Class I
- 6 V and 4.8 V PCS tag5
- 3.6 V DCS1800 Class II


## RF Circuit Considerations

The MRFIC1818 can be tuned by changing the values and/or positions of the appropriate external components. Refer to Figure 2, a typical DCS1800 Class I applications circuit. The input match is a shunt-L, series-C, High-pass structure and can be retuned as desired with the only limitation being the on-chip 6 pF blocking capacitor. For saturated applications such as DCS1800 and DCS1900, the input match should be optimized at the rated RF input power. Interstage matching can be optimized by changing the value and/or position of the decoupling capacitor on the $\mathrm{V}_{\mathrm{D} 1}$ and $\mathrm{V}_{\mathrm{D} 2}$ supply lines. Moving the capacitor closer to the device or reducing the value increases the frequency of resonance with the in-ductance of the device's wirebonds and leadframe pin. Output matching is accomplished with a one-stage lowpass network as a compromise between bandwidth and harmonic rejection. Implementation is through chip capacitors mounted along a 30 or $50 \Omega$ microstrip transmission line. Values and positions are chosen to present a 2.5 W loadline to the device while conjugating the device output parasitics. The network must also properly terminate the second and third harmonics to optimize efficiency and reduce harmonic output. Low-Q commercial chip capacitors are used for the shunt capacitors, as shown in Figure 2. Loss in circuit traces must also be considered. The output transmission line and the bias supply lines should be at least 0.6 mm in width to accommodate the peak circulating currents which can be as high as 2 amperes under worst case conditions. The bias supply line which supplies the output should include an RF choke of at least 18 nH , surface mount solenoid inductors or quarter wave microstrip lines. Discrete inductors will usually give better efficiency and conserve board space. The DC blocking capacitor required at the output of the device is best mounted at the $50 \Omega$ impedance point in the circuit where the RF current is at a minimum and the capacitor loss will have less effect.

## Biasing Considerations

Gate bias lines are tied together and connected to the VSS voltage, allowing gate biasing through use of external resistors or positive voltages. This allows setting the quiescent current of all stage in the same time while saving some board
space. For applications where the amplifier is operated close to saturation, such as TDMA amplifiers, the gate bias can be set with resistors. Variations in process and tempera-ture will not affect amplifier performance significantly in these applications. The values shown in the Figure 1 will set quiescent currents of 20 to 40 mA for the first stage, 150 to 300 for the second stage and 400 to 800 mA for the final stage. For linear modes of operation which are required for CDMA amplifiers, the quiescent current must be more carefully controlled. For these applications, the $\mathrm{V}_{\mathrm{G}}$ pins can be referenced to some tunable voltage which is set at the time of radio manufacturing. Less than 1 mA is required in the divider network so a DAC can be used as the voltage source.

## Power Control Using the MC33169

The MC33169 is a dedicated GaAs power amplifier support IC which provides the -4 V required for V SS, an $\mathrm{N}-\mathrm{MOS}$ drain switch interface and driver and power supply sequencing. The MC33169 can be used for power control in applications where the amplifier is operated in saturation since the output power in non-linear operation is proportional to $\mathrm{V}_{\mathrm{D}}$. This provides a very linear and repeatable power control transfer function. This technique can be used open loop to achieve 40-45 dB dynamic range over process and temperature variation. With careful design and selection of calibration points, this technique can be used for DCS1800 control where 30 dB dynamic range is required, eliminating the need for the complexity and cost of closed-loop control. The transmit waveform ramping function required for systems such as DCS1800 can be implemented with a simple Sallen and Key filter on the MC33169 control loop. The amplifier is then ramped on as the $\mathrm{V}_{\text {RAMP }}$ pin is taken from 0 V to 3 V . To implement the different power steps required for DCS1800, the $V_{\text {RAMP }}$ pin is ramped between 0 V and the appropriate voltage between 0 V and 3 V for the desired output power. For closed-loop configurations using the MC33169, MMSF4N01HD N-MOS switch and the MRFIC1818 provide a typical 1 MHz 3 dB loop bandwidth. The STANDBY pin must be enabled ( 3 V ) at least $800 \mu$ s before the $\mathrm{V}_{\text {RAMP }}$ pin goes high and disabled ( 0 V ) at least $20 \mu$ s before the $\mathrm{V}_{\text {RAMP }}$ pin goes low. This STANDBY function allows for the enabling of the MC33169 one burst before the active burst thus reducing power consumption.

## Conclusion

The MRFIC1818 offers the flexibility in matching circuitry and gate biasing required for portable cellular applications. Together with the MC33169 support IC, the device offers an efficient system solution for TDMA applications such as DCS1800 where saturated amplifier operation is used.

For more information about the power control using the MC33169, refer to application note AN1599, "Power Control with the MRFIC0913 GaAs Integrated Power Amplifier and MC33169 Support IC."

## Evaluation Boards

Two versions of the MRFIC1818 evaluation board are available. Order MRFIC1818DCSTF for the 1.8 GHz version and order MRFIC1818PCSTF for the 1.9 GHz version. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

## The MRFIC Line 900 MHz Downconverter (LNA/Mixer)

The MRFIC2001 is an integrated downconverter designed for receivers operating in the 800 MHz to 1.0 GHz frequency range. The design utilizes Motorola's advanced MOSAIC 3 silicon bipolar RF process to yield superior performance in a cost effective monolithic device. Applications for the MRFIC2001 include CT-1 and CT-2 cordless telephones, remote controls, video and audio short range links, low cost cellular radios, and ISM band receivers. A power down control is provided to minimize current drain with minimum recovery/turn-on time.

- Conversion Gain $=23 \mathrm{~dB}$ (Typ)
- Supply Current $=4.7 \mathrm{~mA}$ (Typ)
- Power Down Supply Current $=2.0 \mu \mathrm{~A}(\mathrm{Max})$
- Low LO Drive = -10 dBm (Typ)
- LO Impedance Insensitive to Power Down
- No Image Filtering Required
- No Matching Required for RF IN Port
- All Ports are Single Ended
- Order MRFIC2001R2 for Tape and Reel. R2 suffix = 2,500 Units per 12 mm, 13 inch Reel.
- Device Marking = M2001


ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	5.5	Vdc
Control Voltage	ENABLE	5.0	$\mathrm{Vdc}^{\prime}$
Input Power, RF and LO Ports	$\mathrm{P}_{\text {RF }}, \mathrm{P}_{\mathrm{LO}}$	+10	dBm
Operating Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	-35 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$



Pin Connections and Functional Block Diagram

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
Supply Voltage Range	$\mathrm{V}_{\mathrm{CC}}$	2.7 to 5.0	Vdc
Control Voltage Range	ENABLE	0 to 5.0	Vdc
RF Port Frequency Range	$\mathrm{f}_{\mathrm{RF}}$	500 to 1000	MHz
IF Port Frequency Range	$\mathrm{f}_{\mathrm{IF}}$	0 (dc) to 250	MHz

ELECTRICAL CHARACTERISTICS $\left(V_{C C}, E N A B L E=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RF} @ 900 \mathrm{MHz}, \mathrm{LO} @ 1.0 \mathrm{GHz}, \mathrm{PLO}=-7.0 \mathrm{dBm}\right.$,
IF @ 100 MHz unless otherwise noted)

Characteristic (1)	Min	Typ	Max	Unit
Supply Current: On-Mode	-	4.7	5.5	mA
Supply Current: Off-Mode (ENABLE < 1.0 Volts)	-	0.1	2.0	$\mu \mathrm{~A}$
ENABLE Response Time	-	1.0	-	$\mu \mathrm{s}$
Conversion Gain	20	23	26	dB
Input Return Loss (RF IN Port)	-	13	-	dB
Single Sideband Noise Figure	-	5.5	-	dB
Input 3rd Order Intercept Point	-26	-22.5	-	dBm
Output Power at 1.0 dB Gain Compression	-	-10	-	dBm
LO - RF Isolation (1.0 GHz)	-	37	-	dB
LO - IF Isolation (1.0 GHz)	-	33	-	dB
RF - IF Isolation (900 MHz)	-	4.0	-	dB
RF - LO Isolation (900 MHz)	-	19	-	dB

NOTE:

1. All Electrical Characteristics measured in test circuit schematic shown in Figure 1 below:


> C1, C2, C4, C7 - 100 pF Chip Capacitor
> C3, C5, C8 - 1000 pF Chip Capacitor
> C6 - 6.8 pF Chip Capacitor
> L1 - 8.2 nH Chip Inductor
> L2 -270 nH Chip Inductor

L3 - 150 nH Chip Inductor
RF Connectors - SMA Type
Board Material - Epoxy/Glass $\varepsilon_{r}=4.5$,
Dielectric Thickness $=0.014^{\prime \prime}(0.36 \mathrm{~mm})$

Figure 1. Test Circuit Configuration


Figure 2. Port Impedances versus Frequency (GHz)


Figure 3. Conversion Gain versus RF Frequency


Figure 4. Conversion Gain versus RF Frequency

$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \text { (Volts) } \end{aligned}$	$\begin{gathered} f \\ (\mathrm{MHz}) \end{gathered}$	$\Gamma_{\text {IF }}$		$\Gamma_{\text {RF }}$		$\Gamma$ LO	
		Mag	$\angle \phi$   Degrees	Mag	$\angle \phi$   Degrees	Mag	$\angle \phi$   Degrees
3.0	50	0.998	-2.5	-	-	-	-
	100	0.996	-4.9	-	-	-	-
	150	0.993	$-7.2$	-	-	-	-
	200	0.990	-10	-	-	-	-
	250	0.987	-12	-	-	-	-
	500	-	-	0.36	-70	0.58	-31
	600	-	-	0.32	-70	0.55	-36
	700	-	-	0.29	-69	0.53	-42
	800	-	-	0.26	-68	0.51	-48
	900	-	-	0.23	-63	0.50	-54
	1000	-	-	0.20	-58	0.49	-61
	1100	-	-	0.18	-51	0.47	-68
	1200	-	-	0.17	-44	0.45	-76

Table 1. Port Reflection Coefficients
(ENABLE $=3.0 \mathrm{~V}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

TYPICAL CHARACTERISTICS


Figure 5. Conversion Gain versus LO Input Power


Figure 7. Input Third Order Intercept Point versus RF Frequency


Figure 9. Noise Figure versus RF Frequency


Figure 6. Conversion Gain versus LO Input Power


Figure 8. Input Third Order Intercept Point versus RF Frequency


Figure 10. Noise Figure versus LO Input Power


Figure 11. Noise Figure versus Reflection Coefficient Phase Angle of RF Port Image Termination


Figure 12. Supply Current versus Enable Voltage


Figure 13. Supply Current versus Enable Voltage

## APPLICATIONS INFORMATION

## DESIGN PHILOSOPHY

The MRFIC2001 was designed for low cost, small size, and ease of use. This is accomplished by minimizing the number of necessary external components.
The most significant external component eliminated was an image filter between the LNA and mixer. It was found the ensuing image noise entering the mixer from the LNA could be minimized by optimizing the LNA input termination at the image frequency. Also, a double-balanced mixer was used to reject the IF noise from the LNA. This results in excellent LO and spurious rejection.
To eliminate the need for external baluns or decoupling elements, the unused LO and RF ports of the mixer are decoupled internally. Only one of the IF outputs is used, eliminating the need for an external balun on the IF port as well. Also, the LNA input is matched to 50 ohms internally. External matching is required for the LO and IF ports.

To minimize current drain in various TDD/TDMA systems, the MRFIC2001 has a TTL/CMOS compatible enable pin.

## THEORY OF OPERATION

Optimizing the LNA input termination to minimize image noise is quite simple. The optimum LNA input (RF IN pin) termination is $1 \angle 30^{\circ}$ at the image frequency (regardless of what the image frequency is). A reflection coefficient magnitude close to 1 is automatically obtained from a front-end filter, since the image frequency would be in the stop-band. The $30^{\circ}$ phase angle can be obtained by rotating the phase angle of the front-end filter with a series 50 ohm transmission line. The dependance of single-sideband noise figure on the image phase angle is shown in Figure 11. As the plot indicates, there is a little over 1.0 dB of variation across all possible phase angles for a 3.0 V supply. Therefore, setting the phase angle is not critical. At higher supply voltages setting the phase angle is more critical (and more rewarding).

Matching the LO port to 50 ohms can be done several ways. The recommended approach is a series inductor as close to the IC as possible. The inductor value is small enough ( $\sim 8-15 \mathrm{nH}$ depending on LO frequency) to be printed on the board. A DC block is required and should not be placed between the inductor and IC since this will prevent the inductor from being close enough to the IC to provide a good match.
The IF port is an open collector resulting in a very high output impedance. For optimum linearity (IP3), the IF port should be loaded with a 1000 ohm load-line. Since the output requires a bias inductor and blocking capacitor, the IF filter impedance can be transformed to 1000 ohms with these two elements. If a low output VSWR is desired (to reduce IF filter ripple), a $2.0-4.0 \mathrm{~K}$ ohm resistor can be placed in parallel with the bias inductor. This will reduce the conversion gain by $1.0-2.0 \mathrm{~dB}$.
The RF port is nearly 55 ohms resistive in series with a
small amount of capacitive reactance, which results in a $12-13 \mathrm{~dB}$ return loss. If a higher return loss is desired, a $3.0-4.0 \mathrm{nH}$ series inductor printed on the board as close to the IC as possible will improve it to over 20 dB . A DC block is also required.

Supply decoupling must be done as close to the IC as possible. A 1000 pF capacitor is recommended. An additional 100 pF capacitor and an RF choke are recommended to keep the LO signal off the supply line.

Enabling/Disabling the MRFIC2001 can be done with its TTL/CMOS compatible Enable pin. The trip point is between 1.0 and 2.0 volts.

## EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

## The MRFIC Line 900 MHz Transmit Mixer

The MRFIC2002 is a double-balanced, active mixer designed for transmitters operating in the 800 MHz to 1.0 GHz frequency range. The design utilizes Motorola's advanced MOSAIC 3 silicon bipolar RF process to yield superior performance in a cost effective monolithic device. Applications for the MRFIC2002 include CT1 and CT2 cordless telephones, GSM, remote controls, video and audio short range links, low cost cellular radios, and ISM band transmitters. A power down control is provided to minimize current drain with minimum recovery/turn-on time.

- Conversion Gain $=10 \mathrm{~dB}$ (Typ)
- Supply Current $=5.5 \mathrm{~mA}$ (Typ)
- Power Down Supply Current $=2.0 \mu \mathrm{~A}$ (Max)
- LO-RF Isolation $=25 \mathrm{~dB}$ (Typ)
- Low LO Drive Required =-10 dBm (Typ)
- LO Impedance Insensitive to Power Down
- No Matching Required for RF OUT Port
- All Ports are Single Ended
- Order MRFIC2002R2 for Tape and Reel.

R2 Suffix = 2,500 Units per 12 mm, 13 inch Reel.

- Device Marking = M2002


ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	5.5	Vdc
Control Voltages	ENABLE, $\mathrm{V}_{\text {RAMP }}$	5.0	Vdc
Input Power, LO and IF Ports	$\mathrm{P}_{\text {LO }}, \mathrm{P}_{\mathrm{IF}}$	+10	dBm
Operating Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	-35 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$


(1) For CT2 applications, apply ramp voltage provided in MRFIC2004. For non-CT2, leave open circuited.

Pin Connections and Functional Block Diagram

## RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
Supply Voltage Range	$\mathrm{V}_{\mathrm{CC}}$	2.7 to 5.0	Vdc
Control Voltage Ranges	ENABLE, $\mathrm{V}_{\text {RAMP }}$	0 to 5.0	Vdc
RF Port Frequency Range	$\mathrm{f}_{\text {RF }}$	500 to 1000	MHz
IF Port Frequency Range	$\mathrm{f}_{\mathrm{IF}}$	0 (dc) to 250	MHz

ELECTRICAL CHARACTERISTICS $\left(V_{\text {CC }}\right.$, Enable $=3.0 \mathrm{~V}$ and $\mathrm{V}_{\text {Ramp }}{ }^{(1)}$ Open Circuited, $\mathrm{PLO}=-7.0 \mathrm{dBm}$, IF @ 100 MHz , LO @ 1.0 GHz , RF @ $900 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic (2)	Min	Typ	Max	Unit
Supply Current: On-Mode				
Supply Current: Off-Mode (Enable < 1.0 V)	-	5.5	7.0	mA
Enable Response Time	-	0.1	2.0	$\mu \mathrm{~A}$
Conversion Gain	-	1.0	-	$\mu \mathrm{s}$
Single Sideband Noise Figure	8.0	10	12	dB
Output Power at 1.0 dB Gain Compression	-	10	-	dB
Output Power at Saturation	-	-18	-	dBm
LO-RF Isolation (1.0 GHz)	-16	-14	-	dBm
LO-IF Isolation (1.0 GHz)	-	25	-	dB
IF-RF Isolation (100 MHz)	-	65	-	dB
IF-LO Isolation (100 MHz)	-	18	-	dB

NOTES:

1. For CT2 applications, apply ramp voltage provided in MRFIC2004. For non-CT2, leave open circuited.
2. All Electrical Characteristics are measured in test circuit schematic as shown in Figure 1.


Figure 1. Test Circuit Configuration


Figure 2. Port Impedances versus Frequency


Figure 3. Gain versus RF Frequency


Figure 4. Gain versus RF Frequency

$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \text { (Volts) } \end{aligned}$	$\begin{gathered} f \\ (\mathrm{MHz}) \end{gathered}$	$\Gamma \mathrm{IF}$		$\Gamma_{\text {RF }}$		ГLO	
		Mag	Degrees	Mag		Mag	
3.0	50	0.83	-2.4	-	-	-	-
	100	0.82	-4.7	-	-	-	-
	150	0.82	-7.1	-	-	-	-
	200	0.81	-9.6	-	-	-	-
	250	0.81	-11.7	-	-	-	-
	500	-	-	0.42	100	0.57	-29
	600	-	-	0.41	94	0.55	-35
	700	-	-	0.40	88	0.54	-41
	800	-	-	0.39	80	0.52	-48
	900	-	-	0.36	71	0.51	-54
	1000	-	-	0.33	63	0.50	-60
	1100	-	-	0.31	55	0.49	-65
	1200	-	-	0.28	45	0.49	-70

Table 1. Deembedded Port Reflection Coefficients
(Enable $=3.0 \mathrm{~V}, \mathrm{Z}_{\mathrm{O}}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )


Figure 5. Gain versus LO Input Power


Figure 7. Output Power versus IF Input Power


Figure 6. Gain versus LO Input Power


Figure 8. Output Power versus IF Input Power


Figure 9. Output Power at 1.0 dB Gain Compression versus LO Input Power


Figure 10. Icc versus VCC


Figure 11. ICC versus Enable Voltage

## APPLICATIONS INFORMATION

## DESIGN PHILOSOPHY

The MRFIC2002 was designed to have excellent LO and spurious rejection. This is accomplished by using a doublebalanced configuration and using a symmetrical die layout.
To eliminate the need for external baluns or decoupling elements, the unused LO and IF ports are decoupled internally. Only one of the RF outputs is used, eliminating the need for an external balun on the RF port as well. Also, the RF port is buffered to provide a 50 ohm output impedance. External matching is required for the LO and IF ports.

To minimize current drain in various TDD/TDMA systems, two methods of enabling/disabling the MRFIC2002 are provided: one that is TTL/CMOS compatible and one that is triggered from a ramp, such as the one provided in the MRFIC2004. The former method must be used if a ramp is not available. The latter method is more desirable since the MRFIC2002 can remain off during guard times and while in idle mode.

## THEORY OF OPERATION

Matching the LO port to 50 ohms can be done several ways. The recommended approach is a series inductor as close to the IC as possible. The inductor value is small enough ( $\sim 8-15 \mathrm{nH}$ depending on LO frequency) to be printed on the board. A DC block is required and should not be placed between the inductor and IC since this will prevent the inductor from being placed close enough to the IC to provide a good match.

The IF port is approximately 500 ohms resistive in parallel with 1.3 pF of capacitance. If 50 ohms is the desired IF port impedance, a shunt capacitor followed by a series inductor
will provide the transformation. A DC block is required and can be placed on either side of the matching network.

The RF port is nearly 50 ohms resistive in series with a small amount of inductive reactance, which results in an $8-11 \mathrm{~dB}$ return loss. However, a series 5.6 pF capacitor placed as close to the IC as possible will typically provide greater than a 15 dB return loss. The series capacitor also serves as a DC block which is required.

Supply decoupling must be done as close to the IC as possible. A 1000 pF capacitor is recommended. An additional 100 pF capacitor and an RF choke are recommended to keep the RF and LO signals off the supply line.

For systems that use a ramp, like the one provided in the MRFIC2004, enabling/disabling can be done by applying the ramp voltage to the $\mathrm{V}_{\text {RAMP }}$ pin which trips the IC between 0.6 and 1.0 volts. The Enable pin must either be tied high or to the inverse of the receiver enable control line, RXEN. An inverter is provided in the MRFIC2004 to invert RXEN.

For systems that do not use a ramp, the $\mathrm{V}_{\text {RAMP }}$ pin can be left open circuited and enabling/disabling the MRFIC2002 can be done with its TTL/CMOS compatible Enable pin. The trip point is between 1.0 and 2.0 volts.

## EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

## The MRFIC Line 900 MHz Driver and Ramp

The MRFIC2004 is an integrated Driver and Ramp designed for transmitters operating in the 800 MHz to 1.0 GHz frequency range. The Ramp is an integrator which can be used for burst control for TDD/TDMA systems. The Driver uses a cascode configuration for high gain and reverse isolation. A power down control is provided to minimize current drain with minimum recovery/turnon time. Also, an on-board inverter is included to provide complementary control for an antenna switch, such as the MRFIC2003. The design utilizes Motorola's advanced MOSAIC 3 silicon bipolar RF process to yield superior performance in a cost effective monolithic device. Applications for the MRFIC2004 include CT1 and CT2 cordless telephones, GSM, remote controls, video and audio short range links, low cost cellular radios, and ISM band transmitters.

- Small Signal Gain $=21.5 \mathrm{~dB}$ (Typ)
- Small Signal Gain Control = 34 dB (Typ)
- $P_{0} 1.0 \mathrm{~dB}=-1.0 \mathrm{dBm}$ (Typ)
- On Board Ramp for Burst Control
- Power Down Supply Current $=0.7 \mathrm{~mA}$ (Typ)
- Low Operating Supply Voltage (2.7 to 4.0 Volts)
- Input/Output VSWR Insensitive to Gain Control
- Order MRFIC2004R2 for Tape and Reel.

R2 Suffix = 2,500 Units per 16 mm, 13 inch Reel.

- Device Marking = M2004


ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Supply Voltages	$\mathrm{V}_{\mathrm{CC} 1}$	4.5	Vdc
	$\mathrm{V}_{\mathrm{CC} 2}$	6.0	
Control Voltages	RXEN, TXEN, $\mathrm{V}_{\text {cont }}$	6.0	Vdc
Input Power, RF IN Port	$\mathrm{P}_{\mathrm{RF}}$	+10	dBm
Operating Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	-35 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$



Pin Connections and Functional Block Diagram

REV 2

## RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
Supply Voltage Ranges	$\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC} 2}$	2.7 to 4.0	Vdc
Control Voltage Ranges	TX EN, RX EN, $\mathrm{V}_{\text {cont }}$	0 to $\mathrm{V}_{\mathrm{CC} 1}$	Vdc
Frequency Range	f	800 to 1000	MHz

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC} 2}=3.0 \mathrm{~V}, \mathrm{C}_{\mathrm{INT}}=2.0 \mathrm{nF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=900 \mathrm{MHz}, \mathrm{V}_{\mathrm{CONT}}=1.3 \mathrm{~V}\right)$

Characteristics (1)	Min	Typ	Max	Unit
Supply Current, TX EN High, RX EN Low	-	11	13	mA
Supply Current, TX EN Low, RX EN High	-	0.7	1.5	mA
Driver Characteristics (1)				
Gain (Small Signal)	19	21.5	24	dB
Gain Control (Small Signal)	-	34	-	dB
Power Out @ 1.0 dB Gain Compression	-4.0	-1.0	-	dBm
Third Order Intercept Point (out)	-	+7.5	-	dBm
Reverse Isolation	-	32	-	dB
Ramp Characteristics (1)				
Ramp Up Delay Time Rise Time Total Time	-	$\begin{aligned} & 4.0 \\ & 18 \\ & 22 \end{aligned}$	-	$\mu \mathrm{s}$
Ramp Down Delay Time Fall Time Total Time	-	$\begin{aligned} & 4.0 \\ & 18 \\ & 22 \end{aligned}$	-	$\mu \mathrm{S}$

LOGIC LEVELS ( $\mathrm{V}_{\mathrm{CC} 1}=2.7$ to $\left.4.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

	RX EN \& TX EN Input Voltage	Min	Typ	Max
High   Low		$\mathrm{V}_{\mathrm{CC} 1}-0.8$	-	-
	-	-	Onit	
High				V

NOTE:

1. All electrical characteristics measured in test circuit schematic shown in Figure 1 below.


Figure 1. Typical Biasing Configuration


Figure 2. $\mathrm{S}_{11}$ versus Frequency versus $\mathrm{V}_{\text {cont }}$


Figure 3. S 22 versus Frequency

$\mathrm{V}_{\text {cont }}$	$\stackrel{\mathrm{f}}{(\mathrm{MHz})}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
		\|S ${ }_{11}$ \|	$\angle \phi$	\|S21		$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	${ }^{\text {S } 22 \mid}$	$\angle \phi$
1.0	100	0.85	-11.3	10.48	171.5	0.0002	142.7	0.99	-2.9	
	300	0.83	-32.8	10.33	156.3	0.0020	129.0	0.99	-7.3	
	500	0.79	-56.9	10.15	140.5	0.0030	130.6	0.98	-15.9	
	550	0.79	-62.5	10.04	135.9	0.0030	132.6	0.98	-17.9	
	600	0.78	-68.5	9.85	130.2	0.0040	133.3	0.98	-20.0	
	650	0.77	-74	9.47	126.9	0.0040	135.9	0.98	-22.3	
	700	0.76	-79	9.23	123.6	0.0050	137.2	0.98	-24.7	
	750	0.76	-84.4	9.02	119.4	0.0050	138.1	0.97	-27.0	
	800	0.75	-89.6	8.69	113.8	0.0060	139.7	0.97	-29.3	
	850	0.74	-94.5	8.33	110.8	0.0070	140.3	0.97	-31.4	
	900	0.73	-99.1	8.13	108.9	0.0080	141.2	0.96	-33.2	
	950	0.73	-102	7.98	105.4	0.0090	138.3	0.96	-36.3	
	1000	0.72	-106.9	7.70	101.0	0.0100	133.7	0.95	-38.4	
1.9	100	0.85	-11.3	0.53	-173.5	0.0002	104.3	0.99	-2.9	
	300	0.86	-33.5	0.69	-169.7	0.0009	118.7	0.98	-8.7	
	500	0.87	-59.3	0.89	-179.5	0.0010	134.3	0.98	-15.5	
	550	0.87	-65.7	0.96	175.1	0.0020	136.3	0.98	-17.5	
	600	0.88	-73.1	1.02	169.9	0.0020	138.9	0.97	-19.6	
	650	0.88	-78.7	1.04	167.3	0.0020	142.6	0.97	-21.8	
	700	0.88	-84.7	1.07	165.0	0.0030	147.8	0.97	-24.1	
	750	0.89	-90.7	1.14	161.5	0.0030	153.4	0.96	-26.4	
	800	0.89	-98.2	1.17	155.8	0.0040	161.0	0.96	-28.8	
	850	0.88	-104.6	1.22	151.2	0.0050	161.8	0.96	-30.7	
	900	0.87	-110.1	1.24	144.6	0.0060	162.7	0.95	32.8	
	950	0.86	-114.6	1.26	139.9	0.0070	160.3	0.95	-35.1	
	1000	0.85	-118.8	1.27	134.1	0.0080	158.2	0.94	-37.2	
3.0	100	0.85	-10.9	0.003	-85.9	0.0001	115.0	0.99	-2.8	
	300	0.86	-31.9	0.014	-78.8	0.0006	121.0	0.99	-8.5	
	500	0.87	-56.9	0.032	-61.1	0.0010	128.0	0.98	-15.1	
	550	0.88	-62.4	0.038	-65.8	0.0010	136.2	0.98	-17.0	
	600	0.89	-69.4	0.048	-68.3	0.0010	140.0	0.98	-19.2	
	650	0.90	-75.1	0.058	-75.1	0.0020	145.1	0.98	-21.3	
	700	0.90	-81.3	0.069	-82.4	0.0020	150.8	0.97	-23.6	
	750	0.91	-87.3	0.081	-89.4	0.0020	156.8	0.97	-25.8	
	800	0.91	-93.8	0.092	-113.4	0.0030	160.3	0.97	-28.1	
	850	0.92	-100.7	0.092	-121.8	0.0040	163.3	0.96	-30.1	
	900	0.91	-106.8	0.089	-128.2	0.0050	163.3	0.96	-32.3	
	950	0.90	-111.4	0.083	-137.1	0.0060	155.2	0.95	-34.5	
	1000	0.89	-115.2	0.077	-151.9	0.0060	150.0	0.95	-36.6	

Table 1. Small Signal Deembedded S Parameters


Figure 4. Small Signal Gain versus Frequency


Figure 6. Driver Gain versus Gain Control Voltage


Figure 5. Output Power versus Input Power


Figure 7. Supply Current versus Ambient Temperature


Figure 8. Ramp Voltage versus Rise \& Fall Time

## APPLICATIONS INFORMATION

## DESIGN PHILOSOPHY

The MRFIC2004 was designed as a support IC for a CT2 chip-set. The other chips making up the chip-set are the MRFIC2001 downconverter, the MRFIC2002 transmit mixer, the MRFIC2003 antenna switch and the MRFIC2006 PA. A complete CT2 front-end solution requires a ramp for burst control, an inverter for complementary antenna switch control and gain control (or an attenuator) for the transmitter low power mode. In order to keep the other chips in the chip-set relatively general purpose, yet provide the system designer with an easily controlled solution, these functions were combined with a driver amplifier into one IC, the MRFIC2004.

## THEORY OF OPERATION

The driver is a cascode design that exits the IC opencollector. Impedance matching must be done externally. Since the output requires a bias inductor and DC blocking capacitor, the output can be matched with these two elements. To keep the driver unconditionally stable, it is recommended that a 300-400 ohm resistor be placed in parallel with the bias inductor as close to the IC as possible. Since the output impedance of the driver by itself is very high, the resistor sets the output impedance. The input can be matched with a series inductor followed by a shunt capacitor. Alternatively, a series transmission line followed by a shunt capacitor can be used. A DC block is also required on the input.

Gain control is provided to meet the CT2 low power mode requirement. The CT2 Common Air Interface specification requires the transmitter to be capable of dropping the output power by $16 \pm 4.0 \mathrm{~dB}$. Although the driver has 34 dB of small signal gain control, it can be reduced by ad-
ding a resistor in series with the gain control pin. The value of the resistor depends on the logic levels being used and the amount of gain compression after the driver. Also, the amount of gain control is a function of the driver input power level. The input power should be kept less than -10 dBm to allow for sufficient gain control to achieve the low power mode. The gain control can also be used for PA output power trimming. However, this is not an efficient method.

The ramp is an integrator which is used to slow down the driver and PA turn-on and turn-off times to reduce AM splatter. By applying a pulse waveform to the input, a linear ramp waveform is created at the output which is then applied to the current mirrors of the driver and PA. An external integrating capacitor is used so that the rise/fall time can be programmed externally. A minimum value of $2.0-2.4 \mathrm{nF}$ is needed to meet the CT2 Common Air Interface splatter specification. For non-TDD/TDMA systems the ramp reverts to an enable/disable function.

The inverter is CMOS/TTL compatible and was included to provide complementary control for an antenna switch such as the MRFIC2003. By applying the receiver enable control line, RXEN, to the inverter the inverse RXEN will be created. RXEN and RXEN can then be used to control the MRFIC2003 antenna switch.

## EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

## The MRFIC Line 900 MHz 2 Stage PA

The MRFIC2006 is an Integrated PA designed for linear operation in the 800 MHz to 1.0 GHz frequency range. The design utilizes Motorola's advanced MOSAIC 3 silicon bipolar RF process to yield superior performance in a cost effective monolithic device. Applications for the MRFIC2006 include CT-1 and CT-2 cordless telephones, remote controls, video and audio short range links, low cost cellular radios, and ISM band transmitters.

- $50 \Omega$ Input and Output Impedance
- Typical Gain = 23 dB @ 900 MHz
- Bias Current Externally Adjustable
- Bias Pin can be used to Ramp or Disable
- Class A or AB Linear Operation
- Unconditionally Stable
- SO-8 Leaded Plastic Package
- Order MRFIC2006R2 for Tape and Reel. R2 Suffix = 2,500 Units per $12 \mathrm{~mm}, 13$ inch Reel.
- Device Marking = M2006

900 MHz 2 STAGE PA SILICON MONOLITHIC INTEGRATED CIRCUIT


ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{O}}=50 \Omega\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Supply Voltages	$\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC} 2}$	5.0	Vdc
Bias Voltage	$\mathrm{V}_{\text {bias }}$	6.0	Vdc
Total Supply Current	$\mathrm{I}_{\mathrm{CC} 1}, \mathrm{I}_{\mathrm{CC} 2}$	100	mA
RF Output Power $\left(\mathrm{V}_{\mathrm{CC} 2}<4.0 \mathrm{~V}\right)$	$\mathrm{P}_{\text {out }}$	+21	dBm
RF Output Power $\left(4.0 \mathrm{~V}<\mathrm{V}_{\mathrm{CC} 2} \leq 5.0 \mathrm{~V}\right)$	$\mathrm{P}_{\text {out }}$	$53-8 \mathrm{~V}_{\mathrm{CC} 2}$	dBm
RF Input Power	$\mathrm{P}_{\text {in }}$	+10	dBm
Operating Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	-35 to +85	${ }^{\circ} \mathrm{C}$
Storage and Junction Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	63	${ }^{\circ} \mathrm{C} / \mathrm{W}$



Pin Connections and Functional Block Diagram

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
Supply Voltage Ranges	$\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC} 2}$	1.8 to 4.0	Vdc
Bias Voltage Range	$\mathrm{V}_{\text {bias }}$	0 to 5.0	Vdc
RF Frequency Range	f	500 to 1000	MHz

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC} 2}, \mathrm{~V}_{\text {bias }}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=900 \mathrm{MHz}, \mathrm{Z}_{\mathrm{O}}=50 \Omega$ unless otherwise noted)

Characteristics (1)	Min	Typ	Max	Unit
Supply Current - Total	-	46	55	mA
ICC1	-	14	-	mA
ICC2	-	29	-	mA
I Bias	-	3.0	-	mA
Small Signal Gain	19	23	26	dB
Input Return Loss, RF IN Port	-	15	-	dB
Output Return Loss, RF OUT Port	-	15	-	dB
Reverse Isolation	-	35	-	dB
Output Power at 1.0 dB Gain Compression	+12	+15.5	-	dBm
3rd Order Intercept Point (Out)	-	+25	-	dBm
5th Order Intercept Point (Out)	-	+21	-	dBm

NOTE:

1. All electrical characteristics measured in test circuit schematic shown in Figure 1 below.


Figure 1. Typical Biasing Configuration

Table 1. Scattering Parameters for 900 MHz Two-Stage PA
$\left(\mathrm{V}_{\mathrm{CC} 1}, \mathrm{~V}_{\mathrm{CC} 2}, \mathrm{~V}_{\mathrm{BIAS}}=3 \mathrm{~V}, \mathrm{I}=49 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 50 \Omega\right.$ System $)$

f	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
(MHz)	\| $\mathbf{S}_{11}$ \|	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
50	0.739	-16.67	3.785	51.56	0.003	-163.12	0.461	-89.23	
100	0.702	-24.53	5.772	46.52	0.001	15.96	0.354	-117.30	
150	0.671	-33.09	7.901	40.16	0.001	84.34	0.263	-144.77	
200	0.649	-41.55	10.065	32.12	0.001	-165.89	0.208	-167.08	
250	0.630	-49.79	12.287	23.06	0.002	-159.68	0.169	170.65	
300	0.610	-58.60	14.576	12.25	0.002	171.75	0.136	145.40	
350	0.592	-67.09	16.834	1.32	0.003	-160.23	0.113	113.52	
400	0.567	-75.32	19.009	-10.72	0.005	-167.93	0.105	73.18	
450	0.537	-83.69	20.901	-23.88	0.005	167.71	0.122	33.86	
500	0.495	-91.79	22.237	-37.89	0.007	159.88	0.157	2.30	
525	0.470	-95.35	22.626	-45.02	0.007	168.37	0.178	-10.93	
550	0.448	-98.65	22.821	-52.22	0.010	162.65	0.196	-22.73	
575	0.421	-101.69	22.834	-59.20	0.009	159.52	0.216	-32.62	
600	0.397	-104.40	22.647	-66.13	0.010	155.15	0.233	-42.62	
625	0.371	-106.50	22.299	-73.01	0.011	151.24	0.246	-50.98	
650	0.349	-108.28	21.813	-79.43	0.011	148.14	0.258	-59.21	
675	0.329	-109.85	21.204	-85.70	0.012	145.35	0.269	-66.61	
700	0.310	-111.02	20.538	-91.62	0.012	140.66	0.273	-73.29	
725	0.293	-111.65	19.824	-97.20	0.014	136.88	0.280	-79.97	
750	0.278	-112.24	19.094	-102.54	0.014	136.98	0.281	-85.86	
775	0.265	-112.60	18.334	-107.76	0.014	134.67	0.285	-91.50	
800	0.252	-112.81	17.594	-112.54	0.016	133.71	0.284	-96.72	
825	0.242	-113.50	16.880	-117.13	0.015	129.16	0.282	-102.24	
850	0.233	-114.93	16.127	-122.44	0.017	131.80	0.281	-107.68	
875	0.224	-115.32	15.438	-126.92	0.017	126.66	0.279	-112.88	
900	0.216	-116.04	14.796	-130.89	0.017	127.06	0.275	-117.56	
925	0.210	-116.66	14.165	-134.57	0.018	121.77	0.273	-120.85	
950	0.203	-117.91	13.555	-138.19	0.019	122.40	0.269	-125.53	
975	0.195	-118.87	13.009	-141.73	0.019	120.80	0.265	-129.73	
1000	0.191	-120.47	12.515	-145.08	0.019	122.53	0.265	-132.68	
1025	0.186	-122.39	12.004	-148.23	0.020	119.56	0.259	-137.22	
1050	0.179	-124.03	11.517	-151.36	0.022	115.24	0.254	-140.85	
1075	0.175	-126.22	11.063	-154.40	0.022	117.88	0.251	-144.69	
1100	0.168	-128.77	10.634	-157.40	0.024	112.04	0.248	-148.25	
1125	0.163	-131.41	10.228	-160.15	0.023	112.42	0.246	-151.75	
1150	0.161	-133.93	9.841	-163.04	0.023	115.77	0.245	-155.28	
1175	0.155	-136.68	9.479	-165.88	0.025	110.34	0.241	-158.69	
1200	0.152	-140.85	9.125	-168.50	0.025	109.94	0.241	-161.95	



Figure 2. Gain versus Frequency


Figure 4. Output Power versus Input Power


Figure 3. Gain versus Frequency


Figure 5. Output Power versus Input Power


Figure 6. Input Return Loss versus Frequency


Figure 7. Output Return Loss versus Frequency

## TYPICAL CHARACTERISTICS



Figure 8. Reverse Isolation versus Frequency


Figure 10. Output Power at 1 dB Gain Compression versus Frequency


Figure 12. Output Power versus Bias Voltage


Figure 9. Power Added Efficiency versus Output Power


Figure 11. Output Power at 1 dB Gain Compression versus Frequency


Figure 13. Output Power versus Bias Voltage

## TYPICAL CHARACTERISTICS



Figure 14. Supply Current versus Bias Voltage


Figure 15. Supply Current versus Bias Voltage


Figure 16. Bias Current versus Bias Voltage

## APPLICATIONS INFORMATION

## DESIGN PHILOSOPHY

The MRFIC2006 was designed for low cost and flexibility. Low cost was achieved by minimizing external components and using an SOIC package. Flexibility was achieved by allowing the bias current to be externally adjustable resulting in a broad range of output power capability. The bias pin can be ramped to reduce AM splatter in TDD/TDMA systems and can be used to trim the RF output power.

## THEORY OF OPERATION

The input port is internally matched to 50 ohms. Return loss is typically $15-16 \mathrm{~dB}$ in the $800-1000 \mathrm{MHz}$ range. The output port is nearly 50 ohms but is an open collector and therefore requires an external bias inductor. Using an RF choke will result in a 11-12 dB output return loss. However, a 10 nH inductor will improve it to $15-20 \mathrm{~dB}$. A 10 nH inductor is small enough in value to be printed on the board. DC blocks are required on the input and output. Values of 100 pF are recommended.

Supply decoupling must be done as close to the IC as possible. A 1000 pF capacitor is recommended. A series RF choke is recommended to keep the RF signal off the supply line. A 10 nF decoupling capacitor is recommended on the $\mathrm{V}_{\text {bias }}$ line but does not need to be very close to the IC.

The $\mathrm{V}_{\text {bias }}$ pin can be used several ways. Tying it directly to $V_{C C}$ will maximize the bias current which will maximize linearity. Adding a series resistor will reduce the bias current which will improve efficiency. Figure 9 shows the efficiency versus output power with $\mathrm{V}_{\text {bias }}$ tied to $\mathrm{V}_{\mathrm{C}}$. The series resistor will cause these curves to shift to the left. The RF output power can be trimmed by using a variable resistor. The $\mathrm{V}_{\text {bias }}$ pin can also be used to power down the IC or, in the case of TDD/TDMA systems, to ramp the IC. By applying a linear ramp voltage, such as the one provided by the MRFIC2004, it has been demonstrated to meet the CT2 Common Air Interface splatter specifications.

The MRFIC2006 is internally temperature compensated. For input powers of -5.0 to 0 dBm the output power temperature variation is typically less than 0.2 dB from -35 to $+85^{\circ} \mathrm{C}$.

## EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

## The MRFIC Line 900 MHz TX-Mixer/Exciter

The MRFIC2101 is a high linearity transmit mixer and exciter designed primarily for Digital Cellular radio systems. The mixer is double-balanced for excellent LO and spurious rejection. An on-board LO buffer is provided to reduce LO power requirements and eliminate the need for an external LO balun. A power down control is provided to minimize current drain with minimum recovery/turn-on time. The design utilizes Motorola's advanced MOSAIC 3 silicon bipolar RF process to yield superior performance in a cost effective monolithic device.

- High Linearity $\mathrm{IP}^{2}=23 \mathrm{dBm}$ (Typ)
- Low LO Drive Required $=-15 \mathrm{dBm}$ (Typ)
- Externally Adjustable Exciter Bias Current
- Power Down Supply Current $=2.0 \mu \mathrm{~A}$ (Typ)
- SO-16 Narrow Body Plastic Package
- Order MRFIC2101R2 for Tape and Reel.

R2 suffix $=2,500$ Units per $16 \mathrm{~mm}, 13$ inch Reel.

- Device Marking = M2101


## MRFIC2101

900 MHz TX-MIXER/EXCITER SILICON MONOLITHIC INTEGRATED CIRCUIT


ABSOLUTE MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Ratings	Symbol	Value	Unit
Supply Voltage	$\mathrm{EX} \mathrm{V}_{\mathrm{CC}}, \mathrm{MX} \mathrm{V}_{\mathrm{CC}}, \mathrm{EX}$ BIAS	5	Vdc
Enable Voltages	$\mathrm{MX} \mathrm{EN} EX EN$,	6	Vdc
Input Power, LO and IF Ports	$\mathrm{P}_{\text {LO }}, \mathrm{P}_{\mathrm{IF}}$	+10	dBm
Operating Ambient Temperature	$\mathrm{T}_{\mathrm{A}}$	-35 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
RF Output Power $\left(\mathrm{EX} \mathrm{V}_{\mathrm{CC}}<4 \mathrm{~V}\right)$	$\mathrm{P}_{\text {out }}$	18	dBm
RF Output Power $\left(4 \mathrm{~V}<\mathrm{EX} \mathrm{V}_{\mathrm{CC}} \leq 5 \mathrm{~V}\right)$	$\mathrm{P}_{\text {out }}$	$38-5 \mathrm{EX} \mathrm{V}_{\mathrm{CC}}$	dBm



Pin Connections and Functional Block Diagram

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Supply Voltages	EX $V_{C C}, ~ M X ~ V_{C C}, ~ E X ~ B I A S ~$	4.75	Vdc
Enable Voltages	MX EN, EX EN	$0,4.75$	Vdc
RF Port Frequency Range	RF	800 to 1000	MHz
IF Port Frequency Range	IF	0 to 250	MHz

LOGIC LEVELS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Input Voltage (MX EN, EX EN)	Min	Max	Unit
High	$M X V_{C C}-0.8, \mathrm{EX}_{\mathrm{CC}}-0.8$	-	Volts
Low	-	0.8	Volts

MIXER ELECTRICAL CHARACTERISTICS (MX VCC, MX EN $=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, RF @ 900 MHz , LO @ 800 MHz , IF @ 100 MHz , PLO $=-15 \mathrm{dBm}$ unless otherwise noted)

Characteristic (1)	Min	Typ	Max	Unit
Conversion Gain (Small Signal)	24	26.5	29	dB
Output Power at 1 dB Gain Compression	2.5	4.5	-	dBm
Output Third Order Intercept Point (-5 dBm out/tone)	-	14	-	dBm
Output Fifth Order Intercept Point (-5 dBm out/tone)	-	11	-	dBm
LO Leakage	-	-30	-	dBm
Supply Current (Enabled)	-	45	54	mA
Supply Current (Disabled)	-	1	-	$\mu \mathrm{A}$
Noise Figure (Single Sideband)	-	5	-	dB

EXCITER ELECTRICAL CHARACTERISTICS (EX VCC, EX EN, EX BIAS $=4.75 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RF} @ 900 \mathrm{MHz}$ unless otherwise noted)

Characteristic (1)	Min	Typ	Max	Unit
Gain (Small Signal)	14	16	18	dB
Output Power at 1 dB Gain Compression	16	18	-	dBm
Output Third Order Intercept Point (+ 3 dBm out/tone)	-	30	-	dBm
Output Fifth Order Intercept Point (+ 3 dBm out/tone)	-	22	-	dBm
LO Leakage (PLO $=-15$ dBm into Mixer)	-	-30	-	dBm
Supply Current (Enabled)	-	38	46	mA
Supply Current (Disabled)	-	1	-	$\mu \mathrm{A}$
Noise Figure	-	5	-	dB

(1) All electrical characteristics are measured in test circuit schematic as shown in Figure 1.


Figure 1. Test Circuit Configuration

Table 1. Mixer Deembedded Port Reflection Coefficients
( $Z_{O}=50 \Omega, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ )

$\begin{gathered} f \\ (\mathrm{MHz}) \end{gathered}$	$\Gamma_{\text {IF }}$		$\Gamma_{\text {RF }}$		ГLO	
	Mag	$\begin{gathered} \angle \phi \\ \text { Degrees } \end{gathered}$	Mag	$\angle \phi$   Degrees	Mag	
50	0.68	-9.4	-	-	-	-
100	0.68	-18	-	-	-	-
150	0.67	-26	-	-	-	-
200	0.66	-33	-	-	-	-
250	0.65	-40	-	-	-	-
500	-	-	0.93	-28	0.79	$-30$
600	-	-	0.92	-33	0.79	-32
700	-	-	0.91	-37	0.79	-33
800	-	-	0.89	-41	0.77	-34
900	-	-	0.87	-45	0.75	-34
1000	-	-	0.85	-48	0.73	-35
1100	-	-	0.82	-50	0.69	-36
1200	-	-	0.79	-53	0.65	-37
1300	-	-	0.75	-56	0.61	-41
1400	-	-	0.71	-61	0.56	-47
1500	一	-	0.66	-66	0.52	-55

Table 2. Exciter Small Signal Deembedded S Parameters ( $Z_{O}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}$ )

$\begin{gathered} f \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
	$\left\|S_{11}\right\|$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	$\left\|S_{22}\right\|$	$\angle \phi$
100	0.51	-121	35.51	131	0.02	50	0.65	-67
200	0.62	-149	22.61	109	0.03	42	0.49	-103
300	0.65	-162	16.05	96	0.03	41	0.43	-122
400	0.65	-170	12.16	87	0.04	41	0.40	-134
500	0.63	-177	9.75	81	0.04	42	0.38	-141
600	0.61	176	8.18	75	0.05	41	0.37	-146
700	0.59	169	7.06	70	0.05	40	0.36	-149
800	0.58	161	6.18	65	0.06	38	0.35	-153
900	0.58	154	5.44	60	0.07	33	0.35	-156
1000	0.59	145	4.91	55	0.07	30	0.35	-163
1100	0.61	139	4.39	51	0.08	27	0.35	-170
1200	0.65	134	3.94	47	0.08	22	0.35	-177
1300	0.67	131	3.56	43	0.08	20	0.37	174
1400	0.69	129	3.22	39	0.09	16	0.40	166
1500	0.71	127	2.92	36	0.09	13	0.43	160

TYPICAL CHARACTERISTICS


Figure 2. Mixer Gain versus LO Input Power


Figure 4. Mixer Output Power at 1 dB Gain Compression versus LO Input Power


Figure 6. Mixer Output Power versus IF Input Power


Figure 3. Mixer Gain versus LO Input Power


Figure 5. Mixer Output Power at 1 dB Gain Compression versus LO Input Power


Figure 7. Mixer Output Power versus IF Input Power

## TYPICAL CHARACTERISTICS



Figure 8. Mixer 3rd Order Intermodulation Distortion versus Output Power


Figure 10. Exciter Output Power versus Input Power


Figure 12. Exciter 3rd Order Intermodulation Distortion versus Output Power


Figure 9. Mixer 3rd Order Intermodulation Distortion versus Output Power


Figure 11. Exciter Output Power versus Input Power


Figure 13. Exciter 3rd Order Intermodulation Distortion versus Output Power

TYPICAL CHARACTERISTICS


Figure 14. ICC versus Temperature


Figure 15. ICC versus $V_{C C}$

## APPLICATIONS INFORMATION

## DESIGN PHILOSOPHY

The MRFIC2101 was designed as a linear upconverter for U.S. and Japan digital cellular radios. However, it is versatile enough to be used in other applications such as analog cellular, GSM, CDMA and the 900 MHz ISM band.

The mixer is double-balanced to minimize spurious and LO emission. An external balun is required on the mixer RF output to maximize linearity and maintain good balance. An inexpensive and easy to implement balun is described below in the theory of operation. The IF and LO ports do not require baluns. The LO split is achieved on-chip with a buffer amplifier which also reduces the LO power requirement. The IF port can be driven differentially or single-ended with a decoupling capacitor on the unused IF input. Baseband signals can be applied directly to the IF inputs and the device becomes a complete low-power transmitter.

To maximize efficiency in various systems, the exciter bias current is externally adjustable. The bias current can also be ramped to reduce spectral splatter.
To minimize current drain in TDD/TDMA systems, the MRFIC2101 has separate TTL/CMOS compatible enable pins for the mixer and the exciter.

## THEORY OF OPERATION

Matching the LO port to 50 ohms can be done several ways. The recommended approach is a series inductor as close to the IC as possible. The inductor value is small enough (~8-15 nH depending on LO frequency and distance from the IC) to be printed on the board. A DC block is required and should not be placed between the inductor and IC since the added electrical length will cause a poor match.

The IF ports are approximately 250 ohms resistive in parallel with 5.0 pF of capacitance. Matching directly into this impedance is not recommended. Series 82 nH chip inductors should first be placed as close to both IF ports as possible. This presents a high impedance to the IF ports at the LO frequency which substantially reduces the LO leakage out of the RF port. The resulting impedance then may be matched to the desired characteristic impedance. DC blocking capacitors are also required.

Both RF ports are approximately 25 ohms resistive in series with 1.5 pF of capacitance (or the parallel equivalent, 380 ohms in parallel with 1.9 pF ). Best linearity is achieved by loading each port with 100 ohms resistive and resonating the 1.9 pF . Ideally, a half wavelength transmission line could be used to combine the two differential RF ports into one; however, the size of such a line would be very large. Any number of balun type network can be employed so long as the network presents 100 ohms to each port, resonates 1.9 pF capacitance at each port, and exhibits 180 degree phase difference between the two ports. The network shown in Figure 1 combines very well without a lot of added board space or complexity. Essentially, a quarter wavelength of transmission line ( $\sim 1.5$ inches of 50 ohms stripline in FR4) is used with additional phase shift coming from capacitors C12, C13 and C16. This network will operate anywhere from $800-1000 \mathrm{MHz}$ by adjusting bias inductor L4 and C16 only.

The exciter input requires external matching and a DC block. It is best matched to 50 ohms using a short 50 ohms transmission line followed by a $5-10 \mathrm{pF}$ shunt capacitor. The exciter output is approximately 50 ohms resistive in parallel with 4 pF of capacitance in the $800-1000 \mathrm{MHz}$ range. It is best matched to 50 ohms using a $6-10 \mathrm{nH}$ bias inductor placed as close to the IC as possible. The exciter is conditionally stable. Placing a 100-300 ohm resistor in parallel with the bias inductor, when driving large VSWR loads, may be needed to keep the exciter stable.

Supply decoupling must be done as close to the IC as possible. A 1000 pF capacitor is recommended. An additional 100 pF capacitor and an RF choke are recommended to keep the LO signal off the supply line.

Enabling/Disabling the MRFIC2101 can be done with the separate TTL/CMOS compatible enable pins for the mixer and exciter. The trip point is between 1 and 2 volts.

## EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

## The MRFIC Line <br> 2.4 GHz GaAs Downconverter

The MRFIC2401 is a GaAs low-noise amplifier and downmixer in a low-cost 16 lead plastic package designed for use in the 2.4 to 2.5 GHz Industrial-Scientific-Medical (ISM) band. The design is optimized for efficiency at 5.0 Volt operation at 2.45 GHz but is usable from 2.0 to 3.0 GHz in applications such as telemetry and Multichannel Multipoint Distribution System (MMDS) wireless cable TV systems. Performance is suitable for frequency hopping or direct sequence spread spectrum as well as single-frequency applications. LNA output and mixer input are available to allow image filtering.

- Single Supply Voltage = 5.0 Volts
- High Conversion Gain = 21 dB Typical Less Image Filter
- Low Supply Current $=9.5 \mathrm{~mA}$ Typical
- Low-Cost, Low Profile Plastic SOIC Package
- Order MRFIC2401R2 for Tape and Reel.

R2 Suffix $=2,500$ Units per $16 \mathrm{~mm}, 13$ inch Reel.

- Device Marking = M2401


## MRFIC2401

### 2.4 GHz DOWNCONVERTER GaAs MONOLITHIC INTEGRATED CIRCUIT



CASE 751B-05 (SO-16)

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter	Symbol	Value	Unit
Supply Voltage	$V_{\text {DD }}$	6.0	Vdc
Input Power, RF IN Ports	$\mathrm{P}_{\text {RF }}$	+5.0	dBm
Input Power, LO IN Port	PLO	+5.0	dBm
Ambient Operating Temperature	$\mathrm{T}_{\text {A }}$	-30 to +85	C
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +125	${ }^{\circ} \mathrm{C}$
Bias Control Voltage	STANDBY	6.0	Vdc



Pin Connections and Functional Block Diagram

## RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	4.75 to 5.25	Vdc
IF Frequency Range	f IF	100 to 350	MHz
LO Drive Power Level	P LO 2	-10 to 0	dBm
LO Frequency Range	f LO	2050 to 2400	MHz
RF Frequency Range	$\mathrm{f}_{\mathrm{RF}}$	2400 to 2500	MHz
STANDBY Mode ON	STANDBY	$\mathrm{V}_{\mathrm{DD}}$	Vdc
STANDBY Mode OFF	STANDBY	0	Vdc
SLEEP Mode OFF	SLEEP	$\mathrm{V}_{\mathrm{DD}}$	Vdc
SLEEP Mode ON	SLEEP	0	Vdc

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RF}=2.45 \mathrm{GHz}, \mathrm{LO}=2.125 \mathrm{GHz} @-5.0 \mathrm{dBm}, \mathrm{STANDBY}=0 \mathrm{Vdc}\right)$

Characteristic	Min	Typ	Max	Unit
Conversion Gain - Downconverter (Less Image Filter Loss)	19	21	-	dB
Gain - LNA	-	17	-	dB
Conversion Gain - Mixer	-	4.0	-	dB
Noise Figure - LNA	-	1.9	-	dB
Noise Figure - Mixer	-	11	-	dB
Return Loss - Mixer Input, LO Input, LNA Output	-	10	-	dB
Input Third Order Intercept - Downconverter (Less Image Filter Loss)	-	-18	-	dBm
Input Third Order Intercept - LNA	-	-13	-	dBm
Input Third Order Intercept - Mixer	-	0	-	dBm
Reverse Isolation - Downconverter (Less Image Filter Loss)	-	30	-	dB
Isolation - LO to RF, LO to IF	-	20	-	dB
Supply Current - Downconverter	-	600	11	mA
SLEEP Mode Supply Current - Downconverter   (No LO, STANDBY= 5 Vdc, VDD/SLEEP = 5 Vdc)	-	$\mu \mathrm{A}$		
Turn On, Turn Off Time - LNA	-	1.0	-	$\mu \mathrm{s}$



Figure 1. Applications Circuit Configuration

$\mathbf{f}$	LO $\mathbf{Z}_{\text {in }}$	
Frequency (GHz)	$\mathbf{R}$	$\mathbf{j X}$
2.0	39.7	23.9
2.1	35.7	22.1
2.2	32.1	19.8
2.3	29.1	17.1
2.4	26.5	14.0
2.5	24.4	10.7

Table 1. Selected Port Impedances (from Conjugate Match)


Figure 2. Equivalent IF Output Circuit

Table 2. LNA Scattering Parameters
(VDD $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 50 \Omega$ System)

$\mathbf{f}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
$\mathbf{( M H z )}$	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
2000	0.823	-50.8	5.35	14.3	0.0373	164.2	0.609	-64.1
2050	0.783	-62.9	6.13	-0.3	0.0425	154.3	0.558	-78.7
2100	0.752	-76.8	6.56	-18.3	0.0477	138	0.497	-94.3
2150	0.713	-89.8	6.8	-34	0.05	121	0.425	-110.7
2200	0.656	-104.2	7.14	-50.2	0.0511	106.4	0.343	-129.6
2250	0.583	-119	7.44	-66.4	0.0527	91.8	0.25	-152.3
2300	0.509	-134.1	7.8	-84.2	0.0554	78.1	0.155	176.2
2350	0.425	-148.2	7.86	-102.6	0.0579	59.89	0.088	120.7
2400	0.34	-163.6	7.84	-119.4	0.0552	42.31	0.111	43.8
2450	0.261	-177.8	7.78	-138.1	0.0528	28.27	0.191	2.2
2500	0.175	173.4	7.43	-154.6	0.0514	13.37	0.269	-21.9
2550	0.103	170.4	7.15	-170.6	0.0484	-0.842	0.338	-41.8
2600	0.056	-160.5	6.72	173	0.0455	-15.4	0.393	-59.4
2650	0.067	-130.7	6.47	159.1	0.0422	-28.11	0.436	-76.2
2700	0.102	-117.8	6.25	142.3	0.039	-41.5	0.472	-92.2
2750	0.132	-119.5	5.53	127.1	0.0353	-53.47	0.496	-107.5
2800	0.166	-125.2	5.26	117.5	0.0329	-63.28	0.513	-121.3
2850	0.19	-134.8	5.15	102.4	0.0309	-75.04	0.533	-135
2900	0.219	-144.8	4.71	87.6	0.0283	-87.86	0.547	-148.8
2950	0.235	-155.9	4.43	76.1	0.025	-95.83	0.559	-162.4
3000	0.262	-165.9	4.08	62.3	0.0235	-108.4	0.57	-175.7



Figure 3. Downconverter Gain versus Frequency


Figure 4. Downconverter 1.0 dB Compression versus Frequency


Figure 5. LNA Gain and Noise Figure versus Frequency


Figure 7. Mixer Conversion Gain versus Frequency


Figure 8. Mixer 1.0 dB Compression versus Frequency


Figure 9. Mixer 1.0 dB Compression and Gain versus LO Power


Figure 11. Mixer Noise Figure versus Frequency


Figure 10. Mixer Gain versus Frequency


Figure 12. Mixer LO Feedthrough versus RF Frequency

## DESIGN AND APPLICATIONS INFORMATION

The MRFIC2401 consists of a two-stage GaAs MESFET low noise amplifier and a single ended MESFET mixer. The LNA design conserves bias current through stacking of the two FETs, thus reusing the current. The mixer consists of a common gate stage driving a common source stage with the IF output being the drain of the common source stage shunted with 15 pF . The LNA output and mixer input have been separated to allow the addition of an external image filter. Such a filter, usually ceramic, is useful in improving the mixer noise figure and third order intercept performance. It also provides LO rejection to reduce the amount of LO power which may leak to the antenna. Alternatively, image trapping can be implemented at the LNA input or output with discrete or distributed components.

The design has been optimized for best performance from 2.4 to 2.5 GHz , but the device is usable with reduced performance from 2.0 to 3.0 GHz as shown in the performance curves. These curves were generated using the circuit shown in Figure 1 and performance above 2.5 GHz can be enhanced by rematching the LO input port. Matching circuit details are shown for IFs of $110 \mathrm{MHz}, 240 \mathrm{MHz}$, and 325 MHz matched to $50 \Omega$ and LO frequencies consistent with an RF frequency of 2.45 GHz . Customized IF matching can be accomplished by using the Equivalent IF Output circuit model shown in Figure 2. The best gain/noise figure
tradeoff match is shown in the LNA input impedance column of Table 1. The LO input impedance is shown in the same table. These numbers are derived from conjugate match measurements of the applications circuit. The LNA output and mixer input are matched to $50 \Omega$.

As with all RF circuitry, layout is important. Controlled impedance lines should be used at all RF ports. RF bypassing of power supply connections as close to the part as possible, while not always shown in the applications circuit, are recommended. Additional power supply "stiffening" and digital transient bypassing should be accomplished with electrolytic or tantalum capacitors.

The device can be placed in a reduced current "standby" mode by applying 5.0 Vdc to the STANDBY pin and removing the LO drive. Further current reduction "sleep" mode, is enabled by applying 0 Vdc to $\mathrm{V}_{\mathrm{DD}} /$ SLEEP. This sleep mode can also be used to disable the LNA under high signal level conditions and give higher input intercept point if $\mathrm{V}_{\mathrm{DD}}$ is still applied to the mixer.

## EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

## The MRFIC Line <br> 2.4 GHz GaAs Power Amplifier

The MRFIC2403 is a two-stage class B GaAs power amplifier in a low-cost 16 lead plastic package designed for use in the 2.4 to 2.5 GHz Industrial-Scientific-Medical (ISM) band. The design is optimized for efficiency at 5.0 Volt operation at 2.5 GHz but is usable from 2.0 to 3.0 GHz in applications such as telemetry and Multichannel Multipoint Distribution System (MMDS) wireless cable TV systems. Performance is suitable for frequency hopping or direct sequence spread spectrum as well as single-frequency applications. Power control circuitry allows 20 dB dynamic range for setting the output power.

- High Output Power $=+23.5 \mathrm{dBm}$ Typical
- High Gain $=23 \mathrm{~dB}$ Typical
- Excellent Efficiency $=55 \%$ Typical
- Power Control = 20 dB Range
- Low-Cost, Low Profile Plastic SOIC Package
- Order MRFIC2403R2 for Tape and Reel.

R2 Suffix = 2,500 Units per 16 mm, 13 inch Reel.

- Device Marking = M2403


## MRFIC2403

### 2.4 GHz POWER AMPLIFIER GaAs MONOLITHIC INTEGRATED CIRCUIT



CASE 751B-05
(SO-16)

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter	Symbol	Value	Unit
Supply Voltage	$V_{\text {DD }}$	6.0	Vdc
Power Control Voltage	VCONTRL	6.0	Vdc
Gate Bias Voltage	$\mathrm{V}_{\mathrm{G} 1}, \mathrm{~V}_{\mathrm{G} 2}$	-4.0	Vdc
RF Input Power	RF IN	+10	dBm
Ambient Operating Temperature	$\mathrm{T}_{\text {A }}$	-30 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +125	${ }^{\circ} \mathrm{C}$



Pin Connections and Functional Block Diagram

## RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	4.75 to 5.25	Vdc
Gate Bias Voltage, Input Stage	$\mathrm{V}_{\mathrm{G} 1}$	-1.0	Vdc
Gate Bias Voltage, Output Stage	$\mathrm{V}_{\mathrm{G} 2}$	-2.0	Vdc
Quiescent Drain Current, Stage One	$\mathrm{I}_{\mathrm{DQ} 1}$	12	mA
Quiescent Drain Current, Stage Two	$\mathrm{I}_{\mathrm{DQ} 2}$	10	mA
Operating Frequency Range	f OP	2200 to 2700	MHz

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RF}=2.45 \mathrm{GHz} @+4.0 \mathrm{dBm}, \mathrm{V}_{\mathrm{G} 1}=-1.0 \mathrm{Vdc}, \mathrm{V}_{\mathrm{G} 2}=-2.0 \mathrm{Vdc}, \mathrm{PCNTRL}=\right.$ 5.0 Vdc )

Characteristic	Min	Typ	Max	Unit
Small Signal Gain (Pin $=-6.0 \mathrm{dBm})$	-	23	-	dB
Power Output (Pin $=+4.0 \mathrm{dBm})$	23	23.5	-	dBm
Power Output, Saturation	-	23.5	-	dBm
Power Output, 1.0 dB Compression	-	19	-	dBm
2nd Harmonic Output	-	-20	-	dBc
3rd Harmonic Output	-	-30	-	dBc
Third Order Intermodulation Products (Pin $=+4.0$ dBm PEP)	-	-15	-	dBc
Reverse Isolation	-	32	-	dB
Power Control Range, PCNTRL	-	20	-	dB
Reverse Isolation	-	30	-	dB
Supply Current	-	95	140	mA
SLEEP Mode Supply Current (VG1 = VG2 = -3.0 Vdc, PCNTRL = 0 Vdc)	-	150	-	$\mu \mathrm{A}$



Figure 1. Applications Circuit Configuration

Table 1. Class A Scattering Parameters
$\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}} 1=24 \mathrm{~mA}, \mathrm{I}_{\mathrm{DQ}}=96 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 50 \Omega\right.$ System $)$

$\mathbf{f}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
$\mathbf{( M H z )}$	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
2000	0.377	-157.00	27.625	57.40	0.004	-74.70	0.740	-102.10
2050	0.218	-171.70	28.938	36.80	0.006	-101.60	0.763	-115.30
2100	0.075	-178.80	29.088	17.20	0.007	-130.70	0.724	-126.80
2150	0.049	-96.10	27.904	-0.20	0.007	-163.20	0.663	-135.80
2200	0.104	-56.60	26.930	-14.90	0.008	-169.60	0.601	-141.80
2250	0.130	-60.60	24.246	-27.80	0.009	173.50	0.550	-146.30
2300	0.125	-65.40	24.286	-39.40	0.010	165.00	0.504	-149.10
2350	0.106	-67.60	22.287	-49.60	0.010	157.70	0.471	-151.60
2400	0.083	-56.10	21.867	-59.80	0.009	140.70	0.444	-153.80
2450	0.064	-27.00	21.837	-68.90	0.011	141.40	0.422	-155.90
2500	0.072	26.20	20.113	-78.00	0.012	139.80	0.401	-158.60
2550	0.110	44.60	19.828	-86.40	0.009	140.00	0.385	-161.20
2600	0.160	44.50	18.941	-94.30	0.007	124.50	0.364	-164.50
2650	0.194	40.60	18.001	-101.90	0.012	128.30	0.350	-167.70
2700	0.237	36.60	17.268	-109.20	0.011	102.30	0.335	-171.40
2750	0.269	31.30	16.379	-116.30	0.010	110.90	0.317	-174.50
2800	0.304	25.50	15.826	-123.40	0.009	105.80	0.311	-178.60
2850	0.325	19.80	15.125	-130.40	0.010	103.60	0.292	177.50
2900	0.345	14.50	14.611	-137.50	0.008	99.70	0.279	172.80
2950	0.356	9.40	14.048	-143.60	0.009	92.80	0.271	168.90
3000	0.370	2.40	13.663	-150.40	0.011	88.20	0.259	163.80

Table 2. Class B Scattering Parameters
$\left(\mathrm{VDD}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}} 1=12 \mathrm{~mA}, \mathrm{I}_{\mathrm{DQ} 2}=10 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 50 \Omega\right.$ System $)$

$\mathbf{f}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
$\mathbf{( M H z )}$	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
2000	0.634	-149.00	12.40	88.00	0.007	-59.00	0.893	-81.00
2050	0.554	-170.00	14.76	72.00	0.013	-81.00	0.966	-89.00
2100	0.456	163.00	17.00	53.00	0.015	-95.00	0.990	-100.00
2150	0.362	129.00	18.09	32.00	0.017	-117.00	0.955	-110.00
2200	0.310	91.00	18.81	12.00	0.020	-138.00	0.870	-119.00
2250	0.298	58.00	17.37	-5.00	0.021	-156.00	0.771	-125.00
2300	0.298	30.00	17.22	-21.00	0.021	-169.00	0.681	-128.00
2350	0.289	11.00	15.89	-34.00	0.020	179.00	0.612	-130.00
2400	0.275	0.00	14.74	-45.00	0.020	168.00	0.562	-130.00
2450	0.248	-8.00	15.35	-56.00	0.021	155.00	0.528	-131.00
2500	0.216	-10.00	13.62	-66.00	0.019	147.00	0.498	-131.00
2550	0.199	-8.00	13.46	-75.00	0.021	143.00	0.473	-132.00
2600	0.187	-2.00	12.95	-83.00	0.020	134.00	0.447	-132.00
2650	0.185	4.00	12.32	-91.00	0.020	129.00	0.426	-134.00
2700	0.202	10.00	11.78	-99.00	0.021	123.00	0.405	-135.00
2750	0.218	13.00	11.25	-107.00	0.021	115.00	0.384	-136.00
2800	0.244	14.00	10.83	-114.00	0.018	106.00	0.373	-137.00
2850	0.268	13.00	10.34	-121.00	0.019	98.00	0.353	-139.00
2900	0.285	10.00	10.05	-129.00	0.019	99.00	0.332	-140.00
2950	0.301	7.00	9.61	-135.00	0.018	102.00	0.316	-143.00
3000	0.317	3.00	9.46	-142.00	0.018	90.00	0.302	-145.00

TYPICAL CHARACTERISTICS


Figure 2. Output Power and Efficiency versus Input Power


Figure 3. Output Power versus Frequency


Figure 4. Output Power versus PCNTRL Voltage

## DESIGN AND APPLICATIONS INFORMATION

The MRFIC2403 is a two-stage power amplifier designed using Motorola's MAFET planar, refractory gate MESFET IC process. The RF MESFETs are power, depletion mode devices and, therefore, require negative bias on the MESFET gates. For class B operation, -1.0 Vdc is applied to $\mathrm{V}_{\mathrm{G}}$ and -2.0 Vdc is applied to $\mathrm{V}_{\mathrm{G} 2}$. Class A biasing will yield slightly higher gain and 1.0 dB compression point and can be accomplished by adjusting the bias on VG1 for IDQ1 $=24 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{G} 2}$ for $\mathrm{I}_{\mathrm{D} Q 2}=96 \mathrm{~mA}$. Where negative voltages are not already available, Motorola's MC33128 Power Management IC can produce -2.5 Vdc from a single positive supply.

The device is capable of better than +23 dBm saturated output power in the 2.4 to 2.5 GHz ISM band with the output matching circuit shown in Figure 1. The device can be operated at other frequencies in the 2.0 GHz to 3.0 GHz range with this circuit but performance can be improved with tuning for the specific frequency of use. Input matching is provided on chip. This circuit provides the best gain, saturated output power and efficiency tradeoff. Saturated operation has the advantage of best efficiency with less variation in performance over frequency and temperature. Operation in saturation is acceptable for constant envelope modulation schemes such as 2 and 4 level FM as specified for frequency hopping (FHSS) radios in the proposed IEEE 802.11 PHY layer specification. For direct sequence
(DSSS) IEEE 802.11 operation, where differential binary phase shift keying (DBPSK) and differential quadrature phase shift keying (DQPSK) are specified, the amplifier will have to be "backed off" from saturation by 5.0 dB or more to avoid spectral regrowth. Care must be taken in the layout of the circuit and controlled impedance lines must be used at the RF pins. Capacitive bypassing as shown in the Applications Circuit must be implemented as close to the chip as possible to avoid amplifier instability. Additionally, the supply voltage should be supported by sufficient "stiffening" capacitance, typically electrolytic or tantalum bypass capacitors, to eliminate noise from digital circuits.

Output power control is accomplished by varying the voltage on the PCNTRL pin. 0 Vdc gives minimum output and reduces the current drawn by the amplifier to the quiescent value. The amplifier can be put into "sleep" mode by decreasing the voltage on the gate bias pins to -3.0 Vdc and the current drain is reduced to a few hundred microamps.

## EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

## The MRFIC Line <br> 2.4 GHz GaAs Exciter Amplifier

The MRFIC2404 is a single-stage class A GaAs amplifier in a low-cost 8 lead plastic package designed to drive the MRFIC2403 power amplifier for use in the 2.4 to 2.5 GHz Industrial-Scientific-Medical (ISM) band. The design is optimized for 5.0 Volt operation at 2.45 GHz but is usable from 2.0 to 3.0 GHz in applications such as telemetry and Multichannel Multipoint Distribution System (MMDS) wireless cable TV systems. Performance is suitable for frequency hopping or direct sequence spread spectrum as well as single-frequency applications.

- High Output Capability $=+5.0 \mathrm{dBm}$ Typical
- High Gain $=17 \mathrm{~dB}$ Typical
- Low Current Drain $=9.0 \mathrm{~mA}$ Typical
- Single Supply Voltage = 5.0 Volts
- Good Noise Figure $=4.3 \mathrm{~dB}$ Typical
- Low-Cost, Low Profile Plastic SOIC Package
- Order MRFIC2404R2 for Tape and Reel.

R2 Suffix = 2,500 Units per $12 \mathrm{~mm}, 13$ inch Reel.

- Device Marking = M2404


### 2.4 GHz <br> EXCITER AMPLIFIER GaAs MONOLITHIC INTEGRATED CIRCUIT



CASE 751-06 (SO-8)

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Parameter	Symbol	Value	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	12	$\mathrm{Vdc}^{\prime}$
RF Input Power	RF IN	+10	dBm
Bias Enable Voltage	$\mathrm{V}_{\text {bias }}$	6.0	$\mathrm{Vdc}^{\prime}$
Ambient Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-30 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +125	${ }^{\circ} \mathrm{C}$



Pin Connections and Functional Block Diagram

## RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Supply Voltage	$V_{\text {DD }}$	4.75 to 5.25	Vdc
Bias Enable Voltage - ON	$V_{\text {bias }}$	0	Vdc
Bias Enable Voltage - OFF	$V_{\text {bias }}$	5.0	Vdc
Operating Frequency Range	fop	2000 to 3000	MHz

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RF}=2.45 \mathrm{GHz}, \mathrm{V}_{\text {bias }}=0 \mathrm{Vdc}\right)$

Characteristic	Min	Typ	Max	Unit
Small Signal Gain	16	17	-	dB
Power Output, 1.0 dB Compression	-	+5.0	-	dBm
Power Output (Pin $=-11$ dBm)	4.0	5.0	-	dBm
Third Order Intercept Point	-	+15	-	dBm
Noise Figure	-	4.3	-	dB
Reverse Isolation	-	25	-	dB
Turn On Time	-	1.0	-	$\mu \mathrm{s}$
Supply Current	-	9.0	12	mA
SLEEP Mode Supply Current (Vias =5.0 Vdc)	-	800	-	$\mu \mathrm{A}$



Figure 1. Applications Circuit Configuration

Table 1. Scattering Parameters
(VDD $=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, 50 \Omega$ System)

$\mathbf{f}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
$\mathbf{( M H z )}$	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
2000	0.232	-92.34	6.290	165.97	0.024	-51.08	0.483	-123.13
2050	0.174	-90.78	7.049	147.75	0.029	-66.26	0.383	-125.77
2100	0.122	-76.88	7.563	127.95	0.032	-78.38	0.281	-124.34
2150	0.102	-48.38	7.803	109.02	0.035	-97.84	0.191	-109.23
2200	0.128	-19.45	8.046	91.04	0.037	-105.62	0.159	-80.33
2250	0.185	-6.60	8.144	72.36	0.039	-123.88	0.196	-53.35
2300	0.244	-5.52	7.977	55.31	0.038	-135.36	0.273	-42.38
2350	0.300	-8.04	7.979	39.91	0.043	-144.83	0.350	-41.15
2400	0.343	-12.42	8.147	23.40	0.044	-160.94	0.423	-43.39
2450	0.379	-17.11	8.020	5.27	0.045	-173.09	0.477	-47.05
2500	0.403	-21.90	7.550	-10.93	0.041	173.83	0.522	-50.67
2550	0.424	-26.32	7.245	-25.36	0.043	165.85	0.556	-54.67
2600	0.436	-30.95	6.911	-39.88	0.042	154.14	0.582	-58.35
2650	0.443	-34.94	6.631	-52.32	0.041	145.35	0.600	-62.23
2700	0.447	-39.48	6.566	-65.57	0.044	135.12	0.610	-65.41
2750	0.445	-43.12	6.338	-79.97	0.043	123.72	0.622	-68.57
2800	0.446	-46.68	6.009	-93.15	0.042	114.52	0.624	-72.06
2850	0.441	-50.42	5.733	-105.10	0.043	107.18	0.620	-74.86
2900	0.439	-53.14	5.565	-116.69	0.041	98.95	0.617	-77.74
2950	0.437	-57.27	5.393	-129.54	0.042	90.72	0.608	-80.01
3000	0.409	-61.28	4.938	-142.70	0.043	81.68	0.611	-81.12

## Typical Characteristics



Figure 2. Gain versus Frequency


Figure 3. Noise Figure versus Frequency


Figure 4. Output Power versus Input Power

## DESIGN AND APPLICATIONS INFORMATION

The MRFIC2404 is a single-stage GaAs amplifier designed for exciter applications such as driving the MRFIC2403 power amplifier. The 4.3 dB noise figure, 17 dB gain and +5.0 dBm power output at 1.0 dB gain compression make the MRFIC2404 suitable for high-performance receiver IF application, Multichannel Multipoint Distribution System (MMDS) applications, telemetry and other applications in the 2.0 to 3.0 GHz range.

The characterization curves show typical performance in the 2.0 to 3.0 GHz range in the circuit shown in Figure 1. This circuit was also used to derive the device impedance shown in Table 1. The amplifier input is matched to $50 \Omega$ while the output requires about 3.3 nH series inductance for best
match at 2.45 GHz . The VDD supply line should be bypassed as close to the chip as possible to avoid low frequency oscillations. Power supply "stiffening" and digital transient bypassing in the form of electrolytic of tantalum capacitors should be added.

The device can be put into a reduced current "sleep" mode by 5.0 Vdc to the $\mathrm{V}_{\text {bias }} \mathrm{pin}$.

## EVALUATION BOARDS

Evaluation boards are available for RF Monolithic Integrated Circuits by adding a "TF" suffix to the device type. For a complete list of currently available boards and ones in development for newly introduced product, please contact your local Motorola Distributor or Sales Office.

## Advance Information <br> The MRFIC Line <br> 2.4 GHz Upmixer

Designed primarily for use in Industrial, Scientific, Medical (ISM) frequency band applications, the MRFIC2406 is an active GaAs upmixer in a low-cost SOIC 16-lead, surface mount package. The integrated circuit has internal active Baluns and requires minimal off-chip matching. In STANDBY mode, the device draws less than 0.6 mA for low battery drain.

- Usable Frequency Range $=2$ to 3 GHz
- Single Voltage Supply $=3$ to 5 Volts
- Low Current Drain $=15 \mathrm{~mA}$ Max Supply Current
- IF to RF Conversion Gain $=6 \mathrm{~dB}$ Typical
- STANDBY Mode for Low Current Consumption
- No External Baluns Required
- Simple Off-Chip Matching for Maximum Flexibility
- Order MRFIC2406R2 for Tape and Reel. R2 Suffix = 2,500 Units per $16 \mathrm{~mm}, 13$ inch Reel.
- Device Marking = M2406


## MRFIC2406

2.4 GHz INTEGRATED UPMIXER
GaAs MONOLITHIC INTEGRATED CIRCUIT



Pin Connections and Functional Block Diagram

MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Limit	Unit
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	7	Vdc
Standby Voltage	$\mathrm{V}_{\text {STANDBY }}$	7	Vdc
IF Input Power	IF IN	+10	dBm
LO Input Power	LO IN	+10	dBm
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +125	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature	$\mathrm{T}_{\mathrm{A}}$	-35 to +85	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING RANGES

Parameter	Symbol	Value	Unit
RF Frequency	$\mathrm{f}_{\mathrm{RF}}$	2.4 to 2.5	GHz
IF Frequency	$\mathrm{f}_{\mathrm{IF}}$	100 to 370	MHz
LO Frequency	$\mathrm{f}_{\mathrm{LO}}$	2.03 to 2.4	GHz
Supply Voltage	$\mathrm{V}_{\mathrm{DD}}$	3 to 5	Vdc
Standby Voltage	V STANDBY	0 to 3	Vdc

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{ff}_{\mathrm{RF}}=2.45 \mathrm{GHz}, \mathrm{f} \mathrm{IF}=237 \mathrm{MHz}, \mathrm{IF} \operatorname{IN}=-15 \mathrm{dBm}, \mathrm{fLO}=2.213 \mathrm{GHz}, \mathrm{LO} \mathrm{IN}=\right.$ $-5 \mathrm{dBm}, \mathrm{V}_{\text {STANDBY }}=0 \mathrm{~V}$, Tested in Circuit Shown in Figure 1)

Characteristic	Min	Typ	Max	Unit
IF to RF Conversion Gain	4	6	-	dB
LO to RF Isolation	10	12	-	dB
Return Loss, All Ports, (Matching as shown in Figure 1)	-10	-12	-	dB
Spurious Output @ 2.4-2.5 GHz	-	-	-55	dBc
Output 1dB Gain Compression	-	-10	-	dBm
ON State Current, (VSTANDBY = 0 V)		-	15	mA
OFF State Current, (VSTANDBY = 3 V)	-	-	0.6	mA
V STANDBY Voltage (ON State) $^{\text {VSTANDBY Voltage (STANDBY State) }} 1-2$	-	0.1	V	
On/Off Switching Time	2.8	-	-	V



Figure 1. Applications Circuit Configuration

## Chapter Three RF/IF Integrated Circuits

## Section One <br> 3.1-0

RF/IF Integrated Circuits - Selector Guide

## Section Two <br> 3.2-0

RF/IF Integrated Circuits - Data Sheets

## Section One Selector Guide

## Motorola RF/IF Integrated Circuits

Radio communication has greatly expanded its scope in the past several years. Once dominated by public safety radio, the 30 to 1000 MHz spectrum is now packed with personal and low cost business radio systems. The vast majority of this equipment uses FM or FSK modulation and is targeted at short range applications. From mobile phones and VHF marine radios to garage door openers and radio controlled toys, these new systems have become a part of our lifestyle. Motorola has focused on this technology, adding a wide array of new products including complete receivers processed in our exclusive 3.0 GHz MOSAIC® 1.5 process. New surface mount packages for high density assembly are available for all of these products, as well as a growing family of supporting application notes.
Table of Contents
Page
RF/IF Integrated Circuits ..... 3.1-1
RF/IF Monolithic Integrated Circuits ..... 3.1-2
RF Front End ICs ..... 3.1-2
Wideband IFs ..... 3.1-2
Wideband Single Conversion Receivers ..... 3.1-2
Narrowband Single Conversion Receivers ..... 3.1-3
Narrowband Dual Conversion Receivers ..... 3.1-3
Universal Cordless Phone Subsystem ICs ..... 3.1-3
Transmitters ..... 3.1-4
Balanced Modulator/Demodulator ..... 3.1-4
Infrared Transceiver ..... 3.1-4
Phase-Locked Loop Components ..... 3.1-16
PLL Frequency Synthesizers ..... 3.1-16
Phase-Locked Loop Functions ..... 3.1-17

## Motorola RF/IF Monolithic Integrated Circuits

Table 1. RF Front End ICs

Receiver												
Low Noise Amplifier					Mixer				Voltage Cont Osc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \mathrm{ICC} \\ & \text { (mA) } \end{aligned}$	Suffix/   Package
Device	Gain   (dB)	Noise Figure (dB)	$\begin{gathered} \text { IIP3 } \\ \text { (dBm) } \end{gathered}$	Input P1dB (dBm)	Gain (dB)	Noise Figure (dB)	$\begin{gathered} \text { IIP3 } \\ (\mathrm{dBm}) \end{gathered}$	P1dB   (dBm)				
MC13142	17	1.8	-5.0	-15	$\pm 3.0$	12	-3 to +21	3.0	Yes	2.7 to 6.5	13	D/751B
MC13143	-	-	-	-	$\pm 3.0$	12	-3 to +21	3.0	-	1.8 to 6.5	1.0	D/751
MC13144	$\begin{gathered} 13 \text { to } \\ 19 \end{gathered}$	1.4	-1.0	-7.0	-	-	-	-	-	1.8 to 6.5	2 to 9	D/751
MC13145	14	1.8	-5.0	-8.0	0	13	9.0	-1.0	Yes	2.7 to 6.5	30	FTA/932
Transmitter												
Low Power Amplifier					Mixer							
Device	$\begin{aligned} & \text { PA } \\ & \text { Gain } \\ & \text { (dB) } \end{aligned}$	Noise Figure (dB)	$\begin{gathered} \text { IIP3 } \\ \text { (dBm) } \end{gathered}$	Output P1dB (dBm)	PIFOut (dB)	Noise Figure (dB)	$\begin{gathered} \text { IIP3 } \\ (\mathrm{dBm}) \end{gathered}$	$\begin{aligned} & \text { P1dB } \\ & (\mathrm{dBm}) \end{aligned}$	Voltage Cont Osc	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \text { ICC } \\ & \text { (mA) } \end{aligned}$	Suffix/   Package
MC13146	15	-	-	8.0	15	-	10	-	Yes	2.7 to 6.5	25	FTA/977

NOTES: All devices operate over a wide range of RF input and IF frequencies, from dc to 2.0 GHz . Typical performance shown at 900 MHz .

Table 2. Wideband (FM/FSK) IFs

$\left.$| Device | VCC | ICC | Sensitivity <br> (Typ) | IF | Mute | RSSI | Max <br> Data <br> Rate |  | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :--- | :---: | | Suffix/ |
| :---: |
| Package | \right\rvert\,

Table 3. Wideband Single Conversion Receivers - VHF

Device	$\mathrm{V}_{\mathrm{Cc}}$	Icc	Sensitivity (Typ)	$\begin{gathered} \text { RF } \\ \text { Input } \end{gathered}$	IF	Mute	RSSI	Max   Data   Rate	Notes	Suffix/   Package
MC3356	3-9 V	25 mA	$30 \mu \mathrm{~V}$	200 MHz	10.7 MHz	$\checkmark$	$\checkmark$	500 kb	Includes front end mixer/L.O.	P/738, DW/751D
MC13156	2-6 V	5.0 mA	$2.0 \mu \mathrm{~V}$	500 MHz	21.4 MHz	-			CT-2 FM/Demodulator	DW/751E, FB/873
MC13158	2-6 V	6.0 mA						$>1.2 \mathrm{Mb}$	FM IF/Demodulator with split IF for DECT	FTB/873
MC13159	$\begin{aligned} & 2.7- \\ & 5 \mathrm{~V} \end{aligned}$	5.5 mA		600 MHz				500 kb	FM IF for PHS	DTB/948F

RF/IF Monolithic Integrated Circuits (continued)
Table 4. Narrowband Single Conversion Receivers - VHF

Device	VCC	Icc	12 dB   SINAD   Sensitivity (Typ)	$\begin{gathered} \text { RF } \\ \text { Input } \end{gathered}$	IF	Mute	RSSI	Max Data Rate	Notes	Suffix/   Package
MC3357	4-8 V	5.0 mA	$5.0 \mu \mathrm{~V}$	45 MHz	455 kHz	$\checkmark$	-	>4.8kb	Ceramic Quad Detector/Resonator	$\begin{gathered} \text { P/648, } \\ \mathrm{D} / 751 \mathrm{~B} \end{gathered}$
MC3359	4-9 V	7.0 mA	$2.0 \mu \mathrm{~V}$						Scan output option	P/707, DW/751D
MC3371	2-8 V	6.0 mA		60 MHz			$\checkmark$	>4.8kb	RSSI	P/648,
MC3372									RSSI, Ceramic Quad Detector/Resonator	$\begin{gathered} \text { D/751B, } \\ \text { DTB/948F } \end{gathered}$
MC13150	3-6 V	1.8 mA	$1.0 \mu \mathrm{~V}$	500 MHz			$\begin{gathered} V \\ 110 \\ \text { dB } \end{gathered}$	>9.6 kb	Coilless Detector with Adjustable Bandwidth	FTB/873, FTA/977

Table 5. Narrowband Dual Conversion Receivers - FM/FSK - VHF

Device	Vcc	Icc	12 dB   SINAD   Sensitivity (Typ)	RF Input	IF1	$\begin{gathered} \text { IF2 } \\ \text { (Limiter } \end{gathered}$ In)	Mute	RSSI	Data   Rate	Notes	Suffix/   Package
MC3362	2-7 V	3.0 mA	$0.7 \mu \mathrm{~V}$	$\begin{aligned} & 180 \\ & \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 10.7 \\ & \mathrm{MHz} \end{aligned}$	455 kHz	-	$\checkmark$	$\begin{gathered} >4.8 \\ \mathrm{~kb} \end{gathered}$	Includes buffered VCO output	P/724, DW/751E
MC3363		4.0 mA	$0.4 \mu \mathrm{~V}$				$\checkmark$			Includes RF amp/mute	DW/751F
MC13135			$1.0 \mu \mathrm{~V}$				-			Voltage buffered RSSI, LC Quad Detector	$\begin{gathered} \text { DW/751E, } \\ \text { P/724 } \end{gathered}$
MC13136										Voltage Buffered RSSI, Ceramic Quad Detector	DW/751E

Table 6. Universal Cordless Phone Subsystem ICs

Device	$\mathrm{V}_{\mathrm{Cc}}$	Icc	Dual Conversion Receiver	Universal Dual PLL	Compander and Audio Interface	Voice Scrambler	Low Battery Detect	Programmable $\mathbf{R}_{\mathbf{X}}, \mathrm{T}_{\mathbf{X}}$ Trim Gain and LBD Voltage Reference	Suffix/   Package
MC13109	2.0-5.5 V	Active Mode 6.7 mA Inactive Mode $40 \mu \mathrm{~A}$	$\checkmark$	$\checkmark$	$\checkmark$	-	1	-	FB/848B, FTA/932
MC13110	$2.7-5.5 \mathrm{~V}$	Active Mode 8.2 mA Inactive Mode $60 \mu \mathrm{~A}$	$\checkmark$	$\checkmark$	$\checkmark$	$\checkmark$	2	$\checkmark$	FB/848B
MC13111	2.7-5.5 V	```Active Mode 8.2 mA Inactive Mode 6 \muA```	$\checkmark$	$\checkmark$	$\checkmark$	-	2	$\checkmark$	FB/848B

RF/IF Monolithic Integrated Circuits (continued)
Table 7. Transmitters - AM/FM/FSK

Device	$\mathrm{V}_{\mathrm{cc}}$	Icc	Pout	Max RF Freq Out	Max   Mod   Freq	Notes	Suffix/   Package
MC2833	3-8 V	10 mA	$\begin{gathered} -30 \mathrm{dBm} \\ \text { to } \\ +10 \mathrm{dBm} \end{gathered}$	150 MHz	50 kHz	FM transmitter. Includes two frequency multiplier/amplifier transistors	$\begin{gathered} \hline \text { P/648, } \\ \mathrm{D} / 751 \mathrm{~B} \end{gathered}$
MC13175	2-5 V	40 mA	8.0 dBm	500 MHz	5.0 MHz	AM/FM transmitter. Single frequency PLL $\mathrm{f}_{\text {out }}=8 \times \mathrm{f}_{\text {ref }}$, includes power down function	D/751B
MC13176				1.0 GHz		$\mathrm{f}_{\text {out }}=32 \times \mathrm{fref}$, includes power down function	

Table 8. Balanced Modulator/Demodulator

Device	VCC	ICC		Function	Suffix/   Package
MC1496	$3-5 \mathrm{~V}$	10 mA	General purpose balanced modulator/demodulator for AM, SSB, FM detection   with Carrier Balance $>50 \mathrm{~dB}$	P/646,   D/751A	

Table 9. Infrared Transceiver

Device	VCC	ICC	12 dB   SINAD   Sensitivity   (Typ)	Max   IF Freq	Carr Det	RSSI	Data   Rate	Notes	Suffix/   Package
MC13173	$3-5 \mathrm{~V}$	6.5 mA	$5.0 \mu \mathrm{~V}$	10.7   MHz	$\checkmark$	$\checkmark$	200 kb	Includes Single Frequency   PLL for $T_{X}$ Carrier and $R_{X} L_{O}$	FTB/873

## Universal Cordless Telephone Subsystem IC

## MC13109FB, FTA

$\mathrm{T}_{\mathrm{A}}=-20^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case $848 \mathrm{~B}, 932$

The MC13109 integrates several of the functions required for a cordless telephone into a single integrated circuit. This significantly reduces component count, board space requirements, and external adjustments. It is designed for use in both the handset and the base.

- Dual Conversion FM Receiver
- Complete Dual Conversion Receiver - Antenna Input to Audio Output 80 MHz Maximum Carrier Frequency
- RSSI Output
- Carrier Detect Output with Programmable Threshold
- Comparator for Data Recovery
- Operates with Either a Quad Coil or Ceramic Discriminator
- Compander
- Expander Includes Mute, Digital Volume Control and Speaker Driver
- Compressor Includes Mute, ALC and Limiter
- Dual Universal Programmable PLL
- Supports New 25 Channel U.S. Standard with No External Switches
- Universal Design for Domestic and Foreign CT-1 Standards
- Digitally Controlled Via a Serial Interface Port
- Receive Side Includes 1st LO VCO, Phase Detector, and 14-Bit Programmable Counter and 2nd LO with 12-Bit Counter
- Transmit Section Contains Phase Detector and 14-Bit Counter
- MPU Clock Output Eliminates Need for MPU Crystal
- Supply Voltage Monitor
- Externally Adjustable Trip Point
- 2.0 to 5.5 V Operation with One-Third the Power Consumption of Competing Devices



## Universal Cordless Telephone Subsystem IC with Scrambler

## MC13110FB

$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case 848 B

The MC13110 integrates several of the functions required for a cordless telephone into a single integrated circuit. This significantly reduces component count, board space requirements, and external adjustments. It is designed for use in both the handset and the base.

- Dual Conversion FM Receiver
- Complete Dual Conversion Receiver - Antenna In to Audio Out 80 MHz Maximum Carrier Frequency
- RSSI Output
- Carrier Detect Output with Programmable Threshold
- Comparator for Data Recovery
- Operates with Either a Quad Coil or Ceramic Discriminator
- Compander
- Expander Includes Mute, Digital Volume Control, Speaker Driver, 3.5 kHz Low Pass Filter, and Programmable Gain Block
- Compressor Includes Mute, 3.5 kHz Low Pass Filter, Limiter, and Programmable Gain Block
- Dual Universal Programmable PLL
- Supports New 25 Channel U.S. Standard with New External Switches
- Universal Design for Domestic and Foreign CT-1 Standards
- Digitally Controlled Via a Serial Interface Port
- Receive Side Includes 1st LO VCO, Phase Detector, and 14-Bit Programmable Counter and 2nd LO with 12-Bit Counter
- Transmit Section Contains Phase Detector and 14-Bit Counter
- MPU Clock Outputs Eliminates Need for MPU Crystal
- Supply Voltage Monitor
- Provides Two Levels of Monitoring with Separate Outputs
- Separate, Adjustable Trip Points
- Frequency Inversion Scrambler/Descrambler
- Can Be Enabled/Disabled Via MPU Interface
- Programmable Carrier Modulation Frequency
- 2.7 to 5.5 V Operation with One-Third the Power Consumption of Competing Devices



## Universal Cordless Telephone Subsystem IC with Scrambler (continued)

## MC13111FB

$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case 848B, 932
The MC13111 integrates several of the functions required for a cordless telephone into a single integrated circuit. This significantly reduces component count, board space requirements, external adjustments, and lowers overall costs. It is designed for use in both the handset and the base.

- Dual Conversion FM Receiver
- Complete Dual Conversion Receiver - Antenna In to Audio Out 80 MHz Maximum Carrier Frequency
- RSSI Output
- Carrier Detect Output with Programmable Threshold
- Comparator for Data Recovery
- Operates with Either a Quad Coil or Ceramic Discriminator
- Compander
- Expander Includes Mute, Digital Volume Control, Speaker Driver, 3.5 kHz Low Pass Filter, and Programmable Gain Block
- Compressor Includes Mute, 3.5 kHz Low Pass Filter, Limiter, and Programmable Gain Block
- Dual Universal Programmable PLL
- Supports New 25 Channel U.S. Standard with No External Switches
- Universal Design for Domestic and Foreign CT-1 Standards
- Digitally Controlled Via a Serial Interface Port
- Receive Side Includes 1st LO VCO, Phase Detector, and 14-Bit Programmable Counter and 2nd LO with 12-Bit Counter
- Transmit Section Contains Phase Detector and 14-Bit Counter
- MPU Clock Outputs Eliminates Need for MPU Crystal
- Supply Voltage Monitor
- Provides Two Levels of Monitoring with Separate Outputs
- Separate, Adjustable Trip Points
- Programmable Corner Frequency Selection
- MC13111 is Pin-for-Pin Compatible with MC13110
- 2.7 to 5.5 V Operation with One-Third the Power Consumption of Competing Devices
- AN1575: Refer to this Application Note for a List of the "Worldwide Cordless Telephone Frequencies" (List can also be found in Chapter 8 Addendum of DL128 Data Book)



## Narrowband FM Receiver

## MC13135P,DW, MC13136DW

$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case $724,751 \mathrm{E}$

The MC13135 is a full dual conversion receiver with oscillators, mixers, Limiting IF Amplifier, Quadrature Discriminator, and RSSI circuitry. It is designed for use in security systems, cordless phones, and VHF mobile and portable radios. Its wide operating supply voltage range and low current make it ideal for battery applications. The Received Signal Strength Indicator (RSSI) has 65 dB of dynamic range with a voltage output, and an operational amplifier is included for a dc buffered output. Also, an
improved mixer third order intercept enables the MC13135 to accommodate larger input signal levels.

- Complete Dual Conversion Circuitry
- Low Voltage: 2.0 to 6.0 Vdc
- RSSI with Op Amp: 65 dB Range
- Low Drain Current: 3.5 mA Typical
- Improved First and Second Mixer 3rd Order Intercept
- Detector Output Impedance: $25 \Omega$ Typically



## Low Power DC - 1.8 GHz LNA, Mixer and VCO

## MC13142D

$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case 751 B

The MC13142 is intended to be used as a first amplifier, voltage controlled oscillator and down converter for RF applications. It features wide band operation, low noise, high gain and high linearity while maintaining low current consumption. The circuit consists of a Low Noise Amplifier (LNA), a Voltage Controlled Oscillator (VCO), a buffered oscillator output, a mixer, an Intermediate Frequency amplifier ( $\mathrm{I} \mathrm{F}_{\mathrm{amp}}$ ) and a dc control section. The wide mixer IF bandwidth allows this part also to be used as an up converter and exciter amplifier.

- Wide RF Bandwidth: DC-1.8 GHz
- Wide LO Bandwidth: DC-1.8 GHz
- Wide IF Bandwidth: DC-1.8 GHz
- Low Power: $13 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CC}}=2.7-6.5 \mathrm{~V}$
- High Mixer Linearity: Pi1.0 dB $=3.0 \mathrm{dBm}$
- Linearity Adjustment Increases IP3in Up to 20 dBm
- Single-Ended $50 \Omega$ Mixer Input
- Double Balanced Mixer Operation
- Open Collector Mixer Output
- Single Transistor Oscillator with Collector, Base and Emitter Pinned Out
- Buffered Oscillator Output



## Ultra Low Power DC - 2.4 GHz Linear Mixer

## MC13143,D

$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case 751

The MC13143 is a high compression linear mixer with single-ended RF input, differential IF output and differential LO inputs which consumes as little as 1.8 mW . A new circuit topology is used to achieve a high third order intermodulation intercept point, high linearity and high 1.0 dB output compression point while maintaining a linear $50 \Omega$ input impedance. It is designed for Up or Down conversion anywhere from dc to 2.4 GHz .

Ultra Low Power: 1.0 mA @ VCC = 1.8-6.5 V

- Wide Input Bandwidth: DC-2.4 GHz
- Wide Output Bandwidth: DC-2.4 GHz
- Wide LO Bandwidth: DC-2.4 GHz
- High Mixer Linearity: Pi1.0 dB = 3.0 dBm

Linearity Adjustment of up to $\mathrm{IP}_{3 \text { in }}=\mathbf{2 0} \mathbf{~ d B m}$

- $50 \Omega$ Mixer Input
- Single-Ended Mixer Input
- Double Balanced Mixer Operation
- Differential Open Collector Mixer Output



## VHF - 2.0 GHz Low Noise Amplifier with Programmable Bias

MC13144,D
$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case 751

The MC13144 is designed in the Motorola High Frequency Bipolar MOSIAC VTM wafer process to provide excellent performance in analog and digital communication systems. It includes a cascoded LNA usable up to 2.0 GHz and at 1.8 Vdc, with 2 bit digital programming of the LNA bias. Targeted applications are in the UHF Family Radio Services, UHF and 800 MHz Special Mobile Radio, 800 MHz Cellular and GSM, PCS, DECT and PHS at 1.8 to 2.0 GHz and Cordless Telephones in the 902 to 928 MHz band covered by FCC Title 47; Part 15. The MC13144 offers the following features:

- 17 dB Gain at 900 MHz
- 1.4 dB Noise Figure at 900 MHz
- 1.0 dB Compression Point of -7.0 dBm ; Input Third Order Intercept Point of -5.0 dBm
- Low Operating Supply Voltage (1.8 to 6.0 Vdc )
- Programmable Bias with Enable 1 and Enable 2
- Enable 1 and Enable 2 Programmed High for Optimal Noise Figure and Gain Associated with NF
- Can Override Enable and Externally Program In Up to 15 mA



## Narrowband FM Coilless Detector IF Subsystem

MC13150FTA, FTB
$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case 977,873

The MC13150 is a narrowband FM IF subsystem targeted at cellular and other analog applications. Excellent high frequency performance is achieved, with low cost, through use of Motorola's MOSAIC 1.5™ RF bipolar process. The MC13150 has an onboard Colpitts VCO for Crystal controlled second LO in dual conversion receivers. The mixer is a double balanced configuration with excellent third order intercept. It is useful to beyond 200 MHz . The IF amplifier is split to accommodate two low cost cascaded filters. RSSI output is derived by summing the output of both IF sections. The quadrature detector is a unique design eliminating the conventional tunable quadrature coil.

Applications for the MC13150 include cellular, CT-1 900 MHz cordless telephone, data links and other radio systems utilizing narrowband FM modulation.

- Linear Coilless Detector
- Adjustable Demodulator Bandwidth
- 2.5 to 6.0 Vdc Operation
- Low Drain Current: < 2.0 mA
- Typical Sensitivity of $2.0 \mu \mathrm{~V}$ for 12 dB SINAD
- IIP3, Input Third Order Intercept Point of 0 dBm
- RSSI Range of Greater Than 100 dB
- Internal $1.4 \mathrm{k} \Omega$ Terminations for 455 kHz Filters
- Split IF for Improved Filtering and Extended RSSI Range



## Wideband FM IF System

## MC13156DW, FB

$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case $751 \mathrm{E}, 873$

The MC13156 is a wideband FM IF subsystem targeted at high performance data and analog applications. Excellent high frequency performance is achieved, with low cost, through use of Motorola's MOSAIC $1.5^{\text {TM }}$ RF bipolar process. The MC13156 has an onboard Colpitts VCO for PLL controlled multichannel operation. The mixer is useful to beyond 200 MHz and may be used in a differential, balanced, or single-ended configuration. The IF amplifier is split to accommodate two low cost cascaded filters. RSSI output is derived by summing the output of both IF sections. A precision data shaper has a hold function to preset the shaper for fast recovery of new data.

Applications for the MC13156 include CT-2, wideband data links, and other radio systems utilizing GMSK, FSK or FM modulation.

- 2.0 to 6.0 Vdc Operation
- Typical Sensitivity of $6.0 \mu \mathrm{~V}$ for 12 dB SINAD
- RSSI Dynamic Range Typically 80 dB
- High Performance Data Shaper for Enhanced CT-2 Operation
- Internal $300 \Omega$ and $1.4 \mathrm{k} \Omega$ Terminations for 10.7 MHz and 455 kHz Filters
- Split IF for Improved Filtering and Extended RSSI Range



## Wideband FM IF Subsystem

## MC13158FTB

$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$, Case 873

The MC13158 is a wideband IF subsystem that is designed for high performance data and analog applications. Excellent high frequency performance is achieved, with low cost, through the use of Motorola's MOSAIC 1.5™ RF bipolar process. The MC13158 has an on-board grounded collector VCO transistor that may be used with a fundamental or overtone crystal in single channel operation or with a PLL in multi-channel operation. The mixer is useful to 500 MHz and may be used in a balanced differential or single ended configuration. The IF amplifier is split to accommodate two low cost cascaded filters. RSSI output is derived by summing the output of both IF sections. A precision data shaper has an Off function to shut the output "off" to save current. An enable control is provided to power down the IC for power
management in battery operated applications.
Applications include DECT, wideband wireless data links for personal and portable laptop computers and other battery operated radio systems which utilize GFSK, FSK or FM modulation.

- Designed for DECT Applications
- 1.8 to 6.0 Vdc Operating Voltage
- Low Power Consumption in Active and Standby Mode
- Greater than 600 kHz Detector Bandwidth
- Data Slicer with Special Off Function
- Enable Function for Power Down of Battery Operated Systems
- RSSI Dynamic Range of 80 dB Minimum
- Low External Component Count



## UHF, FM/AM Transmitter

## MC13175/176D

$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$, Case 751 B

The MC13175 and MC13176 are one chip FM/AM transmitter subsystems designed for AM/FM communication systems operating in the 260 to 470 MHz band covered by FCC Title 47; Part 15. They include a Colpitts crystal reference oscillator, UHF oscillator, $\div 8$ (MC13175) or $\div 32$ (MC13176) prescaler, and phase detector forming a versatile PLL system. Another application is as a local oscillator in a UHF or 900 MHz receiver. MC13175/176 offer the following features:

- UHF Current Controlled Oscillator
- Use Easily Available 3rd Overtone or Fundamental Crystals for Reference
- Low Number of External Parts Required
- Low Operating Supply Voltage (1.8-5 Vdc)
- Low Supply Drain Currents
- Power Output Adjustable (Up to +10 dBm)
- Differential Output for Loop Antenna or Balun Transformer Networks
- Power Down Feature
- ASK Modulated by Switching Output "On"/"Off"
- MC13175-for $=8 \times f_{\text {ref }}$
- MC13176-fo $=32 \times f_{\text {ref }}$



## Phase-Locked Loop Components

Motorola offers a choice of phase-locked loop components ranging from complete functional frequency synthesizers for dedicated applications to a wide selection of general purpose PLL circuit elements. Technologies include CMOS for lowest
power consumption and bipolar for high speed operation. Typical applications include TV, CATV, radios, scanners, WLANs, cordless telephones plus home and personal computers.

Table 1. PLL Frequency Synthesizers

Frequency (MHz)	Supply Voltage (V)	Nominal Supply Current (mA)	Phase Detector	Standby	Interface	Device	Suffix/ Case
4 @ 5 V	4.5 to 12	6 @ 5 V	Single-ended 3-state	No	Parallel	MC145106	P/707, DW/751D
15 @ 5 V	3 to 9	-	Two single-ended 3-state		Serial	MC145149*	P/738, DW/751D
		7.5 @ 5 V	Analog			MC145159-1	$\begin{gathered} \hline \text { P/738, } \\ \text { DW/751D } \end{gathered}$
20 @ 5 V	3 to 9	7.5 @ 5 V	Single-ended 3-state, double-ended		4-Bit	MC145145-2	P/707, DW/751D
						MC145146-2	P/738, DW/751D
					Parallel	MC145151-2	$\begin{gathered} \mathrm{P} / 710, \\ \mathrm{DW} / 751 \mathrm{~F} \end{gathered}$
			Double-ended			MC145152-2	P/710, DW/751F
			Single-ended 3-state, double-ended		Serial	MC145155-2	P/707, DW/751D
						MC145156-2	P/707,   DW/751D
						MC145157-2	P/648, DW/751G
						MC145158-2	P/648, DW/751G
60 @ 3 V	2.5 to 5.5	3 @ 3 V	Two single-ended 3-state	Yes		MC145162*	$\begin{gathered} \hline \text { P/648, } \\ \mathrm{D} / 751 \mathrm{~B} \end{gathered}$
60 @ 2 V	1.8 to 3.6	1.5 @ 1.8 V				MC145165*	$\begin{gathered} \hline \text { P/648, } \\ \mathrm{D} / 751 \mathrm{~B} \end{gathered}$
60 @ 3 V	2.5 to 5.5	3 @ 3 V			Parallel	MC145166*	P/648, DW/751G
					Serial	MC145167*	$\begin{gathered} \text { P/648, } \\ \text { DW/751G } \end{gathered}$
					Parallel	MC145168*	
					Serial	MC145169*	
85 @ 3 V	2.5 to 5.5	3 @ 3 V				MC145162-1*	P/648,   D/751B
$\begin{gathered} 40 / 130 @ \\ 5 \mathrm{~V} \end{gathered}$	4.5 to 5.5	9 @ V	Single-ended 3-state, Current source/sink			MC145173	DW/751E
$\begin{aligned} & 100 @ 3 \text { V } \\ & 185 @ 5 \text { V } \end{aligned}$	2.5 to 5.5	$\begin{aligned} & 2 \text { @ } 3 \text { V } \\ & 6 \text { @ } 5 \text { V } \end{aligned}$		No		MC145170-1	P/648, D/751B, DT/948C

* Dual PLL


## Phase-Locked Loop Components (continued)

## PLL Frequency Synthesizers (continued)

Frequency (MHz)	Supply Voltage (V)	Nominal Supply Current (mA)	Phase Detector	Standby	Interface	Device	Suffix/ Case
1100	4.5 to 5.5	7 @ 5 V	Current source/sink, double-ended	Yes	Serial	MC145190	F/751J, DT/948D
						MC145191	F/751J, DT/948D
1100	2.7 to 5	6 @ 2.7 V				MC145192	F/751J, DT/948D
1100	2.7 to 5.5	12	Two current source/sink, double-ended			MC145220*	$\begin{aligned} & \hline \text { F/803C, } \\ & \text { DT/948D } \end{aligned}$
$\begin{gathered} \hline 1200, \\ 400 \end{gathered}$	1.8 to 3.6	5	Loop 1 = Current source/sink   Loop 2 = Three-state			MC145225*	FTA/873C
2000	4.5 to 5.5	12 @ 5 V	Current source/sink, double-ended			MC145200	F/751J, DT/948D
2000	4.5 to 5.5	12 @ 5 V				MC145201	F/751J, DT/948D
2000	2.7 to 5.5	4 @ 3 V				MC145202	$\begin{aligned} & \hline \text { F/751J, } \\ & \text { DT/948D } \end{aligned}$
$\begin{gathered} 2600, \\ 400 \end{gathered}$	1.8 to 3.6	7	Loop 1 = Current source/sink   Loop 2 = Three-state			MC145230*	FTA/873C

* Dual PLL

NOTE: Evaluation kits available for the MC145190, MC145191, MC145192, MC145200, MC145201, MC145202, and MC145220. Order part number MC145___EVK.

Table 2. Phase-Locked Loop Functions

Device	Function	Pins	DIP	SM
MC12002	Analog Mixer	14	P	-
MC12009	$480 \mathrm{MHz} \div 5 / 6$ Dual Modulus Prescaler	16	P	-
MC12011	$550 \mathrm{MHz} \div 8 / 9$ Dual Modulus Prescaler	16	P	-
MC12013	$550 \mathrm{MHz} \div 10 / 11$ Dual Modulus Prescaler	16	P	-
MC12015	$225 \mathrm{MHz} \div 32 / 33$ Dual Modulus Prescaler	8	P	D
MC12016	$225 \mathrm{MHz} \div 40 / 41$ Dual Modulus Prescaler	8	P	D
MC12017	$225 \mathrm{MHz} \div 64 / 65$ Dual Modulus Prescaler	8	P	D
MC12018	$520 \mathrm{MHz} \div 128 / 129$ Dual Modulus Prescaler	8	P	D
MC12019	$225 \mathrm{MHz} \div 20 / 21$ Dual Modulus Prescaler	8	P	D
MC12022LVA	1.1 GHz $\div 64 / 65, \div 128 / 129$ Low Voltage Dual Modulus Prescaler	8	P	D
MC12022LVB	1.1 GHz $\div 64 / 65, \div 128 / 129$ Low Voltage Dual Modulus Prescaler	8	P	D
MC12023	$225 \mathrm{MHz} \div 64$ Prescaler	8	P	D
MC12026A	$1.1 \mathrm{GHz} \div 8 / 9, \div 16 / 17$ Dual Modulus Prescaler	8	P	D
MC12026B	$1.1 \mathrm{GHz} \div 8 / 9, \div 16 / 17$ Dual Modulus Prescaler	8	P	D
MC12028A	$1.1 \mathrm{GHz} \div 32 / 33, \div 64 / 65$ Dual Modulus Prescaler	8	P	D
MC12028B	$1.1 \mathrm{GHz} \div 32 / 33, \div 64 / 65$ Dual Modulus Prescaler	8	P	D
MC12033A	$2.0 \mathrm{GHz} \div 32 / 33, \div 64 / 65$ Low Voltage Dual Modulus Prescaler	8	P	D
MC12033B	$2.0 \mathrm{GHz} \div 32 / 33, \div 64 / 65$ Low Voltage Dual Modulus Prescaler	8	P	D

## Phase-Locked Loop Components (continued)

Phase-Locked Loop Functions (continued)

Device	Function	Pins	DIP	SM
MC12034A	$2.0 \mathrm{GHz} \div 32 / 33, \div 64 / 65$ Dual Modulus Prescaler	8	P	D
MC12034B	$2.0 \mathrm{GHz} \div 32 / 33, \div 64 / 65$ Dual Modulus Prescaler	8	P	D
MC12038A	$1.1 \mathrm{GHz} \div 64 / 65, \div 127 / 128, \div 255 / 256$ Low Power Dual Modulus Prescaler	8	P	D
MC12040	Phase-Frequency Detector	14,20	P	-
MC12052A	$1.1 \mathrm{GHz} \div 64 / 65, \div 128 / 129$ Super Low Power Dual Modulus Prescaler	8	-	D, SD
MC12053A	$1.1 \mathrm{GHz} \div 64 / 65, \div 128 / 129$ Super Low Power Dual Modulus Prescaler With Stand-By Mode	8	-	D, SD
MC12054A	$2.0 \mathrm{GHz} \div 64 / 65, \div 128 / 129$ Super Low Power Dual Modulus Prescaler	8	-	D, SD
MC12058	$1.1 \mathrm{GHz} \div 126 / 128 . \div 254 / 256$ Low Power Dual Modulus Prescaler	8	-	D, SD
MC12061	Crystal Oscillator	16	P	-
MC12066	$1.3 \mathrm{GHz} \div 64 / 256$ Prescaler	8	-	D
MC12079	$2.8 \mathrm{GHz} \div 64 / 128 / 256$ Prescaler	8	P	D
MC12080	$1.1 \mathrm{GHz} \div 10 / 20 / 40 / 80$ Prescaler	8	P	D
MC12089	$2.8 \mathrm{GHz} \div 64 / 128$ Prescaler	8	P	D
MC12093	$1.1 \mathrm{GHz} \div 2 / 4 / 8$ Low Power Prescaler With Stand-By Mode	8	-	D, SD
MC12095	$2.5 \mathrm{GHz} \div 2 / 4$ Low Power Prescaler With Stand-By Mode	8	-	D, SD
MC12098	$2.5 \mathrm{GHz} \div 8192$ Prescaler	8	-	D, SD
MCH/K12140	Phase-Frequency Detector	8	-	D
MC12147	Low Power Voltage Controlled Oscillator Buffer	8	-	D, SD
MC12148	Low Power Voltage Controlled Oscillator	8	-	D, SD, P
MC12149	Ultra Low Power Voltage Controlled Oscillator	8	-	D, SD
MC12179	$500-2800$ MHz Single Channel Frequency Synthesizer	8	-	D
MC12181	125-1000 MHz Frequency Synthesizer	16	-	D

RF/IF Integrated Circuits Packages


## Section Two

## Motorola RF/IF Integrated Circuits Data Sheets

Device Number	Page Number	Device Number	Page Number
MC1350	3.2-3	MC12040	3.2-161
MC1490	3.2-7	MC12052A	3.2-165
MC1496, B	3.2-14	MC12053A	3.2-168
MC2833	3.2-24	MC12054A	3.2-172
MC3356	3.2-31	MC12058	3.2-174
MC3357	3.2-37	MC12061	3.2-179
MC3359	3.2-41	MC12066	3.2-187
MC3361C	3.2-47	MC12079	3.2-190
MC3371	3.2-53	MC12080	3.2-193
MC3372	3.2-53	MC12083	3.2-196
MC3374	3.2-70	MC12089	3.2-199
MC3418	3.2-77	MC12093	3.2-202
MC12002	3.2-96	MC12095	3.2-204
MC12009	3.2-102	MC12098	3.2-208
MC12011	3.2-102	MC12100	3.2-212
MC12013	3.2-102	MC12101	3.2-218
MC12015	3.2-116	MC12147	3.2-224
MC12016	3.2-116	MC12148	3.2-235
MC12017	3.2-116	MC12149	3.2-238
MC12018	3.2-118	MC12179	3.2-249
MC12019	3.2-120	MC12181	3.2-259
MC12022A	3.2-122	MC12202	3.2-270
MC12022B	3.2-122	MC12206	3.2-280
MC12022LVA	3.2-127	MC12210	3.2-290
MC12022LVB	3.2-127	MC13055	3.2-300
MC12022SLA	3.2-132	MC13109	3.2-307
MC12022SLB	3.2-132	MC13110A/B	3.2-333
MC12023	3.2-137	MC13111A/B	3.2-333
MC12026A	3.2-138	MC13135	3.2-397
MC12026B	3.2-138	MC13136	3.2-397
MC12028A	3.2-143	MC13142	3.2-409
MC12028B	3.2-143	MC13143	3.2-422
MC12032A	3.2-147	MC13144	3.2-429
MC12032B	3.2-147	MC13145	3.2-436
MC12033A	3.2-151	MC13146	3.2-441
MC12033B	3.2-151	MC13150	3.2-444
MC12034A	3.2-154	MC13155	3.2-461
MC12034B	3.2-154	MC13156	3.2-476
MC12038A	3.2-157	MC13158	3.2-494


Device Number	Page Number	Device Number	Page Number
MC13159	3.2-516	MC145165	3.2-699
MC13173	3.2-522	MC145166	3.2-700
MC13175	3.2-539	MC145167	3.2-700
MC13176	3.2-539	MC145168	3.2-709
MC33110	3.2-556	MC145169	3.2-709
MC33111	3.2-568	MC145170-1	3.2-710
MC33128	3.2-579	MC145170-2	3.2-734
MC33410	3.2-586	MC145190	3.2-758
MC34016	3.2-604	MC145190EVK	3.2-780
MC145026	3.2-617	MC145191	3.2-758
MC145027	3.2-617	MC145191EVK	3.2-780
MC145028	3.2-617	MC145192	3.2-796
MC145106	3.2-635	MC145192EVK	3.2-818
MC145145-2	3.2-642	MC145200EVK	
MC145146-2	. 3.2-643	MC145201 ...	
MC145151-2	3.2-645	MC145201EVK	3.2-780
MC145152-2	3.2-648	MC145202	3.2-854
MC145155-2	3.2-652	MC145202EVK	3.2-818
MC145156-2	3.2-656	MC145220	. 3.2-876
MC145157-2	3.2-660	MC145220EVK	. 3.2-901
MC145158-2	3.2-663	MCH12140	. 3.2-917
MC145159-1	. 3.2-675	MCK12140	. 3.2-917
MC145162	3.2-676	SC41343	. 3.2-617
MC145162-1	3.2-676	SC41344	. 3.2-617

## Monolithic IF Amplifier

The MC1350 is an integrated circuit featuring wide range AGC for use as an IF amplifier in radio and TV over an operating temperature range of $0^{\circ}$ to $+75^{\circ} \mathrm{C}$.

- Power Gain: 50 dB Typ at 45 MHZ

50 dB Typ at 58 MHZ

- AGC Range: 60 dB Min, DC to 45 MHz
- Nearly Constant Input \& Output Admittance over the Entire AGC Range
- Y21 Constant ( -3.0 dB ) to 90 MHz
- Low Reverse Transfer Admittance: < $1.0 \mu \mathrm{mho}$ Typ
- 12 V Operation, Single-Polarity Power Supply

MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}^{+}$	+18	Vdc
Output Supply Voltage	$\mathrm{V}_{1}, \mathrm{~V}_{8}$	+18	Vdc
AGC Supply Voltage	$\mathrm{V}_{\text {AGC }}$	$\mathrm{V}^{+}$	Vdc
Differential Input Voltage	$\mathrm{V}_{\text {in }}$	5.0	Vdc
Power Dissipation (Package Limitation)	$\mathrm{P}_{\mathrm{D}}$		
Plastic Package		625	mW
Derate above $25^{\circ} \mathrm{C}$		5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	0 to +75	${ }^{\circ} \mathrm{C}$

## IF AMPLIFIER

SEMICONDUCTOR TECHNICAL DATA


Figure 1. Typical MC1350 Video IF Amplifier and MC1330 Low-Level Video Detector Circuit


MC1350
ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}^{+}=+12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristics	Symbol	Min	Typ	Max	Unit
AGC Range, $45 \mathrm{MHz}(5.0 \mathrm{~V}$ to 7.0 V ) (Figure 1)		60	68	-	dB
$\begin{array}{ll} \text { Power Gain (Pin } 5 \text { grounded via a } 5.1 \mathrm{k} \Omega \text { resistor) } \\ \mathrm{f}=58 \mathrm{MHz}, \mathrm{BW}=4.5 \mathrm{MHz} & \text { See Figure } 6(\mathrm{a}) \\ \mathrm{f}=45 \mathrm{MHz}, \mathrm{BW}=4.5 \mathrm{MHz} & \text { See Figure 6(a), (b) } \\ \mathrm{f}=10.7 \mathrm{MHz}, \mathrm{BW}=350 \mathrm{kHz} & \text { See Figure 7 } \\ \mathrm{f}=455 \mathrm{kHz}, \mathrm{BW}=20 \mathrm{kHz} & \end{array}$	$A_{p}$	$46$	$\begin{aligned} & 48 \\ & 50 \\ & 58 \\ & 62 \end{aligned}$	-	dB
```Maximum Differential Voltage Swing 0 dB AGC -30 dB AGC```	$\mathrm{V}_{\mathrm{O}}$		$\begin{aligned} & 20 \\ & 8.0 \end{aligned}$	-	$\mathrm{V}_{\mathrm{pp}}$
Output Stage Current (Pins 1 and 8)	$\mathrm{I}_{1}+\mathrm{I}_{8}$	-	5.6	-	mA
Total Supply Current (Pins 1, 2 and 8)	Is	-	14	17	mAdc
Power Dissipation	PD	-	168	204	mW

DESIGN PARAMETERS, Typical Values $\left(\mathrm{V}^{+}=+12 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Parameter	Symbol	Frequency				Unit
		455 kHz	10.7 MHz	45 MHz	58 MHz	
Single-Ended Input Admittance	$\begin{aligned} & g_{11} \\ & \mathrm{~b}_{11} \end{aligned}$	$\begin{aligned} & 0.31 \\ & 0.022 \end{aligned}$	$\begin{aligned} & 0.36 \\ & 0.50 \end{aligned}$	$\begin{aligned} & 0.39 \\ & 2.30 \end{aligned}$	$\begin{gathered} 0.5 \\ 2.75 \end{gathered}$	mmho
Input Admittance Variations with AGC (0 dB to 60 dB)	Δg_{11} $\Delta \mathrm{b}_{11}$	-	-	$\begin{gathered} 60 \\ 0 \end{gathered}$	-	$\mu \mathrm{mho}$
Differential Output Admittance	$\begin{aligned} & g_{22} \\ & \mathrm{~b}_{22} \end{aligned}$	$\begin{aligned} & 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 110 \end{aligned}$	$\begin{gathered} 30 \\ 390 \end{gathered}$	$\begin{gathered} 60 \\ 510 \end{gathered}$	$\mu \mathrm{mho}$
Output Admittance Variations with AGC (0 dB to 60 dB)	$\begin{aligned} & \Delta \mathrm{g}_{22} \\ & \Delta \mathrm{~b}_{22} \end{aligned}$	-	-	$\begin{aligned} & 4.0 \\ & 90 \end{aligned}$	-	$\mu \mathrm{mho}$
Reverse Transfer Admittance (Magnitude)	$\left\|y_{12}\right\|$	\ll 1.0	< <1.0	<<1.0	\ll 1.0	$\mu \mathrm{mho}$
Forward Transfer Admittance Magnitude Angle (0 dB AGC) Angle (-30 dB AGC)	$\begin{aligned} & \left\|y_{21}\right\| \\ & <y_{21} \\ & <y_{21} \end{aligned}$	$\begin{array}{r} 160 \\ -5.0 \\ -3.0 \end{array}$	$\begin{aligned} & 160 \\ & -20 \\ & -18 \end{aligned}$	$\begin{aligned} & 200 \\ & -80 \\ & -69 \end{aligned}$	$\begin{gathered} 180 \\ -105 \\ -90 \end{gathered}$	mmho Degrees Degrees
Single-Ended Input Capacitance	$\mathrm{C}_{\text {in }}$	7.2	7.2	7.4	7.6	pF
Differential Output Capacitance	Co	1.2	1.2	1.3	1.6	pF

Figure 2. Typical Gain Reduction

Figure 3. Noise Figure versus Gain Reduction

The input amplifiers (Q1 and Q2) operate at constant emitter currents so that input impedance remains independent of AGC action. Input signals may be applied single-ended or differentially (for ac) with identical results. Terminals 4 and 6 may be driven from a transformer, but a dc path from either terminal to ground is not permitted.

Figure 4. Circuit Schematic

AGC action occurs as a result of an increasing voltage on the base of Q4 and Q5 causing these transistors to conduct more heavily thereby shunting signal current from the interstage amplifiers Q3 and Q6. The output amplifiers are supplied from an active current source to maintain constant quiescent bias thereby holding output admittance nearly constant. Collector voltage for the output amplifier must be supplied through a center-tapped tuning coil to Pins 1 and 8. The 12 V supply $\left(\mathrm{V}^{+}\right)$at Pin 2 may be used for this purpose, but output admittance remains more nearly constant if a separate 15 V supply $\left(\mathrm{V}^{+}+\right.$) is used, because the base voltage on the output amplifier varies with AGC bias.

Figure 5. Frequency Response Curve (45 MHz and 58 MHz)

Figure 6. Power Gain, AGC and Noise Figure Test Circuits

*Connect to ground for maximum power gain test.
All power supply chokes (Lp), are self-resonant at input frequency. Lp $\geq 20 \mathrm{k} \Omega$. See Figure 5 for Frequency Response Curve.

L1 @ $45 \mathrm{MHz}=71 / 4$ Turns on a $1 / 4^{\prime \prime}$ coil form @ $58 \mathrm{MHz}=6$ Turns on a $1 / 4^{\prime \prime}$ coil form
T1 Primary Winding $=18$ Turns on a $1 / 4^{\prime \prime}$ coil form, center-tapped, \#25 AWG
Secondary Winding = 2 Turns centered over Primary Winding @ 45 MHz = 1 Turn @ 58 MHz
$\begin{aligned} \text { Slug } & =\text { Carbonyl E or J }\end{aligned}$
(b) Alternate 45 MHz

L1	Ferrite Core $\mathbf{1 4}$ Turns $\mathbf{2 8}$ S.W.G.
C1	$5-25 \mathrm{pF}$
C2	$5-25 \mathrm{pF}$
C3	$5-25 \mathrm{pF}$

	45 MHz		58 MHz	
L 1	$0.4 \mu \mathrm{H}$	$\mathrm{Q} \geq 100$	$0.3 \mu \mathrm{H}$	$\mathrm{Q} \geq 100$
T 1	$1.3 \mu \mathrm{H}$ to $3.4 \mu \mathrm{H}$	$\mathrm{Q} \geq 100 @ 2.0 \mu \mathrm{H}$	$1.2 \mu \mathrm{H}$ to $3.8 \mu \mathrm{H}$	$\mathrm{Q} \geq 100 @ 2.0 \mu \mathrm{H}$
C 1	50 pF to 160 pF		8.0 pF to 60 pF	
C 2	8.0 pF to 60 pF		3.0 pF to 35 pF	

Figure 7. Power Gain and AGC Test Circuit
(455 kHz and 10.7 MHz)

Figure 8. Single-Ended Input Admittance

Figure 10. Differential Output Admittance

Component	Frequency	
	$\mathbf{4 5 5} \mathbf{~ k H z}$	$\mathbf{1 0 . 7} \mathbf{~ M H z}$
C1	-	$80-450 \mathrm{pF}$
C2	-	$5.0-80 \mathrm{pF}$
C3	$0.05 \mu \mathrm{~F}$	$0.001 \mu \mathrm{~F}$
C4	$0.05 \mu \mathrm{~F}$	$0.05 \mu \mathrm{~F}$
C5	$0.001 \mu \mathrm{~F}$	36 pF
C8	$0.05 \mu \mathrm{~F}$	$0.05 \mu \mathrm{~F}$
C7	$0.05 \mu \mathrm{~F}$	$0.05 \mu \mathrm{~F}$
L1	-	$4.6 \mu \mathrm{~F}$
T1	Note 1	Note 2

NOTES: 1. Primary: $120 \mu \mathrm{H}$ (center-tapped) $Q_{u}=140$ at 455 kHz
Primary: Secondary turns ratio ≈ 13
2. Primary: $6.0 \mu \mathrm{H}$

Primary winding $=24$ turns \#36 AWG
(close-wound on $1 / 4^{\prime \prime}$ dia. form)
Core $=$ Carbonyl E or J
Secondary winding = $1-1 / 2$ turns \#36 AWG, $1 / 4^{\prime \prime}$ dia.
(wound over center-tap)

Figure 9. Forward Transfer Admittance

Figure 11. Differential Output Voltage

RF/IF/Audio Amplifier

The MC1490 is an integrated circuit featuring wide-range AGC for use in RF/IF amplifiers and audio amplifiers over the temperature range, -40° to $+85^{\circ} \mathrm{C}$.

- High Power Gain:50 dB Typ at 10 MHz

45 dB Typ at 60 MHz
35 dB Typ at 100 MHz

- Wide Range AGC: 60 dB Min, DC to 60 MHz
- 6.0 V to 15 V Operation, Single Polarity Supply
- See MC1350D for Surface Mount

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	+18	Vdc
AGC Supply	$\mathrm{V}_{\text {AGC }}$	V_{CC}	Vdc
Input Differential Voltage	$\mathrm{V}_{\text {ID }}$	5.0	Vdc
Operating Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$

WIDEBAND AMPLIFIER WITH AGC

SEMICONDUCTOR

 TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC1490P	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	Plastic

SCATTERING PARAMETERS$\left(\mathrm{V}_{\mathrm{CC}}=+12 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{Z}_{\mathrm{O}}=50 \Omega\right)$				
Parameter	Symbol	$\begin{gathered} \mathrm{f}=\mathrm{MHz} \\ \text { Typ } \end{gathered}$		Unit
		30	60	
Input Reflection Coefficient	$\left\|{ }_{1} \mathrm{~S}_{11}\right\|$ 011	$\begin{array}{r} 0.95 \\ -7.3 \end{array}$	$\begin{aligned} & 0.93 \\ & -16 \end{aligned}$	deg
Output Reflection Coefficient	$\begin{aligned} & \left\|S_{22}\right\| \\ & \theta 22 \end{aligned}$	$\begin{array}{r} 0.99 \\ -3.0 \end{array}$	$\begin{array}{r} 0.98 \\ -5.5 \end{array}$	deg
Forward Transmission Coefficient	$\begin{gathered} \left\|\mathrm{S}_{21}\right\| \\ \theta 21 \end{gathered}$	$\begin{aligned} & 16.8 \\ & 128 \end{aligned}$	$\begin{aligned} & 14.7 \\ & 64.3 \end{aligned}$	deg
Reverse Transmission Coefficient	S_{12} 012	$\begin{gathered} 0.00048 \\ 84.9 \end{gathered}$	$\begin{gathered} 0.00092 \\ 79.2 \end{gathered}$	- ${ }_{\text {deg }}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=12 \mathrm{Vdc}, \mathrm{f}=60 \mathrm{MHz}, \mathrm{BW}=1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Characteristic	Figure	Symbol	Min	Typ	Max	Unit
Power Supply Current Drain	-	ICC	-	-	17	mA
AGC Range (AGC) 5.0 V Min to 7.0 V Max	19	M $_{\mathrm{AGC}}$	-60	-	-	dB
Output Stage Current (Sum of Pins 1 and 8)	-	IO	4.0	-	7.5	mA
Single-Ended Power Gain RS $=\mathrm{R}_{\mathrm{L}}=50 \Omega$	19	GP	40	-	-	dB
Noise Figure $\mathrm{RS}_{\mathrm{S}}=50$ Ohms	19	NF	-	6.0	-	dB
Power Dissipation	-	PD_{D}	-	168	204	mW

Figure 1. Unneutralized Power Gain versus Frequency (Tuned Amplifier, See Figure 19)

Figure 3. Dynamic Range: Output Voltage versus Input Voltage (Video Amplifier, See Figure 20)

Figure 2. Voltage Gain versus Frequency (Video Amplifier, See Figure 20)

Figure 4. Voltage Gain versus Frequency (Video Amplifier, See Figure 20)

Figure 5. Voltage Gain and Supply Current versus Supply Voltage (Video Amplifier, See Figure 20)

Figure 7. Typical Gain Reduction versus AGC Current

Figure 9. Power Gain versus Supply Voltage (See Test Circuit, Figure 19)

Figure 6. Typical Gain Reduction versus AGC Voltage

Figure 8. Fixed Tuned Power Gain Reduction versus Temperature (See Test Circuit, Figure 19)

Figure 10. Noise Figure versus Frequency

Figure 11. Noise Figure versus
Source Resistance

Figure 12. Noise Figure versus AGC Gain Reduction

Figure 13. Harmonic Distortion versus AGC Gain
Reduction for AM Carrier (For Test Circuit, See Figure 14)

Figure 14. 10.7 MHz Amplifier Gain $\simeq 55 \mathrm{~dB}, \mathrm{BW} \simeq 100 \mathrm{kHz}$

L1 = 24 turns, \#22 AWG wire on a T12-44 micro metal Toroid core (-124 pF)
$\mathrm{L} 2=20$ turns, \#22 AWG wire on a T12-44 micro metal Toroid core (-100 pF)

Figure 15. S_{11} and S_{22}, Input and Output Reflection Coefficient

Figure 17. S_{21}, Forward Transmission Coefficient (Gain)

Figure 16. S_{11} and $\mathrm{S}_{\mathbf{2 2}}$, Input and Output Reflection Coefficient

Figure 18. S_{12}, Reverse Transmission Coefficient (Feedback)

Figure 19. 60 MHz Power Gain Test Circuit

L1 = 7 turns, \#20 AWG wire, 5/16" Dia.,5/8" long
L2 $=6$ turns, \#14 AWG wire, 9/16" Dia., 3/4" long C1,C2,C3 $=(1-30) p F$
C4 $=(1-10) \mathrm{pF}$

Figure 20. Video Amplifier

Figure 22. 100 MHz Mixer

L1 = 5 turns, \#16 AWG wire, 1/4", ID Dia., 5/8" long
L2 = 16 turns, \#20 AWG wire on a Toroid core, (T44-6).

Figure 23. Two-Stage 60 MHz IF Amplifier (Power Gain $\approx 80 \mathrm{~dB}, \mathrm{BW} \approx 1.5 \mathrm{MHz}$)

T1: Primary Winding = 15 turns, \#22 AWG wire, 1/4" ID Air Core Secondary Winding = 4 turns, \#22 AWG wire, Coefficient of Coupling ≈ 1.0

T2: Primary Winding = 10 turns, \#22 AWG wire, 1/4" ID Air Core Secondary Winding = 2 turns, \#22 AWG wire, Coefficient of Coupling ≈ 1.0

DESCRIPTION OF SPEECH COMPRESSOR

The amplifier drives the base of a PNP transistor operating common-emitter with a voltage gain of approximately 20. The control R1 varies the quiescent Q point of this transistor so that varying amounts of signal exceed the level V_{r}. Diode D1 rectifies the positive peaks of Q1's output only when these peaks are greater than $\mathrm{V}_{\mathrm{r}} \simeq 7.0 \mathrm{~V}$. The resulting output is filtered by $\mathrm{C}_{\mathrm{X}}, \mathrm{R}_{\mathrm{X}}$.
R_{X} controls the charging time constant or attack time. C_{X} is involved in both charge and discharge. R2 (the $150 \mathrm{k} \Omega$ and input resistance of the emitter-follower Q2) controls the decay time. Making the decay long and attack short is accomplished by making R_{X} small and $R 2$ large. (A Darlington emitter-follower may be needed if extremely slow decay times are required.)

The emitter-follower Q2 drives the AGC Pin 5 of the MC1490P and reduces the gain. R3 controls the slope of signal compression.

Table 1. Distortion versus Frequency

Frequency	Distortion		Distortion	
	$10 \mathrm{mV} \mathrm{e}_{\mathrm{i}}$	100 mV e i	$10 \mathrm{mV} \mathrm{e}_{\mathrm{i}}$	100 mV e i
100 Hz	3.5\%	12\%	15\%	27\%
300 Hz	2\%	10\%	6\%	20\%
1.0 kHz	1.5\%	8\%	3\%	9\%
10 kHz	1.5\%	8\%	1\%	3\%
100 kHz	1.5\%	8\%	1\%	3\%
	Notes 1 and 2		Notes 3 and 4	

Notes: (1) $\begin{aligned} & \text { Decay }=300 \mathrm{~ms} \\ & \text { Attack }=20 \mathrm{~ms}\end{aligned}$
(3) Decay $=20 \mathrm{~ms}$

Attack $=3.0 \mathrm{~ms}$
(2) $\mathrm{C}_{\mathrm{X}}=7.5 \mu \mathrm{~F}$
$R_{X}=0$ (Short)
(4) $\mathrm{C}_{\mathrm{X}}=0.68 \mu \mathrm{~F}$
$\mathrm{R}_{\mathrm{X}}=1.5 \mathrm{k} \Omega$

Figure 24. Speech Compressor

MC1496, B

Balanced Modulators/ Demodulators

These devices were designed for use where the output voltage is a product of an input voltage (signal) and a switching function (carrier). Typical applications include suppressed carrier and amplitude modulation, synchronous detection, FM detection, phase detection, and chopper applications. See Motorola Application Note AN531 for additional design information.

- Excellent Carrier Suppression -65 dB typ @ 0.5 MHz
-50 dB typ @ 10 MHz
- Adjustable Gain and Signal Handling
- Balanced Inputs and Outputs
- High Common Mode Rejection -85 dB typical

This device contains 8 active transistors.

Figure 1. Suppressed Carrier Output Waveform

Figure 2. Suppressed Carrier Spectrum

Figure 3. Amplitude Modulation Output Waveform

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC1496D	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	SO-14
MC 1496 P		Plastic DIP
MC1496BP	$\mathrm{T}_{A}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Plastic DIP

Figure 4. Amplitude-Modulation Spectrum

MC1496, B

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Symbol	Value	Unit
$\begin{aligned} & \text { Applied Voltage } \\ & \quad(\mathrm{V} 6-\mathrm{V} 8, \mathrm{~V} 10-\mathrm{V} 1, \mathrm{~V} 12-\mathrm{V} 8, \mathrm{~V} 12-\mathrm{V} 10, \mathrm{~V} 8-\mathrm{V} 4, \\ & \text { V8 - V1, V10 - V4, V6 - V10, V2 - V5, V3 - V5) } \end{aligned}$	$\Delta \mathrm{V}$	30	Vdc
Differential Input Signal	$\begin{array}{\|l\|} \hline \text { V8 - V10 } \\ \text { V4-V1 } \end{array}$	$\begin{gathered} +5.0 \\ \pm\left(5+15 \mathrm{R}_{\mathrm{e}}\right) \end{gathered}$	Vdc
Maximum Bias Current	15	10	mA
Thermal Resistance, Junction-to-Air Plastic Dual In-Line Package	$\mathrm{R}_{\theta \mathrm{JA}}$	100	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Operating Temperature Range	T_{A}	0 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: ESD data available upon request.
ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{C}}=12 \mathrm{Vdc}, \mathrm{V}_{\mathrm{EE}}=-8.0 \mathrm{Vdc}, 15=1.0 \mathrm{mAdc}, \mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{e}}=1.0 \mathrm{k} \Omega, \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {low }}\right.$ to $\mathrm{T}_{\text {high }}$, all input and output characteristics are single-ended, unless otherwise noted.)

Characteristic	Fig.	Note	Symbol	Min	Typ	Max	Unit
Carrier Feedthrough $\mathrm{V}_{\mathrm{C}}=60 \mathrm{mVrms}$ sine wave and $\mathrm{f}_{\mathrm{C}}=1.0 \mathrm{kHz}$ offset adjusted to zero $\mathrm{V}_{\mathrm{C}}=300 \mathrm{mV}$ pp square wave: offset adjusted to zero $\mathrm{f}_{\mathrm{C}}=1.0 \mathrm{kHz}$ offset not adjusted offset not adjusted $\mathrm{f}_{\mathrm{C}}=1.0 \mathrm{kHz}$	5	1	$\mathrm{V}_{\text {CFT }}$	-	$\begin{gathered} 40 \\ 140 \\ \\ 0.04 \\ 20 \end{gathered}$	0.4 200	μ Vrms mVrms
$\begin{aligned} & \text { Carrier Suppression } \\ & \begin{array}{l} \mathrm{fS}=10 \mathrm{kHz}, 300 \mathrm{mVrms} \\ \mathrm{f} \mathrm{C} \end{array}=500 \mathrm{kHz}, 60 \mathrm{mVrms} \text { sine wave } \\ & \mathrm{f} \mathrm{C}=10 \mathrm{MHz}, 60 \mathrm{mVrms} \text { sine wave } \end{aligned}$	5	2	V_{CS}	40	$\begin{aligned} & 65 \\ & 50 \end{aligned}$	-	dB
Transadmittance Bandwidth (Magnitude) ($\mathrm{R}_{\mathrm{L}}=50 \Omega$) Carrier Input Port, $\mathrm{V}_{\mathrm{C}}=60 \mathrm{mVrms}$ sine wave fs $=1.0 \mathrm{kHz}, 300 \mathrm{mVrms}$ sine wave Signal Input Port, $\mathrm{V}_{\mathrm{S}}=300 \mathrm{mVrms}$ sine wave $\left\|\mathrm{V}_{\mathrm{C}}\right\|=0.5 \mathrm{Vdc}$	8	8	BW 3 dB		$\begin{aligned} & 300 \\ & 80 \end{aligned}$	-	MHz
Signal Gain ($\mathrm{V}_{\mathrm{S}}=100 \mathrm{mVrms}, \mathrm{f}=1.0 \mathrm{kHz} ; \mid \mathrm{V}_{\mathrm{C}} \mathrm{l}=0.5 \mathrm{Vdc}$)	10	3	AVS	2.5	3.5	-	V/V
Single-Ended Input Impedance, Signal Port, $f=5.0 \mathrm{MHz}$ Parallel Input Resistance Parallel Input Capacitance	6	-	$\begin{aligned} & r_{i p} \\ & c_{i p} \end{aligned}$	-	$\begin{array}{r} 200 \\ 2.0 \\ \hline \end{array}$	-	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
Single-Ended Output Impedance, $\mathrm{f}=10 \mathrm{MHz}$ Parallel Output Resistance Parallel Output Capacitance	6	-	$\begin{aligned} & r_{o p} \\ & c_{00} \end{aligned}$	-	$\begin{aligned} & 40 \\ & 5.0 \end{aligned}$	-	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
Input Bias Current $I_{b S}=\frac{11+14}{2} ; I_{b c}=\frac{I 8+110}{2}$	7	-	$\begin{aligned} & \mathrm{lbS} \\ & \mathrm{lbc} \end{aligned}$	-	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 30 \\ & 30 \end{aligned}$	$\mu \mathrm{A}$
Input Offset Current $\mathrm{I}_{\mathrm{iOS}}=11-14 ; \mathrm{I}_{\mathrm{iOC}}=18-110$	7	-	$\begin{aligned} & \left\|l_{\mathrm{ioS}}\right\| \\ & \mathrm{I}_{\mathrm{ioC}} \mid \end{aligned}$	-	$\begin{aligned} & 0.7 \\ & 0.7 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.0 \end{aligned}$	$\mu \mathrm{A}$
Average Temperature Coefficient of Input Offset Current $\left(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)$	7	-	$\left\|\mathrm{TC}_{\text {lio }}\right\|$	-	2.0	-	$n A /{ }^{\circ} \mathrm{C}$
Output Offset Current (16-19)	7	-	$\left\|l_{00}\right\|$	-	14	80	$\mu \mathrm{A}$
Average Temperature Coefficient of Output Offset Current $\left(\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}\right)$	7	-	$\left\|\mathrm{TC}_{\text {Ioo }}\right\|$	-	90	-	$n A /{ }^{\circ} \mathrm{C}$
Common-Mode Input Swing, Signal Port, fs $=1.0 \mathrm{kHz}$	9	4	CMV	-	5.0	-	Vpp
Common-Mode Gain, Signal Port, fs $=1.0 \mathrm{kHz}, \mid \mathrm{V} \mathrm{C}=0.5 \mathrm{Vdc}$	9	-	ACM	-	-85	-	dB
Common-Mode Quiescent Output Voltage (Pin 6 or Pin 9)	10	-	$V_{\text {out }}$	-	8.0	-	Vpp
Differential Output Voltage Swing Capability	10	-	$V_{\text {out }}$	-	8.0	-	Vpp
$\begin{array}{ll}\text { Power Supply Current } & \begin{array}{ll}\text { I6 +112 } \\ 114\end{array}\end{array}$	7	6	$\begin{aligned} & \text { ICC } \\ & \text { IEE } \end{aligned}$	-	$\begin{aligned} & 2.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 4.0 \\ & 5.0 \end{aligned}$	mAdc
DC Power Dissipation	7	5	PD	-	33	-	mW

GENERAL OPERATING INFORMATION

Carrier Feedthrough

Carrier feedthrough is defined as the output voltage at carrier frequency with only the carrier applied (signal voltage = 0).

Carrier null is achieved by balancing the currents in the differential amplifier by means of a bias trim potentiometer (R1 of Figure 5).

Carrier Suppression

Carrier suppression is defined as the ratio of each sideband output to carrier output for the carrier and signal voltage levels specified.

Carrier suppression is very dependent on carrier input level, as shown in Figure 22. A low value of the carrier does not fully switch the upper switching devices, and results in lower signal gain, hence lower carrier suppression. A higher than optimum carrier level results in unnecessary device and circuit carrier feedthrough, which again degenerates the suppression figure. The MC1496 has been characterized with a 60 mVrms sinewave carrier input signal. This level provides optimum carrier suppression at carrier frequencies in the vicinity of 500 kHz , and is generally recommended for balanced modulator applications.

Carrier feedthrough is independent of signal level, V_{S}. Thus carrier suppression can be maximized by operating with large signal levels. However, a linear operating mode must be maintained in the signal-input transistor pair - or harmonics of the modulating signal will be generated and appear in the device output as spurious sidebands of the suppressed carrier. This requirement places an upper limit on input-signal amplitude (see Figure 20). Note also that an optimum carrier level is recommended in Figure 22 for good carrier suppression and minimum spurious sideband generation.

At higher frequencies circuit layout is very important in order to minimize carrier feedthrough. Shielding may be necessary in order to prevent capacitive coupling between the carrier input leads and the output leads.

Signal Gain and Maximum Input Level

Signal gain (single-ended) at low frequencies is defined as the voltage gain,

$$
A_{V S}=\frac{V_{0}}{V_{S}}=\frac{R_{L}}{R_{e}+2 r_{e}} \text { where } r_{e}=\frac{26 \mathrm{mV}}{15(\mathrm{~mA})}
$$

A constant dc potential is applied to the carrier input terminals to fully switch two of the upper transistors "on" and two transistors "off" ($\left.\mathrm{V}_{\mathrm{C}}=0.5 \mathrm{Vdc}\right)$. This in effect forms a cascode differential amplifier.

Linear operation requires that the signal input be below a critical value determined by R_{E} and the bias current I 5 .

$$
V_{S} \leqslant 15 R_{E} \text { (Volts peak) }
$$

Note that in the test circuit of Figure 10, V_{S} corresponds to a maximum value of 1.0 V peak.

Common Mode Swing

The common-mode swing is the voltage which may be applied to both bases of the signal differential amplifier, without saturating the current sources or without saturating the differential amplifier itself by swinging it into the upper
switching devices. This swing is variable depending on the particular circuit and biasing conditions chosen.

Power Dissipation

Power dissipation, PD_{D}, within the integrated circuit package should be calculated as the summation of the voltage-current products at each port, i.e. assuming $\mathrm{V} 12=\mathrm{V} 6, \mathrm{I} 5=\mathrm{I} 6=\mathrm{I} 12$ and ignoring base current, $\left.\mathrm{PD}_{\mathrm{D}}=2 \mathrm{I} 5(\mathrm{~V} 6-\mathrm{V} 14)+\mathrm{I} 5\right)$ V5 - V14 where subscripts refer to pin numbers.

Design Equations

The following is a partial list of design equations needed to operate the circuit with other supply voltages and input conditions.
A. Operating Current

The internal bias currents are set by the conditions at Pin 5. Assume:

$$
\begin{aligned}
& I_{5}=I 6=I_{1} 12 \\
& I_{B} \ll I_{C} \text { for all transistors }
\end{aligned}
$$

then :

$$
R 5=\frac{V--\phi}{I 5}-500 \Omega \begin{aligned}
& \text { where: } \mathrm{R} 5 \text { is the resistor between } \\
& \text { Pin } 5 \text { and ground } \\
& \phi=0.75 \text { at } \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}
\end{aligned}
$$

The MC1496 has been characterized for the condition $\mathrm{I}_{5}=1.0 \mathrm{~mA}$ and is the generally recommended value.
B. Common-Mode Quiescent Output Voltage

$$
\mathrm{V} 6=\mathrm{V} 12=\mathrm{V}+-\mathrm{I} 5 \mathrm{R}_{\mathrm{L}}
$$

Biasing

The MC1496 requires three dc bias voltage levels which must be set externally. Guidelines for setting up these three levels include maintaining at least 2.0 V collector-base bias on all transistors while not exceeding the voltages given in the absolute maximum rating table;

$$
\begin{aligned}
& 30 \mathrm{Vdc} \geq[(\mathrm{V} 6, \mathrm{~V} 12)-(\mathrm{V} 8, \mathrm{~V} 10)] \geq 2 \mathrm{Vdc} \\
& 30 \mathrm{Vdc} \geq[(\mathrm{V} 8, \mathrm{~V} 10)-(\mathrm{V} 1, \mathrm{~V} 4)] \geq 2.7 \mathrm{Vdc} \\
& 30 \mathrm{Vdc} \geq[(\mathrm{V} 1, \mathrm{~V} 4)-(\mathrm{V} 5)] \geq 2.7 \mathrm{Vdc}
\end{aligned}
$$

The foregoing conditions are based on the following approximations:

$$
\mathrm{V} 6=\mathrm{V} 12, \mathrm{~V} 8=\mathrm{V} 10, \mathrm{~V} 1=\mathrm{V} 4
$$

Bias currents flowing into Pins 1, 4, 8 and 10 are transistor base currents and can normally be neglected if external bias dividers are designed to carry 1.0 mA or more.

Transadmittance Bandwidth

Carrier transadmittance bandwidth is the 3.0 dB bandwidth of the device forward transadmittance as defined by:

$$
\left.\gamma 21 \mathrm{C}=\frac{\mathrm{i}_{\mathrm{O}}(\text { each sideband })}{\mathrm{v}_{\mathrm{S}}(\text { signal })} \right\rvert\, \mathrm{V}_{\mathrm{O}}=0
$$

Signal transadmittance bandwidth is the 3.0 dB bandwidth of the device forward transadmittance as defined by:

$$
\left.\gamma 21 \mathrm{~S}=\frac{\mathrm{i}_{\mathrm{O}}(\text { signal })}{\mathrm{v}_{\mathrm{S}}(\text { signal })} \right\rvert\, \mathrm{V}_{\mathrm{c}}=0.5 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{O}}=0
$$

MC1496, B

Coupling and Bypass Capacitors

Capacitors C1 and C2 (Figure 5) should be selected for a reactance of less than 5.0Ω at the carrier frequency.

Output Signal

The output signal is taken from Pins 6 and 12 either balanced or single-ended. Figure 11 shows the output levels of each of the two output sidebands resulting from variations in both the carrier and modulating signal inputs with a single-ended output connection.

Negative Supply

$V_{E E}$ should be dc only. The insertion of an RF choke in series with V_{EE} can enhance the stability of the internal current sources.

Signal Port Stability

Under certain values of driving source impedance, oscillation may occur. In this event, an RC suppression network should be connected directly to each input using short leads. This will reduce the Q of the source-tuned circuits that cause the oscillation.

An alternate method for low-frequency applications is to insert a $1.0 \mathrm{k} \Omega$ resistor in series with the input (Pins 1, 4). In this case input current drift may cause serious degradation of carrier suppression.

TEST CIRCUITS

Figure 5. Carrier Rejection and Suppression

Figure 7. Bias and Offset Currents

Figure 6. Input-Output Impedance

NOTE: Shielding of input and output leads may be needed to properly perform these tests.

Figure 8. Transconductance Bandwidth

MC1496, B

Figure 9. Common Mode Gain

Figure 10. Signal Gain and Output Swing

TYPICAL CHARACTERISTICS
Typical characteristics were obtained with circuit shown in Figure $5, \mathrm{f}_{\mathrm{C}}=500 \mathrm{kHz}$ (sine wave), $\mathrm{V}_{\mathrm{C}}=60 \mathrm{mVrms}$, fS $=1.0 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=300 \mathrm{mVrms}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 13. Signal-Port Parallel-Equivalent Input Capacitance versus Frequency

Figure 12. Signal-Port Parallel-Equivalent Input Resistance versus Frequency

Figure 14. Single-Ended Output Impedance versus Frequency

MC1496, B

TYPICAL CHARACTERISTICS (continued)

Typical characteristics were obtained with circuit shown in Figure 5, $\mathrm{f}_{\mathrm{C}}=500 \mathrm{kHz}$ (sine wave), $\mathrm{V}_{\mathrm{C}}=60 \mathrm{mVrms}$, is $=1.0 \mathrm{kHz}, \mathrm{V}_{\mathrm{S}}=300 \mathrm{mVrms}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Figure 15. Sideband and Signal Port Transadmittances versus Frequency

Figure 17. Signal-Port Frequency Response

Figure 19. Carrier Feedthrough versus Frequency

Figure 16. Carrier Suppression versus Temperature

$\left({ }^{\circ} \mathrm{C}\right)$

Figure 18. Carrier Suppression versus Frequency

Figure 20. Sideband Harmonic Suppression versus Input Signal Level

Figure 21. Suppression of Carrier Harmonic Sidebands versus Carrier Frequency

Figure 22. Carrier Suppression versus Carrier Input Level

OPERATIONS INFORMATION

The MC1496, a monolithic balanced modulator circuit, is shown in Figure 23.

This circuit consists of an upper quad differential amplifier driven by a standard differential amplifier with dual current sources. The output collectors are cross-coupled so that full-wave balanced multiplication of the two input voltages occurs. That is, the output signal is a constant times the product of the two input signals.

Mathematical analysis of linear ac signal multiplication indicates that the output spectrum will consist of only the sum and difference of the two input frequencies. Thus, the device may be used as a balanced modulator, doubly balanced mixer, product detector, frequency doubler, and other applications requiring these particular output signal characteristics.

The lower differential amplifier has its emitters connected to the package pins so that an external emitter resistance may be used. Also, external load resistors are employed at the device output.

Signal Levels

The upper quad differential amplifier may be operated either in a linear or a saturated mode. The lower differential amplifier is operated in a linear mode for most applications.

For low-level operation at both input ports, the output signal will contain sum and difference frequency components
and have an amplitude which is a function of the product of the input signal amplitudes.

For high-level operation at the carrier input port and linear operation at the modulating signal port, the output signal will contain sum and difference frequency components of the modulating signal frequency and the fundamental and odd harmonics of the carrier frequency. The output amplitude will be a constant times the modulating signal amplitude. Any amplitude variations in the carrier signal will not appear in the output.

The linear signal handling capabilities of a differential amplifier are well defined. With no emitter degeneration, the maximum input voltage for linear operation is approximately 25 mV peak. Since the upper differential amplifier has its emitters internally connected, this voltage applies to the carrier input port for all conditions.

Since the lower differential amplifier has provisions for an external emitter resistance, its linear signal handling range may be adjusted by the user. The maximum input voltage for linear operation may be approximated from the following expression:

$$
V=(I 5)(R E) \text { volts peak. }
$$

This expression may be used to compute the minimum value of R_{E} for a given input voltage amplitude.

Figure 23. Circuit Schematic

Figure 24. Typical Modulator Circuit

MC1496, B

Figure 25. Voltage Gain and Output Frequencies

Carrier Input Signal (VC)	Approximate Voltage Gain	Output Signal Frequency(s)
Low-level dc	$\frac{R_{L} V_{C}}{2\left(R_{E}+2 r_{e}\right)\left(\frac{K T}{q}\right)}$	f_{M}
High-level dc	$\frac{R_{L}}{R_{E}+2 r_{e}}$	f_{M}
Low-level ac	$\frac{R_{L} V_{C}(r m s)}{2 \sqrt{2}\left(\frac{K T}{q}\right)\left(R_{E}+2 r_{e}\right)}$	$f_{C} \pm f_{M}$
High-level ac	$\frac{0.637 R_{L}}{R_{E}+2 r_{e}}$	$f_{C} \pm f_{M}, 3 f_{C} \pm f_{M}, 5 f_{C} \pm f_{M}, \ldots$

NOTES: 1. Low-level Modulating Signal, V_{M}, assumed in all cases. V_{C} is Carrier Input Voltage.
2. When the output signal contains multiple frequencies, the gain expression given is for the output amplitude of each of the two desired outputs, $\mathrm{f}_{\mathrm{C}}+\mathrm{f}_{\mathrm{M}}$ and $\mathrm{f}_{\mathrm{C}}-\mathrm{f}_{\mathrm{M}}$.
3. All gain expressions are for a single-ended output. For a differential output connection, multiply each expression by two.
4. $R_{L}=$ Load resistance.
5. $R_{E}=$ Emitter resistance between Pins 2 and 3.
6. $r_{\mathrm{e}}=$ Transistor dynamic emitter resistance, at $25^{\circ} \mathrm{C}$;

$$
\mathrm{re} \approx \frac{26 \mathrm{mV}}{\mathrm{I}_{5}(\mathrm{~mA})}
$$

7. $\mathrm{K}=$ Boltzmann's Constant, $\mathrm{T}=$ temperature in degrees Kelvin, $\mathrm{q}=$ the charge on an electron.

$$
\frac{\mathrm{KT}}{\mathrm{q}} \approx 26 \mathrm{mV} \text { at room temperature }
$$

The gain from the modulating signal input port to the output is the MC1496 gain parameter which is most often of interest to the designer. This gain has significance only when the lower differential amplifier is operated in a linear mode, but this includes most applications of the device.

As previously mentioned, the upper quad differential amplifier may be operated either in a linear or a saturated mode. Approximate gain expressions have been developed for the MC1496 for a low-level modulating signal input and the following carrier input conditions:

1) Low-level dc
2) High-level dc
3) Low-level ac
4) High-level ac

These gains are summarized in Figure 25, along with the frequency components contained in the output signal.

APPLICATIONS INFORMATION

Double sideband suppressed carrier modulation is the basic application of the MC1496. The suggested circuit for this application is shown on the front page of this data sheet.

In some applications, it may be necessary to operate the MC1496 with a single dc supply voltage instead of dual supplies. Figure 26 shows a balanced modulator designed for operation with a single 12 Vdc supply. Performance of this circuit is similar to that of the dual supply modulator.

AM Modulator

The circuit shown in Figure 27 may be used as an amplitude modulator with a minor modification.

All that is required to shift from suppressed carrier to AM operation is to adjust the carrier null potentiometer for the proper amount of carrier insertion in the output signal.

However, the suppressed carrier null circuitry as shown in Figure 27 does not have sufficient adjustment range. Therefore, the modulator may be modified for AM operation by changing two resistor values in the null circuit as shown in Figure 28.

Product Detector

The MC1496 makes an excellent SSB product detector (see Figure 29).

This product detector has a sensitivity of 3.0 microvolts and a dynamic range of 90 dB when operating at an intermediate frequency of 9.0 MHz .

The detector is broadband for the entire high frequency range. For operation at very low intermediate frequencies down to 50 kHz the $0.1 \mu \mathrm{~F}$ capacitors on Pins 8 and 10 should be increased to $1.0 \mu \mathrm{~F}$. Also, the output filter at Pin 12 can be tailored to a specific intermediate frequency and audio amplifier input impedance.

As in all applications of the MC1496, the emitter resistance between Pins 2 and 3 may be increased or decreased to adjust circuit gain, sensitivity, and dynamic range.

This circuit may also be used as an AM detector by introducing carrier signal at the carrier input and an AM signal at the SSB input.

The carrier signal may be derived from the intermediate frequency signal or generated locally. The carrier signal may be introduced with or without modulation, provided its level is sufficiently high to saturate the upper quad differential

MC1496, B

amplifier. If the carrier signal is modulated, a 300 mVrms input level is recommended.

Doubly Balanced Mixer

The MC1496 may be used as a doubly balanced mixer with either broadband or tuned narrow band input and output networks.

The local oscillator signal is introduced at the carrier input port with a recommended amplitude of 100 mVrms .

Figure 30 shows a mixer with a broadband input and a tuned output.

Frequency Doubler

The MC1496 will operate as a frequency doubler by introducing the same frequency at both input ports.

Figures 31 and 32 show a broadband frequency doubler and a tuned output very high frequency (VHF) doubler, respectively.

Phase Detection and FM Detection

The MC1496 will function as a phase detector. High-level input signals are introduced at both inputs. When both inputs are at the same frequency the MC1496 will deliver an output which is a function of the phase difference between the two input signals.

An FM detector may be constructed by using the phase detector principle. A tuned circuit is added at one of the inputs to cause the two input signals to vary in phase as a function of frequency. The MC1496 will then provide an output which is a function of the input signal frequency.

TYPICAL APPLICATIONS

Figure 26. Balanced Modulator (12 Vdc Single Supply)

Figure 27. Balanced Modulator-Demodulator

Figure 28. AM Modulator Circuit
Figure 29. Product Detector (12 Vdc Single Supply)

Figure 30. Doubly Balanced Mixer (Broadband Inputs, 9.0 MHz Tuned Output)

L1 = 44 Turns AWG No. 28 Enameled Wire, Wound on Micrometals Type 44-6 Toroid Core.

Figure 31. Low-Frequency Doubler

Figure 32. $\mathbf{1 5 0}$ to $\mathbf{3 0 0} \mathbf{~ M H z}$ Doubler

MOTOROLA

MC2833

Low Power FM Transmitter System

MC2833 is a one-chip FM transmitter subsystem designed for cordless telephone and FM communication equipment. It includes a microphone amplifier, voltage controlled oscillator and two auxiliary transistors.

- Wide Range of Operating Supply Voltage (2.8-9.0 V)
- Low Drain Current (ICC = 2.9 mA Typ)
- Low Number of External Parts Required
- -30 dBm Power Output to 60 MHz Using Direct RF Output
- +10 dBm Power Output Attainable Using On-Chip Transistor Amplifiers
- Users Must Comply with Local Regulations on R.F.

Transmission (FCC, DOT, P.T.T., etc)

Representative Block Diagram

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC2833D	$\mathrm{T}_{\mathrm{A}}=-30$ to $+75^{\circ} \mathrm{C}$	SO- 16
		Plastic DIP

MAXIMUM RATINGS

Ratings	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	$10(\max)$	V
Operating Supply Voltage Range	V_{CC}	$2.8-9.0$	V
Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	T_{A}	-30 to +75	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Characteristics	Symbol	Pin	Min	Typ	Max	Unit
Drain Current (No input signal)	ICC	10	1.7	2.9	4.3	mA

FM MODULATOR

Output RF Voltage ($\mathrm{f}_{\mathrm{O}}=16.6 \mathrm{MHz}$)	$V_{\text {out }}$ RF	14	60	90	130	mVrms
Output DC Voltage (No input signal)	Vdc	14	2.2	2.5	2.8	V
Modulation Sensitivity $\begin{aligned} & \left(\mathrm{f}_{\mathrm{o}}=16.6 \mathrm{MHz}\right) \\ & \left(\mathrm{V}_{\text {in }}=0.8 \mathrm{~V} \text { to } 1.2 \mathrm{~V}\right) \end{aligned}$	SEN	$\begin{gathered} \hline 3 \\ 14 \end{gathered}$	7.0 -	10	15 -	$\mathrm{Hz} / \mathrm{mVdc}$
$\begin{aligned} \text { Maximum Deviation } & \left(\mathrm{f}_{\mathrm{O}}=16.6 \mathrm{MHz}\right) \\ & \left(\mathrm{V}_{\text {in }}=0 \mathrm{~V} \text { to } 2.0 \mathrm{~V}\right) \end{aligned}$	Fdev	$\begin{gathered} 3 \\ 14 \end{gathered}$	3.0 -	5.0	10	kHz

MIC AMPLIFIER

$\begin{aligned} \hline \text { Closed Loop Voltage Gain } & \left(V_{\text {in }}=3.0 \mathrm{mVrms}\right) \\ & \left(\mathrm{f}_{\text {in }}=1.0 \mathrm{kHz}\right) \end{aligned}$	A_{v}	4 5	27 -	30 -	33 -	dB
Output DC Voltage (No input signal)	$V_{\text {out }}$ dc	4	1.1	1.4	1.7	V
$\begin{aligned} \hline \text { Output Swing Voltage } & \left(V_{\text {in }}=30 \mathrm{mVrms}\right) \\ & \left(\mathrm{f}_{\mathrm{in}}=1.0 \mathrm{kHz}\right) \end{aligned}$	$V_{\text {out }} \mathrm{p}-\mathrm{p}$	4	0.8	1.2	1.6	Vp-p
Total Harmonic Distortion $\begin{aligned} & \left(\mathrm{V}_{\text {in }}=3.0 \mathrm{mVrms}\right) \\ & \left(\mathrm{fin}_{\mathrm{in}}=1.0 \mathrm{kHz}\right) \end{aligned}$	THD	4	-	0.15	2.0	\%

AUXILIARY TRANSISTOR STATIC CHARACTERISTICS

Characteristics	Symbol	Min	Typ	Max	Unit
Collector Base Breakdown Voltage ($\mathrm{I}^{\text {C }}=5.0 \mu \mathrm{~A}$)	$V_{\text {(BR) }} \mathrm{CBO}$	15	45	-	V
Collector Emitter Breakdown Voltage ($\mathrm{I}^{\text {c }}=200 \mu \mathrm{~A}$)	$V_{(B R)}$ CEO	10	15	-	V
Collector Substrate Breakdown Voltage ($\mathrm{IC}=50 \mu \mathrm{~A}$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CSO}}$	-	70	-	V
Emitter Base Breakdown Voltage ($\mathrm{I}_{\mathrm{E}}=50 \mu \mathrm{~A}$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	-	6.2	-	V
$\begin{aligned} \hline \text { Collector Base Cut Off Current } & \left(V_{C B}=10 \mathrm{~V}\right) \\ & \left(\mathrm{IE}_{\mathrm{E}}=0\right) \end{aligned}$	ICBO	-	-	200	nA
DC Current Gain ($\mathrm{I}=3.0 \mathrm{~mA}$) $\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{~V}\right)$	$\mathrm{h}_{\text {FE }}$	40	150	-	-

AUXILIARY TRANSISTOR DYNAMIC CHARACTERISTICS

Current Gain Bandwidth Product $\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{~V}\right)$ $(\mathrm{IC}=3.0 \mathrm{~mA})$	${ }^{\text {T }}$	-	500	-	MHz
$\begin{aligned} \hline \text { Collector Base Capacitance } & (\mathrm{V} \mathrm{CE}=3.0 \mathrm{~V}) \\ & (\mathrm{IC}=0) \end{aligned}$	${ }^{\text {CB }}$	-	2.0	-	pF
$\begin{aligned} \text { Collector Substrate Capacitance } & (\mathrm{V} C S=3.0 \mathrm{~V}) \\ & \left(\mathrm{I}_{\mathrm{C}}=0\right) \end{aligned}$	CCS	-	3.3	-	pF

MC2833
Figure 1. Test Circuit

Figure 2. Single Chip VHF Narrowband FM Transmitter

NOTES:

1. Components versus output frequency:

Output RF	X1 (MHz)	$\underline{\text { Lt (} \mu \mathrm{H} \text {) }}$	$\underline{L 1}(\mu \mathrm{H})$	$\underline{\mathrm{L}}$ ($\mu \mathrm{H}$)	Re1	Rb1	Cc1	Cc2	C1	C2	C3	C4	C5
49.7 MHz	16.5667	3.3-4.7	0.22	0.22	330	390 k	33 p	33 p	33 p	470 p	33 p	47 p	220 p
76 MHz	12.6000	5.1	0.22	0.22	150	300 k	68 p	10 p	68 p	470 p	12 p	20 p	120 p
144.6 MHz	12.05	5.6	0.15	0.10	150	220 k	47 p	10 p	68 p	1000 p	18 p	12 p	33 p

2. Crystal X 1 is fundamental mode, calibrated for parallel resonance with a 32 pF load. The final output frequency is generated by frequency multiplication within the MC2833 IC. The RF output buffer (Pin 14) and Q2 transistor are used as a frequency tripler and doubler, respectively, in the 76 and 144.6 MHz transmitters. The Q1 output transistor is a linear amplifier in the 49.7 MHz and 76 MHz transmitters, and a frequency doubler in the 144.6 MHz transmitter.
3. All coils used are 7 mm shielded inductors, CoilCraft series M1175A, M1282A-M1289A, M1312A or equivalent.
4. Power output is $\approx+10 \mathrm{dBm}$ for 49.7 MHz and 76 MHz transmitters, and $\approx+5.0 \mathrm{dBm}$ for the 144.6 MHz transmitter at $\mathrm{V}_{\mathrm{CC}}=8.0 \mathrm{~V}$. Power output drops with lower V_{CC}
5. All capacitors in microfarads, inductors in Henries and resistors in Ohms unless otherwise specified.
6. Other frequency combinations may be set-up by simple scaling of the 3 examples shown.

Figure 3. Buffer/Multiplier (x3, Pin 14) (16 MHz Fundamental)

Figure 5. Doubler Output 76 MHz (Pin 11)

Figure 7. Output Spectrum (49.7 MHz)

Figure 4. Input to Doubler (Pin 13)
(49.7 MHz x 3 Component)

Figure 6. Spectrum

Figure 8. Modulation Spectrum (1.0 kHz Showing Carrier Null)

Figure 9. 144.6 MHz/x12 Multiplier

Figure 10. Circuit Side View

Figure 11. Ground Plane on Component Side

Figure 12. Component View

NOTES: • Positive artwork provided.

- Drill holes must be plated to ensure making all ground (V_{EE}) connections!
- Resistors labelled * are used for biasing of electret microphone if used.
- Capacitors labelled "SM" are silver mica
- Final board size $1.5^{\prime \prime} \times 2.0^{\prime \prime}$.

Figure 13. Circuit Schematic

MC3356

Wideband FSK Receiver

The MC3356 includes Oscillator, Mixer, Limiting IF Amplifier, Quadrature Detector, Audio Buffer, Squelch, Meter Drive, Squelch Status output, and Data Shaper comparator. The MC3356 is designed for use in digital data communciations equipment.

- Data Rates up to 500 kilobaud
- Excellent Sensitivity: -3 dB Limiting Sensitivity
$30 \mu \mathrm{Vrms} @ 100 \mathrm{MHz}$
- Highly Versatile, Full Function Device, yet Few External Parts are Required
- Down Converter Can be Used Independently - Similar to NE602

Figure 1. Representative Block Diagram

WIDEBAND
 FSK
 RECEIVER

SEMICONDUCTOR

 TECHNICAL DATA
P SUFFIX

PLASTIC PACKAGE CASE 738

DW SUFFIX
PLASTIC PACKAGE
CASE 751D
(SO-20L)

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC3356DW	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$	SO-20L
MC3356P		Plastic DIP

MC3356

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}(\max)$	15	Vdc
Operating Power Supply Voltage Range (Pins 6, 10)	V_{CC}	3.0 to 9.0	Vdc
Operating RF Supply Voltage Range (Pin 4)	RF V_{CC}	3.0 to 12.0	Vdc
Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation, Package Rating	P_{D}	1.25	W

ELECTRICAL CHARACTERISTICS (VCC $=5.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{O}}=100 \mathrm{MHz}, \mathrm{f}_{\mathrm{Osc}}=110.7 \mathrm{MHz}, \Delta \mathrm{f}= \pm 75 \mathrm{kHz}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}, 50 \Omega$ source, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, test circuit of Figure 2, unless otherwise noted.)

Characteristics	Min	Typ	Max	Unit
Drain Current Total, RF VCC and VCC	-	20	25	mAdc
Input for - 3 dB limiting	-	30	-	μ Vrms
Input for 50 dB quieting $\left(\frac{\mathrm{S}+\mathrm{N}}{\mathrm{N}}\right)$	-	60	-	$\mu \mathrm{Vrms}$
Mixer Voltage Gain, Pin 20 to Pin 5	2.5	-	-	
Mixer Input Resistance, 100 MHz	-	260	-	Ω
Mixer Input Capacitance, 100 MHz	-	5.0	-	pF
Mixer/Oscillator Frequency Range (Note 1)	-	0.2 to 150	-	MHz
IF/Quadrature Detector Frequency Range (Note 1)	-	0.2 to 50	-	MHz
AM Rejection (30\% AM, RF Vin = 1.0 mVrms)	-	50	-	dB
Demodulator Output, Pin 13	-	0.5	-	Vrms
Meter Drive	-	7.0	-	$\mu \mathrm{A} / \mathrm{dB}$
Squelch Threshold	-	0.8	-	Vdc

NOTE: 1. Not taken in Test Circuit of Figure 2; new component values required.

Figure 2. Test Circuit

Figure 3. Output Components of Signal, Noise, and Distortion

GENERAL DESCRIPTION

This device is intended for single and double conversion VHF receiver systems, primarily for FSK data transmission up to 500 K baud (250 kHz). It contains an oscillator, mixer, limiting IF, quadrature detector, signal strength meter drive, and data shaping amplifier.

The oscillator is a common base Colpitts type which can be crystal controlled, as shown in Figure 1, or L-C controlled as shown in the other figures. At higher V_{CC}, it has been operated as high as 200 MHz . A mixer/oscillator voltage gain of 2 up to approximately 150 MHz , is readily achievable.

The mixer functions well from an input signal of $10 \mu \mathrm{Vrms}$, below which the squelch is unpredictable, up to about 10 mVrms , before any evidence of overload. Operation up to 1.0 Vrms input is permitted, but non-linearity of the meter output is incurred, and some oscillator pulling is suspected. The AM rejection above 10 mVrms is degraded.

The limiting IF is a high frequency type, capable of being operated up to 50 MHz . It is expected to be used at 10.7 MHz in most cases, due to the availability of standard ceramic resonators. The quadrature detector is internally coupled to the IF, and a 5.0 pF quadrature capacitor is internally provided. The -3 dB limiting sensitivity of the IF itself is approximately $50 \mu \mathrm{~V}$ (at Pin 7), and the IF can accept signals up to 1.0 Vrms without distortion or change of detector quiescent dc level.

The IF is unusual in that each of the last 5 stages of the 6 state limiter contains a signal strength sensitive, current sinking device. These are parallel connected and buffered to produce a signal strength meter drive which is fairly linear for IF input signals of $10 \mu \mathrm{~V}$ to 100 mVrms (see Figure 4).

A simple squelch arrangement is provided whereby the meter current flowing through the meter load resistance flips a comparator at about 0.8 Vdc above ground. The signal strength at which this occurs can be adjusted by changing the meter load resistor. The comparator (+) input and output are available to permit control of hysteresis. Good positive

Figure 4. Meter Current versus Signal Input

action can be obtained for IF input signals of above 30 $\mu \mathrm{Vrms}$. The $130 \mathrm{k} \Omega$ resistor shown in the test circuit provides a small amount of hysteresis. Its connection between the 3.3 k resistor to ground and the 3.0 k pot, permits adjustment of squelch level without changing the amount of hysteresis.

The squelch is internally connected to both the quadrature detector and the data shaper. The quadrature detector output, when squelched, goes to a dc level approximately equal to the zero signal level unsquelched. The squelch causes the data shaper to produce a high (V_{CC}) output.

The data shaper is a complete "floating" comparator, with back to back diodes across its inputs. The output of the quadrature detector can be fed directly to either input of this amplifier to produce an output that is either at V_{CC} or V_{EE}, depending upon the received frequency. The impedance of the biasing can be varied to produce an amplifier which "follows" frequency detuning to some degree, to prevent data pulse width changes.

When the data shaper is driven directly from the demodulator output, Pin 13, there may be distortion at Pin 13 due to the diodes, but this is not important in the data application. A useful note in relating high/low input frequency to logic state: low IF frequency corresponds to low demodulator output. If the oscillator is above the incoming RF frequency, then high RF frequency will produce a logic low (input to (+) input of Data Shaper as shown in Figures 1 and 2).

APPLICATION NOTES

The MC3356 is a high frequency/high gain receiver that requires following certain layout techniques in designing a stable circuit configuration. The objective is to minimize or eliminate, if possible, any unwanted feedback.

Figure 5. Application with Fixed Bias on Data Shaper

APPLICATION NOTES (continued)

Shielding, which includes the placement of input and output components, is important in minimizing electrostatic or electromagnetic coupling. The MC3356 has its pin connections such that the circuit designer can place the critical input and output circuits on opposite ends of the chip. Shielding is normally required for inductors in tuned circuits.

The MC3356 has a separate V_{CC} and ground for the RF and IF sections which allows good external circuit isolation by minimizing common ground paths.

Note that the circuits of Figures 1 and 2 have RF, Oscillator, and IF circuits predominantly referenced to the plus supply rails. Figure 5 , on the other hand, shows a suitable means of ground referencing. The two methods produce identical results when carefully executed. It is important to treat Pin 19 as a ground node for either approach. The RF input should be "grounded" to Pin 1 and then the input and the mixer/oscillator grounds (or RF V_{CC} bypasses) should be connected by a low inductance path to Pin 19. IF and detector sections should also have their
bypasses returned by a separate path to Pin 19. V_{CC} and RF V_{CC} can be decoupled to minimize feedback, although the configuration of Figure 2 shows a successful implementation on a common 5.0 V supply. Once again, the message is: define a supply node and a ground node and return each section to those nodes by separate, low impedance paths.

The test circuit of Figure 2 has a 3 dB limiting level of $30 \mu \mathrm{~V}$ which can be lowered 6 db by a $1: 2$ untuned transformer at the input as shown in Figures 5 and 6. For applications that require additional sensitivity, an RF amplifier can be added, but with no greater than 20 db gain. This will give a 2.0 to $2.5 \mu \mathrm{~V}$ sensitivity and any additional gain will reduce receiver dynamic range without improving its sensitivity. Although the test circuit operates at 5.0 V , the mixer/oscillator optimum performance is at 8.0 V to 12 V . A minimum of 8.0 V is recommended in high frequency applications (above 150 MHz), or in PLL applications where the oscillator drives a prescaler.

Figure 6. Application with Self-Adjusting Bias on Data Shaper

APPLICATION NOTES (continued)

Depending on the external circuit, inverted or noninverted data is available at Pin 18. Inverted data makes the higher frequency in the FSK signal a "one" when the local oscillator is above the incoming RF. Figure 5 schematic shows the comparator with hysteresis. In this circuit the dc reference voltage at Pin 17 is about the same as the demodulated output voltage (Pin 13) when no signal is present. This type circuit is preferred for systems where the data rates can drop to zero. Some systems have a low frequency limit on the data rate, such as systems using the MC3850 ACIA that has a start or stop bit. This defines the low frequency limit that can appear in the data stream.

Figure 5 circuit can then be changed to a circuit configuration as shown in Figure 6. In Figure 6 the reference voltage for the comparator is derived from the demodulator output through a low pass circuit where τ is much lower than the lowest frequency data rate. This and similar circuits will compensate for small tuning changes (or drift) in the quadrature detector.

Squelch status (Pin 15) goes high (squelch off) when the input signal becomes greater than some preset level set by the resistance between Pin 14 and ground. Hysteresis is added to the circuit externally by the resistance from Pin 14 to Pin 15.

Low Power Narrowband FM IF

. . . includes Oscillator, Mixer, Limiting Amplifier, Quadrature Discriminator, Active Filter, Squelch, Scan Control, and Mute Switch. The MC3357 is designed for use in FM dual conversion communications equipment.

- Low Drain Current (3.0 mA (Typical) @ $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{Vdc}$)
- Excellent Sensitivity: Input Limiting Voltage -
$(-3.0 \mathrm{~dB})=5.0 \mu \mathrm{~V}$ (Typical)
- Low Number of External Parts Required
- Recommend MC3372 for Replacement/Upgrade

MC3357

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC3357D	$\mathrm{T}_{\mathrm{A}}=-30$ to $+70^{\circ} \mathrm{C}$	SO- 16
MC3357P		

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Rating	Pin	Symbol	Value	Unit
Power Supply Voltage	4	$\mathrm{~V}_{\mathrm{CC}}(\mathrm{max})$	12	Vdc
Operating Supply Voltage Range	4	$\mathrm{~V}_{\mathrm{CC}}$	4 to 8	Vdc
Detector Input Voltage	8	-	1.0	$\mathrm{Vp}-\mathrm{p}$
Input Voltage ($\mathrm{V}_{\mathrm{CC}} \geqslant 6.0$ Volts)	16	$\mathrm{~V}_{16}$	1.0	$\mathrm{~V}_{\mathrm{RMS}}$
Mute Function	14	$\mathrm{~V}_{14}$	-0.5 to 5.0	$\mathrm{~V}_{\mathrm{pk}}$
Junction Temperature	-	T_{J}	150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	-	T_{A}	-30 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{Vdc}, \mathrm{fo}=10.7 \mathrm{MHz}, \Delta \mathrm{f}= \pm 3.0 \mathrm{kHz}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Characteristic	Pin	Min	Typ	Max	Unit
Drain Current Squelch Off Squelch On	4	-	$\begin{aligned} & \hline 2.0 \\ & 3.0 \end{aligned}$	$-\overline{5.0}$	mA
Input Limiting Voltage (-3 dB Limiting)	16	-	5.0	10	$\mu \mathrm{V}$
Detector Output Voltage	9	-	3.0	-	Vdc
Detector Output Impedance	-	-	400	-	Ω
Recovered Audio Output Voltage ($\mathrm{V}_{\text {in }}=10 \mathrm{mV}$)	9	200	350	-	mVrms
Filter Gain (10 kHz) ($\mathrm{V}_{\text {in }}=5 \mathrm{mV}$)	-	40	46	-	dB
Filter Output Voltage	11	1.8	2.0	2.5	Vdc
Trigger Hysteresis	-	-	100	-	mV
Mute Function Low	14	-	15	50	Ω
Mute Function High	14	1.0	10	-	$\mathrm{M} \Omega$
Scan Function Low (Mute Off) $\left(\mathrm{V}_{12}=2 \mathrm{Vdc}\right)$	13	-	0	0.5	Vdc
Scan Function High (Mute On) $\left(\mathrm{V}_{12}=\mathrm{Gnd}\right)$	13	5.0	-	-	Vdc
Mixer Conversion Gain	3	-	20	-	dB
Mixer Input Resistance	16	-	3.3	-	$\mathrm{k} \Omega$
Mixer Input Capacitance	16	-	2.2	-	pF

CIRCUIT DESCRIPTION

The MC3357 is a low power FM IF circuit designed primarily for use in voice communication scanning receivers.

The mixer-oscillator combination converts the input frequency (e.g., 10.7 MHz) down to 455 kHz , where, after external bandpass filtering, most of the amplification is done. The audio is recovered using a conventional quadrature FM detector. The absence of an input signal is indicated by the presence of noise above the desired audio frequencies. This "noise band" is monitored by an active filter and a detector. A squelch trigger circuit indicates the presence of a noise (or a tone) by an output which can be used to control scanning. At the same time, an internal switch is operated which can be used to mute the audio.

The oscillator is an internally-biased Colpitts type with the collector, base, and emitter connections at Pins 4, 1, and 2 respectively. A crystal can be used in place of the usual coil.

The mixer is doubly-balanced to reduce spurious responses. The input impedance at Pin 16 is set by a $3.0 \mathrm{k} \Omega$ internal biasing resistor and has low capacitance, allowing the circuit to be preceded by a crystal filter. The collector output at Pin 3 must be dc connected to $\mathrm{B}+$, below which it can swing 0.5 V .

After suitable bandpass filtering (ceramic or LC), the signal goes to the input of a five-stage limiter at Pin 5. The output of the limiter at Pin 7 drives a multiplier, both internally directly,
and externally through a quadrature coil, to detect the FM. The output at Pin 7 is also used to supply dc feedback to Pin 5 . The other side of the first limiter stage is decoupled at Pin 6.

The recovered audio is partially filtered, then buffered, giving an impedance of around 400Ω at Pin 9 . The signal still requires de-emphasis, volume control and further amplification before driving a loudspeaker.

A simple inverting op amp is provided with an output at Pin 11 providing dc bias (externally) to the input at Pin 10 which is referred internally to 2.0 V . A filter can be made with external impedance elements to discriminate between frequencies. With an external AM detector, the filtered audio signal can be checked for the presence of noise above the normal audio band, or a tone signal. This information is applied to Pin 12.

An external positive bias to Pin 12 sets up the squelch trigger circuit such that Pin 13 is low at an impedance level of around $60 \mathrm{k} \Omega$, and the audio mute (Pin 14) is open circuit. If Pin 12 is pulled down to 0.7 V by the noise or tone detector, Pin 13 will rise to approximately 0.5 Vdc below supply where it can support a load current of around $500 \mu \mathrm{~A}$ and Pin 14 is internally short-circuited to ground. There is 100 mV of hysteresis at Pin 12 to prevent jitter. Audio muting is accomplished by connecting Pin 14 to a high-impedance ground-reference point in the audio path between Pin 9 and the audio amplifier.

Low Power Narrowband FM IF

...includes oscillator, mixer, limiting amplifier, AFC, quadrature discriminator, op/amp, squelch, scan control, and mute switch. The MC3359 is designed to detect narrowband FM signals using a 455 kHz ceramic filter for use in FM dual conversion communications equipment. The MC3359 is similar to the MC3357 except that the MC3359 has an additional limiting IF stage, an AFC output, and an opposite polarity Broadcast Detector. The MC3359 also requires fewer external parts. For low cost applications requiring V_{CC} below 6.0 V , the $\mathrm{MC} 3361 \mathrm{BP}, \mathrm{BD}$ are recommended. For applications requiring a fixed, tuned, ceramic quadrature resonator, use the MC3357. For applications requiring dual conversion and RSSI, refer to these devices; MC3335, MC3362 and MC3363.

- Low Drain Current: 3.6 mA (Typical) @ $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{Vdc}$
- Excellent Sensitivity: Input Limiting Voltage -
$-3.0 \mathrm{~dB}=2.0 \mu \mathrm{~V}$ (Typical)
- Low Number of External Parts Required
- For Low Voltage and RSSI, use the MC3371

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC3359DW	$\mathrm{T}_{\mathrm{A}}=-30$ to $+70^{\circ} \mathrm{C}$	SO-20L
MC3359P		Plastic DIP

Figure 1. Simplified Application in a Scanner Receiver

Figure 2. Pin Connections and Functional Block Diagram

MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted)

Rating	Pin	Symbol	Value	Unit
Power Supply Voltage	4	$\mathrm{~V}_{\mathrm{CC}}(\mathrm{max})$	12	Vdc
Operating Supply Voltage Range	4	$\mathrm{~V}_{\mathrm{CC}}$	6 to 9	Vdc
Input Voltage (VCC $\geqslant 6.0$ Volts)	18	$\mathrm{~V}_{18}$	1.0	$\mathrm{~V}_{\mathrm{rms}}$
Mute Function	16	$\mathrm{~V}_{16}$	-0.7 to 12	$\mathrm{~V}_{\mathrm{pk}}$
Junction Temperature	-	T_{J}	150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	-	T_{A}	-30 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{O}}=10.7 \mathrm{MHz}, \Delta \mathrm{f}= \pm 3.0 \mathrm{kHz}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}, 50 \Omega\right.$ source, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ test circuit of Figure 3, unless otherwise noted)

Characteristics	Min	Typ	Max	Units
$\begin{array}{ll}\text { Drain Current (Pins } 4 \text { and 8) } & \begin{array}{l}\text { Squelch Off } \\ \text { Squelch On }\end{array}\end{array}$	-	$\begin{aligned} & 3.6 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 7.0 \end{aligned}$	mA
Input for 20 dB Quieting	-	8.0	-	$\mu \mathrm{Vrms}$
Input for - 3.0 dB Limiting	-	2.0	-	$\mu \mathrm{Vrms}$
Mixer Voltage Gain (Pin 18 to Pin 3, Open)	-	46	-	
Mixer Third Order Intercept, 50Ω Input	-	-1.0	-	dBm
Mixer Input Resistance	-	3.6	-	$\mathrm{k} \Omega$
Mixer Input Capacitance	-	2.2	-	pF
Recovered Audio, Pin 10 (Input Signal 1.0 mVrms)	450	700	-	mVrms
Detector Center Frequency Slope, Pin 10	-	0.3	-	V/kHz
AFC Center Slope, Pin 11, Unloaded	-	12	-	V/kHz
Filter Gain (test circuit of Figure 3)	40	51	-	dB
Squelch Threshold, Through 10K to Pin 14	-	0.62	-	Vdc
$\begin{array}{cc}\text { Scan Control Current, Pin } 15 & \text { Pin } 14 \text { - High } \\ \text { - Low }\end{array}$	$\overline{-}$	$\begin{gathered} \hline 0.01 \\ 2.4 \end{gathered}$	1.0	$\begin{aligned} & \mu \mathrm{A} \\ & \mathrm{~mA} \end{aligned}$
Mute Switch Impedance Pin 14 - High Pin 16 to Ground - Low	-	$\begin{aligned} & 5.0 \\ & 1.5 \end{aligned}$	10	$\begin{gathered} \Omega \\ \mathrm{M} \Omega \end{gathered}$

Figure 3. Test Circuit

Figure 4. Mixer Voltage Gain

Figure 6. Mixer Third Order Intermodulation Performance

Figure 8. Relative Mixer Gain

Figure 5. Limiting IF Frequency Response

Figure 7. Detector and AFC Responses

Figure 9. Overall Gain, Noise, and AM Rejection

Figure 10. Output Components of Signal, Noise, and Distortion

Figure 12. L/C Oscillator, Temperature and Power Supply Sensitivity
${ }^{\mathrm{V}} \mathrm{CC}$, SUPPLY VOLTAGE [Vdc]

Figure 14. L/C Oscillator Recommended Component Values

CIRCUIT DESCRIPTION

The MC3359 is a low-power FM IF circuit designed primarily for use in voice-communication scanning receivers. It is also finding a place in narrowband data links.

In the typical application (Figure 1), the mixer-oscillator combination converts the input frequency (10.7 MHz) down to 455 kHz , where, after external bandpass filtering, most of the amplification is done. The audio is recovered using a conventional quadrature FM detector. The absence of an input signal is indicated by the presence of noise above the desired audio frequencies. This "noise band" is monitored by an active filter and a detector. A squelch-trigger circuit indicates the presence of noise (or a tone) by an output which can be used to control scanning. At the same time, an internal switch is operated which can be used to mute the audio.

APPLICATIONS INFORMATION

The oscillator is an internally biased Colpitts type with the collector, base, and emitter connections at Pin 4, 1 and 2, respectively. The crystal is used in fundamental mode, calibrated for parallel resonance at 32 pF load capacitance. In theory this means that the two capacitors in series should be 32 pF , but in fact much larger values do not significantly affect the oscillator frequency, and provide higher oscillator output.

The oscillator can also be used in the conventional L/C Colpitts configuration without loss of mixer conversion gain. This oscillator is, of course, much more sensitive to voltage and temperature as shown in Figure 12. Guidelines for choosing L and C values are given in Figure 14.

The mixer is doubly balanced to reduce spurious responses. The mixer measurements of Figure 4 and 6 were made using an external 50Ω source and the internal 1.8 k at Pin 3. Voltage gain curves at several V_{CC} voltages are shown in Figure 4. The Third Order Intercept curves of Figure 6 are shown using the conventional dBm scales. Measured power gain (with the 50Ω input) is approximately 18 dB but the useful gain is much higher because the mixer input impedance is over $3 \mathrm{k} \Omega$. Most applications will use a 330Ω 10.7 MHz crystal filter ahead of the mixer. For higher frequencies, the relative mixer gain is given in Figure 8.

Following the mixer, a ceramic bandpass filter is recommended. The 455 kHz types come in bandwidths from $\pm 2 \mathrm{kHz}$ to $\pm 15 \mathrm{kHz}$ and have input and output impedances of 1.5 k to 2.0 k . For this reason, the Pin 5 input to the 6 stage limiting IF has an internal 1.8 k resistor. The IF has a 3 dB
limiting sensitivity of approximately $100 \mu \mathrm{~V}$ at Pin 5 and a useful frequency range of about 5 MHz as shown in Figure 5. The frequency limitation is due to the high resistance values in the IF, which were necessary to meet the low power requirement. The output of the limiter is internally connected to the quadrature detector, including the 10 pF quadrature capacitor. Only a parallel L/C is needed externally from Pin 8 to V_{CC}. A shunt resistance can be added to widen the peak separation of the quadrature detector.

The detector output is amplified and buffered to the audio output, Pin 10, which has an output impedance of approximately 300Ω. Pin 9 provides a high impedance (50 k) point in the output amplifier for application of a filter or de-emphasis capacitor. Pin 11 is the AFC output, with high gain and high output impedance (1 M). If not needed, it should be grounded, or it can be connected to Pin 9 to double the recovered audio. The detector and AFC responses are shown in Figure 7.

Overall performance of the MC3359 from mixer input to audio output is shown in Figure 9 and 10. The MC3359 can also be operated in "single conversion" equipment; i.e., the mixer can be used as a 455 kHz amplifier. The oscillator is disabled by connecting Pin 1 to Pin 2. In this mode, the overall performance is identical to the 10.7 MHz results of Figure 9.

A simple inverting op amp is provided with an output at Pin 13 providing dc bias (externally) to the input at Pin 12, which is referred internally to 2.0 V . A filter can be made with external impedance elements to discriminate between frequencies. With an external AM detector, the filtered audio signal can be checked for the presence of either noise above the normal audio, or a tone signal.

The open loop response of this op amp is given in Figure13. Bandpass filter design information is provided in Figure 15.

A low bias to Pin 14 sets up the squelch-trigger circuit so that Pin 15 is high, a source of at least 2.0 mA , and the audio mute (Pin 16) is open-circuit. If Pin 14 is raised to 0.7 V by the noise or tone detector, Pin 15 becomes open circuit and Pin 16 is internally short circuited to ground. There is no hysteresis. Audio muting is accomplished by connecting Pin 16 to a high-impedance ground-reference point in the audio path between Pin 10 and the audio amplifier. No dc voltage is needed, in fact it is not desirable because audio "thump" would result during the muting function. Signal swing greater than 0.7 V below ground on Pin 16 should be avoided.

MOTOROLA

MC3361C

Low Power Narrowband FM IF

The MC3361C includes an Oscillator, Mixer, Limiting Amplifier, Quadrature Discriminator, Active Filter, Squelch, Scan Control and Mute Switch. This device is designed for use in FM dual conversion communications equipment.

- Operates from 2.0 to 8.0 V Supply
- Low Drain Current 2.8 mA Typical @ $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{Vdc}$
- Excellent Sensitivity: Input Limiting Voltage -
$-3.0 \mathrm{~dB}=2.6 \mu \mathrm{~V}$ Typical
- Low Number of External Parts Required
- Operating Frequency Up to 60 MHz
- Full ESD Protection

LOW POWER NARROWBAND FM IF

SEMICONDUCTOR

 TECHNICAL DATA

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC3361CD	$\mathrm{T}_{\mathrm{A}}=-30$ to $+70^{\circ} \mathrm{C}$	SO- 16
MC3361CP		Plastic DIP

MAXIMUM RATINGS ($T_{A}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Pin	Symbol	Value	Unit
Power Supply Voltage	4	$\mathrm{~V}_{\mathrm{CC}}(\mathrm{max})$	10	Vdc
Operating Supply Voltage Range	4	$\mathrm{~V}_{\mathrm{CC}}$	2.0 to 8.0	Vdc
Detector Input Voltage	8	-	1.0	Vp_{p}
Input Voltage $\left(\mathrm{V}_{\mathrm{CC}} \geqslant 4.0 \mathrm{~V}\right)$	16	$\mathrm{~V}_{16}$	1.0	$\mathrm{~V}_{\mathrm{RMS}}$
Mute Function	14	$\mathrm{~V}_{14}$	-0.5 to +5.0	$\mathrm{~V}_{\mathrm{pk}}$
Junction Temperature	-	T_{J}	150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	-	T_{A}	-30 to +70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{O}}=10.7 \mathrm{MHz}, \Delta \mathrm{f}= \pm 3.0 \mathrm{kHz}, \mathrm{f}_{\bmod }=1.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$,
unless otherwise noted.)

Characteristic	Pin	Min	Typ	Max	Unit
Drain Current (No Signal) $\begin{array}{ll}\text { Squelch "Off" } \\ \text { Squelch "On" }\end{array}$	4	$\begin{aligned} & 2.0 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 2.8 \\ & 5.2 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 6.3 \end{aligned}$	mA
Recovered Audio Output Voltage ($\mathrm{V}_{\text {in }}=10 \mathrm{mVrms}$)	9	130	170	210	mVrms
Input Limiting Voltage (-3.0 dB Limiting)	16	-	2.6	6.0	$\mu \mathrm{V}$
Total Harmonic Distortion	9	-	0.86	-	\%
Recovered Output Voltage (No Input Signal)	9	60	190	350	mVrms
Drop Voltage AF Gain Loss	9	-3.0	-0.6	-	dB
Detector Output Impedance	-	-	450	-	Ω
Filter Gain (10 kHz) ($\mathrm{V}_{\text {in }}=0.3 \mathrm{mVrms}$)	-	40	50	-	dB
Filter Output Voltage	11	0.5	0.7	0.9	Vdc
Mute Function Low	14	-	30	50	Ω
Mute Function High	14	1.0	11	-	$\mathrm{M} \Omega$
Scan Function Low (Mute "Off") ($\mathrm{V}_{12}=1.0 \mathrm{Vdc}$)	13	-	0	0.4	Vdc
Scan Function High (Mute "On") ($\mathrm{V}_{12}=$ Gnd)	13	3.0	3.9	-	Vdc
Trigger Hysteresis	-	-	45	100	mV
Mixer Conversion Gain	3	-	28	-	dB
Mixer Input Resistance	16	-	3.3	-	$\mathrm{k} \Omega$
Mixer Input Capacitance	16	-	9.0	-	pF

MC3361C

Figure 1. Test Circuit

Quadrature Coil - Toko America Type 7MC-8128Z or equivalent
$C-\mu F$, unless noted

Figure 2. Audio Output, Distortion versus Supply Voltage

Figure 3. Audio Output, Distortion versus Temperature

Figure 5. Input Limiting Voltage

Figure 7. Filter Amp Response

Figure 6. Overall Gain, Noise and AM Rejection

Figure 8. Filter Amp Gain

Figure 9. Supply Current

MC3361C

Figure 10. Simplified Application

FL1 - muRata Erie North America Type CFU455D2 or equivalent
Quadrature Coil - Toko America Type 7MC-8128Z or equivalent

Low Power Narrowband FM IF

The MC3371 and MC3372 perform single conversion FM reception and consist of an oscillator, mixer, limiting IF amplifier, quadrature discriminator, active filter, squelch switch, and meter drive circuitry. These devices are designed for use in FM dual conversion communication equipment. The MC3371/MC3372 are similar to the MC3361/MC3357 FM IFs, except that a signal strength indicator replaces the scan function controlling driver which is in the MC3361/MC3357. The MC3371 is designed for the use of parallel LC components, while the MC3372 is designed for use with either a 455 kHz ceramic discriminator, or parallel LC components.

These devices also require fewer external parts than earlier products. The MC3371 and MC3372 are available in dual-in-line and surface mount packaging.

- Wide Operating Supply Voltage Range: $\mathrm{V}_{\mathrm{CC}}=2.0$ to 9.0 V
- Input Limiting Voltage Sensitivity of -3.0 dB
- Low Drain Current: ICC = 3.2 mA , @ VCC $=4.0 \mathrm{~V}$, Squelch Off
- Minimal Drain Current Increase When Squelched
- Signal Strength Indicator: 60 dB Dynamic Range
- Mixer Operating Frequency Up to 100 MHz
- Fewer External Parts Required than Earlier Devices

MAXIMUM RATINGS

Rating	Pin	Symbol	Value	Unit
Power Supply Voltage	4	$\mathrm{~V}_{\mathrm{CC}}(\mathrm{max})$	10	Vdc
RF Input Voltage $\left(\mathrm{V}_{\mathrm{CC}} \geqslant 4.0 \mathrm{Vdc}\right)$	16	V 16	1.0	Vrms
Detector Input Voltage	8	V 8	1.0	Vpp
Squelch Input Voltage $\left(\mathrm{V}_{\mathrm{CC}} \geqslant 4.0 \mathrm{Vdc}\right)$	12	V 12	6.0	Vdc
Mute Function	14	$\mathrm{~V}_{14}$	-0.7 to 10	$\mathrm{~V}_{\mathrm{pk}}$
Mute Sink Current	14	I 14	50	mA
Junction Temperature	-	T_{J}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES: 1. Devices should not be operated at these values. The "Recommended Operating Conditions" table provides conditions for actual device operation.
2. ESD data available upon request.

MC3371
MC3372

LOW POWER

FM IF

P SUFFIX
PLASTIC PACKAGE
CASE 648

D SUFFIX
PLASTIC PACKAGE
CASE 751B
(SO-16)

DTB SUFFIX
PLASTIC PACKAGE
CASE 948F
(TSSOP-16)

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC3371D	$\mathrm{T}_{\mathrm{A}}=-30^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-16
MC3371DTB		TSSOP-16
MC3371P		Plastic DIP
MC3372D		SO-16
MC3372DTB		TSSOP-16
MC3372P		Plastic DIP

RECOMMENDED OPERATING CONDITIONS

Rating	Pin	Symbol	Value	Unit
Supply Voltage $\left(-30^{\circ} \mathrm{C} \leqslant \mathrm{T}_{\mathrm{A}} \leqslant+75^{\circ} \mathrm{C}\right)$	4	$\mathrm{~V}_{\mathrm{CC}}$	2.0 to 9.0 2.4 to 9.0	Vdc
RF Input Voltage	16	$\mathrm{~V}_{\mathrm{rf}}$	0.0005 to 10	mVrms
RF Input Frequency	16	f_{rf}	0.1 to 100	MHz
Oscillator Input Voltage	1	$\mathrm{~V}_{\text {local }}$	80 to 400	mVrms
Intermediate Frequency	-	$\mathrm{f}_{\text {if }}$	455	kHz
Limiter Amp Input Voltage	5	$\mathrm{~V}_{\text {if }}$	0 to 400	mVrms
Filter Amp Input Voltage	10	$\mathrm{~V}_{\mathrm{fa}}$	0.1 to 300	mVrms
Squelch Input Voltage	12	$\mathrm{~V}_{\mathrm{sq}}$	0 or 2	Vdc
Mute Sink Current	14	I_{sq}	0.1 to 30	mA
Ambient Temperature Range	-	T_{A}	-30 to +70	${ }^{\circ} \mathrm{C}$

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{O}}=58.1125 \mathrm{MHz}\right.$, df $= \pm 3.0 \mathrm{kHz}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}, 50 \Omega$ source, $f_{\text {local }}=57.6575 \mathrm{MHz}, \mathrm{V}_{\text {local }}=0 \mathrm{dBm}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)

Characteristic	Pin	Symbol	Min	Typ	Max	Unit
Input for 12 dB SINAD Matched Input - (See Figures 11, 12 and 13) Unmatched Input - (See Figures 1 and 2)	-	$\mathrm{V}_{\text {SIN }}$	-	$\begin{aligned} & 1.0 \\ & 5.0 \end{aligned}$	15	$\mu \mathrm{Vrms}$
Input for 20 dB NQS	-	$\mathrm{V}_{\text {NQS }}$	-	3.5	-	$\mu \mathrm{Vrms}$
Recovered Audio Output Voltage $\mathrm{V}_{\mathrm{rf}}=-30 \mathrm{dBm}$	-	AFO_{0}	120	200	320	mVrms
Recovered Audio Drop Voltage Loss $\mathrm{Vrf}=-30 \mathrm{dBm}, \mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{~V}$ to 2.0 V	-	$\mathrm{AF}_{\text {loss }}$	-8.0	-1.5	-	dB
Meter Drive Output Voltage (No Modulation) $\begin{aligned} & V_{\mathrm{rff}}=-100 \mathrm{dBm} \\ & \mathrm{~V}_{\mathrm{rf}}=-70 \mathrm{dBm} \\ & \mathrm{~V}_{\mathrm{rf}}=-40 \mathrm{dBm} \end{aligned}$	13	M Drv MV1 MV2 MV3	$\begin{gathered} -\overline{1} \\ 1.1 \\ 2.0 \end{gathered}$	$\begin{aligned} & 0.3 \\ & 1.5 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 0.5 \\ & 1.9 \\ & 3.1 \end{aligned}$	Vdc
Filter Amp Gain $\mathrm{R}_{\mathrm{S}}=600 \Omega, \mathrm{f}_{\mathrm{S}}=10 \mathrm{kHz}, \mathrm{~V}_{\mathrm{fa}}=1.0 \mathrm{mVrms}$	-	$\mathrm{A}_{\mathrm{V}}(\mathrm{Amp}$)	47	50	-	dB
Mixer Conversion Gain $\mathrm{V}_{\mathrm{rf}}=-40 \mathrm{dBm}, \mathrm{R}_{\mathrm{L}}=1.8 \mathrm{k} \Omega$	-	$\mathrm{A}_{\mathrm{V} \text { (Mix) }}$	14	20	-	dB
Signal to Noise Ratio $V_{\mathrm{rf}}=-30 \mathrm{dBm}$	-	s / n	36	67	-	dB
Total Harmonic Distortion $V_{\text {rf }}=-30 \mathrm{dBm}, B W=400 \mathrm{~Hz}$ to 30 kHz	-	THD	-	0.6	3.4	\%
Detector Output Impedance	9	Z_{O}	-	450	-	Ω
Detector Output Voltage (No Modulation) $\mathrm{V}_{\mathrm{rf}}=-30 \mathrm{dBm}$	9	DV_{O}	-	1.45	-	Vdc
$\begin{aligned} & \text { Meter Drive } \\ & V_{\text {rf }}=-100 \text { to }-40 \mathrm{dBm} \end{aligned}$	13	MO_{O}	-	0.8	-	$\mu \mathrm{A} / \mathrm{dB}$
```Meter Drive Dynamic Range RFIn IFIn (455 kHz)```	13	MVD	-	$\begin{aligned} & 60 \\ & 80 \end{aligned}$	-	dB
Mixer Third Order Input Intercept Point $\begin{aligned} & \mathrm{f} 1=58.125 \mathrm{MHz} \\ & \mathrm{f} 2=58.1375 \mathrm{MHz} \end{aligned}$	-	${ }^{\text {ITOMix }}$	-	-22	-	dBm
Mixer Input Resistance	16	$\mathrm{R}_{\text {in }}$	-	3.3	-	k $\Omega$
Mixer Input Capacitance	16	$\mathrm{C}_{\text {in }}$	-	2.2	-	pF

DC ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted)

Characteristic	Pin	Symbol	Min	Typ	Max	Unit
Drain Current (No Input Signal)   Squelch Off, $\mathrm{V}_{\mathrm{Sq}}=2.0 \mathrm{Vdc}$   Squelch $\mathrm{On}, \mathrm{V}_{\mathrm{sq}}=0 \mathrm{Vdc}$   Squelch $\mathrm{Off}, \mathrm{V}_{\mathrm{CC}}=2.0$ to 9.0 V	4	$\begin{aligned} & \text { Icc1 } \\ & \text { Icc2 } \\ & \text { dlcc1 } \end{aligned}$	-	$\begin{aligned} & 3.2 \\ & 3.6 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 4.8 \\ & 2.0 \end{aligned}$	mA
Detector Output (No Input Signal) DC Voltage, V8 = VCC	9	V9	0.9	1.6	2.3	Vdc
Filter Output (No Input Signal) DC Voltage Voltage Change, $\mathrm{V}_{\mathrm{CC}}=2.0$ to 9.0 V	11	$\begin{gathered} \text { V11 } \\ \text { dV11 } \end{gathered}$	$\begin{aligned} & 1.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 8.0 \end{aligned}$	Vdc
Trigger Hysteresis	-	Hys	34	57	80	mV

Figure 1. MC3371 Functional Block Diagram and Test Fixture Schematic


Figure 2. MC3372 Functional Block Diagram and Test Fixture Schematic


## TYPICAL CURVES

(Unmatched Input)

Figure 3. Total Harmonic Distortion versus Temperature


Figure 5. RSSI Output versus Temperature


Figure 7. Mixer Gain versus Supply Voltage


Figure 4. RSSI versus RF Input


Figure 6. Mixer Output versus RF Input


Figure 8. Mixer Gain versus Frequency


MC3371 MC3372
MC3371 PIN FUNCTION DESCRIPTION
OPERATING CONDITIONS $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{Vdc}, \mathrm{RF}_{\mathrm{In}}=100 \mu \mathrm{~V}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}, \mathrm{f}_{\mathrm{dev}}=3.0 \mathrm{kHz}$. MC 3371 at $\mathrm{f}_{\mathrm{RF}}=10.7 \mathrm{MHz}$ (see Figure 11).

\begin{tabular}{|c|c|c|c|c|c|}
\hline Pin \& Symbol \& Internal Equivalent Circuit \& Description \& \& <br>
\hline 1 \& OSC1 \&  \& The base of the Colpitts oscillator. Use a high impedance and low capacitance probe or a "sniffer" to view the waveform without altering the frequency. Typical level is 450 mVpp . \&  \& $$
2 \mathrm{~ms}
$$ <br>
\hline 2 \& OSC2 \&  \& The emitter of the Colpitts oscillator. Typical signal level is 200 mVpp . Note that the signal is somewhat distorted compared to that on Pin 1. \&  \&  <br>
\hline 3
4 \& MXOut

VCC \&  \& | Output of the Mixer. Riding on the 455 kHz is the RF carrier component. The typical level is approximately 60 mVpp . |
| :--- |
| Supply Voltage -2.0 to 9.0 Vdc is the operating range. $\mathrm{V}_{\mathrm{CC}}$ is decoupled to ground. | \& \[

2 \mathrm{~A}=
\] \&  <br>

\hline $$
5
$$

\[
$$
\begin{aligned}
& 6 \\
& 7
\end{aligned}
$$

\] \& $\mathrm{IF}_{\mathrm{In}}$ \&  \& | Input to the IF amplifier after passing through the 455 kHz ceramic filter. The signal is attenuated by the filter. The typical level is approximately 50 mVpp . |
| :--- |
| IF Decoupling. External $0.1 \mu \mathrm{~F}$ capacitors connected to $\mathrm{V}_{\mathrm{CC}}$. | \& ancs \& solm <br>

\hline 8 \& Quad Coil \&  \& Quadrature Tuning Coil. Composite (not yet demodulated) 455 kHz IF signal is present. The typical level is 500 mVpp . \&  \& sotm <br>
\hline
\end{tabular}

MC3371 MC3372
MC3371 PIN FUNCTION DESCRIPTION (continued)
OPERATING CONDITIONS $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{Vdc}, \mathrm{RF}_{\mathrm{In}}=100 \mu \mathrm{~V}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}, \mathrm{f}_{\mathrm{dev}}=3.0 \mathrm{kHz}$. MC 3371 at $\mathrm{f}_{\mathrm{RF}}=10.7 \mathrm{MHz}$ (see Figure 11).


MC3371 MC3372
MC3371 PIN FUNCTION DESCRIPTION (continued)
OPERATING CONDITIONS $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{Vdc}, \mathrm{RF}_{\mathrm{In}}=100 \mu \mathrm{~V}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}, \mathrm{f}_{\mathrm{dev}}=3.0 \mathrm{kHz}$. MC 3371 at $\mathrm{f}_{\mathrm{RF}}=10.7 \mathrm{MHz}$ (see Figure 11).

Pin	Symbol	Internal Equivalent Circuit	Description	Waveform
13	RSSI		RSSI Output. Referred to as the Received Signal Strength Indicator or RSSI. The chip sources up to $60 \mu \mathrm{~A}$ over the linear 60 dB range. This pin may be used many ways, such as: AGC, meter drive and carrier triggered squelch circuit.	
14	MUTE		Mute Output. See discussion in application text.	
15	Gnd		Ground. The ground area should be continuous and unbroken. In a twosided layout, the component side has the ground plane. In a one-sided layout, the ground plane fills around the traces on the circuit side of the board and is not interrupted.	
16	MIX ${ }_{\text {In }}$		Mixer Input Series Input Impedance:   @ $10 \mathrm{MHz}: 309-\mathrm{j} 33 \Omega$   @ $45 \mathrm{MHz}: 200-\mathrm{j} 13 \Omega$	

*Other pins are the same as pins in MC3371.

MC3371 MC3372
MC3372 PIN FUNCTION DESCRIPTION
OPERATING CONDITIONS $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{Vdc}, ~_{\mathrm{RF}}^{\mathrm{In}}, 100 \mu \mathrm{~V}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}, \mathrm{f}_{\mathrm{dev}}=3.0 \mathrm{kHz}$. MC3372 at $\mathrm{f}_{\mathrm{RF}}=45 \mathrm{MHz}$ (see Figure 13).


Figure 9. MC3371 Circuit Schematic


Figure 10. MC3372 Circuit Schematic


## CIRCUIT DESCRIPTION

The MC3371 and MC3372 are low power narrowband FM receivers with an operating frequency of up to 60 MHz . Its low voltage design provides low power drain, excellent sensitivity, and good image rejection in narrowband voice and data link applications.

This part combines a mixer, an IF (intermediate frequency) limiter with a logarithmic response signal strength indicator, a quadrature detector, an active filter and a squelch trigger circuit. In a typical application, the mixer amplifier converts an RF input signal to a 455 kHz IF signal. Passing through an external bandpass filter, the IF signal is fed into a limiting amplifier and detection circuit where the audio signal is recovered. A conventional quadrature detector is used.

The absence of an input signal is indicated by the presence of noise above the desired audio frequencies. This "noise band" is monitored by an active filter and a detector. A squelch switch is used to mute the audio when noise or a tone is present. The input signal level is monitored by a meter drive circuit which detects the amount of IF signal in the limiting amplifier.

## APPLICATIONS INFORMATION

The oscillator is an internally biased Colpitts type with the collector, base, and emitter connections at Pins 4, 1 and 2 respectively. This oscillator can be run under crystal control. For fundamental mode crystals use crystal characterized parallel resonant for 32 pF load. For higher frequencies, use 3rd overtone series mode type crystals. The coil (L2) and resistor RD (R13) are needed to ensure proper and stable operation at the LO frequency (see Figure $13,45 \mathrm{MHz}$ application circuit).

The mixer is doubly balanced to reduce spurious radiation. Conversion gain stated in the AC Electrical Characteristics table is typically 20 dB . This power gain measurement was made under stable conditions using a $50 \Omega$ source at the input and an external load provided by a 455 kHz ceramic filter at the mixer output which is connected to the $\mathrm{V}_{\mathrm{CC}}$ (Pin 4) and IF input (Pin 5). The filter impedance closely matches the $1.8 \mathrm{k} \Omega$ internal load resistance at Pin 3 (mixer output). Since the input impedance at Pin 16 is strongly influenced by a $3.3 \mathrm{k} \Omega$ internal biasing resistor and has a low capacitance, the useful gain is actually much higher than shown by the standard power gain measurement. The Smith Chart plot in Figure 17 shows the measured mixer input impedance versus input frequency with the mixer input matched to a $50 \Omega$ source impedance at the given frequencies. In order to assure stable operation under matched conditions, it is necessary to provide a shunt resistor to ground. Figures 11, 12 and 13 show the input networks used to derive the mixer input impedance data.

Following the mixer, a ceramic bandpass filter is recommended for IF filtering (i.e. 455 kHz types having a bandwidth of $\pm 2.0 \mathrm{kHz}$ to $\pm 15 \mathrm{kHz}$ with an input and output impedance from $1.5 \mathrm{k} \Omega$ to $2.0 \mathrm{k} \Omega$ ). The 6 stage limiting IF
amplifier has approximately 92 dB of gain. The MC3371 and MC3372 are different in the limiter and quadrature detector circuits. The MC3371 has a $1.8 \mathrm{k} \Omega$ and a $51 \mathrm{k} \Omega$ resistor providing internal dc biasing and the output of the limiter is internally connected, both directly and through a 10 pF capacitor to the quadrature detector; whereas, in the MC3372 these components are not provided internally. Thus, in the MC3371, no external components are necessary to match the 455 kHz ceramic filter, while in the MC3372, external $1.8 \mathrm{k} \Omega$ and $51 \mathrm{k} \Omega$ biasing resistors are needed between Pins 5 and 7, respectively (see Figures 12 and 13).

In the MC3371, a parallel LCR quadrature tank circuit is connected externally from Pin 8 to $\mathrm{V}_{\mathrm{CC}}$ (similar to the MC3361). In the MC3372, a quadrature capacitor is needed externally from Pin 7 to Pin 8 and a parallel LC or a ceramic discriminator with a damping resistor is also needed from Pin 8 to $\mathrm{V}_{\mathrm{CC}}$ (similar to the MC3357). The above external quadrature circuitry provides $90^{\circ}$ phase shift at the IF center frequency and enables recovered audio.

The damping resistor determines the peak separation of the detector and is somewhat critical. As the resistor is decreased, the separation and the bandwidth is increased but the recovered audio is decreased. Receiver sensitivity is dependent on the value of this resistor and the bandwidth of the 455 kHz ceramic filter.

On the chip the composite recovered audio, consisting of carrier component and modulating signal, is passed through a low pass filter amplifier to reduce the carrier component and then is fed to Pin 9 which has an output impedance of $450 \Omega$. The signal still requires further filtering to eliminate the carrier component, deemphasis, volume control, and further amplification before driving a loudspeaker. The relative level of the composite recovered audio signal at Pin 9 should be considered for proper interaction with an audio post amplifier and a given load element. The MC13060 is recommended as a low power audio amplifier.

The meter output indicates the strength of the IF level and the output current is proportional to the logarithm of the IF input signal amplitude. A maximum source current of $60 \mu \mathrm{~A}$ is available and can be used to drive a meter and to detect a carrier presence. This is referred to as a Received Strength Signal Indicator (RSSI). The output at Pin 13 provides a current source. Thus, a resistor to ground yields a voltage proportional to the input carrier signal level. The value of this resistor is estimated by $\left(\mathrm{V}_{\mathrm{CC}}(\mathrm{Vdc})-1.0 \mathrm{~V}\right) / 60 \mu \mathrm{~A}$; so for $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{Vdc}$, the resistor is approximately $50 \mathrm{k} \Omega$ and provides a maximum voltage swing of about 3.0 V.

A simple inverting op amp has an output at Pin 11 and the inverting input at Pin 10. The noninverting input is connected to 2.5 V . The op amp may be used as a noise triggered squelch or as an active noise filter. The bandpass filter is designed with external impedance elements to discriminate between frequencies. With an external AM detector, the filtered audio signal is checked for a tone signal or for the presence of noise above the normal audio band. This information is applied to Pin 12.

An external positive bias to Pin 12 sets up the squelch trigger circuit such that the audio mute (Pin 14) is open or connected to ground. If Pin 12 is pulled down to 0.9 V or below by the noise or tone detector, Pin 14 is internally shorted to ground. There is about 57 mV of hyteresis at Pin 12 to prevent jitter. Audio muting is accomplished by connecting Pin 14 to the appropriate point in the audio path between Pin 9 and an audio amplifier. The voltage at Pin 14 should not be lower than -0.7 V ; this can be assured by connecting Pin 14 to the point that has no dc component.

Another possible application of the squelch switch may be as a carrier level triggered squelch circuit, similar to the MC3362/MC3363 FM receivers. In this case the meter output can be used directly to trigger the squelch switch when the RF input at the input frequency falls below the desired level. The level at which this occurs is determined by the resistor placed between the meter drive output (Pin 13) and ground (Pin 15).

Figure 11. Typical Application for MC3371 at 10.7 MHz


Figure 12. Typical Application for MC3372 at 10.7 MHz


## MC3371 MC3372

Figure 13. Typical Application for MC3372 at 45 MHz


Figure 14. RSSI Output versus RF Input


Figure 15. RSSI Output versus RF Input


Figure 16. S + N, N, AMR versus Input


* Reference Figures 11, 12 and 13

Figure 17. Mixer Input Impedance versus Frequency


Figure 18. MC3371 PC Board Component View with Matched Input at 10.7 MHz


Figure 19. MC3371 PC Board Circuit or Solder Side as Viewed through Component Side


Above PC Board is laid out for the circuit in Figure 11.

Figure 20. MC3372P PC Board Component View with Matched Input at 10.7 MHz


Figure 21. MC3372P PC Board Circuit or Solder Side as Viewed through Component Side


Above PC Board is laid out for the circuit in Figure 12.

## Low Voltage FM Narrowband Receiver

. . . with single conversion circuitry including oscillator, mixer, IF amplifiers, limiting IF circuitry, and quadrature discriminator. The MC3374 is perfect for narrowband audio and data applications up to 75 MHz which require extremely low power consumption. Battery powered applications down to $\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ are possible. The MC3374 also includes an on-board voltage regulator, low battery detection circuitry, a receiver enable allowing a power down Sleep-Mode ${ }^{\text {TM }}$, two undedicated buffer amplifiers to allow simultaneous audio and data reception, and a comparator for enhancing FSK (Frequency Shift Keyed) data reception to 1200 baud.

- Low Supply Voltage: $\mathrm{V}_{\mathrm{CC}}=1.1$ to 3.0 Vdc
- Low Power Consumption: PD $=1.5$ to 5.0 mW
- Input Bandwidth 75 MHz
- Excellent Sensitivity: $0.5 \mu \mathrm{Vrms}$ for 12 dB SINAD
- Voltage Regulator Available (Source Capability 3.0 mA )
- Receiver Enable to Allow Active/Standby Operation
- Low Battery Detection Circuitry
- Self Biasing Audio Buffer
- Data Buffer
- FSK Data Shaping Comparator
- Standard 32-Lead QFP Surface Mount Package

Sleep-Mode is a trademark of Motorola, Inc.

## LOW VOLTAGE SINGLE CONVERSION FM RECEIVER

SEMICONDUCTOR TECHNICAL DATA


ORDERING INFORMATION

Device	Tested Operating   Temperature Range	Package
MC3374FTB	$\mathrm{T}_{\mathrm{A}}=-10^{\circ}$ to $+70^{\circ} \mathrm{C}$	TQFP -32



MC3374
MAXIMUM RATINGS (Voltage with respect to Pins 4 and $10 ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.)

Rating	Pin	Value	Unit
Supply Voltage	18	5.0	Vdc
RF Input Signal	31	1.0	Vrms
Audio Buffer Input	21	1.0	Vrms
Data Buffer Input	26	1.0	Vrms
Comparator Input	13	1.0	Vrms
Junction Temperature	-	150	${ }^{\circ} \mathrm{C}$
Storage Temperature	-	-65 to +150	${ }^{\circ} \mathrm{C}$

Device should not be operated at or outside these values. The "Recommended Operating Limits" provide for actual device operation.

## RECOMMENDED OPERATING CONDITIONS

Parameter	Pin	Value	Unit
Supply Voltage	18	1.1 to 3.0	Vdc
Receiver Enable Voltage	15	$\mathrm{~V}_{\mathrm{CC}}$	Vdc
1.2 V Select Voltage	19	Open or $\mathrm{V}_{\mathrm{CC}}$	Vdc
RF Input Signal Level	31	0.001 to 100	mVrms
RF Input Frequency	31	0 to 75	MHz
Intermediate Frequency (IF)	-	455	kHz
Audio Buffer Input	21	0 to 75	mVrms
Data Buffer Input	26	0 to 75	mVrms
Comparator Input	13	10 to 300	mVrms
Ambient Temperature	-	-10 to 70	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=1.3 \mathrm{~V}, \mathrm{f}_{\mathrm{O}}=10.7 \mathrm{MHz}, \mathrm{f}_{\bmod }=1.0 \mathrm{kHz}\right.$, Deviation $=3.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Test Circuit of Figure 1, unless otherwise noted.)

Characteristic	Pin	Min	Typ	Max	Unit
OVERALL MC3374 PERFORMANCE					
Drain Current - Pin $15=\mathrm{V}_{\mathrm{CC}}$ (Enabled)   - Pin $15=0$ Vdc (Disabled)	$\begin{aligned} & \hline 5+18+24 \\ & 5+18+24 \end{aligned}$	-	$\begin{aligned} & 1.6 \\ & 0.5 \end{aligned}$	$3.0$	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \end{aligned}$
Recovered Audio (RF Input $=10 \mu \mathrm{~V}$ )	6	13	18	30	mVrms
Noise Output (RF Input $=0 \mathrm{mV}, 300 \mathrm{~Hz}-5.0 \mathrm{kHz}$ )	6	-	1.0	-	mVrms
Input for -3.0 dB Limiting	31	-	0.6	-	$\mu \mathrm{Vrms}$
MIXER					
Mixer Input Resistance (Rp)	31	-	1.5	-	k $\Omega$
Mixer Input Capacitance (Cp)	31	-	9.0	-	pF

## FIRST IF AMPLIFIER

First IF Amp Voltage Gain	-	-	27	-	$d B$

AUDIO BUFFER

Voltage Gain	-	3.0	4.0	4.7	$\mathrm{~V} / \mathrm{V}$
Input Resistance	21	-	110	-	$\mathrm{k} \Omega$
Maximum Input for Undistorted Output (<5\% THD)	21	-	64	-	mVrms
Maximum Output Swing (<5\% THD)	22	-	690	-	mV pp
Output Resistance	22	-	780	-	$\Omega$

## DATA BUFFER

Voltage Gain	-	1.4	2.7	4.3	$\mathrm{~V} / \mathrm{V}$
Input Resistance	26	-	9.8	-	$\mathrm{M} \Omega$
Maximum Input for Undistorted Output (<5\% THD)	26	-	100	-	mVrms
Maximum Output Swing (<5\% THD)	27	-	800	-	mV pp
Output Resistance	27	-	690	-	$\Omega$

ELECTRICAL CHARACTERISTICS (continued) $\left(\mathrm{V}_{\mathrm{CC}}=1.3 \mathrm{~V}, \mathrm{f}_{\mathrm{O}}=10.7 \mathrm{MHz}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}\right.$, Deviation $=3.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}$ $=25^{\circ}$, Test Circuit of Figure 1, unless otherwise noted.)

Characteristic	Pin	Min	Typ	Max	Unit
COMPARATOR					
Minimum Input for Triggering ( $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ )	13	-	7.0	-	mVrms
Maximum Input Frequency ( $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ )	13	-	25	-	kHz
Rise Time (10-90\%; $\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega$ )	14	-	5.0	-	$\mu \mathrm{s}$
Fall Time (90-10\%; $\mathrm{RL}_{\mathrm{L}}=100 \mathrm{k} \Omega$ )	14	-	0.4	-	$\mu \mathrm{s}$

LOW BATTERY DETECTOR

Low Battery Trip Point	19	-	1.2	-
Low Battery Output $-\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$	20	-	0.2	-
$-\mathrm{V}_{\mathrm{CC}}=1.3 \mathrm{~V}$	20	-	$\mathrm{V}_{\mathrm{CC}}$	-

## VOLTAGE REGULATOR

Regulated Output (see Figure 4)	17	0.95	1.07	1.15	Vdc
Source Capability	17	-	-	3.0	mA

Figure 1. MC3374 Pager IF Application Circuit


## NOTES:

1. FL1 and FL2 are 455 kHz ceramic bandpass filters, which should have input and output impedances of $1.5 \mathrm{k} \Omega$ to $2.0 \mathrm{k} \Omega$. Suggested part numbers are MuRata CFU455X or CFW455x - the 'X' suffix denotes bandwidth.
2. LC1 is a 455 kHz LC resonator. Recommended part numbers are Toko America RMC2A6597HM or 5SVLC-0637BGT (smaller). The evaluation board layout shown provides for use of either resonator. Ceramic discriminator elements cannot be used with the MC3374 due to their low input impedance. The damping resistor value can be raised to increase the recovered audio or lowered to increase the quadrature detector's bandwidth and linearity - practical limits are approximately $27 \mathrm{k} \Omega$ to $75 \mathrm{k} \Omega$. Typically the quadrature detector's bandwidth should match the low IF filter's bandwidth.
3. The data buffer is set up as a low-pass filter with a corner frequency of approximately 200 Hz . The audio buffer is a bandpass filter with corner frequencies of 300 Hz and 3.0 kHz . The audio amplifier provides bass suppression.

In. Freq.	L1	L2	C1	C2	C3	C4	$\mathbf{C C 1}^{\prime} / \mathbf{C} \mathbf{C 3}$	$\mathbf{C C}_{\mathbf{C}}$	C	B
10.7 MHz	$6.8 \mu \mathrm{H}$	Short	$2-82 \mathrm{pF}$	10 pF	120 pF	50 pF	1.0 nF	5.0 pF	$0.1 \mu \mathrm{~F}$	Open
45 MHz	$0.68 \mu \mathrm{H}$	$1.2 \mu \mathrm{H}$	$5-25 \mathrm{pF}$	Open	30 pF	5.0 pF	1.0 nF	1.0 pF	1.0 nF	1.0 k
72 MHz	$0.22 \mu \mathrm{H}$	$0.22 \mu \mathrm{H}$	$5-25 \mathrm{pF}$	Open	18 pF	3.0 pF	470 pF	1.0 pF	470 pF	1.0 k

Figure 2. Recovered Audio versus Supply


Figure 4. VREG versus Supply


Figure 3. $\mathbf{S}+\mathbf{N}$, $\mathbf{N}$ versus Input


Figure 5. Regulated Output and Recovered Audio versus Temperature


Figure 6. Buffer Amplifier Gains
versus Temperature


Figure 7. MC3374 Pager Receiver PCB Artwork

COPPER 1 LAYER
(Actual View of Surface Mount Side)


COMPONENT 1 LAYER


NOTE: + = Through Hole

COPPER 2 LAYER
(Caution: Reversed View of Through-Hole Side)


COMPONENT 2 LAYER


## CIRCUIT DESCRIPTION

The MC3374 is an FM narrowband receiver capable of operation to 75 MHz . The low voltage design yields low power drain and excellent sensitivity in narrowband voice and data link applications. In the typical application the mixer amplifies the incoming RF or IF signal and converts this frequency to 455 kHz . The signal is then filtered by a 455 kHz ceramic filter and applied to the first intermediate frequency (IF) amplifier input, before passing through a second ceramic filter. The modulated IF signal is then applied to the limiting IF amplifier and detector circuitry. Modulation is recovered by a conventional quadrature detector. The typical modulation bandwidth available is 3.0 to 5.0 kHz .

Features available include buffers for audio/data amplification and active filtering, on board voltage regulator, low battery detection circuitry with programmable level, and receiver disable circuitry. The MC3374 is an FM utility receiver to be used for voice and/or narrowband data reception. It is especially suitable where extremely low power consumption and high design flexibility are required.

## APPLICATION

The MC3374 can be used as a high performance FM IF for the use in low power dual conversion receivers. Because of the MC3374's extremely good sensitivity ( $0.6 \mu \mathrm{~V}$ for 20 dB ( $\mathrm{S}+\mathrm{N} / \mathrm{N}$, see Figure 3)), it can also be used as a stand alone single conversion narrowband receiver to 75 MHz for applications not sensitive to image frequency interference. An RF preamplifier will likely be needed to overcome preselector losses.

The oscillator is a Colpitts type which must be run under crystal control. For fundamental mode crystals choose resonators, parallel resonant, for a 32 pF load. For higher frequencies, use a 3rd overtone series mode type. The coil L2 and RD resistor are needed to ensure proper operation.

The best adjacent channel and sensitivity response occur when two 455 kHz ceramic filters are used, as shown in Figure 1. Either can be replaced by a $0.1 \mu \mathrm{~F}$ coupling capacitor to reduce cost, but some degradation in sensitivity and/or stability is suspected.

The detector is a quadrature type, with the connection from the limiter output to the detector input provided internally. A 455 kHz LC tank circuit must be provided externally. One of the tank pins (Pin 8) must be decoupled using a $0.1 \mu \mathrm{~F}$ capacitor. The $56 \mathrm{k} \Omega$ damping resistor (see Figure 1), determines the peak separation of the detector (and thus its bandwidth). Smaller values will increase the separation and bandwidth but decrease recovered audio and sensitivity.

The data buffer is a noninverting amplifier with a nominal voltage gain of $2.7 \mathrm{~V} / \mathrm{V}$. This buffer needs its dc bias (approximately 250 mV ) provided externally or else debiasing will occur. A 2nd order Sallen-Key low pass filter, as shown in Figure 1, connecting the recovered audio output to the data buffer input provides the necessary dc bias and some post detection filtering. The buffer can also be used as an active filter.

The audio buffer is a noninverting amplifier with a nominal voltage gain of $4.0 \mathrm{~V} / \mathrm{V}$. This buffer is self-biasing so its input should be ac coupled. The two buffers, when applied as active filters, can be used together to allow simultaneous audio and very low speed data reception. Another possible configuration is to receive audio only and include a noise-triggered squelch.

The comparator is a noninverting type with an open collector output. Typically, the pull-up resistor used between Pin 14 and $V_{C C}$ is $100 \mathrm{k} \Omega$. With $R_{L}=100 \mathrm{k} \Omega$ the comparator is capable of operation up to 25 kHz . The circuit is self-biasing, so its input should be ac coupled.

The regulator is a 1.07 V reference capable of sourcing 3.0 mA . This pin (Pin 17) needs to be decoupled using a $1.0-10 \mu \mathrm{~F}$ capacitor to maintain stability of the MC3374.

All three $\mathrm{V}_{\mathrm{CC}}$ on the MC3374 ( $\left.\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC} 2}, \mathrm{~V}_{\mathrm{CC}}\right)$ run on the same supply voltage. $\mathrm{V}_{\mathrm{CC}}$ is typically decoupled using capacitors only. $\mathrm{V}_{\mathrm{C} C 2}$ and $\mathrm{V}_{\mathrm{CC}}$ should be bypassed using the RC bypasses shown in Figure 1. Eliminating the resistors on the $\mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{CC}}$ bypasses may be possible in some applications, but a reduction in sensitivity and quieting will likely occur.

The low battery detection circuit gives an NPN open collector output at Pin 20 which drops low when the MC3374 supply voltage drops below 1.2 V . Typically it would be pulled up via a $100 \mathrm{k} \Omega$ resistor to supply.

The 1.2 V Select pin, when connected to the MC3374 supply, programs the low battery detector to trip at $\mathrm{V}_{\mathrm{CC}}<1.1 \mathrm{~V}$. Leaving this pin open raises the trip voltage on the low battery detector.

Pin 15 is a receiver enable which is connected to $\mathrm{V}_{\mathrm{CC}}$ for normal operation. Connecting this pin to ground shuts off receiver and reduces current drain to $\mathrm{I}_{\mathrm{CC}}<0.5 \mu \mathrm{~A}$.

## APPENDIX

## Design of 2nd Order Sallen-Key Low Pass Filters



The audio and data buffers can easily be configured as active low pass filters using the circuit configuration shown above. The circuit has a center frequency ( $\mathrm{f}_{\mathrm{O}}$ ) and quality factor ( Q ) given by the following:

$$
\begin{gathered}
f_{0}=\frac{1}{2 \pi \sqrt{R 1 R 2 C 1 C 2}} \\
Q=\frac{1}{\sqrt{\frac{R 2 C 2}{R 1 C 1}}+\sqrt{\frac{R 1 C 2}{R 2 C 1}}+(1-K) \sqrt{\frac{R 1 C 1}{R 2 C 2}}}
\end{gathered}
$$

If possible, let $\mathrm{R} 1=\mathrm{R} 2$ or $\mathrm{C} 1=\mathrm{C} 2$ to simplify the above equations. Be sure to avoid a negative $Q$ value to prevent instability. Setting $Q=1 / \sqrt{2}=0.707$ yields a maximally flat filter response.

## Data Buffer Design

The data buffer is designed as follows:

$$
\begin{gathered}
\mathrm{f}_{\mathrm{O}}=200 \mathrm{~Hz} \\
\mathrm{C} 1=\mathrm{C} 2=0.01 \mu \mathrm{~F} \\
\mathrm{Q}=0.707 \text { (target) }
\end{gathered}
$$

$\mathrm{K}=2.7$ (data buffer open loop voltage gain)
Setting C1 = C2 yields:

$$
\text { fo }=\frac{1}{2 \pi C 1 \sqrt{R 1 R 2}}
$$

$$
Q=\frac{1}{\sqrt{\frac{\mathrm{R} 2}{\mathrm{R} 1}}+(2-K) \sqrt{\frac{\mathrm{R} 1}{\mathrm{R} 2}}}
$$

Iteration yields $\mathrm{R} 2=4.2(\mathrm{R} 1)$ to make $\mathrm{Q}=0.707$.
Substitution into the equation for $\mathrm{f}_{\mathrm{O}}$ yields:

$$
\begin{gathered}
\mathrm{R} 1=38 \mathrm{k} \Omega(\text { use } 39 \mathrm{k} \Omega) \\
\mathrm{R} 2=4.2(\mathrm{R} 1)=180 \mathrm{k} \Omega \\
\mathrm{C} 1=\mathrm{C} 2=0.01 \mu \mathrm{~F}
\end{gathered}
$$

## Audio Buffer Design

The audio buffer is designed as follows:

$$
\begin{gathered}
\mathrm{f}_{\mathrm{O}}=3000 \mathrm{~Hz} \\
\mathrm{R} 1=\mathrm{R} 2=8.2 \mathrm{k} \Omega \\
\mathrm{Q}=0.707 \text { (target) }
\end{gathered}
$$

$\mathrm{K}=3.9$ (audio buffer open loop voltage gain)
Setting C1 = C2 yields:

$$
\text { fo }=\frac{1}{2 \pi R 1 \sqrt{C 1 C 2}}
$$

$$
Q=\frac{1}{\sqrt{\frac{\mathrm{C} 2}{\mathrm{C} 1}}+(1-K) \sqrt{\frac{\mathrm{C} 1}{\mathrm{C} 2}}}
$$

Iteration yields $\mathrm{C} 2=2.65(\mathrm{C} 1)$ to make $\mathrm{Q}=0.707$.
Substitution into the equation for $\mathrm{f}_{\mathrm{O}}$ yields:
$\mathrm{C} 1=3900 \mathrm{pF}$
$\mathrm{C} 2=2.65(\mathrm{C} 1)=0.01 \mu \mathrm{~F}$
$\mathrm{R} 1=\mathrm{R} 2=8.2 \mathrm{k} \Omega$

MOTOROLA

## Continuously Variable Slope Delta Modulator/Demodulator

Providing a simplified approach to digital speech encoding/decoding, the MC3418 CVSD is designed for military secure communication and commercial telephone applications. A single IC provides both encoding and decoding functions.

- Encode and Decode Functions on the Same Chip with a Digital Input for Selection
- Utilization of Compatible $\mathrm{I}^{2} \mathrm{~L}$ - Linear Bipolar Technology
- CMOS Compatible Digital Output
- Digital Input Threshold Selectable (VCC/2 Reference Provided On-Chip)
- MC3418 has a 4-Bit Algorithm (Commercial Telephone)



## CONTINUOUSLY VARIABLE SLOPE DELTA MODULATOR/DEMODULATOR

LASER-TRIMMED IC
SEMICONDUCTOR TECHNICAL DATA


ORDERING INFORMATION

Device	Operating   Temperature Range	Package
MC3418DW	$T_{A}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-16L

MAXIMUM RATINGS (All voltages referenced to $\mathrm{V}_{\mathrm{EE}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$,
unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	-0.4 to +18	Vdc
Differential Analog Input Voltage	$\mathrm{V}_{\mathrm{ID}}$	$\pm 5.0$	Vdc
Digital Threshold Voltage	$\mathrm{V}_{\mathrm{TH}}$	-0.4 to $\mathrm{V}_{\mathrm{CC}}$	Vdc
Logic Input Voltage   Clock, Digital Data, Encode/Decode	$\mathrm{V}_{\text {Logic }}$	-0.4 to +18	Vdc
Coincidence Output Voltage	$\mathrm{V}_{\mathrm{O}(\mathrm{Con})}$	-0.4 to +18	Vdc
Syllabic Filter Input Voltage	$\mathrm{V}_{\mathrm{I}(\mathrm{Syl})}$	-0.4 to $\mathrm{V}_{\mathrm{CC}}$	Vdc
Gain Control Input Voltage	$\mathrm{V}_{\mathrm{I}(\mathrm{GC})}$	-0.4 to $\mathrm{V}_{\mathrm{CC}}$	Vdc
Reference Input Voltage	$\mathrm{V}_{\mathrm{I}(\mathrm{ref})}$	$\mathrm{V}_{\mathrm{CC}} / 2-1.0$ to $\mathrm{V}_{\mathrm{CC}}$	Vdc
$\mathrm{V}_{\mathrm{CC}} / 2$ Output Current	$\mathrm{I}_{\text {ref }}$	-25	mA

NOTE: ESD data available upon request.
ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=0$ to $70^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit		
Power Supply Voltage Range (Figure 1)	$\mathrm{V}_{\text {CCR }}$	4.75	12	16.5	Vdc		
Power Supply Current (Figure 1)   @ Idle Channel $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~F} \end{aligned}$	ICC		$\begin{aligned} & 3.7 \\ & 6.0 \end{aligned}$	$\begin{gathered} 5.5 \\ 11 \end{gathered}$	mA		
Gain Control Current Range (Figure 2)	IGCR	0.002	-	3.0	mA		
Analog Comparator Input Range (Pins 1 and 2) $4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 16.5 \mathrm{~V}$	$V_{1}$	1.3	-	$\mathrm{V}_{\mathrm{CC}}-1.3$	Vdc		
Analog Output Range (Pin 7) $4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 16.5 \mathrm{~V}, \mathrm{I} \mathrm{O}= \pm 5.0 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{O}}$	1.3	-	$\mathrm{V}_{\mathrm{CC}}-1.3$	Vdc		
Input Bias Currents (Figure 3) Comparator in Active Region Analog Input (I1) Analog Feedback (I2) Syllabic Filter Input (I3) Reference Input (I5)	IIB		$\begin{array}{r} 0.25 \\ 0.25 \\ 0.06 \\ -0.06 \end{array}$	$\begin{gathered} 1.0 \\ 1.0 \\ 0.3 \\ -0.3 \end{gathered}$	$\mu \mathrm{A}$		
Input Offset Current Comparator in Active Region Analog Input/Analog Feedback \|I1-I2	(Figure 3) Analog Input/Analog Feedback	15 - $16 \mid$ (Figure 4)	10	-	$\begin{aligned} & 0.05 \\ & 0.01 \end{aligned}$	$\begin{aligned} & 0.4 \\ & 0.1 \end{aligned}$	$\mu \mathrm{A}$
Input Offset Voltage   V/I Converter (Pins 3 and 4) (Figure 5)	$\mathrm{V}_{\mathrm{IO}}$	-	2.0	6.0	mV		
$\begin{aligned} & \text { Transconductance } \\ & \text { V/I Converter, } 0 \text { to } 3.0 \mathrm{~mA} \\ & \text { Integrator Amplifier, } 0 \text { to } \pm 5.0 \mathrm{~mA} \text { Load } \end{aligned}$	gm	$\begin{aligned} & 0.1 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.3 \\ & 10 \\ & \hline \end{aligned}$	-	$\mathrm{mA} / \mathrm{mV}$		
Propagation Delay Times (Note 1) Clock Trigger to Digital Output $C_{L}=25 \mathrm{pF}$ to Gnd Clock Trigger to Coincidence Output $\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$ to $\mathrm{Gnd}, \mathrm{R}_{\mathrm{L}}=4.0 \mathrm{k} \Omega$ to $\mathrm{V}_{\mathrm{CC}}$	tpLH   tpHL   tpLH   tpHL	-	$\begin{aligned} & 1.0 \\ & 0.8 \\ & 1.0 \\ & 0.8 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \\ & 3.0 \\ & 2.0 \end{aligned}$	$\mu \mathrm{s}$		
Coincidence Output Voltage - Low Logic Stage	V OL(Con)	-	0.12	0.25	Vdc		

NOTES: 1. All propagation delay times measured $50 \%$ to $50 \%$ from the negative going (from $\mathrm{V}_{\mathrm{CC}}$ to +0.4 V ) edge of the clock. 2. Dynamic total loop offset ( $\Sigma$ Voffset) equals VIO (comparator) (Figure 3) minus VIOX (Figure 5). The input offset voltages of the analog comparator and of the integrator amplifier include the effects of input offset current through the input resistors. The slope polarity switch current mismatch appears as an average voltage across the 10 k integrator resistor. The clock frequency is 32 kHz . Idle channel performance is guaranteed if this dynamic total loop offset is less than one-half of the change in integrator output voltage during one clock cycle (ramp step size). Laser trimming is used to ensure good idle channel performance.

ELECTRICAL CHARACTERISTICS (continued) $\left(\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Gnd}, \mathrm{T}_{\mathrm{A}}=0\right.$ to $70^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
IOL(Con) $=3.0 \mathrm{~mA}$					
Coincidence Output Leakage Current - High Logic State $\mathrm{V}_{\mathrm{OH}}=15 \mathrm{~V}, 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 70^{\circ} \mathrm{C}$	${ }^{\mathrm{IOH}}$ (Con)	-	0.01	0.5	$\mu \mathrm{A}$
Applied Digital Threshold Voltage Range (Pin 12)	$\mathrm{V}_{\text {TH }}$	1.2	-	$\mathrm{V}_{\mathrm{CC}}-2.0$	Vdc
Digital Threshold Input Current $1.2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{th}} \leq \mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V}$   $\mathrm{V}_{\text {IL }}$ Applied to Pins 13, 14 and 15   $\mathrm{V}_{\mathrm{IH}}$ Applied to Pins 13, 14 and 15	$\mathrm{I}_{\text {( }}$ (th)	-	$-\overline{-10}$	$\begin{gathered} 5.0 \\ -50 \end{gathered}$	$\mu \mathrm{A}$
Maximum Integrator Amplifier Output Current	Io	$\pm 5.0$	-	-	mA
$\mathrm{V}_{\mathrm{CC}} / 2$ Generator Maximum Output Current (Source Only)	$I_{\text {ref }}$	10	-	-	mA
$\mathrm{V}_{\mathrm{CC}} / 2$ Generator Output Impedance (0 to -10 mA )	zref	-	3.0	6.0	$\Omega$
$\mathrm{V}_{\mathrm{CC}} / 2$ Generator Tolerance ( $4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 16.5 \mathrm{~V}$ )	عr	-	-	$\pm 3.5$	\%
Logic Input Voltage (Pins 13, 14 and 15) Low Logic State High Logic State	$\begin{aligned} & \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{IH}} \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{V}_{\mathrm{EE}} \\ \mathrm{~V}_{\mathrm{th}}+0.4 \end{gathered}$	-	$\begin{gathered} \mathrm{V}_{\mathrm{th}}-0.4 \\ 18 \\ \hline \end{gathered}$	Vdc
Dynamic Total Loop Offset Voltage (Note 2) (Figures 3, 4 and 5) $\begin{aligned} & \mathrm{I}_{\mathrm{GC}}=12 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=12 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \\ & \mathrm{I}_{\mathrm{GC}}=12 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ & 0^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+70^{\circ} \mathrm{C} \end{aligned}$	$\Sigma \mathrm{V}_{\text {offset }}$		$\begin{gathered} \pm 0.5 \\ \pm 0.75 \\ \\ \pm 1.0 \\ \pm 1.3 \end{gathered}$	$\begin{aligned} & \pm 3.0 \\ & \pm 3.8 \\ & \pm 3.5 \\ & \pm 4.3 \end{aligned}$	mV
Digital Output Voltage $\begin{aligned} & \mathrm{IOL}=3.6 \mathrm{~mA} \\ & \mathrm{I} \mathrm{OH}=-0.35 \mathrm{~mA} \end{aligned}$	$\mathrm{V}_{\mathrm{OL}}$   $\mathrm{VOH}_{\mathrm{OH}}$	$\stackrel{-}{\mathrm{v}_{\mathrm{CC}}-1.0}$	$\begin{gathered} 0.1 \\ \mathrm{~V}_{\mathrm{CC}}-0.2 \end{gathered}$		Vdc
Syllabic Filter Applied Voltage (Pin 3) (Figure 2)	$\mathrm{V}_{\text {I(Syl) }}$	3.2	-	$\mathrm{V}_{\mathrm{CC}}$	Vdc
Integrating Current (Figure 2) $\begin{aligned} \mathrm{I}_{\mathrm{GC}} & =12 \mu \mathrm{~A} \\ \mathrm{I} C & =1.5 \mathrm{~mA} \\ \mathrm{I}_{\mathrm{GC}} & =3.0 \mathrm{~mA} \end{aligned}$	$\left\|{ }_{\text {Int }}\right\|$	$\begin{gathered} 8.0 \\ 1.42 \\ 2.75 \end{gathered}$	$\begin{aligned} & 10 \\ & 1.5 \\ & 3.0 \end{aligned}$	$\begin{gathered} 12 \\ 1.58 \\ 3.25 \end{gathered}$	$\mu \mathrm{A}$   mA   mA
Dynamic Integrating Current Match (Figure 6) $\mathrm{I}_{\mathrm{GC}}=1.5 \mathrm{~mA}$	$\mathrm{V}_{\mathrm{O}}($ Ave)	-	$\pm 100$	$\pm 280$	mV
Input Current - High Logic State ( $\mathrm{V}_{\mathrm{IH}}=18 \mathrm{~V}$ )   Digital Data Input   Clock Input   Encode/Decode Input	IIH	-	-	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$	$\mu \mathrm{A}$
```Input Current - Low Logic State ( \(\mathrm{V}_{\mathrm{IL}}=0 \mathrm{~V}\) ) Digital Data Input Clock Input Encode/Decode Input Clock Input, \(\mathrm{V}_{\text {IL }}=0.4 \mathrm{~V}\)```	IIL	$\begin{gathered} -10 \\ -360 \\ -36 \\ -72 \end{gathered}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$\mu \mathrm{A}$

NOTES: 1. All propagation delay times measured 50% to 50% from the negative going (from V_{CC} to +0.4 V) edge of the clock.
2. Dynamic total loop offset (Σ Voffset) equals VIO (comparator) (Figure 3) minus VIOX (Figure 5). The input offset voltages of the analog comparator and of the integrator amplifier include the effects of input offset current through the input resistors. The slope polarity switch current mismatch appears as an average voltage across the 10 k integrator resistor. The clock frequency is 32 kHz . Idle channel performance is guaranteed if this dynamic total loop offset is less than one-half of the change in integrator output voltage during one clock cycle (ramp step size). Laser trimming is used to ensure good idle channel performance.

DEFINITION AND FUNCTION OF PINS

Pin 1 - Analog Input

This is the analog comparator inverting input where the voice signal is applied. It may be ac or dc coupled depending on the application. If the voice signal is to be level shifted to the internal reference voltage, then a bias resistor between Pins 1 and 10 is used. The resistor is used to establish the reference as the new dc average of the ac coupled signal.

The analog comparator was designed for low hysteresis (typically less than 0.1 mV) and high gain (typically 70 dB).

Pin 2 - Analog Feedback

This is the noninverting input to the analog signal comparator. In an encoder application it should be connected to the analog output of the encoder circuit. This may be Pin 7
or a low pass filter output connected to Pin 7. In a decode circuit Pin 2 is not used and may be tied to $\mathrm{V}_{\mathrm{CC}} / 2$ at Pin 10 or ground.

The analog input comparator has bias currents of $1.0 \mu \mathrm{~A}$ max, thus the driving impedances at Pins 1 and 2 should be equal to avoid disturbing the idle channel characteristics of the encoder.

Pin 3 - Syllabic Filter

This is the point at which the syllabic filter voltage is returned to the IC in order to control the integrator step size. It is an NPN input to an op amp. The syllabic filter consists of an RC network between Pins 11 and 3. Typical time constant values of 6.0 to 50 ms are used in voice codecs.

Pin 4 - Gain Control Input

The syllabic filter voltage appears across CS_{S} of the syllabic filter and is the voltage between V_{CC} and Pin 3. The active voltage to current ($\mathrm{V}-\mathrm{I}$) converter drives Pin 4 to the same voltage at a slew rate of typically $0.5 \mathrm{~V} / \mu \mathrm{s}$. Thus the current injected into Pin 4 ($\mathrm{IGC}_{\mathrm{G}}$) is the syllabic filter voltage divided by the R_{X} resistance. Figure 7 shows the relationship between IGC (x-axis) and the integrating current, Int (y-axis). The discrepancy, which is most significant at very low currents, is due to circuitry within the slope polarity switch which enables trimming to a low total loop offset. The R_{X} resistor is then varied to adjust the loop gain of the codec, but should be no larger than $5.0 \mathrm{k} \Omega$ to maintain stability.

Pin 5 - Reference Input

This pin is the noninverting input of the integrator amplifier. It is used to reference the dc level of the output signal. In an encoder circuit it must reference the same voltage as Pin 1 and is tied to Pin 10.

Pin 6 - Filter Input

This inverting op amp input is used to connect the integrator external components. The integrating current (lint) flows into Pin 6 when the analog input (Pin 1) is high with respect to the analog feedback (Pin2) in the encode mode or when the digital data input (Pin 13) is high in the decode mode. For the opposite states, IInt flows out of Pin 6. Single integration systems require a capacitor and resistor between Pins 6 and 7. Multipole configurations will have different circuitry. The resistance between Pins 6 and 7 should always be between $8.0 \mathrm{k} \Omega$ and $13 \mathrm{k} \Omega$ to maintain good idle channel characteristics.

Pin 7 - Analog Output

This is the integrator op amp output. It is capable of driving a 600Ω load referenced to $\mathrm{V}_{\mathrm{CC}} / 2$ to +6.0 dBm and can otherwise be treated as an op amp output. Pins 5, 6 and 7 provide full access to the integrator op amp for designing integration filter networks. The slew rate of the internally compensated integrator op amp is typically $0.5 \mathrm{~V} / \mu \mathrm{s}$. Pin 7 output is current limited for both polarities of current flow at typically 30 mA .

Pin 8 - VEE

The circuit is designed to work in either single or dual power supply applications. Pin 8 is always connected to the most negative supply.

Pin 9 - Digital Output

The digital output provides the results of the delta modulator's conversion. It swings between V_{CC} and $\mathrm{V}_{\text {EE }}$ and is CMOS or TTL compatible. Pin 9 is inverting with respect to Pin 1 and noninverting with respect to Pin 2. It is clocked on
the falling edge of Pin 14. The typical 10% to 90% rise and fall times are 250 ns and 50 ns respectively for $\mathrm{V}_{\mathrm{CC}}=12 \mathrm{~V}$ and $\mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$ to ground.

Pin 10 - $V_{C C} / 2$ Output

An internal low impedance mid-supply reference is provided for use in single supply applications. The internal regulator is a current source and must be loaded with a resistor to ensure its sinking capability. If a +6.0 dBmo signal is expected across a 600Ω input bias resistor, then Pin 10 must sink $2.2 \mathrm{~V} / 600 \Omega=3.66 \mathrm{~mA}$. This is possible only if Pin 10 sources 3.66 mA into a resistor normally and will source the difference under peak load. The reference load resistor is chosen accordingly. A $0.1 \mu \mathrm{~F}$ bypass capacitor from Pin 10 to V_{EE} is also recommended. The $\mathrm{V}_{\mathrm{CC}} / 2$ reference is capable of sourcing 10 mA and can be used as a reference elsewhere in the system circuitry.

Pin 11 - $\overline{\text { Coincidence }} \overline{\text { Output }}$

The duty cycle of this pin is proportional to the voltage across CS. The coincidence output will be low whenever the content of the internal shift register is all 1 s or all 0 s . The MC3418 contains a 4-bit register. Pin 11 is an open collector NPN device and requires a pull-up resistor. If the syllabic filter is to have equal charge and discharge time constants, the value of Rp should be much less than Rs. In systems requiring different charge and discharge constants, the charging constant is $\mathrm{R}_{S} \mathrm{C}_{S}$ while the decay constant is (RS + Rp)Cs. Thus longer decays are easily achievable. The NPN device should not be required to sink more than 3.0 mA in any configuration. The typical 10% to 90% rise and fall times are 200 ns and 100 ns respectively for $\mathrm{R}_{\mathrm{L}}=4.0 \mathrm{k} \Omega$ to 12 V and $C_{L}=25 \mathrm{pF}$ to ground.

Pin 12 - Digital Threshold

This input sets the switching threshold for Pins 13, 14 and 15. It is intended to aid in interfacing different logic families without external parts. Often it is connected to the $\mathrm{V}_{\mathrm{CC}} / 2$ reference for CMOS interface or can be biased two diode drops above $V_{E E}$ for TTL interface.

Pin 13 - Digital Data Input

In a decode application, the digital data stream is applied to Pin 13. In an encoder it may be unused or may be used to transmit signaling message under the control of Pin 15. It is an inverting input with respect to Pin 9. When Pins 9 and 13 are connected, a toggle flip-flop is formed and a forced idle channel pattern can be transmitted. The digital data input level should be maintained for 0.5μ s before and after the clock trigger for proper clocking.

Pin 14 - Clock Input

The clock input determines the data rate of the codec circuit. A 32 k bit rate requires a 32 kHz clock. The switching threshold of the clock input is set by Pin 12. The shift register circuit toggles on the falling edge of the clock input. The minimum high time for the clock input is 300 ns and minimum low time is 900 ns.

Pin 15 - Encode/Decode

This pin controls the connection of the analog input comparator and the digital input comparator to the internal shift register. If high, the result of the analog comparison will be clocked into the register on the falling edge at Pin 14. If low, the digital input state will be entered. This allows use of the IC
as an encoder/decoder or simplex codec without external parts. Furthermore, it allows non-voice patterns to be forced onto the transmission line through Pin 13 in an encoder.

Figure 1. Power Supply Current

Pin $16-V_{C C}$
The power supply range is from 4.75 to 16.5 V between Pin $V_{C C}$ and $V_{E E}$.

Figure 2. IGCR - Gain Control Range and IInt Integrating Current

NOTES: 1. Digital Output = Digital Data Input
2. For static testing, the clock is only necessary for preconditioning to obtain proper state for a given input.

Figure 3. Input Bias Currents, Analog Comparator Offset Voltage and Current

NOTE: The analog comparator offset voltage is tested under dynamic conditions and therefore must be measured with appropriate filtering.

Figure 4. Integrator Amplifier Offset Voltage and Current

Figure 5. V/I Converter Offset Voltage, V_{IO} and $\mathrm{V}_{\mathrm{IOX}}$

NOTES: 1. Integrator amplifier offset voltage plus slope polarity switch mismatch.
2. $\mathrm{V}_{\text {IOX }}$ is the average voltage of the triangular wave form observed at the measurement points.

Figure 6. Dynamic Integrating Current Match

NOTES: 1. $\mathrm{V}_{\mathrm{O}(\mathrm{AV}) \text {, Dynamic Integrating Current Match, is the }}$ average voltage of the triangular waveform observed at t the measurement points, across $10 \mathrm{k} \Omega$ resistor with $\mathrm{I}_{\mathrm{GC}}=1.5 \mathrm{~mA}$.
2. See Note 2 in the Electrical Characteristics table.
3. See Figures 8 and 9 .

TYPICAL PERFORMANCE CURVES

Figure 7. Typical Int versus IGC (Mean $\pm \mathbf{2} \sigma$)

Figure 8. Normalized Dynamic Integrating Current Match versus VCC

Figure 9. Normalized Dynamic Integrating Current Match versus Clock Frequency

Figure 10. Dynamic Total Loop Offset versus Clock Frequency

Figure 11. Block Diagram of the CVSD Encoder

Figure 12. CVSD Waveforms

Figure 13. Block Diagram of the CVSD Decoder

Figure 14. 16 kHz Simplex Voice Codec (Single-Pole Companding and Single Integration)

CIRCUIT DESCRIPTION

The continuously variable slope delta modulator (CVSD) is a simple alternative to more complex conventional conversion techniques in systems requiring digital communication of analog signals. The human voice is analog, but digital transmission of any signal over great distance is attractive. Signal/noise ratios do not vary with distance in digital transmission and multiplexing, switching and repeating hardware is more economical and easier to design. However, instrumentation A to D converters do not meet the communications requirements. The CVSD A to D is well suited to the requirements of digital communications and is an economically efficient means of digitizing analog inputs for transmission.

The Delta Modulator

The innermost control loop of a CVSD converter is a simple delta modulator. A block diagram CVSD Encoder is shown in Figure 11. A delta modulator consists of a comparator in the forward path and an integrator in the feedback path of a simple control loop. The inputs to the comparator are the input analog signal and the integrator output. The comparator output reflects the sign of the difference between the input voltage and the integrator output. That sign bit is the digital output and also controls the direction of ramp in the integrator. The comparator is normally clocked so as to produce a synchronous and band-limited digital bit stream.

If the clocked serial bit stream is transmitted, received, and delivered to a similar integrator at a remote point, the remote integrator output is a copy of the transmitting control loop integrator output. To the extent that the integrator at the transmitting locations tracks the input signal, the remote receiver reproduces the input signal. Low pass filtering at the receiver output will eliminate most of the quantizing noise, if the clock rate of the bit stream is an octave or more above the bandwidth of the input signal. Voice bandwidth is 4.0 kHz and clock rates from 8.0 k and up are possible. Thus the delta modulator digitizes and transmits the analog input to a remote receiver. The serial, unframed nature of the data is ideal for communications networks. With no input at the transmitter, a continuous one zero alternation is transmitted. If the two integrators are made leaky, then during any loss of contact the receiver output decays to zero and receive restart begins without framing when the receiver reacquires. Similarly, a delta modulator is tolerant of sporadic bit errors. Figure 12 shows the delta modulator waveforms while Figure 13 shows the corresponding CVSD decoder block diagram.

The Companding Algorithm

The fundamental advantages of the delta modulator are its simplicity and the serial format of its output. Its limitations are its ability to accurately convert the input within a limited digital
bit rate. The analog input must be band limited and amplitude limited. The frequency limitations are governed by the nyquist rate while the amplitude capabilities are set by the gain of the integrator.

The frequency limits are bounded on the upper end; that is, for any input bandwidth there exists a clock frequency larger than that bandwidth which will transmit the signal with a specific noise level. However, the amplitude limits are bounded on both upper and lower ends. For a signal level, one specific gain will achieve an optimum noise level. Unfortunately, the basic delta modulator has a small dynamic range over which the noise level is constant.

The continuously variable slope circuitry provides increased dynamic range by adjusting the gain of the integrator. For a given clock frequency and input bandwidth the additional circuitry increases the delta modulator's dynamic range. External to the basic delta modulator is an algorithm which monitors the past few outputs of the delta modulator in a simple shift register. The register is 4-bits long. The accepted CVSD algorithm simply monitors the contents of the shift register and indicates if it contains all 1 s or 0 s . This condition is called coincidence. When it occurs, it indicates that the gain of the integrator is too small. The coincidence output charges a single-pole low pass filter. The voltage output of this syllabic filter controls the integrator gain through a pulse amplitude modulator whose other input is the sign bit or up/down control.

The simplicity of the all 1s, all 0s algorithm should not be taken lightly. Many other control algorithms using the shift register have been tried. The key to the accepted algorithm is that it provides a measure of the average power or level of the input signal. Other techniques provide more instantaneous information about the shape of the input curve. The purpose of the algorithm is to control the gain of the integrator and to increase the dynamic range. Thus a measure of the average input level is what is needed.

The algorithm is repeated in the receiver and thus the level data is recovered in the receiver. Because the algorithm operates only on the past serial data, it changes the nature of the bit stream without changing the channel bit rate.

The effect of the algorithm is to compand the input signal. If a CVSD encoder is played into a basic delta modulator, the output of the delta modulator will reflect the shape of the input signal but all of the output will be at an equal level. Thus the algorithm at the output is needed to restore the level variations. The bit stream in the channel is as if it were from a standard delta modulator with a constant level input.

The delta modulator encoder with the CVSD algorithm provides an efficient method for digitizing a voice input in a manner which is especially convenient for digital communications requirements.

MC3418

APPLICATIONS INFORMATION

CVSD DESIGN CONSIDERATIONS

A simple CVSD encoder using the MC3418 is shown in Figure 14. This IC is a general purpose CVSD building block which allows the system designer to tailor the encoder's transmission characteristics to the application. Thus, the achievable transmission capabilities are constrained by the fundamental limitations of delta modulation and the design of encoder parameters. The performance is not dictated by the internal configuration of the MC3418. There are seven design considerations involved in designing these basic CVSD building blocks into a specific codec application, and they are as follows:

1. Selection of clock rate
2. Required number of shift register bits
3. Selection of loop gain
4. Selection of minimum step size
5. Design of integration filter transfer function
6. Design of syllabic filter transfer function
7. Design of low pass filter at the receiver

The circuit in Figure 14 is the most basic CVSD circuit possible. For many applications in secure radio or other intelligible voice channel requirements, it is entirely sufficient. In this circuit, items 5 and 6 are reduced to their simplest form. The syllabic and integration filters are both single-pole networks. The selection of items 1 through 4 govern the codec performance.

Layout Considerations

Care should be exercised to isolate all digital signal paths (Pins 9, 11, 13 and 14) from analog signal paths (Pins 1 to 7 and 10) in order to achieve proper idle channel performance.

Clock Rate

With minor modifications, the circuit in Figure 14 may be operated anywhere from 9.6 to 64 kHz clock rates. Obviously the higher the clock rate the higher the S / N performance. The circuit in Figure 14 typically produces the S/N performance shown in Figure 16. The selection of clock rate is usually dictated by the bandwidth of the transmission medium. Voice bandwidth systems will require no higher than 9600 Hz . Some radio systems will allow 12 kHz . Private 4 -wire telephone systems are often operated at 16 kHz and commercial telephone performance can be achieved at 32 k bits and above. Other codecs may use bit rates up to 200 k bits/sec.

Shift Register Length (Algorithm)

The MC3418 has a 4-bit algorithm well suited for 32 kHz and higher clock rates. Since the algorithm records a fixed past history of the input signal, a longer shift register is required to obtain the same internal history. At 16 kHz and below, the 4-bit algorithm will produce a slightly wider dynamic range at the expense of level change response. Basically the MC3418 is intended for high performance, high bit rate systems.

Figure 16. Signal-to-Noise Performance with Single Integration, Single-Pole and Companding at 16 k Bits (Typical)

Selection of Loop Gain

The gain of the circuit in Figure 14 is set by resistor $R_{X} . R_{X}$ must be selected to provide the proper integrator step size for high level signals such that the companding ratio does not exceed about 25%. The companding ratio is the active low duty cycle of the coincidence output on Pin 11 of the codec circuit. Thus the system gain is dependent on:

1. The maximum level and frequency of the input signal.
2. The transfer function of the integration filter.

For voice codecs the typical input signal is taken to be a sine wave at 1.0 kHz of 0 dBmo level. In practice, the useful dynamic range extends about 6.0 dB above the design level. In any system the companding ratio should not exceed 30%.

To calculate the required step size current, we must describe the transfer characteristics of the integration filter. In the basic circuit of Figure 14, a single-pole of 160 Hz is used.

$$
\mathrm{R} 1=10 \mathrm{k} \Omega, \mathrm{C} 1=0.1 \mu \mathrm{~F}
$$

$$
\begin{gathered}
\frac{V_{O}}{I_{i}}=\frac{1}{C\left(S+\frac{1}{R C}\right)}=\frac{K}{S+\omega_{0}} \\
\omega_{0}=2 \pi f \\
10^{3}=\omega_{0}=2 \pi f \\
f=159.2 \mathrm{~Hz}
\end{gathered}
$$

Note that the integration filter produces a single-pole response from 300 to 3.0 kHz . The current required to move the integrator output a specific voltage from zero is simply:
$I_{i}=\frac{V_{O}}{R 1}+\left(C 1 \times \frac{d V_{O}}{d t}\right)$
Now a 0 dBmo sine wave has a peak value of 1.0954 V . In $1 / 8$ of a cycle of a sine wave centered around the zero crossing, the sine wave changes by approximately its peak value. The CVSD step should trace that change. The required current for a 0 dBm 1.0 kHz sine wave is:
$\mathrm{I}_{\mathrm{i}}=\frac{1.1 \mathrm{~V}}{{ }^{*} 2(10 \mathrm{k} \Omega)}+\frac{0.1 \mu \mathrm{~F}(1.1)}{0.125 \mathrm{~ms}}=0.935 \mathrm{~mA}$

* The maximum voltage across R1 when maximum slew is required is:
$\frac{1.1 \mathrm{~V}}{2}$
Now the voltage range of the syllabic filter is the power supply voltage, thus:
$R_{X}=0.25\left(V_{C C}\right) \frac{1}{0.935 \mathrm{~mA}}$
A similar procedure can be followed to establish the proper gain for any input level and integration filter type.

Minimum Step Size

The final parameter to be selected for the simple codec in Figure 14 is idle channel step size. With no input signal, the digital output becomes a one-zero alternating pattern and the analog output becomes a small triangle wave. Mismatches of internal currents and offsets limit the minimum step size which will produce a perfect idle channel pattern. The MC3418 is tested to ensure that a 20 mVpp minimum step size at 16 kHz will attain a proper idle channel. The idle channel step size must be twice the specified total loop offset if a one-zero idle pattern is desired. In some applications a much smaller minimum step size (e.g., 0.1 mV) can produce quiet performance without providing a $1-0$ pattern.

To set the idle channel step size, the value of $R_{\text {min }}$ must be selected. With no input signal, the slope control algorithm is inactive. A long series of ones or zeros never occurs. Thus, the voltage across the syllabic filter capacitor (CS) would decay to zero. However, the voltage divider of R_{S} and $R_{\text {min }}$ (see Figure 14) sets the minimum allowed voltage across the syllabic filter capacitor. That voltage must produce the desired ramps at the analog output. Again we write the filter input current equation:
$I_{i}=\frac{V_{O}}{R 1}+C \frac{d V_{O}}{d t}$
For values of V_{O} near $\mathrm{V}_{\mathrm{CC}} / 2$ the $\mathrm{V}_{\mathrm{O}} / \mathrm{R}$ term is negligible; thus:
$I_{i}=C_{S} \frac{\Delta V_{O}}{\Delta T}$
where $\Delta \mathrm{T}$ is the clock period and $\Delta \mathrm{V}_{\mathrm{O}}$ is the desired peak-to-peak value of the idle output. For a 16 k bit system using the circuit in Figure 14:
$\mathrm{I}_{\mathrm{i}}=\frac{0.1 \mu \mathrm{~F} 20 \mathrm{mV}}{62.5 \mu \mathrm{~s}}=33 \mu \mathrm{~A}$
The voltage on C_{S} which produces a $33 \mu \mathrm{~A}$ current is determined by the value of R_{X}.
$\mathrm{I}_{\mathrm{i}} \mathrm{R}_{\mathrm{X}}=\mathrm{V}_{\mathrm{S}} \min$; for $33 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{S}} \min =41.6 \mathrm{mV}$
In Figure 14 RS is $18 \mathrm{k} \Omega$. That selection is discussed with the syllabic filter considerations. The voltage divider of R_{S} and $R_{\text {min }}$ must produce an output of 41.6 mV .
$V_{C C} \frac{R_{S}}{R_{S}+R_{\text {min }}}=V_{S} \min \quad R_{\text {min }} \simeq 2.4 \mathrm{M} \Omega$
Having established these four parameters - clock rate, number of shift register bits, loop gain, and minimum step size - the encoder circuit in Figure 14 will function at near optimum performance for input levels around 0 dBm .

INCREASING CVSD PERFORMANCE

Integration Filter Design

The circuit in Figure 14 uses a single-pole integration network formed with a $0.1 \mu \mathrm{~F}$ capacitor and a $10 \mathrm{k} \Omega$ resistor. It is possible to improve the performance of the circuit in Figure 14 by 1.0 or 2.0 dB by using a two-pole integration network. The improved circuit is shown in Figure 17.

The first pole is still placed below 300 Hz to provide the 1/S voice content curve and a second pole is placed somewhere above the 1.0 kHz frequency. For telephony circuits, the second pole can be placed above 1.8 kHz to exceed the 1633 touchtone frequency. In other communication systems, values as low as 1.0 kHz may be selected. In general, the lower in frequency the second pole is placed, the greater the noise improvement. Then, to ensure the encoder loop stability, a zero is added to keep the phase shift less than 180°. This zero should be placed slightly above the low-pass output filter break frequency so as not to reduce the effectiveness of the second pole. A network of 235 Hz , 2.0 kHz , and 5.2 kHz is typical for telephone applications while $160 \mathrm{~Hz}, 1.2 \mathrm{kHz}$, and 2.8 kHz might be used in voice only channels. (Voice only channels can use an output low-pass filter which breaks at about 2.5 kHz .) The two-pole network in Figure 17 has a transfer function of:

Figure 17. Improved Filter Configuration

NOTE: These component values are for the telephone channel circuit poles described in the text. The R2, C2 product can be provided with different values of R and C. R2 should be chosen to be equal to the termination resistor on Pin 1.
Thus the two poles and the zero can be selected arbitrarily as long as the zero is at a higher frequency than the first pole. The values in Figure 17 represent one implementation of the telephony filter requirement.

The selection of the two-pole filter network affects the selection of the loop gain value and the minimum step size resistor. The required integrator current for a given change in voltage now becomes:

$$
\begin{aligned}
I_{i}= & \frac{V_{O}}{R 0}+\left(\frac{R 2 C 2}{R 0}+\frac{R 1 C 1}{R 0}+C 1\right) \frac{\Delta V_{O}}{\Delta T}+ \\
& \left(R 2 C 2 C 1+\frac{R 1 C 1 R 2 C 2}{R 0}\right) \frac{\Delta V_{O}^{2}}{\Delta T^{2}}
\end{aligned}
$$

The calculation of desired gain resistor R_{X} then proceeds exactly as previously described.

Syllabic Filter Design

The syllabic filter in Figure 14 is a simple single-pole network of $18 \mathrm{k} \Omega$ and $0.33 \mu \mathrm{~F}$. This produces a 6.0 ms time constant for the averaging of the coincidence output signal. The voltage across the capacitor determines the integrator current which in turn establishes the step size. The integrator current and the resulting step size determine the companding ratio and the S / N performance. The companding ratio is defined as the voltage across $\mathrm{C}_{S} / \mathrm{V}_{\mathrm{C}}$.

The S / N performance may be improved by modifying the voltage to current transformation produced by R_{X}. If different portions of the total R_{X} are shunted by diodes, the integrator current can be other than $\left(\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{S}}\right) / \mathrm{R}_{\mathrm{X}}$. These breakpoint curves must be designed experimentally for the particular system application. In general, one would wish that the current would double with input level. To design the desired curve, supply current to Pin 4 of the codec from an external source. Input a signal level and adjust the current until the S / N performance is optimum. Then record the syllabic filter voltage and the current. Repeat this for all desired signal levels. Then derive the resistor diode network which produces that curve on a curve tracer.

Once the network is designed with the curve tracer, it is then inserted in place of R_{X} in the circuit and the forced optimum noise performance will be achieved from the active syllabic algorithm.

Diode breakpoint networks may be very simple or moderately complex and can improve the usable dynamic range of any codec. In the past they have been used in high performance telephone codecs.

Typical resistor-diode networks are shown in Figure 18.
Figure 18. Resistor-Diode Networks

If the performance of more complex diode networks is desired, the circuit in Figure 19 should be used. It simulates the companding characteristics of nonlinear R_{X} elements in a different manner.

Output Low Pass Filter

A low pass filter is required at the receiving circuit output to eliminate quantizing noise. In general, the lower the bit rate, the better the filter must be. The filter in Figure 21 provides excellent performance for 12 to 40 kHz systems.

TELEPHONE CARRIER QUALITY CODEC

Two specifications of the integrated circuit are specifically intended to meet the performance requirements of commercial telephone systems. First, slope polarity switch current matching is laser trimmed to guarantee proper idle channel performance with 5.0 mV minimum step size and a typical 1.0% current match from $15 \mu \mathrm{~A}$ to 3.0 mA . Thus a 300 to 1 range of step size variation is possible. Second, the MC3418 provides the 4-bit algorithm currently used in subscriber loop telephone systems. With these specifications and the circuit of Figure 19, a telephone quality codec can be mass produced.

The circuit in Figure 19 provides a 30 dB S/Nc ratio over 50 dB of dynamic range for a 1.0 kHz test tone at a 37.7 k bit rate. At 37.7 k bits, 40 voice channels may be multiplexed on a standard 1.544 MB T1 facility. This codec has also been tested for 10^{-7} error rates with asynchronous and synchronous data up to 2400 baud and for reliable performance with DTMF signaling. Thus, the design is applicable in telephone quality subscriber loop carrier systems, subscriber loop concentrators, and small PABX installations.

The Active Companding Network

The unique feature of the codec in Figure 19 is the step size control circuit which uses a companding ratio reference, the present step size, and the present syllabic filter output to establish the optimum companding ratios and step sizes for any given input level. The companding ratio of a CVSD codec is defined as the duty cycle of the coincidence output. It is the parameter measured by the syllabic filter and is the voltage across CS divided by the voltage swing of the coincidence output. In Figure 19, the voltage swing of Pin 11 is 6.0 V . The operating companding ratio is analoged by the voltage between Pins 10 and 4 by means of the virtual short across Pins 3 and 4 of the V to I op amp within the integrated circuit. Thus, the instantaneous companding ratio of the codec is always available at the negative input of $A 1$.

The diode D1 and the gain of A1 and A2 provide a companding ratio reference for any input level. If the output of A 2 is more than 0.7 V below $\mathrm{V}_{\mathrm{CC}} / 2$, then the positive input of A 1 is $\left(\mathrm{V}_{\mathrm{CC}} / 2-0.7\right)$. The on diode drop at the input of A 1 represents a 12% companding ratio ($12 \%=0.7 \mathrm{~V} / 6.0 \mathrm{~V}$).

The present step size of the operating codec is directly related to the voltage across R_{x}, which established the integrator current. In Figure 19, the voltage across R_{X} is amplified by the differential amplifier A 2 whose output is single ended with respect to Pin 10 of the IC

For large signal inputs, the step size is large and the output of A2 is lower than 0.7 V . Thus D1 is fully on. The present step size is not a factor in the step size control. However, the difference between 12% companding ratio and
the instantaneous companding ratio at Pin 4 is amplified by $A 1$. The output of $A 1$ changes the voltage across R_{X} in a direction which reduces the difference between the companding reference and the operating ratio by changing the step size. The ratio of R4 and R3 determines how closely the voltage at Pin 4 will be forced to 12%. The selection of R3 and R4 is initially experimental. However, the resulting companding control is dependent on $R_{X}, R 3, R 4$, and the full diode drop D1. These values are easy to reproduce from codec to codec.

For small input levels, the companding ratio reference becomes the output of A2 rather than the diode drop. The operating companding ratio on Pin 4 is then compared to a companding ratio smaller than 12% which is determined by the voltage drop across R_{X} and the gain of $A 2$ and $A 1$. The gain of A 2 is also experimentally determined, but once determined, the circuitry is easily repeated.

With no input signal, the companding ratio at Pin 4 goes to zero and the voltage across R_{X} goes to zero. The voltage at the output of A 2 becomes zero since there is no drop across R_{x}. With no signal input, the actively controlled step size vanished.

The minimum step size is established by the 500 k resistor between V_{CC} and Pin 4 and is therefore independently selectable.

The signal to noise results of the active companding network are shown in Figure 20. A smooth 2.0 dB drop is realized from 12 dBm to -24 under the control of A 1 . At -24 dBm , A2 begins to degenerate the companding reference and the resulting step size is reduced so as to extend the dynamic range of the codec by 20 dBm .

The slope overload characteristic is also shown. The active companding network produces improved performance with frequency. The 0 dBm slope overload point is raised to 4.8 kHz because of the gain available in controlling the voltage across R_{X}. The curves demonstrate that the level linearity has been maintained or improved.*

The codec in Figure 19 is designed specifically for 37.7 k bit systems. However, the benefits of the active companding network are not limited to high bit rate systems. By modifying the crossover region (changing the gain of A2), the active technique may be used to improve the performance of lower bit rate systems.

The performance and repeatability of the codec in Figure 19 represents a significant step forward in the art and cost of CVSD codec designs.

[^11]Figure 19. Telephone Quality Deltamod Coder*

* Both double integration and active companding control are used to obtain improved CVSD performance. Laser trimming of the integrated circuit provides reliable idle channel and step size range characteristics.

Figure 20. Signal-to-Noise Performance and Frequency Response*

*Showing the improvement realized with the circuit in Figure 19.

Figure 21. High Performance Elliptic Filter for CVSD Output

Figure 22. Full Duplex/32 k Bit CVSD Voice Codec

Codec Components
$\mathrm{R}_{\mathrm{X} 1}, \mathrm{R}_{\mathrm{X} 2}-3.3 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{P} 1}, \mathrm{RP}_{\mathrm{P}}-3.3 \mathrm{k} \Omega$
RS1, RS2 - $100 \mathrm{k} \Omega$
$R_{11}, R_{l 2}-20 \mathrm{k} \Omega$
$\mathrm{R}_{12}-1.0 \mathrm{k} \Omega$
$R_{M 1}, R_{M 2}-15 M \Omega$
Minimum step size $=6.0 \mathrm{mV}$
$\mathrm{C}_{\mathrm{S} 1}, \mathrm{C}_{\mathrm{S} 2}-0.05 \mu \mathrm{~F}$
$\mathrm{C}_{\mathrm{I} 1}, \mathrm{C}_{\mathrm{I} 2}-0.05 \mu \mathrm{~F}$
2 MC3418
1 MC3403 (or MC3406)

NOTE: All Res. 5\% All Cap. 5\%

Input Filter Specifications
$12 \mathrm{~dB} /$ Octave Rolloff above 3.3 kHz $6.0 \mathrm{~dB} /$ Octave Rolloff below 50 Hz

Output Filter Specifications
Break Frequency - 3.3 kHz
Stop Band - 9.0 kHz
Stop Band Atten. - 50 dB
Rolloff - > $40 \mathrm{~dB} /$ Octave

COMPARATIVE CODEC PERFORMANCE

The salient feature of CVSD codecs is versatility. The range of codec complexity tradeoffs and bit rate is so wide that one cannot grasp the interdependency of parameters for voice applications in a few pages.

Design of a specific codec must be tailored to the digital channel bandwidth, the analog bandwidth, the quality of signal transmission required, and the cost objectives. To illustrate the choices available, the data in Figure 23 compares the signal-to-noise ratios and dynamic range of various codec design options at 32 k bits. Generally, the relative merits of each design feature will remain intact in any application. Lowering the bit rate will reduce the dynamic range and noise performance of all techniques. As the bit rate is increased, the overall performance of each technique will improve and the need for more complex designs diminishes.

Non-voice applications of the MC3418 are also possible. In those cases, the signal bandwidth and amplitude characteristics must be defined before the specification of codec parameters can begin. However, in general, the design can proceed along the lines of the voice applications shown here, taking into account the different signal bandwidth requirements.

Figure 23. Comparative Codec Performance -Signal-to-Noise Ratio for 1.0 kHz Test Tone

NOTE: These curves demonstrate the improved performance obtained with several codec designs of varying complexity.
Curve a - Complex companding and double integration (Figure 19)
Curve b - Double integration (Figure 14 using Figure 17)
Curve c - Single integration (Figure 14) with 6.0 mV stepsize

Analog Mixer

The MC12002 is a double balanced analog mixer, including an input amplifier feeding the mixer carrier port and a temperature compensated bias regulator. The input circuits for both the amplifier and mixer are differential amplifier circuits. The on-chip regulator provides all of the required biasing.

This circuit is designed for use as a balanced mixer in high-frequency wide-band circuits. Other typical applications include suppressed carrier and amplitude modulation, synchronous AM detection, FM detection, phase detection, and frequency doubling, at frequencies up to UHF.

ANALOG MIXER

SEMICONDUCTOR

 TECHNICAL DATA

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC 12002 P	$\mathrm{T}_{\mathrm{A}}=-30^{\circ}$ to $+85^{\circ} \mathrm{C}$	Plastic

ELECTRICAL CHARACTERISTICS										TEST VOLTAGE VALUESVolts				Gnd
										$\mathrm{V}_{1 \mathrm{H}}$	max	$\mathrm{V}_{\text {ILmin }}$	Vcc	
												+2.0	+5.0	
Characteristic	Symbol	Pin Under Test	Test Limits							VOLTAGE APPLIED TO PINS LISTED BELOW				
			$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+85^{\circ} \mathrm{C}$			$\mathrm{V}_{\text {IHmax }}$		$\mathrm{V}_{\text {ILImin }}$	V CC	
			Min	Max	Min	Max	Min	Max	Unit					
Power Supply Drain	ICC	14	-	-	-	16	-	-	mAdc		-	-	11,12,14	5,6,7
Input Current	linH	2	-	-	-	0.75	-	-	mAdc	2	2	-	11,12,14	5,6,7
		3	-	-	-	0.75	-	-	mAdc	3	3	-	11,12,14	5,6,7
		8	-	-	-	0.75	-	-	mAdc	8		-	11,12,14	5,6,7
		9	-	-	-	0.75	-	-	mAdc		9	-	11,12,14	5,6,7
	linL	2	-	-	-0.7	-	-	-	mAdc			2	11,12,14	5,6,7
		3	-	-	-0.7	-	-	-	mAdc		-	3	11,12,14	5,6,7
		8	-	-	-0.7	-	-	-	mAdc			8	11,12,14	5,6,7
		9	-	-	-0.7	-	-	-	mAdc			9	11,12,14	5,6,7
Output Current	IO_{1}	11	-	-	0.7	1.3	-	-	mAdc			-	11,12,14	7
		12	-	-	0.7	1.3	-	-	mAdc			-	11,12,14	7
	IO_{2}	11	-	-	2.1	3.9	-	-	mAdc			-	11,12,14	5,6,7
		12	-	-	2.1	3.9	-	-	mAdc			-	11,12,14	5,6,7
	${ }^{\text {I out }}$	11	-	-	4.2	7.8	-	-	mAdc	2	, 9	-	11,12,14	5,6,7
		11	-	-	4.2	7.8		-	mAdc	3	8	-	11,12,14	5,6,7
		12	-	-	4.2	7.8		-	mAdc	2	8	-	11,12,14	5,6,7
		12	-	-	4.2	7.8		-	mAdc		9	-	11,12,14	5,6,7
Differential Current	$\Delta \mathrm{O}_{1}$	11,12	-100	+100	-100	+100	-100	+100	$\mu \mathrm{Adc}$			-	11,12,14	7
	$\Delta \mathrm{IO}_{2}$	11,12	-200	+200	-200	+200	-200	+200	$\mu \mathrm{Adc}$		-	-	11,12,14	5,6,7
Bias Voltage	$V_{\text {Bias }}$	1	2.33	2.53	2.32	2.52	2.3	2.5	Vdc		-	-	11,12,14	5,6,7
		4	390	590	400	600	410	610	mVdc	-	-	-	11,12,14	5,6,7
		5	275	415	285	425	295	435	mVdc		-	-	11,12,14	7
		6	275	415	285	425	295	435	mVdc		-	-	11,12,14	7
		10	1.26	1.46	1.185	1.385	1.105	1.305	Vdc	-	-	-	11,12,14	5,6,7
AC Gain (See Figure 1) (Frequency = 100 MHz) *Note	A_{V}									Pulse In	$\begin{array}{\|c} \text { Pulse } \\ \text { Out } \end{array}$	-3.0 V	Gnd	VEE
		11	-	-	5.0	-	-	-	V/V	2	11	9	14	7
		11	-	-	0.28	-	-	-	V/V	8	11	3	14	7

NOTE: *Note: AC Gain is a function of collector load impedance.

Figure 2. Analog Mixer Circuit Schematic

Figure 3. AC Gain Test

Note 1:

$\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V}$ on pin 3 when pin 8 is under test.
$\mathrm{V}_{\mathrm{IL}}=-3.0 \mathrm{~V}$ on pin 9 when pin 2 is under test.

Signal $A=30 \mathrm{mVpp}$
Signal B $=300 \mathrm{mVpp}$
Freq. $=100 \mathrm{MHz}$

All input and output cables to the scope are equal lengths of 50 -ohm coaxial cable.
The unused output is connected to a 50 -ohm resistor to ground.

MC12002

Figure 4. Carrier Feedthrough Test Circuits

Notes:
Test 1 - Adjust potentiometer for carrier null at $\mathrm{f}_{\mathrm{C}}=100 \mathrm{kHz}$. Test 2 - Connect pins 5 and 6 to Gnd.

All Input and output cables to the scope are equal lengths of 50 -ohm coaxial cable.

Figure 5. Carrier Feedthrough versus Frequency
(Test 1)

Figure 6. Carrier Feedthrough versus Frequency
(Test 2)

Figure 7. Carrier Suppression Test Circuit

Figure 8. Carrier Suppression versus Frequency
(Test 1)

Figure 9. Carrier Suppression versus Frequency
(Test 2)

MC12002

Figure 10. Carrier Suppression versus Temperature

Figure 11. Output Offset Current (I_{00}) versus Temperature

Figure 12. Output Offset Current versus Temperature

Figure 13. Typical Input Impedance versus Frequency
(No Circuit)

Dual Modulus Prescaler

These devices are two-modulus prescalers which will divide by 5 and 6,8 and 9 , and 10 and 11, respectively. A MECL-to-MTTL translator is provided to interface directly with the MC12014 Counter Control Logic. In addition, there is a buffered clock input and MECL bias voltage source.

- MC12009 $480 \mathrm{MHz}(\div 5 / 6)$, MC12011 $550 \mathrm{MHz}(\div 8 / 9)$, MC12013
$550 \mathrm{MHz}(\div 10 / 11)$
- MECL to MTTL Translator on Chip
- MECL and MTTL Enable Inputs
- 5.0 or -5.2 V Operation*
- Buffered Clock Input - Series Input RC Typ, 20 Ohms and 4 pF
- VBB Reference Voltage
- 310 Milliwatts (Typ)
* When using a 5.0 V supply, apply 5.0 V to $\operatorname{Pin} 1\left(\mathrm{~V}_{\mathrm{CCO}}\right)$, Pin 6 (MTTL V_{CC}), Pin 16 (V_{CC}), and ground Pin 8 (V_{EE}). When using -5.2 V supply, ground Pin $1\left(\mathrm{~V}_{\mathrm{CCO}}\right)$, Pin 6 (MTTL V_{CC}), and Pin $16\left(\mathrm{~V}_{\mathrm{CC}}\right)$ and apply -5.2 V to $\operatorname{Pin} 8\left(\mathrm{~V}_{\mathrm{EE}}\right)$. If the translator is not required, Pin 6 may be left open to conserve dc power drain.

MAXIMUM RATINGS

$\left\lvert\,$| Characteristic | Symbol | Rating | Unit |
| :---: | :---: | :---: | :---: | | (Ratings above which device life may be impaired) | | | |
| :--- | :---: | :---: | :---: |
| Power Supply Voltage
 $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$ | V_{EE} | -8.0 | Vdc |
| Input Voltage
 $\left(\mathrm{V}_{\mathrm{CC}}=0\right)$ | $\mathrm{V}_{\text {in }}$ | 0 to V_{EE} | Vdc |
| Output Source Current
 Continuous
 Surge | IO | <50
 <100 | mAdc |
| Storage Temperature Range | $\mathrm{T}_{\text {stg }}$ | -65 to +175 | ${ }^{\circ} \mathrm{C}$ |\right.

(Recommended Maximum Ratings above which performance may be degraded)

Operating Temperature Range MC12009, MC12011, MC12013	T_{A}	-30 to +85	${ }^{\circ} \mathrm{C}$
DC Fan-Out (Note 1) (Gates and Flip-Flops)	n	70	-

NOTES: 1. AC fan-out is limited by desired system performance. 2. ESD data available upon request.

MECL PLL COMPONENTS

 DUAL MODULUS PRESCALER
SEMICONDUCTOR

 TECHNICAL DATA

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12009P		
MC12011P	$T_{A}=-35^{\circ}$ to $+85^{\circ} \mathrm{C}$	Plastic
MC12013P		

Figure 1. Logic Diagrams

MC12013

Figure 2. Typical Frequency Synthesizer Application

MC12009 MC12011 MC12013

ELECTRICAL CHARACTERISTICS (Supply Voltage $=-5.2 \mathrm{~V}$, unless otherwise noted.)

Characteristic	Symbol	Pin Under Test	Test Limits						Unit
			$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		$+85^{\circ} \mathrm{C}$		
			Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	ICC1	8	-88		-80		-80		mAdc
	ICC2	6		5.2		5.2		5.2	mAdc
Input Current	linH 1	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$		$\begin{aligned} & 375 \\ & 375 \\ & 375 \\ & 375 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\mu \mathrm{Adc}$
	linH2	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.4 \end{aligned}$	mAdc
	linH3	5	0.7	3.0	1.0	3.0	1.0	3.6	
	$\mathrm{linH}^{\text {a }}$	$\begin{gathered} 9 \\ 10 \end{gathered}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\mu \mathrm{Adc}$
Leakage Current	$l_{\text {inL1 }}$	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & -10 \\ & -10 \\ & -10 \\ & -10 \end{aligned}$		-10 -10 -10 -10		$\begin{aligned} & -10 \\ & -10 \\ & -10 \\ & -10 \end{aligned}$		$\mu \mathrm{Adc}$
	$l_{\text {inL2 }}$	$\begin{gathered} 9 \\ 10 \end{gathered}$	$\begin{aligned} & -1.6 \\ & -1.6 \end{aligned}$		-1.6 -1.6		$\begin{aligned} & -1.6 \\ & -1.6 \end{aligned}$		mAdc
Reference Voltage	$V_{B B}$	14			-1.360	-1.160			Vdc
Logic '1' Output Voltage	$\begin{aligned} & \text { VOH1 } \\ & (\text { Note 1) } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline-1.100 \\ & -1.100 \end{aligned}$	$\begin{aligned} & -0.890 \\ & -0.890 \end{aligned}$	$\begin{aligned} & \hline-1.000 \\ & -1.000 \end{aligned}$	$\begin{aligned} & \hline-0.810 \\ & -0.810 \end{aligned}$	$\begin{aligned} & -0.930 \\ & -0.930 \end{aligned}$	$\begin{aligned} & -0.700 \\ & -0.700 \end{aligned}$	Vdc
	$\mathrm{V}_{\mathrm{OH} 2}$	7	-2.8		-2.6		-2.4		
Logic '0' Output Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{OL} 1} \\ (\text { Note 1) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline-1.990 \\ & -1.990 \end{aligned}$	$\begin{aligned} & -1.675 \\ & -1.675 \end{aligned}$	$\begin{aligned} & \hline-1.950 \\ & -1.950 \end{aligned}$	$\begin{aligned} & \hline-1.650 \\ & -1.650 \end{aligned}$	$\begin{aligned} & -1.925 \\ & -1.925 \end{aligned}$	$\begin{aligned} & \hline-1.615 \\ & -1.615 \end{aligned}$	Vdc
	VOL2	7		-4.26		-4.40		-4.48	
Logic '1' Threshold Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OHA}} \\ & (\text { Note 2) } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & \hline-1.120 \\ & -1.120 \end{aligned}$		$\begin{aligned} & \hline-1.020 \\ & -1.020 \end{aligned}$		$\begin{aligned} & -0.950 \\ & -0.950 \end{aligned}$		Vdc
Logic '0' Threshold Voltage	VOLA (Note 3)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & \hline-1.655 \\ & -1.655 \end{aligned}$		$\begin{aligned} & -1.630 \\ & -1.630 \end{aligned}$		$\begin{aligned} & -1.595 \\ & -1.595 \end{aligned}$	Vdc
Short Circuit Current	Ios	7	-65	-20	-65	-20	-65	-20	mAdc
1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown. Clock Input 2. In addition to meeting the output levels specified, the device must divide by 5, 8 or 10 during this test. The clock input is the waveform shown.									

3. In addition to meeting the output levels specified, the device must divide by 6,9 or 11 during this test. The clock input is the waveform shown.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 V . Test procedures are shown for only one gate. The other gates are tested in the same manner.

MC12009 MC12011 MC12013

ELECTRICAL CHARACTERISTICS (Supply Voltage $=-5.2 \mathrm{~V}$, unless otherwise noted.) (continued)

				TEST	LTAGE/CU	RRENT VA			
					Volt				
	Test Tem		$\mathrm{V}_{\text {IHmax }}$	$\mathrm{V}_{\text {ILImin }}$	$\mathrm{V}_{\text {IHAmin }}$	VILAmax	V_{IH}	VILH	
		$-30^{\circ} \mathrm{C}$	-0.890	-1.990	-1.205	-1.500	-2.8	-4.7	
		$+25^{\circ} \mathrm{C}$	-0.810	-1.950	-1.105	-1.475	-2.8	-4.7	
		$+85^{\circ} \mathrm{C}$	-0.700	-1.925	-1.035	-1.440	-2.8	-4.7	
				T VOLTAG	APPLIED	O PINS LIS	D BE		
Characteristic	Symbol	Test	$\mathrm{V}_{\text {IHmax }}$	$\mathrm{V}_{\text {ILImin }}$	$\mathrm{V}_{\text {IHAmin }}$	VILAmax	V_{IH}	$\mathrm{V}_{\text {IL }}$	Gnd
Power Supply Drain Current	ICC1	8							1,16
	ICC2	6	4	5					6
Input Current	linH_{1}	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$						$\begin{aligned} & 1,16 \\ & 1,16 \\ & 1,16 \\ & 1,16 \end{aligned}$
	linH2	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 5 \\ & 5 \end{aligned}$	$\begin{aligned} & 4 \\ & 4 \end{aligned}$					6
	$\mathrm{linH3}^{\text {in }}$	5	4	5					6
	linH 4	$\begin{gathered} 9 \\ 10 \end{gathered}$					$\begin{gathered} 9 \\ 10 \end{gathered}$		$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Leakage Current	linL1	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$							$\begin{aligned} & 1,16 \\ & 1,16 \\ & 1,16 \\ & 1,16 \end{aligned}$
	$l_{\text {inL2 }}$	$\begin{gathered} 9 \\ 10 \end{gathered}$						$\begin{gathered} 9 \\ 10 \end{gathered}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Reference Voltage	V_{BB}	14							1,16
Logic '1' Output Voltage	$\begin{aligned} & \mathrm{VOH}_{\mathrm{OH}} \\ & \text { (Note 1.) } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 11,12,13 \\ & 11,12,13 \end{aligned}$				$\begin{aligned} & \hline 9,10 \\ & 9,10 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
	$\mathrm{V}_{\mathrm{OH} 2}$	7	5	4					6
Logic '0' Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OL} 1} \\ & \text { (Note 1.) } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 11,12,13 \\ & 11,12,13 \end{aligned}$				$\begin{aligned} & 9,10 \\ & 9,10 \end{aligned}$	$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
	$\mathrm{V}_{\text {OL2 }}$	7	4	5					6
Logic '1' Threshold Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OHA}} \\ & \text { (Note 2.) } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{aligned} & 11,12,13 \\ & 11,12,13 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Logic '0' Threshold Voltage	$\begin{gathered} \text { VOLA } \\ \text { (Note 3.) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$				$\begin{aligned} & 11,12,13 \\ & 11,12,13 \end{aligned}$			$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Short Circuit Current	Ios	7	5	4				7	6

1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.
2. In addition to meeting the output levels specified, the device must divide by 5,8 or 10 during this test. The clock input is the waveform shown.
3. In addition to meeting the output levels specified, the device must divide by 6, 9 or 11 during this test. The clock input is the waveform shown.

MC12009 MC12011 MC12013

ELECTRICAL CHARACTERISTICS (Supply Voltage $=-5.2 \mathrm{~V}$, unless otherwise noted.) (continued)

				TEST	TAGE	RENT V			
				Volts			mA		
	est Temp	erature	$\mathrm{V}_{\text {IHT }}$	$\mathrm{V}_{\text {ILT }}$	V_{EE}	IL	lOL	IOH	
		$-30^{\circ} \mathrm{C}$	-3.2	-4.4	-5.2	-0.25	16	-0.40	
		$+25^{\circ} \mathrm{C}$	-3.2	-4.4	-5.2	-0.25	16	-0.40	
		$+85^{\circ} \mathrm{C}$	-3.2	-4.4	-5.2	-0.25	16	-0.40	
		Pin		volta	PPLIE	PINS	D BE		
Characteristic	Symbol	Test	$\mathrm{V}_{\text {IHT }}$	VILT	$V_{\text {EE }}$	IL	IOL	IOH	Gnd
Power Supply Drain Current	ICC1	8			8				1,16
	ICC2	6			8				6
Input Current	$\mathrm{linH1}$	$\begin{aligned} & \hline 15 \\ & 11 \\ & 12 \\ & 13 \\ & \hline \end{aligned}$	$\begin{aligned} & 9,10 \\ & 9,10 \\ & 9,10 \end{aligned}$		$\begin{aligned} & \hline 8 \\ & 8 \\ & 8 \\ & 8 \\ & \hline \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \\ & 1,16 \\ & 1,16 \end{aligned}$
	$\mathrm{linH}^{\text {2 }}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$			$\begin{aligned} & 8 \\ & 8 \end{aligned}$				6
	linH3	5			8				6
	$\mathrm{linH}^{\text {a }}$	$\begin{gathered} 9 \\ 10 \end{gathered}$			$\begin{aligned} & 8 \\ & 8 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Leakage Current	$l_{\text {inL1 }}$	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \\ & \hline \end{aligned}$			$\begin{aligned} & 8,15 \\ & 8,11 \\ & 8,12 \\ & 8,13 \\ & \hline \end{aligned}$				$\begin{array}{r} 1,16 \\ 1,16 \\ 1,16 \\ 1,16 \\ \hline \end{array}$
	$\mathrm{l}_{\text {inL2 }}$	$\begin{gathered} 9 \\ 10 \end{gathered}$			$\begin{aligned} & 8 \\ & 8 \end{aligned}$				$\begin{aligned} & \hline 1,16 \\ & 1,16 \end{aligned}$
Reference Voltage	$V_{B B}$	14			8	14			1,16
Logic '1' Output Voltage	$\mathrm{V}_{\mathrm{OH} 1}$ (Note 1.)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
	$\mathrm{V}_{\mathrm{OH} 2}$	7			8			7	6
Logic '0' Output Voltage	$\begin{gathered} \text { VOL1 } \\ \text { (Note 1.) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
	$\mathrm{V}_{\text {OL2 }}$	7			8		7		6
Logic '1' Threshold Voltage	VOHA (Note 2.)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 9,10 \\ & 9,10 \end{aligned}$		$\begin{aligned} & 8 \\ & 8 \end{aligned}$				$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$
Logic '0' Threshold Voltage	VOLA (Note 3.)	$\begin{aligned} & 2 \\ & 3 \\ & \hline \end{aligned}$		$\begin{aligned} & 9,10 \\ & 9,10 \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$				$\begin{array}{r} 1,16 \\ 1,16 \\ \hline \end{array}$
Short Circuit Current	Ios	7			8				6

1. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.
2. In addition to meeting the output levels specified, the device must divide by 5,8 or 10 during this test. The clock input is the waveform shown.
3. In addition to meeting the output levels specified, the device must divide by 6, 9 or 11 during this test. The clock input is the waveform shown.

MC12009 MC12011 MC12013

ELECTRICAL CHARACTERISTICS (Supply Voltage $=5.0 \mathrm{~V}$, unless otherwise noted.)

Characteristic	Symbol	Pin Under Test	Test Limits						Unit
			$-30^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$		+85 ${ }^{\circ} \mathrm{C}$		
			Min	Max	Min	Max	Min	Max	
Power Supply Drain Current	ICC1	8	-88		-80		-80		mAdc
	ICC2	6		5.2		5.2		5.2	mAdc
Input Current	linH 1	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$		$\begin{aligned} & 375 \\ & 375 \\ & 375 \\ & 375 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$		$\begin{aligned} & 250 \\ & 250 \\ & 250 \\ & 250 \end{aligned}$	$\mu \mathrm{Adc}$
	$\mathrm{linH2}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.4 \\ & 6.4 \end{aligned}$	mAdc
	$\mathrm{linH3}^{\text {in }}$	5	0.7	3.0	1.0	3.0	1.0	3.6	
	linH 4	$\begin{gathered} 9 \\ 10 \end{gathered}$			$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \end{aligned}$		$\begin{aligned} & 100 \\ & 100 \end{aligned}$	$\mu \mathrm{Adc}$
Leakage Current	linL1	$\begin{aligned} & 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & -10 \\ & -10 \\ & -10 \\ & -10 \end{aligned}$		$\begin{aligned} & -10 \\ & -10 \\ & -10 \\ & -10 \end{aligned}$		$\begin{aligned} & -10 \\ & -10 \\ & -10 \\ & -10 \end{aligned}$		$\mu \mathrm{Adc}$
	l inL2	$\begin{gathered} 9 \\ 10 \end{gathered}$	$\begin{aligned} & -1.6 \\ & -1.6 \end{aligned}$		$\begin{aligned} & -1.6 \\ & -1.6 \end{aligned}$		$\begin{aligned} & -1.6 \\ & -1.6 \end{aligned}$		mAdc
Reference Voltage	$V_{B B}$	14			3.67	3.87			Vdc
Logic '1' Output Voltage	$\mathrm{V}_{\mathrm{OH} 1}$ (Note 4.)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 3.900 \\ & 3.900 \end{aligned}$	$\begin{aligned} & 4.110 \\ & 4.110 \end{aligned}$	$\begin{aligned} & 4.000 \\ & 4.000 \end{aligned}$	$\begin{aligned} & 4.190 \\ & 4.190 \end{aligned}$	$\begin{aligned} & 4.070 \\ & 4.070 \end{aligned}$	$\begin{aligned} & 4.300 \\ & 4.300 \end{aligned}$	Vdc
	$\mathrm{V}_{\mathrm{OH} 2}$	7	2.4		2.6		2.8		
Logic '0' Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{OL} 1} \\ & \text { (Note 4.) } \end{aligned}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 3.070 \\ & 3.070 \end{aligned}$	$\begin{aligned} & 3.385 \\ & 3.385 \end{aligned}$	$\begin{aligned} & 3.110 \\ & 3.110 \end{aligned}$	$\begin{aligned} & 3.410 \\ & 3.410 \end{aligned}$	$\begin{aligned} & 3.135 \\ & 3.135 \end{aligned}$	$\begin{aligned} & 3.445 \\ & 3.445 \end{aligned}$	Vdc
	$\mathrm{V}_{\text {OL2 }}$	7		0.94		0.80		0.72	
Logic '1' Threshold Voltage	$\begin{array}{c\|} \hline \mathrm{V}_{\mathrm{OHA}} \\ (\text { Note } 5 .) \end{array}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 3.880 \\ & 3.880 \end{aligned}$		$\begin{aligned} & 3.980 \\ & 3.980 \end{aligned}$		$\begin{aligned} & 4.050 \\ & 4.050 \end{aligned}$		Vdc
Logic '0' Threshold Voltage	VOLA (Note 6.)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 3.405 \\ & 3.405 \end{aligned}$		$\begin{aligned} & 3.430 \\ & 3.430 \end{aligned}$		$\begin{aligned} & 3.465 \\ & 3.465 \end{aligned}$	Vdc
Short Circuit Current	IOS	7	-65	-20	-65	-20	-65	-20	mAdc
4. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.									$\mathrm{V}_{\mathrm{IH} \text { max }}$ $\mathrm{V}_{\text {ILImin }}$

6. In addition to meeting the output levels specified, the device must divide by 6,9 or 11 during this test. The clock input is the waveform shown.

Each MECL 10,000 series circuit has been designed to meet the dc specifications shown in the test table, after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse air flow greater than 500 linear fpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 V . Test procedures are shown for only one gate. The other gates are tested in the same manner.

ELECTRICAL CHARACTERISTICS (Supply Voltage $=5.0 \mathrm{~V}$, unless otherwise noted.) (continued)

4. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.
5. In addition to meeting the output levels specified, the device must divide by 5,8 or 10 during this test. The clock input is the waveform shown.
6. In addition to meeting the output levels specified, the device must divide by 6,9 or 11 during this test. The clock input is the waveform shown.

MC12009 MC12011 MC12013

ELECTRICAL CHARACTERISTICS (Supply Voltage = 5.0 V, unless otherwise noted.) (continued)

				TEST	TAGE/	RENT			
				Volts			mA		
	Test Tem	erature	$\mathrm{V}_{\mathrm{IHT}}$	$\mathrm{V}_{\text {ILT }}$	V_{Cc}	IL	IOL	IOH	
			+2.0	+0.8	+5.0	-0.25	16	-0.40	
		$+25^{\circ} \mathrm{C}$	+2.0	+0.8	+5.0	-0.25	16	-0.40	
		$+85^{\circ} \mathrm{C}$	+2.0	+0.8	+5.0	-0.25	16	-0.40	
		Pin		VOLTA	PPLIE	PINS	E BE		
Characteristic	Symbol	Test	$\mathrm{V}_{\mathrm{IHT}}$	VILT	V_{CC}	IL	IOL	IOH	Gnd
Power Supply Drain Current	ICC1	8			1,16				8
	ICC2	6			6				8
Input Current	$\mathrm{linH}^{\text {i }}$	$\begin{aligned} & \hline 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 9,10 \\ & 9,10 \\ & 9,10 \end{aligned}$		$\begin{aligned} & 1,16 \\ & 1,16 \\ & 1,16 \\ & 1,16 \end{aligned}$				8
	$\mathrm{linH}^{\text {2 }}$	$\begin{aligned} & 4 \\ & 5 \end{aligned}$			$\begin{aligned} & 6 \\ & 6 \end{aligned}$				$\begin{aligned} & 8 \\ & 8 \end{aligned}$
	$\mathrm{linH}^{\text {in }}$	5			6				8
	linH4	$\begin{gathered} 9 \\ 10 \end{gathered}$			$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$				$\begin{aligned} & 8 \\ & 8 \end{aligned}$
Leakage Current	$l_{\text {inL1 }}$	$\begin{aligned} & \hline 15 \\ & 11 \\ & 12 \\ & 13 \end{aligned}$			$\begin{aligned} & 1,16 \\ & 1,16 \\ & 1,16 \\ & 1,16 \end{aligned}$				$\begin{aligned} & 8,15 \\ & 8,11 \\ & 8,12 \\ & 8,13 \end{aligned}$
	$l_{\text {inL2 }}$	$\begin{gathered} 9 \\ 10 \end{gathered}$			$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$				$\begin{aligned} & 8 \\ & 8 \end{aligned}$
Reference Voltage	V_{BB}	14			1,16	14			8
Logic '1' Output Voltage	$\mathrm{VOH}_{\mathrm{O}}$ (Note 4.)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{aligned} & \hline 1,16 \\ & 1,16 \end{aligned}$				$\begin{aligned} & 8 \\ & 8 \end{aligned}$
	$\mathrm{V}_{\mathrm{OH} 2}$	7			6			7	8
Logic '0' Output Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{OL} 1} \\ \text { (Note 4.) } \end{gathered}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$			$\begin{aligned} & \hline 1,16 \\ & 1.16 \end{aligned}$				$\begin{aligned} & 8 \\ & 8 \end{aligned}$
	$\mathrm{V}_{\text {OL2 }}$	7			6		7		8
Logic '1' Threshold Voltage	$\mathrm{V}_{\mathrm{OHA}}$ (Note 5.)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	$\begin{aligned} & 9,10 \\ & 9,10 \end{aligned}$		$\begin{aligned} & 1,16 \\ & 1,16 \end{aligned}$				8
Logic '0' Threshold Voltage	VOLA (Note 6.)	$\begin{aligned} & 2 \\ & 3 \end{aligned}$		$\begin{aligned} & 9,10 \\ & 9,10 \end{aligned}$	$\begin{aligned} & \hline 1,16 \\ & 1,16 \end{aligned}$				8
Short Circuit Current	IOS	7			6				8

4. Test outputs of the device must be tested by sequencing through the truth table. All input, power supply and ground voltages must be maintained between tests. The clock input is the waveform shown.
5. In addition to meeting the output levels specified, the device must divide by 5,8 or 10 during this test. The clock input is the waveform shown.
6. In addition to meeting the output levels specified, the device must divide by 6,9 or 11 during this test. The clock input is the waveform shown.

MC12009 MC12011 MC12013

SWITCHING CHARACTERISTICS

Characteristic	Symbol	Pin Under Test	MC12009，MC12011，MC12013									TEST VOLTAGES／WAVEFORMS APPLIED TO PINS LISTED BELOW：								
			$-30^{\circ} \mathrm{C}$			$+25^{\circ} \mathrm{C}$			$+85^{\circ} \mathrm{C}$			Unit	Pulse Gen． 1	Pulse Gen． 2	Pulse Gen． 3	$\mathrm{V}_{\text {IHmin }}$ \dagger	$V_{\text {ILmin }}$ \dagger	$\begin{gathered} \mathrm{V}_{\mathrm{F}} \\ -3.0 \mathrm{~V} \end{gathered}$	$\begin{gathered} \mathrm{V}_{\mathrm{EE}} \\ -3.0 \mathrm{~V} \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{v}_{\mathrm{cc}} \\ +2.0 \\ \hline \end{array}$
			Min	Typ	Max	Min	Typ	Max	Min	Typ	Max									
Propagation Delay （See Figures 3 and 5）	$\begin{gathered} \mathrm{t}_{15+2+} \\ \mathrm{t}_{15+2-} \\ \mathrm{t}_{5+7+} \\ \mathrm{t}_{5-7-} \end{gathered}$	$\begin{aligned} & 2 \\ & 2 \\ & 7 \\ & 7 \end{aligned}$	－	二 － －	$\begin{aligned} & 8.1 \\ & 7.5 \\ & 8.4 \\ & 6.5 \end{aligned}$	－	－	$\begin{aligned} & 8.1 \\ & 7.5 \\ & 8.1 \\ & 6.5 \end{aligned}$	－ － －	－	$\begin{aligned} & \hline 8.9 \\ & 82 \\ & 8.9 \\ & 7.1 \end{aligned}$	${ }_{\nabla}^{\mathrm{ns}}$	$\begin{gathered} 15 \\ 15 \\ \text { A } \\ \text { A } \end{gathered}$	－	－	二	$\begin{gathered} 11,12,13 \\ 11,12,13 \\ - \\ - \end{gathered}$	$\begin{gathered} 9,10 \\ 9,10 \\ - \\ - \end{gathered}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & 8 \end{aligned}$	$\begin{array}{r} 1,6,16 \\ 1,6,16 \\ 1,6,16 \\ 1,6,16 \end{array}$
Setup Time （See Figures 4 and 5）	$\mathrm{t}_{\text {setup1 }}$ $t_{\text {setup2 }}$	$\begin{gathered} 11 \\ 9 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	－	－	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		－	$\begin{aligned} & \hline 5.0 \\ & 5.0 \\ & \hline \end{aligned}$		－	$\begin{aligned} & \text { ns } \\ & \text { ns } \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	－	－	－	11,12,13	$\underset{*}{9,10}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & 1,6,16 \\ & 1,6,16 \end{aligned}$
Release Time （See Figures 4 and 5）	$\begin{aligned} & \mathrm{trell} 1 \\ & \mathrm{trel}^{2} \\ & \hline \end{aligned}$	$\begin{gathered} \hline 11 \\ 9 \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & \hline \end{aligned}$	二	－	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	－	－	$\begin{array}{l\|} \hline 5.0 \\ 5.0 \\ \hline \end{array}$	－	－	$\begin{aligned} & \mathrm{ns} \\ & \mathrm{~ns} \end{aligned}$	$\begin{aligned} & \hline 15 \\ & 15 \end{aligned}$	－	＊	－	$11,12,13$	$\underset{*}{9.10}$	$\begin{aligned} & 8 \\ & 8 \end{aligned}$	$\begin{aligned} & \hline 1,6,16 \\ & 1,6,16 \\ & \hline \end{aligned}$
```Toggle Frequency (See Figure 6) MC12009 : 5/6 MC12011: 8/9 MC12013 : 10/11```	$\mathrm{f}_{\text {max }}$	2	440 500 500	二	－	480 550 550	－	二	440 500 500	－	－	MHz	二	－	二	11 11 11	－	－	8 8 8	$\begin{aligned} & 16 \\ & 16 \\ & 16 \end{aligned}$

＊Test inputs sequentially，with Pulse Generator 2 or 3 as indicated connected to input under test，and the voltage indicated applied to the other input（s）of the same type（i．e．，MECL or MTTL）．

$\dagger \mathrm{V}_{1 \mathrm{Hmin}}$	$-30^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$	
	＋1．03	＋1．115	＋1．20	Vdc
$\dagger \mathrm{V}_{\text {ILmin }}$	＋0．175	＋0．200	＋0．235	Vdc

Figure 3．AC Voltage Waveforms


Figure 4．Setup and Release Time Waveforms


## MC12009 MC12011 MC12013

Figure 5. AC Test Circuit


## MC12009 MC12011 MC12013

Figure 6. Maximum Frequency Test Circuit


Unused output connected to a $50 \Omega$ resistor to ground


DIVIDE BY 9


DIVIDE BY 11


## MC12009 MC12011 MC12013

Figure 7. State Diagram


DIVIDE BY 8/9 (MC12011)

——— Enable $=1$.


## MC12009 MC12011 MC12013 APPLICATIONS INFORMATION

The primary application of these devices is as a high-speed variable modulus prescaler in the divide by N section of a phase-locked loop synthesizer used as the local oscillator of two-way radios.

Proper VHF termination techniques should be followed when the clock is separated from the prescaler by any appreciable distance.

In their basic form, these devices will divide by $5 / 6,8 / 9$, or $10 / 11$. Division by 5,8 , or 10 occurs when any one or all
of the five gate inputs E1 through E5 are high. Division by 6 , 9, or 11 occurs when all inputs E1 through E5 are low. (Unconnected MTTL inputs are normally high, unconnected MECL inputs are normally low). With the addition of extra parts, many different division configurations may be obtained (20/21, 40/41, 50/51, 100/101, etc.) A few of the many configurations are shown below, only for the MC12013.

Figure 8. Divide By 10/11 (MC12013)


## MC12009 MC12011 MC12013

Figure 9. Divide By 20/21 (MC12013)



To obtain an MTTL output, connect Pins 5 and 4 to Pins 2 and 3 respectively. Termination resistors for the MECL outputs are not shown, but are required except for the flip-flop driving the translator section.
The $\div 20 / 21$ counter may also be built using an MTTL flip-flop by connecting Pins 5 and 4 to Pins 2 and 3 respectively, and driving the MTTL flip-flop with Pin 7. MC12013 inputs E4 and E5 are used rather than E1. With E1 + E2 + E3 = 0, operation remains as shown.

Figure 10. Divide By 40/41 (MC12013)


For $\div 40: E 4+E 5=1$
For $\div 41: E 4+E 5=0$

[^12]
## Dual Modulus Prescaler

The MC12015, MC12016 and MC12017 are dual modulus prescalers which will drive divide by 32 and 33, 40 and 41 , and 64 and 65, respectively. An internal regulator is provided to allow these devices to be used over a wide range of power-supply voltages. The devices may be operated by applying a supply voltage of $5.0 \mathrm{Vdc} \pm 10 \%$ at Pin 7 , or by applying an unregulated voltage source from 5.5 Vdc to 9.5 Vdc to $\operatorname{Pin} 8$.

- 225 MHz Toggle Frequency
- Low-Power 7.5 mA Maximum at 6.8 V
- Control Input and Output Are Compatible With Standard CMOS
- Connecting Pins 2 and 3 Allows Driving One TTL Load
- Supply Voltage 4.5 V to 9.5 V


## MECL PLL COMPONENTS DUAL MODULUS PRESCALER

## SEMICONDUCTOR

 TECHNICAL DATA

P SUFFIX
PLASTIC PACKAGE
CASE 626


D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO-8)

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12015D	$\mathrm{T}^{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8
MC12016D		
MC12017D		
MC12015P		Plastic
MC12016P		
MC12017P		

## MC12015 MC12016 MC12017

MAXIMUM RATINGS [tblhead]

Rating	Symbol	Value	Unit
Regulated Voltage, Pin 7	$\mathrm{~V}_{\text {reg }}$	8.0	Vdc
Power Supply Voltage, Pin 8	$\mathrm{V}_{\mathrm{CC}}$	10	Vdc
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +175	${ }^{\circ} \mathrm{C}$

NOTE: ESD data available upon request.

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=5.5$ to $9.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{reg}}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave Input)	$\begin{aligned} & f_{\text {max }} \\ & f_{\text {min }} \\ & \hline \end{aligned}$	$225$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	$35$	MHz
Supply Current	ICC	-	6.0	7.8	mA
Control Input HIGH ( $\div 32,40$ or 64)	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	-	V
Control Input LOW ( $\div 33,41$ or 65 )	$\mathrm{V}_{\text {IL }}$	-	-	0.8	V
Output Voltage HIGH ( ${ }_{\text {source }}=50 \mu \mathrm{~A}$ ) [ Nofe 1]	$\mathrm{V}_{\mathrm{OH}}$	2.5	-	-	V
Output Voltage LOW ( $\mathrm{l}_{\text {sink }}=2 \mathrm{~mA}$ ) [Note 1]	$\mathrm{V}_{\mathrm{OL}}$	-	-	0.5	V
Input Voltage Sensitivity $35 \mathrm{MHz}$   50 to 225 MHz	$\mathrm{V}_{\text {in }}$	$\begin{aligned} & 400 \\ & 200 \end{aligned}$		$\begin{aligned} & 800 \\ & 800 \end{aligned}$	mVpp
PLL Response Time [Notes 2 and 3]	tPLL	-	-	$\mathrm{t}_{\text {out }}$ to 70	ns

NOTES: 1. Pin 2 connected to Pin 3.
2. tPLL = the period of time the PLL has from the prescaler rising output tranistion $(50 \%)$ to the modulus control input edge transition (50\%) to ensure proper modulus selection.
3. $\mathrm{t}_{\text {out }}=$ period of output waveform.

## 520 MHz Dual Modulus Prescaler

The MC12018 is a dual modulus prescaler which divides by 128 and 129. An internal regulator is provided to allow this device to be used over a wide range of power supply voltages. The devices may be operated by applying a supply voltage of $5.0 \mathrm{Vdc} \pm 10 \%$ at Pin 7 , or by applying an unregulated voltage source from 5.5 Vdc to 9.5 Vdc to Pin 8.

- 520 MHz Toggle Frequency
- Low-Power 8.0 mA Typical
- Control Input Is Compatible With Standard CMOS and TTL
- Supply Voltage 4.5 V to 9.5 V
- On-Chip $10 \mathrm{k} \Omega$ Resistor from Positive Edge to Ground



## MECL PLL COMPONENTS $\div 128 / 129$ DUAL MODULUS PRESCALER

SEMICONDUCTOR TECHNICAL DATA


## PIN CONNECTIONS


(Top View)

ORDERING INFORMATION

Device	Operating   Temperature Range	Package
MC12018D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8
MC12018P		

## MC12018

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Regulated Voltage, Pin 7	$\mathrm{V}_{\text {reg }}$	8.0	Vdc
Power Supply Voltage, Pin 8	$\mathrm{V}_{\mathrm{CC}}$	10	Vdc
Operating Temperature Range	$\mathrm{T}_{\mathrm{A}}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +175	${ }^{\circ} \mathrm{C}$

NOTE; ESD data available upon request.

ELECTRICAL CHARACTERISTICS ( $\mathrm{V}_{\mathrm{CC}}=5.5$ to $9.5 \mathrm{~V} ; \mathrm{V}_{\text {reg }}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$ ), unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave Input)	$f_{\text {max }}$   $f_{\text {min }}$	$520$	-	$\frac{-}{75}$	MHz
Supply Current	ICC	-	8.0	10.7	mA
Control Input HIGH ( $\div 128$ )	$\mathrm{V}_{\mathrm{IH}}$	2.0	-	-	V
Control Input LOW ( $\div 129$ )	$\mathrm{V}_{\text {IL }}$	-	-	0.8	V
Differntial Output Voltage ( ${ }_{\text {source }}=-200 \mu \mathrm{~A}$ )	$V_{\text {out }}$	0.8	1.0	-	V
```Input Voltage Sensitivity 75 MHz \(125-520 \mathrm{MHz}\)```	$\mathrm{V}_{\text {in }}$	$\begin{aligned} & 400 \\ & 200 \end{aligned}$	-	$\begin{aligned} & 800 \\ & 800 \end{aligned}$	mV PP
PLL Response Time (Notes 1 and 2)	tPLL	-	-	$\mathrm{t}_{\text {out }}$-50	ns

NOTES: 1. tPLL = the period of time the PLL has from the prescaler rising output tranistion (50\%) to the modulus control input edge transition (50\%) to ensure proper modulus selection.
2. $\mathrm{t}_{\text {out }}=$ period of output waveform.

Dual Modulus Prescaler

The MC12019 is a divide by 20 and 21 dual modulus prescaler. It will divide by 20 when the modulus control input is HIGH and divide by 21 when the modulus control input is LOW.

- 225 MHz Toggle Frequency
- Low-Power 7.5 mA Maximum at 5.5 V
- Control Input is Compatible with Standard Motorola CMOS Synthesizers
- Emitter Follower Output

MECL PLL COMPONENTS

 $\div 20 / 21$ DUAL MODULUS PRESCALER
SEMICONDUCTOR

 TECHNICAL DATA

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12019D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8
MC12019P		

MC12019

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage, Pin 7	V_{CC}	8.0	Vdc
Operating Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +175	${ }^{\circ} \mathrm{C}$

NOTE; ESD data available upon request.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$), unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave Input)	$f_{\text {max }}$ $f_{\text {min }}$	225 -	-	$\overline{20}$	MHz
Supply Current	ICC	-	-	7.5	mA
Control Input HIGH ($\div 20$)	V_{IH}	2.0	-	-	V
Control Input LOW ($\div 21$)	V_{IL}	-	-	0.8	V
Output Swing Voltage (10 k Ω to ground)	$V_{\text {out }}$	600	-	1200	mVpp
Input Voltage Sensitivity 20 MHz to 225 MHz	$\mathrm{V}_{\text {in }}$	200	-	800	mVPP
PLL Response Time (Notes 1 and 2)	tpLL	-	-	$\mathrm{t}_{\text {out }}$-70	ns

NOTES: 1. tPLL = the period of time the PLL has from the prescaler rising output tranistion (50\%) to the modulus control input edge transition (50\%) to ensure proper modulus selection.
2. $\mathrm{t}_{\text {out }}=$ period of output waveform.

Consider MC12052A for New Designs 1.1GHz Dual Modulus Prescaler

MC12022A
MC12022B

MECL PLL COMPONENTS
 $\div 64 / 65, \div 128 / 129$
 DUAL MODULUS PRESCALER

SEMICONDUCTOR
TECHNICAL DATA

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12022AD	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8
MC12022AP		Plastic
MC12022BD		SO-8
MC12022BP		Plastic

MC12022A MC12022B

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage, Pin 2	V_{CC}	-0.5 to +7.0	Vdc
Operating Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE; ESD data available upon request.
ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave Input)	f_{t}	0.1	1.6	1.1	GHz
Supply Current Output Unloaded (Pin 2)	ICC	-	7.5	10	mA
Modulus Control Input High (MC)	$\mathrm{V}_{\mathrm{IH} 1}$	2.0	-	V_{CC}	V
Modulus Control Input Low (MC)	$\mathrm{V}_{\text {IL1 }}$	-	-	0.8	V
Divide Ratio Control Input High (SW)	$\mathrm{V}_{\mathrm{IH} 2}$	V_{CC}	V_{Cc}	V_{CC}	Vdc
Divide Ratio Control Input Low (SW)	$\mathrm{V}_{\text {IL2 }}$	Open	Open	Open	-
Output Voltage Swing ($\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$)	$\mathrm{V}_{\text {out }}$	1.0	1.6	-	V_{pp}
Modulus Setup Time MC to Out	$t_{\text {set }}$	-	11	16	ns
Input Voltage Sensitivity $\begin{array}{r}250-1100 \mathrm{MHz} \\ 100-250 \mathrm{MHz}\end{array}$	$\mathrm{V}_{\text {in }}$	$\begin{aligned} & \hline 100 \\ & 400 \end{aligned}$	-	$\begin{aligned} & 1500 \\ & 1500 \end{aligned}$	mVpp
Output Current ($\left.\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega\right)$	10	-	1.5	4.0	mA

Figure 2. Typical Output Waveforms

$\left(\div 64,500 \mathrm{MHz}\right.$ Input Frequency, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Output Loaded $)$

$\left(\div 128,1.1 \mathrm{GHz}\right.$ Input Frequency, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Output Loaded $)$

MC12022A MC12022B

Figure 3. Modulus Setup Time

Modulus setup time MC to out is the MC setup or MC release plus the prop delay.

Figure 4. AC Test Circuit

Figure 5. Input Signal Amplitude versus Input Frequency
Divide Ratio $=8 ; \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 6. Output Amplitude versus Input Frequency

Figure 7. Typical Input Impedance versus Input Frequency

1.1 GHz Low-Voltage Dual Modulus Prescaler

The MC12022LVA can be used with CMOS synthesizers requiring positive edges to trigger internal counters such as Motorola's MC145XXX series in a PLL to provide tuning signals up to 1.1 GHz in programmable frequency steps.

The MC12022LVB can be used with CMOS synthesizers requiring negative edges to trigger internal counters.

A Divide Ratio Control (SW) permits selection of a 64/65 or 128/129 divide ratio as desired.

The Modulus Control (MC) selects the proper divide number after SW has been biased to select the desired divide ratio.
NOTE: The "B" Version Is Not Recommended for New Designs

- 1.1 GHz Toggle Frequency
- Supply Voltage of 2.7 to 5.0 V
- Low-Power 4.0 mA Typical at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
- Operating Temperature Range of -40 to $85^{\circ} \mathrm{C}$
- Short Setup Time (tset) 16ns Maximum @ 1.1 GHz
- Modulus Control Input Level Is Compatible With Standard CMOS and TTL

FUNCTIONAL TABLE

SW	MC	Divide Ratio
H	H	64
H	L	65
L	H	128
L	L	129

NOTES: 1. $\mathrm{SW}: \mathrm{H}=\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=$ Open. A logic L can also be applied by grouunding this pin, but this is not recommended due to increased power soncumption. 2. $\mathrm{MC}: \mathrm{H}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=\mathrm{GND}$ to 0.8 V .

DESIGN GUIDE

Criteria	Value	Unit
Internal Gate Count*	67	ea
Internal Gate Propagation Delay	200	ps
Internal Gate Power Dissipation	0.75	mW
Speed Power Product	0.15	pJ

NOTE: * Equivalent to a two-input NAND gate

MECL PLL COMPONENTS
 $\div 64 / 65, \div 128 / 129$
 DUAL MODULUS PRESCALER

SEMICONDUCTOR

TECHNICAL DATA

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temp Range	Package
MC12022LVAD	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	SO-8
MC12022LVAP		Plastic
MC12022LVBD		SO-8
MC12022LVBP		Plastic

MC12022LVA MC12022LVB

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage, Pin 2	V_{CC}	-0.5 to 7.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Modulus Control Input, Pin 6	MC	-0.5 to 6.5	Vdc

NOTE; ESD data available upon request.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave Input)	ft_{t}	0.1	1.4	1.1	GHz
Supply Current Output Unloaded (Pin 2)	ICC	-	4.7	6.5	mA
Supply Current Output Unloaded (Pin 2) at 5.0 Vdc	${ }^{\text {ICCH }}$		5.8	8.0	mA
Modulus Control Input High (MC)	$\mathrm{V}_{\mathrm{IH} 1}$	2.0	-	V_{CC}	V
Modulus Control Input Low (MC)	$\mathrm{V}_{\text {IL } 1}$	-	-	0.8	V
Divide Ratio Control Input High (SW)	$\mathrm{V}_{\mathrm{IH} 2}$	V_{CC}	V_{CC}	V_{CC}	Vdc
Divide Ratio Control Input Low (SW)	$\mathrm{V}_{\text {IL2 }}$	Open	Open	Open	-
Output Voltage Swing ($\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$; $\mathrm{R}_{\mathrm{L}}=1.1 \mathrm{k} \Omega$ at 2.7 Vdc)	$V_{\text {out }}$	0.8	1.0	-	V_{pp}
Output Voltage Swing ($\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$ at 5.0 Vdc)	$V_{\text {out }}$	1.0	1.6	-	V_{pp}
Modulus Setup Time MC to Out	$t_{\text {set }}$	-	11	16	ns
Input Voltage Sensitivity $\begin{aligned} & 250-1100 \mathrm{MHz} \\ & 100-250 \mathrm{MHz}\end{aligned}$	$\left.\mathrm{V}_{\text {in(}} \mathrm{min}\right)$	$\begin{aligned} & 100 \\ & 400 \end{aligned}$		$\begin{aligned} & 1500 \\ & 1500 \end{aligned}$	mVpp
Output Current ($\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$ at 2.7 Vdc)	10	-	1.2	4.0	mA
Output Current ($\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$ at 5.0 Vdc$)$	10	-	1.2	4.0	mA

Figure 1. Logic Diagram (MC12022LVA)

Figure 2. Modulus Setup Time

Modulus setup time MC to out is the MC setup or MC release plus the prop delay.

Figure 3. Typical Output Waveforms

$\left(\div 64,500 \mathrm{MHz}\right.$ Input Frequency, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Output Loaded)

$\left(\div 128,1.1 \mathrm{GHz}\right.$ Input Frequency, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Output Loaded $)$

Figure 4. AC Test Circuit

MC12022LVA MC12022LVB

Figure 5. Input Signal Amplitude versus Input Frequency

Figure 6. Output Amplitude versus Input Frequency

FREQUENCY (MHz)

MC12022LVA MC12022LVB

Figure 7. Typical Input Impedance versus Input Frequency

Dual Modulus Prescaler

The MC12022SLA can be used with CMOS synthesizers requiring positive edges to trigger internal counters such as Motorola's MC145XXX series in a PLL to provide tuning signals up to 1.1 GHz in programmable frequency steps. This device is a reduced current version of the MC12022A/B.

The MC12022SLB can be used with CMOS synthesizers requiring negative edges to trigger internal counters.

A Divide Ratio Control (SW) permits selection of a 64/65 or 128/129 divide ratio as desired.

The Modulus Control (MC) selects the proper divide number after SW has been biased to select the desired divide ratio.

- 1.1 GHz Toggle Frequency
- Supply Voltage of 4.5 to 5.5 V
- Low-Power 4.0 mA Typical
- Operating Temperature Range of -40 to $85^{\circ} \mathrm{C}$
- Short Setup Time ($\mathrm{t}_{\text {set }}$) 16 ns Maximum @ 1.1 GHz
- Modulus Control Input Level Is Compatible With Standard CMOS and TTL

FUNCTIONAL TABLE

SW	MC	Divide Ratio
H	H	64
H	L	65
L	H	128
L	L	129

NOTES: 1. SW: $\mathrm{H}=\mathrm{V}_{\mathrm{CC}}$, $\mathrm{L}=$ Open. A logic L can also be applied by grouunding this pin, but this is not recommended due to increased power soncumption.
2. $\mathrm{MC}: \mathrm{H}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=\mathrm{GND}$ to 0.8 V .

DESIGN GUIDE

Criteria	Value	Unit
Internal Gate Count*	67	ea
Internal Gate Propagation Delay	200	ps
Internal Gate Power Dissipation	0.75	mW
Speed Power Product	0.15	pJ

NOTE: * Equivalent to a two-input NAND gate

MECL PLL COMPONENTS
 $\div 64 / 65, \div 128 / 129$
 DUAL MODULUS PRESCALER

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temp Range	Package
MC12022SLAD		SO-8
MC12022SLAP	$\mathrm{T}_{\mathrm{A}}=$ -40° to $+85^{\circ} \mathrm{C}$	Plastic
	MC12022SLBD	SO-8
	MC12022SLBP	

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage, Pin 2	V_{CC}	-0.5 to 7.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Modulus Control Input, Pin 6	MC	-0.5 to 6.5	Vdc

NOTE; ESD data available upon request.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave Input)	ft_{t}	0.1	1.4	1.1	GHz
Supply Current Output Unloaded (Pin 2) at 5.0 Vdc	ICC	-	3.8	6.5	mA
Modulus Control Input High (MC)	$\mathrm{V}_{\mathrm{IH} 1}$	2.0	-	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.5 \mathrm{~V} \end{gathered}$	V
Modulus Control Input Low (MC)	$\mathrm{V}_{\text {IL1 }}$	-	-	0.8	V
Divide Ratio Control Input High (SW)	$\mathrm{V}_{\mathrm{IH} 2}$	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ -0.5 \mathrm{~V} \\ \hline \end{gathered}$	V_{CC}	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ -0.5 \mathrm{~V} \\ \hline \end{gathered}$	Vdc
Divide Ratio Control Input Low (SW)	$\mathrm{V}_{\text {IL2 }}$	Open	Open	Open	-
Output Voltage Swing ($\mathrm{C}_{\mathrm{L}}=8.0 \mathrm{pF}$; $\mathrm{R}_{\mathrm{L}}=14.4 \mathrm{k} \Omega$)	$V_{\text {out }}$	1.0	1.6	-	V_{pp}
Modulus Setup Time MC to Out	$\mathrm{t}_{\text {set }}$	-	11	16	ns
Input Voltage Sensitivity $\begin{array}{r}250-1100 \mathrm{MHz} \\ 100-250 \mathrm{MHz}\end{array}$	$\mathrm{V}_{\text {in }}(\mathrm{min})$	$\begin{aligned} & 100 \\ & 400 \end{aligned}$	-	$\begin{aligned} & \hline 1500 \\ & 1500 \end{aligned}$	mVpp
Output Current ($\mathrm{C}_{\mathrm{L}}=8.0 \mathrm{pF}$; $\mathrm{R}_{\mathrm{L}}=4.4 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$)	10	-	. 75	4.0	mA

Figure 1. Logic Diagram (MC12022SLA)

Figure 2. Modulus Setup Time

Modulus setup time MC to out is the MC setup or MC release plus the prop delay.

MC12022SLA MC12022SLB

Figure 3. Typical Output Waveforms

$\left(\div 64,500 \mathrm{MHz}\right.$ Input Frequency, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Output Loaded $)$

$\left(\div 128,1.1 \mathrm{GHz}\right.$ Input Frequency, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Output Loaded $)$

Figure 4. AC Test Circuit

MC12022SLA MC12022SLB

Figure 5. Input Signal Amplitude versus Input Frequency

Figure 6. Output Amplitude versus Input Frequency

MC12022SLA MC12022SLB

Figure 7. Typical Input Impedance versus Input Frequency

R

225 MHz Prescaler

The MC12023 is a prescaler which will divide by 64 . This device may be operated over a supply voltage range of 3.2 to 5.5 V .

- 225 MHz Toggle Frequency
- Low-Power 4.8 mA Maximum at 5.5 V
- Operating Supply Voltage of 3.2 to 5.5 V
- Connecting Pins 2 and 3 Allows Driving One TTL Load

MAXIMUM RATINGS

Characteristic	Symbol	Range	Unit
Power Supply Voltage	V_{CC}	0 to 8.0	Vdc
Operating Temperature Range	T_{A}	0 to 70	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 175	${ }^{\circ} \mathrm{C}$

NOTE: ESD data available upon request.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=3.2\right.$ to 5.5 V ; $\mathrm{T}_{\mathrm{A}}=0$ to $+70^{\circ} \mathrm{C}$)

Characteristic	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave Input)	$\mathrm{f}_{\text {max }}$ $\mathrm{f}_{\mathrm{min}}$	225 -	-	-	35

NOTES: 1. Pin 2 connected to Pin 3
2. Isource $=50 \mu \mathrm{~A}$
3. $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$

Figure 1. Prescaler Block Diagram

MECL PLL COMPONENTS

$\div 64$ PRESCALER

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12023D	$T_{A}=0^{\circ}$ to $70^{\circ} \mathrm{C}$	SO-8
MC12023P		

1.1 GHz Dual Modulus Prescaler

The MC12026 is a high frequency, low voltage dual modulus prescaler used in phase-locked loop (PLL) applications.

The MC12026A can be used with CMOS synthesizers requiring positive edges to trigger internal counters such as Motorola's MC145xxx series in a PLL to provide tuning signals up to 1.1 GHz in programmable frequency steps.

The MC12026B can be used with CMOS synthesizers requiring negative edges to trigger internal counters.

A Divide Ratio Control (SW) permits selection of an 8/9 or $16 / 17$ divide ratio as desired.

The Modulus Control (MC) selects the proper divide number after SW has been biased to select the desired divide ratio.

NOTE: The "B" Version Is Not Recommended for New Designs

- 1.1 GHz Toggle Frequency
- Supply Voltage 4.5 to 5.5 V
- Low Power 4.0 mA Typical
- Operating Temperature Range of -40 to $85^{\circ} \mathrm{C}$
- The MC12026 is Pin Compatible With the MC12022
- Short Setup Time (tset $^{\text {) }}$) 6ns Typical @ 1.1 GHz
- Modulus Control Input Level is Compatible With Standard CMOS and TTL

FUNCTIONAL TABLE

SW	MC	Divide Ratio
H	H	8
H	L	9
L	H	16
L	L	17

NOTES: 1. SW: $H=V_{C C}, L=O p e n . ~ A ~ l o g i c ~ L ~ c a n ~ a l s o ~ b e ~ a p p l i e d ~ b y ~ g r o u u n d i n g ~ t h i s ~ p i n, ~$ but this is not recommended due to increased power soncumption.
2. $\mathrm{MC}: \mathrm{H}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=\mathrm{GND}$ to 0.8 V .

MAXIMUM RATINGS

Characteristics	Symbol	Range	Unit
Power Supply Voltage, Pin 2	$\mathrm{~V}_{\mathrm{CC}}$	-0.5 to 7.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Modulus Control Input, Pin 6	MC	-0.5 to 6.5	Vdc
Maximum Output Current, Pin 4	IO	10.0	mA

NOTE: ESD data available upon request.

MECL PLL COMPONENTS

$\div 8 / 9, \div 16 / 17$
DUAL MODULUS PRESCALER

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

ORDERING INFORMATION		
Device	Operating Temp Range	Package
MC12026AD	$\mathrm{T}^{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8
MC12026AP		Plastic
MC12026BD		SO-8
MC120226BP		Plastic

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sin Wave)	ft_{t}	0.1	1.4	1.1	GHz
Supply Current Output Unloaded (Pin 2)	ICC	-	4.0	5.3	mA
Modulus Control Input High (MC)	$\mathrm{V}_{\mathrm{IH} 1}$	2.0	-	V_{CC}	V
Modulus Control Input Low (MC)	VIL1	GND	-	0.8	V
Divide Ratio Control Input High (SW)	$\mathrm{V}_{\mathrm{IH} 2}$	$\mathrm{V}_{\text {CC }}-0.5 \mathrm{~V}$	V_{CC}	$\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	V
Divide Ratio Control Input Low (SW)	$\mathrm{V}_{\text {IL2 }}$	OPEN	OPEN	OPEN	-
Output Voltage Swing $\begin{aligned} & \left(R_{L}=560 \Omega ; I_{O}=5.5 \mathrm{~mA}\right)^{1} \\ & \left(R_{L}=1.1 \mathrm{k} \Omega ; I_{O}=2.9 \mathrm{~mA}\right)^{2} \end{aligned}$	$\mathrm{V}_{\text {out }}$	1.0	1.6	-	V_{pp}
Modulus Setup Time MC to Out ${ }^{3}$	tSET	-	6	9	ns
$\begin{aligned} & \text { Input Voltage Sensitivity } \\ & 100-250 \mathrm{MHz} \\ & 250-1100 \mathrm{MHz} \end{aligned}$	$\mathrm{V}_{\text {in }}$	$\begin{aligned} & 400 \\ & 100 \end{aligned}$	-	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	mVpp

notes: 1. Divide Ratio of $\div 8 / 9$ at $1.1 \mathrm{GHz}, \mathrm{C}_{\mathrm{L}}=8.0 \mathrm{pF}$
2. Divide Ratio of $\div 16 / 17$ at $1.1 \mathrm{GHz}, \mathrm{C}_{\mathrm{L}}=8.0 \mathrm{pF}$
3. Assuming $R_{L}=560 \Omega$ at 1.1 GHz

Figure 1. Logic Diagram (MC12026A)

Figure 2. Modulus Setup Time

Modulus setup time MC to out is the MC setup or MC release plus the prop delay.

MC12026A MC12026B

Figure 3. AC Test Circuit

Figure 4. Input Signal Amplitude versus Input Frequency

Figure 5. Output Amplitude versus Input Frequency

MC12026A MC12026B
Figure 6. Typical Output Waveform

$\left(\div 8,1.1 \mathrm{GHz}\right.$ Input Frequency, $\mathrm{V}_{\mathrm{CC}}=5.0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Output Loaded With 8.0 pF$)$

MC12026A MC12026B

Figure 7. Typical Input Impedance versus Input Frequency

1.1 GHz Dual Modulus Prescaler

The MC12028A can be used with CMOS synthesizers requiring positive edges to trigger internal counters such as Motorola's MC145XXX series in a PLL to provide tuning signals up to 1.1 GHz in programmable frequency steps.

The MC12028B can be used with CMOS synthesizers requiring negative edges to trigger internal counters.

A Divide Ratio Control (SW) permits selection of a $32 / 33$ or $64 / 65$ divide ratio as desired.

The Modulus Control (MC) selects the proper divide number after SW has been biased to select the desired divide ratio.

NOTE: The "B" Version Is Not Recommended for New Designs

- 1.1 GHz Toggle Frequency
- MC12028A for Positive Edge Triggered Synthesizers
- 6.5 mA Maximum, -40 to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{Vdc}$
- Modulus Control Input Level Is Compatible With Standard CMOS and TTL
- Low-Power 4.0 mA Typical

FUNCTIONAL TABLE

SW	MC	Divide Ratio
H	H	32
H	L	33
L	L	64
L	65	

NOTES: 1. SW: $H=V_{C C}, L=O p e n . ~ A ~ l o g i c ~ L ~ c a n ~ a l s o ~ b e ~ a p p l i e d ~ b y ~ g r o u u n d i n g ~ t h i s ~ p i n, ~$ but this is not recommended due to increased power soncumption.
2. $\mathrm{MC}: \mathrm{H}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=\mathrm{GND}$ to 0.8 V .

DESIGN GUIDE

Criteria	Value	Unit
Internal Gate Count*	67	ea
Internal Gate Propagation Delay	200	ps
Internal Gate Power Dissipation	0.75	mW
Speed Power Product	0.15	pJ

NOTE: * Equivalent to a two-input NAND gate

MAXIMUM RATINGS

Characteristic	Symbol	Range	Unit
Power Supply Voltage, Pin 2	$\mathrm{~V}_{\mathrm{CC}}$	-0.5 to 7.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Modulus Control Input, Pin 6	MC	-0.5 to 6.5	Vdc

[^13]
MECL PLL COMPONENTS

$\div 64 / 65, \div 128 / 129$
DUAL MODULUS PRESCALER

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temp Range	Package
MC12028AD	$\mathrm{T}^{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8
MC12028AP		Plastic
MC12028BD		SO-8
MC120228BP		Plastic

MC12028A MC12028B
ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=4.5\right.$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave Input)	ft_{t}	0.1	1.4	1.1	GHz
Supply Current Output Unloaded (Pin 2)	ICC	-	4.0	6.5	mA
Modulus Control Input High (MC)	$\mathrm{V}_{\mathrm{IH} 1}$	2.0	-	V_{CC}	V
Modulus Control Input Low (MC)	$\mathrm{V}_{\text {IL1 }}$	-	-	0.8	V
Divide Ratio Control Input High (SW)	$\mathrm{V}_{\mathrm{IH} 2}$	VCC	V_{CC}	V_{CC}	Vdc
Divide Ratio Control Input Low (SW)	VIL2	Open	Open	Open	-
Output Voltage Swing ($\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$; $\mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$)	$V_{\text {out }}$	1.0	1.6		V_{pp}
Modulus Setup Time MC to Out	$t_{\text {set }}$	-	11	16	ns
Input Voltage Sensitivity $\begin{array}{r}250-1100 \mathrm{MHz} \\ 100-250 \mathrm{MHz}\end{array}$	$\mathrm{V}_{\text {in }}$	$\begin{aligned} & 100 \\ & 400 \end{aligned}$	-	$\begin{aligned} & 1500 \\ & 1500 \end{aligned}$	mVpp
Output Current ($\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$; $\mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$)	10	-	1.5	4.0	mA

Figure 1. Logic Diagram (MC12028A)

Figure 2. Modulus Setup Time

Modulus setup time MC to out is the MC setup or MC release plus the prop delay.

Figure 3. Typical Output Waveform

MC12028A MC12028B

Figure 4. AC Test Circuit

Figure 5. Typical Input Impedance versus Input Frequency

MC12028A MC12028B

Figure 6. Input Signal Amplitude versus Input Frequency

Divide Ratio = 32

Consider MC12054A for New Design 2.0GHz Dual Modulus Prescaler

The MC12032A can be used with CMOS synthesizers requiring positive edges to trigger internal counters such as Motorola's MC145XXX series in a PLL to provide tuning signals up to 2.0 GHz in programmable frequency steps.

The MC12032B can be used with CMOS synthesizers requiring negative edges to trigger internal counters.

A Divide Ratio Control (SW) permits selection of a 64/65 or 128/129 divide ratio as desired.

The Modulus Control (MC) selects the proper divide number after SW has been biased to select the desired divide ratio.
NOTE: The "B" Version Is Not Recommended for New Designs

- 2.0 GHz Toggle Frequency
- Supply Voltage 4.5 to 5.5 V
- MC12032A for Positive Edge Triggered Synthesizers
- 12 mA Maximum, -40 to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{Vdc}$
- Modulus Control Input Level Is Compatible With Standard CMOS and TTL
- Low-Power 8.5 mA Typical

FUNCTIONAL TABLE

SW	MC	Divide Ratio
H	H	64
H	L	65
L	H	128
L	L	129

NOTES: 1. SW: $\mathrm{H}=\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=$ Open. A logic L can also be applied by grouunding this pin, but this is not recommended due to increased power soncumption.
2. $\mathrm{MC}: \mathrm{H}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=\mathrm{GND}$ to 0.8 V .

DESIGN GUIDE

Criteria	Value	Unit
Internal Gate Count*	67	ea
Internal Gate Propagation Delay	200	ps
Internal Gate Power Dissipation	0.75	mW
Speed Power Product	0.15	pJ

NOTE: * Equivalent to a two-input NAND gate
MAXIMUM RATINGS

Characteristic	Symbol	Range	Unit
Power Supply Voltage, Pin 2	V_{CC}	-0.5 to 7.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Modulus Control Input, Pin 6	MC	-0.5 to 6.5	Vdc

NOTE: ESD data available upon request.

MECL PLL COMPONENTS

$\div 64 / 65, \div 128 / 129$
DUAL MODULUS PRESCALER

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temp Range	Package
MC12032AD		SO-8
MC12032AP	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	Plastic
		SO-8
		Plastic

MC12032A MC12032B
ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave Input)	ft_{t}	0.5	2.4	2.0	GHz
Supply Current Output Unloaded (Pin 2)	ICC	-	8.5	12	mA
Modulus Control Input High (MC)	$\mathrm{V}_{\mathrm{IH} 1}$	2.0	-	V_{CC}	V
Modulus Control Input Low (MC)	$\mathrm{V}_{\text {IL1 }}$	-	-	0.8	V
Divide Ratio Control Input High (SW)	$\mathrm{V}_{\mathrm{IH} 2}$	VCC	VCC	V_{CC}	Vdc
Divide Ratio Control Input Low (SW)	$\mathrm{V}_{\text {IL2 }}$	Open	Open	Open	-
Output Voltage Swing ($\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF}$; $\mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$)	$V_{\text {out }}$	1.0	1.6	-	V_{pp}
Modulus Setup Time MC to Out	$t_{\text {set }}$	-	8.0	10	ns
Input Voltage Sensitivity $500-2000 \mathrm{MHz}$	$\mathrm{V}_{\text {in }(\mathrm{min})}$	100	-	1500	mVpp
Output Current ($C_{L}=12 \mathrm{pF}$; $\mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega$)	10	-	1.5	4.0	mA

Figure 1. Logic Diagram (MC12032A)

Figure 2. Modulus Setup Time

Modulus setup time MC to out is the MC setup or MC release plus the prop delay.

Figure 3. Typical Output Waveforms

$\left(\div 64,500 \mathrm{MHz}\right.$ Input Frequency, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Output Loaded $)$

$\left(\div 128,1.1 \mathrm{GHz}\right.$ Input Frequency, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Output Loaded)

MC12032A MC12032B

Figure 4. AC Test Circuit

Figure 5. Input Signal Amplitude versus Input Frequency

Figure 6. Output Amplitude versus Input Frequency

Figure 7. Typical Input Impedance versus Input Frequency

MOTOROLA

2.0 GHz Low Voltage Dual Modulus Prescaler

The MC12033 is a high frequency low voltage dual modulus prescaler used in phase-locked loop (PLL) applications. A high frequency input signal up to 2.0 GHz is provided for cordless and cellular communication services such as DECT, PHS, and PCS. The MC12033 can be operated down to a minimum supply voltage of 2.7 V required for battery operated portable systems.

The MC12033A can be used with CMOS synthesizer requiring positive edges to trigger internal counters such as Motorola's MC145XXX series in a PLL to provide tuning signal up to 2.0 GHz in programmable frequency steps. The MC12033B can be used with CMOS synthesizers requiring negative edges to trigger internal counters.

A Divide Ratio Control (SW) permits selection of a $32 / 33$ or $64 / 65$ divide ratio as desired.

The Modulus Control (MC) selects the proper divide number after SW has been biased to select the desired divide ratio.

NOTE: The "B" Version Is Not Recommended for New Designs

- 2.0 GHz Toggle Frequency
- Supply Voltage 2.7 V to 5.0 Vdc
- Low Power 10.0 mA Typical at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
- Operating Temperature Range of -40 to $85^{\circ} \mathrm{C}$
- The MC12033 is Pin Compatible With the MC12022
- Short Setup Time ($\mathrm{t}_{\text {set }}$) 8ns Typical at 2.0 GHz
- Modulus Control Input Level Is Compatible With Standard CMOS and TTL

FUNCTIONAL TABLE

SW	MC	Divide Ratio
H	H	32
H	L	33
L	H	64
L	L	65

NOTES: 1. SW: $\mathrm{H}=\mathrm{V}_{\mathrm{CC}}$, $\mathrm{L}=$ Open. A logic L can also be applied by grouunding this pin, but this is not recommended due to increased power soncumption.
2. $\mathrm{MC}: \mathrm{H}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{C}}, \mathrm{L}=\mathrm{GND}$ to 0.8 V .

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Power Supply Voltage, Pin 2	V_{CC}	-0.5 to 7.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$
Modulus Control Input, Pin 6	MC	-0.5 to 6.5	Vdc
Maximum Output Current, Pin 4	IO	10.0	mA

NOTE: ESD data available upon request.

MECL PLL COMPONENTS
 $\div 32 / 33, \div 64 / 65$
 LOW VOLTAGE
 DUAL MODULUS PRESCALER

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temp Range	Package
MC12033AD	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8
MC12033AP		Plastic
MC12033BD		SO-8
MC12033BP		Plastic

MC12033A MC12033B
ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=2.7$ to $5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave)	ft	0.5	2.4	2.0	GHz
Supply Current Output (Pin 2)	${ }^{\text {ICC }}$	-	$\begin{aligned} & 10.0 \\ & 13.0 \end{aligned}$	$\begin{aligned} & 12.5 \\ & 16.0 \end{aligned}$	mA
Modulus Control Input HIGH (MC)	$\mathrm{V}_{\mathrm{IH} 1}$	2.0	-	V_{CC}	V
Modulus Control Input LOW (MC)	$\mathrm{V}_{\text {IL1 }}$	Gnd	-	0.8	V
Divide Ratio Control Input HIGH (SW)	$\mathrm{V}_{\mathrm{IH} 2}$	$\mathrm{V}_{\text {CC }}$	V_{CC}	$\mathrm{V}_{\text {CC }}$	V
Divide Ratio Control Input LOW (SW)	$\mathrm{V}_{\text {IL2 }}$	OPEN	OPEN	OPEN	-
Output Voltage Swing (Note 1) $\mathrm{C}_{\mathrm{L}}=8.0 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=600 \Omega$	V ${ }_{\text {OUT }}$	0.8	1.2	-	V_{pp}
Modulus Setup Time MC to OUT @ 2000 MHz	$t_{\text {set }}$	-	8.0	10	ns
Input Voltage Sensitivity $\quad 500-2000 \mathrm{MHz}$	$\mathrm{V}_{\text {IN }}$	100	-	1000	mVpp
Output Current (Note 2) $\begin{array}{r} \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=8.0 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=600 \Omega \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=8.0 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1.5 \mathrm{k} \Omega \end{array}$	1 O	-	$\begin{aligned} & 2.4 \\ & 2.4 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	mA

NOTES: 1. Valid over voltage range 2.7 to $5.0 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=600 \Omega @ \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=1.5 \mathrm{k} \Omega @ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
2. Divide ratio of $\div 32 / 33 @ 2.0 \mathrm{GHz}$

Figure 1. Logic Diagram (MC12033A)

Figure 2. Modulus Setup Time

Modulus setup time MC to out is the MC setup or MC release plus the prop delay.

Figure 3. AC Test Circuit

Figure 4. Input Signal Amplitude versus Input Frequency

Figure 5. Output Amplitude versus Input Frequency

2.0GHz Dual Modulus Prescaler

The MC12034A can be used with CMOS synthesizers requiring positive edges to trigger internal counters such as Motorola's MC145xxx series in a PLL to provide tuning signals up to 2.0 GHz in programmable frequency steps.

The MC12034B can be used with CMOS synthesizers requiring negative edges to trigger internal counters such as Fujitsu's MB87001.

A Divide Ratio Control (SW) permits selection of a 32/33 or 64/65 divide ratio as desired.

The Modulus Control (MC) selects the proper divide number after SW has been biased to select the desired divide ratio.

- 2.0 GHz Toggle Frequency
- Supply Voltage 4.5 to 5.5 V
- MC12034A for Positive Edge Triggered Synthesizers
- 12 mA Maximum, -40 to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{Vdc}$
- Modulus Control Input is Compatible with Standard CMOS and TTL
- Low-Power 8.5 mA Typical

FUNCTIONAL TABLE

SW	MC	Divide Ratio
H	H	32
H	L	33
L	L	64
L	65	

NOTES: 1. SW: $H=V_{C C}$, $L=$ Open. A logic L can also be applied by grounding this pin, but this is not recommended due to increased power consumption.
2. $\mathrm{MC}: \mathrm{H}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{C}}, \mathrm{L}=\mathrm{GND}$ to 0.8 V .

Design Criteria	Value	Unit
Internal Gate Count *	67	ea
Internal Gate Propagation Delay	200	ps
Internal Gate Power Dissipation	0.75	mW
Speed Power Product	0.15	pJ

NOTE: *Equivalent to a two-input NAND gate.
MAXIMUM RATINGS

Characteristic	Symbol	Range	Unit
Power Supply Voltage, Pin 2	$\mathrm{~V}_{\mathrm{CC}}$	-0.5 to +7.0	Vdc
Operating Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Modulus Control Input, Pin 6	MC	-0.5 to +6.5	Vdc

NOTES: 1. ESD data available upon request.
2. This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{CC}}$.

MECL PLL COMPONENTS $\div 32 / 33, \div 64 / 65$
 DUAL MODULUS PRESCALER

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temp Range	Package			
MC12034AD		SO-8			
MC12034AP				$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	Plastic
	MC12034BD	SO-8			
		Plastic			

MC12034A MC12034B
ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave)	f_{t}	0.5	2.4	2.0	GHz
Supply Current Output Unloaded (Pin 2)	I_{CC}	-	8.5	12	mA
Modulus Control Input High (MC)	$\mathrm{V}_{\mathrm{IH} 1}$	2.0	-	V_{CC}	V
Modulus Control Input Low (MC)	$\mathrm{V}_{\mathrm{IL} 1}$	-	-	0.8	V
Divide Ratio Control Input High (SW)	$\mathrm{V}_{\mathrm{IH} 2}$	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	V_{CC}	Vdc
Divide Ratio Control Input Low (SW)	$\mathrm{V}_{\mathrm{IL} 2}$	OPEN	OPEN	OPEN	-
Output Voltage Swing (CL $=12 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1.1 \mathrm{k} \Omega$)	$\mathrm{V}_{\text {out }}$	1.0	1.6	-	V_{pp}
Modulus Setup Time MC to Out	tSET	-	8.0	10.0	ns
Input Voltage Sensitivity $500-2000 \mathrm{MHz}$	$\mathrm{V}_{\text {in }}$	100	-	1500	mVpp
Output Current $\left(C_{L}=12 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1.1 \mathrm{k} \Omega\right)$	IO	-	-	3.5	mA

Figure 1. Logic Diagram (MC12034A)

Figure 2. Modulus Setup Time

Modulus setup time MC to out is the MC setup or MC release plus the prop. delay.

Figure 3. Typical Output Waveform

Figure 4. AC Test Circuit

Figure 5. Input Signal Amplitude versus Input Frequency

Figure 6. Output Amplitude versus Input Frequency

1.1 GHz Low Power Dual Modulus Prescaler

The MC12038A can be used with CMOS synthesizers requiring positive edges to trigger internal counters such as Motorola's MC145XXX series in a PLL to provide tuning signals up to 1.1 GHz in programmable frequency steps.

A Divide Ratio Control (SW) permits selection of a 127/128 or 255/256 divide ratio as desired.

The Modulus Control (MC) selects the proper divide number after SW has been biased to select the desired divide ratio.

- 1.1 GHz Toggle Frequency
- Supply Voltage of 4.5 to 5.5 V
- Low-Power 4.8 mA Typical
- Operating Temperature Range of -40 to $85^{\circ} \mathrm{C}$
- Short Setup Time ($\mathrm{t}_{\text {set }}$) 16ns Maximum @ 1.1 GHz
- Modulus Control Input Level Is Compatible With Standard CMOS and TTL
- On-Chip Output Termination

FUNCTIONAL TABLE

SW	MC	Divide Ratio
H	H	127
H	L	128
L	L	255
L	256	

NOTES: 1. $\mathrm{SW}: \mathrm{H}=\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=$ Open. A logic L can also be applied by grounding this pin, but this is not recommended due to increased power consumption.
2. $\mathrm{MC}: \mathrm{H}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=\mathrm{GND}$ to 0.8 V .

DESIGN GUIDE

Criteria	Value	Unit
Internal Gate Count*	67	ea
Internal Gate Propagation Delay	200	ps
Internal Gate Power Dissipation	0.75	mW
Speed Power Product	0.15	pJ

NOTE: * Equivalent to a two-input NAND gate
MAXIMUM RATINGS

Characteristic	Symbol	Range	Unit
Power Supply Voltage, Pin 2	$\mathrm{~V}_{\mathrm{CC}}$	-0.5 to 7.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Modulus Control Input, Pin 6	MC	-0.5 to 6.5	Vdc

NOTE: ESD data available upon request.

MECL PLL COMPONENTS $\div 127 / 128, \div 255 / 256$ DUAL MODULUS PRESCALER

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12038AD	$T_{A}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8
MC12038AP		Plastic

MC12038A
ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave Input)	f_{t}	0.1	1.4	1.1	GHz
Supply Current Output Unloaded (Pin 2) at 5.0 Vdc	I_{CC}	-	4.8	6.5	mA
Modulus Control Input High (MC)	$\mathrm{V}_{\mathrm{IH} 1}$	2.0	-	V_{CC}	V
Modulus Control Input Low (MC)	$\mathrm{V}_{\mathrm{IL} 1}$	-	-	0.8	V
Divide Ratio Control Input High (SW)	$\mathrm{V}_{\mathrm{IH} 2}$	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}	V_{CC}	Vdc
Divide Ratio Control Input Low (SW)	$\mathrm{V}_{\mathrm{IL} 2}$	Open	Open	Open	-
Output Voltage Swing (CL $=8.0 \mathrm{pF})$	$\mathrm{V}_{\text {out }}$	1.0	1.6	-	V_{pp}
Modulus Setup Time MC to Out	$\mathrm{I}_{\mathrm{Set}}$	-	11	16	ns
Input Voltage Sensitivity $250-1100 \mathrm{MHz}$					
$100-250 \mathrm{MHz}$	$\mathrm{V}_{\text {in }}(\mathrm{min})$	100	-	1500	mVpp

Figure 1. Logic Diagram (MC12038A)

Figure 2. Modulus Setup Time

Modulus setup time MC to out is the MC setup or MC release plus the prop delay

Figure 3. Typical Output Waveforms

($\div 128$, 1.1 GHz Input Frequency, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Output Loaded)

MC12038A

Figure 4. AC Test Circuit

Figure 5. Input Signal Amplitude versus Input Frequency

Figure 6. Output Amplitude versus Input Frequency

Figure 7. Typical Input Impedance versus Input Frequency

Phase-Frequency Detector

The MC12040 is a phase-frequency detector intended for use in systems requiring zero phase and frequency difference at lock. In combination with a voltage controlled oscillator (such as the MC1648, MC12147, MC12148 or MC12149), it is useful in a broad range of phase-locked loop applications.

- Operating Frequency $=80 \mathrm{MHz}$ Typical

Pin Conversion Table

14 PIN DIP	1	2	3	4	5	6	7	8	9	10	11	12	13	14
20 PIN PLCC	2	3	4	6	8	9	10	12	13	14	16	18	19	20

Inputs		Outputs				
\mathbf{R}	\mathbf{V}	\mathbf{U}	\mathbf{D}	$\overline{\mathbf{U}}$	$\overline{\mathbf{D}}$	
0	0	X	X	X	X	
0	1	X	X	X	X	
1	1	X	X	X	X	
0	1	X	X	X	X	
1	1	1	0	0	1	
0	1	1	0	0	1	
1	1	1	0	0	1	
1	0	1	0	0	1	
1	1	0	0	1	1	
1	0	0	0	1	1	
1	1	0	1	1	0	
1	0	0	1	1	0	
1	1	0	1	1	0	
0	1	0	1	1	0	
1	1	0	0	1	1	

PHASE-FREQUENCY DETECTOR
 SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC 12040 P	$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+75^{\circ} \mathrm{C}$	Plastic

ELECTRICAL CHARACTERISTICS

The MC12040 has been designed to meet the dc specifications shown in the test table after thermal equilibrium has been established. Outputs are terminated through a 50 ohm resistor to +3.0 V for +5.0 V tests and through a 50 ohm resistor to -2.0 V for -5.2 V tests.

NOTE: For more information on using an ECL device in a +5 V system, refer to Motorola Application Note AN1406/D, "Designing with PECL (ECL at +5.0 V)"

MC12040

Figure 1. AC Tests

NOTES:
8 All input and output cables to the scope are equal lengths of 50Ω coaxial cable.
9 Unused input and outputs are connected to a 50Ω resistor to ground.
10 The device under test must be preconditioned before performing the ac tests. Preconditioning may be accomplished by applying pulse generator 1 for a minimum of two pulses prior to pulse generator2. The device must be preconditioned again when inputs to pins 6 and 9 are interchanged. The same technique applies.

Symbol	Characteristic	Pin Under Test	Output Waveform	MC12040			Unit	TEST VOLTAGES/WAVEFORMS APPLIED TO PINS LISTED			
				$0^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$					
				Max	Max	Max		Pulse Gen 1	Pulse Gen 2	$\begin{aligned} & \mathrm{VEE} \\ & -3.0 \text { or } \\ & -3.2 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & +2.0 \mathrm{~V} \end{aligned}$
t_{6+4+}	Propagation Delay	6,4	B	4.6	4.6	5.0	ns	6	9	7	1,14
t6+12+		6,12	A	6.0	6.0	6.6		9	6		
t6+3-		6,3	A	4.5	4.5	4.9		6	9		
t6+11-		6,11	B	6.4	6.4	7.0		9	6		
t9+11+		9,11	B	4.6	4.6	5.0		9	6		
t9+3+		9,3	A	6.0	6.0	6.6		6	9		
t9+12-		9,12	A	4.5	4.5	4.9		9	6		
t9+4-		9,4	B	6.4	6.4	7.0		6	9		
t_{3+}	Output Rise Time	3	A	3.4	3.4	3.8	ns	6	9	7	1,14
t_{4+}		4	B					6	9		
t_{11+}		11	B					9	6		
t_{14+}		14	A					9	6		
t3-	Output Fall Time	3	A	3.4	3.4	3.8	ns	6	9	7	1,14
t_{4}		4	B					6	9		
${ }_{\text {t11- }}$		11	B					9	6		
t14-		14	A					9	6		

MC12040

APPLICATIONS INFORMATION

The MC12040 is a logic network designed for use as a phase comparator for MECL-compatible input signals. It determines the "lead" or "lag" phase relationship and the time difference between the leading edges of the waveforms. Since these edges occur only once per cycle, the detector has a range of $\pm 2 \pi$ radians.

Operation of the device may be illustrated by assuming two waveforms, R and V (Figure 2), of the same frequency but differing in phase. If the logic had established by past history that R was leading V , the U output of the detector (pin 4) would produce a positive pulse width equal to the phase difference and the D output (pin 11) would simply remain low.

On the other hand, it is also possible that V was leading R (Figure 2), giving rise to a positive pulse on the D output and a constant low level on the U output pin. Both outputs for the sample condition are valid since the determination of lead or lag is dependent on past edge crossing and initial conditions at start-up. A stable phase-locked loop will result from either condition.

Phase error information is contained in the output duty cycle-that is, the ratio of the output pulse width to total period. By integrating or low-pass filtering the outputs of the detector and shifting the level to accommodate ECL swings, usable analog information for the voltage controlled oscillator can be developed. A circuit useful for this function is shown in Figure 3.

Figure 2. Timing Diagram

Proper level shifting is accomplished by differentially driving the operational amplifier from the normally high outputs of the phase detector (U and D). Using this technique the quiescent differential voltage to the operational amplifier is zero (assuming matched " 1 " levels from the phase detector). The U and D outputs are then used to pass along phase information to the operational amplifier. Phase error summing is accomplished through resistors R1 connected to the inputs of the operational amplifier. Some R-C filtering imbedded within the input network (NO TAG) may be very beneficial since the very narrow correctional pulses of the MC12040 would not normally be integrated by the amplifier. Phase detector gain for this configuration is approximately 0.16 volts/radian.

System phase error stems from input offset voltage in the operational amplifier, mismatching of nominally equal resistors, and mismatching of phase detector "high" states between the outputs used for threshold setting and phase measuring. All these effects are reflected in the gain constant. For example, a 16 mV offset voltage in the amplifier would cause an error of $0.016 / 0.16=0.1$ radian or 5.7 degrees of error. Phase error can be trimmed to zero initially by trimming either input offset or one of the threshold resistors (R1 in Figure 3). Phase error over temperature depends on how much the offending parameters drift.

Figure 3. Typical Filter and Summing Network

1.1 GHz Super Low Power Dual Modulus Prescaler

The MC12052A is a super low power dual modulus prescaler used in phase-locked loop applications. Motorola's advanced Bipolar MOSAIC™ V technology is utilized to achieve low power dissipation of 2.7 mW at a minimum supply voltage of 2.7 V .

The MC12052A can be used with CMOS synthesizers requiring positive edges to trigger internal counters such as Motorola's MC145XXX series in a PLL to provide tuning signals up to 1.1 GHz in programmable frequency steps.

A Divide Ratio Control (SW) permits selection of a $64 / 65$ or 128/129 divide ratio as desired.

The Modulus Control (MC) selects the proper divide number after SW has been biased to select the desired divide ratio.

- 1.1 GHz Toggle Frequency
- The MC12052 is Pin and Functionally Compatible with the MC12022
- Low Power 1.0 mA Typical
- 2.0 mA Maximum, -40 to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 Vdc
- Short Setup Time ($\mathrm{t}_{\text {set }}$) 16 ns Maximum @ 1.1 GHz
- Modulus Control Input Level is Compatible with Standard CMOS and TTL
- Maximum Input Voltage Should Be Limited to 6.5 Vdc

MOSAIC V is a trademark of Motorola

FUNCTIONAL TABLE

SW	MC	Divide Ratio
H	H	64
H	L	65
L	H	128
L	L	129

NOTES: 1. SW: $H=V_{C C}$, $L=$ Open. A logic L can also be applied by grounding this pin, but this is not recommended due to increased power consumption.
2. $\mathrm{MC}: \mathrm{H}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=\mathrm{GND}$ to 0.8 V .

MAXIMUM RATINGS

Characteristic	Symbol	Range	Unit
Power Supply Voltage, Pin 2	$\mathrm{~V}_{\mathrm{CC}}$	-0.5 to 7.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Modulus Control Input, Pin 6	MC	-0.5 to 6.5	Vdc

MECL PLL COMPONENTS $\div 64 / 65, \div 128 / 129$ LOW POWER DUAL MODULUS PRESCALER

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temp Range	Package
MC12052AD	$\mathrm{T}_{\mathrm{A}}=$ -40° to $+85^{\circ} \mathrm{C}$	SO-8
	SSOP-8	

MC12052A
ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=2.7$ to $5.5 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave Input)	f_{t}	0.1	1.4	1.1	GHz
Supply Current (Pin 2)	ICC	-	1.0	2.0	mA
Modulus Control Input High (MC)	$\mathrm{V}_{\mathrm{IH} 1}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	V
Modulus Control Input Low (MC)	$\mathrm{V}_{\text {IL } 1}$	Gnd	-	0.8	V
Divide Ratio Control Input High (SW)	$\mathrm{V}_{\mathrm{IH} 2}$	$\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$	V_{CC}	$\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	VDC
Divide Ratio Control Input Low (SW)	$\mathrm{V}_{\text {IL2 }}$	Open	Open	Open	-
Output Voltage Swing (Note 2) $\left(\mathrm{C}_{\mathrm{L}}=8.0 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega\right)$	$\mathrm{V}_{\text {out }}$	0.8	1.1	-	VPP
Modulus Setup Time MC to Out @ 1100 MHz	$\mathrm{t}_{\text {set }}$	-	11	16	ns
	$\mathrm{V}_{\text {in }}$	$\begin{aligned} & 100 \\ & 400 \end{aligned}$	-	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	mV PP
$\begin{aligned} & \text { Output Current (Note 1) } \\ & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=8.0 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{C}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=8.0 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=7.2 \mathrm{k} \Omega \end{aligned}$	10	-	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	mA

NOTES: 1. Divide ratio of $\div 64 / 65 @ 1.1 \mathrm{GHz}$
2. Valid over voltage range 2.7 to $5.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=3.3 \mathrm{k} \Omega @ \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=7.2 \mathrm{k} \Omega @ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Figure 1. Logic Diagram (MC12052A)
Figure 2. Modulus Setup Time

Modulus setup time MC to out is the MC setup or MC release plus the prop delay.

Figure 3. AC Test Circuit

Figure 4. Typical Input Impedance versus Input Frequency

1.1 GHz Super Low Power Dual Modulus Prescaler With Stand-By Mode

The MC12053A is a super low power $\div 64 / 65, \div 128 / 129$ dual modulus prescaler. Motorola's advanced Bipolar MOSAICTM V technology is utilized to achieve low power dissipation of 4.3 mW at a minimum supply voltage of 2.7 V .

The Divide Ratio Control input, SW, permits selection of divide ratio as desired. A HIGH on SW selects $\div 64 / 65$; an OPEN on SW selects $\div 128 / 129$. The Modulus Control input, MC, selects the proper divide number after SW has been biased to select the desired divide ratio.

Stand-by mode is featured to reduce current drain to $50 \mu \mathrm{~A}$ typical at 2.7 V when the stand-by pin, SB, is switched LOW, disabling the prescaler. On-chip output termination provides $500 \mu \mathrm{~A}$ (typical) output current, which is sufficient to drive a CMOS synthesizer input high impedance load (8.0 pF typical).

- 1.1 GHz Toggle Frequency
- Supply Voltage of 2.7 to 5.5 V
- Low Power 1.5 mA Typical at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
- Operating Temperature Range of -40 to $85^{\circ} \mathrm{C}$
- On-Chip Output Termination
- The MC12053A Is Pin and Functionally Compatible With the MC12036
- Modulus Control Input Level Is Compatible With Standard CMOS and TTL
MOSAIC V is a trademark of Motorola

FUNCTIONAL TABLE

SW	MC	Divide Ratio
H	H	64
H	L	65
L	H	128
L	129	

NOTES: 1. SW: $\mathrm{H}=\mathrm{V}_{\mathrm{CC}}-0.5$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=$ Open. A logic L can also be applied by grounding this pin, but this is not recommended due to increased power consumption.
2. MC \& $\mathrm{SB}: \mathrm{H}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=\mathrm{Gnd}$ to 0.8 V .

MAXIMUM RATINGS

Characteristic	Symbol	Range	Unit
Power Supply Voltage, Pin 2	V_{CC}	-0.5 to 7.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Modulus Control Input, Pin 6	MC	-0.5 to V_{CC}	Vdc
Maximum Output Current, Pin 4	I O	4.0	mA

NOTE: ESD data available upon request.

MECL PLL COMPONENTS $\div 64 / 65, \div 128 / 129$ LOW POWER DUAL MODULUS PRESCALER WITH STAND-BY MODE

SEMICONDUCTOR

 TECHNICAL DATA

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temp Range	Package
MC12053AD	$\mathrm{T}_{\mathrm{A}}=$ -40° to $+85^{\circ} \mathrm{C}$	SO-8
	SSOP-8 -8	

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=2.7$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise notex.)

Characteristic		Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave Input)		ft_{t}	0.1	1.4	1.1	GHz
Supply Current Output (Pin 2)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	ICC	-	$\begin{aligned} & 1.60 \\ & 1.75 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.5 \end{aligned}$	mA
Stand-By Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	ISB	-	$\begin{aligned} & 50 \\ & 100 \end{aligned}$	$\begin{aligned} & 250 \\ & 250 \end{aligned}$	$\mu \mathrm{A}$
Modulus Control \& Stand-By Input HIGH (MC \& SB)		$\mathrm{V}_{\mathrm{IH} 1}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
Modulus Control \& Stand-By Input LOW (MC \& SB)		$\mathrm{V}_{\text {IL1 }}$	Gnd	-	0.8	V
Divide Ratio Control Input HIGH (SW)		$\mathrm{V}_{\mathrm{IH} 2}$	$\mathrm{V}_{\mathrm{CC}}-0.5$	V_{CC}	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
Divide Ratio Control Input LOW (SW)		$\mathrm{V}_{\mathrm{IH} 2}$	Open	Open	Open	
Output Voltage Swing (Note 1)		$V_{\text {out }}$	0.8	1.1	-	V_{pp}
Modulus Setup Time MC to OUT at 1100 MHz		$t_{\text {set }}$	-	11	16	ns
Input Voltage Sensitivity	$\begin{array}{r} 250-1100 \mathrm{MHz} \\ 100-250 \mathrm{MHz} \end{array}$	$\mathrm{V}_{\text {in }}$	$\begin{aligned} & 100 \\ & 400 \end{aligned}$		$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	mVpp

NOTE: Assumes 8.0 pF high impedance load.

Figure 1. Logic Diagram (MC12053A)

Figure 2. Modulus Setup Time

Modulus setup time MC to out is the MC setup or MC release plus the prop delay.

Figure 3. AC Test Circuit

Figure 4. Input Signal Amplitude versus Input Frequency

Figure 5. Output Amplitude versus Input Frequency

Figure 6. Typical Input Impedance versus Input Frequency

2.0 GHz Super Low Power Dual Modulus Prescaler

The MC12054A is a super low power dual modulus prescaler used in phase-locked loop applications. Motorola's advanced Bipolar MOSAIC™ V technology is utilized to achieve low power dissipation of 5.4 mW at a minimum supply voltage of 2.7 V .

The MC12054A can be used with CMOS synthesizers requiring positive edges to trigger internal counters such as Motorola's MC145XXX series in a PLL to provide tuning signals up to 2.0 GHz in programmable frequency steps.

A Divide Ratio Control (SW) permits selection of a $64 / 65$ or 128/129 divide ratio as desired.

The Modulus Control (MC) selects the proper divide number after SW has been biased to select the desired divide ratio.

- 2.0 GHz Toggle Frequency
- The MC12054 is Pin and Functionally Compatible with the MC12031
- Low Power 2.0 mA Typical
- 2.6mA Maximum, -40 to $85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 Vdc
- Short Setup Time ($\mathrm{t}_{\text {set }}$) 10ns Maximum @ 2.0 GHz
- Modulus Control Input Level is Compatible with Standard CMOS and TTL
- Maximum Input Voltage Should Be Limited to 6.5 Vdc

MOSAIC V is a trademark of Motorola

FUNCTIONAL TABLE

SW	MC	Divide Ratio
H	H	64
H	L	65
L	H	128
L	L	129

NOTES: 1. SW: $H=V_{C C}$, $L=$ Open. A logic L can also be applied by grounding this pin, but this is not recommended due to increased power consumption.
2. $\mathrm{MC}: \mathrm{H}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=\mathrm{GND}$ to 0.8 V .

MAXIMUM RATINGS

Characteristic	Symbol	Range	Unit
Power Supply Voltage, Pin 2	$\mathrm{~V}_{\mathrm{CC}}$	-0.5 to 7.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Modulus Control Input, Pin 6	MC	-0.5 to 6.5	Vdc

NOTE: ESD data available upon request.

MECL PLL COMPONENTS $\div 64 / 65, \div 128 / 129$ LOW POWER DUAL MODULUS PRESCALER

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temp Range	Package
MC12054AD	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	SO-8
MC12054ASD		SSOP-8

MC12054A
ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=2.7$ to $5.5 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave Input)	f_{t}	0.1	2.5	2.0	GHz
Supply Current (Pin 2)	ICC	-	2.0	2.6	mA
Modulus Control Input High (MC)	$\mathrm{V}_{\mathrm{IH} 1}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	V
Modulus Control Input Low (MC)	$\mathrm{V}_{\text {IL1 }}$	Gnd	-	0.8	V
Divide Ratio Control Input High (SW)	$\mathrm{V}_{\mathrm{IH} 2}$	$\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$	V_{CC}	$\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	VDC
Divide Ratio Control Input Low (SW)	$\mathrm{V}_{\text {IL2 }}$	Open	Open	Open	-
Output Voltage Swing (Note 2) ($\mathrm{C}_{\mathrm{L}}=8.0 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1.65 \mathrm{k} \Omega$)	$\mathrm{V}_{\text {out }}$	0.8	1.1	-	V_{pp}
Modulus Setup Time MC to Out @ 2000 MHz	$\mathrm{t}_{\text {set }}$	-	8.0	10	ns
Input Voltage Sensitivity $\begin{aligned} & 250-2000 \mathrm{MHz} \\ & 100-250 \mathrm{MHz}\end{aligned}$	$\mathrm{V}_{\text {in }}$	$\begin{aligned} & 100 \\ & 400 \end{aligned}$	-	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	mVpp
$\begin{aligned} & \text { Output Current (Note 1) } \\ & \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=8.0 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=1.65 \mathrm{k} \Omega \\ & \mathrm{~V}_{\mathrm{C}}=5.0 \mathrm{~V}, \mathrm{C}_{\mathrm{L}}=8.0 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=3.6 \mathrm{k} \Omega \end{aligned}$	10	-	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	mA

NOTES: 1. Divide ratio of $\div 64 / 65 @ 2.0 \mathrm{GHz}$
2. Valid over voltage range 2.7 to $5.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=1.65 \mathrm{k} \Omega @ \mathrm{~V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{R}_{\mathrm{L}}=3.6 \mathrm{k} \Omega @ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

Figure 1. Logic Diagram (MC12054A)

Figure 2. Modulus Setup Time

Modulus setup time MC to out is the MC setup or MC release plus the prop delay.

Figure 3. AC Test Circuit

1.1 GHz Low Power Dual Modulus Prescaler

The MC12058 is a low power $\div 126 / 128, \div 254 / 256$ dual modulus prescaler. Motorola's advanced Bipolar MOSAIC ${ }^{\text {TM }} \mathrm{V}$ technology is utilized to achieve low power dissipation of 3.0 mW at a minimum supply voltage of 2.7 V. The MC12058 can be operated down to a minimum supply voltage of 2.7 V required for battery operated portable systems.

On-chip output termination provides $250 \mu \mathrm{~A}$ (typical) output current to drive a 8.0 pF (typical) high impedance load. The Divide Ratio Control input, SW, permits selection of divide ratio as desired. A HIGH on SW selects $\div 126 / 128$; an OPEN on SW selects $\div 254 / 256$. The Modulus Control input, MC, selects the proper divide number after SW has been biased to select the desired divide ratio.

- 1.1 GHz Toggle Frequency
- Supply Voltage 2.7 to 5.5 V
- Low Power 1.1 mA Typical at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
- Operating Temperature Range of -40 to $85^{\circ} \mathrm{C}$
- On-Chip Output Termination

MOSAIC V is a trademark of Motorola

FUNCTIONAL TABLE

SW	MC	Divide Ratio
H	H	126
H	L	128
L	H	254
L	L	256

NOTES: 1. SW: $\mathrm{H}=\mathrm{V}_{\mathrm{C}}$, $\mathrm{L}=$ Open. A logic L can also be applied by grounding this pin, but this is not recommended due to increased power consumption.
2. $\mathrm{MC}: \mathrm{H}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{C}}, \mathrm{L}=\mathrm{GND}$ to 0.8 V .

MAXIMUM RATINGS

Characteristic	Symbol	Range	Unit
Power Supply Voltage, Pin 2	V_{CC}	-0.5 to 7.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Modulus Control Input, Pin 6	MC	-0.5 to V_{CC}	Vdc
Maximum Output Current, Pin 4	IO	4.0	mA

NOTE: ESD data available upon request.

MECL PLL COMPONENTS
 $\div 126 / 128, \div 254 / 256$
 LOW POWER DUAL MODULUS PRESCALER

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temp Range	Package
MC12058D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8
MC12058SD		

MC12058

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 V ; $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave Input)	f_{t}	0.1	1.4	1.1	GHz
Supply Current Output (Pin 2)	I_{CC}	-	1.1	2.0	mA
Modulus Control Input HIGH (MC)	$\mathrm{V}_{\mathrm{IH} 1}$	2.0	-	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
Modulus Control Input LOW (MC)	$\mathrm{V}_{\mathrm{IL} 1}$	Gnd	-	0.8	V
Divide Ratio Control Input HIGH (SW)	$\mathrm{V}_{\mathrm{IH} 2}$	$\mathrm{~V}_{\mathrm{CC}}-0.5$	$\mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
Divide Ratio Control Input LOW (SW)	$\mathrm{V}_{\text {IH2 }}$	Open	Open	Open	-
Output Voltage Swing (Note 1)	$\mathrm{V}_{\text {out }}$	0.8	1.1	-	V_{pp}
Modulus Setup Time MC to OUT at 1100 MHz	$\mathrm{t}_{\text {set }}$	-	11	16	ns
Input Voltage Sensitivity	$\mathrm{V}_{\text {in }}$	100	-	1000	mVpp
		400	-	1000	

NOTE: Assumes 8.0 pF high impedance load.

Figure 1. Logic Diagram (MC12058)

MC12058

Figure 2. Modulus Setup Time

Modulus setup time MC to out is the MC
setup or MC release plus the prop delay.

Figure 3. AC Test Circuit

MC12058

Figure 4. Input Signal Amplitude versus Input Frequency

Figure 5. Output Amplitude versus Input Frequency

MC12058

Figure 6. Typical Input Impedance versus Input Frequency

Crystal Oscillator

The MC12061 is for use with an external crystal to form a crystal controlled oscillator. In addition to the fundamental series mode crystal, two bypass capacitors are required (plus usual power supply pin bypass capacitors). Translators are provided internally for MECL and TTL outputs.

- Frequency Range $=2.0$ to 20 MHz
- Temperature Range $=0$ to $+70^{\circ} \mathrm{C}$
- Single Supply Operation: +5.0 Vdc or -5.2 Vdc
- Three Outputs Available:
11.Complementary Sine Wave (600 mVpp typ)

12. Complementary MECL
13. Single Ended TTL

Figure 1. Block Diagram

CRYSTAL OSCILLATOR

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC 12061 P	$\mathrm{T}_{\mathrm{A}}=0^{\circ}$ to $+70^{\circ} \mathrm{C}$	Plastic

TYPICAL CIRCUIT CONFIGURATIONS

Note: $0.1 \mu \mathrm{~F}$ power supply pin bypass capacitors not shown.

Figure 2. Sine Wave Output

Figure 3. MTTL Output

Characteristic	MC12061
Mode of Operation	Fundamental Series Resonance
Frequency Range	$2.0 \mathrm{MHz}-20 \mathrm{MHz}$
Series Resistance, R1	Minimum at Fundamental
Maximum Effective Resistance $\mathrm{R}_{\mathrm{E}(\max)}$	155 ohms

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Pin Under Test	Test Limits							Unit
			$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+75^{\circ} \mathrm{C}$		
			Min	Max	Min	Typ	Max	Min	Max	
Power Supply Drain Current	ICC	1	-	-	13	16	19	-	-	mAdc
		$\begin{gathered} 1 \\ 11 \\ 16 \end{gathered}$	-	-	$\begin{gathered} 18 \\ - \\ 13 \end{gathered}$	$\begin{aligned} & 23 \\ & 3.0 \\ & 16 \end{aligned}$	$\begin{gathered} 28 \\ 4.0 \\ 19 \end{gathered}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & \text { - } \\ & \text { - } \end{aligned}$	
Input Current	linH	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	-	-	-	-	250 250	-	-	$\mu \mathrm{Adc}$
	l inL	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	-	-	-	-	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	-	-	$\mu \mathrm{Adc}$
Differential Offset Voltage	$\Delta \mathrm{V}$	$\begin{aligned} & 4 \text { to } 7 \\ & 2 \text { to } 3 \end{aligned}$	-	-	$\begin{gathered} \hline 40 \\ -200 \end{gathered}$	$\overline{0}$	$\begin{gathered} 325 \\ +200 \end{gathered}$	-	-	mAdc
Output Voltage Level	$V_{\text {out }}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	-	-	-	$\begin{aligned} & 3.5 \\ & 3.5 \end{aligned}$	-	-	-	Vdc
Logic '1' Output Voltage	$\begin{aligned} & \mathrm{VOH}_{\mathrm{OH}} \\ & \text { (Note 1) } \end{aligned}$	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 4.16 \\ & 4.16 \end{aligned}$	$\begin{aligned} & 4.04 \\ & 4.04 \end{aligned}$	-	$\begin{aligned} & 4.19 \\ & 4.19 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 4.28 \\ & 4.28 \end{aligned}$	Vdc
	$\mathrm{V}_{\mathrm{OH} 2}$	10	2.4	-	2.4	-	-	2.4	-	
Logic '0' Output Voltage	$\begin{aligned} & \text { VOL1 } \\ & (\text { Note 1) } \end{aligned}$	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 2.98 \\ & 2.98 \end{aligned}$	$\begin{aligned} & 3.43 \\ & 3.43 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 3.0 \end{aligned}$	-	$\begin{aligned} & 3.44 \\ & 3.44 \end{aligned}$	$\begin{aligned} & 3.02 \\ & 3.02 \end{aligned}$	$\begin{aligned} & 3.47 \\ & 3.47 \end{aligned}$	Vdc
	VOL2	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	-	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	-	-	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	-	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	
Logic '1' Threshold Voltage	$\mathrm{V}_{\text {OHA }}$	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 3.98 \\ & 3.98 \end{aligned}$	-	$\begin{aligned} & 4.02 \\ & 4.02 \end{aligned}$	-	-	$\begin{aligned} & 4.08 \\ & 4.08 \end{aligned}$	-	Vdc
Logic '0' Threshold Voltage	VOLA	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	-	$\begin{aligned} & 3.45 \\ & 3.45 \end{aligned}$	-	-	$\begin{aligned} & 3.46 \\ & 3.46 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 3.49 \\ & 3.49 \end{aligned}$	Vdc
Output Short Circuit Current	IOS	10	20	60	20	-	60	20	60	mAdc

NOTE: 1. Devices will meet standard MECL logic levels using $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc}$ and $\mathrm{V}_{\mathrm{CC}}=0$.

ELECTRICAL CHARACTERISTICS (continued)

				TEST	LTAGE/CU	RRENT VA	ES		
					Volt				
	Test Tem	erature	$\mathrm{V}_{\text {IHmax }}$	$\mathrm{V}_{\text {ILmin }}$	$\mathrm{V}_{\text {IHAmin }}$	VILAmax	$\mathrm{V}_{\mathrm{IHT}}$	$\mathrm{V}_{\text {CCL }}$	
			4.16	3.19	3.86	3.51	4.0	4.75	
		$+25^{\circ} \mathrm{C}$	4.19	3.21	3.90	3.52	4.0	4.75	
		$+75^{\circ} \mathrm{C}$	4.28	3.23	3.96	3.55	4.0	4.75	
				VOLTAG	APPLIED	O PINS LIS	ED BEL		
Characteristic	Symbol	Test	$\mathrm{V}_{\text {IHmax }}$	VILmin	$\mathrm{V}_{\text {IHAmin }}$	VILAmax	$\mathrm{V}_{\mathrm{IHT}}$	VCCL	Gnd
Power Supply Drain Current	ICC	1	-	-	-	-	-	-	8
		$\begin{gathered} \hline 1 \\ 11 \\ 16 \\ \hline \end{gathered}$	$\begin{aligned} & - \\ & 14 \\ & - \end{aligned}$	$\overline{15}$	-	-	-	-	$\begin{gathered} \hline 8 \\ 8,9 \\ 8 \\ \hline \end{gathered}$
Input Current	linH	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 14 \end{aligned}$	-	-	-	-	$\begin{aligned} & 8 \\ & 8 \end{aligned}$
	$\mathrm{l}_{\mathrm{inL}}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 14 \end{aligned}$	-	-	-	-	-	$\begin{aligned} & 8,14 \\ & 8,15 \end{aligned}$
Differential Offset Voltage	$\Delta \mathrm{V}$	$\begin{aligned} & 4 \text { to } 7 \\ & 2 \text { to } 3 \end{aligned}$	-	-	-	-	$\begin{gathered} 5,6 \\ 4 \end{gathered}$	-	8
Output Voltage Level	$V_{\text {out }}$	$\begin{aligned} & 2 \\ & 3 \end{aligned}$	-	-	-	-	$\begin{aligned} & 4 \\ & 4 \end{aligned}$	-	$\begin{aligned} & 8 \\ & 8 \end{aligned}$
Logic '1' Output Voltage	$\mathrm{V}_{\mathrm{OH}} 1$ (Note 1)	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 14 \end{aligned}$	-	-	-	-	$\begin{aligned} & 8 \\ & 8 \end{aligned}$
	$\mathrm{V}_{\mathrm{OH} 2}$	10	15	14	-	-	-	11,16	8,9
Logic '0' Output Voltage	$\begin{aligned} & \text { VOL1 } \\ & (\text { Note 1) } \end{aligned}$	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 15 \\ & 14 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	-	-	-	-	$\begin{aligned} & 8 \\ & 8 \end{aligned}$
	VOL2	$\begin{aligned} & 10 \\ & 10 \end{aligned}$	$\begin{aligned} & 14 \\ & 14 \end{aligned}$	$\begin{aligned} & 15 \\ & 15 \end{aligned}$	-	-	-	$11,16$	$\begin{aligned} & \hline 8,9 \\ & 8,9 \end{aligned}$
Logic '1' Threshold Voltage	VOHA	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	-	-	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 15 \\ & 14 \end{aligned}$	-	-	$\begin{aligned} & 8 \\ & 8 \\ & \hline \end{aligned}$
Logic '0' Threshold Voltage	VOLA	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	-	-	$\begin{aligned} & 15 \\ & 14 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	-	-	$\begin{aligned} & \hline 8 \\ & 8 \\ & \hline \end{aligned}$
Output Short Circuit Current	Ios	10	15	14	-	-	-	11,16	8,9,10

NOTE: 1. Devices will meet standard MECL logic levels using $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc}$ and $\mathrm{V}_{\mathrm{CC}}=0$.

ELECTRICAL CHARACTERISTICS (continued)

NOTE: 1. Devices will meet standard MECL logic levels using $\mathrm{V}_{\mathrm{EE}}=-5.2 \mathrm{Vdc}$ and $\mathrm{V}_{\mathrm{CC}}=0$.

Figure 6. AC Characteristics - MECL and TTL Outputs

Characteristic	Symbol	Pin Under Test	Test Limits							TEST VOLTAGES/WAVEFORMS APPLIED TO PINS LISTED BELOW:					Gnd
			$0^{\circ} \mathrm{C}$		$+25^{\circ} \mathrm{C}$			$+75^{\circ} \mathrm{C}$		Unit	Pulse In	Pulse Out	+2.0 Vdc	-3.0 Vdc	
			Min	Max	Min	Typ	Max	Min	Max						
Propagation Delay	t15+10+	10	-	22	-	17	25	-	27	ns	15	10	11,16	8,9	14
	t15-10-	10	-	19	-	12	18	-	18			10			
	t15 + $12-$	12	-	5.2	-	4.3	5.5	-	5.8			12			
	t15-12+	12	-	5.0	-	3.7	5.2	-	5.2			12			
	t15 + 13 +	13	-	4.8	-	4.0	5.0	-	5.2			13			
	t15-13-	13	-	5.0	-	4.0	5.0	-	5.1			13			
Rise Time	$\begin{aligned} & \mathrm{t}_{12}+ \\ & \mathrm{t}_{13+} \end{aligned}$	12	-	4.0	-	3.0	4.0	-	4.4	ns	15	12	11,16	8,9	14
		13	-	4.0	-	3.0	4.0	-	4.4	ns	15	13	11,16	8,9	14
Fall Time	$\begin{aligned} & \mathrm{t}_{12}- \\ & \mathrm{t}_{13} \end{aligned}$	12	-	4.0	-	3.0	4.0	-	4.0	ns	15	12	11,16	8,9	14
		13	-	4.0	-	3.0	4.0	-	4.0	ns	15	13	11,16	8,9	14

Characteristic	Pin Under Test	$+25^{\circ} \mathrm{C}$		Unit	TEST VOLTAGE APPLIED TO PINS LISTED BELOW	
		Min	Typ		+2.0 Vdc	-3.0 Vdc
Sine Wave Amplitude	2 3	$\begin{aligned} & 650 \\ & 650 \end{aligned}$	$\begin{aligned} & 750 \\ & 750 \end{aligned}$	mVp-p	1	8,9

Figure 7. AC Test Circuit - Sine Wave Output

All output cables to the scope are equal lengths of 50Ω coaxial cable. All unused cables must be terminated with a $50 \Omega \pm 1 \%$ resistor to ground.
450Ω resistor and the scope termination impedance constitute a 10:1 attenuator probe.

Crystal — Reeves Hoffman Series Mode,
Series Resistance Minimum at Fundamental
$\mathrm{f}=10 \mathrm{MHz}$
$R_{E}=5 \Omega$
${ }^{*} \mathrm{R}_{\mathrm{S}}=15 \mathrm{k} \Omega$ is inserted only for test purposes. When used with the above specified crystal, it guarantees oscillation with any crystal which has an equivalent series resistance $\leqslant 155 \Omega$
R_{p} : will improve start up problems value: 200-500 Ω

The MC12061 consists of three basic sections: an oscillator with AGC and two translators (NO TAG). Buffered complementary sine wave outputs are available from the oscillator section. The translators convert these sine wave outputs to levels compatible with MECL and/or TTL.

Series mode crystals should be used with the oscillator. If it is necessary or desirable to adjust the crystal frequency, a reactive element can be inserted in series with the crystal an inductor to lower the frequency or a capacitor to raise it. When such an adjustment is necessary, it is recommended that the crystal be specified slightly lower in frequency and a series trimmer capacitor be added to bring the oscillator back on frequency. As the oscillator frequency is changed from the natural resonance of the crystal, more and more dependence is placed on the external reactance, and temperature drift of the trimming components then affects overall oscillator performance.

The MC12061 is designed to operate from a single supply - either +5.0 Vdc or -5.2 Vdc . Although each translator has separate V_{CC} and V_{EE} supply pins, the circuit is NOT designed to operate from both voltage levels at the same time. The separate V_{EE} pin from the TTL translator helps minimize transient disturbance. If neither translator is being used, all unused pins (9 thru 16) should be connected to VEE (pin 8). With the translators not powered, supply current drain is typically reduced from 42 mA to 23 mA for the MC12061.

Frequency Stability

Output frequency of different oscillator circuits (of a given device type number) will vary somewhat when used with a given test setup. However, the variation should be within approximately $\pm 0.001 \%$ from unit to unit.

Frequency variations with temperature (independent of the crystal, which is held at $25^{\circ} \mathrm{C}$) are small - about -0.08 $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$ for MC12061 operating at 8.0 MHz (see NO TAG).

Signal Characteristics

The sine wave outputs at either pin 2 or pin 3 will typically range from 800 mV p-p (no load) to 500 mV p-p (120 ohm ac load). Approximately 500 mV p-p can be provided across 50 ohms by slightly increasing the dc current in the output buffer by the addition of an external resistor (680 ohms) from pin 2 or 3 to ground, as shown in Figure 9. Frequency drift is typically less than 0.0003\% when going from a high-impedance load (1 megohm, 15 pF) to the 50 ohm load of Figure 9. The dc voltage level at pin 2 or 3 is nominally 3.5 Vdc with $\mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{Vdc}$.

Harmonic distortion content in the sine wave outputs is crystal as well as circuit dependent. The largest harmonic (third) will usually be at least 15 dB down from the fundamental. The harmonic content is approximately load independent except that the higher harmonic levels
(greater than the fifth) are increased when the MECL translator is being driven.

Typically, the MECL outputs (pins 12 and 13) will drive up to five gates, as defined in NO TAG, and the TTL output (pin 10) will drive up to ten gates, as defined in NO TAG.

Noise Characteristics

Noise level evaluation of the sine wave outputs using the circuit of NO TAG, with operation at or 9.0 MHz , indicates the following characteristics:

1. Noise floor (200 kHz from oscillator center frequency) is approximately -122 dB when referenced to a 1.0 Hz bandwidth. Noise floor is not sensitive to load conditions and/or translator operation.
2. Close-in noise (100 Hz from oscillator center frequency) is approximately -88 dB when referenced to a 1.0 Hz bandwidth.

Figure 8. Frequency Variation Due to Temperature

Figure 9. Driving Low Impedance Loads

[^14]Figure 10. MECL Translator Load Capability

Figure 11. TTL Translator Load Capability

Figure 12. Noise Measurement Test Circuit

MC12061

Figure 13. Circuit Schematic

RESISTOR	MC12061
R1 (2 Places)	200Ω
R2 (2 Places)	400Ω
R3 (2 Places)	$2 \mathrm{k} \Omega$

1.3 GHz Prescaler

The MC12066 is a selectable divide by 64/256 prescaler. Typical frequency synthesis applications include electronically tuned TV/CATV and communication systems as well as instrumentation.

The MC12066 is pin and functionally compatible to the Plessey SP4666, but with significantly lower power consumption.

An internal, two stage preamplifier is included which isolates the differential inputs and provides gain for the input signal. Differential outputs are provided.

The MC12066 contains an internal low pass filter to reduce harmonic content to a low level. The filter bandwidth is selectable depending on the state of the SEL pin. The typical -3.0 dB bandwidth is 4.3 MHz for $\div 256$ mode, and 17.2 MHz for $\div 64$ mode. Figures 2 and 3 illustrate typical device performance.

- 1.3 GHz Toggle Frequency
- Operating Supply Voltage of 2.7 to 5.5 V
- Low-Power 7.5 mA Typical at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- High Input Sensitivity, 5 mVrms Max at $\mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 , $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$
- 600 mV Minimum Peak-to-Peak Output Swing
- Differential Outputs

TRUTH TABLE

SEL	Prescaler
L	256
H	64

MAXIMUM RATINGS

Characteristic	Symbol	Range	Unit
Power Supply Voltage	V_{CC}	7.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 175	${ }^{\circ} \mathrm{C}$

NOTE: ESD data available upon request.

ELECTRICAL CHARACTERISTICS $\left(V_{C C}=2.7\right.$ to 5.5 V ;
$\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ ${ }^{1}$	Max	Unit
Toggle Frequency (Sine Wave Input)	$\begin{gathered} f_{\max }{ }^{2} \\ f_{\text {min }} \end{gathered}$	1.3	1.6	$\overline{50}$	$\begin{aligned} & \mathrm{GHz} \\ & \mathrm{MHz} \end{aligned}$
Supply Current at 5.5 V	ICC	-	7.5	12	mA
Output Voltage (Load =12 pF)	$\mathrm{V}_{\text {out }}$	0.6	1.0	-	V_{pp}
Input Voltage Sensitivity $50-200 \mathrm{MHz}$ $200-1300 \mathrm{MHz}$	$\mathrm{V}_{\text {in } \mathrm{min}}$	-	$\begin{aligned} & 2.5 \\ & 0.5 \end{aligned}$	$\begin{gathered} 10 \\ 5 \end{gathered}$	mVrms
Input Overload	$V_{\text {in max }}$	200	400	-	mVrms
Input HIGH Voltage (SEL)	V_{IH}	${ }^{0.7 V_{C C}}$	-	-	V
Input LOW Voltage (SEL)	V_{IL}	-	-	${ }^{0.3 V_{C C}}$	V

NOTES: 1. Typical measured at $25^{\circ} \mathrm{C}, 5.0 \mathrm{~V}$
2. See Figure 2

Figure 1. Prescaler Block Diagram

Figure 2. Typical Input Signal Amplitude and Output Peak-to-Peak Amplitude versus Input Frequency With a Divide Ratio of 64

Figure 3. Output Spectrum Illustrating Harmonic Suppression, Input Frequency $900 \mathrm{MHz}, \div 64$ Divide Ratio

CENTER 35. 39MHz
*REW 3OOKHZ *VEW 3OOKHz

SPAN 52. 38MHz
*SWP 54. 5 ms

Figure 4. Typical Output Waveform, Input Frequency $900 \mathrm{MHz}, \div 64$ Divide Ratio

2.8 GHz Prescaler

The MC12079 is a single modulus divide by 64, 128, 256 prescaler for low power frequency division of a 2.8 GHz (typical) high frequency input signal. Divide ratio control inputs SW1 and SW2 select the required divide ratio of $\div 64, \div 128$, or $\div 256$.

An external load resistor is required to terminate the output. A $1.2 \mathrm{k} \Omega$ resistor is recommended to achieve a $1.6 \mathrm{~V}_{\mathrm{pp}}$ output swing, when dividing a 1.1 GHz input signal by the minimum divide ratio of 64 , assuming a 12 pF load. Output current can be minimized dependent on conditions such as output frequency, capacitive load being driven, and output voltage swing required. Typical values for load resistors are included in the $\mathrm{V}_{\text {out }}$ specification for various divide ratios at 2.8 GHz input frequency.

- 2.8 GHz Toggle Frequency
- Supply Voltage 4.5 to 5.5 V
- Low Power 9mA Typical at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Operating Temperature Range of -40 to $85^{\circ} \mathrm{C}$

MECL PLL COMPONENTS

 $\div 64 / 128 / 256$ PRESCALER
SEMICONDUCTOR

 TECHNICAL DATA

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12079D	$T_{A}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO- 8
MC12079P	Plastic	

MC12079

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave)	ft	0.25	3.4	2.8	GHz
Supply Current Output (Pin 2)	ICC	-	9.0	11.5	mA
Input Voltage Sensitivity $\begin{aligned} & \text { a } \\ & \\ & \\ & \\ & 500-2800 \mathrm{MHz} \\ & \end{aligned}$	$\mathrm{V}_{\text {in }}$	$\begin{aligned} & 400 \\ & 100 \end{aligned}$	-	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	mVpp
Divide Ratio Control Input High (SW)	V_{IH}	V_{CC}	V_{CC}	V_{CC}	V
Divide Ratio Control Input Low (SW)	VIL	Open	Open	Open	-
Output Voltage Swing $\begin{array}{r} \left(C_{L}=12 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega ; \mathrm{lO}=2.7 \mathrm{~mA}\right)^{1} \\ \left(\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=2.2 \mathrm{k} \Omega ; \mathrm{IO}=1.5 \mathrm{~mA}\right)^{2} \\ \left(\mathrm{C}_{\mathrm{L}}=12 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega ; \mathrm{l}_{\mathrm{l}}=0.85 \mathrm{~mA}\right)^{3} \end{array}$	$V_{\text {out }}$	1.0	1.6	-	V_{pp}

NOTES: 1. Divide ratio of $\div 64$ at 2.8 GHz .
2. Divide ratio of $\div 128$ at 2.8 GHz .
3. Divide ratio of $\div 256$ at 2.8 GHz .

Figure 1. Logic Diagram (MC12079)

Figure 2. AC Test Circuit

MC12079

Figure 3. Input Signal Amplitude versus Input Frequency

Figure 4. Output Amplitude versus Input Frequency

1.1 GHz Prescaler

The MC12080 is a single modulus divide by 10, 20, 40, 80 prescaler for low power frequency division of a 1.1 GHz high frequency input signal. Divide ratio control inputs SW1, SW2 and SW3 select the required divide ratio of $\div 10, \div 20, \div 40$, or $\div 80$.

An external load resistor is required to terminate the output. A 820Ω resistor is recommended to achieve a $1.2 \mathrm{~V}_{\mathrm{pp}}$ output swing, when dividing a 1.1 GHz input signal by the minimum divide by ratio of 10 , assuming a 8.0 pF load. Output current can be minimized dependent on conditions such as output frequency, capacitive load being driven, and output voltage swing required. Typical values for load resistors are included in the $\mathrm{V}_{\text {out }}$ specification for various divide ratios at 1.1 GHz input frequency.

- 1.1 GHz Toggle Frequency
- Supply Voltage 4.5 to 5.5 V
- Low Power 3.7mA Typical at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- Operating Temperature Range of -40 to $85^{\circ} \mathrm{C}$

FUNCTIONAL TABLE

SW1	SW2	SW3	Divide Ratio
L	L	L	80
L	L	H	40
L	H	L	40
L	H	H	20
H	L	L	40
H	L	H	20
H	H	L	20
H	H	H	10

NOTE: SW1, SW2 and SW3: $\mathrm{H}=\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=$ Open.

MAXIMUM RATINGS

Characteristic	Symbol	Range	Unit
Power Supply Voltage, Pin 2	V_{CC}	-0.5 to 7.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Maximum Output Current, Pin 4	I O	10	mA

[^15]
MECL PLL COMPONENTS $\div 10 / 20 / 40 / 80$ PRESCALER

SEMICONDUCTOR

 TECHNICAL DATA

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12080D	$T_{A}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8
MC12080P	Plastic	

MC12080

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=4.5\right.$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave)	ft	0.1	1.4	1.1	GHz
Supply Current Output (Pin 2)	ICC	-	3.7	5.0	mA
$\begin{array}{lr}\text { Input Voltage Sensitivity } & 100-250 \mathrm{MHz} \\ & 250-1100 \mathrm{MHz}\end{array}$	$\mathrm{V}_{\text {in }}$	$\begin{aligned} & 400 \\ & 100 \end{aligned}$	-	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	mVpp
Divide Ratio Control Input High (SW1, SW2, SW3)	V_{IH}	$\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$	V_{CC}	$\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	V
Divide Ratio Control Input Low (SW1, SW2, SW3)	VIL	Open	Open	Open	-
Output Voltage Swing1 $R_{\mathrm{L}}=820 \Omega, \mathrm{I}=4.0 \mathrm{~mA}$ for $\div 10$ $R_{\mathrm{L}}=1.6 \mathrm{k} \Omega, \mathrm{I}=2.1 \mathrm{~mA}$ for $\div 20$ $R_{\mathrm{L}}=3.3 \mathrm{k} \Omega, \mathrm{I}=1.1 \mathrm{~mA}$ for $\div 40$ $R_{\mathrm{L}}=6.2 \mathrm{k} \Omega, \mathrm{I}=0.57 \mathrm{~mA}$ for $\div 80$	$V_{\text {out }}$	0.8	1.2	-	V_{pp}

NOTE: 1. Assumes 8.0 pF load and 1.1 GHz input frequency (typical), I_{O} at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Figure 1. Logic Diagram (MC12080)

Figure 2. AC Test Circuit

MC12080

Figure 3. Input Signal Amplitude versus Input Frequency

Figure 4. Output Amplitude versus Input Frequency

Consider MC12093 for New Designs 1.1 GHz Prescaler With Stand-By Mode

The MC12083 is a $\div 2$ prescaler for low power frequency division of a 1.1 GHz high frequency input signal. On-chip output termination provides output current to drive a 2.0 pF (typical) high impedance load. If additional drive is required for the prescaler output, an external resistor can be added parallel from the OUT Pin to Gnd to increase the output power. Care must be taken not to exceed the maximum allowable current through the output.

Stand-By mode is featured to reduce current drain to $250 \mu \mathrm{~A}$ typical when the stand-by pin SB is switched LOW disabling the prescaler.

- 1.1 GHz Toggle Frequency
- Supply Voltage 2.7 to 5.5 V
- Low Power 4.5 mA Typical at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
- Operating Temperature -40 to $85^{\circ} \mathrm{C}$
- On-Chip Termination

MAXIMUM RATINGS

Characteristic	Symbol	Range	Unit
Power Supply Voltage, Pin 2	$\mathrm{~V}_{\mathrm{CC}}$	-0.5 to 7.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Maximum Output Current, Pin 4	IO	10	mA

NOTE: ESD data available upon request.

Figure 1. AC Test Circuit

MECL PLL COMPONENTS $\div 2$ PRESCALER WITH STAND-BY MODE

SEMICONDUCTOR

 TECHNICAL DATA

PIN CONNECTIONS

(Top View)
A LOW on the Stand-By Pin 7 disables the device.

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12083D	$T_{A}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO- 8
MC12083P	Plastic	

MC12083

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=2.7$ to $5 . \mathrm{V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave)	ft	0.1	1.4	1.1	GHz
$\begin{array}{ll}\text { Supply Current Output (Pin 2) } & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}\end{array}$	ICC	-	$\begin{aligned} & 4.4 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	mA
$\begin{array}{ll}\text { Standby Current } & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}\end{array}$	ISB	-	$\begin{aligned} & 250 \\ & 500 \end{aligned}$	$\begin{aligned} & 350 \\ & 600 \end{aligned}$	$\mu \mathrm{A}$
Standby Input HIGH (SB)	V_{IH}	2.0	-	V_{CC}	V
Standby Input LOW (SB)	$\mathrm{V}_{\text {IL }}$	Gnd	-	0.8	V
Output Voltage Swing (Note 1) 2.0 pF Load @ 500 MHz Input 2.0 pF Load @ 750 MHz Input 2.0 pF Load @ 1100 MHz Input	VOUT	$\begin{aligned} & 700 \\ & 600 \\ & 400 \end{aligned}$	$\begin{aligned} & 800 \\ & 700 \\ & 450 \end{aligned}$		mVpp
$\begin{array}{lr}\text { Input Voltage Sensitivity } & 100-250 \mathrm{MHz} \\ & 250-400 \mathrm{MHz} \\ 400-1100 \mathrm{MHz}\end{array}$	VIN	$\begin{aligned} & 400 \\ & 200 \\ & 100 \end{aligned}$		$\begin{aligned} & 1000 \\ & 1000 \\ & 1000 \end{aligned}$	mVpp

NOTE: 1. Assume 2.0 pF load, $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}, \mathrm{~V}_{\text {IN }}=$ minimum specification for each frequency band, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$

Figure 2. Input Signal Amplitude versus Input Frequency

MC12083

Figure 3. 12083 Output Peak-to-Peak at 2.0 pF Load

2.8 GHz Prescaler

The MC12089 is a single modulus divide by 64 and 128 prescaler for low power frequency division of a 2.8 GHz high frequency input signal. The low power (10.2 mA typical at 5.0 V) and high operating frequency features make this prescaler ideal in satellite TV receiver applications.

Divide ratio control input SW selects the required divide ratio of $\div 64$ or $\div 128$.

On-chip output termination provides 2.5 mA of output current to drive a 12 pF (typical) high impedance load. The output voltage swing under typical supply voltage and temperature conditions is 1.2 V . If additional drive is required for the prescaler output, an external resistor can be added in parallel from the OUT pin to Gnd to increase the output power. Care must be taken not to exceed the maximum allowable current through the output.

- 2.8 GHz Toggle Frequency
- Supply Voltage 4.5 to 5.5 V
- Low Power Dissipation 51 mW Typical
- Operating Temperature Range of -40 to $85^{\circ} \mathrm{C}$

FUNCTIONAL TABLE

SW	Divide Ratio
H	64
L	128

NOTE: $\mathrm{H}=\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=$ Open.

MAXIMUM RATINGS

Characteristic	Symbol	Range	Unit
Power Supply Voltage, Pin 4	$\mathrm{~V}_{\mathrm{CC}}$	-0.5 to 7.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Maximum Output Current, Pin 7	I	4.0	mA

NOTE: ESD data available upon request.

MECL PLL COMPONENTS $\div 64 / 128$ PRESCALER

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12089D	$T_{A}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8
MC12089P	Plastic	

MC12089

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=4.5\right.$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave)	ft	0.25	3.4	2.8	GHz
Supply Current Output (Pin 2)	I CC	-	10.2	14.5	mA
Input Voltage Sensitivity	$250-500 \mathrm{MHz}$	V_{in}	400	-	1000
		100	-	1000	mVpp
Divide Ratio Control Input High (SW)	$500-2800 \mathrm{MHz}$		V_{IH}	V_{CC}	V_{CC}
Divide Ratio Control Input Low (SW)	V_{IL}	V_{CC}	V		
Output Voltage Swing (Note 1)	$\mathrm{V}_{\text {out }}$	0.8	Open	Open	-

NOTE: 1. Assumes $C_{L}=12 \mathrm{pF}$

Figure 1. Logic Diagram (MC12089)

Figure 2. AC Test Circuit

MC12089

Figure 3. Input Signal Amplitude versus Input Frequency

$\div 2, \div 4, \div 81.1 \mathrm{GHz}$ Low Power Prescaler with Stand-By Mode

The MC12093 is a single modulus prescaler for low power frequency division of a 1.1 GHz high frequency input signal. Motorola's advanced MOSAIC ${ }^{\text {TM }} \mathrm{V}$ technology is utilized to acheive low power dissipation of 6.75 mW at a minimum supply voltage of 2.7 V .

On-chip output termination provides output current to drive a 2.0 pF (typical) high impedance load. If additional drive is required for the prescaler output, an external resistor can be added parallel from the OUT pin to GND to increase the output power. Care must be taken not to exceed the maximum allowable current through the output.

Divide ratio control inputs SW1 and SW2 select the required divide ratio of $\div 2, \div 4$, or $\div 8$.

Stand-By mode is featured to reduce current drain to $50 \mu \mathrm{~A}$ typical when the standby pin SB is switched LOW disabling the prescaler.

- 1.1 GHz Toggle Frequency
- Supply Voltage 2.7 V to 5.5 Vdc
- Low Power 3.0 mA Typical
- Operating Temperature -40 to $85^{\circ} \mathrm{C}$
- Divide by 2, 4 or 8 Selected by SW1 and SW2 Pins
- On-Chip Termination

MOSAIC V is a trademark of Motorola

FUNCTIONAL TABLE

SW	SW2	Divide Ratio
L	L	8
H	L	4
L	H	4
H	H	2

NOTES: 1. SW1 \& SW2: $\mathrm{H}=\left(\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}\right)$ to V_{CC}; $\mathrm{L}=$ Open.
2. $\mathrm{SB}: \mathrm{H}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}, \mathrm{L}=\mathrm{GND}$ to 0.8 V .

MC12093

MECL PLL COMPONENTS $\div 2, \div 4, \div 8$ LOW POWER PRESCALER WITH STAND-BY MODE SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

(Top View)

A LOW on the Stand-By Pin 7 disables the device.

ORDERING INFORMATION

Device	Operating Temp Range	Package
MC12093D	$\mathrm{T}_{\mathrm{A}}=$ -40° to $+85^{\circ} \mathrm{C}$	SO-8
	SSOP-8	

MC12093

Figure 1. AC Test Circuit

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Power Supply Voltage, Pin 2	V_{CC}	-0.5 to 6.0	$\mathrm{Vdc}_{\mathrm{dc}}$
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$
Maximum Output Current, Pin 4	I O	4.0	mA

NOTE: ESD data available upon request.
ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=2.7\right.$ to 5.5 V ; $\mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$)

Parameter	Symbol	Min	Typ	Max	Unit
Toggle Frequency (Sine Wave)	ft	0.1	1.4	1.1	GHz
Supply Current	ICC	-	3.0	4.5	mA
Stand-By Current	ISB	-	120	200	$\mu \mathrm{A}$
Stand-By Input HIGH (SB)	$\mathrm{V}_{\mathrm{IH} 1}$	2.0	-	V_{CC}	V
Stand-By Input LOW (SB)	VIL1	Gnd	-	0.8	V
Divide Ratio Control Input HIGH (SW1 \& SW2)	$\mathrm{V}_{\mathrm{IH} 2}$	$\mathrm{V}_{\mathrm{CC}}-0.5$	V_{CC}	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
Divide Ratio Control Input LOW (SW1 \& SW2)	$\mathrm{V}_{\text {IL2 }}$	OPEN	OPEN	OPEN	
Output Voltage Swing (2.0 pF Load) Output Frequency 12.5-350 MHz (Note 1) Output Frequency 350-400 MHz (Note 2) Output Frequency $400-450 \mathrm{MHz}$ (Note 3) Output Frequency $450-550 \mathrm{MHz}$ (Note 4)	VOUT	$\begin{aligned} & 0.6 \\ & 0.5 \\ & 0.4 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 0.70 \\ & 0.55 \\ & 0.45 \end{aligned}$	-	V_{pp}
Input Voltage Sensitivity $\begin{aligned} & \text { 250-1100 MHz } \\ & \\ & 100-250 ~ M H z\end{aligned}$	$\mathrm{V}_{\text {IN }}$	$\begin{aligned} & 100 \\ & 400 \end{aligned}$	-	$\begin{aligned} & 1000 \\ & 1000 \end{aligned}$	mVpp

NOTES: 1. Input frequency $1.1 \mathrm{GHz}, \div 8$, minimum output frequency of 12.5 MHz .
2. Input frequency $700-800 \mathrm{MHz}, \div 2$.
3. Input frequency $800-900 \mathrm{MHz}, \div 2$.
4. Input frequency $900-1100 \mathrm{MHz}, \div 2$.

2.5 GHz Low Power Prescaler With Stand-By Mode

The MC12095 is a single modulus prescaler for low power frequency division of a 2.5 GHz high frequency input signal. Motorola's advanced MOSAIC ${ }^{\text {TM }} \mathrm{V}$ technology is utilized to acheive low power dissipation of 24 mW at a minimum supply voltage of 2.7 V .

On-chip output termination provides output current to drive a 2.0 pF (typical) high impedance load. If additional drive is required for the prescaler output, an external resistor can be added in parallel from the OUT pin to GND to increase the output power. Care must be taken not to exceed the maximum allowable current through the output.

Divide ratio control input (SW) selects the required divide ratio of $\div 2$ or $\div 4$. Stand-By mode is available to reduce current drain to $100 \mu \mathrm{~A}$ typical when the standby pin SB is switched LOW disabling the prescaler.

- 2.5 GHz Toggle Frequency
- Supply Voltage 2.7 V to 5.5 Vdc
- Low Power 8.7 mA Typical
- Operating Temperature -40 to $85^{\circ} \mathrm{C}$
- Divide by 2 or 4 Selected by the SW Pin

NOTE: For applications up to 1.1 GHz , please consult the MC12093 datasheet.

MOSAIC V is a trademark of Motorola

FUNCTIONAL TABLE

SW	Divide Ratio
H	2
L	4

NOTES: 1. SW: $\mathrm{H}=\left(\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}\right)$ to V_{CC}; $\mathrm{L}=\mathrm{OPEN}$
2. $\mathrm{SB}: \mathrm{H}=2.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{C}} ; \mathrm{L}=\mathrm{GND}$ to 0.8 V

MECL PLL COMPONENTS
$\div 2, \div 4$ LOW POWER
PRESCALER
WITH STAND-BY MODE
SEMICONDUCTOR
TECHNICAL DATA

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temp Range	Package
MC12095D	$\begin{gathered} \mathrm{T}_{\mathrm{A}}= \\ -40^{\circ} \text { to }+85^{\circ} \mathrm{C} \end{gathered}$	SO-8
MC12095SD		SSOP-8

MC12095

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Power Supply Voltage, Pin 2	V_{CC}	-0.5 to 6.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$
Maximum Output Current, Pin 4	I_{O}	8.0	mA

NOTE: ESD data available upon request.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=2.7$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Figure 1. Typical Minimum Input Sensitivity versus Input Frequency

(Divide By 2 Mode, $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$)

MC12095

Figure 2. Typical Output Amplitude versus Frequency over Temperature

Figure 3. Typical Output Amplitude versus Frequency over Temperature

MC12095

Figure 4. Input Impedance versus Frequency

Figure 5. Input Impedance versus Frequency

2.5 GHz Prescaler

MECL PLL COMPONENTS $\div 8192$ PRESCALER

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12098D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{SO}-8$

MC12098

Figure 1. MC12098 Block Diagram

Figure 2. AC Test Circuit

MC12098

Figure 3. MC12098 Input Signal Amplitude versus Input Frequency

MC12098

Figure 4. Input Impedance versus Frequency

Figure 5. Input Impedance versus Frequency

200 MHz Voltage Controlled Multivibrator

- High Frequency VCM Ideal for PLL Applications
- Single External Resistor Determines Center Frequency; Additional Resistor Determines f/V Sensitivity
- Internal Ripple Counter (1/2, 1/4, 1/8) For Low Frequency Applications TTL/ECL Outputs
- VCO Output Enable Pins (TTL/ECL Level)
- +5.0 V Single Supply Voltage

MC12100

200 MHz VOLTAGE
CONTROLLED
MULTIVIBRATOR
SEMICONDUCTOR
TECHNICAL DATA

Pinout: 20-Lead Plastic Package (Top View)

Pinout: 20-Lead PLCC Package (Top View)

PIN NAMES

Pin	Function
RF, RS	Center Frequency Inputs
VC	Frequency Control Input
CB	Bias Filter Input
$\underline{\text { FS }}$	Frequency Select Input
OE	TTL Output Enable
FST	TTL $\div 2, \div 4, \div 8$ Output
FSE, $\overline{\text { FSE }}$	Diff ECL $\div 2, \div 4, \div 8$ Outputs
FOE, FOE	Diff ECL $\div 1$ Outputs
EBE	VCO Disable, ECL Level Input
EBT	VCO Disable, TTL Level Input

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC 12100 P	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+75^{\circ} \mathrm{C}$	Plastic

MC12100

Figure 1. Block Diagram

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}} 1$ $V_{C C}$ V_{CC}	-0.5 to 8.0	V
Input Voltage	VIN (TTL)	-0.5 to V_{CC}	V
Input Voltage	$\mathrm{V}_{\text {IN }}(\mathrm{ECL})$	-0.5 to V_{CC}	V
Output Source Current - Surge	IOUT(ECL)	100	mA
Output Source Current - Continuous		50	mA
Junction Operating Temperature	TJ	140	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-55 to 150	${ }^{\circ} \mathrm{C}$

NOTE: ESD data available upon request.

OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Ambient Temperature	T_{A}	0 to 75	${ }^{\circ} \mathrm{C}$
Supply Voltage	V_{CC}	4.75 to 5.25	V
TTL High Output Current	$\mathrm{I}_{\mathrm{OH}}(T T L)$	-1.0	mA
TTL Low Output Current	$\mathrm{IOL}(T T L)$	20	mA

DC CHARACTERISTICS $\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \% ; R_{X}=2.4 \mathrm{k} \Omega ; R_{Y}=1.5 \mathrm{k} \Omega ; C_{B}=0.001 \mu \mathrm{~F}\right.$, unless otherwise noted. $)$

Characteristic	Symbol	$0^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$75^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Typ	Max	Min	Max		
Supply Current	ICC	75	120	65	90	110	80	135	mA	$\begin{aligned} & \overline{\mathrm{EBT}}=\overline{\mathrm{EBE}}=\mathrm{V}_{\mathrm{CC}} \\ & (\mathrm{ECL}, \mathrm{TTL}) \end{aligned}$
Output Low Voltage, TTL	V OLT	-	-	-	-	0.5	-	-	V	$\mathrm{F}_{\mathrm{S}}=$ GND
Output High Voltage, TTL	$\mathrm{V}_{\text {OHT }}$	-	-	2.4	-		-	-	V	$\mathrm{F}_{\mathrm{S}}=\mathrm{GND}$
Output Low Voltage, ECL	VOLE	-	-	3.0	-	3.4	-	-	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~V}_{\mathrm{T}}=3.0 \mathrm{~V} \end{aligned}$
Output High Voltage, ECL	$\mathrm{V}_{\text {OHE }}$	-	-	3.9	-	4.19	-	-	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~V}_{\mathrm{T}}=3.0 \mathrm{~V} \end{aligned}$
$\overline{\text { EBT }}$ Input Low Current	IILT	-	-	-	-	400	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V}$
$\overline{\text { EBT }}$ Input High Current	IIHT	-	-	-	-	20	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
		-	-	-	-	100	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
EBE Input High Current	IINHE	-	-	-	-	250	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=4.19 \mathrm{~V}$
EBE Input Low Current	IINLE	-	-	1.0	-	-	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=3.05 \mathrm{~V}$
FS Input, Max "L" Level	$\mathrm{V}_{\text {ILS }}$	-	-	-	-	1.2	-	-	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
FS Input, "Medium" Level	VIMS	-	-	2.0	-	3.0	-	-	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
FS Input, Min "H" Level	$\mathrm{V}_{\text {IHS }}$	-	-	3.8	-	-	-	-	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
EBT Input Low Voltage	$\mathrm{V}_{\text {ILT }}$	-	0.8	-	-	0.8	-	0.8	V	
EBT Input High Voltage	$\mathrm{V}_{\mathrm{IHT}}$	2.0	-	2.0	-	-	2.0	-	V	
EBE Input High Voltage	$\mathrm{V}_{\text {IHE }}$	-	-	3.87	-	4.19	-	-	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
EBE Input Low Voltage	$\mathrm{V}_{\text {ILE }}$	-	-	3.05	-	3.52	-	-	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
V_{C} Input Voltage, $V_{C}=V_{C C} \div 2$	$\mathrm{V}_{\text {LM }}$	-	-	± 1.1	± 1.3	± 1.5	-	-	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{B} Output Voltage	$\mathrm{V}_{\text {CB }}$	-	-	2.35	2.50	2.65	-	-	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

AC CHARACTERISTICS $\left(\mathrm{V}_{C C}=5.0 \mathrm{~V} ; \mathrm{R}_{\mathrm{X}}=2.4 \mathrm{k} \Omega ; \mathrm{R}_{\mathrm{Y}}=1.5 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{B}}=0.001 \mu \mathrm{~F} ; \mathrm{V}_{\mathrm{T}}=3.0 \mathrm{~V}\right.$, unless otherwise noted.)

Characteristic	Symbol	$0^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$75^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Typ	Max	Min	Max		
Center Frequency ($\mathrm{V}_{\mathrm{VC}}-\mathrm{V}_{\mathrm{CB}}=0 \mathrm{~V}$)	FO	-	-	180	200	220	-	-	MHz	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=+2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-3.0 \mathrm{~V} \end{aligned}$
Frequency Range $\left(\mathrm{V}_{\mathrm{C}}=1 / 2 \mathrm{~V}_{\mathrm{CC}} \pm 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$	F MAX $^{-}$ $\mathrm{F}_{\mathrm{MIN}}$	-	-	85	100	115	-	-	MHz	
FOE/FOE/FSE/FSE Rise Time	tre	-	-	0.5	-	2.4	-	-	ns	
FOE/FOE/FSE/FSE Fall Time	tfe	-	-	0.5	-	2.4	-	-	ns	
Reset Time	TTT	-	-	-	-	35	-	-	ns	$\overline{\text { EBT }} \sim$ FST
Reset Time	TTO	-	-	-	-	25	-	-	ns	$\overline{\mathrm{EBT}} \sim \mathrm{FOE} / \overline{\mathrm{FOE}}$
Reset Time	TTS	-	-	-	-	30	-	-	ns	$\overline{\text { EBT }} \sim$ FSE/FSE
Reset Time	TET	-	-	-	-	37	-	-	ns	EBE~FST
Reset Time	TEO	-	-	-	-	12	-	-	ns	$\overline{\mathrm{EBE}} \sim \mathrm{FOE} / \overline{\mathrm{FOE}}$
Reset Time	TES	-	-	-	-	25	-	-	ns	$\overline{\mathrm{EBE}} \sim \mathrm{FSE} / \overline{\mathrm{FSE}}$

NOTE: Loading: ECL $=50 \Omega$ to $\mathrm{V}_{\mathrm{T}} ; \mathrm{TTL}=500 \Omega, 50 \mathrm{pF}$

MC12100

Figure 2. VCO Detail

Notes:

- For optimum VCO linearity (MHz/V), the following resistor ranges are recommended:

$$
\begin{aligned}
& 2.0 \mathrm{k} \Omega \leq R_{X} \leq 2.7 \mathrm{k} \Omega(R Y=1.5 \mathrm{k} \Omega) \\
& 1.0 \mathrm{k} \Omega \leq R_{Y} \leq 2.0 \mathrm{k} \Omega\left(R_{X}=2.4 \mathrm{k} \Omega\right)
\end{aligned}
$$

- TTL output maximum frequency $=50 \mathrm{MHz}$
- Simultaneous use of both ECL and TTL outputs are not recommended due to excessive power consumption for the EIAJ Type II SO package

Figure 3. AC Test Circuit ($\mathrm{FO} / \mathrm{trE}_{\mathrm{E}} / \mathbf{t f E}$ Measurement)

Figure 4. AC Test Circuit (Other Measurements)

MC12100

Figure 5. Switching Waveforms

VCO DISABLE FUNCTION TABLE

EBE	EBT	FOE, FSE, FST	FOE, FSE
H	H or OPEN	L	H
L or OPEN	H	OSCILLATION	
H	L	OSCILLATION	

Figure 6. V_{C} versus Output Frequency
(Varying $R_{X} @ V_{C C}=5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{Y}}=1.5 \mathrm{k} \Omega$)

Figure 8. V_{C} versus Output Frequency
(Varying $\mathrm{T}_{\mathrm{A}} @ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{RX}_{\mathrm{X}}=2.4 \mathrm{k} \Omega ; \mathrm{R}_{\mathrm{Y}}=1.5 \mathrm{k} \Omega$)

Figure 7. V_{C} versus Output Frequency
(Varying RY @ $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{R}_{\mathrm{X}}=2.4 \mathrm{k} \Omega$)

Figure 9. V_{C} versus Output Frequency
(Varying $\mathrm{V}_{\mathrm{CC}} @ \mathrm{R}_{\mathrm{X}}=2.4 \mathrm{k} \Omega ; \mathrm{R}_{\mathrm{Y}}=1.5 \mathrm{k} \Omega ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

130 MHz Voltage Controlled Multivibrator

- High Frequency VCM Ideal for PLL Applications
- Single External Resistor Determines Center Frequency; Additional Resistor Determines f/V Sensitivity
- Internal Ripple Counter ($1 / 2,1 / 4,1 / 8$) for Low Frequency Applications, TTL/ECL Outputs
- VCO Output Enable Pins (TTL/ECL Level)
- +5.0 V Single Supply Voltage
- Packages: DIP, PLCC

Pinout: 20-Lead Plastic Package (Top View)

MC12101

130 MHz VOLTAGE CONTROLLED MULTIVIBRATOR

SEMICONDUCTOR TECHNICAL DATA

PIN NAMES

Pin	Function
RF, RS	Center Frequency Inputs
VC	Frequency Control Input
CB	Bias Filter Input
FS	Frequency Select Input
OE	TTL Output Enable
FST	TTL $\div 2, \div 4, \div 8$ Output
FSE, $\overline{\text { FSE }}$	Diff ECL $\div 2, \div 4, \div 8$ Outputs
FOE, FOE	Diff ECL $\div 1$ Outputs
EBE	VCO Disable, ECL Level Input
EBT	VCO Disable, TTL Level Input

ORDERING INFORMATION

MC12101

Figure 1. Block Diagram

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Power Supply Voltage	$V_{C C 1}$ $V_{C C 2}$ V_{CC}	-0.5 to 8.0	V
Input Voltage	$\mathrm{V}_{\text {IN }}$ (TTL)	-0.5 to V_{CC}	V
Input Voltage	V_{IN} (ECL)	-0.5 to V_{CC}	\checkmark
Output Source Current - Surge	IOUT(ECL)	100	mA
Output Source Current - Continuous		50	mA
Junction Operating Temperature	TJ	140	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-55 to 150	${ }^{\circ} \mathrm{C}$

NOTE: ESD data available upon request.
OPERATING CONDITIONS

Parameter	Symbol	Value	Unit
Ambient Temperature	T_{A}	0 to 75	${ }^{\circ} \mathrm{C}$
Supply Voltage	V_{CC}	4.75 to 5.25	V
TTL High Output Current	$\mathrm{I}_{\mathrm{OH}}(\mathrm{TTL})$	-1.0	mA
TTL Low Output Current	$\mathrm{IOL}^{(T T L)}$	20	mA

DC CHARACTERISTICS $\left(V_{C C}=5.0 \mathrm{~V} \pm 5 \% ; R_{X}=2.4 \mathrm{k} \Omega ; R_{Y}=1.5 \mathrm{k} \Omega ; C_{B}=0.001 \mu \mathrm{~F}\right.$, unless otherwise noted. $)$

Characteristic	Symbol	$0^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$75^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Typ	Max	Min	Max		
Supply Current	ICC	80	135	70	100	120	85	150	mA	$\begin{aligned} & \overline{\mathrm{EBT}}=\overline{\mathrm{EBE}}=\mathrm{V}_{\mathrm{CC}} \\ & (\mathrm{ECL}, \mathrm{TTL}) \end{aligned}$
Output Low Voltage, TTL	V OLT	-	-	-	-	0.5	-	-	V	$\mathrm{F}_{S}=$ GND
Output High Voltage, TTL	$\mathrm{V}_{\mathrm{OHT}}$	-	-	2.4	-		-	-	V	$\mathrm{F}_{\mathrm{S}}=\mathrm{GND}$
Output Low Voltage, ECL	VOLE	-	-	3.0	-	3.4	-	-	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~V}_{\mathrm{T}}=3.0 \mathrm{~V} \end{aligned}$
Output High Voltage, ECL	$\mathrm{V}_{\text {OHE }}$	-	-	3.9	-	4.19	-	-	V	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=50 \Omega, \\ & \mathrm{~V}_{\mathrm{T}}=3.0 \mathrm{~V} \end{aligned}$
EBT Input Low Current	IILT	-	-	-	-	400	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$
$\overline{\text { EBT }}$ Input High Current	${ }_{\text {IHT }}$	-	-	-	-	20	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
		-	-	-	-	100	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
EBE Input High Current	IINHE	-	-	-	-	250	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=4.19 \mathrm{~V}$
EBE Input Low Current	IINLE	-	-	1.0	-	-	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=3.05 \mathrm{~V}$
FS Input, Max "L" Level	$\mathrm{V}_{\text {ILS }}$	-	-	-	-	1.2	-	-	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
FS Input, "Medium" Level	VIMS	-	-	2.0	-	3.0	-	-	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
FS Input, Min "H" Level	$\mathrm{V}_{\text {IHS }}$	-	-	3.8	-	-	-	-	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
EBT Input Low Voltage	$\mathrm{V}_{\text {ILT }}$	-	0.8	-	-	0.8	-	0.8	V	
EBT Input High Voltage	$\mathrm{V}_{\text {IHT }}$	2.0	-	2.0	-	-	2.0	-	V	
EBE Input High Voltage	$\mathrm{V}_{\text {IHE }}$	-	-	3.87	-	4.19	-	-	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
EBE Input Low Voltage	$\mathrm{V}_{\text {ILE }}$	-	-	3.05	-	3.52	-	-	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
V_{C} Input Voltage, $V_{C}=V_{C C} \div 2$	VLM	-	-	± 1.1	± 1.3	± 1.5	-	-	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{B} Output Voltage	$\mathrm{V}_{\text {CB }}$	-	-	2.35	2.50	2.65	-	-	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{RX}=2.4 \mathrm{k} \Omega ; \mathrm{RY}=1.5 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{B}}=0.001 \mu \mathrm{~F} ; \mathrm{V}_{\mathrm{T}}=3.0 \mathrm{~V}\right.$, unless otherwise noted.)

Characteristic	Symbol	$0^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$			$75^{\circ} \mathrm{C}$		Unit	Condition
		Min	Max	Min	Typ	Max	Min	Max		
Center Frequency ($\mathrm{VVC}^{\text {- }} \mathrm{V}_{\mathrm{CB}}=0 \mathrm{~V}$)	FO	-	-	117	130	143	-	-	MHz	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-3.0 \mathrm{~V} \end{aligned}$
Frequency Range $\left(\mathrm{V}_{\mathrm{C}}=1 / 2 \mathrm{~V}_{\mathrm{CC}} \pm 1.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)$	$\mathrm{F}_{\mathrm{MAX}}-$ FMIN	-	-	68	80	92	-	-	MHz	
FOE/FOE/FSE/FSE Rise Time	tre	-	-	0.5	-	2.4	-	-	ns	
FOE/FOE/FSE/FSE Fall Time	tfE	-	-	0.5	-	2.4	-	-	ns	
Reset Time	TTT	-	-	-	-	40	-	-	ns	EBT~FST
Reset Time	TTO	-	-	-	-	25	-	-	ns	EBT~FOE/FOE
Reset Time	TTS	-	-	-	-	35	-	-	ns	EBT~FSE/FSE
Reset Time	TET	-	-	-	-	32	-	-	ns	EBE~FST
Reset Time	TEO	-	-	-	-	12	-	-	ns	EBE~FOE/FOE
Reset Time	TES	-	-	-	-	30	-	-	ns	EBE \sim FSE/FSE

NOTE: Loading: ECL $=50 \Omega$ to $\mathrm{V}_{\top} ; \mathrm{TTL}=500 \Omega, 50 \mathrm{pF}$

MC12101

Figure 2. VCO Detail

Notes:

- For optimum VCO linearity ($\mathrm{MHz} / \mathrm{V}$), the following resistor ranges are recommended:

$$
3.6 \mathrm{k} \Omega \leq \mathrm{RX}_{\mathrm{X}} \leq 4.6 \mathrm{k} \Omega\left(\mathrm{R}_{\mathrm{Y}}=2.0 \mathrm{k} \Omega\right)
$$

$$
1.5 \mathrm{k} \Omega \leq R Y \leq 2.4 \mathrm{k} \Omega(\mathrm{RX}=3.3 \mathrm{k} \Omega)
$$

- TTL output maximum frequency $=50 \mathrm{MHz}$
- Simultaneous use of both ECL and TTL outputs are not recommended due to excessive power consumption for the EIAJ Type II SO package

Figure 3. AC Test Circuit ($\mathrm{FO} / \mathrm{t}_{\mathrm{rE}} / \mathrm{t}_{\mathrm{fE}}$ Measurement)
Figure 4. AC Test Circuit (Other Measurements)

MC12101

Figure 5. Switching Waveforms

VCO DISABLE FUNCTION TABLE

$\overline{\text { EBE }}$	$\overline{\text { EBT }}$	FOE, FSE, FST	$\overline{\text { FOE, }} \overline{\text { FSE }}$
H	H or OPEN	L	H
L or OPEN	H	OSCILLATION	
H	L	OSCILLATION	

Figure 6. V_{C} versus Output Frequency (Varying $\mathrm{Rx} @ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{Ry}=2.0 \mathrm{k} \Omega$)

Figure 8. V_{C} versus Output Frequency (Varying $\mathrm{T}_{\mathrm{A}} @ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{Rx}=3.3 \mathrm{k} \Omega ; \mathrm{Ry}=2.0 \mathrm{k} \Omega$)

Figure 7. V_{C} versus Output Frequency
(Varying Ry @ $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{Ry}=3.3 \mathrm{k} \Omega$)

Figure 9. $\mathrm{V}_{\mathbf{C}}$ versus Output Frequency (Varying $V_{C C} @ R x=3.3 \mathrm{k} \Omega ; R y=2.0 \mathrm{k} \Omega ; \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Low Power Voltage Controlled Oscillator Buffer

The MC12147 is intended for applications requiring high frequency signal generation up to 1300 MHz . An external tank circuit is used to determine the desired frequency of operation. The VCO is realized using an emitter-coupled pair topology. The MC12147 can be used with an integrated PLL IC such as the MC12202 1.1 GHz Frequency Synthesizer to realize a complete PLL sub-system. The device is specified to operate over a voltage supply range of 2.7 to 5.5 V . It has a typical current consumption of 13 mA at 3.0 V which makes it attractive for battery operated handheld systems.

NOTE: The MC12147 is NOT suitable as a crystal oscillator.

- Operates Up to 1.3 GHz
- Space-Efficient 8-Pin SOIC or SSOP Package
- Low Power 13 mA Typical @ 3.0 V Operation
- Supply Voltage of 2.7 to 5.5 V
- Typical 900MHz Performance
- Phase Noise - 105 dBc/Hz @ 100 kHz Offset
- Tuning Voltage Sensitivity of $20 \mathrm{MHz} / \mathrm{V}$
- Output Amplitude Adjustment Capability
- Two High Drive Outputs With a Typical Range from -8.0 to -2.0 dBm

The device has two high frequency outputs which make it attractive for transceiver applications which require both a transmit and receive local oscillator (LO) signal. The outputs Q and QB are available for servicing the receiver IF and transmitter up-converter single-ended. In receiver applications, the outputs can be used together if it is necessary to generate a differential signal for the receiver IF. Because the Q and QB outputs are open collector, terminations to the VCC supply are required for proper operation. Since the outputs are complementary, BOTH outputs must be terminated even if only one is needed. The Q and QB outputs have a nominal drive level of -8 dBm to conserve power. If addition signal amplitude is needed, a level adjustment pin (CNTL) is available, which when tied to ground, boosts the nominal output levels to -2.0 dBm .

External components required for the MC12147 are: (1) tank circuit (LC network); (2) Inductor/capacitor to provide the termination for the open collector outputs; and (3) adequate supply voltage bypassing. The tank circuit consists of a high-Q inductor and varactor components. The preferred tank configuration allows the user to tune the VCO across the full supply range. VCO performance such as center frequency, tuning voltage sensitivity, and noise characteristics are dependent on the particular components and configuration of the VCO tank circuit.

PIN NAMES

Pin	Function
VCC $^{\prime}$	Power Supply
CNTL	Amplitude Control for Q, QB Output Pair
TANK	Tank Circuit Input
VREF	Bias Voltage Output
QB	Open Collector Output
GND	Ground
Q	Open Collector Output

LOW POWER
 VOLTAGE CONTROLLED OSCILLATOR BUFFER

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12147D	$T_{A}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8
$M C 12147 S D$		

MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Power Supply Voltage, Pin 1	$\mathrm{~V}_{\mathrm{CC}}$	-0.5 to +7.0	V
Operating Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{STG}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Maximum Output Current, Pin 5,7	I	12	mA

NOTES: 1. Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions. 2. ESD data available upon request.

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=2.7$ to $5.5 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)
$\left.\begin{array}{|l|c|c|c|c|c|}\hline \text { Characteristic } & \text { Symbol } & \text { Min } & \text { Typ } & \text { Max } & \text { Unit } \\ \hline \text { Supply Current (CNTL=GND) } V_{C C}=3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}\end{array}\right)$

NOTES: 1. CNTL pin tied to ground.
2. Actual performance depends on tank components selected.
3. See Figure 12, 750 MHz tank.
4. $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

MC12147

OPERATIONAL CHARACTERISTICS

A simplified schematic of the MC12147 is found in Figure 1. The oscillator incorporates positive feedback by coupling the base of transistor Q2 to the collector of transistor Q1. In order to minimize interaction between the VCO outputs and the oscillator tank transistor pair, a buffer is incorporated into the circuit. This differential buffer is realized by the Q3 and Q4 transistor pair. The differential buffer drives the gate which contains the primary open collector outputs, Q and QB. The output is actually a current which has been set by an internal bias driver to a nominal current of 4 mA . Additional circuitry is incorporated into the tail of the current source which allows the current source to be increased to approximately 10 mA . This is accommodated by the addition of a resistor which is brought out to the CNTL pin. When this pin is tied to ground, the additional current is sourced through the current source thus increasing the output amplitude of the Q/QB output pair. If less than 10 mA of current is needed, a resistor can be added to ground which reduces the amount of current.

APPLICATION INFORMATION

Figure 2 illustrates the external components necessary for the proper operation of the VCO buffer. The tank circuit configuration in this figure allows the VCO to be tuned across the full operating voltage of the power supply. This is very important in 3 V applications where it is desirable to utilize as much of the operating supply range as possible so as to minimize the VCO sensitivity ($\mathrm{MHz} / \mathrm{V}$). In most situations, it is desirable to keep the sensitivity low so the circuit will be less susceptible to external noise influences. An additional benefit to this configuration is that additional regulation/ filtering can
be incorporated into the V_{CC} line without compromising the tuning range of the VCO. With the AC-coupled tank configuration, the $\mathrm{V}_{\text {tune }}$ voltage can be greater than the V_{CC} voltage supplied to the device.

There are four main areas that the user directly influences the performance of the VCO. These include Tank Design, Output Termination Selection, Power Supply Decoupling, and Circuit Board Layout/Grounding.

The design of the tank circuit is critical to the proper operation of the VCO. This tank circuit directly impacts the main VCO operating characteristics:

1) Frequency of Operation
2) Tuning Sensitivity
3) Voltage Supply Pushing
4) Phase Noise Performance

The tank circuit, in its simplest form, is realized as an LC circuit which determines the VCO operating frequency. This is described in Equation 1.

$$
f_{o}=\frac{1}{2 \pi \sqrt{\mathrm{LC}}}
$$

Equation 1
In the practical case, the capacitor is replaced with a varactor diode whose capacitance changes with the voltage applied, thus changing the resonant frequency at which the VCO tank operates. The capacitive component in Equation 1 also needs to include the input capacitance of the device and other circuit and parasitic elements. Typically, the inductor is realized as a surface mount chip or a wound-coil. In addition, the lead inductance and board inductance and capacitance also have an impact on the final operating point.

Figure 1. Simplified Schematic

Figure 2. MC12147 Typical External Component Connections

1. This input can be left open, tied to ground, or tied with a resistor to ground, depending on the desired output amplitude needed at the Q and QB output pair.
2. Typical values for R1 range from $5.0 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$.

A simplified linear approximation of the device, package, and typical board parasitics has been developed to aid the designer in selecting the proper tank circuit values. All the parasitic contributions have been lumped into a parasitic capacitive component and a parasitic inductive component. While this is not entirely accurate, it gives the designer a solid starting point for selecting the tank components.

Below are the parameters used in the model.

```
Cp Parasitic Capacitance
Lp Parasitic Inductance
LT Inductance of Coil
C1 Coupling Capacitor Value
Cb Capacitor for decoupling the Bias Pin
CV Varactor Diode Capacitance (Variable)
```

The values for these components are substituted into the following equations:

$$
\begin{array}{ll}
\mathrm{Ci}=\frac{\mathrm{C} 1 \times \mathrm{CV}}{\mathrm{C} 1+\mathrm{CV}}+\mathrm{Cp} & \text { Equation 2 } \\
\mathrm{C}=\frac{\mathrm{Ci} \times \mathrm{Cb}}{\mathrm{Ci}+\mathrm{Cb}} & \text { Equation 3 } \\
\mathrm{L}=\mathrm{Lp}+\mathrm{LT} & \text { Equation 4 }
\end{array}
$$

From Figure 2, it can be seen that the varactor capacitance (CV) is in series with the coupling capacitor (C1). This is calculated in Equation 2. For analysis purposes, the parasitic capacitances (CP) are treated as a lumped element and placed in parallel with the series combination of C 1 and CV. This compound capacitance (Ci) is in series with the bias capacitor (Cb) which is calculated in Equation 3. The influences of the various capacitances; $\mathrm{C} 1, \mathrm{CP}$, and Cb , impact the design by reducing the variable capacitance effects of the varactor which controls the tank resonant frequency and tuning range.

Now the results calculated from Equation 2, Equation 3 and Equation 4 can be substituted into Equation 1 to calculate the actual frequency of the tank.

To aid in analysis, it is recommended that the designer use a simple spreadsheet based on Equation 1 through Equation 4 to calculate the frequency of operation for various varactor/inductor selections before determining the initial starting condition for the tank.

The two main components at the heart of the tank are the inductor (LT) and the varactor diode (CV). The capacitance of a varactor diode junction changes with the amount of reverse bias voltage applied across the two terminals. This is the element which actually "tunes" the VCO. One characteristic of the varactor is the tuning ratio which is the ratio of the capacitance at specified minimum and maximum voltage points. For characterizing the MC12147, a Matsushita (Panasonic) varactor - MA393 was selected. This device has a typical capacitance of 11 pF at 1 V and 3.7 pF at 4 V and the $\mathrm{C}-\mathrm{V}$ characteristic is fairly linear over that range. Similar performance was also acheived with Loral varactors. A multi-layer chip inductor was used to realize the LT component. These inductors had typical Q values in the $35-50$ range for frequencies between 500 and 1000 MHz .

Note: There are many suppliers of high performance varactors and inductors an Motorola can not recommend one vendor over another.

The Q (quality factor) of the components in the tank circuit has a direct impact on the resulting phase noise of the oscillator. In general, the higher the Q, the lower the phase noise of the resulting oscillator. In addition to the LT and CV components, only high quality surface-mount RF chip capacitors should be used in the tank circuit. These capacitors should have very low dielectric loss (high-Q). At a minimum, the capacitors selected should be operating 100 MHz below their series resonance point. As the desired frequency of operation increases, the values of the C1 and Cb capacitors will decrease since the series resonance point
is a function of the capacitance value. To simplify the selection of C 1 and Cb , a table has been constructed based on the intended operating frequency to provide recommended starting points. These may need to be altered depending on the value of the varactor selected.

Frequency	C1	Cb
$200-500 \mathrm{MHz}$	47 pF	47 pF
$500-900 \mathrm{MHz}$	5.1 pF	15 pF
$900-1200 \mathrm{MHz}$	2.7 pF	15 pF

The value of the Cb capacitor influences the VCO supply pushing. To minimize pushing, the Cb capacitor should be kept small. Since C1 is in series with the varactor, there is a strong relationship between these two components which influences the VCO sensitivity. Increasing the value of C1 tends to increase the sensitivity of the VCO.

The parasitic contributions Lp and Cp are related to the MC12147 as well as parasitics associated with the layout, tank components, and board material selected. The input capacitance of the device, bond pad, the wire bond, package/lead capacitance, wire bond inductance, lead inductance, printed circuit board layout, board dielectric, and proximity to the ground plane all have an impact on these parasitics. For example, if the ground plane is located directly below the tank components, a parasitic capacitor will be formed consisting of the solder pad, metal traces, board dielectric material, and the ground plane. The test fixture used for characterizing the device consisted of a two sided copper clad board with ground plane on the back. Nominal values where determined by selecting a varactor and characterizing the device with a number of different tank/ frequency combinations and then performing a curve fit with the data to determine values for Lp and Cp . The nominal values for the parasitic effects are seen below:

Parasitic Capacitance	Cp	4.2 pF
Parasitic Inductance	Lp	2.2 nH

These values will vary based on the users unique circuit board configuration.

Basic Guidelines:

1. Select a varactor with high Q and a reasonable capacitance versus voltage slope for the desired frequency range.
2. Select the value of Cb and C 1 from the table above .
3. Calculate a value of inductance (L) which will result in achieving the desired center frequency. Note that L includes both LT and Lp.
4. Adjust the value of C 1 to achieve the proper VCO sensitivity.
5. Re-adjust value of L to center VCO.
6. Prototype VCO design using selected components. It is important to use similar construction techniques and materials, board thickness, layout, ground plane spacing as intended for the final product.
7. Characterize tuning curve over the voltage operation conditions.
8. Adjust, as necessary, component values - L,C1, and Cb to compensate for parasitic board effects.
9. Evaluate over temperature and voltage limits.
10. Perform worst case analysis of tank component variation to insure proper VCO operation over full temperature and voltage range and make any adjustments as needed.

Outputs Q and QB are open collector outputs and need a inductor to V_{CC} to provide the voltage bias to the output transistor. In most applications, dc-blocking capacitors are placed in series with the output to remove the dc component before interfacing to other circuitry. These outputs are complementary and should have identical inductor values for each output. This will minimize switching noise on the V_{CC} supply caused by the outputs switching. It is important that both outputs be terminated, even if only one of the outputs is used in the application.

Referring to Figure 2, the recommended value for L2a and L2b should be 47 nH and the inductor components resonance should be at least 300 MHz greater than the maximum operating frequency. For operation above 1100 MHz , it may be necessary to reduce that inductor value to 33 nH . The recommended value for the coupling capacitors C6a, C6b, and C7 is 47 pF . Figure 2 also includes decoupling capacitors for the supply line as well as decoupling for the output inductors. Good RF decoupling practices should be used with a series of capacitors starting with high quality 100 pF chip capacitors close to the device. A typical layout is shown below in Figure 3.

The output amplitude of the Q and QB can be adjusted using the CNTL pin. Refering to Figure 1, if the CNTL pin is connected to ground, additional current will flow through the current source. When the pin is left open, the nominal current flowing through the outputs is 4 mA . When the pin is grounded, the current increases to a nominal value of 10 mA . So if a 50 ohm resistor was connected between the outputs and VCC, the output amplitude would change from 200 mV pp to 500 mV pp with an additional current drain for the device of 6 mA . To select a value between 4 and 10 mA , an external resistor can be added to ground. The equation below is used to calculate the current.

$$
\text { lout }(\text { nom })=\frac{\left(200+136+R_{\text {ext }}\right) \times 0.8 V}{200 \times\left(136+R_{\text {ext }}\right)}
$$

Figure 4 through Figure 13 illustrate typical performance achieved with the MC12147. The curves illustrate the tuning curve, supply pushing characteristics, output power, current drain, output spectrum, and phase noise performance. In most cases, data is present for both a 750 MHz and 1200 MHz tank design. The table below illustrates the component values used in the designs.

Component	750MHz Tank	1200MHz Tank	Units
R 1	5000	5000	Ω
C 1	5.1	2.7	pF
LT	4.7	1.8	nH
CV	$3.7 @ 1.0 \mathrm{~V}$ $11 @ 4.0 \mathrm{~V}$	$3.7 @ 1.0 \mathrm{~V}$ $11 @ 4.0 \mathrm{~V}$	pF
Cb	100^{*}	15	pF
$\mathrm{C} 6, \mathrm{C} 7$	47	33	pF
L 2	47	47	nH

* The value of Cb should be reduced to minimize pushing.

MC12147

Figure 3. MC12147 Typical Layout
(Not to Scale)

MC12147

Figure 4. Typical VCO Tuning Curve, 750 MHz Tank

Figure 5. Typical Supply Pushing, 750MHz Tank

Figure 6. Typical Q/QB Output Power versus Supply, 750 MHz Tank

Figure 7. Typical Current Drain versus Supply, 750 MHz Tank

MC12147

Figure 8. Typical VCO Tuning Curve, 1200 MHz Tank

$$
\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}\right)
$$

Figure 9. Typical Supply Pushing, 1200 MHz Tank

Figure 10. Q/QB Output Power versus Supply, 1200 MHz Tank

Figure 11. Typical VCO Output Spectrum

MC12147

Figure 12. Typical Phase Noise Plot, 750 MHz Tank

Figure 13. Typical Phase Noise Plot, 1200 MHz Tank

Low Power
 Voltage Controlled Oscillator

The MC12148 requires an external parallel tank circuit consisting of the inductor (L) and capacitor (C). A varactor diode may be incorporated into the tank circuit to provide a voltage variable input for the oscillator (VCO). This device may also be used in many other applications requiring a fixed frequency clock.

The MC12148 is ideal in applications requiring a local oscillator. Systems include electronic test equipment and digital high-speed telecommunications.

The MC12148 is based on the VCO circuit topology of the MC1648. The MC12148 has been realized utilizing Motorola's MOSAIC III advanced bipolar process technology which results in a design which can operate at a much higher frequency than the MC1648 while utilizing half the current. Please consult with the MC1648 data sheet for additional background information.

The ECL output circuitry of the MC12148 is not a traditional open emitter output structure and instead has an on-chip termination resistor with a nominal value of 500 ohms. This facilitates direct ac-coupling of the output signal into a transmission line. Because of this output configuration, an external pull-down resistor is not required to provide the output with a dc current path. This output is intended to drive one ECL load. If the user needs to fanout the signal, an ECL buffer such as the MC10EL16 Line Receiver/Driver should be used.

NOTE: The MC12148 is NOT useable as a crystal oscillator.

- Typical Operating Frequency Up to 1100 MHz
- Low-Power 20 mA at 5.0 Vdc Power Supply
- 8-Pin SOIC Package
- Phase Noise $-90 \mathrm{dBc} / \mathrm{Hz}$ at 25 kHz Typical

LOW POWER Voltage controlled OSCILLATOR

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

(Top View)
ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12148D	$T_{A}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-8
MC12148SD	SSOP-8	

MC12148

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
Power Supply Voltage, Pins 1,7	$\mathrm{~V}_{\mathrm{CC}}$	-0.5 to 7.0	Vdc
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to 150	${ }^{\circ} \mathrm{C}$

NOTE: ESD data available upon request.
ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40\right.$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit	
Supply Current	$\mathrm{I} C \mathrm{C}$	-	19	25	mA	
Output Level HIGH (1.0 M Ω Impedance)	V_{OH}	3.95	4.17	4.61	V	
Output Level LOW (1.0 M Ω Impedance)	V_{OL}	3.04	3.41	3.60	V	
CSR @ 25 kHz Offset, 1.0 Hz BW	$\mathcal{L}(\mathrm{f})$	-	-90	-	$\mathrm{dBc} / \mathrm{Hz}$	
CSR @ 1.0 MHz Offset, 1.0 Hz BW	$\mathcal{L}(\mathrm{f})$	-	-120	-	$\mathrm{dBc} / \mathrm{Hz}$	
SNR (Signal to Noise Ratio from Carrier)	SNR	-	40	-	dB	
Frequency Stability	Supply Drift	Fsts	-	3.6	-	$\mathrm{KHz} / \mathrm{mV}$

Figure 1. Circuit Schematic

MC12148

Figure 2. Typical Evaluation Results (CSR MC12148 5.0 Vdc; VCC @ $25^{\circ} \mathrm{C}$; 930 MHz CW)

Tank Component Suppliers

Below are suppliers who manufacture tuning varactors and inductors which can be used to build an external tank circuit. Motorola has used these varactors and inductors for evaluation purposes, however, there are other vendors who manufacture similar products.

Coilcraft Inductors A01T thru A05T
Coilcraft-Coilcraft, Inc.
1102 Silver Lake Rd.
Gary, Illinois 60013
708-639-6400
Loral Tuning Varactors GC1500 Series
Loral
16 Maple Road
Chelmsford, Massachusetts 01824
508-256-8101 or 508-256-4113

Alpha Tuning Diodes DVH6730 Series
Alpha Semiconductor Devices Division
20 Sylvan Road
Woburn, MA 01801
617-935-5150

* At 1.1 GHz, use a Coilcraft AOIT Springair coil at 2.5 nH and a Loral Varactor 3.0 to 8.0 pF at V IN $=1.0$ to 5.0 V .

Low Power

Voltage Controlled Oscillator Buffer

The MC12149 is intended for applications requiring high frequency signal generation up to 1300 MHz . An external tank circuit is used to determine the desired frequency of operation. The VCO is realized using an emitter-coupled pair topology. The MC12149 can be used with an integrated PLL IC such as the MC12202 1.1 GHz Frequency Synthesizer to realize a complete PLL sub-system. The device is specified to operate over a voltage supply range of 2.7 to 5.5 V . It has a typical current consumption of 15 mA at 3.0 V which makes it attractive for battery operated handheld systems.

NOTE: The MC12149 is NOT suitable as a crystal oscillator.

- Operates Up to 1.3 GHz
- Space-Efficient 8-Pin SOIC or SSOP Package
- Low Power 15 mA Typical @ 3.0 V Operation
- Supply Voltage of 2.7 to 5.5 V
- Typical 900 MHz Performance

> - Phase Noise - $105 \mathrm{dBc} / \mathrm{Hz} @ 100 \mathrm{kHz}$ Offset
> - Tuning Voltage Sensitivity of $20 \mathrm{MHz} / \mathrm{V}$

- Output Amplitude Adjustment Capability
- Two High Drive Outputs With a Typical Range from -8.0 to -2.0 dBm
- One Low-Drive Output for Interfacing to a Prescaler

The device has three high frequency outputs which make it attractive for transceiver applications which require both a transmit and receive local oscillator (LO) signal as well as a lower amplitude signal to drive the prescaler input of the frequency synthesizer. The outputs Q and $Q B$ are available for servicing the receiver IF and transmitter up-converter single-ended. In receiver applications, the outputs can be used together if it is necessary to generate a differential signal for the receiver IF. Because the Q and QB outputs are open collector, terminations to the V_{CC} supply are required for proper operation. Since the outputs are complementary, BOTH outputs must be terminated even if only one is needed. The Q and QB outputs have a nominal drive level of -8 dBm to conserve power. If addition signal amplitude is needed, a level adjustment pin (CNTL) is available, which when tied to ground, boosts the nominal output levels to -2.0 dBm . A low power VCO output (Q2) is also provided to drive the prescaler input of the PLL. The amplitude of this signal is nominally 500 mV which is suitable for most prescalers.

External components required for the MC12149 are: (1) tank circuit (LC network); (2) Inductor/capacitor to provide the termination for the open collector outputs; and (3) adequate supply voltage bypassing. The tank circuit consists of a high-Q inductor and varactor components. The preferred tank configuration allows the user to tune the VCO across the full supply range. VCO performance such as center frequency, tuning voltage sensitivity, and noise characteristics are dependent on the particular components and configuration of the VCO tank circuit.

LOW POWER VOLTAGE CONTROLLED OSCILLATOR BUFFER

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12149D	$T_{A}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO- 8
MC12149SD	SSOP -8	

MC12149

PIN NAMES

Pin	Function
VCC	Power Supply
CNTL	Amplitude Control for Q, QB Output Pair
TANK	Tank Circuit Input
V REF $^{\text {QB }}$	Bias Voltage Output
GND	Open Collector Output
Q	Ground
Q $_{2}$	Open Collector Output

MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Power Supply Voltage, Pin 1	$\mathrm{~V}_{\mathrm{CC}}$	-0.5 to 7.0	V
Operating Temperature Range	T_{A}	-40 to 85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{STG}}$	-65 to 150	${ }^{\circ} \mathrm{C}$
Maximum Output Current, Pin 8	I O	7.5	mA
Maximum Output Current, Pin 5,7	I O	12	mA

NOTES: 1. Maximum Ratings are those values beyond which damage to the device may occur.
Functional operation should be restricted to the Recommended Operating Conditions.
2. ESD data available upon request.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=2.7\right.$ to $5.5 \mathrm{VDC}, \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)
$\left.\begin{array}{|l|c|c|c|c|c|}\hline \text { Characteristic } & \text { Symbol } & \text { Min } & \text { Typ } & \text { Max } & \text { Unit } \\ \hline \text { Supply Current (CNTL=GND) } \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=5.5 \mathrm{~V}\end{array}\right)$

NOTES: 1. CNTL pin tied to ground.
2. Actual performance depends on tank components selected.
3. See Figure 12, 750 MHz tank.
4. $\mathrm{T}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 10 \%$

MC12149

OPERATIONAL CHARACTERISTICS

A simplified schematic of the MC12149 is found in Figure 1. The oscillator incorporates positive feedback by coupling the base of transistor Q2 to the collector of transistor Q1. In order to minimize interaction between the VCO outputs and the oscillator tank transistor pair, a buffer is incorporated into the circuit. This differential buffer is realized by the Q3 and Q4 transistor pair. The differential buffer drives the gate which contains the primary open collector outputs, Q and QB. The output is actually a current which has been set by an internal bias driver to a nominal current of 4 mA . Additional circuitry is incorporated into the tail of the current source which allows the current source to be increased to approximately 10 mA . This is accommodated by the addition of a resistor which is brought out to the CNTL pin. When this pin is tied to ground, the additional current is sourced through the current source thus increasing the output amplitude of the Q/QB output pair. If less than 10 mA of current is needed, a resistor can be added to ground which reduces the amount of current.

The Q/QB outputs drive an additional differential buffer which generate the Q2 output signal. To minimize current, the circuit is realized as an emitter-follower buffer with an on chip pull down resistor. This output is intended to drive the prescaler input of the PLL synthesizer block.

APPLICATION INFORMATION

Figure 2 illustrates the external components necessary for the proper operation of the VCO buffer. The tank circuit configuration in this figure allows the VCO to be tuned across the full operating voltage of the power supply. This is very important in 3.0 V applications where it is desirable to utilize as much of the operating supply range as possible so as to minimize the VCO sensitivity ($\mathrm{MHz} / \mathrm{V}$). In most situations, it is desirable to keep the sensitivity low so the circuit will be less
susceptible to external noise influences. An additional benefit to this configuration is that additional regulation/ filtering can be incorporated into the V_{CC} line without compromising the tuning range of the VCO. With the ac-coupled tank configuration, the $\mathrm{V}_{\text {tune }}$ voltage can be greater than the V_{CC} voltage supplied to the device.

There are four main areas that the user directly influences the performance of the VCO. These include Tank Design, Output Termination Selection, Power Supply Decoupling, and Circuit Board Layout/Grounding.

The design of the tank circuit is critical to the proper operation of the VCO. This tank circuit directly impacts the main VCO operating characteristics:

1) Frequency of Operation
2) Tuning Sensitivity
3) Voltage Supply Pushing
4) Phase Noise Performance

The tank circuit, in its simplest form, is realized as an LC circuit which determines the VCO operating frequency. This is described in Equation 1.

$$
f_{O}=\frac{1}{2 \pi \sqrt{L C}}
$$

Equation 1
In the practical case, the capacitor is replaced with a varactor diode whose capacitance changes with the voltage applied, thus changing the resonant frequency at which the VCO tank operates. The capacitive component in Equation 1 also needs to include the input capacitance of the device and other circuit and parasitic elements. Typically, the inductor is realized as a surface mount chip or a wound-coil. In addition, the lead inductance and board inductance and capacitance also have an impact on the final operating point.

Figure 1. Simplified Schematic

Figure 2. MC12149 Typical External Component Connections

1. This input can be left open, tied to ground, or tied with a resistor to ground, depending on the desired output amplitude needed at the Q and QB output pair.
2. Typical values for $R 1$ range from $5.0 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$.

A simplified linear approximation of the device, package, and typical board parasitics has been developed to aid the designer in selecting the proper tank circuit values. All the parasitic contributions have been lumped into a parasitic capacitive component and a parasitic inductive component. While this is not entirely accurate, it gives the designer a solid starting point for selecting the tank components.

Below are the parameters used in the model.

```
Cp Parasitic Capacitance
Lp Parasitic Inductance
LT Inductance of Coil
C1 Coupling Capacitor Value
Cb Capacitor for decoupling the Bias Pin
CV Varactor Diode Capacitance (Variable)
```

The values for these components are substituted into the following equations:

$$
\begin{aligned}
\mathrm{Ci}=\frac{\mathrm{C} 1 \times \mathrm{CV}}{\mathrm{C} 1+\mathrm{CV}}+\mathrm{Cp} & \text { Equation 2 } \\
\mathrm{C}=\frac{\mathrm{Ci} \times \mathrm{Cb}}{\mathrm{Ci}+\mathrm{Cb}} & \text { Equation 3 } \\
\mathrm{L}=\mathrm{Lp}+\mathrm{LT} & \text { Equation 4 }
\end{aligned}
$$

From Figure 2, it can be seen that the varactor capacitance (CV) is in series with the coupling capacitor (C1). This is calculated in Equation 2. For analysis purposes, the parasitic capacitances (CP) are treated as a lumped element and placed in parallel with the series combination of C 1 and CV. This compound capacitance (Ci) is in series with the bias capacitor (Cb) which is calculated in Equation 3. The influences of the various capacitances; $\mathrm{C} 1, \mathrm{CP}$, and Cb , impact the design by reducing the variable capacitance effects of the varactor which controls the tank resonant frequency and tuning range.

Now the results calculated from Equation 2, Equation 3 and Equation 4 can be substituted into Equation 1 to calculate the actual frequency of the tank.

To aid in analysis, it is recommended that the designer use a simple spreadsheet based on Equation 1 through Equation 4 to calculate the frequency of operation for various varactor/inductor selections before determining the initial starting condition for the tank.

The two main components at the heart of the tank are the inductor (LT) and the varactor diode (CV). The capacitance of a varactor diode junction changes with the amount of reverse bias voltage applied across the two terminals. This is the element which actually "tunes" the VCO. One characteristic of the varactor is the tuning ratio which is the ratio of the capacitance at specified minimum and maximum voltage points. For characterizing the MC12149, a Matsushita (Panasonic) varactor - MA393 was selected. This device has a typical capacitance of 11 pF at 1.0 V and 3.7 pF at 4.0 V and the $\mathrm{C}-\mathrm{V}$ characteristic is fairly linear over that range. Similar performance was also acheived with Loral varactors. A multi-layer chip inductor was used to realize the LT component. These inductors had typical Q values in the 35 to 50 range for frequencies between 500 and 1000 MHz .

Note: There are many suppliers of high performance varactors and inductors and Motorola can not recommend one vendor over another.

The Q (quality factor) of the components in the tank circuit has a direct impact on the resulting phase noise of the oscillator. In general, the higher the Q, the lower the phase noise of the resulting oscillator. In addition to the LT and CV components, only high quality surface-mount RF chip capacitors should be used in the tank circuit. These capacitors should have very low dielectric loss (high-Q). At a minimum, the capacitors selected should be operating 100 MHz below their series resonance point. As the desired frequency of operation increases, the values of the C1 and Cb capacitors will decrease since the series resonance point
is a function of the capacitance value. To simplify the selection of C1 and Cb, a table has been constructed based on the intended operating frequency to provide recommended starting points. These may need to be altered depending on the value of the varactor selected.

Frequency	C1	Cb
$200-500 \mathrm{MHz}$	47 pF	47 pF
$500-900 \mathrm{MHz}$	5.1 pF	15 pF
$900-1200 \mathrm{MHz}$	2.7 pF	15 pF

The value of the Cb capacitor influences the VCO supply pushing. To minimize pushing, the Cb capacitor should be kept small. Since C1 is in series with the varactor, there is a strong relationship between these two components which influences the VCO sensitivity. Increasing the value of C1 tends to increase the sensitivity of the VCO.

The parasitic contributions Lp and Cp are related to the MC12149 as well as parasitics associated with the layout, tank components, and board material selected. The input capacitance of the device, bond pad, the wire bond, package/lead capacitance, wire bond inductance, lead inductance, printed circuit board layout, board dielectric, and proximity to the ground plane all have an impact on these parasitics. For example, if the ground plane is located directly below the tank components, a parasitic capacitor will be formed consisting of the solder pad, metal traces, board dielectric material, and the ground plane. The test fixture used for characterizing the device consisted of a two sided copper clad board with ground plane on the back. Nominal values where determined by selecting a varactor and characterizing the device with a number of different tank/ frequency combinations and then performing a curve fit with the data to determine values for Lp and Cp . The nominal values for the parasitic effects are seen below:

Parasitic Capacitance	Cp	4.2 pF
Parasitic Inductance	Lp	2.2 nH

These values will vary based on the users unique circuit board configuration.

Basic Guidelines:

1. Select a varactor with high Q and a reasonable capacitance versus voltage slope for the desired frequency range.
2. Select the value of Cb and C 1 from the table above .
3. Calculate a value of inductance (L) which will result in achieving the desired center frequency. Note that L includes both LT and Lp.
4. Adjust the value of C 1 to achieve the proper VCO sensitivity.
5. Re-adjust value of L to center VCO.
6. Prototype VCO design using selected components. It is important to use similar construction techniques and materials, board thickness, layout, ground plane spacing as intended for the final product.
7. Characterize tuning curve over the voltage operation conditions.
8. Adjust, as necessary, component values - L,C1, and Cb to compensate for parasitic board effects.
9. Evaluate over temperature and voltage limits.
10. Perform worst case analysis of tank component variation to insure proper VCO operation over full temperature and voltage range and make any adjustments as needed.

Outputs Q and QB are open collector outputs and need a inductor to VCC to provide the voltage bias to the output transistor. In most applications, DC-blocking capacitors are placed in series with the output to remove the DC component before interfacing to other circuitry. These outputs are complementary and should have identical inductor values for each output. This will minimize switching noise on the VCC supply caused by the outputs switching. It is important that both outputs be terminated, even if only one of the outputs is used in the application.

Referring to Figure 2, the recommended value for L2a and L2b should be 47 nH and the inductor components resonance should be at least 300 MHz greater than the maximum operating frequency. For operation above 1100 MHz , it may be necessary to reduce that inductor value to 33 nH . The recommended value for the coupling capacitors $\mathrm{C} 6 \mathrm{a}, \mathrm{C} 6 \mathrm{~b}$, and C 7 is 47 pF . Figure 2 also includes decoupling capacitors for the supply line as well as decoupling for the output inductors. Good RF decoupling practices should be used with a series of capacitors starting with high quality 100 pF chip capacitors close to the device. A typical layout is shown below in Figure 3.

The output amplitude of the Q and QB can be adjusted using the CNTL pin. Refering to Figure 1, if the CNTL pin is connected to ground, additional current will flow through the current source. When the pin is left open, the nominal current flowing through the outputs is 4 mA . When the pin is grounded, the current increases to a nominal value of 10 mA . So if a 50 ohm resistor was connected between the outputs and VCC, the output amplitude would change from 200 mV pp to 500 mV pp with an additional current drain for the device of 6 mA . To select a value between 4 and 10 mA , an external resistor can be added to ground. The equation below is used to calculate the current.

$$
\text { Iout }(\text { nom })=\frac{\left(200+136+R_{\text {ext }}\right) \times 0.8 V}{200 \times\left(136+R_{\text {ext }}\right)}
$$

Figure 4 through Figure 13 illustrate typical performance achieved with the MC12149. The curves illustrate the tuning curve, supply pushing characteristics, output power, current drain, output spectrum, and phase noise performance. In most cases, data is present for both a 750 MHz and 1200 MHz tank design. The table below illustrates the component values used in the designs.

Component	750MHz Tank	1200MHz Tank	Units
R1	5000	5000	Ω
C 1	5.1	2.7	pF
LT	4.7	1.8	nH
CV	$3.7 @ 1.0 \mathrm{~V}$ $11 @ 4.0 \mathrm{~V}$	$3.7 @ 1.0 \mathrm{~V}$ $11 @ 4.0 \mathrm{~V}$	pF
Cb	100^{*}	15	pF
$\mathrm{C} 6, \mathrm{C} 7$	47	33	pF
L 2	47	47	nH

NOTE: * The value of Cb should be reduced to minimize pushing.

MC12149

Figure 3. MC12149 Typical Layout
(Not to Scale)

MC12149

Figure 4. Typical VCO Tuning Curve, 750 MHz Tank

Figure 5. Typical Supply Pushing, 750 MHz Tank

MC12149

Figure 6. Typical Q/QB Output Power versus Supply, 750 MHz Tank

Figure 7. Typical Current Drain versus Supply, 750 MHz Tank

MC12149

Figure 8. Typical VCO Tuning Curve, 1200 MHz Tank

Figure 9. Typical Supply Pushing, 1200 MHz Tank

Figure 10. Q/QB Output Power versus Supply, 1200 MHz Tank

Figure 11. Typical VCO Output Spectrum

MC12149

Figure 12. Typical Phase Noise Plot, 750 MHz Tank

Figure 13. Typical Phase Noise Plot, 1200 MHz Tank

500-2800 MHz Single Channel Frequency Synthesizer

The MC12179 is a monolithic Bipolar synthesizer integrating the high frequency prescaler, phase/frequency detector, charge pump, and reference oscillator/buffer functions. When combined with an external loop filter and VCO, the MC12179 serves as a complete PLL subsystem. Motorola's advanced MOSAICTM V technology is utilized for low power operation at a 5.0 V supply voltage. The device is designed for operation up to 2.8 GHz for high frequency applications such as CATV down converters and satellite receiver tuners.

- 2.8 GHz Maximum Operating Frequency
- Low Power Supply Current of 3.5 mA Typical, Including ICC and Ip Currents
- Supply Voltage of 5.0 V Typical
- Integrated Divide by 256 Prescaler
- On-Chip Reference Oscillator/Buffer
- 2.0 to 11 MHz Operation When Driven From Reference Source
- 5.0 to 11 MHz Operation When Used With a Crystal
- Digital Phase/Frequency Detector with Linear Transfer Function
- Balanced Charge Pump Output
- Space Efficient 8-Lead SOIC
- Operating Temperature Range of -40 to $85^{\circ} \mathrm{C}$

For additional information on calculating the loop filter components, an InterActiveApNote ${ }^{\text {TM }}$ document containing software (based on a Microsoft Excel spreadsheet) and an Application Note is available. Please order DK306/D from the Motorola Literature Distribution Center.

MOSAIC V, Mfax and InterActiveApNote are trademarks of Motorola, Inc.

MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Power Supply Voltage, Pin 2	V_{CC}	-0.5 to 6.0	Vdc
Power Supply Voltage, Pin 7	V_{P}	V_{CC} to 6.0	Vdc
Storage Temperature Range	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$

NOTES: 1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions as identified in the Electrical Characteristics table. 2. ESD data available upon request.

$500-2800 \mathrm{MHz}$
 SINGLE CHANNEL FREQUENCY SYNTHESIZER

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC 12179 D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{SO}-8$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{CC}}$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit	Condition
Supply Current for V_{CC}	ICC	-	3.1	5.6	mA	Note 1
Supply Current for V_{P}	IP	-	0.4	1.3	mA	Note 1
Operating Frequency $\begin{aligned} & \text { finmax } \\ & \text { finmin }\end{aligned}$	FIN	2800	-	500	MHz	Note 2
Operating Frequency $\begin{array}{r}\text { Crystal Mode } \\ \text { External Oscillator OSC }{ }_{\text {in }}\end{array}$	Fosc	$\begin{aligned} & 5 \\ & 2 \end{aligned}$	-	$\begin{aligned} & 11 \\ & 11 \end{aligned}$	MHz	Note 3 Note 4
Input Sensitivity $\quad \mathrm{F}_{\text {in }}$	$\mathrm{V}_{\text {IN }}$	200	-	1000	$m V_{P-P}$	Note 2
Input Sensitivity External Oscillator OSC in	Vosc	500	-	2200	$m V_{P-P}$	Note 4
Output Source Current5 (${ }^{\text {5 }}$ out $)$	${ }^{\mathrm{I}} \mathrm{H}$	-2.8	-2.2	-1.6	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PDout}} \\ & =\mathrm{V}_{\mathrm{P}} / 2 \end{aligned}$
Output Sink Current5 (${ }^{\text {5 }}$ out $)$	IOL	1.6	2.2	2.8	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{P}}=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{PD}} \text { out } \\ & =\mathrm{V}_{\mathrm{P}} / 2 \end{aligned}$
Output Leakage Current ($\mathrm{PD}_{\text {out }}$)	IOZ	-	0.5	15	nA	$\begin{aligned} & V_{P}=5.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{PD}} \text { out } \\ & =\mathrm{V}_{\mathrm{P}} / 2 \end{aligned}$

NOTES: 1. V_{CC} and $\mathrm{V}_{\mathrm{P}}=5.5 \mathrm{~V}$; $\mathrm{F}_{\mathrm{IN}}=2.56 \mathrm{GHz} ; \mathrm{F}_{\mathrm{OSC}}=10 \mathrm{MHz}$ crystal; $\mathrm{PD}_{\text {out }}$ open.
2. AC coupling, F_{IN} measured with a 1000 pF capacitor.
3. Assumes C_{1} and C_{2} (Figure 1) limited to $\leq 30 \mathrm{pF}$ each including stray and parasitic capacitances.
4. AC coupling to $\mathrm{OSC}_{\text {in }}$.
5. Refer to Figure 15 and Figure 16 for typical performance curves over temperature and power supply voltage.

PIN FUNCTION DESCRIPTION

Pin	Symbol	I/O	Function
1	OSCin	I	Oscillator Input - An external parallel-resonant, fundamental crystal is connected between OSC in
and OSC			

Figure 1. MC12179 Expanded Block Diagram

PHASE CHARACTERISTICS

The phase comparator in the MC12179 is a high speed digital phase/frequency detector circuit. The circuit determines the "lead" or "lag" phase relationship and time difference between the leading edges of the VCO (f_{v}) signal and the reference (f_{r}) input. The detector can cover a range of $\pm 2 \pi$ radian of $\mathrm{f}_{\mathrm{V}} / \mathrm{f}_{\mathrm{r}}$ phase difference. The operation of the charge pump output is shown in Figure 2.

fr lags $f v$ in phase OR fv>fr in frequency

When the phase of f_{r} lags that of fv or the frequency of f_{V} is greater than f_{r}, the Do output will sink current. The pulse width will be determined by the time difference between the two rising edges.

fr leads fv in phase OR fv<fr in frequency

When the phase of f_{r} leads that of fv or the frequency of f_{v} is less than f_{r}, the Do output will source current. The pulse width will be determined by the time difference between the two rising edges.

$f_{r}=f_{V}$ in phase and frequency

When the phase and frequency of fr and fv are equal, the charge pump will be in a quiet state, except for current spikes when signals are in phase. This situation indicates that the loop is in lock and the phase comparator will maintain the loop in its locked state.

Figure 2. Phase/Frequency Detector and Charge Pump Waveforms

H = High voltage level; L = Low voltage level; Z = High impedance
NOTES: Phase difference detection range: $\sim-2 \pi$ to 2π
K_{p}-Charge Pump Gain $\approx \frac{\left\|_{\text {source }}\left|+\|_{\text {sink }}\right|\right.}{4 \pi}=\frac{|2.2|+|-2.2|}{4 \pi}=\frac{1.1 \mathrm{~mA}}{\pi \text { radian }}$

APPLICATIONS INFORMATION

The MC12179 is intended for applications where a fixed local oscillator is required to be synthesized. The prescaler on the MC12179 operates up to 2.8 GHz which makes the part ideal for many satellite receiver applications as well as applications in the 2nd ISM (Industrial, Scientific, and Medical) band which covers the frequency range of 2400 MHz to 2483 MHz . The part is also intended for MMDS (Multi-channel Multi-point Distribution System) block downconverter applications. Below is a typical block diagram of the complete PLL.

Figure 3. Typical Block Diagram of Complete PLL

As can be seen from the block diagram, with the addition of a VCO, a loop filter, and either an external oscillator or crystal, a complete PLL sub-system can be realized. Since most of the PLL function is integrated into the MC12179, the user's primary focus is on the loop filter design and the crystal reference circuit. Figure 13 and Figure 14 illustrate typical VCO spectrum and phase noise characteristics. Figure 17 and Figure 18 illustrate the typical input impedance versus frequency for the prescaler input.

Crystal Oscillator Design

The MC12179 is used as a multiply-by-256 PLL circuit which transfers the high stability characteristic of a low frequency reference source to the high frequency VCO in the PLL loop. To facilitate this, the device contains an input circuit which can be configured as a crystal oscillator or a buffer for accepting an external signal source.

In the external reference mode, the reference source is AC-coupled into the OSC in input pin. The input level signal should be between 500-2200 mVpp. When configured with an external reference, the device can operate with input frequencies down to 2 MHz , thus allowing the circuit to control the VCO down to 512 MHz . To optimize the phase noise of the PLL when used in this mode, the input signal amplitude should be closer to the upper specification limit. This maximizes the slew rate of the input signal as it switches against the internal voltage reference.

In the crystal mode, an external parallel-resonant fundamental mode crystal is connected between the OSC $\mathrm{in}_{\mathrm{in}}$ and OSC ${ }_{\text {out }}$ pins. This crystal must be between 5.0 MHz and 11 MHz . External capacitors, C1 and C2 as shown in Figure 1, are required to set the proper crystal load capacitance and oscillator frequency. The values of the capacitors are dependent on the crystal chosen and the input capacitance of the device and any stray board capacitance.

In either mode, a $50 \mathrm{k} \Omega$ resistor must be connected between the OSC $_{\text {in }}$ and the OSC ${ }_{\text {out }}$ pins for proper device operation. The value of this resistor is not critical so a $47 \mathrm{k} \Omega$ or $51 \mathrm{k} \Omega \pm 10 \%$ resistor is acceptable.

Since the MC12179 is realized with an all-bipolar ECL style design, the internal oscillator circuitry is different from more traditional CMOS oscillator designs which realize the crystal oscillator with a modified inverter topology. These CMOS designs typically excite the crystal with a rail-to-rail signal which may overdrive the crystal resulting in damage or unstable operation. The MC12179 design does not exhibit these phenomena because the swing out of the OSC out $^{\text {pin }}$ is less than 600 mV . This has the added advantage of minimizing EMI and switching noise which can be generated by rail-to-rail CMOS outputs. The OSC ${ }_{\text {out }}$ output should not be used to drive other circuitry.

The oscillator buffer in the MC12179 is a single stage, high speed, differential input/output amplifier; it may be considered to be a form of the Pierce oscillator. A simplified circuit diagram is seen in Figure 4.

Figure 4. Simplified Crystal Oscillator/Buffer Circuit

OSC $_{\text {in }}$ drives the base of one input of an NPN transistor differential pair. The non-inverting input of the differential pair is internally biased. OSC ${ }_{\text {out }}$ is the inverted input signal and is buffered by an emitter follower with a $70 \mu \mathrm{~A}$ pull-down current and has a voltage swing of about 600 mVpp . Open loop output impedance is about 425Ω. The opposite side of the differential amplifier output is used internally to drive another buffer stage which drives the phase/frequency detector. With the $50 \mathrm{k} \Omega$ feedback resistor in place, OSC $_{\mathrm{in}}$ and OSC ${ }_{\text {out }}$ are biased to approximately 1.1 V below V_{CC}. The amplifier has a voltage gain of about 15 dB and a bandwidth in excess of 150 MHz . Adherence to good RF design and layout techniques, including power supply pin decoupling, is strongly recommended.

A typical crystal oscillator application is shown in Figure 1. The crystal and the feedback resistor are connected directly between $\mathrm{OSC}_{\mathrm{in}}$ and OSC $_{\text {out }}$, while the loading capacitors, C 1 and C 2 , are connected between OSCin and ground, and OSC ${ }_{\text {out }}$ and ground respectively. It is important to understand that as far as the crystal is concerned, the two loading capacitors are in series (albeit through ground). So when the crystal specification defines a specific loading capacitance, this refers to the total external (to the crystal) capacitance seen across its two pins.

This capacitance consists of the capacitance contributed by the amplifier (IC and packaging), layout capacitance, and the series combination of the two loading capacitors. This is illustrated in the equation below:

$$
\mathrm{Cl}_{\mathrm{I}}=\mathrm{CAMP}+\mathrm{CSTRAY}+\frac{\mathrm{C} 1 \times \mathrm{C} 2}{\mathrm{C} 1+\mathrm{C} 2}
$$

Provided the crystal and associated components are located immediately next to the IC, thus minimizing the stray capacitance, the combined value of CAMP and CSTRAY is approximately $5 p F$. Note that the location of the OSC $\mathrm{in}_{\text {in }}$ and OSC ${ }_{\text {out }}$ pins at the end of the package, facilitates placing the crystal, resistor and the C1 and C2 capacitors very close to the device. Usually, one of the capacitors is in parallel with an adjustable capacitor used to trim the frequency of oscillation. It is important that the total external (to the IC) capacitance seen by either $\mathrm{OSC}_{\text {in }}$ or $\mathrm{OSC}_{\text {out }}$, be no greater than 30 pF .

In operation, the crystal oscillator will start up with the application of power. If the crystal is in a can that is not grounded it is often possible to monitor the frequency of oscillation by connecting an oscilloscope probe to the can; this technique minimizes any disturbance to the circuit. If a malfunction is indicated, a high impedance, low capacitance, FET probe may be connected to either OSC in or OSC ${ }_{\text {out }}$. Signals typically seen at those points will be very nearly sinusoidal with amplitudes of roughly 300 to 600 mVpp . Some distortion is inevitable and has little bearing on the accuracy of the signal going to the phase detector.

Loop Filter Design

Because the device is designed for a non-frequency agile synthesizer (i.e., how fast it tunes is not critical) the loop filter design is very straight forward. The current output of the charge pump allows the loop filter to be realized without the need of any active components. The preferred topology for the filter is illustrated below in Figure 5.

Figure 5. Loop Filter

The R_{0} / C_{0} components realize the primary loop filter. C_{a} is added to the loop filter to provide for reference sideband suppression. If additional suppression is needed, the R_{x} / C_{x} realizes an additional filter. In most applications, this will not be necessary. If all components are used, this results in a 4th order PLL, which makes analysis difficult. To simplify this, the loop design will be treated as a 2nd order loop $\left(R_{0} / C_{0}\right)$ and additional guidelines are provided to minimize the influence of the other components. If more rigorous analysis is needed, mathematical/system simulation tools can be used.

Component	Guideline
C_{a}	$<0.1 \times \mathrm{C}_{\mathrm{o}}$
R_{X}	$>10 \times \mathrm{R}_{\mathrm{O}}$
C_{X}	$<0.1 \times \mathrm{C}_{0}$

The focus of the design effort is to determine what the loop's natural frequency, ω_{0}, should be. This is determined by $R_{0}, C_{0}, K_{p}, K_{v}$, and N. Because K_{p}, K_{v}, and N are given, it is only necessary to calculate values for R_{0} and C_{0}. There are 3 considerations in selecting the loop bandwidth:

1) Maximum loop bandwidth for minimum tuning speed
2) Optimum loop bandwidth for best phase noise performance
3) Minimum loop bandwidth for greatest reference sideband suppression
Usually a compromise is struck between these 3 cases, however, for the fixed frequency application, minimizing the tuning speed is not a critical parameter.

To specify the loop bandwidth for optimal phase noise performance, an understanding of the sources of phase noise in the system and the effect of the loop filter on them is required. There are 3 major sources of phase noise in the phase-locked loop - the crystal reference, the VCO, and the loop contribution. The loop filter acts as a low-pass filter to the crystal reference and the loop contribution equal to the total divide-by-N ratio. This is mathematically described in Figure 10. The loop filter acts as a high-pass filter to the VCO with an in-band gain equal to unity. This is described in Figure 11. The loop contribution includes the PLL IC, as well as noise in the system; supply noise, switching noise, etc. For this example, a loop contribution of 15 dB has been selected, which corresponds to data in Figure 14.

The crystal reference and the VCO are characterized as high-order $1 / f$ noise sources. Graphical analysis is used to determine the optimum loop bandwidth. It is necessary to have noise plots from the manufacturer. This method provides a straightforward approximation suitable for quickly estimating the optimal bandwidth. The loop contribution is characterized as white-noise or low-order 1/f noise given in the form of a noise factor which combines all the noise effects into a single value. The phase noise of the Crystal Reference is increased by the noise factor of the PLL IC and related circuitry. It is further increased by the total divide-by-N ratio of the loop. This is illustrated in Figure 6.

The point at which the VCO phase noise crosses the amplified phase noise of the Crystal Reference is the point of the optimum loop bandwidth. In the example of Figure 6, the optimum bandwidth is approximately 15 KHz .

Figure 6. Graphical Analysis of Optimum Bandwidth

Figure 7. Closed Loop Frequency Response for $\zeta=1$ Natural Frequency

To simplify analysis further a damping factor of 1 will be selected. The normalized closed loop response is illustrated in Figure 7 where the loop bandwidth is 2.5 times the loop natural frequency (the loop natural frequency is the frequency at which the loop would oscillate if it were unstable). Therefore the optimum loop bandwidth is
$15 \mathrm{kHz} / 2.5$ or 6 kHz (37.7 krads) with a damping coefficient, $\zeta \approx 1 . T(s)$ is the transfer function of the loop filter.

Figure 8. Design Equations for the 2nd Order System

$$
\begin{gathered}
T(s)=\frac{R_{0} C_{0} s+1}{\left(\frac{N C_{0}}{K_{p} K_{v}}\right) s^{2}+R_{0} C_{0} s+1}=\frac{\left(\frac{2 \zeta}{\omega_{0}}\right) s+1}{\left(\frac{1}{\omega_{0}{ }^{2}}\right) s^{2}+\left(\frac{2 \zeta}{\omega_{0}}\right) s+1} \\
\left(\frac{N C_{0}}{K_{p} K_{v}}\right)=\left(\frac{1}{\omega_{0}^{2}}\right) \rightarrow \omega_{0}=\sqrt{\frac{K_{p} K_{v}}{N C_{0}}} \rightarrow C_{0} \approx\left(\frac{K_{p} K_{v}}{N \omega_{0}{ }^{2}}\right) \\
R_{0} C_{0}=\left(\frac{2 \zeta}{\omega_{0}}\right) \rightarrow \zeta=\left(\frac{\omega_{0} R_{0} C_{0}}{2}\right) \rightarrow R_{0}=\left(\frac{2 \zeta}{\omega_{0} C_{0}}\right)
\end{gathered}
$$

In summary, follow the steps given below:
Step 1: Plot the phase noise of crystal reference and the VCO on the same graph.
Step 2: Increase the phase noise of the crystal reference by the noise contribution of the loop.
Step 3: Convert the divide-by-N to dB (20log 256-48dB) and increase the phase noise of the crystal reference by that amount.
Step 4: The point at which the VCO phase noise crosses the amplified phase noise of the Crystal Reference is the point of the optimum loop bandwidth. This is approximately 15 kHz in Figure 6.
Step 5: Correlate this loop bandwidth to the loop natural frequency and select components per Figure 8. In this case the 3.0 dB bandwidth for a damping coefficient of 1 is 2.5 times the loop's natural frequency. The relationship between the 3.0 dB loop bandwidth and the loop's "natural" frequency will vary for different values of ζ. Making use of the equations defined above in a math tool or spread sheet is useful. To aid in the use of such a tool the equations are summarized in Figures 9 through 11.

Figure 9. Loop Parameter Relations
Let: $\frac{\mathrm{NC}_{0}}{\mathrm{~K}_{\mathrm{p}} \mathrm{K}_{\mathrm{v}}}=\frac{1}{\omega_{0}{ }^{2}}, \quad \mathrm{R}_{0} \mathrm{C}_{\mathrm{o}}=\frac{2 \zeta}{\omega_{0}}$
Let: $\mathrm{C}_{\mathrm{a}}=\mathrm{aC}_{0}, \mathrm{C}_{\mathrm{x}}=\mathrm{bC}_{0}, \mathrm{~A}=1+\mathrm{a}$, and $\mathrm{B}=1+\mathrm{a}+\mathrm{b}$
Let: $\quad R_{0} C_{0}=\frac{1}{\omega_{3}}, R_{x} C_{x}=\frac{1}{\omega_{4}}, R_{0}\left(C_{a}+C_{x}\right)=\frac{1}{\omega_{5}}$
Let: $K_{3} \omega_{3}=\omega_{0}, K_{4} \omega_{4}=\omega_{0}, K_{5} \omega_{5}=\omega_{0}$

MC12179

Figure 10. Transfer Function for the Crystal Noise in the Frequency Plane

$$
T(j \omega)=N \cdot \frac{1+j\left(2 \zeta \frac{\omega}{\omega_{0}}\right)}{\left(1+K_{3} K_{4} \frac{\omega^{4}}{\omega_{0}^{4}}-B \frac{\omega^{2}}{\omega_{0}^{2}}\right)+j\left(2 \zeta \frac{\omega}{\omega_{0}}-\left(A K_{4}+K_{5}\right) \frac{\omega^{3}}{\omega_{0}^{3}}\right)}
$$

Figure 11. Transfer Function for the VCO Noise in the Frequency Plane

$$
T(j \omega)=\frac{\left(K_{3} K_{4} \frac{\omega^{4}}{\omega_{0}{ }^{4}}-B \frac{\omega^{2}}{\omega_{0}{ }^{2}}\right)-j\left(\left(A K_{4}+K_{5}\right) \frac{\omega^{3}}{\omega_{0}{ }^{3}}\right)}{\left(1+K_{3} K_{4} \frac{\omega^{4}}{\omega_{0}{ }^{4}}-B \frac{\omega^{2}}{\omega_{0}{ }^{2}}\right)+j\left(2 \zeta \frac{\omega}{\omega_{0}}-\left(A K_{4}+K_{5}\right) \frac{\omega^{3}}{\omega_{0}{ }^{3}}\right)}
$$

Appendix: Derivation of Loop Filter Transfer Function

The purpose of the loop filter is to convert the current from the phase detector to a tuning voltage for the VCO. The total transfer function is derived in two steps. Step 1 is to find the voltage generated by the impedance of the loop filter. Step 2 is to find the transfer function from the input of the loop filter to its output. The "voltage" times the "transfer function" is the
overall transfer function of the loop filter. To use these equations in determining the overall transfer function of a PLL multiply the filter's impedance by the gain constant of the phase detector then multiply that by the filter's transfer function (which is unity in the 2nd and 3rd order cases below).

Figure 12. Overall Transfer Function of the PLL

For the 2nd Order PLL:

$$
\begin{array}{ll}
V_{p} R_{0} & V_{t} \\
\frac{Z}{L F}(s)=\frac{R_{0} C_{0} s+1}{C_{0} s} \\
\frac{R_{0}}{=} & T_{L F}(s)=\frac{V_{t}(s)}{V_{p}(s)}=1, \quad V_{p}(s)=K_{p}(s) Z_{L F}(s)
\end{array}
$$

For the 3rd Order PLL:

For the 4th Order PLL:

$$
\begin{aligned}
& Z_{L F}(s)=\frac{\left(R_{0} C_{0} s+1\right)\left(R_{x} C_{x} s+1\right)}{C_{0} R_{0} C_{a} R_{x} C_{x} s^{3}+\left[\left(C_{0}+C_{a}\right) R_{x} C_{x}+C_{0} R_{0}\left(C_{x}+C_{a}\right)\right] s^{2}+\left(C_{0}+C_{a}+C_{x}\right) s} \\
& T_{L F}(s)=\frac{V_{t}(s)}{V_{p}(s)}=\frac{1}{\left(R_{x} C_{x} s+1\right)}, \quad V_{p}(s)=K_{p}(s) Z_{L F}(s)
\end{aligned}
$$

Figure 13．VCO Output Spectrum with MC12179，VCC $=5.0 \mathrm{~V}$
（ECLiPTEK 8．9 MHz Crystal and ZCOM 2500 VCO）
＊ATTEN 2ロdB $\triangle M K R$－5フ．17dB
RL 1ロ．ロdBm
10dB／9．OOMHz

					1				
$\begin{aligned} & \triangle M K \\ & 9.0 \end{aligned}$	MH	z			1				
－57	17	d日							
				1					
				1					
					T_{1}				
Thanduydull									

CENTER 2．2784ロGHz RBW 3ロロKHz＊VEW 3ロKHz

SPAN 3ロ．DOMHZ SWP 5ロ．ロms

NOTE：Spurs can be reduced further by narrowing the loop bandwidth of the PLL loop filter and／or adding an extra filter $\left(\mathrm{R}_{\mathrm{X}} / \mathrm{C}_{\mathrm{x}}\right)$

Figure 14．Typical Phase Noise Plot， 2200 MHz VCO
（With the MC12179 in a Closed Loop）

MC12179

Figure 15. Typical Charge Pump Current versus Temperature
$\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{pp}}=5.0 \mathrm{~V}\right)$

Figure 16. Typical Charge Pump Current versus Voltage

MC12179

Figure 17. Typical Real Input Impedance versus Input Frequency
(For the Fin Input)

Figure 18. Typical Imaginary Input Impedance versus Input Frequency
(For the Fin Input)

125-1000 MHz

Frequency Synthesizer
The MC12181 is a monolithic bipolar synthesizer integrating a high performance prescaler, programmable divider, phase/frequency detector, charge pump, and reference oscillator/buffer functions. The device is capable of synthesizing a signal which is 25 to 40 times the input reference signal. The device has a 4-bit parallel interface to set the proper total multiplication which can range from 25 to 40 . When combined with an external passive loop filter and VCO, the MC12181 serves as a complete PLL subsystem.

- 2.7 to 5.5 V Operation
- Low power supply current of 4.25 mA typical
- On chip reference oscillator/buffer supporting wide frequency operating range from 5 to 25 MHz
- 4-bit parallel interface for programming divider ($\mathrm{N}=25$
- Wide 125 - 1000 MHz frequency of operation
- Digital phase/frequency detector with linear transfer function
- Balanced Charge Pump Output
- Space efficient 16 lead SOIC package
- Operating Temperature Range of -40 to $85^{\circ} \mathrm{C}$
- > 1000 V ESD Protection (I/O to Ground, I/O to VCC)

The device is suitable for applications where a fixed local oscillator (LO) needs to be synthesized or where a limited number of LO frequencies need to be generated. The device also has auxiliary open emitter outputs (Pout and Rout) for observing the inputs to the phase detector for verification purposes. In normal use the pins should be left open. The Reset input is normally LOW. When this input is placed in the HIGH state the reference prescaler is reset and the charge pump output (Do) is placed in the OFF state.

The 4-bit programming interface maps into divider states ranging from 25 to $40 . A$ is the LSB and D is the MSB. The data inputs (A, B, C, and D) are CMOS compatible and have pull-up resistors. The inputs can be tied directly to Vcc or Ground for programming or can be interfaced to an external data latch/register. Table 1 below has a mapping of the programming states.

Table 1. Programming States

D	C	B	A	Divider
L	L	L	L	25
L	L	L	H	26
L	L	H	L	27
L	L	H	H	28
L	H	L	L	29
L	H	L	H	30
L	H	H	L	31
L	H	H	H	32
H	L	L	L	33
H	L	L	H	34
H	L	H	L	35
H	L	H	H	36
H	H	L	L	37
H	H	L	H	38
H	H	H	L	39
H	H	H	H	40

125-1000 MHZ FREQUENCY SYNTHESIZER

SEMICONDUCTOR

 TECHNICAL DATA

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC 12181 D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{SO}-16$

MC12181

Figure 1. MC12181 Programmable Synthesizer

PIN NAMES

Pin No.	Pin	Function
1	OSCin	An external parallel resonant, fundamental crystal is connected between OSCin and OSCout to form an internal reference crystal oscillator. External capacitors C1 and C2 are required to set the proper crystal load capacitance and oscillator frequency (Figure 2). For an external reference oscillator, a signal is ac-coupled into the OSCin pin. In either mode a $50 \mathrm{k} \Omega$ resistor MUST be connected between OSCin and OSCout.
2	OSCout	Oscillator output, for use with an external crystal as shown in Figure 2.
3	V_{P}	Positive power supply for charge pump. V_{P} MUST be greater than or equal to V_{CC}. Bypassing should be placed as close as possible to this pin and be connected directly to the ground plane.
4	V_{CC}	Positive power supply. Bypassing should be placed as close as possible to this pin and be connected directly to the ground plane.
5	Do	Single ended phase/frequency detector output. Three-state current sink/source output for use as a loop error signal when combined with an external low pass filter. The phase/frequency detector is characterized by a linear transfer function.
6	GND	Ground. This pin should be directly tied to the ground plane.
7	Fin	Prescaler input - The VCO signal is ac-coupled into the Fin Pin.
8	Fin	Complementary prescaler input - This pin should be capacitively coupled to ground.
9	GND	Ground. This pin should be directly tied to the ground plane.
10	Rout	Open emitter test point used to verify proper operation of the reference divider chain. In normal operation this pin should be left OPEN.
11	Reset	Test pin used to clear the prescalers (Reset = H). When the Reset is in the HIGH state, the charge pump output is disabled. The Reset input has an internal pulldown. In normal operation it can be left open or tied to ground.
12	Pout	Open emitter test point used to verify proper operation of the programmable divider chain. The output is a divide-by-2 version of the programmable input to the phase/frequency detector. In normal operation this pin should be left OPEN.
$\begin{aligned} & 13 \\ & 14 \\ & 15 \\ & 16 \end{aligned}$	$\begin{aligned} & \hline \mathrm{D} \\ & \mathrm{C} \\ & \mathrm{~B} \\ & \mathrm{~A} \end{aligned}$	Digital control inputs for setting the value of the programmable divider. A is the LSB and D is the MSB. In normal operation these pins can be tied to V_{CC} and/or ground to program a fixed divide or they can be driven by a CMOS logic level when used in a programmable mode. There is an internal pull-up resistor to V_{CC} on each input.

MC12181

Figure 2. Typical Applications Example

Figure 3. Typical Passive Loop Filter Topology

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Max	Unit
Supply Range	$V_{\text {CC }}$	2.7	5.5	VDC
Maximum Supply Range	$V_{\text {CCmax }}$	-	-6.0	VDC
Maximum Charge Pump Voltage	$V_{\text {Pmax }}$	-	V_{CC} to +6.0	VDC
Temperature Ambient	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$
Storage Temperature	TSTG	-65	150	${ }^{\circ} \mathrm{C}$
Maximum Input Signal (Any Pin)	$\mathrm{V}_{\text {in }}$ max	-	$\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	VDC

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=2.7$ to $5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{CC}}$ to $6.0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit	Condition
Supply Current for V_{CC}	ICC	-	4.0	5.5	mA	Note 1
Supply Current for V_{P}	IP	-	0.25	0.5	mA	Note 1
Input Frequency Range	OSCin	5	-	25	MHz	Note 2
RF Input Frequency Range	Fin	125	-	1000	MHz	Note 3
Fin Input Sensitivity	Vin	100	-	1000	mVpp	Note 4
OSCin Input Sensitivity	Vosc	500	-	2200	mVpp	Note 4
Output Source Current (Do)	IOH	-2.8	-2.2	-2.0	mA	Note 5
		-2.4	-2.0	-1.6		Note 6
Output Sink Current (Do)	IOL	2.0	2.4	2.8	mA	Note 5
		1.6	2.0	2.4		Note 6
Output Leakage Current (Do)	IOZ	-	0.5	10	nA	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=5.5 ; \mathrm{V}_{\mathrm{P}}=6.0 \mathrm{~V} \text {; } \\ & \mathrm{VDo}=0.5 \text { to } 5.5 \mathrm{~V} \end{aligned}$
Charge Pump Operating Volt	VDo	0.5	-	$\mathrm{V}_{\mathrm{P}}-0.5$	V	
Input HIGH Voltage Reset, A, B, C, D	V_{IH}	$0.7 \mathrm{~V}_{\mathrm{CC}}$	-	-	V	
Input LOW Voltage Reset, A, B, C, D	V_{IL}	-	-	$0.3 \mathrm{~V}_{\mathrm{CC}}$	V	
Input HIGH Current A, B, C, D	IIH	-	-	+1	$\mu \mathrm{A}$	
Reset		-	-	+100		
Input LOW Current A, B, C, D	IIL	-100	-	-	$\mu \mathrm{A}$	
Reset		-1	-	+1		
Output Amplitude (Pout, Rout)	Vout	250	400	-	mVpp	Note 7

NOTES: $1 . \mathrm{V}_{\mathrm{CC}}$ and $\mathrm{V}_{\mathrm{P}}=5.5 \mathrm{~V}$; Fin $=1.0 \mathrm{GHz}$; OSCin $=25 \mathrm{MHz}$; Do open.
2. Assumes C_{1} and C_{2} (Figure 2) limited to $\leq 30 \mathrm{pF}$ each including stray capacitance in crystal mode, ac coupled input for external reference mode.
3. AC coupling, Fin measured with a 1000 pF capacitor.
4. Signal ac coupling in input.
5. $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{P}}=6.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DO}}=3.0 \mathrm{~V}$.
6. $\mathrm{V}_{\mathrm{P}}=\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{DO}}=1.5 \mathrm{~V}$.
7. Minimum resistor value of $25 \mathrm{k} \Omega$ to ground.

APPLICATIONS INFORMATION

The MC12181 is intended for applications where a fixed LO, or a limited number of local oscillator frequencies is required to be synthesized. The device acts as a x25-40 PLL. The 4-bit parallel interface allows 1 of 16 divide ratios to be selected. Internally there are fixed divide by 8 prescalers in the reference and programmable paths of the PLL. The MC12181 operates from 125 MHz to 1000 MHz which makes the part ideal for FCC Title 47; Part 15 applications in the 260 MHz to 470 MHz band and the 902 to 928 MHz Band. Figure 4 shows a typical block diagram of the application.

Figure 4. Typical Block Diagram of Complete PLL

As can be seen from the block diagram, with the addition of a VCO, a loop filter, and either an external oscillator or crystal, a complete PLL sub-system can be realized. Since most of the PLL functions are integrated into the 12181, the users focus is on the loop filter design and the crystal reference oscillator circuit.

Crystal Oscillator Design

The PLL is used to transfer the high stability characteristic of a low frequency reference source to the high frequency VCO within the PLL loop. To facilitate this, the device contains an input circuit which can be configured as a crystal oscillator or a buffer for accepting an external signal source.

In the external reference mode, the reference source is ac-coupling into the OSCin input pin. The level of this signal should be between $500-2200 \mathrm{mVp}-\mathrm{p}$. An external low noise reference should be used when it is desired to obtain the best close-in phase noise performance for the PLL. In addition the input reference amplitude should be close to the upper amplitude specification. This maximizes the slew rate of the input signal as it switches against the internal voltage reference.

In the crystal mode, an external parallel-resonant fundamental mode crystal should be connected between the OSCin and OSCout pins. This crystal must be between 5 and 25 MHz . External capacitors C1 and C2, as shown in Figure 2, are required to set the proper crystal load capacitance and oscillator frequency. The values of the capacitors are dependent on the crystal choosen and the input capacitance of the device as well as stray board capacitance.

Since the MC12181 is realized with an all-bipolar ECL style design, the internal oscillator circuitry is different from more traditional CMOS oscillator designs which realize the crystal oscillator with a modified inverter topology. These CMOS designs typically excite the crystal with a rail-to-rail signal which may overdrive the crystal resulting in damage or unstable operation. The MC12181 design does not exhibit this phenomena because the swing out of the OSCout pin is less than $600 \mathrm{mVp}-\mathrm{p}$. This has the added advantage of
minimizing EMI and switching noise which can be generated by rail-to-rail CMOS outputs. The OSCout output should not be used to drive other circuitry.

The oscillator buffer in the MC12181 is a single stage, high speed, differential input/output amplifier; it may be considered to be a form of the Pierce oscillator. A simplified circuit diagram is seen in Figure 5.

Figure 5. Simplified Crystal Oscillator/Buffer Circuit

OSC in $_{\text {drives }}$ the base of one input of an NPN transistor differential pair. The non-inverting input of the differential pair is internally biased. OSC ${ }_{\text {out }}$ is the inverted input signal and is buffered by an emitter follower with a $70 \mu \mathrm{~A}$ pull-down current and has a voltage swing of about $600 \mathrm{mVp}-\mathrm{p}$. Open loop output impedance is approximately 425Ω. The opposite side of the differential amplifier output is used internally to drive another buffer stage which drives the phase/frequency detector. With the $50 \mathrm{k} \Omega$ feedback resistor in place, OSCin and OSC $_{\text {out }}$ are biased to approximately 1.1 V below V_{CC}. The amplifier has a voltage gain of about 15 dB and a bandwidth in excess of 150 MHz . Adherence to good RF design and layout techniques, including power supply pin decoupling, is strongly recommended.

A typical crystal oscillator application is shown in Figure 2. The crystal and the feedback resistor are connected directly between $\mathrm{OSC}_{\mathrm{in}}$ and $\mathrm{OSC}_{\text {out }}$, while the loading capacitors, C1 and C2, are connected between OSC in and ground, and OSC out and ground respectively. It is important to understand that as far as the crystal is concerned, the two loading capacitors are in series (albeit through ground). So when the crystal specification defines a specific loading capacitance, this refers to the total external (to the crystal) capacitance seen across its two pins.

This capacitance consists of the capacitance contributed by the amplifier (IC and packaging), layout capacitance, and the series combination of the two loading capacitors. This is illustrated in the equation below:

$$
\mathrm{CI}_{\mathrm{I}}=\mathrm{C}_{\text {AMP }}+\mathrm{C}_{\text {STRAY }}+\frac{\mathrm{C} 1 \times \mathrm{C}_{2}}{\mathrm{C} 1+\mathrm{C} 2}
$$

Provided the crystal and associated components are located immediately next to the IC, thus minimizing the stray capacitance, the combined value of CAMP and CSTRAY is approximately 5 pF . Note that the location of the OSC $\mathrm{in}_{\text {in }}$ and OSC ${ }_{\text {out }}$ pins at the end of the package, facilitates placing the crystal, resistor and the C1 and C2 capacitors very close to the device. Usually, one of the capacitors is in parallel with an adjustable capacitor used to trim the frequency of oscillation.

It is important that the total external (to the IC) capacitance seen by either $\mathrm{OSC}_{\text {in }}$ or $\mathrm{OSC}_{\text {out }}$, be no greater than 30 pF .

In operation, the crystal oscillator will start up with the application of power. If the crystal is in a can that is not grounded it is often possible to monitor the frequency of oscillation by connecting an oscilloscope probe to the can; this technique minimizes any disturbance to the circuit. If this is not possible, a high impedance, low capacitance, FET probe can be connected to either $\mathrm{OSC}_{\mathrm{in}}$ or OSC Out. Signals $^{\text {s }}$ typically seen at those points will be very nearly sinusoidal with amplitudes of roughly $300-600 \mathrm{mVp}-\mathrm{p}$. Some distortion is inevitable and has little bearing on the accuracy of the signal going to the phase detector.

Loop Filter Design

Because the device is designed for a non-frequency agile synthesizer (i.e., how fast it tunes is not critical) the loop filter design is very straight forward. The current output of the charge pump allows the loop filter to be realized without the need of any active components. The preferred topology for the filter is illustrated in Figure 6.

Figure 6. Loop Filter

The $\mathrm{R}_{0} / \mathrm{C}_{0}$ components realize the primary loop filter. C_{a} is added to the loop filter to provide for reference sideband suppression. If additional suppression is needed, the R_{X} / C_{X} realizes an additional filter. In most applications, this will not be necessary. If all components are used, this results in a 4th order PLL, which makes analysis difficult. To simplify this, the loop design will be treated as a 2nd order loop $\left(R_{0} / C_{0}\right)$ and additional guidelines are provided to minimize the influence of the other components. If more rigorous analysis is needed, mathematical/system simulation tools should be used.

Component	Guideline
C_{a}	$<0.1 \times \mathrm{C}_{0}$
R_{X}	$>10 \times \mathrm{R}_{0}$
C_{X}	$<0.1 \times \mathrm{C}_{0}$

The focus of the design effort is to determine what the loop's natural frequency, ω_{0}, should be. This is determined by $R_{0}, C_{0}, K_{p}, K_{v}$, and N_{t}. Because K_{p}, K_{v}, and N_{t} are given, it is only necessary to calculate values for R_{O} and C_{O}. There are 3 considerations in selecting the loop bandwidth:
4) Maximum loop bandwidth for minimum tuning speed
5) Optimum loop bandwidth for best phase noise performance
6) Minimum loop bandwidth for greatest reference sideband suppression
Usually a compromise is struck between these 3 cases, however, for a fixed frequency application, minimizing the tuning speed is not a critical parameter.

To specify the loop bandwidth for optimal phase noise performance, an understanding of the sources of phase noise in the system and the effect of the loop filter on them is required. There are 3 major sources of phase noise in the phase-locked loop - the crystal reference, the VCO, and the loop contribution. The loop filter acts as a low-pass filter to the crystal reference and the loop contribution. The loop filter acts as a high-pass filter to the VCO with an in-band gain equal to unity. The loop contribution includes the PLL IC, as well as noise in the system; supply noise, switching noise, etc. For this example, a loop contribution of 15 dB has been selected, which corresponds to data in Figure 17.

The crystal reference and the VCO are characterized as high-order 1/f noise sources. Graphical analysis is used to determine the optimum loop bandwidth. It is necessary to have noise plots from the manufacturers of both devices. This method provides a straightforward approximation suitable for quickly estimating the optimal bandwidth. The loop contribution is characterized as white-noise or low-order 1/f noise given in the form of a noise factor which combines all the noise effects into a single value. The phase noise of the Crystal Reference is increased by the noise factor of the PLL IC and related circuitry. It is further increased by the total divide-by-N ratio of the loop. This is illustrated in Figure 7.

The point at which the VCO phase noise crosses the amplified phase noise of the Crystal Reference is the point of the optimum loop bandwidth. In the example of Figure 7, the optimum bandwidth is approximately 15 KHz .

Figure 7. Graphical Analysis of Optimum Bandwidth

Figure 8. Closed Loop Frequency Response for $\zeta=1$

To simplify analysis further a damping factor of 1 will be selected. The normalized closed loop response is illustrated in Figure 8 where the loop bandwidth is 2.5 times the loop natural frequency (the loop natural frequency is the frequency at which the loop would oscillate if it were unstable). Therefore the optimum loop bandwidth is $15 \mathrm{kHz} / 2.5$ or 6.0 kHz (37.7 krads) with a damping coefficient, $\zeta \approx 1 \mathrm{~T}(\mathrm{~s})$ is the transfer function of the loop filter.

$$
\begin{aligned}
& T(s)=\frac{R_{0} C_{0} s+1}{\left(\frac{N C_{0}}{K_{p} K_{v}}\right) s^{2}+R_{0} C_{0} s+1}=\frac{\left(\frac{2 \xi}{\omega_{0}}\right) s+1}{\left(\frac{1}{\omega_{0}{ }^{2}}\right) s^{2}+\left(\frac{2 \xi}{\omega_{0}}\right) s+1} \\
& \begin{array}{c}
\left(\frac{N C_{0}}{K_{p} K_{v}}\right)=\left(\frac{1}{\omega_{0}^{2}}\right) \rightarrow \omega_{0}=\sqrt{\frac{K_{p} K_{v}}{N C_{0}}} \rightarrow \mathrm{C}_{0}=\left(\frac{K_{p} K_{v}}{N \omega_{0}{ }^{2}}\right) \\
R_{0} C_{0}=\left(\frac{2 \zeta}{\omega_{0}}\right) \rightarrow \zeta=\left(\frac{\omega_{0} R_{0} C_{0}}{2}\right) \rightarrow R_{0}=\left(\frac{2 \zeta}{\omega_{0} C_{0}}\right)
\end{array} \\
& \text { where } N_{t}=\text { Total PLL Divide Ratio - } 8 \times N \text { where }(N=25 \ldots 40) \\
& K_{V}=\text { VCO Gain - Hz/V } \\
& K_{p}=\text { Phase Detector/Charge Pump Gain — A } \\
& =(|\mathrm{IOH}|+|\mathrm{OL}|) / 2
\end{aligned}
$$

Technically, K_{V} and K_{p} should be expressed in Radian units $\left[K_{V}(R A D / V), K_{p}(A / R A D)\right]$. Since the component design equation contains the $K_{V} \times K_{p}$ term. the 2π cancels and the values can be epressed as above.

Figure 9. Design Equations for the 2nd Order System
In summary, follow the steps given below:
Step 1: Plot the phase noise of crystal reference and the VCO on the same graph.
Step 2: Increase the phase noise of the crystal reference by the noise contribution of the loop.
Step 3: Convert the divide-by-N to dB $(20 \log 8 \times N)$ and increase the phase noise of the crystal reference by that amount.
Step 4: The point at which the VCO phase noise crosses the amplified phase noise of the Crystal Reference is the point of the optimum loop bandwidth. This is approximately 15 kHz in Figure 7.
Step 5: Correlate this loop bandwidth to the loop natural frequency per Figure 8. In this case the 3.0 dB bandwidth for a damping coefficient of 1 is 2.5 times the loop's natural frequency. The relationship between the 3.0 dB loop bandwidth and the loop's "natural" frequency will vary for different values of ζ. Making use of the equations defined in Figure 9, a math tool or spread sheet is useful to select the values for R_{0} and C_{0}.

Appendix: Derivation of Loop Filter Transfer Function

The purpose of the loop filter is to convert the current from the phase detector to a tuning voltage for the VCO. The total transfer function is derived in two steps. Step 1 is to find the voltage generated by the impedance of the loop filter. Step 2 is to find the transfer function from the input of the loop filter to its output. The "voltage" times the "transfer function" is the overall transfer function of the loop filter. To use these equations in determining the overall transfer function of a PLL multiply the filter's impedance by the gain constant of the phase detector then multiply that by the filter's transfer function (Figure 10 contains the transfer function equations for 2nd, 3rd and 4th order PLL filters.)

MC12181

Figure 10. Overall Transfer Function of the PLL
For the 2nd Order PLL:

$$
\begin{array}{ll}
\sum_{p} R_{0} & V_{L F} \\
\mathrm{R}_{\mathrm{L}}(\mathrm{~s})=\frac{R_{0} C_{0} s+1}{C_{0} s} \\
= & T \mathrm{CF}(\mathrm{~s})=\frac{V_{t}(\mathrm{~s})}{\mathrm{V}_{\mathrm{p}}(\mathrm{~s})}=1, \quad V_{p}(\mathrm{~s})=K_{p}(\mathrm{~s}) Z_{L F}(\mathrm{~s})
\end{array}
$$

For the 3rd Order PLL:

For the 4th Order PLL:

$$
\begin{aligned}
& Z L F(s)=\frac{\left(R_{0} C_{0} s+1\right)\left(R_{x} C_{x} s+1\right)}{C_{0} R_{0} C_{a} R_{x} C_{x} s^{3}+\left[\left(C_{0}+C_{a}\right) R_{x} C_{x}+C_{0} R_{0}\left(C_{x}+C_{a}\right)\right] s^{2}+\left(C_{0}+C_{a}+C_{x}\right) s} \\
& T_{L F}(s)=\frac{V_{t}(s)}{V_{p}(s)}=\frac{1}{\left(R_{x} C_{x} s+1\right)}, V_{p}(s)=K_{p}(s) Z_{L F}(s)
\end{aligned}
$$

Figure 11. Typical Charge Pump Current versus Temperature

Figure 12. Typical Leakage Current at Do Over VDO Range

Figure 13. Typical Fin Input Impedance versus Input Frequency

Figure 14. Fin Input Signal Sensitivity versus Input Frequency

Figure 15. OSCin Input Sensitivity versus Input Frequency

Figure 16. VCO Output Spectrum
($\mathrm{P}=30$, 8.0 MHz ECLiPTEK Crystal)

Figure 17. Typical Phase Noise Plot, 240MHz
(Low Noise 10 MHz Reference Input)

Consider MC145190, MC145191 or MC145202 for New Designs Serial Input PLL Frequency Synthesizer

The MC12202 is a 1.1 GHz Bipolar monolithic serial input phase locked loop (PLL) synthesizer with pulse-swallow function. It is designed to provide the high frequency local oscillator signal of an RF transceiver in handheld communication applications.

Motorola's advanced Bipolar MOSAIC ${ }^{\text {тм }} \mathrm{V}$ technology is utilized for low power operation at a minimum supply voltage of 2.7 V . The device is designed for operation over 2.7 to 5.5 V supply range for input frequencies up to 1.1 GHz with a typical current drain of 6.5 mA . The low power consumption makes the MC12202 ideal for handheld battery operated applications such as cellular or cordless telephones, wireless LAN or personal communication services. A dual modulus prescaler is integrated to provide either a $64 / 65$ or 128/129 divide ratio.

For additional applications information, two InterActiveApNote ${ }^{\text {TM }}$ documents containing software (based on a Microsoft Excel spreadsheet) and an Application Note are available. Please order DK305/D and DK306/D from the Motorola Literature Distribution Center.

- Low Power Supply Current of 5.8 mA Typical for ICC and 0.7 mA Typical for lp
- Supply Voltage of 2.7 to 5.5 V
- Dual Modulus Prescaler With Selectable Divide Ratios of $64 / 65$ or 128/129
- On-Chip Reference Oscillator/Buffer
- Programmable Reference Divider Consisting of a Binary 14-Bit Programmable Reference Counter
- Programmable Divider Consisting of a Binary 7-Bit Swallow Counter and an 11-Bit Programmable Counter
- Phase/Frequency Detector With Phase Conversion Function
- Balanced Charge Pump Outputs
- Dual Internal Charge Pumps for Bypassing the First Stage of the Loop Filter to Decrease Lock Time
- Outputs for External Charge Pump
- Operating Temperature Range of -40 to $85^{\circ} \mathrm{C}$
- Space Efficient Plastic Surface Mount SOIC or TSSOP Packages
- The MC12202 Is Pin Compatible With the Fujitsu MB1502 or MB1511

MOSAIC V, Mfax and InterActiveApNote are trademarks of Motorola, Inc.

MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Power Supply Voltage, Pin 4 (Pin 5 in 20-lead package)	V_{CC}	-0.5 to 6.0	VDC
Power Supply Voltage, Pin 3 (Pin 4 in 20-lead package)	V_{p}	V_{CC} to 6.0	VDC
Storage Temperature Range	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$

NOTES: 1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.
2. ESD data available upon request.

MECL PLL COMPONENTS
 SERIAL INPUT PLL FREQUENCY SYNTHESIZER

SEMICONDUCTOR TECHNICAL DATA

Device	Operating Temperature Range	Package
MC12202D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-16
MC12022M		SO-16
MC12022DT		TSSOP-20

PIN NAMES

Pin	I/O	Function	$\begin{aligned} & \text { 16-Lead Pkg } \\ & \text { Pin No. } \end{aligned}$	$\begin{aligned} & \text { 20-Lead Pkg } \\ & \text { Pin No. } \end{aligned}$
OSCin	I	Oscillator input. A crystal may be connected between OSCin and OSCout. It is highly recommended that an external source be ac coupled into this pin (see text).	1	1
OSCout	0	Oscillator output. Pin should be left open if external source is used	2	3
V_{P}	-	Power supply for charge pumps (V_{P} should be greater than or equal to $V_{C C}$) V_{p} provides power to the Do, BISW and ϕ P outputs	3	4
V_{CC}	-	Power supply voltage input. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.	4	5
Do	O	Internal charge pump output. Do remains on at all times	5	6
GND	-	Ground	6	7
LD	0	Lock detect, phase comparator output	7	8
fin	1	Prescaler input. The VCO signal is AC-coupled into this pin	8	10
CLK	1	Clock input. Rising edge of the clock shifts data into the shift registers	9	11
DATA	1	Binary serial data input	10	13
LE	1	Load enable input (with internal pull up resistor). When LE is HIGH or OPEN, data stored in the shift register is transferred into the appropriate latch (depending on the level of control bit). Also, when LE is HIGH or OPEN, the output of the second internal charge pump is connected to the BISW pin	11	14
FC	1	Phase control select (with internal pull up resistor). When FC is LOW, the characteristics of the phase comparator and charge pump are reversed. FC also selects fp or fr on the fout pin	12	15
BISW	0	Analog switch output. When LE is HIGH or OPEN ("analog switch is ON") the output of the second charge pump is connected to the BISW pin. When LE is LOW, BISW is high impedance	13	16
fout	0	Phase comparator input signal. When FC is HIGH, fOUT=fr, programmable reference divider output; when FC is LOW, foUT=fp, programmable divider output	14	17
$\phi \mathrm{P}$	O	Output for external charge pump. Standard CMOS output level	15	18
¢R	O	Output for external charge pump. Standard CMOS output level	16	20
NC	-	No connect	-	2, 9, 12, 19

MC12202

Figure 1. MC12202 Block Diagram

MC12202

DATA ENTRY FORMAT

The three wire interface of DATA pin, CLK (clock) pin and LE (load enable) pin controls the serial data input of the 14-bit programmable reference divider plus the prescaler setting bit, and the 18-bit programmable divider. A rising edge of the clock shifts one bit of serial data into the internal shift registers. Depending upon the level of the control bit, stored data is transferred into the latch when load enable pin is HIGH or OPEN.
Control bit: "H" = data is transferred into 15-bit latch of programmable reference divider
"L" = data is transferred into 18-bit latch of programmable divider
WARNING: Switching CLK or DATA after the device is programmed may generate noise on the charge pump outputs which will affect the VCO.

PROGRAMMABLE REFERENCE DIVIDER

16-bit serial data format for the programmable reference counter, "R-counter", and prescaler select bit (SW) is shown below. If the control bit is HIGH, data is transferred from the 15-bit shift register into the 15-bit latch which specifies the R divide ratio (8 to 16383) and the prescaler divide ratio ($\mathrm{SW}=0$ for $\div 128 / 129$, $\mathrm{SW}=1$ for $\div 64 / 65$). An R divide ratio less than 8 is prohibited.

For Control bit (C) = HIGH:

DIVIDE RATIO OF PROGRAMMABLE REFERENCE (R) COUNTER

Divide Ratio R	$\begin{aligned} & \hline R \\ & 14 \end{aligned}$	$\begin{gathered} \mathrm{R} \\ 13 \end{gathered}$	$\begin{gathered} \mathrm{R} \\ 12 \end{gathered}$	$\begin{gathered} \hline R \\ 11 \end{gathered}$	$\begin{gathered} \hline R \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{R} \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 7 \end{aligned}$	$\begin{aligned} & \hline R \\ & 6 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 5 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 3 \end{aligned}$	$\begin{aligned} & R \\ & 2 \end{aligned}$	R 1
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

PRESCALER SELECT BIT

Prescaler Divide Ratio P	SW
$128 / 129$	0
$64 / 65$	1

MC12202

PROGRAMMABLE DIVIDER

19-bit serial data format for the programmable divider is shown below. If the control bit is LOW, data is transferred from the 18-bit shift register into the 18-bit latch which specifies the swallow A-counter divide ratio (0 to 127) and the programmable N -counter divide ratio (16 to 2047). An N-counter divide ratio less than 16 is prohibited.
For Control bit (C) = LOW:

DIVIDE RATIO OF PROGRAMMABLE N-COUNTER
DIVIDE RATIO OF SWALLOW A-COUNTER

Divide	N	N	N	N	N	N	N	N	N	N	N	Divide	A	A	A	A	A	A	A
Ratio N	18	17	16	15	14	13	12	11	10	9	8	Ratio A	7	6	5	4	3	2	1
16	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	1
\bullet																			
2047	1	1	1	1	1	1	1	1	1	1	1	127	1	1	1	1	1	1	1

DIVIDE RATIO SETTING

fvco $=[(P \bullet N)+A] \bullet f o s c \div R$ with $A<N$
fvco: Output frequency of external voltage controlled oscillator (VCO)
N: Preset divide ratio of binary 11-bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 7-bit swallow counter (0 to 127, $\mathrm{A}<\mathrm{N}$)
fosc: Output frequency of the external frequency oscillator
R: Preset divide ratio of binary 14-bit programmable reference counter (8 to 16383)
P: Preset mode of dual modulus prescaler (64 or 128)

Figure 2. Serial Data Input Timing

NOTES:Programmable reference divider data shown in parenthesis. Data shifted into register on rising edge of CLK.

$$
\begin{aligned}
\mathrm{t}_{\mathrm{S}}(\mathrm{D}) & =\text { Setup Time DATA to CLK } \\
\mathrm{th}_{\mathrm{h}}(\mathrm{D}) & =\text { Hold Time DATA to CLK } \\
\mathrm{t}^{\mathrm{CW}} & =\text { CLK Pulse Width } \\
\mathrm{t}_{\mathrm{EW}} & =\text { LE Pulse Width } \\
\mathrm{t}_{\mathrm{s}}(\mathrm{C} \rightarrow \mathrm{LE}) & =\text { Setup Time CLK to LE }
\end{aligned}
$$

$t_{s}(D) \geq 10 \mathrm{~ns}$
th $(\mathrm{D}) \geq 20 \mathrm{~ns}$
$t^{t} \mathrm{CW} \geq 30 \mathrm{~ns}$
tew $\geq 20 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{s}}(\mathrm{C} \rightarrow \mathrm{LE}) \geq 30 \mathrm{~ns}$

MC12202

PHASE CHARACTERISTICS/VCO CHARACTERISTICS

The phase comparator in the MC12202 is a high speed digital phase frequency detector circuit. The circuit determines the "lead" or "lag" phase relationship and time difference between the leading edges of the VCO (fp) signal and the reference (fr) input. Since these edges occur only once per cycle, the detector has a range of $\pm 2 \pi$ radians. The phase comparator outputs are standard CMOS rail-to-rail levels (VP to GND for ϕP and $V_{C C}$ to GND for ϕR), designed for up to 20 MHz operation into a 15 pF load. These phase comparator outputs can be used along with an external charge pump to enhance the PLL characteristics.

The operation of the phase comparator is shown in Figures 3 and 5. The phase characteristics of the phase comparator are controlled by the FC pin. The polarity of the phase comparator outputs, ϕ R and ϕP, as well as the charge pump output Do can be reversed by switching the FC pin.

Figure 3. Phase/Frequency Detector, Internal Charge Pump and Lock Detect Waveforms

NOTES: Do and BISW are current outputs.
Phase difference detection range: -2π to $+2 \pi$
Spike difference depends on charge pump characteristics. Also, the spike is output in order to diminish dead band When $\mathrm{fr}>\mathrm{fp}$ or fr < fp , spike might not appear depending upon charge pump characteristics.

$$
\text { Internal Charge Pump Gain } \approx\left|\frac{I_{\text {source }}+I_{\text {sink }}}{4 \pi}\right|=\frac{4 \mathrm{~mA}}{4 \pi}
$$

For FC = HIGH:

fr lags fp in phase $\mathbf{O R} \mathrm{fp}>\mathrm{fr}$ in frequency

When the phase of fr lags that of $f p$ or the frequency of $f p$ is greater than $f r$, the ϕP output will remain in a HIGH state while the ϕR output will pulse from LOW to HIGH. The output pulse will reach a minimum 50% duty cycle under a 180° out of phase condition. The signal on ϕR indicates to the VCO to decrease in frequency to bring the loop into lock.

fr leads fp in phase $\mathrm{OR} \mathrm{fp}<\mathrm{fr}$ in frequency

When the phase of fr leads that of $f p$ or the frequency of $f p$ is less than $f r$, the ϕR output will remain in a LOW state while the ϕP output pulses from HIGH to LOW. The output pulse will reach a minimum 50% duty cycle under a 180° out of phase condition. The signal on $\phi \mathrm{P}$ indicates to the VCO to increase in frequency to bring the loop to lock.

$\mathrm{fr}=\mathrm{fp}$ in phase and frequency

When the phase and frequency of fr and fp are equal, the output $\phi \mathrm{P}$ will remain in a HIGH state and ϕR will remain in a LOW state except for voltage spikes when signals are in phase. This situation indicates that the loop is in lock and the phase comparator will maintain the loop in its locked state.

When FC = LOW, the operation of the phase comparator is reversed from the above explanation.

For FC = LOW:

fr lags fp in phase OR fp>fr in frequency

When the phase of fr lags that of $f p$ or the frequency of $f p$ is greater than $f r$, the ϕR output will remain in a LOW state while the ϕP output will pulse from HIGH to LOW. The output pulse will reach a minimum 50% duty cycle under a 180° out of phase condition. The signal on $\phi \mathrm{P}$ indicates to the VCO to increase in frequency to bring the loop into lock.

fr leads $f p$ in phase OR fp<fr in frequency

When the phase of fr leads that of $f p$ or the frequency of $f p$ is less than $f r$, the ϕP output will remain in a HIGH state while the ϕR output pulses from LOW to HIGH. The output pulse will reach a minimum 50% duty cycle under a 180° out of phase condition. The signal on ϕR indicates to the VCO to decrease in frequency to bring the loop to lock.

$\mathrm{fr}=\mathrm{fp}$ in phase and frequency

When the phase and frequency of fr and fp are equal, the output $\phi \mathrm{P}$ will remain in a HIGH state and ϕ R will remain in a LOW state except for voltage spikes when signals are in phase. This situation indicates that the loop is in lock and the phase comparator will maintain the loop in its locked state.

The FC pin controls not only the phase characteristics, but also controls the fOUT test pin. The FC pin permits the user to monitor either of the phase comparator input signals, fr or fp , at the fOUT output providing a test mode where the programming of the dividers and the output of the counters can be checked. When FC is HIGH, fOUT = fr, the programmable reference divider output. When FC is LOW, fOUT = $f p$, the programmable divider output.
Hence,
If VCO characteristics are like (1), FC should be set HIGH or OPEN. fOUT $=\mathrm{fr}$
If VCO characteristics are like (2), FC should be set LOW.
fOUT $=\mathrm{fp}$

Figure 4. VCO Characteristics

Figure 5. Phase Comparator, Internal Charge Pump, and fout Characteristics

	FC HIGH or OPEN				FC = LOW			
	Do	$\phi \mathbf{R}$	$\phi \mathbf{P}$	foUT	Do	$\phi \mathbf{R}$	$\phi \mathbf{P}$	fOUT
	H	L	L	fr	L	H	H	fp
$\mathrm{fp}>\mathrm{fr}$	L	H	H	fr	H	L	L	fp
$\mathrm{fp}=\mathrm{fr}$	Z	L	H	fr	Z	L	H	fp

NOTE: Z = High impedance
When LE is HIGH or Open, BISW has the same characteristics as Do.

Figure 6. Detailed Phase Comparator Block Diagram

LOCK DETECT

The Lock Detect (LD) output pin provides a LOW pulse when fr and fp are not equal in phase or frequency. The output is normally HIGH. LD is designed to be the logical NORing of the phase frequency detector's outputs UP and DOWN. See Figure 6. In typical applications the output signal drives external circuitry which provides a steady LOW signal when the loop is locked. See Figure 9.

OSCILLATOR INPUT

For best operation, an external reference oscillator is recommended. The signal should be AC-coupled to the OSCin pin through a coupling capacitor. In this case, no connection to OSCout is required. The magnitude of the AC-coupled signal must be between 500 and 2200 mV peak-to-peak. To optimize the phase noise of the PLL when used in this mode, the input signal amplitude should be closer to the upper specification limit. This maximizes the slew rate of the signal as it switches against the internal voltage reference.
The device incorporates an on-chip reference oscillator/buffer so that an external parallel-resonant fundamental crystal can be connected between OSCin and OSCout. External capacitor C1 and C2 as shown in Figure 10 are required to set the proper crystal load capacitance and oscillator frequency. The values of the capacitors are dependent on the crystal chosen (up to a maximum of 30 pF each including parasitic and stray capacitance). However, using the on-chip reference oscillator, greatly increases the synthesized phase noise.

DUAL INTERNAL CHARGE PUMPS ("ANALOG SWITCH")

Due to the pure Bipolar nature of the MC12202 design, the "analog switch" function is implemented with dual internal charge pumps. The loop filter time constant can be decreased by bypassing the first stage of the loop filter with the charge pump output BISW as shown in Figure 7 below. This enables the VCO to lock in a shorter amount of time.

When LE is HIGH or OPEN ("analog switch is ON"), the output of the second internal charge pump is connected to the BISW pin, and the Do output is ON. The charge pump 2 output on BISW is essentially equal to the charge pump 1 output on Do. When LE is LOW, BISW is in a high impedance state and Do output is active.

Figure 7. "Analog Switch" Block Diagram

MC12202

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=2.7\right.$ to 5.5 V ; $\mathrm{T}_{\mathrm{A}}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Min	Typ	Max	Unit	Condition
Supply Current for V_{CC}	ICC		5.8	9.0	mA	Note 1
			7.2	10.5		Note 2
Supply Current for V_{P}	IP		0.7	1.1	mA	Note 3
			0.8	1.3		Note 4
Operating Frequency $\begin{aligned} & \text { finmax } \\ & \text { finmin }\end{aligned}$	FIN	1100		100	MHz	Note 5
Operating Frequency (OSCin)	FOSC		12	20	MHz	Crystal Mode
				40	MHz	External Reference Mode
Input Sensitivity $\begin{array}{r}\text { fiN } \\ \text { OSCin }\end{array}$	$\mathrm{V}_{\text {IN }}$	200		1000	mVpp	
	VOSC	500		2200	mVpp	
Input HIGH Voltage CLK, DATA, LE, FC	V_{IH}	$0.7 \mathrm{~V}_{\mathrm{CC}}$			V	
Input LOW Voltage CLK, DATA, LE, FC	$\mathrm{V}_{\text {IL }}$			$0.3 \mathrm{~V}_{\mathrm{CC}}$	V	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Input HIGH Current (DATA and CLK)	IIH		1.0	2.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Input LOW Current (DATA and CLK)	IIL	-10	-5.0		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Input Current (OSCin)	IOSC		$\begin{gathered} 130 \\ -310 \end{gathered}$		$\mu \mathrm{A}$	$\begin{aligned} & \text { OSCin }=\mathrm{V}_{\mathrm{CC}} \\ & \text { OSCin }=\mathrm{V}_{\mathrm{CC}}-2.2 \mathrm{~V} \end{aligned}$
Input HIGH Current (LE and FC)	IIH		1.0	2.0	$\mu \mathrm{A}$	
Input LOW Current (LE and FC)	I/L	-75	-60		$\mu \mathrm{A}$	
Charge Pump Output Current Do and BISW	ISource ${ }^{6}$	-2.6	-2.0	-1.4	mA	$\mathrm{V}_{\mathrm{Do}}=\mathrm{V}_{\mathrm{P}} / 2 ; \mathrm{V}_{\mathrm{P}}=2.7 \mathrm{~V}$
	ISink ${ }^{6}$	+1.4	+2.0	+2.6		$\mathrm{V}_{\mathrm{BISW}}=\mathrm{V}_{\mathrm{P}} / 2 ; \mathrm{V}_{\mathrm{P}}=2.7 \mathrm{~V}$
	IHi-Z	-15		+15	nA	$\begin{aligned} & 0.5<V_{\mathrm{DO}}<\mathrm{V}_{\mathrm{P}}-0.5 \\ & 0.5<\mathrm{V}_{\mathrm{BI}}-5<\mathrm{V}_{\mathrm{P}}-0.5 \end{aligned}$
Output HIGH Voltage (LD, ϕ R, ϕ P, foUT)	V_{OH}	4.4			V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
		2.4			V	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
Output LOW Voltage (LD, ϕ R, ϕ P, fout)	VOL			0.4	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
				0.4	\checkmark	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
Output HIGH Current (LD, ϕ R, ϕ P, foUT)	${ }^{\mathrm{IOH}}$	-1.0			mA	
Output LOW Current (LD, ϕ R, ϕ P, foUT)	IOL	1.0			mA	

1. $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, all outputs open.
2. $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, all outputs open.
3. $\mathrm{V}_{\mathrm{P}}=3.3 \mathrm{~V}$, all outputs open.

Figure 8. Typical External Charge Pump Circuit

Figure 9. Typical Lock Detect Circuit

Figure 10. Typical Applications Example (16-Pin Package)

Figure 11. Typical Loop Filter

Consider MC145200, MC145201 or MC145202 for New Designs Serial Input PLL Frequency Synthesizer

The MC12206 is a 2.0 GHz Bipolar monolithic serial input phase locked loop (PLL) synthesizer with pulse-swallow function. It is designed to provide the high frequency local oscillator signal of an RF transceiver in handheld communication applications.

Motorola's advanced Bipolar MOSAIC ${ }^{\text {тм }} \mathrm{V}$ technology is utilized for low power operation at a minimum supply voltage of 2.7 V . The device is designed for operation over 2.7 to 5.5 V supply range for input frequencies up to 2.0 GHz with a typical current drain of 7.4 mA . The low power consumption makes the MC12206 ideal for handheld battery operated applications such as cellular or cordless telephones, wireless LAN or personal communication services. A dual modulus prescaler is integrated to provide either a 64/65 or 128/129 divide ratio.

For additional applications information, two InterActiveApNote ${ }^{\text {TM }}$ documents containing software (based on a Microsoft Excel spreadsheet) and an Application Note are available. Please order DK305/D and DK306/D from the Motorola Literature Distribution Center.

- Low Power Supply Current of 6.7 mA Typical for ICC and 0.7 mA Typical for Ip
- Supply Voltage of 2.7 to 5.5 V
- Dual Modulus Prescaler With Selectable Divide Ratios of $64 / 65$ or 128/129
- On-Chip Reference Oscillator/Buffer
- Programmable Reference Divider Consisting of a Binary 14-Bit Programmable Reference Counter
- Programmable Divider Consisting of a Binary 7-Bit Swallow Counter and an 11-Bit Programmable Counter
- Phase/Frequency Detector With Phase Conversion Function
- Balanced Charge Pump Outputs
- Dual Internal Charge Pumps for Bypassing the First Stage of the Loop Filter to Decrease Lock Time
- Outputs for External Charge Pump
- Operating Temperature Range of -40 to $85^{\circ} \mathrm{C}$
- Space Efficient Plastic Surface Mount SOIC or TSSOP Packages

MOSAIC V, Mfax and InterActiveApNote are trademarks of Motorola, Inc.
MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Power Supply Voltage, Pin 4 (Pin 5 in 20-lead package)	V_{CC}	-0.5 to 6.0	Vdc
Power Supply Voltage, Pin 3 (Pin 4 in 20-lead package)	V_{p}	V_{CC} to 6.0	Vdc
Storage Temperature Range	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$

NOTES: 1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.
2. ESD data available upon request.

PIN NAMES

Pin	I/O	Function	$\begin{aligned} & \text { 16-Lead Pkg } \\ & \text { Pin No. } \end{aligned}$	$\begin{aligned} & \text { 20-Lead Pkg } \\ & \text { Pin No. } \end{aligned}$
OSCin	I	Oscillator input. A crystal may be connected between OSCin and OSCout. It is highly recommended that an external source be ac coupled into this pin (see text).	1	1
OSCout	0	Oscillator output. Pin should be left open if external source is used	2	3
V_{P}	-	Power supply for charge pumps (V_{P} should be greater than or equal to $V_{C C}$) V_{p} provides power to the Do, BISW and ϕ P outputs	3	4
V_{CC}	-	Power supply voltage input. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.	4	5
Do	O	Internal charge pump output. Do remains on at all times	5	6
GND	-	Ground	6	7
LD	0	Lock detect, phase comparator output	7	8
fin	1	Prescaler input. The VCO signal is ac-coupled into this pin	8	10
CLK	1	Clock input. Rising edge of the clock shifts data into the shift registers	9	11
DATA	1	Binary serial data input	10	13
LE	1	Load enable input (with internal pull up resistor). When LE is HIGH or OPEN, data stored in the shift register is transferred into the appropriate latch (depending on the level of control bit). Also, when LE is HIGH or OPEN, the output of the second internal charge pump is connected to the BISW pin	11	14
FC	1	Phase control select (with internal pull up resistor). When FC is LOW, the characteristics of the phase comparator and charge pump are reversed. FC also selects fp or fr on the fout pin	12	15
BISW	0	Analog switch output. When LE is HIGH or OPEN ("analog switch is ON") the output of the second charge pump is connected to the BISW pin. When LE is LOW, BISW is high impedance	13	16
fout	0	Phase comparator input signal. When FC is HIGH, fOUT=fr, programmable reference divider output; when FC is LOW, foUT=fp, programmable divider output	14	17
$\phi \mathrm{P}$	O	Output for external charge pump. Standard CMOS output level	15	18
¢R	O	Output for external charge pump. Standard CMOS output level	16	20
NC	-	No connect	-	2, 9, 12, 19

Figure 1. MC12206 Block Diagram

MC12206

DATA ENTRY FORMAT

The three wire interface of DATA pin, CLK (clock) pin and LE (load enable) pin controls the serial data input of the 14-bit programmable reference divider plus the prescaler setting bit, and the 18-bit programmable divider. A rising edge of the clock shifts one bit of serial data into the internal shift registers. Depending upon the level of the control bit, stored data is transferred into the latch when load enable pin is HIGH or OPEN.
Control bit: "H" = data is transferred into 15-bit latch of programmable reference divider
"L" = data is transferred into 18-bit latch of programmable divider
WARNING: Switching CLK or DATA after the device is programmed may generate noise on the charge pump outputs which will affect the VCO.

PROGRAMMABLE REFERENCE DIVIDER

16-bit serial data format for the programmable reference counter, "R-counter", and prescaler select bit (SW) is shown below. If the control bit is HIGH, data is transferred from the 15-bit shift register into the 15-bit latch which specifies the R divide ratio (8 to 16383) and the prescaler divide ratio ($\mathrm{SW}=0$ for $\div 128 / 129$, $\mathrm{SW}=1$ for $\div 64 / 65$). An R divide ratio less than 8 is prohibited.
For Control bit $(C)=$ HIGH:

DIVIDE RATIO OF PROGRAMMABLE REFERENCE (R) COUNTER

Divide Ratio R	$\begin{gathered} \hline R \\ 14 \end{gathered}$	$\begin{gathered} \hline R \\ 13 \end{gathered}$	$\begin{gathered} \mathrm{R} \\ 12 \end{gathered}$	$\begin{gathered} \hline \mathrm{R} \\ 11 \end{gathered}$	$\begin{gathered} \hline R \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{R} \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 7 \end{aligned}$	$\begin{gathered} R \\ 6 \end{gathered}$	$\begin{gathered} \mathrm{R} \\ 5 \end{gathered}$	$\begin{aligned} & \mathrm{R} \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 2 \end{aligned}$	R 1
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

PRESCALER SELECT BIT

Prescaler Divide Ratio P	SW
$128 / 129$	0
$64 / 65$	1

MC12206

PROGRAMMABLE DIVIDER

19-bit serial data format for the programmable divider is shown below. If the control bit is LOW, data is transferred from the 18-bit shift register into the 18-bit latch which specifies the swallow A-counter divide ratio (0 to 127) and the programmable N -counter divide ratio (16 to 2047). An N-counter divide ratio less than 16 is prohibited.
For Control bit (C) = LOW:

DIVIDE RATIO OF PROGRAMMABLE N-COUNTER
DIVIDE RATIO OF SWALLOW A-COUNTER

Divide	N	N	N	N	N	N	N	N	N	N	N	Divide	A	A	A	A	A	A	A
Ratio N	18	17	16	15	14	13	12	11	10	9	8	Ratio A	7	6	5	4	3	2	1
16	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	1
\bullet																			
2047	1	1	1	1	1	1	1	1	1	1	1	127	1	1	1	1	1	1	1

DIVIDE RATIO SETTING

fvco $=[(P \bullet N)+A] \bullet f o s c \div R$ with $A<N$
fvco: Output frequency of external voltage controlled oscillator (VCO)
N: Preset divide ratio of binary 11-bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 7-bit swallow counter (0 to $127, \mathrm{~A}<\mathrm{N}$)
fosc: Output frequency of the external frequency oscillator
R: Preset divide ratio of binary 14-bit programmable reference counter (8 to 16383)
P: Preset mode of dual modulus prescaler (64 or 128)

Figure 2. Serial Data Input Timing

NOTES:Programmable reference divider data shown in parenthesis. Data shifted into register on rising edge of CLK.

$\mathrm{t}_{\mathrm{s}}(\mathrm{D})$	$=$ Setup Time DATA to CLK	$\mathrm{t}_{\mathrm{s}}(\mathrm{D}) \geq 10 \mathrm{~ns}$
$\mathrm{th}_{\mathrm{h}}(\mathrm{D})$	$=$ Hold Time DATA to CLK	$\mathrm{th}_{\mathrm{h}}(\mathrm{D}) \geq 20 \mathrm{~ns}$
t_{CW}	$=$ CLK Pulse Width	$\mathrm{t}_{\mathrm{CW}} \geq 30 \mathrm{~ns}$
t_{EW}	$=$ LE Pulse Width	$\mathrm{t}_{\mathrm{EW}} \geq 20 \mathrm{~ns}$
$\mathrm{t}_{\mathrm{s}}(\mathrm{C} \rightarrow \mathrm{LE})$	$=$ Setup Time CLK to LE	$\mathrm{t}_{\mathrm{S}}(\mathrm{C} \rightarrow \mathrm{LE}) \geq 30 \mathrm{~ns}$

MC12206

PHASE CHARACTERISTICS/VCO CHARACTERISTICS

The phase comparator in the MC12206 is a high speed digital phase frequency detector circuit. The circuit determines the "lead" or "lag" phase relationship and time difference between the leading edges of the VCO (fp) signal and the reference (fr) input. Since these edges occur only once per cycle, the detector has a range of $\pm 2 \pi$ radians. The phase comparator outputs are standard CMOS rail-to-rail levels (V_{P} to GND for ϕP and $V_{C C}$ to $G N D$ for ϕR), designed for up to 20 MHz operation into a 15 pF load. These phase comparator outputs can be used along with an external charge pump to enhance the PLL characteristics.

The operation of the phase comparator is shown in Figures 3 and 5. The phase characteristics of the phase comparator are controlled by the FC pin. The polarity of the phase comparator outputs, ϕ R and ϕP, as well as the charge pump output Do can be reversed by switching the FC pin.

Figure 3. Phase/Frequency Detector, Internal Charge Pump and Lock Detect Waveforms

NOTES: Do and BISW are current outputs.
Phase difference detection range: -2π to $+2 \pi$
Spike difference depends on charge pump characteristics. Also, the spike is output in order to diminish dead band When $\mathrm{fr}>\mathrm{fp}$ or fr < fp, spike might not appear depending upon charge pump characteristics.

$$
\text { Internal Charge Pump Gain } \approx\left|\frac{I_{\text {source }}+I_{\text {sink }}}{4 \pi}\right|=\frac{4 \mathrm{~mA}}{4 \pi}
$$

MC12206

For FC = HIGH:

fr lags fp in phase $\mathrm{OR} \mathrm{fp}>\mathrm{fr}$ in frequency

When the phase of fr lags that of $f p$ or the frequency of $f p$ is greater than $f r$, the ϕP output will remain in a HIGH state while the ϕR output will pulse from LOW to HIGH. The output pulse will reach a minimum 50% duty cycle under a 180° out of phase condition. The signal on ϕR indicates to the VCO to decrease in frequency to bring the loop into lock.

fr leads fp in phase $\mathrm{OR} \mathrm{fp}<\mathrm{fr}$ in frequency

When the phase of fr leads that of $f p$ or the frequency of $f p$ is less than $f r$, the ϕR output will remain in a LOW state while the ϕP output pulses from HIGH to LOW. The output pulse will reach a minimum 50% duty cycle under a 180° out of phase condition. The signal on $\phi \mathrm{P}$ indicates to the VCO to increase in frequency to bring the loop to lock.

$\mathrm{fr}=\mathrm{fp}$ in phase and frequency

When the phase and frequency of fr and fp are equal, the output $\phi \mathrm{P}$ will remain in a HIGH state and ϕR will remain in a LOW state except for voltage spikes when signals are in phase. This situation indicates that the loop is in lock and the phase comparator will maintain the loop in its locked state.

When FC = LOW, the operation of the phase comparator is reversed from the above explanation.

For FC = LOW:

fr lags fp in phase $\mathrm{OR} \mathrm{fp}>\mathrm{fr}$ in frequency

When the phase of fr lags that of $f p$ or the frequency of $f p$ is greater than $f r$, the ϕR output will remain in a LOW state while the ϕP output will pulse from HIGH to LOW. The output pulse will reach a minimum 50% duty cycle under a 180° out of phase condition. The signal on $\phi \mathrm{P}$ indicates to the VCO to increase in frequency to bring the loop into lock.

fr leads fp in phase OR fp<fr in frequency

When the phase of fr leads that of $f p$ or the frequency of $f p$ is less than $f r$, the ϕP output will remain in a HIGH state while the ϕR output pulses from LOW to HIGH. The output pulse will reach a minimum 50% duty cycle under a 180° out of phase condition. The signal on ϕ R indicates to the VCO to decrease in frequency to bring the loop to lock.

$\mathrm{fr}=\mathrm{fp}$ in phase and frequency

When the phase and frequency of fr and fp are equal, the output ϕP will remain in a HIGH state and ϕR will remain in a LOW state except for voltage spikes when signals are in phase. This situation indicates that the loop is in lock and the phase comparator will maintain the loop in its locked state.

The FC pin controls not only the phase characteristics, but also controls the fOUT test pin. The FC pin permits the user to monitor either of the phase comparator input signals, fr or fp, at the fOUT output providing a test mode where the programming of the dividers and the output of the counters can be checked. When FC is HIGH, $\mathrm{fOUT}=\mathrm{fr}$, the programmable reference divider output. When FC is LOW, fOUT $=f p$, the programmable divider output.
Hence,
If VCO characteristics are like (1), FC should be set HIGH or OPEN. fOUT $=\mathrm{fr}$
If VCO characteristics are like (2), FC should be set LOW.
fOUT $=\mathrm{fp}$
Figure 4. VCO Characteristics

Figure 5. Phase Comparator, Internal Charge Pump, and fOUT Characteristics

	FC = HIGH or OPEN				FC = LOW			
	Do	$\phi \mathbf{R}$	$\phi \mathbf{P}$	fout	Do	$\phi \mathbf{R}$	$\phi \mathbf{P}$	fout
$f p<f r$	H	L	L	$f r$	L	H	H	$f p$
$f p>f r$	L	H	H	$f r$	H	L	L	$f p$
$f p=f r$	Z	L	H	$f r$	Z	L	H	$f p$

NOTES:Z = High impedance
When LE is HIGH or Open, BISW has the same characteristics as Do.

Figure 6. Detailed Phase Comparator Block Diagram

LOCK DETECT

The Lock Detect (LD) output pin provides a LOW pulse when fr and fp are not equal in phase or frequency. The output is normally HIGH. LD is designed to be the logical NORing of the phase frequency detector's outputs UP and DOWN. See Figure 6. In typical applications the output signal drives external circuitry which provides a steady LOW signal when the loop is locked. See Figure 9.

OSCILLATOR INPUT

For best operation, an external reference oscillator is recommended. The signal should be AC-coupled to the OSCin pin through a coupling capacitor. In this case, no connection to OSCout is required. The magnitude of the AC-coupled signal must be between 500 and 2200 mV peak-to-peak. To optimize the phase noise of the PLL when used in this mode, the input signal amplitude should be closer to the upper specification limit. This maximizes the slew rate of the signal as it switches against the internal voltage reference.
The device incorporates an on-chip reference oscillator/buffer so that an external parallel-resonant fundamental crystal can be connected between OSCin and OSCout. External capacitor C1 and C2 as shown in Figure 10 are required to set the proper crystal load capacitance and oscillator frequency. The values of the capacitors are dependent on the crystal chosen (up to a maximum of 30 pF each including parasitic and stray capacitance). However, using the on-chip reference oscillator greatly increases the synthesized phase noise.

DUAL INTERNAL CHARGE PUMPS ("ANALOG SWITCH")

Due to the pure Bipolar nature of the MC12206 design, the "analog switch" function is implemented with dual internal charge pumps. The loop filter time constant can be decreased by bypassing the first stage of the loop filter with the charge pump output BISW as shown in Figure 7 below. This enables the VCO to lock in a shorter amount of time.

When LE is HIGH or OPEN ("analog switch is ON"), the output of the second internal charge pump is connected to the BISW pin, and the Do output is ON. The charge pump 2 output on BISW is essentially equal to the charge pump 1 output on Do. When LE is LOW, BISW is in a high impedance state and Do output is active.

Figure 7. "Analog Switch" Block Diagram

MC12206

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=2.7\right.$ to $5.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise noted.)

Symbol	Parameter	Min	Typ	Max	Unit	Condition
ICC	Supply Current for V_{CC}	-	6.7	10.5	mA	Note 1
		-	8.1	12.5		Note 2
IP	Supply Current for V_{p}	-	0.7	1.1	mA	Note 3
		-	0.8	1.3		Note 4
FIN	Operating Frequency $\begin{aligned} & \text { finmax } \\ & \text { finmin }\end{aligned}$	2000	-	500	MHz	Note 5
FOSC	Operating Frequency (OSCin)	-	12	20	MHz	Crystal Mode
		-	-	40	MHz	External Reference Mode
$\mathrm{V}_{\text {IN }}$	Input Sensitivity $\begin{array}{r}\text { fin } \\ \text { OSCin }\end{array}$	200	-	1000	$\mathrm{mV} \mathrm{P}^{\text {- }}$	
Vosc		500	-	2200	$m V_{P-P}$	
V_{IH}	Input HIGH Voltage CLK, DATA, LE, FC	0.7 VCC	-	-	V	
VIL	Input LOW Voltage CLK, DATA, LE, FC	-	-	$0.3 \mathrm{~V}_{\mathrm{CC}}$	V	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
$\mathrm{IIH}^{\text {H }}$	Input HIGH Current (DATA and CLK)	-	1.0	2.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
IIL	Input LOW Current (DATA and CLK)	-10	-5.0		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Iosc	Input Current (OSCin)	$-$	$\begin{gathered} 130 \\ -310 \end{gathered}$	-	$\mu \mathrm{A}$	$\begin{aligned} & \text { OSCin }=V_{C C} \\ & \text { OSCin }=V_{C C}-2.2 V \end{aligned}$
IIH	Input HIGH Current (LE and FC)	-	1.0	2.0	$\mu \mathrm{A}$	
IIL	Input LOW Current (LE and FC)	-75	-60	-	$\mu \mathrm{A}$	
ISource ${ }^{6}$	Charge Pump Output Current	-2.6	-2.0	-1.4	mA	$\mathrm{V}_{\mathrm{Do}}=\mathrm{V}_{\mathrm{P}} / 2 ; \mathrm{V}_{\mathrm{P}}=2.7 \mathrm{~V}$
ISink ${ }^{6}$	Do and BISW	+1.4	+2.0	+2.6		$\mathrm{V}_{\text {BISW }}=\mathrm{V}_{\mathrm{P}} / 2 ; \mathrm{V}_{\mathrm{P}}=2.7 \mathrm{~V}$
IHi-Z		-15	-	+15	nA	$\begin{aligned} & 0.5<V_{\text {DO }}<V_{P}-0.5 \\ & 0.5<V_{\text {BISW }}<V_{P}-0.5 \end{aligned}$
V_{OH}	Output HIGH Voltage (LD, ϕ R, ϕ P, foUT)	4.4	-	-	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
		2.4	-	-	V	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage (LD, ϕ R, ϕ P, foUT)	-	-	0.4	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
		-	-	0.4	V	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
${ }^{\mathrm{O}} \mathrm{H}$	Output HIGH Current (LD, ϕ R, ϕ P, foUT)	-1.0	-	-	mA	
I_{OL}	Output LOW Current (LD, ϕ R, ϕ P, fouT)	1.0	-	-	mA	

1. $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, all outputs open
2. $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, all outputs open
3. $\mathrm{V}_{\mathrm{p}}=3.3 \mathrm{~V}$, all outputs open.

Figure 8. Typical External Charge Pump Circuit

Figure 9. Typical Lock Detect Circuit

Figure 10. Typical Applications Example (16-Pin Package)

Figure 11. Typical Loop Filter

Serial Input PLL Frequency Synthesizer

The MC12210 is a 2.5 GHz Bipolar monolithic serial input phase locked loop (PLL) synthesizer with pulse-swallow function. It is designed to provide the high frequency local oscillator signal of an RF transceiver in handheld communication applications.

Motorola's advanced Bipolar MOSAIC ${ }^{\text {тм }} \mathrm{V}$ technology is utilized for low power operation at a minimum supply voltage of 2.7 V . The device is designed for operation over 2.7 to 5.5 V supply range for input frequencies up to 2.5 GHz with a typical current drain of 9.5 mA . The low power consumption makes the MC12210 ideal for handheld battery operated applications such as cellular or cordless telephones, wireless LAN or personal communication services. A dual modulus prescaler is integrated to provide either a $32 / 33$ or 64/65 divide ratio.

For additional applications information, two InterActiveApNote ${ }^{\text {TM }}$ documents containing software (based on a Microsoft Excel spreadsheet) and an Application Note are available. Please order DK305/D and DK306/D from the Motorola Literature Distribution Center.

- Low Power Supply Current of 8.8 mA Typical for ICC and 0.7 mA Typical for Ip
- Supply Voltage of 2.7 to 5.5 V
- Dual Modulus Prescaler With Selectable Divide Ratios of $32 / 33$ or 64/65
- On-Chip Reference Oscillator/Buffer
- Programmable Reference Divider Consisting of a Binary 14-Bit

Programmable Reference Counter

- Programmable Divider Consisting of a Binary 7-Bit Swallow Counter and an 11-Bit Programmable Counter
- Phase/Frequency Detector With Phase Conversion Function
- Balanced Charge Pump Outputs
- Dual Internal Charge Pumps for Bypassing the First Stage of the Loop Filter to Decrease Lock Time
- Outputs for External Charge Pump
- Operating Temperature Range of -40 to $85^{\circ} \mathrm{C}$
- Space Efficient Plastic Surface Mount SOIC or TSSOP Packages

MOSAIC V, Mfax and InterActiveApNote are trademarks of Motorola, Inc.

MAXIMUM RATINGS (Note 1)

Parameter	Symbol	Value	Unit
Power Supply Voltage, Pin 4 (Pin 5 in 20-lead package)	V_{CC}	-0.5 to 6.0	Vdc
Power Supply Voltage, Pin 3 (Pin 4 in 20-lead package)	V_{p}	V_{CC} to 6.0	Vdc
Storage Temperature Range	Tstg	-65 to 150	${ }^{\circ} \mathrm{C}$

NOTES: 1. Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the Recommended Operating Conditions.
2. ESD data available upon request.

MECL PLL COMPONENTS SERIAL PLL FREQUENCY SYNTIESIZER

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC12210D	$T_{A}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-16
MC12210DT	TSSOP-20	

PIN NAMES

Pin	I/O	Function	$\begin{aligned} & \text { 16-Lead Pkg } \\ & \text { Pin No. } \end{aligned}$	$\begin{aligned} & \text { 20-Lead Pkg } \\ & \text { Pin No. } \end{aligned}$
OSCin	I	Oscillator input. A crystal may be connected between OSCin and OSCout. It is highly recommended that an external source be ac coupled into this pin (see text).	1	1
OSCout	0	Oscillator output. Pin should be left open if external source is used	2	3
V_{P}	-	Power supply for charge pumps (V_{P} should be greater than or equal to V_{C}) V_{P} provides power to the Do, BISW and ϕ P outputs	3	4
V_{CC}	-	Power supply voltage input. Bypass capacitors should be placed as close as possible to this pin and be connected directly to the ground plane.	4	5
Do	O	Internal charge pump output. Do remains on at all times	5	6
GND	-	Ground	6	7
LD	0	Lock detect, phase comparator output	7	8
fin	1	Prescaler input. The VCO signal is AC-coupled into this pin	8	10
CLK	1	Clock input. Rising edge of the clock shifts data into the shift registers	9	11
DATA	1	Binary serial data input	10	13
LE	1	Load enable input (with internal pull up resistor). When LE is HIGH or OPEN, data stored in the shift register is transferred into the appropriate latch (depending on the level of control bit). Also, when LE is HIGH or OPEN, the output of the second internal charge pump is connected to the BISW pin	11	14
FC	1	Phase control select (with internal pull up resistor). When FC is LOW, the characteristics of the phase comparator and charge pump are reversed. FC also selects fp or fr on the fout pin	12	15
BISW	0	Analog switch output. When LE is HIGH or OPEN ("analog switch is ON") the output of the second charge pump is connected to the BISW pin. When LE is LOW, BISW is high impedance	13	16
fout	0	Phase comparator input signal. When FC is HIGH, fOUT=fr, programmable reference divider output; when FC is LOW, foUT=fp, programmable divider output	14	17
$\phi \mathrm{P}$	O	Output for external charge pump. Standard CMOS output level	15	18
¢R	O	Output for external charge pump. Standard CMOS output level	16	20
NC	-	No connect	-	2, 9, 12, 19

MC12210

Figure 1. MC12210 Block Diagram

MC12210

DATA ENTRY FORMAT

The three wire interface of DATA pin, CLK (clock) pin and LE (load enable) pin controls the serial data input of the 14-bit programmable reference divider plus the prescaler setting bit, and the 18-bit programmable divider. A rising edge of the clock shifts one bit of serial data into the internal shift registers. Depending upon the level of the control bit, stored data is transferred into the latch when load enable pin is HIGH or OPEN.
Control bit: "H" = data is transferred into 15-bit latch of programmable reference divider
"L" = data is transferred into 18-bit latch of programmable divider
WARNING: Switching CLK or DATA after the device is programmed may generate noise on the charge pump outputs which will affect the VCO.

PROGRAMMABLE REFERENCE DIVIDER

16-bit serial data format for the programmable reference counter, "R-counter", and prescaler select bit (SW) is shown below. If the control bit is HIGH, data is transferred from the 15-bit shift register into the 15-bit latch which specifies the R divide ratio (8 to 16383) and the prescaler divide ratio ($\mathrm{SW}=0$ for $\div 64 / 65$, $\mathrm{SW}=1$ for $\div 32 / 33$). An R divide ratio less than 8 is prohibited.
For Control bit $(C)=$ HIGH:

DIVIDE RATIO OF PROGRAMMABLE REFERENCE (R) COUNTER

Divide Ratio R	$\begin{gathered} \hline R \\ 14 \end{gathered}$	$\begin{gathered} \hline R \\ 13 \end{gathered}$	$\begin{gathered} \mathrm{R} \\ 12 \end{gathered}$	$\begin{gathered} \hline \mathrm{R} \\ 11 \end{gathered}$	$\begin{gathered} \hline R \\ 10 \end{gathered}$	$\begin{aligned} & \mathrm{R} \\ & 9 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 8 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 7 \end{aligned}$	$\begin{gathered} R \\ 6 \end{gathered}$	$\begin{gathered} \mathrm{R} \\ 5 \end{gathered}$	$\begin{aligned} & \mathrm{R} \\ & 4 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 3 \end{aligned}$	$\begin{aligned} & \mathrm{R} \\ & 2 \end{aligned}$	R 1
8	0	0	0	0	0	0	0	0	0	0	1	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	0	0	1
-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
16383	1	1	1	1	1	1	1	1	1	1	1	1	1	1

PRESCALER SELECT BIT

Prescaler Divide Ratio P	SW
$64 / 65$	0
$32 / 33$	1

MC12210

PROGRAMMABLE DIVIDER

19-bit serial data format for the programmable divider is shown below. If the control bit is LOW, data is transferred from the 18-bit shift register into the 18-bit latch which specifies the swallow A-counter divide ratio (0 to 127) and the programmable N -counter divide ratio (16 to 2047). An N -counter divide ratio less than 16 is prohibited.
For Control bit (C) = LOW:

DIVIDE RATIO OF PROGRAMMABLE N-COUNTER
DIVIDE RATIO OF SWALLOW A-COUNTER

Divide	N	N	N	N	N	N	N	N	N	N	N	Divide	A	A	A	A	A	A	A
Ratio N	18	17	16	15	14	13	12	11	10	9	8	Ratio A	7	6	5	4	3	2	1
16	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
17	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	1
\bullet																			
2047	1	1	1	1	1	1	1	1	1	1	1	127	1	1	1	1	1	1	1

DIVIDE RATIO SETTING

fvco $=[(P \bullet N)+A] \bullet f o s c \div R$ with $A<N$
fvco: Output frequency of external voltage controlled oscillator (VCO)
N: Preset divide ratio of binary 11-bit programmable counter (16 to 2047)
A: Preset divide ratio of binary 7-bit swallow counter (0 to 127, A<N)
fosc: Output frequency of the external frequency oscillator
R: Preset divide ratio of binary 14-bit programmable reference counter (8 to 16383)
P: Preset mode of dual modulus prescaler (32 or 64)

Figure 2. Serial Data Input Timing

NOTES:Programmable reference divider data shown in parenthesis. Data shifted into register on rising edge of CLK.

$\mathrm{t}_{\mathrm{s}}(\mathrm{D})=$ Setup Time DATA to CLK	$\mathrm{t}_{\mathrm{s}}(\mathrm{D}) \geq 10 \mathrm{~ns}$
$t_{h}(\mathrm{D})=$ Hold Time DATA to CLK	th(D) $\geq 20 \mathrm{~ns}$
tCW = CLK Pulse Width	tcw $\geq 30 \mathrm{~ns}$
tEW = LE Pulse Width	${ }^{\text {t }}$ WW $\geq 20 \mathrm{~ns}$
$t_{s}(\mathrm{C} \rightarrow \mathrm{LE})=$ Setup Time CLK to LE	$\mathrm{ts}_{\mathrm{s}}(\mathrm{C} \rightarrow \mathrm{LE}) \geq 30 \mathrm{~ns}$

MC12210

PHASE CHARACTERISTICS/VCO CHARACTERISTICS

The phase comparator in the MC12210 is a high speed digital phase frequency detector circuit. The circuit determines the "lead" or "lag" phase relationship and time difference between the leading edges of the VCO (fp) signal and the reference (fr) input. Since these edges occur only once per cycle, the detector has a range of $\pm 2 \pi$ radians. The phase comparator outputs are standard CMOS rail-to-rail levels (V_{P} to GND for ϕP and $V_{C C}$ to $G N D$ for ϕR), designed for up to 20 MHz operation into a $15 p F$ load. These phase comparator outputs can be used along with an external charge pump to enhance the PLL characteristics.
The operation of the phase comparator is shown in Figures 3 and 5. The phase characteristics of the phase comparator are controlled by the FC pin. The polarity of the phase comparator outputs, ϕ R and ϕP, as well as the charge pump output Do can be reversed by switching the FC pin.

Figure 3. Phase/Frequency Detector, Internal Charge Pump and Lock Detect Waveforms

MC12210

For FC = HIGH:

fr lags fp in phase OR fp>fr in frequency

When the phase of fr lags that of $f p$ or the frequency of $f p$ is greater than $f r$, the ϕP output will remain in a HIGH state while the ϕR output will pulse from LOW to HIGH. The output pulse will reach a minimum 50% duty cycle under a 180° out of phase condition. The signal on ϕR indicates to the VCO to decrease in frequency to bring the loop into lock.

fr leads fp in phase $\mathrm{OR} \mathrm{fp}<\mathrm{fr}$ in frequency

When the phase of fr leads that of $f p$ or the frequency of $f p$ is less than $f r$, the ϕR output will remain in a LOW state while the ϕP output pulses from HIGH to LOW. The output pulse will reach a minimum 50% duty cycle under a 180° out of phase condition. The signal on $\phi \mathrm{P}$ indicates to the VCO to increase in frequency to bring the loop to lock.

$\mathrm{fr}=\mathrm{fp}$ in phase and frequency

When the phase and frequency of fr and fp are equal, the output $\phi \mathrm{P}$ will remain in a HIGH state and ϕR will remain in a LOW state except for voltage spikes when signals are in phase. This situation indicates that the loop is in lock and the phase comparator will maintain the loop in its locked state.

When FC = LOW, the operation of the phase comparator is reversed from the above explanation.

For FC = LOW:

fr lags fp in phase OR fp>fr in frequency

When the phase of $f r$ lags that of $f p$ or the frequency of $f p$ is greater than $f r$, the ϕR output will remain in a LOW state while the ϕP output will pulse from HIGH to LOW. The output pulse will reach a minimum 50% duty cycle under a 180° out of phase condition. The signal on $\phi \mathrm{P}$ indicates to the VCO to increase in frequency to bring the loop into lock.

fr leads fp in phase OR fp<fr in frequency

When the phase of fr leads that of $f p$ or the frequency of $f p$ is less than $f r$, the ϕP output will remain in a HIGH state while the ϕR output pulses from LOW to HIGH. The output pulse will reach a minimum 50% duty cycle under a 180° out of phase condition. The signal on ϕ R indicates to the VCO to decrease in frequency to bring the loop to lock.

$\mathrm{fr}=\mathrm{fp}$ in phase and frequency

When the phase and frequency of fr and fp are equal, the output ϕP will remain in a HIGH state and ϕR will remain in a LOW state except for voltage spikes when signals are in phase. This situation indicates that the loop is in lock and the phase comparator will maintain the loop in its locked state.

The FC pin controls not only the phase characteristics, but also controls the fOUT test pin. The FC pin permits the user to monitor either of the phase comparator input signals, fr or fp, at the fOUT output providing a test mode where the programming of the dividers and the output of the counters can be checked. When FC is HIGH, $\mathrm{fOUT}=\mathrm{fr}$, the programmable reference divider output. When FC is LOW, fOUT $=f p$, the programmable divider output.
Hence,
If VCO characteristics are like (1), FC should be set HIGH or OPEN. fOUT $=\mathrm{fr}$
If VCO characteristics are like (2), FC should be set LOW.
fOUT $=\mathrm{fp}$
Figure 4. VCO Characteristics

Figure 5. Phase Comparator, Internal Charge Pump, and fOUT Characteristics

	FC = HIGH or OPEN				FC = LOW			
	Do	$\phi \mathbf{R}$	$\phi \mathbf{P}$	fout	Do	$\phi \mathbf{R}$	$\phi \mathbf{P}$	fout
$f p<f r$	H	L	L	$f r$	L	H	H	$f p$
$f p>f r$	L	H	H	$f r$	H	L	L	$f p$
$f p=f r$	Z	L	H	$f r$	Z	L	H	$f p$

NOTES:Z = High impedance
When LE is HIGH or Open, BISW has the same characteristics as Do.

MC12210

Figure 6. Detailed Phase Comparator Block Diagram

LOCK DETECT

The Lock Detect (LD) output pin provides a LOW pulse when fr and fp are not equal in phase or frequency. The output is normally HIGH. LD is designed to be the logical NORing of the phase frequency detector's outputs UP and DOWN. See Figure 6. In typical applications the output signal drives external circuitry which provides a steady LOW signal when the loop is locked. See Figure 9.

OSCILLATOR INPUT

For best operation, an external reference oscillator is recommended. The signal should be AC-coupled to the OSCin pin through a coupling capacitor. In this case, no connection to OSCout is required. The magnitude of the AC-coupled signal must be between 500 and 2200 mV peak-to-peak. To optimize the phase noise of the PLL when used in this mode, the input signal amplitude should be closer to the upper specification limit. This maximizes the slew rate of the signal as it switches against the internal voltage reference.
The device incorporates an on-chip reference oscillator/buffer so that an external parallel-resonant fundamental crystal can be connected between OSCin and OSCout. External capacitor C1 and C2 as shown in Figure 10 are required to set the proper crystal load capacitance and oscillator frequency. The values of the capacitors are dependent on the crystal chosen (up to a maximum of 30 pF each including parasitic and stray capacitance). However, using the on-chip reference oscillator greatly increases the synthesized phase noise.

DUAL INTERNAL CHARGE PUMPS ("ANALOG SWITCH")

Due to the pure Bipolar nature of the MC12210 design, the "analog switch" function is implemented with dual internal charge pumps. The loop filter time constant can be decreased by bypassing the first stage of the loop filter with the charge pump output BISW as shown in Figure 7 below. This enables the VCO to lock in a shorter amount of time.

When LE is HIGH or OPEN ("analog switch is ON"), the output of the second internal charge pump is connected to the BISW pin, and the Do output is ON. The charge pump 2 output on BISW is essentially equal to the charge pump 1 output on Do. When LE is LOW, BISW is in a high impedance state and Do output is active.

Figure 7. "Analog Switch" Block Diagram

MC12210

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 V ; $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Symbol	Min	Typ	Max	Unit	Condition
Supply Current for V_{CC}	ICC	-	8.8	13.0	mA	Note 1
		-	10.2	16.0		Note 2
Supply Current for V_{P}	Ip	-	0.7	1.1	mA	Note 3
		-	0.8	1.3		Note 4
Operating Frequency $\begin{aligned} & \text { finmax } \\ & \text { finmin }\end{aligned}$	FIN	$\begin{gathered} 2500 \\ - \end{gathered}$	-	500	MHz	Note 5
Operating Frequency (OSCin)	FOSC	-	12	20	MHz	Crystal Mode
		-	-	40	MHz	External Reference Mode
Input Sensitivity $\begin{array}{r}\text { fiN } \\ \text { OSCin }\end{array}$	$\mathrm{V}_{\text {IN }}$	200	-	1000	mVpp	
	VOSC	500	-	2200	mVpp	
Input HIGH Voltage CLK, DATA, LE, FC	V_{IH}	0.7 VCC	-	-	V	
Input LOW Voltage CLK, DATA, LE, FC	$\mathrm{V}_{\text {IL }}$	-	-	$0.3 \mathrm{~V}_{\mathrm{CC}}$	V	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Input HIGH Current (DATA and CLK)	1 IH	-	1.0	2.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Input LOW Current (DATA and CLK)	IIL	-10	-5.0	-	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$
Input Current (OSCin)	Iosc	-	$\begin{gathered} 130 \\ -310 \end{gathered}$	-	$\mu \mathrm{A}$	$\begin{aligned} & \text { OSCin }=V_{C C} \\ & \text { OSCin }=V_{C C}-2.2 V \end{aligned}$
Input HIGH Current (LE and FC)	1 IH	-	1.0	2.0	$\mu \mathrm{A}$	
Input LOW Current (LE and FC)	IIL	-75	-60	-	$\mu \mathrm{A}$	
Charge Pump Output Current Do and BISW	ISource ${ }^{6}$	-2.6	-2.0	-1.4	mA	$\begin{aligned} & \mathrm{V}_{\mathrm{Do}}=\mathrm{V}_{\mathrm{p}} / 2 ; \mathrm{V}_{\mathrm{p}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\text {BISW }}=\mathrm{V}_{\mathrm{p}} / 2 ; \mathrm{V}_{\mathrm{p}}=2.7 \mathrm{~V} \end{aligned}$
	${ }^{\text {I Sink }}{ }^{6}$	+1.4	+2.0	+2.6		
	IHi-Z	-15	-	+15	nA	$\begin{aligned} & 0.5<V_{D O}<V_{p}-0.5 \\ & 0.5<V_{\text {BISW }}<V_{p}-0.5 \end{aligned}$
Output HIGH Voltage (LD, ϕ R, ϕ P, foUT)	V_{OH}	4.4	-	-	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
		2.4	-	-	V	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
Output LOW Voltage (LD, ϕ R, ϕ P, fout)	VOL	-	-	0.4	V	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
		-	-	0.4	\checkmark	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
Output HIGH Current (LD, ϕ R, ϕ P, foUT)	IOH	-1.0	-	-	mA	
Output LOW Current (LD, ϕ R, ϕ P, fout)	IOL	1.0	-	-	mA	

1. $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$, all outputs open
2. $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$, all outputs open.
3. $\mathrm{V}_{\mathrm{P}}=3.3 \mathrm{~V}$, all outputs open.

Figure 8. Typical External Charge Pump Circuit

Figure 9. Typical Lock Detect Circuit

Figure 10. Typical Applications Example (16-Pin Package)

Figure 11. Typical Loop Filter

MC13055

Wideband FSK Receiver

The MC13055 is intended fo RF data link systems using carrier frequencies up to 40 MHz and FSK (frequency shift keying) data rates up to 2.0 M Baud (1.0 MHz). This design is similar to the MC3356, except that it does not include the oscillator/mixer. The IF bandwidth has been increased and the detector output has been revised to a balanced configuration. The received signal strength metering circuit has been retained, as has the versatile data slicer/comparator.

- Input Sensitivity $20 \mu \mathrm{~V}$ @ 40 MHz
- Signal Strength Indicator Linear Over 3 Decades
- Available in Surface Mount Package
- Easy Application, Few Peripheral Components

Figure 1. Block Diagram and Application Circuit

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC13055D	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$	SO-16
MC13055P		

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}(\max)$	15	Vdc
Operating Supply Voltage Range	$\mathrm{V} 2, \mathrm{~V} 4$	3.0 to 12	Vdc
Junction Temperature	TJ_{J}	150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Power Dissipation, Package Rating	P_{D}	1.25	W

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{O}}=40 \mathrm{MHz}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{MHz}, \Delta \mathrm{f}= \pm 1.0 \mathrm{MHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, test circuit of Figure 2.)

Characteristic		Conditions	Min	Typ	Max	Unit
Total Drain Current		$12+14$	-	20	25	mA
Data Comparator Pull-Down Current		116	-	10	-	mA
Meter Drive Slope versus Input		112	4.5	7.0	9.0	$\mu \mathrm{A} / \mathrm{dB}$
Carrier Detect Pull-Down Current		113	-	1.3	-	mA
Carrier Detect Pull-Up Current		113	-	500	-	$\mu \mathrm{A}$
Carrier Detect Threshold Voltage		V12	690	800	1010	mV
DC Output Current		110, 111	-	430	-	$\mu \mathrm{A}$
Recovered Signal		V10-V11	-	350	-	mVrms
Sensitivity for $20 \mathrm{~dB} \mathrm{~S}+\mathrm{N} / \mathrm{N}, \mathrm{BW}=5.0 \mathrm{MHz}$		VIN	-	20	-	$\mu \mathrm{Vrms}$
$\mathrm{S}+\mathrm{N} / \mathrm{N}$ at $\mathrm{V}_{\text {in }}=50 \mu \mathrm{~V}$		V10-V11	-	30	-	dB
Input Impedance @ 40 MHz	$\begin{aligned} & \mathrm{R}_{\mathrm{in}} \\ & \mathrm{C}_{\mathrm{in}} \end{aligned}$	Pin 5, Ground	-	$\begin{aligned} & 4.2 \\ & 4.5 \end{aligned}$	-	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
Quadrature Coil Loading	$\begin{aligned} & \mathrm{R}_{\text {in }} \\ & \mathrm{C}_{\text {in }} \end{aligned}$	Pin 9 to 8	-	$\begin{aligned} & 7.6 \\ & 5.2 \end{aligned}$	-	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$

Figure 2. Test Circuit

Figure 3. Overall Gain, Noise, AM Rejection

Figure 5. Untuned Input: Limiting Sensitivity versus Frequency

Figure 7. Limiting Sensitivity and Detuning versus Supply Voltage

Figure 4. Meter Current versus Signal

Figure 6. Untuned Input: Meter Current versus Frequency

Figure 8. Detector Current and Power Supply Current versus Supply Voltage

Figure 10. Carrier Detect Threshold versus Temperature

Figure 12. Input Limiting versus Temperature

Figure 13. Input Impedance, Pin 5

Figure 14. Test Fixture
(Component Layout)

MC13055

GENERAL DESCRIPTION

The MC13055 is an extended frequency range FM IF, quadrature detector, signal strength detector and data shaper. It is intended primarily for FSK data systems. The design is very similar to MC3356 except that the oscillator/mixer has been removed, and the frequency capability of the IF has been raised about 2:1. The detector output configuration has been changed to a balanced, open-collector type to permit symmetrical drive of the data shaper (comparator). Meter drive and squelch features have been retained.

The limiting IF is a high frequency type, capable of being operated up to 100 MHz . It is expected to be used at 40 MHz in most cases. The quadrature detector is internally coupled to the IF, and a 2.0 pF quadrature capacitor is internally provided. The 20 dB quieting sensitivity is approximately $20 \mu \mathrm{~V}$, tuned input, and the IF can accept signals up to 220 mVrms without distortion or change of detector quiescent DC level.

The IF is unusual in that each of the last 5 stages of the 6 stage limiter contains a signal strength sensitive, current sinking device. These are parallel connected and buffered
to produce a signal strength meter drive which is fairly linear for IF input signals of $20 \mu \mathrm{~V}$ to 20 mVrms (see Figure 4).

A simple squelch arrangement is provided whereby the meter current flowing through the meter load resistance flips a comparator at about 0.8 Vdc above ground. The signal strength at which this occurs can be adjusted by changing the meter load resistor. The comparator (+) input and output are available to permit control of hysteresis. Good positive action can be obtained for IF input signals of above 20μ Vrms. A resistor (R) from Pin 13 to Pin 12 will provide $\mathrm{V}_{\mathrm{CC}} / R$ of feedback current. This current can be correlated to an amount of signal strength hysteresis by using Figure 4.

The squelch is internally connected to the data shaper. Squelch causes the data shaper to produce a high (V_{CC}) output.

The data shaper is a complete "floating" comparator, with diodes across its inputs. The outputs of the quadrature detector can be fed directly to either or preferably both inputs of the comparator to produce a squared output swinging from V_{CC} to ground in inverted or noninverted form.

Universal Cordless Telephone Subsystem IC

The MC13109 integrates several of the functions required for a cordless telephone into a single integrated circuit. This significantly reduces component count, board space requirements, and external adjustments. It is designed for use in both the handset and the base.

- Dual Conversion FM Receiver

- Complete Dual Conversion Receiver - Antenna Input to Audio Output 80 MHz Maximum Carrier Frequency
- RSSI Output
- Carrier Detect Output with Programmable Threshold
- Comparator for Data Recovery
- Operates with Either a Quad Coil or Ceramic Discriminator
- Compander
- Expandor Includes Mute, Digital Volume Control and Speaker Driver
- Compressor Includes Mute, ALC and Limiter
- Dual Universal Programmable PLL
- Supports New 25 Channel U.S. Standard with No External Switches
- Universal Design for Domestic and Foreign CT-1 Standards
- Digitally Controlled Via a Serial Interface Port
- Receive Side Includes 1st LO VCO, Phase Detector, and 14-Bit

Programmable Counter and 2nd LO with 12-Bit Counter

- Transmit Section Contains Phase Detector and 14-Bit Counter
- MPU Clock Output Eliminates Need for MPU Crystal
- Supply Voltage Monitor
- Externally Adjustable Trip Point
- 2.0 to 5.5 V Operation with One-Third the Power Consumption of Competing Devices
- AN1575: Refer to Application Note for a List of "Worldwide Cordless Telephone Frequencies" (Chapter 8 Addendum of DL128 Data Book)

UNIVERSAL CT-1 SUBSYSTEM INTEGRATED CIRCUIT

FB SUFFIX

PLASTIC PACKAGE CASE 848B (QFP-52)

FTA SUFFIX PLASTIC PACKAGE

CASE 932
(Thin QFP)

| ORDERING INFORMATION |
| :---: | :---: | :---: |
| Device Tested Operating
 Temperature Range Package
 MC13109FB $\mathrm{T}_{\mathrm{A}}=-20^{\circ}$ to $+85^{\circ} \mathrm{C}$ QFP-52
 MC13109FTA |

Figure 1. MC13109FB Test Circuit

Figure 2. MC13109FTA Test Circuit

MC13109

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to +5.5	Vdc°
Junction Temperature	T_{J}	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: 1. Devices should not be operated at these limits. The "Recommended Operating Conditions" provide for actual device operation
2. ESD data available upon request.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Min	Typ	Max	Unit
$\mathrm{V}_{\text {CC }}$	2.0	-	5.5	Vdc
Operating Ambient Temperature	-20	-	85	${ }^{\circ} \mathrm{C}$

NOTE: All limits are not necessarily functional concurrently.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{RF} \ln =46.61 \mathrm{MHz}, \mathrm{f}_{\mathrm{DEV}}= \pm 3.0 \mathrm{kHz}\right.$, $f^{\mathrm{mod}}=1.0 \mathrm{kHz}$; Test Circuit Figure 1.)

Characteristic	Min	Typ	Max	Unit
POWER SUPPLY				
Static Current	-			
Active Mode $\left(\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}\right)$	-	6.7	12	mA
Active Mode $\left(\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}\right)$	-	7.1	-	mA
Receive Mode $\left(\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}\right)$	-	4.3	7.0	mA
Receive Mode $\left(\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}\right)$	-	4.5	-	mA
Standby Mode $\left(\mathrm{VCC}_{\mathrm{CC}}=2.6 \mathrm{~V}\right)$	-	300	600	$\mu \mathrm{~A}$
Standby Mode $\left(\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}\right)$	-	600	-	$\mu \mathrm{A}$
Inactive Mode $\left(\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}\right)$	-	40	80	$\mu \mathrm{~A}$
Inactive Mode $\left(\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}\right)$	-	56	-	$\mu \mathrm{A}$

ELECTRICAL CHARACTERISTICS (continued)

FM Receiver

The FM receivers can be used with either a quad coil or a ceramic resonator. The FM receiver and 1st LO have been designed to work for all country channels, including 25
channel U.S., without the need for any external switching circuitry (see Figure 29).
(Test Conditions: $\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f} \mathrm{O}=46.61 \mathrm{MHz}, \mathrm{fDEV}= \pm 3.0 \mathrm{kHz}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}$.)

Characteristic	Condition	Input Pin	Measure Pin	Symbol	Min	Typ	Max	Unit
Sensitivity (Input for 12 dB SINAD)	Matched Impedance Differential Input	$\begin{aligned} & \hline \operatorname{Mix}_{1} \\ & \ln _{1 / 2} \end{aligned}$	Det Out	$\mathrm{V}_{\text {SIN }}$	-	0.7	-	$\mu \mathrm{Vrms}$
1st Mixer Conversion Gain	$V_{\text {in }}=1.0 \mathrm{mVrms}$, with CF_{1} Load	$\begin{aligned} & \hline \operatorname{Mix}_{1} \\ & \ln _{1 / 2} \end{aligned}$	CF_{1}	$\mathrm{MX} \mathrm{g}_{\text {gain1 }}$	-	10	-	dB
2nd Mixer Conversion Gain	$\mathrm{V}_{\text {in }}=3.0 \mathrm{mVrms}$, with CF_{2} Load	Mix 2 ln	CF_{2}	M $\mathrm{X}_{\text {gain2 }}$	-	20	-	dB
1st and 2nd Mixer Gain Total	$\mathrm{V}_{\mathrm{in}}=1.0 \mathrm{mVrms}$, with CF_{1} and CF_{2} Load	$\begin{aligned} & \operatorname{Mix}_{1} \\ & \ln _{1 / 2} \end{aligned}$	CF_{2}	M $\mathrm{X}_{\text {gain }}$	24	30	-	dB
1st Mixer Input Impedance	-	-	$M_{1 x} \ln _{1}$ $\mathrm{Mix}_{1} \operatorname{In}_{2}$	$\mathrm{Z}_{\text {in1 }}$	-	1.0	-	k Ω
2nd Mixer Input Impedance	-	-	Mix2 In	$Z_{\text {in2 }}$	-	3.0	-	k Ω
1st Mixer Output Impedance	-	-	$M_{\text {Mix }}^{1}$ Out	$\mathrm{Z}_{\text {out1 }}$	-	330	-	Ω
2nd Mixer Output Impedance	-	-	Mix 2 Out	$\mathrm{Z}_{\text {out2 }}$	-	1.5	-	k Ω
IF - 3.0 dB Limiting Sensitivity	$\mathrm{fin}_{\text {in }}=455 \mathrm{kHz}$	Lim In	Det Out	IF Sens	-	55	-	$\mu \mathrm{Vrms}$
Total Harmonic Distortion (CCITT Filter)	$\begin{aligned} & \text { With } \mathrm{R} \mathrm{C}=8.2 \mathrm{k} \Omega / \\ & 0.01 \mu \mathrm{~F} \text { Filter at Det } \\ & \text { Out } \end{aligned}$	$\begin{aligned} & \operatorname{Mix}_{1} \\ & \ln _{1 / 2} \end{aligned}$	Det Out	THD	-	0.7	-	\%
Recovered Audio	```With RC=8.2 k\Omega/ 0.01 \mu\textrm{F}}\mathrm{ Filter at Det Out```	$\begin{aligned} & \operatorname{Mix}_{1} \\ & \ln _{1 / 2} \end{aligned}$	Det Out	AFO	80	100	154	mVrms
Demodulator Bandwidth	-	Lim In	Det Out	BW	-	20	-	kHz
Signal to Noise Ratio	$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=10 \mathrm{mVrms}, \\ & \mathrm{R}_{\mathrm{C}}=8.2 \mathrm{k} \Omega / 0.01 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \operatorname{Mix}_{1} \\ & \ln _{1 / 2} \end{aligned}$	Det Out	SN	-	49	-	dB
AM Rejection Ratio	$\begin{aligned} & 30 \% \mathrm{AM}, \mathrm{~V}_{\text {in }}= \\ & 10 \mathrm{mVrms}, \\ & \mathrm{R}_{\mathrm{C}}=8.2 \mathrm{k} \Omega / 0.001 \mu \mathrm{~F} \end{aligned}$	$\begin{aligned} & \operatorname{Mix}_{1} \\ & \operatorname{In}_{1 / 2} \end{aligned}$	Det Out	AMR	-	37	-	dB
First Mixer 3rd Order Intercept (Input Referred)	Matched Impedance Input	$\begin{aligned} & \operatorname{Mix}_{1} \\ & \ln _{1 / 2} \end{aligned}$	Mix ${ }_{1}$ Out	TOImix 1	-	-10	-	dBm
Second Mixer 3rd Order Intercept (Input Referred)	Matched Impedance Input	Mix 2 In	Mix2 Out	TOImix2	-	-27	-	dBm
Detector Output Impedance	-	-	Det Out	ZO	-	870	-	Ω

ELECTRICAL CHARACTERISTICS (continued)

RSSI/Carrier Detect

Connect $0.01 \mu \mathrm{~F}$ to Gnd from "RSSI" output pin to form the carrier detect filter. "CD Out" is an open collector output which requires an external $100 \mathrm{k} \Omega$ pull-up resistor to V_{CC}.

The carrier detect threshold is programmable through the MPU interface.
($\mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.)

Characteristic	Condition	Input Pin	Measure Pin	Symbol	Min	Typ	Max	Unit
RSSI Output Current Dynamic Range	-	Mix ${ }_{1}$ In	RSSI	RSSI	-	65	-	dB
Carrier Sense Threshold	$\begin{aligned} & \hline \text { CD Threshold Adjust = } \\ & (10100) \end{aligned}$	$M_{1 \times 1} \mathrm{In}$	CD Out	V_{\top}	-	22.5	-	$\mu \mathrm{Vrms}$
Hysteresis	-	Mix1 In	CD Out	Hys	-	2.0	-	dB
Output High Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=0 \mu \mathrm{Vrms}, \mathrm{R}_{\mathrm{L}}= \\ & 100 \mathrm{k} \Omega, \mathrm{CD}=(10100) \end{aligned}$	Mix ${ }_{1} \mathrm{In}$	CD Out	V_{OH}	$\mathrm{V}_{\mathrm{CC}}-0.1$	2.6	-	V
Output Low Voltage	$\begin{gathered} \mathrm{V}_{\text {in }}=100 \mu \mathrm{Vrms}, \mathrm{R}_{\mathrm{L}}= \\ 100 \mathrm{k} \Omega, \mathrm{CD}=(10100) \end{gathered}$	Mix ${ }_{1} \mathrm{In}$	CD Out	V OL	-	0.01	0.4	V
Carrier Sense Threshold Adjustment Range	Programmable through MPU Interface	-	-	$\mathrm{V}_{\text {Trange }}$	-20	-	11	dB
Carrier Sense Threshold - Number of Steps	Programmable through MPU Interface	-	-	$\mathrm{V}_{\text {Tn }}$	-	32	-	-

Data Amp Comparator (see Figure 4)

Inverting hysteresis comparator. Open collector output with internal $100 \mathrm{k} \Omega$ pull-up resistor. A band pass filter is connected between the "Det Out" pin and the "DA In" pin with
component values as shown in the attached block diagram. The "DA In" input signal is ac coupled.
$\left(\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Condition	Input Pin	$\begin{aligned} & \text { Measure } \\ & \text { Pin } \end{aligned}$	Symbol	Min	Typ	Max	Unit
Hysteresis	-	DA In	DA Out	Hys	30	40	50	mV
Threshold Voltage	-	DA In	DA Out	V_{T}	$\mathrm{V}_{\text {CC }}-0.9$	$\mathrm{V}_{\mathrm{CC}}-0.7$	VCC - 0.5	V
Input Impedance	-	-	DA In	Z	-	11	-	k Ω
Output Impedance	-	-	DA Out	Z_{O}	-	100	-	k Ω
Output High Voltage	$\begin{aligned} & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OH}}=0 \mathrm{~mA} \end{aligned}$	DA In	DA Out	V_{OH}	$\mathrm{V}_{\mathrm{CC}}-0.1$	2.6	-	V
Output Low Voltage	$\begin{gathered} \mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}, \\ \mathrm{I}_{\mathrm{OL}}=0 \mathrm{~mA} \end{gathered}$	DA In	DA Out	VoL	-	0.03	0.4	V

ELECTRICAL CHARACTERISTICS (continued)

Pre-Amplifier/Expander/R $\mathbf{X}_{\mathbf{X}}$ Mute/Volume Control (See Figure 4)
The Pre-Amplifier is an inverting rail-to-rail output swing operational amplifier with the non-inverting input terminal connected to the internal V_{B} half supply reference. External resistors and capacitors can be connected to set the gain and frequency response. The expander analog ground is set to
the half supply reference so the input and output swing capability will increase as the supply voltage increases. The volume control can be adjusted through the MPU interface. The " R_{X} Audio In" input signal is ac coupled.
(Test Conditions: $\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\text {in }}=1.0 \mathrm{kHz}$, Set External Pre-Amplifier R's for Gain of 1, Volume Control $=(0111)$.)

Characteristic	Condition	Input Pin	$\begin{aligned} & \text { Measure } \\ & \text { Pin } \end{aligned}$	Symbol	Min	Typ	Max	Unit
Pre-Amp Open Loop Gain	-	$\begin{gathered} \mathrm{R}_{\mathrm{x}} \text { Audio } \\ \text { In } \end{gathered}$	Pre-Amp	AVOL	-	60	-	dB
Pre-Amp Gain Bandwidth	-	$\mathrm{R}_{\mathrm{X}} \text { Audio }$ In	Pre-Amp	GBW	-	100	-	kHz
Pre-Amp Maximum Output Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	R_{X} Audio In	Pre-Amp	$\mathrm{V}_{\text {Omax }}$	-	$\mathrm{V}_{\mathrm{CC}}-0.3$	-	V_{pp}
Expander 0 dB Gain Level	$V_{\text {in }}=-10 \mathrm{dBV}$	$\mathrm{R}_{\mathrm{x}} \text { Audio }$ In	E Out	G	-3.0	-0.11	3.0	dB
Expander Gain Tracking	$\mathrm{V}_{\text {in }}=-20 \mathrm{dBV}$, Output Relative to G $V_{\text {in }}=-30 \mathrm{dBV}$, Output Relative to G	$\mathrm{R}_{\mathrm{X}} \text { Audio }$ In	E Out	G_{t}	$\begin{aligned} & -21 \\ & -42 \end{aligned}$	$\begin{aligned} & \hline-19.65 \\ & -39.42 \end{aligned}$	$\begin{aligned} & \hline-19 \\ & -37 \end{aligned}$	dB
Total Harmonic Distortion	$\mathrm{V}_{\text {in }}=-10 \mathrm{dBV}$	$\begin{gathered} \mathrm{R}_{\mathrm{x}} \text { Audio } \\ \text { In } \end{gathered}$	E Out	THD	-	0.5	-	\%
Maximum Output Voltage	Increase input voltage until output voltage THD $=5 \%$, then measure output voltage. $\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{R}_{\mathrm{X}} \text { Audio }$ In	E Out	$\mathrm{V}_{\text {Omax }}$	-	-5.0	-	dBV
Attack Time	$\begin{aligned} & \mathrm{E}_{\text {cap }}=1.0 \mu \mathrm{~F}, \\ & \mathrm{R}_{\text {filt }}=20 \mathrm{k} \Omega \\ & \text { (See Appendix B) } \end{aligned}$	$\mathrm{R}_{\mathrm{X}} \text { Audio }$ In	E Out	$\mathrm{ta}_{\text {a }}$	-	3.0	-	ms
Release Time	$\begin{aligned} & \mathrm{E}_{\text {cap }}=1.0 \mu \mathrm{~F}, \\ & \mathrm{R}_{\text {filt }}=20 \mathrm{k} \Omega \\ & \text { (See Appendix B) } \end{aligned}$	$\mathrm{R}_{\mathrm{X}} \text { Audio }$ In	E Out	tr_{r}	-	13.5	-	ms
Compressor to Expander Crosstalk	$\begin{aligned} & \text { V (}\left(\mathrm{R}_{\mathrm{X}} \text { Audio In }\right) \\ & =0 \text { Vrms, } \\ & \mathrm{V}_{\text {in }}=-10 \mathrm{dBV} \end{aligned}$	C In	E Out	C_{\top}	-	-	-70	dB
R_{X} Mute	$\begin{aligned} & \mathrm{V}_{\mathrm{in}}=-10 \mathrm{dBV} \\ & \text { No popping } \\ & \text { detectable during } \mathrm{R}_{\mathrm{X}} \\ & \text { Mute transitions } \end{aligned}$	$\begin{array}{\|c\|} \hline \mathrm{R}_{\mathrm{x}} \text { Audio } \\ \text { In } \end{array}$	E Out	M_{e}	-	-70	-	dB
Volume Control Range	Programmable through MPU Interface	-	-	$V_{\text {Crange }}$	-14	-	16	dB
Volume Control Steps	Programmable through MPU Interface	-	-	V_{Cn}	-	16	-	-

ELECTRICAL CHARACTERISTICS (continued)

Speaker Amplifier/SP Mute

The Speaker Amplifier is an inverting rail-to-rail operational amplifier. The non-inverting input terminal is connected to the internal V_{B} half supply reference. External
resistors and capacitors are used to set the gain and frequency response. The "SA In" input is ac coupled.
(Test Conditions: $\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{in}}=1.0 \mathrm{kHz}$, External Resistors Set for Gain of 1.)

Characteristic	Condition	Input Pin	Measure Pin	Symbol	Min	Typ	Max	Unit
Maximum Output Swing	$\begin{array}{r} \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=130 \Omega \\ \mathrm{~V}_{\mathrm{CC}}=2.3 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=600 \Omega \\ \mathrm{~V}_{\mathrm{CC}}=3.4 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=600 \Omega \end{array}$	SA In	SA Out	$V_{\text {Omax }}$		$\begin{aligned} & 0.8 \\ & 2.0 \\ & 3.0 \end{aligned}$		V_{pp}
SP Mute	$\begin{gathered} \mathrm{V}_{\mathrm{in}}=-20 \mathrm{dBV} \\ \mathrm{R}_{\mathrm{L}}=130 \Omega \end{gathered}$ No popping detectable during SP Mute transitions	SA In	SA Out	$M_{s p}$	-	-70	-	dB

Mic Amplifier (See Figure 6)

The Mic Amplifier is an inverting rail-to-rail output operational amplifier with the non-inverting input terminal connected to the internal V_{B} half supply reference. External
resistors and capacitors are connected to set the gain and frequency response. The " $T_{X} \operatorname{In}$ " input is ac coupled.
(Test Conditions: $\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{in}}=1.0 \mathrm{kHz}$, External Resistors Set for Gain of 1.)

Characteristic	Condition	Input Pin	Measure Pin	Symbol	Min	Typ	Max	Unit
Open Loop Gain	-	$T_{X} \operatorname{In}$	Amp Out	$A_{V O L}$	-	60	-	dB
Gain Bandwidth	-	$\mathrm{T}_{\mathrm{X}} \operatorname{In}$	Amp Out	G_{BW}	-	100	-	kHz
Maximum Output Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\mathrm{T}_{\mathrm{X}} \operatorname{In}$	Amp Out	$\mathrm{V}_{\text {Omax }}$	-	$\mathrm{V}_{\mathrm{CC}}-0.3$	-	V_{pp}

ELECTRICAL CHARACTERISTICS (continued)

Compressor/ALC/T \mathbf{x} Mute/Limiter (See Figure 5)

The compressor analog gound is set to the half supply reference so the input and output swing capability will increase as the supply voltage increases. The "C In" input is ac coupled. The ALC (Automatic Level Control) provides a soft limit to the output signal swing as the input voltage
increases slowly (i.e., a sine wave is maintained). The Limiter circuit limits rapidly changing signal levels by clipping the signal peaks. The ALC and/or Limiter can be disabled through the MPU serial interface.
(Test Conditions: $\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}, \mathrm{f}_{\text {in }}=1.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.)

Characteristic	Condition	Input Pin	Measure Pin	Symbol	Min	Typ	Max	Unit
Compressor 0 dB Gain Level	$\mathrm{V}_{\mathrm{in}}=-10 \mathrm{dBV}, \mathrm{ALC}$ disabled, Limiter disabled	C In	Lim Out	G	-3.0	-0.17	3.0	dB
Compressor Gain Tracking	$V_{\text {in }}=-30 \mathrm{dBV}$, Output Relative to G $V_{\text {in }}=-50 \mathrm{dBV}$, Output Relative to G	C In	Lim Out	G_{t}	$\begin{aligned} & -11 \\ & -23 \end{aligned}$	$\begin{aligned} & \hline-10.23 \\ & -20.23 \end{aligned}$	$\begin{aligned} & \hline-9.0 \\ & -17 \end{aligned}$	dB
Maximum Compressor Gain	$\mathrm{V}_{\text {in }}-70 \mathrm{dBV}$	C In	Lim Out	A_{V} max	-	30	-	dB
Total Harmonic Distortion	$\begin{aligned} & \mathrm{V}_{\text {in }}-10 \mathrm{dBV} \text {, ALC } \\ & \text { disabled, Limiter } \end{aligned}$ disabled	C In	Lim Out	THD	-	0.5	-	\%
Input Impedance	-	C In	Lim Out	$\mathrm{Z}_{\text {in }}$	-	16	-	$\mathrm{k} \Omega$
Attack Time	$\begin{aligned} & \mathrm{C}_{\text {cap }}=1.0 \mu \mathrm{~F}, \\ & \mathrm{R}_{\text {filt }}=20 \mathrm{k} \Omega \\ & \text { (see Appendix B) } \end{aligned}$	C In	Lim Out	$\mathrm{ta}_{\text {a }}$	-	3.0	-	ms
Release Time	$\begin{aligned} & \hline \mathrm{C}_{\text {cap }}=1.0 \mu \mathrm{~F}, \\ & \mathrm{R}_{\text {filt }}=20 \mathrm{k} \Omega \\ & \text { (see Appendix B) } \end{aligned}$	C In	Lim Out	tr_{r}	-	13.5	-	ms
Expander to Compressor Crosstalk	$\mathrm{V}(\mathrm{C} \operatorname{In})=0 \mathrm{Vrms},$ $\mathrm{V}_{\mathrm{in}}=-10 \mathrm{dBV}$	$\mathrm{R}_{\mathrm{x}} \text { Audio }$ In	Lim Out	C_{\top}	-	-	-40	dB
T ${ }_{\text {x }}$ Data Mute	$\mathrm{V}_{\text {in }}=-10 \mathrm{dBV}, \mathrm{ALC}$ disabled No popping detectable during R_{X} Mute transitions	C In	Lim Out	M_{e}	-	-70	-	dB
ALC Dynamic Range	-	C In	Lim Out	DR	-24	-	-2.5	dBV
ALC Output Level	$\begin{aligned} & V_{\text {in }}=-18 \mathrm{dBV} \\ & \mathrm{~V}_{\mathrm{in}}=-2.5 \mathrm{dBV} \end{aligned}$	C In	Lim Out	ALCout		$\begin{aligned} & \hline-16 \\ & -12 \\ & \hline \end{aligned}$		dBV
Limiter Output Level	ALC disabled	C In	T_{x} Out	$\mathrm{V}_{\text {lim }}$	-	0.8	-	V_{pp}

ELECTRICAL CHARACTERISTICS (continued)

Splatter Amplifier (see Figure 7)
The Splatter Amplifier is an inverting rail-to-rail output operational amplifier with the non-inverting input terminal connected to the internal V_{B} half supply reference. External
resistors and capacitors can be connected to set the gain and frequency response. The "Spl Amp In" input is ac coupled.
(Test Conditions: $\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{in}}=1.0 \mathrm{kHz}$, External resistors Set for Gain of 1.)

Characteristic	Condition	Input Pin	Measure Pin	Symbol	Min	Typ	Max	Unit
Open Loop Gain	-	Spl Amp In	T_{X} Out	AVOL	-	60	-	dB
Gain Bandwidth	-	Spl Amp In	T_{X} Out	GBW	-	100	-	kHz
Maximum Output Swing	$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	Spl Amp In	T_{X} Out	$\mathrm{V}_{\text {Omax }}$	-	$\mathrm{V}_{\mathrm{CC}}-0.3$	-	V_{pp}

TX Audio Path Recommendation

The recommended configuration for the T_{X} Audio path includes setting the Microphone Amplifier gain to 16 dB using the external gain setting resistors and setting the Splatter

PLL Voltage Regulator

The PLL supply voltage is regulated to a nominal of 2.2 V . The " $V_{C C}$ Audio" pin is the supply voltage for the internal voltage regulator. The "PLL $\mathrm{V}_{\text {ref" }}$ pin is the 2.2 V regulated output voltage. Two capacitors with $10 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ values must be connected to the "PLL $V_{\text {ref" }}$ pin to filter and stabilize this regulated voltage. The voltage regulator provides power for the 2nd LO, R_{X} and T_{X} PLL's, and MPU Interface. The voltage regulator can also be used to provide a regulated supply voltage for external IC's. R_{X} and T_{X} PLL loop performance are independent of the power supply voltage when the voltage regulator is used. The voltage regulator requires about 200 mV of "headroom". When the power supply decreases to within about 200 mV of the output

Amplifier gain to 9.0 dB using the external gain setting resistors. With these gain values, the total T_{X} Path transfer characteristic is shown in Figure 7.
voltage, the regulator will go out of regulation but the output voltage will not turn off. Instead, the output voltage will maintain about a 200 mV delta to the power supply voltage as the power supply voltage continues to decrease. The "PLL $V_{\text {ref" pin can }}$ be connected to "VCC Audio" by the external wiring if voltage higher than 2.2 V is required. But it should not be connected to other supply except " V_{CC} Audio". The voltage regulator is "on" in the Active and R_{X} modes. In the Standby and Inactive modes, the voltage regulator is turned off to reduce current drain and the "PLL Vref" pin is internally connected to "VCC Audio" (i.e., the supply voltage is maintained but is now unregulated).
(Test Conditions: $\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.)

Characteristic	Condition	Input Pin	Measure Pin	Symbol	Min	Typ	Max	Unit
Output Voltge Level	$\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}$, $\mathrm{O}_{\mathrm{L}}=0 \mathrm{~mA}$	-	V_{CC} PLL	$\mathrm{V}_{\text {out }}$	1.9	2.2	2.5	V
Line Regulation	$\mathrm{I}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=2.6$ to 5.5 V	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC} PLL	Regline	-	1.43	40	mV
Load Regulation	$\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}, \mathrm{I}_{\mathrm{L}}=0$ to 1.0 mA	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC} PLL	Regload	-	-1.86	40	mV
Drop-Out Voltage	$\mathrm{I}_{\mathrm{L}}=0 \mathrm{~mA}$	-	-	DO	-	-	$\mathrm{V}_{\text {out }}+200$	mV

ELECTRICAL CHARACTERISTICS (continued)

Low Battery Detect

An external resistor divider is connected to the "Ref" input pin to set the threshold for the low battery detect. The voltage at the "Ref" input pin is compared to an internal 1.23 V

Bandgap reference voltage. The "BD Out" pin is open collector and requires and external pull-up resistor to V_{CC}.
(Test Conditions: $\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.)

Characteristic	Condition	Input Pin	Measure Pin	Symbol	Min	Typ	Max	Unit
Average Threshold Voltage	Take average of rising and falling threshold	Ref	Ref/ BD Out	Threshold	-	1.23	-	V
Hysteresis	-	Ref	Ref $/$ BD Out	Hys	-	4.0	-	mV
Input Current	$\mathrm{V}_{\text {in }}=1.6 \mathrm{~V}$	-	Ref	$\mathrm{l}_{\text {in }}$	-50	5.71	+50	nA
Output High Voltage	$\mathrm{V}_{\text {ref }}=1.6, \mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega$	Ref	BD Out	V_{OH}	$\mathrm{V}_{\mathrm{CC}}-0.1$	2.6	-	V
Output Low Voltage	$\mathrm{V}_{\text {ref }}=0.9, \mathrm{R}_{\mathrm{L}}=3.9 \mathrm{k} \Omega$	Ref	BD Out	V_{OL}	-	0.12	0.4	V

Figure 3. Data Amp Operation

Figure 4. Typical Expander Response

Figure 5. Typical Compressor/ALC/Limiter Response
Figure 6. Total T_{X} Path, Mic Amp Gain $=16 \mathrm{~dB}$,

Splatter Amp Gain $=9.0 \mathrm{~dB}$

Figure 7. MC13109FTA Internal I/O Block Diagram

PIN FUNCTION DESCRIPTION

$\begin{gathered} \text { 48-TQFP } \\ \text { Pin } \end{gathered}$	$\begin{gathered} \text { 52-QFP } \\ \text { Pin } \end{gathered}$	Symbol	Type	Description
$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\mathrm{LO}_{2} \mathrm{In}$ LO2 Out	-	These pins form the PLL reference oscillator when connected to an external parallel-resonant crystal (10.24 MHz typical). The reference oscillator is also the second Local Oscillator $\left(\mathrm{LO}_{2}\right)$ for the RF receiver.
3	3	PLL $\mathrm{V}_{\text {ref }}$	Supply	Voltage Regulator output pin. The internal voltage regulator provides a stable power supply voltage for the R_{X} and T_{X} PLL's and can also be used as a regulated supply voltage for the other IC's.
4	4	$\mathrm{R}_{\mathrm{X}} \mathrm{PD}$	Output	Three state voltage output of the R_{x} Phase Detector. This pin is either "high", "low", or "high impedance" depending on the phase difference of the phase detector input signals. During lock, very narrow pulses with a frequency equal to the reference frequency are present. This pin drives the external R_{X} PLL loop filter. It is important to minimize the line length and capacitance of this pin.
5	5	Gnd PLL	Gnd	Ground pin for PLL section of IC.
6	6	TX PD	Output	Three state voltage output of the T_{x} Phase Detector. This pin is either "high", "low", or "high impedance" depending on the phase difference of the phase detector input signals. During lock, very narrow pulses with a frequency equal to the reference frequency are present. This pin drives the external T_{x} PLL loop filter. It is important to minimize the line length and capacitance on this pin.
7	7	E Cap	-	Expander rectifier filter capacitor pin. Connect capacitor to V_{CC}.
8	8	$\mathrm{T}_{\mathrm{X}} \mathrm{VCO}$	Input	Transmit divide counter input which is driven by an ac coupled external transmit loop VCO. The minimum signal level is 200 mV pp @ 80.0 MHz . This pin also functions as the test mode input for the counter tests.
$\begin{gathered} \hline 9 \\ 10 \\ 11 \end{gathered}$	$\begin{gathered} \hline 9 \\ 10 \\ 11 \end{gathered}$	Data EN CIk	Input	Microprocessor serial interface input pins for programming various counters and control functions.
12	12	Clk Out	Output	Microprocesor Clock Output which is derived from the 2nd LO crystal oscillator and a programmable divider. It can be used to drive a microprocessor and thereby reduce the number of crystals required in the system design. The driver has an internal resistor in series with the output whch can be combined with an external capacitor to form a low pass filter to reduce radiated noise on the PCB. This output also functions as the output for the counter test modes.
N/A	14	Status Out	Output	This pin indicates when the internal latches may have lost memory due to a power glitch.
13	15	CD Out/ Hardware Interrupt	Output/ Input	Dual function pin; 1) Carrier detect output (open collector with external $100 \mathrm{k} \Omega$ pull-up resistor. 2) Hardware interrupt input which can be used to "wake-up" from Inactive Mode.
14	16	BD Out	Output	Low battery detect output (open collector with external pull-up resistor).
15	17	DA Out	Output	Data amplifier output (open collector with internal $100 \mathrm{k} \Omega$ pull-up resistor).
16	18	SA Out	Output	Speaker amplifier output.
17	19	SA In	Input	Speaker amplifier input (ac coupled).
18	20	E Out	Output	Expander output.
19	21	$\mathrm{V}_{\text {CC }}$ Audio	Supply	$\mathrm{V}_{\text {CC }}$ supply for audio section.
20	22	DA In	Input	Data amplifier input (ac coupled).
21	23	Pre-Amp Out	Output	Pre-amplifier output for connection of pre-amplifier feedback resistor.
22	24	R_{X} Audio In	Input	R_{X} audio input to pre-amplifier (ac coupled).
23	25	Det Out	Output	Audio output from FM detector.
24	26	RSSI	-	Receive signal strength indicator filter capacitor.
N/A	27	N/A	-	Note used.
25	28	Q Coil	-	A quad coil or ceramic discriminator are connected to this pin.
26	29	$\mathrm{V}_{\mathrm{CC}} \mathrm{RF}$	Supply	$\mathrm{V}_{\text {CC }}$ supply for RF receiver section.
$\begin{aligned} & 27 \\ & 28 \end{aligned}$	$\begin{aligned} & 30 \\ & 31 \end{aligned}$	$\begin{aligned} & \mathrm{Lim} \mathrm{C} 2 \\ & \mathrm{Lim} \mathrm{C} 1 \end{aligned}$	-	IF amplifier/limiter capacitor pins.

PIN FUNCTION DESCRIPTION (continued)

$\begin{gathered} \text { 48-TQFP } \\ \text { Pin } \end{gathered}$	$\begin{gathered} \text { 52-QFP } \\ \text { Pin } \end{gathered}$	Symbol	Type	Description
29	32	Lim In	Input	Signal input for IF amplifier/limiter.
30	33	Gnd RF	Gnd	Ground pin for RF section of the IC.
31	34	Mix 2 Out	Output	Second mixer output.
32	35	Mix 2 In	Input	Second mixer input.
33	36	V_{B}	-	Internal half supply analog ground reference.
34	37	Mix ${ }_{1}$ Out	Output	First mixer output.
35	38	Mix ${ }_{1} \mathrm{In}_{2}$	Input	Negative polarity first mixer input.
36	39	Mix ${ }_{1} \mathrm{In}_{1}$	Input	Positive polarity first mixer input.
$\begin{aligned} & 37 \\ & 38 \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	$\mathrm{LO}_{1} \mathrm{In}$ LO 1 Out	-	Tank elements for 1st LO multivibrator oscillator are connected to these pins.
39	42	$\mathrm{V}_{\text {cap }} \mathrm{Ctrl}$	-	1st LO varactor control pin.
40	43	Gnd Audio	Gnd	Ground for audio section of the IC.
41	44	$\mathrm{T}_{\mathrm{X}} \mathrm{In}$	Input	T_{X} path input to Microphone Amplifier (ac coupled).
42	45	Amp Out	Output	Microphone amplifier output.
43	46	C In	Input	Compressor input (ac coupled).
44	47	C Cap	-	Compressor rectifier filter capacitor pin. Connect capacitor to V_{CC}.
45	48	Lim Out	Output	T_{X} path limiter output.
46	49	Spl Amp In	Input	Splatter amplifier input (ac coupled).
47	50	TX Out	Output	T_{X} path audio output.
48	51	Ref	Input	Reference voltage input for low battery detect.
N/A	52	N/A	-	Not used.

Power Supply Voltage

This circuit is used in a cordless telephone handset and base unit. The handset is battery powered and can operate on two ro three NiCad cells or on 5.0 V power.

PLL Frequency Synthesizer General Description

Figure 8 shows a simplified block diagram of the programmable universal dual phase locked loop (PLL). This dual PLL is fully programmable thorugh the MCU serial interface and supports most country channel frequencies including USA (25 ch), France, Spain, Australia, Korea, New Zealand, U.K., Netherlands and China (see channel frequency tables in Appendix A).

The 2nd local oscillator and reference divider provide the reference frequency for the R_{X} and T_{X} PLL loops. The
programmed divider value for the reference divider is selected based on the crystal frequency and the desired R_{X} and T_{X} reference frequency values. Additional divide by 25 and divide by 4 blocks are provided to allow for generation of the 1.0 kHz and 6.25 kHz reference frequencies required for the U.K. The 14-bit T_{X} counter is programmed for the desired transmit channel frequency. The 14-bit R_{X} counter is programmed for the desired first local oscillator frequency. All counters power up in the proper default state for USA channel \#6 and for a 10.24 MHz reference frequency crystal. Internal fixed capacitors can be connected to the tank circuit of the 1st LO through microprocessor control to extend the sensitivity of the 1st LO for U.S. 25 channel operation.

Figure 8. Dual PLL Simplified Block Diagram

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Condition	Measure Pin	Symbol	Min	Max	Unit

PLL PIN DC

Input Voltage Low	-	Data Clk EN Hardware Int.	VIL	-	0.3	V
Input Voltage High	-	Data Clk EN	V_{IH}	"PLL $\mathrm{V}_{\text {ref }}$ " 0.3	"VCC Audio"	V
Input Current Low	$\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}$	Data Clk EN	IIL	-5.0	-	$\mu \mathrm{A}$
Input Current High	$\mathrm{V}_{\text {in }}=\left(\mathrm{V}_{\mathrm{CC}}\right.$ Audio $)-0.3$	Data Clk EN	1 IH	-	5.0	$\mu \mathrm{A}$
Hysteresis Voltage	-	Data Clk EN	$V_{\text {hys }}$	1.0	-	V
Output Current High	-	$\begin{aligned} & \mathrm{R}_{\mathrm{x}} \mathrm{PD} \\ & \mathrm{~T}_{\mathrm{x}} \mathrm{PD} \end{aligned}$	${ }^{\mathrm{I} O H}$	-	-0.7	mA
Output Current Low	-	$\begin{aligned} & \mathrm{R}_{\mathrm{x}} \mathrm{PD} \\ & \mathrm{~T}_{\mathrm{x}} \mathrm{PD} \end{aligned}$	IOL	0.7	-	mA
Output Voltage Low	$\mathrm{I}_{\mathrm{IL}}=0.7 \mathrm{~mA}$	$\begin{aligned} & \mathrm{R}_{\mathrm{x}} \mathrm{PD} \\ & \mathrm{~T}_{\mathrm{x}} \mathrm{PD} \end{aligned}$	V OL	-	$\left(\mathrm{PLL} \mathrm{V}_{\text {ref }}\right)^{*} 0.2$	V
Output Voltage High	$1 \mathrm{H}=-0.7 \mathrm{~mA}$	$\begin{aligned} & \mathrm{R}_{\mathrm{x}} \mathrm{PD} \\ & \mathrm{~T}_{\mathrm{x}} \mathrm{PD} \end{aligned}$	VOH	$\left(\mathrm{PLL} \mathrm{V}_{\text {ref }}\right)^{*} 0.8$	-	V
Tri-State Leakage Current	$\mathrm{V}=1.2 \mathrm{~V}$	$\begin{aligned} & \mathrm{R}_{\mathrm{x}} \mathrm{PD} \\ & \mathrm{~T}_{\mathrm{x}} \mathrm{PD} \end{aligned}$	IOZ	-50	50	nA
Input Capacitance	-	Data Clk EN	$\mathrm{C}_{\text {in }}$	-	8.0	pF
Output Capacitance	-	$\begin{aligned} & \mathrm{R}_{\mathrm{x}} \mathrm{PD} \\ & \mathrm{~T}_{\mathrm{x}} \mathrm{PD} \end{aligned}$	Cout	-	8.0	pF

ELECTRICAL CHARACTERISTICS (continued) $\left(\mathrm{V}_{\mathrm{CC}}=2.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Characteristic	Condition	Measure Pin	Symbol	Min	Max	Unit

PLL PIN INTERFACE

EN to Clk Setup Time	-	EN, CIk	$\mathrm{t}_{\text {suEC }}$	200	-	ns
Data to CIk Setup Time	-	Data, Clk	$\mathrm{t}_{\text {suDC }}$	100	-	ns
Hold Time	-	Data, Clk	t_{h}	90	-	ns
Recovery Time	-	EN, CIk	$\mathrm{t}_{\text {rec }}$	90	-	ns
Input Pulse Width	-	EN, Clk	t_{w}	100	-	ns
Input Rise and Fall Time	-	Data Clk EN	$\mathrm{t}_{\mathrm{r}, \mathrm{tf}}$	-	-	9.0

PLL LOOP

Characteristic	Condition	Measure Pin	Symbol	Min	Max	Unit
2nd LO Frequency	-	$\mathrm{LO}_{2} \mathrm{In}$ LO_{2} Out	f_{LO}	-	12	MHz
" $\mathrm{T}_{\mathrm{x}} \mathrm{VCO}$ " Input Frequency	$\mathrm{V}_{\mathrm{in}}=200 \mathrm{mV}_{\mathrm{pp}}$	$\mathrm{T}_{\mathrm{x}} \mathrm{VCO}$	$\mathrm{f}_{\mathrm{txmax}}$	-	80	MHz

PLL I/O Pin Specifications

The 2nd LO, R_{X} and T_{X} PLL's and MPU serial interface are normally powered by the internal voltage regulator at the "PLL $V_{\text {ref" }}$ pin. The "PLL $V_{\text {ref" }}$ pin is the output of a voltage regulator which is powered from the "VCC Audio" power supply pin. Therefore, the maximum input and output levels for most PLL I/O pins ($\mathrm{LO}_{2} \mathrm{In}, \mathrm{LO}_{2}$ Out, $\mathrm{R}_{\mathrm{X}} \mathrm{PD}, \mathrm{T}_{\mathrm{X}} \mathrm{PD}, \mathrm{T}_{\mathrm{X}}$ VCO) is the regulated voltage at the "PLL $\mathrm{V}_{\text {ref" }}$ pin. The ESD protection diodes on these pins are also connected to "PLL Vref". Internal level shift buffers are provided for the pins (Data, Clk, EN, Clk Out) which connect directly to the microprocessor. The maximum input and output levels for these pins is V_{CC}. Figure 9 shows a simplified schematic of the PLL I/O pins.

Figure 9. PLL I/O Pin Simplified Schematics

$\mathrm{LO}_{2} \mathrm{In}, \mathrm{LO}_{2}$ Out, $R_{x} P D, T_{x} P D$ and TXVCO Pins

Microprocessor Serial Interface

The "Data", "Clk", and "EN" pins provide an MPU serial interface for programming the reference counters, the transmit and receive channel divider counter and various control functions. The "Data" and "Clk" pins are used to load data into the shift register. Figure 10 shows "Data" and "Clk" pin timing. Data is clocked on positive clock transitions.

Figure 10. Data and Clock Timing Requirement

After data is loaded into the shift register, the data is latched into the appropriate latch register using the "EN" pin. This is done in two steps. First, an 8-bit address is loaded into the shift register and latched into the 8-bit address latch register. Then, up to 16-bits of data is loaded into the shift register and latched into the data latch register specified by the address that was previously loaded. Figure 11 shows the timing required on the EN pin. Latching occurs on the negative EN transition.

Figure 11. Enable Timing Requirement

The state of the EN pin when clocking data into the shift register determines whether the data is latched into the address register or a data register. Figure 12 shows the address and data programming diagrams. In the data programming mode, there must not be any clock transitions when "EN" is high. The clock can be in a high state (default high) or a low state (default low) but must not have any transitions during the "EN" high state. The convention in these figures is that latch bits to the left are loaded into the shift register first.

Figure 12. Microprocessor Interface Programming Mode Diagrams

The MPU serial interface is fully operational within $100 \mu \mathrm{~s}$ after the power supply has reached its minimum level during power-up (See Figure 13). The MPU Interface shift registers and data latches are operational in all four power saving modes; Inactive, Standby, R_{X}, and Active Modes. Data can be loaded into the shift registers and latched into the latch registers in any of the operating modes.

Figure 13. Microprocessor Serial Interface Power-Up Delay

Status Out

This is a digital output which indicates whether the latch registers have been reset to their power-up default values. Latch power-up default values are given in Figure 32. If there is a power glitch or ESD event which causes the latch registers to be reset to their default values, the "Status Out" pin will indicate this to the MPU so it can reload the correct information into the latch registers.

Figure 14. Status Out Operation

Status Latch Register Bits	Status Out Logic Level
Latch bits not at power-up default value	0
Latch bits at power-up default value	1

Data Registers

Figure 15 shows the data latch registers and addresses which are used to select each of these registers. Latch bits to the left (MSB) are loaded into the shift register first. The LSB bit must always be the last bit loaded into the shift register. "Don't care" bits can be loaded into the shift register first if 8-bit bytes of data are loaded.

Figure 15. Microprocessor Interface Data Latch Registers

6. (00000110)
7. (00000111)

Reference Frequency Selection

The " $\mathrm{LO}_{2} \mathrm{In}$ " and " LO_{2} Out" pins form a reference oscillator when connected to an external parallel-resonant crystal. The reference oscillator is also the second local oscillator for the RF Receiver. Figure 16 shows the relationship between different crystal frequencies and reference frequencies for cordless phone applications in various countries.

Figure 16. Reference Frequency and Reference Divider Values

Crystal Frequency	Reference Divider Value	U.K. Base/ Handset Divider	Reference Frequency
10.24 MHz	2048	1	5.0 kHz
10.24 MHz	1024	4	2.5 kHz
11.15 MHz	2230	1	5.0 kHz
12.00 MHz	2400	1	5.0 kHz
11.15 MHz	1784	1	6.25 kHz
11.15 MHz	446	4	6.25 kHz
11.15 MHz	446	25	1.0 kHz

Reference Counter

Figure 17 shows how the reference frequencies for the R_{X} and T_{X} loops are generated. All countries except U.K. require that the T_{X} and R_{X} reference frequencies be identical. In this case, set "U.K. Base Select" and "U.K. Handset Select" bits to " 0 ". Then the fixed divider is set to " 1 " and the T_{X} and R_{X} reference frequencies will be equal to the crystal oscillator frequency divided by the programmable reference counter value. The U.K. is a special case which requires a different reference frequency value fo T_{X} and R_{X}.

For U.K. base operation, set "U.K. Base Select" to "1". For U.K. handset operation, set "U.K. Handset Select" to "1". The Netherlands is also a special case since a 2.5 kHz reference frequency is used for both the T_{X} and R_{X} reference and the total divider value required is 4096 which is larger than the maximum divide value available from the 12-bit reference divider (4095). In this case, set "U.K. Base Select" to "1" and set "U.K. Handset Select" to "1". This will give a fixed divide by 4 for both the T_{X} and R_{X} reference. Then set the reference divider to 1024 to get a total divider of 4096.

Mode Control Register

Power saving modes, mutes, disables, volume control, and microprocessor clock output frequency are all set by the Control Register. Operation of the Control Register is explained in Figures 18 through 25.

Figure 17. Reference Register Programming Mode

U.K. Handset Select	U.K. Base Select	T_{X} Divider Value	R_{X} Divider Value	Application
0	0	1	1	All but U.K. and Netherlands
0	1	25	4	U.K. Base Set
1	0	4	25	U.K. Hand Set
1	1	4	4	Netherlands Base and Hand Set

14-Bit Reference Counter Latch
Figure 18. Control Register Bits

Figure 19. Mute and Disable Control Bit Descriptions

ALC Disable	1	Automatic Level Control Disabled
	0	Normal Operation
Limiter Disable	1	Limiter Disabled
	0	Normal Operation
Clock Disable	1	MPU Clock Output Disabled
	0	Normal Operation
T_{X} Mute	1	Transmit Channel Muted
	0	Normal Operation
RXX Mute	1	Receive Channel Muted
	0	Normal Operation
SP Mute	1	Speaker Amp Muted
	0	Normal Operation

Power Saving Operating Modes

When the MC13109 is used in a handset, it is important to conserve power in order to prolong battery life. There are five modes of operation; Active, R_{X}, Standby, Interrupt and Inactive. In Active Mode, all circuit blocks are powered. In R_{X} mode, all circuitry is powered down exept for those circuit
sections needed to receive a transmission from the base. In the Standby and Interrupt Modes, all circuitry is powered down except for the circuitry needed to provide the clock output for the microprocessor. In Inactive Mode, all circuitry is powered down except the MPU interface. Latch memory is maintained in all modes. Figure 20 shows the control register bit values for selection of each power saving mode and Figure 21 show the circuit blocks which are powered in each of these operating mode.

Figure 20. Power Saving Mode Selection

Stdby Mode Bit	$\mathbf{R}_{\mathbf{X}}$ Mode Bit	"CD Out/Hardware Interrupt" Pin	Power Saving Mode
0	0	X	Active
0	1	X	R_{X}
1	0	X	Standby
1	1	1 or High Impedance	Inactive
1	1	0	Inactive

Figure 21. Circuit Blocks Powered During Power Saving Modes

Circuit Blocks	Active	$\mathrm{R}_{\mathbf{X}}$	Standby	Inactive
"PLL V ref" Regulated Voltage	X	X	X^{1}	X^{1}
MPU Interface	X	X	X	X
2nd LO Oscillator	X	X	X	
MPU Clock Output	X	X	X	
RF Receiver	X	X		
1st LO VCO	X	X		
R ${ }_{\text {PLL }}$	X	X		
Carrier Detect	X	X		
Data Amp	X	X		
Low Battery Detect	X	X		
T_{x} PLL	X			
R_{X} Audio Path	X			
T_{X} Audio Path	X			

NOTE: 1. In Standby and Inactive Modes, "PLL $\mathrm{V}_{\text {ref }}$ " remains powered but is not regulated. It will fluctuate with V_{CC}.

Inactive Mode Operation and Hardware Interrupt

In some handset applications it may be desirable to power down all circuitry including the microprocessor (MPU). First put the MC13109 into the Inactive mode, which turns off the MPU Clock Output (see Figure 22), and then disable the microprocessor. In order to give the MPU adequate time to power down, the MPU Clock output remains active for a minimum of one reference counter cycle (about $200 \mu \mathrm{~s}$) after the command is given to switch into the "Inactive" mode. An external timing circuit should be used to initiate the turn-on sequence. The "CD Out" pin has a dual function. In the Active and R_{X} modes it performs the carrier detect function. In the

Standby and Inactive modes the carrier detect circuit is disabled and the "CD Out" pin is in a "High" state due to the external pull-up resistor. In the Inactive mode the "CD Out" pin is the input for the hardware interrupt function. When the "CD Out" pin is pulled "low" by the external timing circuit, the MC13109 swtiches from the Inactive to the Interrupt mode thereby turning on the MPU Clock Output. The MPU can then resume control of the combo IC. The "CD Out" pin must remain low until the MPU changes the operating mode from Interrupt to Standby, Active or R_{X} modes.

Figure 22. Hardware Interrupt Operation

"Clk Out" Divider Programming

The "Clk Out" pin is derived from the 2nd local oscillator and can be used to drive a microprocessor, thereby reducing the number of crystals required. Figure 23 shows the relationship between the crystal frequency and the clock output for different divider values. Figure 24 shows the "Clk Out" register bit values.

Figure 23. Clock Output Values

Crystal Frequency	Clock Output Divider			
	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{5}$	$\mathbf{1 0}$
10.24 MHz	5.120 MHz	3.413 MHz	2.560 MHz	2.048 MHz
11.15 MHz	5.575 MHz	3.717 MHz	2.788 MHz	2.230 MHz
12.00 MHz	6.000 MHz	4.000 MHz	3.000 MHz	2.400 MHz

Figure 24. Clock Output Divider

Clk Out Bit \#1	Clk Out Bit \#0	Clk Out Divider Value
0	0	2
0	1	3
1	0	5
1	1	10

MPU "CIk Out" Power-Up Default Divider Value

The power-up default divider value is "divide by 10 ". This provides an MPU clock of about 1.0 MHz after initial power-up. The reason for choosing this relatively low clock frequency after intial power-up is that some microprocessors that operate down to a 2.0 V power supply have a maximum clock frequency fo 1.0 MHz . After initial power-up, the MPU can change the clock divider value to set the clock to the desired operating frequency. Special care has been taken in the design of the clock divider to ensure that the transition between one clock divider value and another is "smooth" (i.e., there will be no narrow clock pulses to disturb the MPU).

MPU "Clk Out" Radiated Noise on Circuit Board

The clock line running between the MC13109 and the microprocessor has the potential to radiate noise which can cause problems in the system especially if the clock is a square wave digital signal with large high frequency harmonics. In order to minimize radiated noise, a $1.0 \mathrm{k} \Omega$ resistor is included on-chip in-series with the "Clk Out" output driver. A small capacitor can be connected to the "Clk Out" line on the PCB to form a single pole low pass filter. This filter will significantly reduce noise radiated from the "Clk Out" line.

Volume Control

The volume control can be programmed in 2.0 dB gain steps from -14 dB to +16 dB . The power-up default value is 0 dB .

Figure 25. Volume Control

Volume Control Bit \#3	Volume Control Bit \#2	Volume Control Bit \#1	Volume Control Bit \#0	Volume Control \#	Gain/Attenuation Amount
0	0	0	0	0	$-14 \mathrm{~dB}$
0	0	0	1	1	-12 dB
0	0	1	0	2	-10 dB
0	0	1	1	3	-8.0 dB
0	1	0	0	4	-6.0 dB
0	1	0	1	5	$-4.0 \mathrm{~dB}$
0	1	1	0	6	$-2.0 \mathrm{~dB}$
0	1	1	1	7	0 dB
1	0	0	0	8	2.0 dB
1	0	0	1	9	4.0 dB
1	0	1	0	10	6.0 dB
1	0	1	1	11	8.0 dB
1	1	0	0	12	10 dB
1	1	0	1	13	12 dB
1	1	1	0	14	14 dB
1	1	1	1	15	16 dB

Gain Control Register

The gain control register contains bits which control the Carrier Detect threshold. Operation of these latch bits are explained in Figures 26 and 27.

Figure 26. Gain Control Latch Bits

MC13109

Carrier Detect Threshold Programming

Th "CD Out" pin will give an indication to the microprocessor if a carier signal is present on the selected channel. The nominal value and tolerance of the carrier detect threshold is given in the carrier detect specification
section of this document. If a different carrier detect threshold value is desired, it can be set through the MPU interface as shown in Figure 27 below.

Figure 27. Carrier Detect Threshold Control

$\begin{gathered} \text { CD } \\ \text { Bit \#4 } \end{gathered}$	$\begin{gathered} \text { CD } \\ \text { Bit \#3 } \end{gathered}$	$\begin{gathered} \text { CD } \\ \text { Bit \#2 } \end{gathered}$	$\begin{gathered} \text { CD } \\ \text { Bit \#1 } \end{gathered}$	$\begin{gathered} \text { CD } \\ \text { Bit \#0 } \end{gathered}$	CD Control \#	Carrier Detect Threshold
0	0	0	0	0	0	-20 dB
0	0	0	0	1	1	-19 dB
0	0	0	1	0	2	$-18 \mathrm{~dB}$
0	0	0	1	1	3	$-17 \mathrm{~dB}$
0	0	1	0	0	4	-16 dB
0	0	1	0	1	5	-15 dB
0	0	1	1	0	6	$-14 \mathrm{~dB}$
0	0	1	1	1	7	$-13 \mathrm{~dB}$
0	1	0	0	0	8	-12 dB
0	1	0	0	1	9	-11 dB
0	1	0	1	0	10	$-10 \mathrm{~dB}$
0	1	0	1	1	11	$-9.0 \mathrm{~dB}$
0	1	1	0	0	12	-8.0 dB
0	1	1	0	1	13	$-7.0 \mathrm{~dB}$
0	1	1	1	0	14	-6.0 dB
0	1	1	1	1	15	$-5.0 \mathrm{~dB}$
1	0	0	0	0	16	$-4.0 \mathrm{~dB}$
1	0	0	0	1	17	$-3.0 \mathrm{~dB}$
1	0	0	1	0	18	$-2.0 \mathrm{~dB}$
1	0	0	1	1	19	$-1.0 \mathrm{~dB}$
1	0	1	0	0	20	0 dB
1	0	1	0	1	21	1.0 dB
1	0	1	1	0	22	2.0 dB
1	0	1	1	1	23	3.0 dB
1	1	0	0	0	24	4.0 dB
1	1	0	0	1	25	5.0 dB
1	1	0	1	0	26	6.0 dB
1	1	0	1	1	27	7.0 dB
1	1	1	0	0	28	8.0 dB
1	1	1	0	1	29	9.0 dB
1	1	1	1	0	30	10 dB
1	1	1	1	1	31	11 dB

Auxiliary Register

The auxiliary register contains a 3-bit 1st LO Capacitor Selection latch and a 4-bit Test Mode latch. Operation of these latch bits are explained in Figures 28, 29 and 30.

Figure 28. Auxiliary Register Latch Bits

First Local Oscillator Capacitor Selection for 25 Channel U.S. Operation

There is a very large frequency difference between the minimum and maximum channel frequencies in the proposed 25 Channel U.S. standard. The sensitivity of the 1 st LO is not large enough to accommodate this large frequency variation. Fixed capacitors can be connected across the 1st LO tank circuit to change the 1st LO sensitivity. Internal switches and capacitors are provided to enable microprocessor control over internal fixed capacitor values. Figure 29 shows the
schematic of the 1st LO tank circuit. Figure 30 shows the latch control bit values.

The internal varactor temperature coefficient is $1800 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ $\left(\mathrm{CO}=8.9 \mathrm{pF}\right.$ at $25^{\circ} \mathrm{C}, \mathrm{V}_{\text {cap }}$ control voltage $=1.2 \mathrm{~V}$, $\mathrm{F}_{\text {req }}=$ 36 MHz). Customer is suggested to use a negative temperature coefficient capacitor in 1st LO tank circuit when the whole operating temperature range of -40 to $+85^{\circ} \mathrm{C}$ is considered.

Figure 29. 1st LO Schematic

Figure 30. 1st LO Capacitor Select for U.S. 25 Channels

1st LO Cap. Bit 2	1st LO Cap. Bit 1	1st LO Cap Bit 0	1st LO Cap. Select	U.S. Base Channels	U.S. Handset Channels	Internal Cap. Value (Excluding Varactor)	Varactor Value over $\mathbf{0 . 5}$ to 2.2 V Range	External Capacitor Value	External Inductor Value 0$\| 0$

Figure 31. Test Mode Description

TM \#	TM 3	TM 2	TM 1	TM 0	Counter Under Test or Test Mode Option	" $\mathrm{T}_{\mathrm{x}} \mathrm{V}_{\mathrm{CO}}$ " Input Signal	"Clk Out" Output Expected
0	0	0	0	0	Normal Operation	>200 mV ${ }_{\text {pp }}$	-
1	0	0	0	1	R_{X} Counter, upper 6	0 to 2.2 V	Input Frequency/64
2	0	0	1	0	R_{X} Counter, lower 8	0 to 2.2 V	See Note Below
3	0	0	1	1	R_{X} Prescaler	0 to 2.2 V	Input Frequency/4
4	0	1	0	0	T_{X} Counter, upper 6	0 to 2.2 V	Input Frequency/64
5	0	1	0	1	T_{X} Counter, lower 8	0 to 2.2 V	See Note Below
6	0	1	1	0	T_{X} Prescaler	>200 mV ${ }_{\text {pp }}$	Input Frequency/4
7	0	1	1	1	Reference Counter	0 to 2.2 V	Input Frequency/Reference Counter Value
8	1	0	0	0	Divide by 4, 25	0 to 2.2 V	Input Frequency/100
9	1	0	0	1	AGC Gain $=10$ Option	N/A	-
10	1	0	1	0	AGC Gain $=25$ Option	N/A	-

NOTE: To determine the correct output, look at the lower 8 bits in the R_{X} or T_{X} register (Divisor ($7 ; 0$). If the value of the divisor is >16, then the output divisor value is Divisor ($7 ; 2$) (the upper 6 bits of the divisor). If Divisor $(7 ; 0)<16$ and Divisor $(3 ; 2)>=2$, then output divisor value is Divisor $(3 ; 2)$ (bits 2 and 3 of the divisor). If Divisor $(7 ; 0)<16$ and Divisor $(3 ; 2)<2$, then output divisor value is (Divisor $(3 ; 2)+60)$.

Test Modes

Test Mode Control latch bits enable independent testing of internal counters and set AGC Gain Options. In test mode, the " $\mathrm{T}_{\mathrm{X}} \mathrm{VCO}$ " input pin is multiplexed to the input of the counter under test and the output of the counter under test is multiplexed to the "Clk Out" output pin so that each counter can be individually tested. Make sure test mode bits are set to " 0 " for normal operation. Test mode operation is described in Figure 31. During normal operation and when testing the T_{X} Prescaler, the " T_{X} VCO" input can be a minimum of $200 \mathrm{mV}_{\mathrm{pp}}$ at 80 MHz and should be ac coupled. For other test modes, input signals should be standard logic levels of 0 to 2.2 V and a maximum frequency of 16 MHz .

Power-Up Defaults for Control and Counter Registers

When the IC is first powered up, all latch registers are initialized to a defined state. The MC13109 is initially placed in the Rx mode with all mutes active and nothing disabled. The reference counter is set to generate a 5.0 kHz reference frequency from a 10.24 MHz crystal. The MPU clock output divider is set to 10 to give the minimum clock output frequency. The T_{X} and R_{X} latch registers are set for USA Channel Frequency \#21. Figure 32 shows the initial power-up states for all latch registers.

Figure 32. Latch Register Power-Up Defaults

Register	Count	MSB								LSB							
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
T_{x}	9966	-	-	1	0	0	1	1	0	1	1	1	0	1	1	1	0
R_{X}	7215	-	-	0	1	1	1	0	0	0	0	1	0	1	1	1	1
Ref	2048	-	-	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Mode	N/A	-	0	0	0	0	1	1	0	1	1	1	0	1	1	1	1
Gain	N/A	-	-	-	-	-	-	-	-	-	-	-	1	0	1	0	0
TM	N/A	-	-	-	-	-	-	-	-	-	0	0	0	0	0	0	0

Figure 33. ICC versus VCC at Active Mode

Figure 35. ICC versus VCC at Standby Mode

Figure 37. RF $_{\text {in }}$ versus $\mathrm{AF}_{\text {out }}, \mathrm{N}+\mathrm{D}, \mathrm{N}, \mathrm{AMR}$

Figure 34. ICC versus VCC at Receive Mode

Figure 36. ICC versus VCC at Inactive Mode

Figure 38. Recovered Audio/THD versus fDEV

Figure 39. RSSI Output versus RFin $_{\text {in }}$

Figure 40. First Mixer Third Order Intercept Performance

APPENDIX A - MEASUREMENT OF COMPANDOR ATTACK/DECAY TIME

This measurement definition is based on EIA/CCITT recommendations.

Compressor Attack Time

For a 12 dB step up at the input, attack time is defined as the time for the output to settle to 1.5 X of the final steady state value.

Compressor Decay Time

For a 12 dB step down at the input, decay time is defined as the time for the input to settle to 0.75 X of the final steady state value.

0 mV

Expander Attack

For a 6.0 dB step up at the input, attack time is defined as the time for the output to settle to 0.57 X of the final steady state value.

Expander Decay

For a 6.0 dB step down at the input, decay time is defined as the time for the output to settle to 1.5 X of the final steady state value.

0 mV \qquad

Advance Information

Universal Cordless Telephone Subsystem IC

The MC13110A/B and MC13111A/B integrates several of the functions required for a cordless telephone into a single integrated circuit. This significantly reduces component count, board space requirements, external adjustments, and lowers overall costs. It is designed for use in both the handset and the base.

- MC13110A and MC13111A: Fully Programmable in all Power Modes
- MC13110B and MC13111B: MPU Clk Out and Second Local Oscillator are "Always On". There is No Inactive Mode
- Dual Conversion FM Receiver
- Complete Dual Conversion Receiver - Antenna Input to Audio Out 80 MHz Maximum Carrier Frequency
- RSSI Output
- Carrier Detect Output with Programmable Threshold
- Comparator for Data Recovery
- Operates with Either a Quad Coil or Ceramic Discriminator
- Compander
- Expander Includes Mute, Digital Volume Control, Speaker Driver, Programmable Low Pass Filter, and Gain Block
- Compressor Includes Mute, Programmable Low Pass Filter, Limiter, and Gain Block
- MC13110A/B only: Frequency Inversion Scrambler
- Function Controlled via MPU Interface
- Programmable Carrier Modulation Frequency
- Dual Universal Programmable PLL
- Supports New 25 Channel U.S. Standard with No External Switches
- Universal Design for Domestic and Foreign Cordless Telephone Standards
- Digitally Controlled Via a Serial Interface Port
- Receive Side Includes 1st LO VCO, Phase Detector, and 14-Bit Programmable Counter and 2nd LO with 12-Bit Counter
- Transmit Section Contains Phase Detector and 14-Bit Counter
- MPU Clock Outputs Eliminates Need for MPU Crystal
- Low Battery Detect
- Provides Two Levels of Monitoring with Separate Outputs
- Separate, Adjustable Trip Points
- 2.7 to 5.5 V Operation ($15 \mu \mathrm{~A}$ Current Consumption in Inactive Mode)
- AN1575: Refer to this Application Note for a List of the "Worldwide Cordless Telephone Frequencies

MC13110A/B
MC13111A/B

UNIVERSAL NARROWBAND FM RECEIVER INTEGRATED CIRCUIT

ORDERING INFORMATION

Device	Tested Operating Temperature Range	Package
MC13110AFB	$\mathrm{T} A=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	QFP-52
MC13110AFTA		LQFP-48
MC13110BFB		QFP-52
MC13110BFTA		LQFP-48
MC13111AFB		QFP-52
MC13111AFTA		LQFP-48
MC13111BFB		QFP-52
MC13111BFTA		LQFP-48

PIN CONNECTIONS
QFP-52

MAXIMUM RATINGS

Characteristic	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	-0.5 to +6.0	Vdc
Junction Temperature	T_{J}	-65 to +150	${ }^{\circ} \mathrm{C}$
Maximum Power Dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	70	mW

NOTES: 1. Devices should not be operated at these limits. The "Recommended Operating Conditions" provide for actual device operation.
2. ESD data available upon request.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Voltage	V_{CC}	2.7	3.6	5.5	Vdc
Operating Ambient Temperature	T_{A}	-40	-	85	${ }^{\circ} \mathrm{C}$
Input Voltage Low (Data, CIk, EN)	V_{IL}	-	-	0.3	V
Input Voltage High (Data, CIk, EN)	V_{IH}	PLL $\mathrm{V}_{\text {ref }}-$ 0.3	-	-	V
Bandgap Reference Voltage	V_{B}	-	1.5	-	V

NOTE: 3. All limits are not necessarily functional concurrently.

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, unless otherwise specified, IP3 $=0$;
Test Circuit Figure 1.)

Characteristic	Symbol	Figure	Min	Typ	Max	Unit
Static Current		1				
Active Mode	ACT ICC		5.5	8.5	10.5	mA
Receive Mode	RX ICC		3.1	4.1	5.3	mA
Standby Mode	STD ICC		-	465	560	$\mu \mathrm{~A}$
Inactive Mode [Note 4]	INACT ICC		-	15	30	$\mu \mathrm{~A}$
Current Increase When IP3 =1 (Active and Receive Modes)	IIP3	1	-	1.4	1.8	mA

NOTE: 4. MC13110B/MC13111B versions have no inactive mode.

MC13110A/B MC13111A/B

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$, Active or R_{X} Mode, unless otherwise specified; Test Circuit Figure 1.)

Characteristic	Figure	Input Pin	Measure Pin	Symbol	Min	Typ	Max	Unit

FM RECEIVER (fRF $=46.77 \mathrm{MHz}$ [USA Ch 21], $\mathrm{f}_{\mathrm{dev}}= \pm 3.0 \mathrm{kHz}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}, \mathrm{V}_{\text {cap ctrl }}=1.2 \mathrm{~V}$)

Input Sensitivity (for 12 dB SINAD at Det Out Using C-Message Weighting Filter) 50Ω Termination, Generator Referred	68, 69	$\begin{gathered} \operatorname{Mix}_{1} \\ \ln / n_{1} / \ln _{2} \end{gathered}$	Det Out	$\mathrm{V}_{\text {SIN }}$	-	$\begin{gathered} 2.2 \\ -100 \end{gathered}$	-	$\mu \mathrm{Vrms}$ dBm
Single-Ended, Matched Input, Generator Referred					-	$\begin{gathered} \hline 0.4 \\ -115 \end{gathered}$	-	
Differential, Matched Input, Generator Referred					-	$\begin{gathered} 0.4 \\ -115 \end{gathered}$	-	
First and Second Mixer Voltage Gain Total ($\mathrm{V}_{\text {in }}=1.0 \mathrm{mVrms}$, with CF_{1} and CF_{2} Load)	1	$\begin{gathered} \operatorname{Mix}_{1} \\ \ln 11 \text { or } \mathrm{In}_{2} \end{gathered}$	Mix 2 Out	M $X_{\text {gain }}$	24	29	-	dB
Isolation of First Mixer Output and Second Mixer Input ($\mathrm{V}_{\text {in }}=1.0 \mathrm{mVrms}$, with CFI Removed)	-	$\begin{gathered} \text { Mix }_{1} \\ \ln _{1} \text { or } \ln _{2} \end{gathered}$	$M_{1 \times 2} \mathrm{In}$	Mix-Iso	-	60	-	dB
Total Harmonic Distortion ($\mathrm{V}_{\mathrm{in}}=3.16 \mathrm{mVrms}$)	1	$\begin{gathered} \operatorname{Mix}_{1} \\ \ln _{1} \text { or } \ln _{2} \end{gathered}$	Det Out	THD	-	1.4	2.0	\%
Recovered Audio ($\mathrm{V}_{\text {in }}=3.16 \mathrm{mVrms}$)	1	$\begin{gathered} \text { Mix }_{1} \\ \ln _{1} \text { or } \ln _{2} \end{gathered}$	Det Out	AFO	80	112	150	mVrms
AM Rejection Ratio ($\mathrm{V}_{\text {in }}=3.16 \mathrm{mVrms}, 30 \% \mathrm{AM}$, @ 1.0 kHz)	1	$\begin{gathered} \text { Mix }_{1} \\ \ln _{1} \text { or } \ln _{2} \end{gathered}$	Det Out	AMR	30	48	-	dB
Signal to Noise Ratio ($\mathrm{V}_{\mathrm{in}}=3.16 \mathrm{mVrms}$, No Modulation)	-	$\begin{gathered} \operatorname{Mix}_{1} \\ \ln 11 \text { or } \mathrm{In}_{2} \end{gathered}$	Det Out	SNR	-	48	-	dB

FIRST MIXER (No Modulation, $\mathrm{f}_{\text {in }}=$ USA Ch21, $46.77 \mathrm{MHz}, 50 \Omega$ Termination at Inputs)

Input Impedance Single-Ended	16	-	$\begin{gathered} \operatorname{Mix}_{1} \\ \ln _{1} \text { or } \ln _{2} \end{gathered}$	Rps1 CPS1	-	$\begin{aligned} & 1.6 \\ & 3.7 \end{aligned}$	-	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
Differential	16		$\begin{gathered} \operatorname{Mix}_{1} \\ \ln 1 / \ln _{2} \end{gathered}$	RpD1 CPD1	-	$\begin{aligned} & 1.6 \\ & 1.8 \end{aligned}$	-	
Output Impedance	14	-	Mix ${ }_{1}$ Out	RP1 Out CP1 Out	-	$\begin{aligned} & 300 \\ & 3.7 \end{aligned}$	-	$\begin{aligned} & \Omega \\ & \mathrm{pF} \end{aligned}$
Voltage Conversion Gain ($\mathrm{V}_{\text {in }}=1.0 \mathrm{mVrms}$, with CF_{1} Filter as Load)	17, 18	$\begin{gathered} \text { Mix }_{1} \\ \ln n_{1} \text { or } \mathrm{In}_{2} \end{gathered}$	Mix ${ }_{1}$ Out	MX ${ }_{\text {gain1 }}$	-	12	-	dB
1.0 dB Voltage Compression Level (Input Referred) IP3 Bit Set to 0 IP3 Bit Set to 1	19,21 20,21	$\begin{gathered} \operatorname{Mix}_{1} \\ \ln _{1} \text { or } \ln _{2} \end{gathered}$	Mix ${ }_{1}$ Out	$\begin{aligned} & \mathrm{V}_{\mathrm{O}} \mathrm{Mix}_{1} \mathrm{~dB} \end{aligned}$	-	$\begin{gathered} 20 \\ -21 \\ \hline 56 \\ -12 \end{gathered}$	-	mVrms dBm
Third Order Intercept (Input Referred) [Note 5] IP3 Bit Set to 0 IP3 Bit Set to 1	19,21 20,21	$\begin{gathered} \text { Mix }_{1} \\ \ln n_{1} \text { or } \mathrm{In}_{2} \end{gathered}$	Mix ${ }_{1}$ Out	TOImix1	- - - -	$\begin{gathered} 64 \\ -11 \\ \hline 178 \\ -2.0 \end{gathered}$	-	mVrms dBm
-3.0 dB IF Bandwidth	22	$M i x_{1} \ln _{1}$ or $\ln _{2}$	Mix ${ }_{1}$ Out	$\mathrm{Mix}_{1} \mathrm{BW}$	-	13	-	MHz

NOTE: 5. Third order intercept calculated for input levels 10 dB below 1.0 dB compression point.

MC13110A/B MC13111A/B

ELECTRICAL CHARACTERISTICS (continued) ($\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Active or R_{X} Mode, unless otherwise specified; Test Circuit Figure 1.)

Characteristic	Figure	Input Pin	Measure Pin	Symbol	Min	Typ	Max	Unit

SECOND MIXER (No Modulation, $\mathrm{f}_{\text {in }}=10.7 \mathrm{MHz}, 50 \Omega$ Termination at Inputs)

Input Impedance	24	Mix2 In	Mix2 In	$R_{\text {P2 }}$ In CP2 In		$\begin{aligned} & 2.8 \\ & 3.6 \end{aligned}$	-	$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
Output Impedance	24	-	Mix 2 Out	RP2 Out CP2 Out	-	$\begin{aligned} & 1.5 \\ & 6.1 \end{aligned}$		$\begin{aligned} & \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
Voltage Conversion Gain ($\mathrm{V}_{\mathrm{in}}=1.0 \mathrm{mVrms}$, with CF_{2} Filter as Load)	26, 27	Mix 2 In	Mix 2 Out	M $\mathrm{X}_{\text {gain2 }}$	-	20	-	dB
1.0 dB Voltage Compression Level (Input Referred) IP3 Bit Set 0 IP3 Bit Set 1	$\begin{aligned} & 28,30 \\ & 29,30 \end{aligned}$	Mix 2 In	Mix 2 Out	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{O}} \\ & \mathrm{Mix}_{2} \\ & 1 \mathrm{~dB} \end{aligned}$	-	$\begin{gathered} 32 \\ -17 \\ \hline 45 \\ -14 \end{gathered}$	-	mVrms dBm
Third Order Intercept (Input Referred) [Note 6] IP3 Bit Set 0 IP3 Bit Set 1	$\begin{aligned} & 28,30 \\ & 29,30 \end{aligned}$	Mix 2 In	Mix 2 Out	TOImix2	- - - -	$\begin{array}{r} 136 \\ -4.3 \\ \hline 158 \\ -3.0 \end{array}$	-	mVrms dBm
-3.0 dB IF Bandwidth	31	Mix 2 In	Mix 2 Out	Mix 2 BW	-	2.5	-	MHz

LIMITER/DEMODULATOR ($\mathrm{f}_{\mathrm{in}}=455 \mathrm{kHz}, \mathrm{f}_{\mathrm{dev}}= \pm 3.0 \mathrm{kHz}, \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}$)

Input Impedance	49	Lim In	Lim In	RPLim CPLim	- -	1.5 16	- -	$\mathrm{k} \Omega$ pF
Detector Output Impedance	-	-	Det Out	R_{O}	-	1.1	-	$\mathrm{k} \Omega$
IF-3.0 dB Limiting Sensitivity	1	Lim In	Det Out	IF Sens	-	71	100	$\mu \mathrm{Vrms}$
Demodulator Bandwidth	-	Lim In	Det Out	BW	-	20	-	kHz

RSSI/CARRIER DETECT (No Modulation)

RSSI Output Dynamic Range	56	$M_{1 \times 1} 1 \mathrm{ln}$	RSSI	RSSI	-	80	-	dB
DC Voltage Range	56	Mix ${ }_{1} \mathrm{ln}$	RSSI	DC RSSI	-	$\begin{gathered} 0.2 \text { to } \\ 1.5 \end{gathered}$	-	Vdc
Carrier Detect Threshold CD Threshold Adjust = (10100) (Threshold Relative to Mix 1 In Level)	57	Mix 1 In	CD Out	V_{\top}	-	15	-	$\mu \mathrm{Vrms}$
Hysteresis, CD = (10100) (Threshold Relative to Mix 1 In Level)	57	Mix1 In	CD Out	Hys	-	2.0	-	dB
Output High Voltage $\mathrm{CD}=(00000), \mathrm{RSSI}=0.2 \mathrm{~V}$	1	RSSI	CD Out	V_{OH}	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.1 \end{gathered}$	3.6	-	V
Output Low Voltage $\mathrm{CD}=(11111), \mathrm{RSSI}=0.9 \mathrm{~V}$	1	RSSI	CD Out	V OL	-	0.02	0.4	V
Carrier Detect Threshold Adjustment Range (Programmable through MPU Interface)	126	-	-	V_{T} Range	-	$\begin{gathered} -20 \text { to } \\ 11 \end{gathered}$	-	dB
Carrier Detect Threshold - Number of Programmable Levels	126	-	-	$\mathrm{V}_{\text {Tn }}$	-	32	-	-

NOTE: 6. Third order intercept calculated for input levels 10 dB below 1.0 dB compression point.

MC13110A/B MC13111A/B

ELECTRICAL CHARACTERISTICS (continued) ($\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Active or R_{X} Mode, unless otherwise specified; Test Circuit Figure 1.)

Characteristic	Figure	Input Pin	Measure Pin	Symbol	Min	Typ	Max	Unit

\mathbf{R}_{X} AUDIO PATH (fin $=1.0 \mathrm{kHz}$, Active Mode, scrambler bypassed)

Absolute Gain ($\mathrm{V}_{\text {in }}=-20 \mathrm{dBV}$)	1,72	R_{X} Audio In	SA Out	G	-4.0	0	4.0	dB
Gain Tracking (Referenced to E Out for $\mathrm{V}_{\text {in }}=-20 \mathrm{dBV}$) $\begin{aligned} & \mathrm{V}_{\mathrm{in}}=-30 \mathrm{dBV} \\ & \mathrm{~V}_{\mathrm{in}}=-40 \mathrm{dBV} \end{aligned}$	1,76	E In	E Out	G_{t}	$\begin{aligned} & -21 \\ & -42 \\ & \hline \end{aligned}$	$\begin{aligned} & -20 \\ & -40 \\ & \hline \end{aligned}$	$\begin{aligned} & -19 \\ & -38 \\ & \hline \end{aligned}$	dB
Total Harmonic Distortion ($\mathrm{V}_{\text {in }}=-20 \mathrm{dBV}$)	1,76	R_{X} Audio In	SA Out	THD	-	0.7	1.0	\%
Maximum Input Voltage ($\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$)	76	R_{X} Audio In	-	-	-	-11.5	-	dBV
Maximum Output Voltage (Increase input voltage until output voltage THD $=5.0 \%$, then measure output voltage)	1	E In	E Out	$\mathrm{V}_{\text {Omax }}$	-2.0	0	-	dBV
Input Impedance	-	R_{X} Audio In E In	-	$\mathrm{Z}_{\text {in }}$	-	$\begin{aligned} & 600 \\ & 7.5 \end{aligned}$	-	k Ω
Attack Time $\mathrm{E}_{\text {cap }}=0.5 \mu \mathrm{~F}, \mathrm{R}_{\text {filt }}=40 \mathrm{k} \text { (See Appendix B) }$	-	E In	E Out	$\mathrm{ta}_{\text {a }}$	-	3.0	-	ms
$\begin{aligned} & \text { Release Time } \\ & \mathrm{E}_{\text {cap }}=0.5 \mu \mathrm{~F}, \mathrm{R}_{\text {filt }}=40 \mathrm{k} \text { (See Appendix B) } \end{aligned}$	-	E In	E Out	tr_{r}	-	13.5	-	ms
Compressor to Expander Crosstalk $\left.\mathrm{V}_{\text {in }}=-10 \mathrm{dBV}, \mathrm{V}_{(\mathrm{E}} \mathrm{In}\right)=\mathrm{AC}$ Gnd	1	C In	E Out	C_{\top}	-	-90	-70	dB
$\begin{aligned} & R_{X} \text { Muting (} \Delta \text { Gain) } \\ & V_{\text {in }}=-20 \mathrm{dBV}, \mathrm{R}_{\mathrm{X}} \text { Gain Adj }=(01111) \end{aligned}$	1	R_{X} Audio In	E Out	M_{e}	-	-84	-60	dB
R_{X} High Frequency Corner R_{X} Path, V R_{X} Audio $\mathrm{In}=-20 \mathrm{dBV}$	1	R ${ }_{\text {X }}$ Audio In	Scr Out	$\mathrm{R}_{\mathrm{x}} \mathrm{f}_{\mathrm{ch}}$	3.779	3.879	3.979	kHz
Low Pass Filter Passband Ripple ($\mathrm{V}_{\text {in }}=-20 \mathrm{dBV}$)	1,73	R_{X} Audio In	Scr Out	Ripple	-	0.4	0.6	dB
R_{X} Gain Adjust Range (Programmable through MPU Interface)	125	R_{X} Audio In	Scr Out	$\begin{gathered} \mathrm{R}_{\mathrm{X}} \\ \text { Range } \end{gathered}$	-	$\begin{gathered} -9.0 \text { to } \\ 10 \end{gathered}$	-	dB
R_{X} Gain Adjust Steps - Number of Programmable Levels	125	R ${ }_{\text {X }}$ Audio In	Scr Out	$\mathrm{R}_{\mathrm{x}} \mathrm{n}$	-	20	-	dB
Audio Path Noise, C-Message Weighting (Input AC-Grounded)	70	R_{X} Audio In	$\begin{gathered} \hline \text { Scr Out } \\ \text { E Out } \\ \text { SA Out } \end{gathered}$	EN	-	$\begin{gathered} \hline-85 \\ <-95 \\ <-95 \end{gathered}$	-	dBV
Volume Control Adjust Range	123	E In	E Out	$\mathrm{V}_{\text {CIRange }}$	-	$\begin{gathered} -14 \text { to } \\ 16 \end{gathered}$	-	dB
Volume Control - Number of Programmable Levels	123	E In	E Out	V_{cn}	-	16	-	-

SPEAKER AMP/SP MUTE (Active Mode)

Maximum Output Swing	1,79	SA In	SA Out	$V_{\text {Omax }}$				Vpp
$R_{L}=N o$ Load, $\mathrm{V}_{\text {in }}=3.4 \mathrm{Vpp}$					2.8	3.2	-	
$\mathrm{R}_{\mathrm{L}}=130 \Omega, \mathrm{~V}_{\text {in }}=2.8 \mathrm{Vpp}$				2.0	2.6	-		
$\mathrm{R}_{\mathrm{L}}=620 \Omega, \mathrm{~V}_{\text {in }}=4.0 \mathrm{Vpp}$					-	3.4	-	
Speaker Amp Muting	1	SA In	SA Out	M_{Sp}	-	-92	-60	dB
$\mathrm{~V}_{\text {in }}=-20 \mathrm{dBV}, \mathrm{R}_{\mathrm{L}}=130 \Omega$								

MC13110A/B MC13111A/B

ELECTRICAL CHARACTERISTICS (continued) ($\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Active or R_{X} Mode, unless otherwise specified; Test Circuit Figure 1.)

Characteristic	Figure	Input Pin	Measure Pin	Symbol	Min	Typ	Max	Unit

DATA AMP COMPARATOR

Hysteresis	1	DA In	DA Out	Hys	30	42	50	mV
Threshold Voltage	-	DA In	DA Out	V_{\top}	-	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.7 \end{gathered}$	-	V
Input Impedance	1	-	DA In	Z	200	250	280	k Ω
Output Impedance	-	-	DA Out	Z_{O}	-	100	-	$\mathrm{k} \Omega$
Output High Voltage $\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}, \mathrm{IOH}^{2}=0 \mathrm{~mA}$	1	DA In	DA Out	V_{OH}	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.1 \end{gathered}$	3.6	-	V
Output Low Voltage $\mathrm{V}_{\mathrm{in}}=\mathrm{V}_{\mathrm{CC}}-0.4 \mathrm{~V}, \mathrm{IOL}=0 \mathrm{~mA}$	1	DA In	DA Out	V OL	-	0.1	0.4	V
Maximum Frequency	-	DA In	DA Out	$F_{\text {max }}$	-	10	-	kHz

MIC AMP ($\mathrm{f}_{\mathrm{in}}=1.0 \mathrm{kHz}$, External resistors set to gain of 1, Active Mode)

Open Loop Gain	-	$T_{X} \operatorname{In}$	Amp Out	AVOL	-	100,000	-	V / V
Gain Bandwidth	-	$\mathrm{T}_{\mathrm{X}} \ln$	Amp Out	GBW	-	100	-	kHz
Maximum Output Swing $\left(\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega\right)$	-	T_{X} In	Amp Out	$\mathrm{V}_{\text {Omax }}$	-	3.2	-	Vpp

$\mathrm{T}_{\mathbf{x}}$ AUDIO PATH ($\mathrm{f}_{\mathrm{in}}=1.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{x}}$ Gain $\mathrm{Adj}=(01111$); ALC, Limiter, and Mutes Disabled; Active Mode, scrambler bypassed)

Absolute Gain ($\mathrm{V}_{\text {in }}=-10 \mathrm{dBV}$)	1,83	$\mathrm{T}_{\mathrm{x}} \mathrm{In}$	Tx Out	G	-4.0	0	4.0	dB
$\begin{aligned} & \text { Gain Tracking } \\ & \text { (Referenced to } T_{X} \text { Out for } V_{\text {in }}=-10 \mathrm{dBV} \text {) } \\ & V_{\text {in }}=-30 \mathrm{dBV} \\ & V_{\text {in }}=-40 \mathrm{dBV} \end{aligned}$	1,87	$\mathrm{T}_{\mathrm{X}} \mathrm{ln}$	T_{X} Out	G_{t}	$\begin{aligned} & -11 \\ & -17 \end{aligned}$	$\begin{aligned} & -10 \\ & -15 \end{aligned}$	$\begin{aligned} & -9.0 \\ & -13 \end{aligned}$	dB
Total Harmonic Distortion ($\mathrm{V}_{\text {in }}=-10 \mathrm{dBV}$)	1,87	$\mathrm{T}_{\mathrm{X}} \mathrm{In}$	T_{X} Out	THD	-	0.8	1.8	\%
Maximum Output Voltage (Increase input voltage until output voltage THD $=5.0 \%$, then measure output voltage. T_{X} Gain Adjust $=8 \mathrm{~dB}$)	1	$\mathrm{T}_{\mathrm{X}} \mathrm{ln}$	T_{X} Out	$\mathrm{V}_{\text {Omax }}$	-2.0	0	-	dBV
Input Impedance	-	-	C In	$\mathrm{Z}_{\text {in }}$	-	10	-	k Ω
Attack Time ($\mathrm{C}_{\text {cap }}=0.5 \mu \mathrm{~F}$, $\mathrm{R}_{\text {filt }}=40 \mathrm{k}$ (See Appendix B))	-	C In	T_{X} Out	$\mathrm{ta}_{\text {a }}$	-	3.0	-	ms
Release Time ($\mathrm{C}_{\text {cap }}=0.5 \mu \mathrm{~F}$, $\mathrm{R}_{\text {filt }}=40 \mathrm{k}$ (See Appendix B))	-	C In	T_{X} Out	tr_{r}	-	13.5	-	ms
Expander to Compressor Crosstalk ($\mathrm{V}_{\text {in }}=-20 \mathrm{dBV}$, Speaker Amp No Load, V(C In) = AC Gnd)	1	E In	T_{X} Out	C^{+}	-	-60	-40	dB
T_{X} Muting ($\mathrm{V}_{\text {in }}-10 \mathrm{dBV}$)	1	$\mathrm{T}_{\mathrm{x}} \mathrm{In}$	T_{X} Out	M_{C}	-	-88	-60	dB
ALC Output Level (ALC enabled) $\begin{aligned} & V_{\text {in }}=-10 \mathrm{dBV} \\ & V_{\text {in }}=-2.5 \mathrm{dBV} \end{aligned}$	$\begin{gathered} 1,87, \\ 90 \end{gathered}$	$\mathrm{T}_{\mathrm{X}} \mathrm{In}$	T_{X} Out	$\mathrm{ALC}_{\text {out }}$	$\begin{aligned} & -15 \\ & -13 \end{aligned}$	$\begin{aligned} & -13 \\ & -11 \end{aligned}$	$\begin{aligned} & -8.0 \\ & -6.0 \end{aligned}$	dBV
ALC Slope (ALC enabled) $\begin{aligned} & \mathrm{V}_{\mathrm{in}}=-10 \mathrm{dBv} \\ & \mathrm{~V}_{\text {in }}=-2.5 \mathrm{dBv} \end{aligned}$	1	$\mathrm{T}_{\mathrm{X}} \mathrm{In}$	T_{X} Out	Slope	0.1	0.25	0.4	$\mathrm{dB} / \mathrm{dB}$
ALC Input Dynamic Range	-	C In	T_{X} Out	DR	-	$\begin{gathered} -16 \text { to } \\ -2.5 \end{gathered}$	-	dBV
Limiter Output Level $\left(\mathrm{V}_{\text {in }}=-2.5 \mathrm{dBV}\right.$, Limiter enabled)	1	$\mathrm{T}_{\mathrm{X}} \mathrm{In}$	T_{X} Out	$\mathrm{V}_{\text {lim }}$	-10	-8.0	-	dBV
T_{X} High Frequency Corner [Note 7] $\left(V T_{X} \operatorname{In}=-10 \mathrm{dBV}, \text { Mic Amp }=\text { Unity Gain }\right)$	1	$\mathrm{T}_{\mathrm{X}} \mathrm{In}$	T_{X} Out	$\mathrm{T}_{\mathrm{X}} \mathrm{f}_{\mathrm{c}}$	3.6	3.7	3.8	kHz

NOTE: 7. The filter specification is based on a 10.24 MHz 2 nd LO, and a switched-capacitor (SC) filter counter divider ratio of 31. If other 2 nd LO frequencies and/or SC filter counter divider ratios are used, the filter corner frequency will be proportional to the resulting SC filter clock frequency.

MC13110A/B MC13111A/B

ELECTRICAL CHARACTERISTICS (continued) ($\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Active or R_{X} Mode, unless otherwise specified; Test Circuit Figure 1.)

Characteristic	Figure	Input Pin	Measure Pin	Symbol	Min	Typ	Max	Unit
$\mathrm{T}_{\mathbf{X}}$ AUDIO PATH ($\mathrm{f}_{\mathrm{in}}=1.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{X}}$ Gain Adj = (01111); ALC, Limiter, and Mutes Disabled; Active Mode, scrambler bypassed)								
Low Pass Filter Passband Ripple ($\mathrm{V}_{\text {in }}=-10 \mathrm{dBV}$)	1,84	$\mathrm{T}_{\mathrm{X}} \mathrm{ln}$	T_{x} Out	Ripple	-	0.7	1.2	dB
Maximum Compressor Gain ($\mathrm{V}_{\text {in }}=-70 \mathrm{dBV}$)	-	C In	T_{x} Out	$\mathrm{AV}_{\text {max }}$	-	23	-	dB
T_{X} Gain Adjust Range (Programmable through MPU Interface)	125	C In	T_{x} Out	T_{X} Range	-	$\begin{gathered} \hline-9.0 \text { to } \\ 10 \end{gathered}$	-	dB
T_{X} Gain Adjust Steps - Number of Programmable Levels	125	C In	T_{x} Out	$\mathrm{T}_{\mathrm{x}} \mathrm{n}$	-	20	-	-

$R_{\mathbf{X}}$ AND TX SCRAMBLER (2nd LO $=10.24 \mathrm{MHz}, \mathrm{T}_{\mathbf{X}}$ Gain Adj = (01111), $\mathrm{R}_{\mathbf{X}}$ Gain Adj = (01111), Volume Control = (0 dB Default Levels), SCF Clock Divider $=31$. Total is divide by 62 for SCF clock frequency of 165.16 kHz)

R_{X} High Frequency Corner (Note 8) R_{X} Path, $f=479 \mathrm{~Hz}, \mathrm{~V} \mathrm{R}_{\mathrm{X}}$ Audio $\mathrm{In}=-20 \mathrm{dBV}$	-	R_{X} Audio In	Scr Out	$\mathrm{R}_{\mathrm{X}} \mathrm{f}_{\mathrm{ch}}$	3.55	3.65	3.75	kHz
T_{X} High Frequency Corner (Note 8) T_{X} Path, $f=300 \mathrm{~Hz}, V T_{X} \ln =-10 \mathrm{dBV}$, Mic Amp = Unity Gain	-	$\mathrm{T}_{\mathrm{X}} \mathrm{ln}$	TX Out	$\mathrm{T}_{\mathrm{x}} \mathrm{f}_{\mathrm{ch}}$	3.829	3.879	3.929	kHz
Absolute Gain $\begin{aligned} & \mathrm{R}_{\mathrm{x}}: \mathrm{V}_{\text {in }}=-20 \mathrm{dBV} \\ & \mathrm{~T}_{\mathrm{x}}: \mathrm{V}_{\mathrm{in}}=-10 \mathrm{dBV} \text {, Limiter disabled } \end{aligned}$		$\begin{aligned} & \mathrm{R}_{\mathrm{X}} \text { Audio In } \\ & \mathrm{T}_{\mathrm{X}} \ln \end{aligned}$	E Out T_{x} Out	AV	$\begin{aligned} & -4.0 \\ & -4.0 \end{aligned}$	$\begin{gathered} 0.4 \\ -1.0 \end{gathered}$	$\begin{aligned} & 4.0 \\ & 4.0 \end{aligned}$	dB
Pass Band Ripple $R_{X}+T_{X}$ Path $-1.0 \mu \mathrm{~F}$ from T_{X} Out to R_{X} Audio $\mathrm{In}, \mathrm{f}_{\mathrm{in}}=$ low corner frequency to high corner frequency	-	C In	E Out	Ripple	-	1.9	2.5	dB
$\begin{aligned} & \text { Scrambler Modulation Frequency } \\ & R_{x}: 100 \mathrm{mV}(-20 \mathrm{dBV}) \\ & \mathrm{T}_{\mathrm{x}}: 316 \mathrm{mV}(-10 \mathrm{dBV}) \end{aligned}$	-	RXAudio In C In	$\begin{aligned} & \text { E Out } \\ & T_{X} \text { Out } \end{aligned}$	$f_{\text {mod }}$	4.119	4.129	4.139	kHz
Group Delay $R_{X}+T_{X}$ Path $-1.0 \mu F$ from T_{X} Out to R_{X} Audio $\mathrm{In}, \mathrm{f}_{\mathrm{in}}=1.0 \mathrm{kHz}$ $f_{\text {in }}=$ low corner frequency to high corner frequency	-	C In C In	E Out	GD GD	-	1.0 4.0	-	ms
Carrier Breakthrough $R_{X}+T_{X}$ Path $-1.0 \mu F$ from T_{X} Out to R_{X} Audio In	-	C In	E Out	CBT	-	-60	-	dB
Baseband Breakthrough $R_{X}+T_{X}$ Path $-1.0 \mu \mathrm{~F}$ from T_{X} Out to R_{X} Audio In, $\mathrm{f}_{\mathrm{in}}=1.0 \mathrm{kHz}, \mathrm{f}_{\text {meas }}=3.192 \mathrm{kHz}$	-	C In	E Out	BBT	-	-50	-	dB

LOW BATTERY DETECT

Average Threshold Voltage Before Electronic Adjustment ($\mathrm{V}_{\text {ref_Adj }}=(0111)$)	1,131	Ref $_{1}$ Ref2	$\begin{aligned} & \mathrm{BD}_{1} \text { Out } \\ & \mathrm{BD}_{2} \text { Out } \end{aligned}$	$\mathrm{V} \mathrm{T}_{\mathrm{i}}$	1.38	1.48	1.58	V
Average Threshold Voltage After Electronic Adjustment (Vref_Adj = (adjusted value))	1	Ref $_{1}$ Ref 2	$\mathrm{BD}_{1} \text { Out }$ $\mathrm{BD}_{2} \text { Out }$	$V T_{f}$	1.475	1.5	1.525	V
Hysteresis	-	Ref $_{1}$ Ref2	$\begin{aligned} & \mathrm{BD}_{1} \text { Out } \\ & \mathrm{BD}_{2} \text { Out } \end{aligned}$	Hys	-	4.0	-	mV
Input Current ($\mathrm{V}_{\text {in }}=1.0$ and 2.0 V)	1	-	Ref $_{1}$ Ref2	1 in	-50	-	50	nA
Output High Voltage ($\mathrm{V}_{\text {in }}=2.0 \mathrm{~V}$)	1	Ref $_{1}$ Ref2	BD_{1} Out BD_{2} Out	V_{OH}	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}- \\ 0.1 \end{gathered}$	3.6	-	V

NOTE: 8. The filter specification is based on a $10.24 \mathrm{MHz} 2 n d$ LO, and a switch-capacitor (SC) filter counter divider ratio of 31 . If other 2 nd LO frequencies and/or SC filter counter divider ratios are used, the filter corner frequency will be proportional to the resulting SC filter clock frequency.

MC13110A/B MC13111A/B

ELECTRICAL CHARACTERISTICS (continued) ($\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{~V}_{\mathrm{B}}=1.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Active or R_{x} Mode, unless otherwise specified; Test Circuit Figure 1.)

Characteristic	Figure	Input Pin	Measure Pin	Symbol	Min	Typ	Max	Unit

LOW BATTERY DETECT							
Output Low Voltage $\left(V_{\text {in }}=1.0 \mathrm{~V}\right.$)	1	$R_{1} f_{1}$ R_{2}	BD_{1} Out BD_{2} Out	V_{OL}	-	0.2	0.4

BATTERY DETECT INTERNAL THRESHOLD

After Electronic Adjustment of V_{B} Voltage	1,128	$\mathrm{~V}_{\mathrm{CC}}$ Audio	BD_{2} Out					
BD Select $=(111)$				IBS_{7}	3.381	3.455	3.529	
BD Select $=(110)$				IBS_{6}	3.298	3.370	3.442	
BD Select $=(101)$				IBS_{5}	3.217	3.287	3.357	
BD Select $=(100)$								
BD Select $=(011)$			IBS_{4}	3.134	3.202	3.270		
BD Select $=(010)$			IBS_{3}	2.970	3.034	3.098		
BD Select $=(001)$			IBS_{2}	2.886	2.948	3.010		

PLL PHASE DETECTOR

Output Source Current $\left(\mathrm{V}_{\mathrm{PD}}=\mathrm{Gnd}+0.5 \mathrm{~V} \text { to PLL } \mathrm{V}_{\text {ref }}-0.5 \mathrm{~V}\right)$	-	-	$\begin{aligned} & \mathrm{R}_{\mathrm{x}} \mathrm{PD} \\ & \mathrm{~T}_{\mathrm{x}} \mathrm{PD} \end{aligned}$	${ }^{\mathrm{I}} \mathrm{H}$	-	1.0	-	mA
Output Sink Current ($\mathrm{V}_{\mathrm{PD}}=\mathrm{Gnd}+0.5 \mathrm{~V}$ to $\mathrm{PLL} \mathrm{V}_{\text {ref }}-0.5 \mathrm{~V}$)	-	-	$\begin{aligned} & \mathrm{R}_{\mathrm{x}} \mathrm{PD} \\ & \mathrm{~T}_{\mathrm{x}} \mathrm{PD} \end{aligned}$	IOL	-	1.0	-	mA

PLL LOOP CHARACTERISTICS

Maximum 2nd LO Frequency (No Crystal)	-	$\mathrm{LO}_{2} \mathrm{In}$	-	$\mathrm{f}_{2 \mathrm{ext}}$	-	12	-	MHz
Maximum 2nd LO Frequency (With Crystal)	-	-	$\mathrm{LO}_{2} \mathrm{In}$ LO_{2} Out	$\mathrm{f}_{2 \mathrm{ext}}$	-	12	-	MHz
Maximum T_{X} VCO (Input Frequency), $\mathrm{V}_{\text {in }}=200 \mathrm{mVpp}$	-	-	$\mathrm{T}_{\mathrm{x}} \mathrm{VCO}$	$\mathrm{f}_{\mathrm{txmax}}$	-	80	-	MHz

PLL VOLTAGE REGULATOR

Regulated Output Level ($\mathrm{IL}=0 \mathrm{~mA}$, after $\mathrm{V}_{\text {ref }}$ Adjustment)	1	-	PLL $\mathrm{V}_{\text {ref }}$	V_{O}	2.4	2.5	2.6	V
Line Regulation ($\mathrm{IL}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=3.0$ to 5.5 V)	1	$\mathrm{~V}_{\mathrm{CC}}$ Audio	PLL $\mathrm{V}_{\text {ref }}$	$\mathrm{V}_{\text {Reg }} \mathrm{Line}$	-	11.8	40	mV
Load Regulation ($\mathrm{IL}=1.0 \mathrm{~mA}$)	1	$\mathrm{~V}_{\mathrm{CC}}$ Audio	PLL $\mathrm{V}_{\text {ref }}$	$\mathrm{V}_{\text {Reg }}$ Load	-20	-1.4	-	mV

MICROPROCESSOR SERIAL INTERFACE

Input Current Low ($\mathrm{V}_{\text {in }}=0.3 \mathrm{~V}$, Standby Mode)	1	-	Data, Clk, EN	IIL	-5.0	0.4	-	$\mu \mathrm{A}$
Input Current High ($\mathrm{V}_{\text {in }}=3.3 \mathrm{~V}$, Standby Mode)	1	-	Data, Clk, EN	1 IH	-	1.6	5.0	$\mu \mathrm{A}$
Hysteresis Voltage	-	-	Data, Clk, EN	$V_{\text {hys }}$	-	1.0	-	V
Maximum Clock Frequency	-	Data, EN, Clk	-	-	-	2.0	-	MHz
Input Capacitance	-	Data, Clk, EN	-	$\mathrm{C}_{\text {in }}$	-	8.0	-	pF
EN to Clk Setup Time	106	-	EN, CIk	$\mathrm{t}_{\text {suEC }}$	-	200	-	ns
Data to CIk Setup Time	105	-	Data, Clk	$\mathrm{t}_{\text {suDC }}$	-	100	-	ns
Hold Time	105	-	Data, Clk	t_{h}	-	90	-	ns
Recovery Time	106	-	EN, Clk	$\mathrm{trec}^{\text {c }}$	-	90	-	ns
Input Pulse Width	-	-	EN, CIk	tw	-	100	-	ns
MPU Interface Power-Up Delay (90% of PLL $\mathrm{V}_{\text {ref }}$ to Data,Clk, EN)	108	-	-	$t_{\text {puMPU }}$	-	100	-	$\mu \mathrm{s}$

Figure 1. Production Test Circuit (52 Pin QFP)

PIN FUNCTION DESCRIPTION

Pin		Symbol/ Type	Equivalent Internal Circuit (52 Pin QFP)	Description
LQFP-48	QFP-52			
$\begin{gathered} 48 \\ 1 \end{gathered}$	$\begin{aligned} & 1 \\ & 2 \end{aligned}$	$\begin{gathered} \mathrm{LO}_{2} \text { In } \\ \mathrm{LO}_{2} \text { Out } \end{gathered}$		These pins form the PLL reference oscillator when connected to an external parallel-resonant crystal (10.24 MHz typical). The reference oscillator is also the second Local Oscillator $\left(\mathrm{LO}_{2}\right)$ for the RF receiver. " $\mathrm{LO}_{2} \mathrm{In}$ " may also serve as an input for an externally generated reference signal which is typically ac-coupled. When the IC is set to the inactive mode, LO_{2} In is internally pulled low to disable the oscillator. The input capacitance to ground at each pin $\left(\mathrm{LO}_{2} \ln /\right.$ LO_{2} Out) is 3.0 pF .
2	3	V_{ag}		V_{ag} is the internal reference voltage for the switched capacitor filter section. This pin must be decoupled with a $0.1 \mu \mathrm{~F}$ capacitor.
3 5	4 6	R_{X} PD (Output) $T_{x} P D$ (Output)		This pin is a tri-state voltage output of the R_{X} and T_{X} Phase Detector. It is either "high", "low", or "high impedance," depending on the phase difference of the phase detector input signals. During lock, very narrow pulses with a frequency equal to the reference frequency are present. This pin drives the external R_{X} and T_{X} PLL loop filters. R_{X} and T_{X} PD outputs can sink or source 1.0 mA .
4	5	PLL V ref		PLL $V_{\text {ref }}$ is a PLL voltage regulator output pin. An internal voltage regulator provides a stable power supply voltage for the R_{X} and T_{X} PLL's and can also be used as a regulated supply voltage for other IC's. It can source up to 1.0 mA externally. Proper supply filtering is a must on this pin. PLL $V_{\text {ref }}$ is pulled up to $V_{C C}$ audio for the standby and inactive modes (Note 1).
6	7	Gnd PLL		Ground pin for digital PLL section of IC.
7	8	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \mathrm{VCO} \\ \text { (Input) } \end{gathered}$		T_{X} VCO is the transmit divide counter input which is driven by an ac-coupled external transmit loop VCO. The minimum signal level is 200 mVpp @ 60.0 MHz . This pin also functions as the test mode input for the counter tests.

PIN FUNCTION DESCRIPTION (continued)

Pin		$\begin{gathered} \text { Symbol/ } \\ \text { Type } \end{gathered}$	Equivalent Internal Circuit (52 Pin QFP)	Description
LQFP-48	QFP-52			
$\begin{gathered} \hline 8 \\ 9 \\ 10 \end{gathered}$	$\begin{gathered} 9 \\ 10 \\ 11 \end{gathered}$	Data EN Clk (Input)		Microprocessor serial interface input pins are for programming various counters and control functions. The switching thresholds are referenced to PLL $\mathrm{V}_{\text {ref }}$ and Gnd PLL. The inputs operate up to V_{CC}. These pins have $1.0 \mu \mathrm{~A}$ internal pull-down currents.
11	12	Clk Out (Output)		The microprocessor clock output is derived from the 2nd LO crystal oscillator and a programmable divider with divide ratios of 2 to 312.5 . It can be used to drive a microprocessor and thereby reduce the number of crystals required in the system design. The driver has an internal resistor in series with the output which can be combined with an external capacitor to form a low pass filter to reduce radiated noise on the PCB. This output also functions as the output for the counter test modes. 1) For the MC13110A/B and MC13111A/B the Clk Out can be disabled via the MPU interface. 2) For the MC13110B and MC13111B this output is always active (on) (Note 2).
12	13	CD Out (I/O)		Dual function pin; 1) Carrier detect output (open collector with external $100 \mathrm{k} \Omega$ pull-up resistor. 2) Hardware interrupt input which can be used to "wake-up" from the Inactive Mode.
-	14	$B D_{1}$ Out		Low battery detect output \#1 is an open collector with external pull-up resistor.
14	16	B_{2} Out (Output)		Low battery detect output \#2 is an open collector with external pull-up resistor.
13	15	DA Out (Output)		Data amplifier output (open collector with internal $100 \mathrm{k} \Omega$ pull-up resistor).
15	17	$\begin{gathered} \mathrm{T}_{\mathrm{x}} \text { Out } \\ \text { (Output) } \end{gathered}$		T_{X} Out is the T_{X} path audio output. Internally this pin has a low-pass filter circuitry with -3 dB bandwidth of 4.0 kHz . T_{x} gain and mute are programmable through the MPU interface. This pin is sensitive to load capacitance.

MC13110A/B MC13111A/B
PIN FUNCTION DESCRIPTION (continued)

Pin		$\begin{aligned} & \text { Symbol/ } \\ & \text { Type } \end{aligned}$	Equivalent Internal Circuit (52 Pin QFP)	Description
LQFP-48	QFP-52			
16	18	C Cap		C Cap is the compressor rectifier filter capacitor pin. It is recommended that an external filter capacitor to V_{CC} audio be used. A practical capacitor range is 0.1 to $1.0 \mu \mathrm{~F} .0 .47 \mu \mathrm{~F}$ is the recommended value.
17	19	C In (Input)		C In is the compressor input. This pin is internally biased and has an input impedance of 12.5 k . C In must be ac-coupled.
18	20	Amp Out (Output)	$\left\lvert\, \begin{array}{lll}v_{c C} & v_{c C} & 1 \\ \text { Audio } & \text { Audio } & 1 \\ 1 & I & 1\end{array}\right.$	Microphone amplifier output. The gain is set with external resistors. The feedback resistor should be less than $200 \mathrm{k} \Omega$.
19	21	$\begin{gathered} \mathrm{T}_{\mathrm{X}} \text { In } \\ \text { (Input) } \end{gathered}$		$T_{x} \operatorname{In}$ is the T_{x} path input to the microphone amplifier (Mic Amp). An external resistor is connected to this pin to set the Mic Amp gain and input impedance. T_{X} In must be ac-coupled, too.
20	22	DA In (Input)		The data amplifier input (DA In) resistance is $250 \mathrm{k} \Omega$ and must be ac-coupled. Hysteresis is internally provided.
21	23	$V_{\text {CC }}$ Audio		$V_{C C}$ audio is the supply for the audio section. It is necessary to adequately filter this pin.
22	24	R_{X} Audio In (Input)		The R_{X} audio input resistance is $600 \mathrm{k} \Omega$ and must be ac-coupled.
23	25	Det Out (Output)		Det Out is the audio output from the FM detector. This pin is dc-coupled from the FM detector and has an output impedance of 1100Ω.

MC13110A/B MC13111A/B
PIN FUNCTION DESCRIPTION (continued)

Pin		Symbol/ Type	Equivalent Internal Circuit (52 Pin QFP)	Description
LQFP-48	QFP-52			
30	26	RSSI		RSSI is the receive signal strength indicator. This pin must be filtered through a capacitor to ground. The capacitance value range should be 0.01 to $0.1 \mu \mathrm{~F}$. This is also the input to the Carrier Detect comparator. An external R to ground shifts the RSSI voltage.
24	27	Q Coil		A quad coil or ceramic discriminator connects this pin as part of the FM demodulator circuit. DC-couple this pin to V_{CC} RF through the quad coil or the external resistor.
26	29	$\mathrm{V}_{\mathrm{CC}} \mathrm{RF}$		V_{CC} supply for RF receiver section (1st LO, mixer, limiter, demodulator). Proper supply filtering is needed on this pin too.
25	28	Lim Out		A quad coil or ceramic discriminator are connected to these pins as part of the FM demodulator circuit. A coupling capacitor connects this pin to the quad coil or ceramic discriminator as part of the FM demodulator circuit. This pin can drive coupling capacitors up to 47 pF with no deterioration in performance.
$\begin{aligned} & \hline 27 \\ & 28 \end{aligned}$	$\begin{aligned} & \hline 30 \\ & 31 \end{aligned}$	$\begin{aligned} & \operatorname{Lim~C}_{2} \\ & \operatorname{Lim} \mathrm{C}_{1} \end{aligned}$		IF amplifier/limiter capacitor pins. These decoupling capacitors should be $0.1 \mu \mathrm{~F}$. They determine the IF limiter gain and low frequency bandwidth.
29	32	Lim In (Input)	$\underset{=}{I} \underset{=}{I}$	Signal input for IF amplifier/limiter. Signals should be ac-coupled to this pin. The input impedance is $1.5 \mathrm{k} \Omega$ at 455 kHz .
-	33	SGnd RF		This pin is not connected internally but should be grounded to reduce potential coupling between pins.
31	34	Mix 2 In (Input)		$\mathrm{Mix}_{2} \mathrm{In}$ is the second mixer input. Signals are to be ac-coupled to this pin, which is biased internally to $V_{C C} R F$. The input impedance is $2.8 \mathrm{k} \Omega$ at 455 kHz . The input impedance can be reduced by connecting an external resistor to $V_{C C} R F$.

MC13110A/B MC13111A/B
PIN FUNCTION DESCRIPTION (continued)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Pin} \& \multirow[t]{2}{*}{Symbol/ Type} \& \multirow[b]{2}{*}{Equivalent Internal Circuit (52 Pin QFP)} \& \multirow[b]{2}{*}{Description}

\hline LQFP-48 \& QFP-52 \& \& \&

\hline 32 \& 35 \& Mix 2 Out (Output) \& \& Mix2 Out is the second mixer output. The second mixer has a 3 dB bandwidth of 2.5 MHz and an output impedance of $1.5 \mathrm{k} \Omega$. The output current drive is $50 \mu \mathrm{~A}$.

\hline 33 \& 36 \& Gnd RF \& \& Ground pin for RF section of the IC.

\hline 34 \& 37 \& Mix_{1} Out (Output) \& \& The first mixer has a 3 dB IF bandwidth of 13 MHz and an output impedance of 300Ω. The output current drive is $300 \mu \mathrm{~A}$ and can be programmed for 1.0 mA .

\hline 35

36 \& 38

39 \& | $M_{1} x_{1} \operatorname{In}_{2}$ (Input) |
| :--- |
| $M_{1 x}{ }_{1} \mathrm{In}_{1}$ (Input) | \& \& Signals should be ac-coupled to this pin, which is biased internally to $\mathrm{V}_{\mathrm{CC}}-1.6 \mathrm{~V}$. The single-ended and differential input impedance are about 1.6 and $1.8 \mathrm{k} \Omega$ at 46 MHz , respectively.

\hline $$
\begin{aligned}
& 37 \\
& 38
\end{aligned}
$$ \& \[

$$
\begin{aligned}
& \hline 40 \\
& 41
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \mathrm{LO}_{1} \mathrm{In} \\
& \mathrm{LO}_{1} \text { Out }
\end{aligned}
$$
\] \& \& Tank Elements, an internal varactor and capacitor matrix for 1st LO multivibrator oscillator are connected to these pins. The oscillator is useable up to 80 MHz .

\hline 39 \& 42 \& $\mathrm{V}_{\text {cap }} \mathrm{Ctrl}$ \& \& $\mathrm{V}_{\text {cap }} \mathrm{Ctrl}$ is the 1st LO varactor control pin. The voltage at this pin is referenced to Gnd Audio and varies the capacitance between LO_{1} In and LO_{2} Out. An increase in voltage will decrease capacitance.

\hline 40 \& 43 \& Gnd Audio \& \& Ground for audio section of the IC.

\hline 41 \& 44 \& SA Out (Output) \& \& The speaker amplifier gain is set with an external feedback resistor. It should be less than $200 \mathrm{k} \Omega$. The speaker amplifier can be muted through the MPU interface.

\hline 42 \& 45 \& SA In (Input) \& \& An external resistor is connected to the speaker amplifier input (SA In). This will set the gain and input impedance and must be ac-coupled.

\hline
\end{tabular}

MC13110A/B MC13111A/B
PIN FUNCTION DESCRIPTION (continued)

\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{2}{|c|}{Pin} \& \multirow[t]{2}{*}{Symbol/ Type} \& \multirow[b]{2}{*}{Equivalent Internal Circuit (52 Pin QFP)} \& \multirow[b]{2}{*}{Description}

\hline LQFP-48 \& QFP-52 \& \& \&

\hline 43 \& 46 \& E Out (Output) \& \& The output level of the expander output is determined by the volume control. Volume control is programmable through the MPU interface.

\hline 44 \& 47 \& E Cap \& \& E Cap is the expander rectifier filter capacitor pin. Connect an external filter capacitor between V_{CC} audio and E Cap. The recommended capacitance range is 0.1 to $1.0 \mu \mathrm{~F} .0 .47 \mu \mathrm{~F}$ is the suggested value.

\hline 45 \& 48 \& $$
\underset{\text { (Input) }}{\underset{\text { In }}{2}}
$$ \& \& The expander input pin is internally biased and has input impedance of $30 \mathrm{k} \Omega$.

\hline 46 \& 49 \& Scr Out (Output) \& \& Scr Out is the R_{X} audio output. An internal low pass filter has a -3 dB bandwidth of 4.0 kHz .

\hline - \& 50
51 \& Ref

Ref \& \& Reference voltage input for Low Battery Detect \#2.

\hline - \& 51 \& Ref1 \& \& Reference voltage input for Low Battery Detect \#1.

\hline 47 \& 52 \& V_{B} \& \& V_{B} is the internal half supply analog ground reference. This pin must be filtered with a capacitor to ground. A typical capacitor range of 0.5 to $10 \mu \mathrm{~F}$ is desired to reduce crosstalk and noise. It is important to keep this capacitor value equal to the PLL $V_{\text {ref }}$ capacitor due to logic timing (Note 9).

\hline
\end{tabular}

NOTE: 9. A capacitor range of 0.5 to $10 \mu \mathrm{~F}$ is recommended. The capacitor value should be the same used on the V_{B} pin (Pin 52). An additional high quality parallel capacitor of $0.01 \mu \mathrm{~F}$ is essential to filter out spikes originating from the PLL logic circuitry.

The following text, graphics, tables and schematics are provided to the user as a source of valuable technical information about the Universal Cordless Telephone IC. This information originates from thorough evaluation of the device performance for the US and French applications. This data was obtained by using units from typical wafer lots. It is important to note that the forgoing data and information was from a limited number of units. By no means is the user to assume that the data following is a guaranteed parametric. Only the minimum and maximum limits identified in the electrical characteristics tables found earlier in this spec are guaranteed.

General Circuit Description

The MC13110A/B and MC13111A/B are a low power dual conversion narrowband FM receiver designed for applications up to 80 MHz carrier frequency. This device is primarily designated to be used for the 49 MHz cordless phone (CT-0), but has other applications such as low data rate narrowband data links and as a backend device for 900 MHz systems where baseband analog processing is required. This device contains a first and second mixer, limiter, demodulator, extended range receive signal strength (RSSI), receive and transmit baseband processing, dual programmable PLL, low battery detect, and serial interface for microprocessor control. The FM receiver can also be used with either a quadrature coil or ceramic resonator. Refer to the Pin Function Description table for the simplified internal circuit schematic and description of this device.

DC Current and Battery Detect

Figures 3 through 6 are the current consumption for Inactive, Standby, Receive, and Active modes versus supply voltages. Figures 7 and 8 show the typical behavior of current consumption in relation to temperature. The relationship of additional current draw due to IP3 bit set to <1> and supply voltage are shown in Figures 9 and 10.

For the Low Battery Detect, the user has the option to operate the IC in the programmable or non-programmable modes. Note that the 48 pin package can only be used in the programmable mode. Figure 128 describes this operation (refer to the Serial Interface section under Clock Divider Register).

In the programmable mode several different internal threshold levels are available (Figure 2). The bits are set through the SCF Clock Divider Register as shown in Figures 108 and 126. The reference for the internal divider network is $V_{C C}$ Audio. The voltages on the internal divider network are compared to the Internal Reference Voltage, VB, generated by an internal source. Since the internal comparator used is non-inverting, a high at V_{CC} Audio will yield a high at the
battery detect output, and vice versa for V_{CC} Audio set to a low level. For the 52 pin package option, the Ref 1 and Ref 2 pins need to be tied to $\mathrm{V}_{\text {CC }}$ when used in the programmable mode. It is essential to keep the external reference pins above Gnd to prevent any possible power-on reset to be activated.

When considering the non-programmable mode (bits set to $<000\rangle$) for the 52 pin package, the Ref 1 and Ref 2 pins become the comparators reference. An internal switch is activated when the non-programmable mode is chosen connecting Ref 1 and Ref 2. Here, two external precision resistor dividers are used to set independent thresholds for two battery detect hysteresis comparators. The voltages on Ref 1 and Ref 2 are again compared to the internally generated 1.5 V reference voltage (VB).

The Low Battery Detect threshold tolerance can be improved by adjusting a trim-pot in the external resistor divider (user designed). The initial tolerance of the internal reference voltage (VB) is $\pm 6.0 \%$. Alternately, the tolerance of the internal reference voltage can be improved to $\pm 1.5 \%$ through MPU serial interface programming (refer to the Serial Interface section, Figure 131). The internal reference can be measured directly at the "VB" pin. During final test of the telephone, the VB internal reference voltage is measured. Then, the internal reference voltage value is adjusted electronically through the MPU serial interface to achieve the desired accuracy level. The voltage reference register value should be stored in ROM during final test so that it can be reloaded each time the combo IC is powered up. The Low Battery Detect outputs are open collector. The battery detect levels will depend on the accuracy of the VB voltage. Figure 12 indicates that the VB voltage is fairly flat over temperature.

Figure 2. Internal Low Battery Detect Levels

(with VB = 1.5 V)

Battery Detect Select	Ramping Up (V)	Ramping Down (V)	Average (V)	Hysteresis $(\mathbf{m V})$
0	-	-	-	-
1	2.867	2.861	2.864	4.0
2	2.953	2.947	2.950	6.0
3	3.039	3.031	3.035	8.0
4	3.207	3.199	3.204	8.0
5	3.291	3.285	3.288	6.0
6	3.375	3.367	3.371	8.0
7	3.461	3.453	3.457	8.0

NOTE: 10. Battery Detect Select 0 is the non-programmable operating
mode.

Figure 3. Current versus Supply Voltage Inactive Mode

Figure 5. Current versus Supply Voltage Receive Mode

Figure 7. Current versus
Temperature Normalized to $25^{\circ} \mathrm{C}$

Figure 4. Current versus Supply Voltage Standby Mode, MCU Clock Output - On at 2.048 MHz

Figure 6. Current versus Supply Voltage Active Mode

Figure 8. Current versus Temperature Normalized to $25^{\circ} \mathrm{C}$

MC13110A/B MC13111A/B
 DC CURRENT

Figure 9. Additional Supply Current Consumption versus Supply Voltage, IP3 = <1>

Figure 11. Current Standby

Figure 10. Additional IP3 Supply Current Consumption versus Temperature Normalized to $25^{\circ} \mathrm{C}$

Figure 12. VB Voltage versus Temperature Normalized to 1.5 V at $25^{\circ} \mathrm{C}$

MC13110A/B MC13111A/B

FIRST AND SECOND MIXER

Mixer Description

The 1st and 2nd mixers are similar in design. Both are double balanced to suppress the LO and the input frequencies to give only the sum and difference frequencies at the mixer output. Typically the LO is suppressed better than -50 dB for the first mixer and better than -40 dB for the second mixer. The gain of the 1st mixer has a -3.0 dB corner at approximately 13 MHz and is used at a 10.7 MHz IF. It has an output impedance of 300Ω and matches to a typical 10.7 MHz ceramic filter with a source and load impedance of 330Ω. A series resistor may be used to raise the impedance for use with crystal filters. They typically have an input impedance much greater than 330Ω.

First Mixer

Figures 17 through 20 show the first mixer transfer curves for the voltage conversion gain, output level, and intermodulation. Notice that there is approximately 10 dB linearity improvement when the "IP3 Increase" bit is set to $<1>$. The "IP3 Increase" bit is a programmable bit as shown in the Serial Programmable Interface section under the R_{X} Counter Latch Register. The IP3 = <1> option will increase the supply current demand by 1.3 mA .

Figure 13. First Mixer Input and Output Impedance Schematic

Figure 14. First Mixer Output Impedance

Unit	Output Impedance
B IP3 $=<0>$ (Set Low)	$304 \Omega / / 3.7 \mathrm{pF}$
B IP3 $=<1>$ (Set High)	$300 \Omega / / 4.0 \mathrm{pF}$

Figures 13, 14, and 16 represent the input and output impedance for the first mixer. Notice that the input single-ended and differential impedances are basically the same. The output impedance as described in Figure 14 will be used to match to a ceramic or crystal filter's input impedance. A typical ceramic filter input impedance is 330Ω while crystal filter input impedance is usually 1500Ω. Exact impedance matching to ceramic filters are not critical, however, more attention needs to be given to the filter characteristics of a crystal filter. Crystal filters are much narrower. It is important to accurately match to these filters to guaranty a reasonable response.

To find the IF bandwidth response of the first mixer refer to Figure 22. The -3.0 dB bandwidth point is approximately 13 MHz . Figure 15 is a summary of the first mixer feedthrough parameters.

Figure 15. First Mixer Feedthrough Parameters

Parameter	(dBm)
1st LO Feedthrough @ Mix In_{1}	-70.0
1st LO Feedthrough @ Mix ${ }_{1}$ Out	-55.5
RF Feedthrough @ Mix ${ }_{1}$ Out with -30 dBm	-61.0

Figure 16. First Mixer Input Impedance over Input Frequency

Unit	US Center Channels		France Center Channels	
	$49 \mathbf{M H z}$	$\mathbf{4 6 ~ M H z}$	$\mathbf{4 1} \mathbf{M H z}$	$\mathbf{2 6 ~ M H z}$
Single-Ended	$1550 \Omega / / 3.7 \mathrm{pF}$	$1560 \Omega / / 3.7 \mathrm{pF}$	$1570 \Omega / / 3.8 \mathrm{pF}$	$1650 \Omega / / 3.7 \mathrm{pF}$
Differential	$1600 \Omega / / 1.8 \mathrm{pF}$	$1610 \Omega / / 1.8 \mathrm{pF}$	$1670 \Omega / / 1.8 \mathrm{pF}$	$1710 \Omega / / 1.8 \mathrm{pF}$

Note: 11. Single-Ended data is from measured results. Differential data is from simulated results.

Figure 17. First Mixer Voltage Conversion Gain, IP3_bit = 0

Figure 19. First Mixer Output Level and Intermodulation, IP3_bit = 0

Figure 21. First Mixer Compression versus Supply Voltage

Figure 18. First Mixer Voltage Conversion Gain, IP3_bit = 1

Figure 20. First Mixer Output Level and Intermodulation, IP3_bit = 1

Figure 22. First IF Bandwidth

MC13110A/B MC13111A/B

Second Mixer

Figures 26 through 29 represents the second mixer transfer characteristics for the voltage conversion gain, output level, and intermodulation. There is a slight improvement in gain when the "IP3 bit" is set to <1> for the second mixer. (Note: This is the same programmable bit discussed earlier in the section.)

Figure 23. Second Mixer Input and Output Impedance Schematic

Figure 24. Second Mixer Input and Output Impedances

Unit	Input Impedance $\mathbf{R P I}_{\mathbf{P}} / / \mathbf{C P I}_{\mathbf{P I}}$	Output Impedance $\mathbf{R P O}_{\mathbf{P O}} / / \mathbf{C P O}$
IP3 $=<0>$ (Set Low)	$2817 \Omega / / 3.6 \mathrm{pF}$	$1493 \Omega / / 6.1 \mathrm{pF}$
IP3 $=<1>$ (Set High)	$2817 \Omega / / 3.6 \mathrm{pF}$	$1435 \Omega / / 6.2 \mathrm{pF}$

The 2nd mixer input impedance is typically $2.8 \mathrm{k} \Omega$. It requires an external 360Ω parallel resistor for use with a standard 330Ω, 10.7 MHz ceramic filter. The second mixer output impedance is $1.5 \mathrm{k} \Omega$ making it suitable to match standard 455 kHz ceramic filters.

The IF bandwidth response of the second mixer is shown in Figure 31. The -3.0 dB corner is 2.5 MHz . The feedthrough parameters are summarized in Figure 25.

Figure 25. Second Mixer Feedthrough Parameters

Parameter	(dBm)
2nd LO Feedthrough @ Mix2 Out	-42.9
IF Feedthrough @ Mix_ Out with -30 dBm	-61.7

Figure 26. Second Mixer Conversion Gain, IP3_bit = 0

Figure 28. Second Mixer Output Level and Intermodulation, IP3_bit = 0

Figure 30. Second Mixer Compression versus Supply Voltage

Figure 27. Second Mixer Conversion Gain, IP3_bit = 1

Figure 29. Second Mixer Output Level and Intermodulation, IP3_bit = 1

Figure 31. Second IF Bandwidth

MC13110A/B MC13111A/B

First Local Oscillator

The 1st LO is a multi-vibrator oscillator. The tank circuit is composed of a parallel external capacitance and inductance, internal programmable capacitor matrix, and internal varactor. The local oscillator requires a voltage controlled input to the internal varactor and an external loop filter driven by on-board phase-lock control loop (PLL). The 1st LO internal component values have a tolerance of $\pm 15 \%$. A typical dc bias level on the LO Input and LO Output is 0.45 Vdc. The temperature coefficient of the varactor is $+0.08 \% /{ }^{\circ} \mathrm{C}$. The curve in Figure 33 is the varactor control voltage range as it relates to varactor capacitance. It represents the expected internal capacitance for a given control voltage ($\mathrm{V}_{\text {cap }} \mathrm{Ctrl}$) of the MC13110A/B and MC13111A/B. Figure 32 shows a representative schematic of the first LO function.

Figure 32. First Local Oscillator Schematic

To select the proper $L_{\text {ext }}$ and $C_{\text {ext }}$ we can do the following analysis. From Figure 34 it is observed that an inductor will have a significant affect on first LO performance, especially over frequency. The overall minimum Q required for first LO to function as it relates to the LO frequency is also given in Figure 34.

Choose an inductor value, say 470 nH . From Figure 34, the minimum operating Q is approximately 25 . From the following equation:
Q Coil = Rp/X Coil
where: $R_{p}=$ parallel equivalent impedance (Figure 35).
$\mathrm{C}_{\text {ext }}$ can be determined as follows:

$$
\mathrm{f}_{\mathrm{LO}}=\frac{1}{2 \pi \sqrt{\mathrm{~L}_{\mathrm{ext}} \mathrm{C}_{\mathrm{ext}}}}
$$

where: Lext = external inductance, $\mathrm{C}_{\text {ext }}=$ external capacitance.

Figure 34 clearly indicates that for lower coil values, higher quality factors (Q) are required for the first $L O$ to function properly. Also, lower LO frequencies need higher Q's. In Figure 35 the internal programmable capacitor selection relative to the first LO frequency and the parallel impedance is shown. This information will help the user to decide what inductor ($L_{\text {ext }}$) to choose for best performance in terms of Q .

Refer to the Auxiliary Register in the Serial Interface Section for further discussion on LO programmability.

FIRST LOCAL OSCILLATOR

Figure 33. First LO Varicap Capacitance versus Control Voltage

Figure 35. Representative Parallel Impedance versus Capacitor Select

Figure 37. Control Voltage versus Channel Number, U.S. Handset Application

Figure 34. First LO Minimum Required Overall Q Value versus Inductor Value

Figure 36. Varicap Value at $\mathrm{V}_{\mathrm{CV}}=1.0 \mathrm{~V}$ Over Temperature

Figure 38. Control Voltage versus Channel Number, U.S. Baseset Application

MC13110A/B MC13111A/B

Second Local Oscillator

The 2nd LO is a CMOS oscillator. It is used as the PLL reference oscillator and local oscillator for the second frequency conversion in the RF receiver. It is designed to utilize an external parallel resonant crystal. See schematic in Figure 39.

Figure 39. Second Local Oscillator Schematic

Figure 40. Second Local Oscillator Input and Output Impedance

Input Impedance ($\left.\mathrm{RPI}^{\prime} / / \mathrm{C}_{\mathrm{PI}}\right)$	$11.6 \mathrm{k} \Omega / / 2.9 \mathrm{pF}$
Output Impedance ($\left.\mathrm{RPO}_{\mathrm{PO}} / / \mathrm{CPO}_{\mathrm{PO}}\right)$	$9.6 \mathrm{k} \Omega / / 2.7 \mathrm{pF}$

Figure 41 shows a typical gain/phase response of the second local oscillator. Load capacitance (CL), equivalent series resistance (ESR), and even supply voltage will have and affect on the 2nd LO response as shown in Figures 45 and 46. Except for the standby mode open loop gain is fairly constant as supply voltage increases from 2.5 V . This is due to the regulated voltage of 2.5 V on $\mathrm{PLL} \mathrm{V}_{\text {ref. }}$. From the graphs it can seen that optimum performance is achieved when C 1 equals C2 $(C 1 / C 2=1)$.

Figure 46 represents the ESR versus crystal load capacitance for the 2nd LO. This relationship was defined by using a 6.0 dB minimum loop gain margin at 3.6 V . This is considered the minimum gain margin to guarantee oscillator start-up.

Oscillator start-up is also significantly affected by the crystal load capacitance selection. In Figures 42 and 43 the relationship between crystal load capacitance, supply voltage, and external load capacitance ratio (C2/C1), can be seen. The lower the load capacitance the better the performance.

Given the desired crystal load capacitance, C1 and C2 can be determined from Figure 47. It is also interesting to point out that current consumption increases when $\mathrm{C} 1 \neq \mathrm{C} 2$, as shown in Figure 44.

Be careful not to overdrive the crystal. This could cause a noise problem. An external series resistor on the crystal output can be added to reduce the drive level, if necessary.

SECOND LOCAL OSCILLATOR

Figure 41. Second LO Gain/Phase @ -10 dBm

Figure 42. Start-Up Time versus Capacitor Ratio, Inactive to $\mathbf{R}_{\mathbf{X}}$ Mode

MC13110A/B MC13111A/B

SECOND LOCAL OSCILLATOR

Figure 43. Start-Up Time versus Capacitor Ratio, Inactive to $\mathbf{R}_{\mathbf{X}}$ Mode

Figure 45. Maximum Open Loop Gain versus Capacitor Ratio

Figure 44. Second LO Current Consumption versus Capacitor Ratio

Figure 46. Maximum Allowable Equivalent Series Resistance (ESR) versus Crystal Load Capacitance

Figure 47. Optimum Value for C1 and C2 versus Equivalent Required Parallel Capacitance of the Crystal

IF Limiter and Demodulator

The limiting IF amplifier typically has about 110 dB of gain; the frequency response starts rolling off at 1.0 MHz . Decoupling capacitors should be placed close to Pins 31 and 32 to ensure low noise and stable operation. The IF input impedance is $1.5 \mathrm{k} \Omega$. This is a suitable match to 455 kHz ceramic filters.

Figure 48. IF Limiter Schematic

Figure 49. Limiter Input Impedance

Unit	Input Impedance (RPI)	Input Impedance (CPI)
Lim In	1538Ω	15.7 pF

Figure 50. Quadrature Detector Demodulator Schematic

The quadrature detector is coupled to the IF with an external capacitor between Pins 27 and 28. Thus, the recovered signal level output is increased for a given bandwidth by increasing the capacitor. The external quadrature component may be either a LCR resonant circuit, which may be adjustable, or a ceramic resonator which is usually fixed tuned. (More on ceramic resonators later.)

The bandwidth performance of the detector is controlled by the loaded Q of the LC tank circuit (Figure 50). The following equation defines the components which set the detector circuit's bandwidth:
(1) $R_{T}=Q X_{L}$,
where R_{T} is the equivalent shunt resistance across the LC tank. X_{L} is the reactance of the quadrature inductor at the IF frequency ($X_{L=2 \pi f}$).

The 455 kHz IF center frequency is calculated by:
(2) $f_{C}=\left[2 \pi(L C p)^{1 / 2}\right]-1$
where L is the parallel tank inductor. Cp is the equivalent parallel capacitance of the parallel resonant tank circuit.

The following is a design example for a detector at 455 kHz and a specific loaded Q:

The loaded Q of the quadrature detector is chosen somewhat less than the Q of the IF bandpass for margin. For an IF frequency of 455 kHz and an IF bandpass of 20 kHz ,
the IF bandpass Q is approximately 23; the loaded Q of the quadrature tank is chosen slightly lower at 15.

Example:

Let the total external C = 180 pF . (Note: the capacitance is the typical capacitance for the quad coil.) Since the external capacitance is much greater than the internal device and PCB parasitic capacitance, the parasitic capacitance may be neglected.

Rewrite equation (2) and solve for L :

$$
\begin{aligned}
& \mathrm{L}=(0.159)^{2} /\left(\mathrm{C} \mathrm{f}_{\mathrm{C}}^{2}\right) \\
& \mathrm{L}=678 \mu \mathrm{H} ; \text { Thus, a standard value is chosen: } \\
& \mathrm{L}=680 \mu \mathrm{H} \text { (surface mount inductor) }
\end{aligned}
$$

The value of the total damping resistor to obtain the required loaded Q of 15 can be calculated from equation (1):

$$
\begin{aligned}
& \mathrm{RT}=\mathrm{Q}(2 \pi \mathrm{f} \mathrm{~L}) \\
& \mathrm{RT}=15(2 \pi)(0.455)(680)=29.5 \mathrm{k} \Omega
\end{aligned}
$$

The internal resistance, $\mathrm{R}_{\mathrm{int}}$ at the quadrature tank Pin 27 is approximately $100 \mathrm{k} \Omega$ and is considered in determining the external resistance, Rext which is calculated from:

$$
\begin{aligned}
& R_{\text {ext }}=\left(\left(\mathrm{R}_{T}\right)\left(\mathrm{R}_{\text {int }}\right)\right) /\left(\mathrm{R}_{\text {int }}-\mathrm{R}_{\mathrm{T}}\right) \\
& \mathrm{R}_{\mathrm{ext}}=41.8 \mathrm{k} \Omega ; \text { Thus, choose a standard value: } \\
& \mathrm{R}_{\mathrm{ext}}=39 \mathrm{k} \Omega
\end{aligned}
$$

In Figure 50, the Rext is chosen to be $22.1 \mathrm{k} \Omega$. An adjustable quadrature coil is selected. This tank circuit represents one popular network used to match to the 455 kHz carrier frequency. The output of the detector is represented as a "S-curve" as shown in Figure 52. The goal is to tune the inductor in the area that is most linear on the "S-curve" (minimum distortion) to optimize the performance in terms of dc output level. The slope of the curve can also be adjusted by choosing higher or lower values of $R_{e x t}$. This will have an affect on the audio output level and bandwidth. As $R_{\text {ext }}$ is increased the detector output slope will decrease. The maximum audio output swing and distortion will be reduced and the bandwidth increased. Of course, just the opposite is true for smaller Rext.

A ceramic discriminator is recommended for the quadrature circuit in applications where fixed tuning is desired. The ceramic discriminator and a $5.6 \mathrm{k} \Omega$ resistor are placed from Pin 27 to V_{CC}. A 22 pF capacitor is placed from Pin 28 to 27 to properly drive the discriminator. MuRata Erie has designed a resonator for this part (CDBM455C48 for USA \& A/P regions and CDBM450C48 for Europe). This resonator has been designed specifically for the MC13110/111 family. Figure 51 shows the schematic used to generate the "S-curve" and waveform shown in Figure 54 and 55.

Figure 51. Ceramic Resonator Demodulator Schematic with Murata CDBM450C48

(CDBM455C48 US; CDBM450C48 France)
The "S-curve" for the ceramic discriminator shown in Figure 54 is centered around 450 kHz . It is for the French application. The same resonator is also used for the US application and is centered around 455 kHz . Clearly, the "S-curves" for the resonator and quad coil have very similar limiter outputs. As discussed previously, the slope of the "S-curve" centered around the center frequency can be controlled by the parallel resistor, Rext. Distortion, bandwidth, and audio output level will be affected.

IF LIMITER AND DEMODULATION

Figure 52. S-Curve of Limiter Discriminator with Quadrature Coil

Figure 54. S-Curve of Limiter

Figure 53. Typical Limiter Output Waveform with Quadrature Coil

Figure 55. Typical Limiter Output Waveform with Ceramic Resonator

t, TIME (ms)

MC13110A/B MC13111A/B

RSSI and Carrier Detect

The Received Signal Strength Indicator (RSSI) indicates the strength of the IF level. The output is proportional to the logarithm of the IF input signal magnitude. RSSI dynamic range is typically 80 dB . A $187 \mathrm{k} \Omega$ resistor to ground is provided internally to the IC. This internal resistor converts the RSSI current to a voltage level at the "RSSI" pin. To improve the RSSI accuracy over temperature an internal compensated reference is used. Figure 56 shows the RSSI versus RF input. The slope of the curve is $16.5 \mathrm{mV} / \mathrm{dB}$.

The Carrier Detect Output (CD Out) is an open-collector transistor output. An external pull-up resistor of $100 \mathrm{k} \Omega$ will be required to bias this device. To form a carrier detect filter a capacitor needs to be connected from the RSSI pin to ground. The carrier detect threshold is programmable through the MPU interface (see "Carrier Detect Threshold Programming" in the serial interface section). The range can be scaled by connecting additional external resistance from
the RSSI pin to ground in parallel with the capacitor. From Figure 57, the affect of an external resistor at RSSI on the carrier detect level can be noticed. Since there is hysteresis in the carrier detect comparator, one trip level can be found when the input signal is increased while the another one can be found when the signal is decreased.

Figure 58 represents the RSSI ripple in relation to the RF input for different filtering capacitors at RSSI. Clearly, the higher the capacitor, the less the ripple. However, at low carrier detect thresholds, the ripple might supersede the hysteresis of the carrier detect. The carrier detect output may appear to be unstable. Using a large capacitor will help to stabilize the RSSI level, but RSSI charge time will be affected. Figure 59 shows this relationship.

The user must decide on a compromise between the RSSI ripple and RSSI start-up time. Choose a $0.01 \mu \mathrm{f}$ capacitor as a starting point. For low carrier detect threshold settings, a $0.047 \mu \mathrm{f}$ capacitor is recommended.

RSSI AND CARRIER DETECT

Figure 58. RSSI Ripple versus RF Input Level for Different RSSI Capacitors

Figure 57. Carrier Detect Threshold versus External RSSI Resistor

Figure 59. RSSI Charge Time versus Capacitor Value

RF System Performance

The sensitivity of the IC is typically $0.4 \mu \mathrm{Vrms}$ matched (single ended or differential) with no preamp. To achieve suitable system performance, a preamp and passive duplexer may be used. In production final test, each section of the IC is separately tested to guarantee its system performance in the specific application. The preamp and duplexer (differential, matched input) yields typically -115 dBm @ 12 dB SINAD sensitivity performance under full duplex operation. See Figure 45 and 48.

The duplexer is important to achieve full duplex operation without significant "de-sensing" of the receiver by the transmitter. The combination of the duplexer and preamp circuit should attenuate the transmitter power to the receiver by over 60 dB . This will improve the receiver system noise figure without giving up too much IMD performance.

The duplexer may be a two piece unit offered by Shimida, Sansui, or Toko products (designed for 25 channel CT-0 cordless phone). The duplexer frequency response at the receiver port has a notch at the transmitter frequency band of about 35 to 40 dB with a 2.0 to 3.0 dB insertion loss at the receiver frequency band.

The preamp circuit utilizes a tuned transformer at the output side of the amplifier. This transformer is designed to bandpass filter at the receiver input frequency while rejecting the transmitter frequency. The tuned preamp also improves the noise performance by reducing the bandwidth of the pass band and by reducing the second stage contribution of the 1st mixer. The preamp is biased such that it yields suitable noise figure and gain.

The following matching networks have been used to obtain 12 dB SINAD sensitivity numbers:

Figure 60. Matching Input Networks

Single-ended 50Ω

The exact impedance looking into the RF $\ln 1$ pin is displayed in the following table along with the sensitivity levels.

Figure 61. 12 dB SINAD Sensitivity Levels, US Handset Application Channel 21

	Sensitivity (dBm)	Input Impedance (dBm)
Differential matched	-115.3	$50.2 \pm 0.1 \mathrm{j}$
Single-ended match	-114.8	$50.2 \pm 0.1 \mathrm{j}$
Single-ended 50Ω	-100.1	$50.2 \pm 0.1 \mathrm{j}$

The graphs in Figures 64 to 69 are performance results based on Evaluation Board Schematic (Figure 138). This evaluation board did not use a duplexer or preamp stage. Figure 62 is a summary of the RF performance and Figure 63 contains the French RF Performance Summary.

Figure 62. RF Performance Summary for US Applications
MC13110A/MC13111A (fdev $=3.0 \mathrm{kHz}$, fmod $=1.0 \mathrm{kHz}, 50 \Omega$)

Parameter	Handset	Baseset	Unit
Sensitivity at 12 dB SINAD	-100.1	-100.1	dBm
Recovered Audio	132	132	mVrms
SINAD @ -30 dBm	41.8	41.4	dB
THD @ -30 dBm	0.8	0.8	$\%$
S/N @ -30 dBm	78.2	78.5	dB
AMRR @ -30 dBm	73.4	72.2	dB
RSSI range	>80	>80	dB

Figure 63. RF Performance Summary for US French Applications

MC13110A/MC13111A (fdev = 1.5 kHz, fmod = $\mathbf{1 . 0} \mathbf{~ k H z} \mathbf{5 0} \Omega$)			
Parameter	Handset	Baseset	Unit
Sensitivity at 12 dB SINAD	-91	-90.8	dBm
Recovered Audio	89.8	90	mVrms
SINAD @ -30 dBm	42.1	44.3	dB
THD @ -30 dBm	0.8	0.8	$\%$
S/N @ -30 dBm	75.7	75.1	dB
AMRR @ -30 dBm	56	84.7	dB
RSSI range	>80	>80	dB

MC13110A/B MC13111A/B

RF SYSTEM PERFORMANCE

Figure 64. Typical Receiver Performance
Parameters U.S. Handset Application Channel 21

Figure 66. Typical Performance Parameters Over U.S. Baseset Channel Frequencies

Figure 68. 12 dB SINAD Sensitivity Over US Handset Application Channels

Figure 65. Typical Performance Parameters Over U.S. Handset Channel Frequencies

Figure 67. Typical Receiver Performance for US Handset Application Channel 21

Figure 69. 12 dB SINAD Sensitivity Over US Baseset Application Channels

MC13110A/B MC13111A/B

Receive Audio Path

The R_{X} Audio signal path begins at " $R x$ Audio In" and goes through the IC to "E Out". The "R R_{X} Audio In", "Scr Out", and "E In" pins are all ac-coupled. This signal path consists of filters; programmable R_{X} gain adjust, R_{X} mute, and volume control, and finally the expander. The typical maximum output voltage at "E Out" should be approximately 0 dBV @ THD = 5.0\% .

Figures 71 to 73 represent the receive audio path filter response. The filter response attenuation is very sharp above 3900 Hz , which is the cutoff frequency. Inband (audio), out-of-band, and ripple characteristics are also shown in these graphs.

The group delay (Figure 75) has a peak around 6.5 kHz . This spike is formed by rapid change in the phase at the frequency. In practice this does not cause a problem since the signal is attenuated by at least 50 dB .

The output capability at "Scr Out" and "E Out" are shown in Figures 76, 77, and 78. The results were obtained by increasing the input level for 2.0% distortion at the outputs.

In Figure 70, noise data for the R_{X} audio path is shown. At Scr Out, the noise level clearly rises when the scrambler is
enabled. However, assuming a nominal output level of -20 $\mathrm{dBV}(100 \mathrm{mVrms})$ at the 0 dB gain setting, the noise floor is more than 56 dB below the audio signal. However, the noise data at E Out and SA Out is much more improved.

Speaker Amp

The Speaker Amp is an inverting rail-to-rail operational amplifier. The noninverting input is connected to the internal VB reference. External resistors and capacitors are used to set the gain and frequency response. The "SA In" input pin must be ac-coupled. The typical output voltage at "SA Out" is $2.6 \mathrm{~V}_{\mathrm{pp}}$ with a 130Ω load. The speaker amp response is shown in Figures 79 and 80.

Data Amp Comparator

The data amp comparator is an inverting hysteresis comparator. Its open collector output has an internal $100 \mathrm{k} \Omega$ pull-up resistor. A band pass filter is connected between the "Det Out" pin and the "DA In" pin with component values as shown in the Application Circuit schematic. The "DA In" input signal needs to be ac-coupled, too.

Figure 70. $\mathbf{R X}_{\mathbf{X}}$ Path Noise Data

Receive Scrambler	Receive Gain (dB)	Volume (dB)	SCR_Out (dBV)	E_Out (dBV)	SA_Out (dBV)
off/on	muted	muted	<-95	<-95	<-95
off	-9.0	-14	-92	<-95	<-95
off	0	0	-85	<-95	<-95
off	1.0	16	-76	<-95	<-95
on (MC13110A/B)	-9.0	-14	-85	<-95	<-95
on (MC13110A/B)	0	0	-66	<-95	<-95
on (MC13110A/B)	10	16			

MC13110A/B MC13111A/B

Rx AUDIO

Figure 71. RX Audio Wideband Frequency Response

Figure 73. R $\mathbf{R X}_{\mathbf{X}}$ Audio Ripple Response

Figure 75. $\mathrm{R}_{\mathbf{X}}$ Audio Inband Group Delay

Figure 72. $\mathbf{R X}_{\mathbf{X}}$ Audio Inband Frequency Response

Figure 74. $\mathbf{R}_{\mathbf{X}}$ Audio Inband Phase Response

Figure 76. R $\mathbf{X}_{\mathbf{X}}$ Audio Expander Response

RX AUDIO

Figure 77. RXAudio Maximum Output Voltage versus Gain Control Setting

Figure 79. $\mathbf{R}_{\mathbf{X}}$ Audio Speaker Amplifier Drive

Figure 78. RX Audio Maximum Output Voltage versus Volume Setting

Figure 80. RX Audio Speaker Amplifier Distortion

MC13110A/B MC13111A/B

Transmit Audio Path

This portion of the audio path goes from "C In" to "TX Out". The "C In" pin will be ac-coupled. The audio transmit signal path includes automatic level control (ALC) (also referred to as the Compressor), T_{X} mute, limiter, filters, and T_{X} gain adjust. The ALC provides "soft" limiting to the output signal swing as the input voltage slowly increases. With this technique the gain is slightly lowered to help reduce distortion of the audio signal. The limiter section provides hard limiting due to rapidly changing signal levels, or transients. This is accomplished by clipping the signal peaks. The ALC, T_{x} mute, and limiter functions can be enabled or disabled via the MPU serial interface. The T_{x} gain adjust can also be remotely controlled to set different desired signal levels. The typical maximum output voltage at " T_{x} Out" should be approximately 0 dBV @ THD = 5.0\%.

Figures 82 to 86 represent the transmit audio path filter response. The filter response attenuation, again, is very definite above 3800 Hz . This is the filter cutoff frequency. Inband (audio), wideband, and ripple characteristics are also shown in these graphs.

The compressor transfer characteristics, shown in Figure 87, has three different slopes. A typical compressor slope can be found between -55 and -15 dBV . Here the slope is 2.0. At an input level above -15 dBV the automatic level control (ALC) function is activated and prevents hard clipping of the output. The slope below -55 dBV input level is one. This is where the compressor curve ends. Above 5.0 dBV the output actually begins to decrease and distort. This is due to supply voltage limitations.

In Figure 88 the ALC function is off. Here the compressor curve continues to increase above -15 dBV up to -4.0 dBV .

The limiter begins to clip the output signal at this level and distortion is rapidly rising. Similarly, Figure 68 (ALC and Limiter Off) shows to compressor transfer curve extending all the way up to the maximum output. Finally, Figure 90 through 93 show the T_{X} Out signal versus several combinations of ALC and Limiter selected.

Figure 81 is the noise data measured for the MC13110A/13111A. This data is for 0 dB gain setting and -20 dBV (100 mVrms) audio levels.

Figure 81. $\mathrm{T}_{\mathbf{x}}$ Path Noise Data

Transmit Scrambler	Transmit Gain (dB)	Amp_Out (dBV)	$\mathbf{T}_{\mathbf{x} _ \text {Out }}$ (dBV)
off/on	muted	muted	<-95
off	-9.0	<-95	-83
off	0	<-95	-74
off	10	<-95	-64
on (MC13110A)	-9.0	<-95	-82
on (MC13110A)	0	<-95	-73
on (MC13110A)	10	$-<-95$	-63

Mic Amp

Like the Speaker Amp the Mic Amp is also an inverting rail-to-rail operational amplifier. The noninverting input terminal is connected to the internal VB reference. External resistors and capacitors are used to set the gain and frequency response. The " $T_{X} \operatorname{In}$ " input is ac-coupled.

MC13110A/B MC13111A/B

TX AUDIO

Figure 82. T_{X} Audio Wideband Frequency Response

Figure 84. $\mathrm{T}_{\mathbf{x}}$ Audio Ripple Response

Figure 86. T_{X} Audio Inband Group Delay

Figure 83. $\mathrm{T}_{\mathbf{x}}$ Audio Inband Frequency Response

Figure 85. T_{X} Audio Inband Phase Response

Figure 87. $\mathrm{T}_{\mathbf{X}}$ Audio Compressor Response

TX AUDIO
Figure 88. T_{X} Audio Compressor Response

Figure 90. $\mathrm{T}_{\mathbf{x}}$ Audio Maximum Output Voltage versus Gain Control Setting

Figure 92. T_{X} Output Audio Response

t , TIME ($\mu \mathrm{s}$)
Figure 91. $\mathrm{T}_{\mathbf{X}}$ Output Audio Response

t , TIME ($\mu \mathrm{s}$)

Figure 93. TX Audio Output Response

$\mathrm{t}, \mathrm{TIME}(\mu \mathrm{s})$

MC13110A/B MC13111A/B

PLL SYNTHESIZER SECTION

PLL Frequency Synthesizer General Description

Figure 95 shows a simplified block diagram of the programmable universal dual phase locked loop (PLL) designed into the MC13110A/B and MC13111A/B IC. This dual PLL is fully programmable through the MCU serial interface and supports most country channel frequencies including USA (25 ch), Spain, Australia, Korea, New Zealand, U.K., Netherlands, France, and China (see channel frequency tables in AN1575, "Worldwide Cordless Telephone Frequencies").

The 2nd local oscillator and reference divider provide the reference frequency signal for the R_{X} and T_{X} PLL loops. The programmed divider value for the reference divider is selected based on the crystal frequency and the desired R_{X} and T_{X} reference frequency values. For the U.K., additional divide by 25 and divide by 4 blocks are provided to allow for generation of the 1.0 kHz and 6.2 kHz reference frequencies.

The 14-bit R_{X} counter is programmed for the desired first local oscillator frequency. The 14 -bit T_{x} counter is programmed for the desired transmit channel frequency. All counters power-up to a set default state for USA channel \#21 using a 10.24 MHz reference frequency crystal (see power-up default latch register state in the Serial Programmable Interface section).

To extend the sensitivity of the 1 st LO for U.S. 25 channel operation, internal fixed capacitors can be connected to the tank circuit through microprocessor programmable control. When designing the external PLL loop filters, it is recommended that the T_{X} and R_{X} phase detectors be considered as current drive type outputs. The loop filter control voltage must be 0.5 V away from either the positive or negative supply rail.

PLL I/O Pin Configurations

The 2nd LO, R_{X} and T_{X} PLL's, and MPU serial interface are powered by the internal voltage regulator at the "PLL $V_{\text {ref" }}$ pin. The "PLL $V_{\text {ref" }}$ pin is the output of a voltage regulator which is powered from the " $V_{C C}$ Audio" power supply pin. It is regulated by an internal bandgap voltage reference. Therefore, the maximum input and output levels for most of the PLL I/O pins (LO2 In, LO2 Out, $\mathrm{R}_{\mathrm{X}} \mathrm{PD}, \mathrm{T}_{\mathrm{X}}$ PD, $\mathrm{T}_{\mathrm{X}} \mathrm{VCO}$) is the regulated voltage at the "PLL Vref" pin. The ESD protection diodes on these pins are also connected to "PLL Vref".

Internal level shift buffers are provided for the pins (Data, Clk, EN, Clk Out) which connect directly to the
microprocessor. The maximum input and output levels for these pins is V_{CC}. Figure 94 shows a simplified schematic of the I/O pins.

Figure 94. PLL I/O Pin Simplified Schematics

PLL Loop Control Voltage Range

The control voltage for the T_{X} and R_{X} loop filters is set by the phase detector outputs which drive the external loop filters. The phase detectors are best considered to have a current mode type output. The output can have three states; ground, high impedance, and positive supply, which in this case is the voltage at "PLL $\mathrm{V}_{\text {ref". When the loop is locked the }}$ phase detector outputs are at high impedance. An exception of this state is for narrow current pulses, referenced to either the positive or negative supply rails. If the loop voltages get within 0.5 V of either rail the linear current output starts to degrade. The phase detector current source was not designed to operate at the supply rails. VCO tuning range will also be limited by this voltage range

The maximum loop control voltage is the "PLL $\mathrm{V}_{\text {ref" }}$ voltage which is 2.5 V . If a higher loop control voltage range is desired, the "PLL $V_{\text {ref" }}$ pin can be pulled to a higher voltage. It can be tied directly to the V_{CC} voltage (with suitable filter capacitors connected close to each pin). When this is done, the internal voltage regulator is automatically disabled. This is commonly used in the telephone base set where an external 5.0 V regulated voltage is available. It is important to remember, that if "PLL $V_{\text {ref }}$ " is tied to $V_{C C}$ and $V_{C C}$ is not a regulated voltage, the PLL loop parameters and lock-up time will vary with supply voltage variation. The phase detector gain constant, $K_{p d}$, will not be affected if the "PLL $V_{\text {ref" }}$ is tied to V_{CC}.

Figure 95. Dual PLL Simplified Block Diagram

MC13110A/B MC13111A/B

Loop Filter Characteristics

Lets consider the following discussion on loop filters. The fundamental loop characteristics, such as capture range, loop bandwidth, lock-up time, and transient response are controlled externally by loop filtering.

Figure 96 is the general model for a Phase Lock Loop (PLL).

Figure 96. PLL Model

Where:
$\mathrm{K}_{\mathrm{pd}}=$ Phase Detector Gain Constant
$K_{f}=$ Loop Filter Transfer Function
$\mathrm{K}_{\mathrm{O}}=$ VCO Gain Constant
$K_{n}=$ Divide Ratio $(1 / N)$
$\mathrm{fi}=$ Input frequency
fo $=$ Output frequency
fo/ $\mathrm{N}=$ Feedback frequency divided by N
From control theory the loop transfer function can be represented as follows:

$$
A=K_{p d} K_{f} K_{o} K_{n} \quad \text { Open loop gain }
$$

K_{pd} can be either expressed as being 2.5 V/4.0 π or $1.0 \mathrm{~mA} / 2.0 \pi$ for the CT-0 circuits. More details about performance of different type PLL loops, refer to Motorola application note AN535.

The loop filter can take the form of a simple low pass filter. A current output, type 2 filter will be used in this discussion since it has the advantage of improved step response, velocity, and acceleration.

The type 2 low pass filter discussed here is represented as follows:

Figure 97. Loop Filter with Additional Integrating Element

From Figure 97, capacitor C1 forms an additional integrator, providing the type 2 response, and filters the discrete current steps from the phase detector output. The function of the additional components R2 and C2 is to create a pole and a zero (together with C 1) around the 0 dB point of the open loop gain. This will create sufficient phase margin for stable loop operation.

In Figure 98, the open loop gain and the phase is displayed in the form of a Bode plot. Since there are two integrating functions in the loop, originating from the loopfilter and the VCO gain, the open loop gain response follows a
second order slope ($-40 \mathrm{~dB} / \mathrm{dec}$) creating a phase of -180 degrees at the lower and higher frequencies. The filter characteristic needs to be determined such that it is adding a pole and a zero around the 0 dB point to guarantee sufficient phase margin in this design (Qp in Figure 98).

Figure 98. Bode Plot of Gain and Phase in Open Loop Condition

The open loop gain including the filter response can be expressed as:

$$
\begin{equation*}
A_{\text {openloop }}=\frac{\mathrm{K}_{\mathrm{pd}} \mathrm{~K}_{\mathrm{o}}(1+\mathrm{jw}(\mathrm{R} 2 \mathrm{C} 2))}{\operatorname{jwK_{n}}\left(\mathrm{jw}\left(1+j w\left(\frac{\mathrm{R} 2 \mathrm{C} 1 \mathrm{C} 2}{\mathrm{C} 1+\mathrm{C} 2}\right)\right)\right)} \tag{1}
\end{equation*}
$$

The two time constants creating the pole and the zero in the Bode plot can now be defined as:

$$
\begin{equation*}
\mathrm{T} 1=\frac{\mathrm{R} 2 \mathrm{C} 1 \mathrm{C} 2}{\mathrm{C} 1+\mathrm{C} 2} \quad \mathrm{~T} 2=\mathrm{R} 2 \mathrm{C} 2 \tag{2}
\end{equation*}
$$

By substituting equation (2) into (1), it follows:

$$
\begin{equation*}
A_{\text {openloop }}=\left(\frac{K_{p d} K_{o} T 1}{w^{2} C 1 K_{n} T 2}\right)\left(\frac{1+j w T 2}{1+j w T 1}\right) \tag{3}
\end{equation*}
$$

The phase margin (phase +180) is thus determined by:

$$
\begin{equation*}
Q_{p}=\arctan (w T 2)-\arctan (w T 1) \tag{4}
\end{equation*}
$$

At $w=w_{p}$, the derivative of the phase margin may be set to zero in order to assure maximum phase margin occurs at w_{p} (see also Figure 98). This provides an expression for w_{p} :

$$
\begin{gather*}
\frac{d Q_{p}}{d w}=0=\frac{T 2}{1+(w T 2)^{2}}-\frac{T 1}{1+(w T 1)^{2}} \tag{5}\\
w=w_{p}=\frac{1}{\sqrt{T 2 T 1}} \tag{6}
\end{gather*}
$$

Or rewritten:

$$
\begin{equation*}
\mathrm{T} 1=\frac{1}{\mathrm{w}_{\mathrm{p}}^{2} \mathrm{~T}_{2}} \tag{7}
\end{equation*}
$$

By substituting into equation (4), solve for T2:

$$
\begin{equation*}
\mathrm{T} 2=\frac{\tan \left(\frac{\mathrm{Q}_{\mathrm{p}}}{2}+\frac{\pi}{4}\right)}{\mathrm{w}_{\mathrm{p}}} \tag{8}
\end{equation*}
$$

By choosing a value for w_{p} and $Q_{p}, T 1$ and $T 2$ can be calculated. The choice of Q_{p} determines the stability of the loop. In general, choosing a phase margin of 45 degrees is a good choice to start calculations. Choosing lower phase margins will provide somewhat faster lock-times, but also generate higher overshoots on the control line to the VCO. This will present a less stable system. Larger values of phase margin provide a more stable system, but also increase lock-times. The practical range for phase margin is 30 degrees up to 70 degrees.

The selection of w_{p} is strongly related to the desired lock-time. Since it is quite complicated to accurately calculate lock time, a good first order approach is:

$$
\begin{equation*}
T_{-} \text {lock } \approx \frac{3}{w_{p}} \tag{9}
\end{equation*}
$$

Equation (9) only provides an order of magnitude for lock time. It does not clearly define what the exact frequency difference is from the desired frequency and it does not show the effect of phase margin. It assumes, however, that the phase detector steps up to the desired control voltage without hesitation. In practice, such step response approach is not really valid. The two input frequencies are not locked. Their phase maybe momentarily zero and force the phase detector into a high impedance mode. Hence, the lock times may be found to be somewhat higher.

In general, w_{p} should be chosen far below the reference frequency in order for the filter to provide sufficient attenuation at that frequency. In some applications, the reference frequency might represent the spacing between channels. Any feedthrough to the VCO that shows up as a spur might affect adjacent channel rejection. In theory, with the loop in lock, there is no signal coming from the phase detector. But in practice leakage currents will be supplied to both the VCO and the phase detector. The external capacitors may show some leakage, too. Hence, the lower w_{p}, the better the reference frequency is filtered, but the longer it takes for the loop to lock.

As shown in Figure 98, the open loop gain at w_{p} is 1 (or 0 dB), and thus the absolute value of the complex open loop gain as shown in equation (3) solves C1:

$$
\begin{equation*}
C 1=\left(\frac{K_{p d} K_{o} T 1}{w^{2} K_{n} T 2}\right) \sqrt{\frac{\left(1+w_{p} T 2\right)^{2}}{\left(1+w_{p} T 1\right)^{2}}} \tag{10}
\end{equation*}
$$

With C1 known, and equation (2) solve C2 and R2:

$$
\begin{gather*}
\mathrm{C} 2=\mathrm{C} 1\left(\frac{\mathrm{~T} 2}{\mathrm{~T} 1}-1\right) \tag{11}\\
\mathrm{R} 2=\frac{\mathrm{T} 2}{\mathrm{C} 2} \tag{12}
\end{gather*}
$$

The VCO gain is dependent on the selection of the external inductor and the frequency required. The free running frequency of the VCO is determined by:

$$
\begin{equation*}
f=\frac{1}{2 \pi \sqrt{L C_{T}}} \tag{13}
\end{equation*}
$$

In which L represents the external inductor value and C_{T} represents the total capacitance (including internal capacitance) in parallel with the inductor. The VCO gain can be easily calculated via the internal varicap transfer curve shown below.
igure 99. Varicap Capacitance versus Control Voltage

As can be derived from Figure 99, the varicap capacitance changes 1.3 pF over the voltage range from 1.0 V to 2.0 V :

$$
\begin{equation*}
\Delta \mathrm{Cvar}=\frac{1.3 \mathrm{pF}}{\mathrm{~V}} \tag{14}
\end{equation*}
$$

Combining (13) with (14) the VCO gain can be determined by:

$$
\mathrm{K}_{\mathrm{O}}=\frac{1}{j w}\left\{\frac{1}{2 \pi \sqrt{\mathrm{~L}\left(\mathrm{C}_{\mathrm{T}}+\frac{\Delta \mathrm{Cvar}}{2}\right)}}-\frac{1}{2 \pi \sqrt{\mathrm{~L}\left(\mathrm{C}_{\mathrm{T}}+\frac{\Delta \mathrm{Cvar}}{2}\right)}}\right\}
$$

(15)

Although the basic loopfilter previously described provides adequate performance for most applications, an extra pole may be added for additional reference frequency filtering. Given that the channel spacing in a CT-0 telephone set is based on the reference frequency, and any feedthrough to

MC13110A/B MC13111A/B

the first LO may effect parameters like adjacent channel rejection and intermodulation. Figure 100 shows a loopfilter architecture incorporating an additional pole.

Figure 100. Loop Filter with Additional Integrating Element

For the additional pole formed by R3 and C3 to be efficient, the cut-off frequency must be much lower than the reference frequency. However, it must also be higher than w_{p} in order not to compromise phase margin too much. The following equations were derived in a similar manner as for the basic filter previously described.

Similarly, it can be shown:
$A_{\text {openloop }}=-\frac{\mathrm{K}_{\text {pd }} \mathrm{K}_{\mathrm{o}}}{\mathrm{K}_{\mathrm{n}} \mathrm{w}^{2}\left((\mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3)-\mathrm{w}^{2} \text { C1C2C3R2R3 }\right)}+\frac{1+j w T 2}{1+j w T 1}$
In which:

$$
\begin{equation*}
\mathrm{T} 1=\frac{(\mathrm{C} 1+\mathrm{C} 2) \mathrm{T} 2+(\mathrm{C} 1 \mathrm{C} 2) \mathrm{T} 3}{\mathrm{C} 1+\mathrm{C} 2+\mathrm{C} 3-\mathrm{w}^{2} \mathrm{C} 1 \mathrm{~T} 2 \mathrm{~T} 3} \tag{17}
\end{equation*}
$$

$\mathrm{T} 2=\mathrm{R} 2 \mathrm{C} 2$

$$
\begin{equation*}
\mathrm{T} 3=\mathrm{R} 3 \mathrm{C} 3 \tag{18}
\end{equation*}
$$

From T1 it can be derived that:

$$
\begin{equation*}
\mathrm{C} 2=\frac{(\mathrm{T} 1+\mathrm{T} 2) \mathrm{C} 3-\mathrm{C} 1\left(\mathrm{~T} 2+\mathrm{T} 3-\mathrm{T} 1+\mathrm{w}^{2} \mathrm{~T} 1 \mathrm{~T} 2 \mathrm{~T} 3\right)}{\mathrm{T} 3-\mathrm{T} 1} \tag{20}
\end{equation*}
$$

In analogy with (10), by forcing the loopgain to $1(0 \mathrm{~dB})$ at w_{p}, we obtain:

$$
\begin{equation*}
\mathrm{C} 1(\mathrm{~T} 1+\mathrm{T} 2)+\mathrm{C} 2 \mathrm{~T} 3+\mathrm{C} 3 T 2=\left(\frac{\mathrm{K}_{\mathrm{pd}} K_{o}}{\mathrm{~K}_{\mathrm{n}} \mathrm{w}^{2}}\right) \sqrt{\frac{1+\left(w_{p} T 2\right)^{2}}{1+\left(w_{p} T 1\right)^{2}}} \tag{21}
\end{equation*}
$$

Solving for C1:

$$
\begin{equation*}
=\frac{(T 2-T 1) T 3 C 3-(T 3-T 1) T 2 C 3+(T 3-T 1)\left(\frac{K_{p d} K_{o} T 1}{w_{p}{ }^{2} K_{n}}\right) \sqrt{\frac{1+\left(w_{p} T 2\right)^{2}}{1+\left(w_{p} T 1\right)^{2}}}}{(T 3-T 1) T 2+(T 3-T 1) T 3-\left(T 2+T 3-T 1+w_{p}{ }^{2} T 1 T 2 T 3\right) T 3} \tag{22}
\end{equation*}
$$

By selecting w_{p} via (9), the additional time constant expressed as T3, can be set to:

$$
\begin{equation*}
\mathrm{T} 3=\frac{1}{\mathrm{Kw}} \tag{23}
\end{equation*}
$$

MC13110A/B MC13111A/B

The K-factor shown determines how far the additional pole frequency will be separated from w_{p}. Selecting too small of a K-factor, the equations may provide negative capacitance or resistor values. Too large of a K-factor may not provide the maximum attenuation.

By selecting R3 to be $100 \mathrm{k} \Omega, \mathrm{C} 3$ becomes known and C1 and C 2 can be solved from the equations. By using equations (8) and (7), time constants T2 and T1 can be derived by selecting a phase margin. Finally, R2 follows from T2 and C2.

The following pages, the loopfilter components are determined for both handset and baseset the US application based on the equations described. Choose K to be approximately five times $w_{p}\left(5.0 w_{p}\right)$.

In an application, w_{p} is chosen to be 20 times less than the reference frequency of 5.0 kHz and the phase margin has
been set to 45 degrees. This provides a lock time according to (9) of about 2.0 ms (order of magnitude). With the adjacent channels spaced at least 15 kHz away, reference feedthrough at w_{p} will not be directly disastrous but still, the additional pole may be added in the loopfilter design for added safety.

In an application, w_{p} is chosen to be 20 times less than the reference frequency of 5.0 kHz and the phase margin has been set to 45 degrees. This provides a lock time according to (9) of about 2.0 ms (order of magnitude). With the adjacent channels spaced at least 15 kHz away, reference feedthrough at w_{p} will not be directly disastrous but still, the additional pole may be added in the loopfilter design for added safety.

Figure 102. Open Loop Response Baseset US with Selected Values

Figure 103. Handset US

Conditions		
$\mathrm{L}=470 \mathrm{uH}$	$\mathrm{F}_{\mathrm{ref}}=5.0 \mathrm{kHz}$	
$\mathrm{RF}=46.77 \mathrm{MHz}$		
VCO center $=36.075 \mathrm{MHz}$	$w_{p}=w_{\text {ref }} / 20$ radians	
Results	Equations	Select
$\mathrm{K}_{\mathrm{pd}}=159.2 \mathrm{uA} / \mathrm{rad}$		
$\mathrm{K} \mathrm{VCO}=3.56 \mathrm{Mrad} / \mathrm{V}$	(14), (15)	
$\mathrm{T} 2=1540 \mu \mathrm{~s}$	(8)	
$\mathrm{T} 1=264 \mu \mathrm{~s}$		
T3 $=91 \mu \mathrm{~s}$	with $\mathrm{K}=7$	
$\mathrm{C} 1=7.6 \mathrm{nF}$	(21)	$\mathrm{C} 1=6.8 \mathrm{nF}$
$\mathrm{C} 2=70.9 \mathrm{nF}$	(20)	$\mathrm{C} 2=68 \mathrm{nF}$
$\mathrm{R} 2=21.7 \mathrm{k} \Omega$	(18)	$\mathrm{R} 2=22 \mathrm{k} \Omega$
$\mathrm{R} 3=100 \mathrm{k} \Omega$	choose:	$\mathrm{R} 3=100 \mathrm{k} \Omega$
C3 $=909.5 \mathrm{pF}$	(19)	$\mathrm{C} 3=1 \mathrm{nf}$

Figure 104. Baseset US

Conditions		
$\mathrm{L}=470 \mathrm{uH}$		
$\mathrm{RF}=49.83 \mathrm{MHz}$	$\mathrm{F}_{\text {ref }}=5.0 \mathrm{kHz}$	
VCO center $=39.135 \mathrm{MHz}$	$\mathrm{Q}_{\mathrm{p}}=45$ degrees	
$\mathrm{w}_{\mathrm{p}}=\mathrm{w}_{\text {ref }} / 20$ radians		

MC13110A/B MC13111A/B
 SERIAL PROGRAMMABLE INTERFACE

Microprocessor Serial Interface

The Data, Clock, and Enable ("Data", "Clk", and "EN" respectively) pins provide a MPU serial interface for programming the reference counters, the transmit and receive channel divide counters, the switched capacitor filter clock counter, and various other control functions. The "Data" and "Clk" pins are used to load data into the MC13111A/B shift register (Figure 109). Figure 105 shows the timing required on the "Data" and "Clk" pins. Data is clocked into the shift register on positive clock transitions.

Figure 105. Data and Clock Timing Requirement

After data is loaded into the shift register, the data is latched into the appropriate latch register using the "EN" pin. This is done in two steps. First, an 8-bit address is loaded into the shift register and latched into the 8-bit address latch register. Then, up to 16-bits of data is loaded into the shift register and latched into the data latch register. It is specified by the address that was previously loaded. Figure 106 shows the timing required on the EN pin. Latching occurs on the negative EN transition.

Figure 106. Enable Timing Requirement

The state of the "EN" pin when clocking data into the shift register determines whether the data is latched into the address register or a data register. Figure 107 shows the address and data programming diagrams. In the data programming mode, there must not be any clock transitions when "EN" is high. The clock can be in a high state (default high) or a low state (default low) but must not have any transitions during the "EN" high state. The convention in these figures is that latch bits to the left are loaded into the shift register first. A minimum of four "Clk" rising edge transition must occur before a negative "EN" transition will latch data or an address into a register.

Figure 107. Microprocessor Interface Programming Mode Diagrams

The MPU serial interface is fully operational within $100 \mu \mathrm{~s}$ after the power supply has reached its minimum level during power-up (see Figure 108). The MPU Interface shift registers and data latches are operational in all four power saving modes; Inactive, Standby, Rx, and Active Modes. Data can be loaded into the shift registers and latched into the latch registers in any of the operating modes.

Figure 108. Microprocessor Serial Interface Power-Up Delay

MC13110A/B MC13111A/B

Data Registers

Figure 109 shows the data latch registers and addresses which are used to select each of each registers. Latch bits to the left (MSB) are loaded into the shift register first. The LSB bit must always be the last bit loaded into the shift register. Bits proceeding the register must be " 0 's" as shown.

Power-Up Defaults for Data Registers

When the IC is first powered up, all latch registers are initialized to a defined state. The device is initially placed in the
R_{X} mode with all mutes active. The reference counter is set to generate a 5.0 kHz reference frequency from a 10.24 MHz crystal. The switched capacitor filter clock counter is set properly for operation with a 10.24 MHz crystal. The T_{X} and R_{X} counter registers are set for USA handset channel frequency, number 21 (Channel 6 for previous FCC 10 Channel Band). Figure 110 shows the initial power-up states for all latch registers.

Figure 109. Microprocessor Interface Data Latch Registers

MC13110A/B MC13111A/B

Figure 110. Latch Register Power-Up Defaults

Register	Count	MSB								LSB							
		15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
T_{x}	9966	-	-	1	0	0	1	1	0	1	1	1	0	1	1	1	0
R_{X}	7215	-	-	0	1	1	1	0	0	0	0	1	0	1	1	1	1
Ref	2048	-	-	0	0	1	0	0	0	0	0	0	0	0	0	0	0
Mode	N/A	-	0	0	0	0	1	1	0	1	1	1	0	1	1	1	1
Gain	N/A	-	0	1	1	1	1	0	1	1	1	1	1	0	1	0	0
$\begin{gathered} \text { SCF } \\ (\mathrm{MC} 13110 \mathrm{~A} / \mathrm{B}) \end{gathered}$	31	-	0	0	0	0	1	1	1	0	0	0	1	1	1	1	1
$\begin{array}{c\|} \hline \text { SCF } \\ (\mathrm{MC} 13111 \mathrm{~A} / \mathrm{B}) \end{array}$	31	-	0	0	0	0	1	1	1	-	-	0	1	1	1	1	1
Aux	N/A	-	-	-	-	-	-	-	-	-	0	0	0	0	0	0	0

NOTE: 12. Bits 6 and 7 in the SCF latch register are "Don't Cares" for the MC13111A/B since this part does not have a scrambler.

T_{X} and R_{X} Counter Registers

The 14 bit T_{X} and R_{X} counter registers are used to select the transmit and receive channel frequencies. In the R_{X} counter there is an "IP3 Increase" bit that allows the ability to trade off increased receiver mixer performance versus reduced power consumption. With "IP3 increase" = <1>, there is about a 10 dB improvement in 1 dB compression and 3rd order intercept for both the 1st and 2nd mixers. However, there is also an increase in power supply current of 1.3 mA . The power-up default for the MC13111A/B is "IP3 Increase" $=\langle 0\rangle$. The register bits are shown in Figure 111.

Reference Counter Register

Reference Counter

Figure 113 shows how the reference frequencies for the R_{X} and T_{X} loops are generated. All countries except the U.K. require that the T_{x} and R_{x} reference frequencies be identical.

In this case, set "U.K. Base Select" and "U.K. Handset Select" bits to " 0 ". Then the fixed divider is set to " 1 " and the T_{X} and R_{X} reference frequencies will be equal to the crystal oscillator frequency divided by the programmable reference counter value.

The U.K. is a special case which requires a different reference frequency value for T_{X} and R_{X}. For U.K. base operation, set "U.K. Base Select" to "1". For U.K. handset operation, set "U.K. Handset Select" to "1". The Netherlands is also a special case. A 2.5 kHz reference frequency is used for both the T_{X} and R_{X} reference and the total divider value required is 4096 . This is larger than the maximum divide value available from the 12-bit reference divider (4095). In this case, set "U.K. Base Select" to " 1 " and set "U.K. Handset Select" to " 1 ". This will give a fixed divide by 4 for both the T_{X} and R_{X} reference. Then set the reference divider to 1024 to get a total divider of 4096.

Figure 111. $\mathbf{R}_{\mathbf{X}}$ and $\mathrm{T}_{\mathbf{X}}$ Counter Register Latch Bits

Figure 112. Reference Counter Register

MC13110A/B MC13111A/B

Figure 113. Reference Counter Register Programming Mode

Figure 114. Reference Frequency and Divider Values

MC13110A/B							
MC13111A/B							
Crystal Frequency	Reference Divider Value	U.K. Base/ Handset Divider	Reference Frequency	SC Filter Clock Divider	SC Filter Clock Frequency	Scrambler Modulation Divider	Scrambler Modulation Frequency
10.24 MHz	2048	1	5.0 kHz	31	165.16 kHz	40	4.129 kHz
10.24 MHz	1024	4	5.0 kHz	31	165.16 kHz	40	4.129 kHz
11.15 MHz	2230	1	5.0 kHz	34	163.97 kHz	40	4.099 kHz
12.00 MHz	2400	1	5.0 kHz	36	166.67 kHz	40	4.167 kHz
11.15 MHz	1784	1	6.25 kHz	34	163.97 kHz	40	4.099 kHz
11.15 MHz	446	4	6.25 kHz	34	163.97 kHz	40	4.099 kHz
11.15 MHz	446	25	1.0 kHz	34	163.97 kHz	40	4.099 kHz

Figure 115. Mode Control Register

Reference Frequency Selection

The " $\mathrm{LO}_{2} \mathrm{In"}$ and " LO_{2} Out" pins form a reference oscillator when connected to an external parallel-resonant crystal. The reference oscillator is also the second local oscillator for the RF Receiver. Figure 114 shows the relationship between different crystal frequencies and reference frequencies for cordless phone applications in various countries. " $\mathrm{LO}_{2} \mathrm{In}$ " may also serve as an input for an externally generated reference signal which is ac-coupled. The switched capacitor filter 6-bit programmable counter must be programmed for the crystal frequency that is selected since this clock is derived from the crystal frequency and must be held constant regardless of the crystal that is selected. The actual switched capacitor clock divider ratio is twice the programmed divider ratio due to the a fixed divide by 2.0 after the programmable counter. The scrambler mixer modulation frequency is the switched capacitor clock divided by 40 for the MC13110A/B.

Mode Control Register

The power saving modes; mutes, disables, volume control, and microprocessor clock output frequency are all
set by the Mode Control Register. Operation of the Control Register is explained in Figures 115 through 119.

Figure 116. Mute and Disable Control Bit Descriptions

ALC Disable	1	Automatic Level Control Disabled
	0	Normal Operation
T_{X} Limiter Disable	1	$\mathrm{~T}_{\mathrm{X}}$ Limiter Disabled
	0	Normal Operation
Clock Disable	1	MPU Clock Output Disabled
(MC13110A/111A)	0	Normal Operation
Clock Disable	1	Don't Care
(MC13110B/111B)	0	Normal Operation
T_{X} Mute	1	Transmit Channel Muted
	0	Normal Operation
R $_{\mathrm{X}}$ Mute	1	Receive Channel Muted
	0	Normal Operation
SP Mute	1	Speaker Amp Muted
	0	Normal Operation

Power Saving Operating Modes

When the MC13110A/B or MC13111A/B are used in a handset, it is important to conserve power in order to prolong battery life. There are five modes of operation for the MC13110A/MC13111A; Active, R ${ }_{X}$, Standby, Interrupt, and Inactive. The MC13110B/MC13111B has three modes of operation. They are Active, R_{X}, and Standby. In the Active mode, all circuit blocks are powered. In the R_{X} mode, all circuitry is powered down except for those circuit sections needed to receive a transmission from the base. In the Standby and Interrupt Modes, all circuitry is powered down except for the circuitry needed to provide the clock output for the microprocessor. In the Inactive Mode, all circuitry is powered down except the MPU serial interface. Latch memory is maintained in all modes. All mode functions are the same for the MC13110B/MC13111B, except that there is no Inactive mode. With the " B " version the MPU Clock is always running so that there can never be a register reset if the memory is disturbed. Figure 118 shows the control register bit values for selection of each power saving mode and Figure 118 shows the circuit blocks which are powered in each of these operating modes.

Figure 117. Power Saving Mode Selection

Stdby Mode Bit	$\mathbf{R}_{\mathbf{X}}$ Mode Bit	"CD Out/ Hardware Interrupt" Pin	Power Saving Mode

MC13110A/MC13111A

0	0	X	Active
0	1	X	R_{X}
1	0	X	Standby
1	1	1 or High Impedance	Inactive
1	1	0	Interrupt

MC13110B/MC13111B [Note 14]

0	0	X	Active
0	1	X	R_{X}
1	X	X	Standby
1	1	0	Interrupt

NOTES: 13. " X " is a don't care
14. MPU Clock Out is "Always On"

Figure 118. Circuit Blocks Powered During Power Saving Modes

Circuit Blocks	MC13110A/MC13111A			Inactive
	MC13110B/MC13111B			
	Active	$\mathbf{R}_{\mathbf{X}}$	Standby	
"PLL Vref" Regulated Voltage	X	X	X1	X1, 2
MPU Serial Interface	X	X	X	x^{2}
2nd LO Oscillator	X	X	X	
MPU Clock Output	X	X	X	
RF Receiver and 1st LO VCO	X	X		
R ${ }_{\text {PLL }}$	X	X		
Carrier Detect	X	X		
Data Amp	X	X		
Low Battery Detect	X	X		
T_{X} PLL	X			
R_{X} and T_{X} Audio Paths	X			

NOTES: 15. In Standby and Inactive Modes, "PLL V ref" remains powered but is not regulated. It will fluctuate with V_{CC}.
16. There is no Inactive mode for MC13110B/MC13111B.

Power Saving Application - Option 1 (MC13110B and

 MC13111B Only)When the handset is in standby, power can be reduced by entering a "low power" mode and periodically switching to "sniff" mode to check for incoming calls. Figure 119. shows an application where the "Clk Out" pin provides the clock for the MPU. In this application, the 2nd LO and MPU clock run continuously. The MPU maintains control at all times and sets the timing for transitions into the "sniff" mode. Power is saved in the low power mode by putting the MC13110B/MC13111B into its "Standby" mode. Only the 2nd LO and MPU clock divider are active. By programming the MPU clock divider to a large divide value of 20,80 , or 312.5 this will reduce the MPU clock frequency and save power in the MPU.

MC13110A/B MC13111A/B

Power Saving Application - Option 2 (MC13110A and MC13111A Only)

In some handset applications it may be desirable to power down all circuitry including the microprocessor (MPU). First put the MC13110A/MC13111A into the Inactive mode. This turns off the MPU Clock Output (see Figure 120) and disables the microprocessor. Once a command is given to switch the IC into an "Inactive" mode, the MPU Clock output will remain active for a minimum of one reference counter cycle (about $200 \mu \mathrm{~s}$) and up to a maximum of two reference counter cycles (about $400 \mu \mathrm{~s}$). This is performed in order to give the MPU adequate time to power down.

An external timing circuit should be used to initiate the turn-on sequence. The "CD Out" pin has a dual function. In the Active and R_{X} modes it performs the carrier detect function. In the Standby and Inactive modes the carrier detect circuit is disabled and the "CD Out" pin is in a "High" state, because of an external pull-up resistor. In the Inactive mode, the "CD Out" pin is the input for the hardware interrupt function. When the "CD Out" pin is pulled "low", by the external timing circuit, the IC switches from the Inactive to the Interrupt mode. Thereby turning on the MPU Clock Output. The MPU can then resume control of the IC. The "CD Out" pin must remain low until the MPU changes the operating mode from Interrupt to Standby, Active, or R_{X} modes.

Figure 119. Power Saving Application - Option 1

MC13110A/B MC13111A/B

Figure 120. Power Saving Application - Option 2 (MC13110A/MC13111A Only)

MPU "Clk Out" Divider Programming

The "Clk Out" signal is derived from the second local oscillator. It can be used to drive a microprocessor (MPU) clock input. This will eliminate the need for a separate crystal to drive the MPU, thus reducing system cost. Figure 121 shows the relationship between the second LO crystal frequency and the
clock output for each divide value. Figure 122 shows the "CIk Out" register bit values. With a 10.24 MHz crystal, the divide by 312.5 gives the same clock frequency as a clock crystal and allows the MPU to display the time on a LCD display without additional external components.

Figure 121. Clock Output Values

Crystal Frequency	Clock Output Divider							
	2	2.5	3	4	5	20	80	312.5
10.24 MHz	5.120 MHz	4.096 MHz	3.413 MHz	2.560 MHz	2.048 MHz	512 kHz	128 kHz	32.768 kHz
11.15 MHz	5.575 MHz	4.460 MHz	3.717 MHz	2.788 MHz	2.230 MHz	557 kHz	139 kHz	35.680 kHz
12.00 MHz	6.000 MHz	4.800 MHz	4.000 MHz	3.000 MHz	2.400 MHz	600 kHz	150 kHz	38.400 kHz

MC13110A/B MC13111A/B

Figure 122. Clock Output Divider

MPU Clk Bit \#2	MPU Clk Bit \#1	MPU Clk Bit \#0	Clk Out Divider Value
0	0	0	2
0	0	1	3
0	1	0	4
0	1	1	5
1	0	0	2.5
1	0	1	20
1	1	0	80
1	1	1	312.5

MPU "Clk Out" Power-Up Default Divider Value

The power-up default divider value is "divide by 5". This provides a MPU clock of about 2.0 MHz after initial power-up. The reason for choosing a relatively low clock frequency at initial power-up is because some microprocessors operate using a 3.0 V power supply and have a maximum clock frequency of 2.0 MHz . After initial power-up, the MPU can change the clock divider value and set the clock to the desired operating frequency. Special care was taken in the design of the clock divider to insure that the
transition between one clock divider value and another is "smooth" (i.e. there will be no narrow clock pulses to disturb the MPU).

MPU "Clk Out" Radiated Noise on Circuit Board

The clock line running between the MC13110A/B or MC13111A/B and the microprocessor has the potential to radiate noise. Problems in the system can occur, especially if the clock is a square wave digital signal with large high frequency harmonics. In order to minimize the radiated noise, a 1000Ω resistor is included on-chip in series with the "Clk Out" output driver. A small capacitor or inductor with a capacitor can be connected to the "Clk Out" line on the PCB to form a one or two pole low pass filter. This filter should significantly reduce noise radiated by attenuating the high frequency harmonics on the signal line. The filter can also be used to attenuate the signal level so that it is only as large as required by the MPU clock input. To further reduce radiated noise, the PCB signal trace length should be kept to a minimum.

Volume Control Programming

The volume control adjustable gain block can be programmed in 2 dB gain steps from -14 dB to +16 dB . The power-up default value for the MC13110A/B and $\mathrm{MC} 13111 \mathrm{~A} / \mathrm{B}$ is 0 dB . (see Figure 123)

Figure 123. Volume Control

Volume Control Bit \#3	Volume Control Bit \#2	Volume Control Bit \#1	Volume Control Bit \#0	Volume Control \#	Gain/Attenuation Amount
0	0	0	0	0	$-14 \mathrm{~dB}$
0	0	0	1	1	-12 dB
0	0	1	0	2	-10 dB
0	0	1	1	3	-8dB
0	1	0	0	4	$-6 \mathrm{~dB}$
0	1	0	1	5	-4dB
0	1	1	0	6	-2 dB
0	1	1	1	7	0 dB
1	0	0	0	8	2 dB
1	0	0	1	9	4 dB
1	0	1	0	10	6 dB
1	0	1	1	11	8 dB
1	1	0	0	12	10 dB
1	1	0	1	13	12 dB
1	1	1	0	14	14 dB
1	1	1	1	15	16 dB

MC13110A/B MC13111A/B

Gain Control Register

The gain control register contains bits which control the T_{x} Voltage Gain, RXVoltage Gain, and Carrier Detect threshold. Operation of these latch bits are explained in Figures 124, 125 and 126.
T_{X} and R_{X} Gain Programming
The T_{X} and R_{X} audio signal paths each have a programmable gain block. If a T_{X} or R_{X} voltage gain, other
than the nominal power-up default, is desired, it can be programmed through the MPU interface. Alternately, these programmable gain blocks can be used during final test of the telephone to electronically adjust for gain tolerances in the telephone system (see Figure 125). In this case, the T_{X} and R_{X} gain register values should be stored in ROM during final test so that they can be reloaded each time the IC is powered up.

Figure 124. Gain Control Latch Bits

Figure 125. T_{X} and R_{X} Gain Control

Gain Control Bit \#4	Gain Control Bit \#3	Gain Control Bit \#2	Gain Control Bit \#1	Gain Control Bit \#0	Gain Control \#	Gain/Attenuation Amount
-	-	-	-	-	<6	-9 dB
0	0	1	1	0	6	-9 dB
0	0	1	1	1	7	-8dB
0	1	0	0	0	8	-7dB
0	1	0	0	1	9	-6 dB
0	1	0	1	0	10	$-5 \mathrm{~dB}$
0	1	0	1	1	11	-4dB
0	1	1	0	0	12	-3dB
0	1	1	0	1	13	-2 dB
0	1	1	1	0	14	-1 dB
0	1	1	1	1	15	0 dB
1	0	0	0	0	16	1 dB
1	0	0	0	1	17	2 dB
1	0	0	1	0	18	3 dB
1	0	0	1	1	19	4 dB
1	0	1	0	0	20	5 dB
1	0	1	0	1	21	6 dB
1	0	1	1	0	22	7 dB
1	0	1	1	1	23	8 dB
1	1	0	0	0	24	9 dB
1	1	0	0	1	25	10 dB
-	-	-	-	-	>25	10 dB

MC13110A/B MC13111A/B

Carrier Detect Threshold Programming

The "CD Out" pin gives an indication to the microprocessor if a carrier signal is present on the selected channel. The nominal value and tolerance of the carrier detect threshold is given in the carrier detect specification section of this document. If a different carrier detect threshold value is desired, it can be programmed through the MPU interface as shown in Figure 126 below. Alternately, the carrier detect threshold can be electronically adjusted during final test of the telephone to reduce the tolerance of the carrier detect
threshold. This is done by measuring the threshold and then by adjusting the threshold through the MPU interface. In this case, it is necessary to store the carrier detect register value in ROM so that the CD register can be reloaded each time the combo IC is powered up. If a preamp is used before the first mixer it may be desirable to scale the carrier detect range by connecting an external resistor from the "RSSI" pin to ground. The internal resistor is $187 \mathrm{k} \Omega$.

Figure 126. Carrier Detect Threshold Control

$\begin{gathered} \text { CD } \\ \text { Bit \#4 } \end{gathered}$	CD Bit \#3	CD Bit \#2	CD Bit \#1	$\begin{gathered} \text { CD } \\ \text { Bit \#0 } \end{gathered}$	CD Control \#	Carrier Detect Threshold
0	0	0	0	0	0	$-20 \mathrm{~dB}$
0	0	0	0	1	1	$-19 \mathrm{~dB}$
0	0	0	1	0	2	$-18 \mathrm{~dB}$
0	0	0	1	1	3	$-17 \mathrm{~dB}$
0	0	1	0	0	4	$-16 \mathrm{~dB}$
0	0	1	0	1	5	$-15 \mathrm{~dB}$
0	0	1	1	0	6	$-14 \mathrm{~dB}$
0	0	1	1	1	7	$-13 \mathrm{~dB}$
0	1	0	0	0	8	$-12 \mathrm{~dB}$
0	1	0	0	1	9	$-11 \mathrm{~dB}$
0	1	0	1	0	10	$-10 \mathrm{~dB}$
0	1	0	1	1	11	$-9 \mathrm{~dB}$
0	1	1	0	0	12	-8dB
0	1	1	0	1	13	-7 dB
0	1	1	1	0	14	$-6 \mathrm{~dB}$
0	1	1	1	1	15	$-5 \mathrm{~dB}$
1	0	0	0	0	16	$-4 \mathrm{~dB}$
1	0	0	0	1	17	$-3 \mathrm{~dB}$
1	0	0	1	0	18	-2 dB
1	0	0	1	1	19	$-1 \mathrm{~dB}$
1	0	1	0	0	20	0 dB
1	0	1	0	1	21	1 dB
1	0	1	1	0	22	2 dB
1	0	1	1	1	23	3 dB
1	1	0	0	0	24	4 dB
1	1	0	0	1	25	5 dB
1	1	0	1	0	26	6 dB
1	1	0	1	1	27	7 dB
1	1	1	0	0	28	8 dB
1	1	1	0	1	29	9 dB
1	1	1	1	0	30	10 dB
1	1	1	1	1	31	11 dB

MC13110A/B MC13111A/B

Clock Divider/Voltage Adjust Register

This register controls the divider value for the programmable switched capacitor filter clock divider, the low battery detect threshold select, the voltage reference adjust, and the scrambler bypass mode (MC13110A/B only). Operation is explained in Figures 127 through 134. The T_{X} and R_{X} Audio bits are don't cares for either the MC13111A or the MC13111B device. However, for the MC13110A/B, these bits are defined. Figure 129 describes the operation. Note the power-up default bit is set to $<0>$, which is the scrambler bypass mode.

Low Battery Detect

The low battery detect circuit can be operated in programmable and non-programmable threshold modes.

The non-programmable threshold mode is only available in the 52 QFP package. In this mode, there are two low battery detect comparators and the threshold values are set by external resistor dividers which are connected to the REF1 and REF2 pins. In the programmable threshold mode, several different threshold levels may be selected through the "Low Battery Detect Threshold Register" as shown in Figure 128. The power-on default value for this register is $\langle 0,0,0\rangle$ and is the non-programmable mode. Figure 130 shows equivalent schematics for the programmable and non-programmable operating modes.

Figure 127. Clock Divider/Voltage Adjust Latch Bits

Figure 128. Low Battery Detect Threshold Selection

Low Battery Detect Threshold Select Bit \#2	Low Battery Detect Threshold Select Bit \#1	Low Battery Detect Threshold Select Bit \#0	Select \#	Operating Mode	Nominal Low Battery Detect Threshold Value (V)
0	0	0	0	Non-Programmable	N/A
0	0	1	1	Programmable	2.850
0	1	0	2	Programmable	2.938
0	1	1	3	Programmable	3.025
1	0	0	4	Programmable	3.200
1	0	1	5	Programmable	3.288
1	1	0	6	Programmable	3.375
1	1	1	7	Programmable	3.463

Figure 129. MC13110A/B Bypass Mode Bit Description (MC13110A/B Only)

T_{X} Scrambler	1	T_{X} Scrambler Post-Mixer LPF and Mixer Bypassed
Bypass	0	Normal Operation with T_{X} Scrambler
R_{X} Scrambler	1	R_{X} Scrambler Post-Mixer LPF and Mixer Bypassed
Bypass	0	Normal Operation R_{X} Scrambler

MC13110A/B MC13111A/B

Figure 130. Low Battery Detect Equivalent Schematics

Non-Programmable Threshold Mode: 52-QFP Package

Programmable Threshold Mode: 48-LQFP Package

Programmable Threshold Mode: 52-QFP Package

MC13110A/B MC13111A/B

Voltage Reference Adjustment

An internal 1.5 V bandgap voltage reference provides the voltage reference for the "BD1 Out" and "BD2 Out" low battery detect circuits, the "PLL $V_{\text {ref" }}$ voltage regulator, the " V_{B} " reference, and all internal analog ground references. The initial tolerance of the bandgap voltage reference is $\pm 6 \%$. The tolerance of the internal reference voltage can be improved to $\pm 1.5 \%$ through MPU serial interface programming. During final test of the telephone, the battery detect threshold is measured. Then, the internal reference voltage value is adjusted electronically through the MPU serial interface to achieve the desired accuracy level. The voltage reference register value should be stored in ROM during final test so that it can be reloaded each time the MC13110A/B or MC13111A/B is powered up (see Figure 131).

Figure 131. Bandgap Voltage Reference Adjustment

Vref Adj. Bit \#3	$V_{\text {ref Adj. }}$ Bit \#2	$V_{\text {ref Adj. }}$ Bit \#1	$V_{\text {reff Adj. }}$ Bit \#0	$V_{\text {ref Adj. }}$ \#	V ref Adj. $^{\text {Amount }}$
0	0	0	0	0	-9.0%
0	0	0	1	1	-7.8%
0	0	1	0	2	-6.6%
0	0	1	1	3	-5.4%
0	1	0	0	4	-4.2%
0	1	0	1	5	-3.0%
0	1	1	0	6	-1.8%
0	1	1	1	7	-0.6%
1	0	0	0	8	$+0.6 \%$
1	0	0	1	9	$+1.8 \%$
1	0	1	0	10	$+3.0 \%$
1	0	1	1	11	$+4.2 \%$
1	1	0	0	12	$+5.4 \%$
1	1	0	1	13	$+6.6 \%$
1	1	1	0	14	$+7.8 \%$
1	1	1	1	15	$+9.0 \%$

Switched Capacitor Filter Clock Programming
A block diagram of the switched capacitor filter clock divider is show in Figure 132. There is a fixed divide by 2 after the programmable divider. The switched capacitor filter clock value is given by the following equation;

$$
\text { (SCF Clock) }=\text { F(2nd LO) / (SCF Divider Value * 2). }
$$

The scrambler modulation clock frequency (SMCF) is proportional to the SCF clock. The following equation defines its value:
SMCF = (SCF Clock)/40

The SCF divider should be set to a value which brings the SCF Clock as close to 165.16 kHz as possible. This is based on the 2nd LO frequency which is chosen in Figure 114.

Figure 132. SCF Clock Divider Circuit

Corner Frequency Programming for MC13110A/B and MC13111A/B

Four different corner frequencies may be selected by programming the SCF Clock divider as shown in Figures 133 and 134. It is important to note, that all filter corner frequencies will change proportionately with the SCF Clock Frequency and Scrambler Modulation Frequency. The power-up default SCF Clock divider value is 31 .

Figure 133. Corner Frequency Programming for 10.240 MHz 2nd LO

MC13110A/B							
MC13111A/B							
SCF Clock Divider	Total Divide Value	SCF Clock Freq. (kHz)	$\begin{gathered} \mathbf{R}_{\mathbf{X}} \text { Upper } \\ \text { Corner } \\ \text { Frequency }(\mathbf{k H z}) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathbf{x}} \text { Upper } \\ \text { Corner } \\ \text { Frequency (kHz) } \end{gathered}$	Scrambler Modulation Frequency (Clk/40) (kHz)	Scrambler Lower Corner Frequency (Hz)	Scrambler Upper Corner Frequency (kHz)
29	58	176.55	4.147	3.955	4.414	267.2	3.902
30	60	170.67	4.008	3.823	4.267	258.3	3.772
31	62	165.16	3.879	3.700	4.129	250.0	3.650
32	64	160.00	3.758	3.584	4.000	242.2	3.536

NOTE: 18. All filter corner frequencies have a tolerance of $\pm 3 \%$.
19. R_{X} and T_{X} Upper Corner Frequencies are the same corner frequencies for the MC13110A/B in scrambler bypass

MC13110A/B MC13111A/B

Figure 134. Corner Frequency Programming for 11.15 MHz 2nd LO

MC13110A/B							
MC13111A/B					Scrambler Modulation Frequency (Clk/40) (kHz)	Scrambler Lower Corner Frequency (Hz)	Scrambler Upper Corner Frequency (kHz)
SCF Clock Divider	Total Divide Value	SCF Clock Freq. (kHz)	$\begin{gathered} \mathrm{R}_{\mathrm{X}} \text { Upper } \\ \text { Corner } \\ \text { Frequency (kHz) } \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathbf{X}} \text { Upper } \\ \text { Corner } \\ \text { Frequency (kHz) } \end{gathered}$			
32	64	174.22	4.092	3.903	4.355	263.7	3.850
33	66	168.94	3.968	3.785	4.223	255.7	3.733
34	68	163.97	3.851	3.673	4.099	248.2	3.624
35	70	159.29	3.741	3.568	3.982	241.1	3.520

NOTES: 20. All filter corner frequencies have a tolerance of $\pm 3 \%$.
21. R_{X} and T_{X} Upper Corner Frequencies are the same corner frequencies for the MC13110A/B in scrambler bypass

Figure 135. Auxiliary Register Latch Bits

Figure 136. Digital Test Mode Description

TM \#	TM 2	TM 1	TM 0	Counter Under Test or Test Mode Option	"T $\mathbf{T}_{\mathbf{X}} \mathbf{V C O}_{\mathbf{C O}}$ Input Signal	"CIk Out" Output Expected

Auxiliary Register

The auxiliary register contains a 4-bit First LO Capacitor Selection latch and a 3-bit Test Mode latch. Operation of these latch bits are explained in Figures 135, 136 and 137.

Test Modes

Test modes are be selected through the 3-bit Test Mode Register. In test mode, the " $\mathrm{T}_{\mathrm{X}} \mathrm{VCO}$ " input pin is multiplexed to the input of the counter under test. The output of the counter under test is multiplexed to the "Clk Out" output pin so that each counter can be individually tested. Make sure test mode bits are set to "0's" for normal operation. Test mode operation is described in Figure 136. During normal operation, the " T_{x} VCO" input can be a minimum of 200 mVpp at 80 MHz and should be AC coupled. Input signals should be standard logic levels of 0 to 2.5 V and a maximum frequency of 16 MHz .

First Local Oscillator Programmable Capacitor Selection

There is a very large frequency difference between the minimum and maximum channel frequencies in the 25 Channel U.S. standard. The internal varactor adjustment
range is not large enough to accommodate this large frequency span. An internal capacitor with 15 programmable capacitor values can be used to cover the 25 channel frequency span without the need to add external capacitors and switches. The programmable internal capacitor can also be used to eliminate the need to use an external variable capacitor to adjust the 1st LO center frequency during telephone assembly. Figure 32 shows the schematic of the 1st LO tank circuit. Figure 137 shows the register control bit values.

The internal programmable capacitor is composed of a matrix bank of capacitors that are switched in as desired. Programmable capacitor values between about 0 and 16 pF can be selected in steps of approximately 1.1 pF . The internal parallel resistance values in the table can be used to calculate the quality factor (Q) of the oscillator if the Q of the external inductor is known. The temperature coefficient of the varactor is $0.08 \% /{ }^{\circ} \mathrm{C}$. The temperature coefficient of the internal programmable capacitor is negligible. Tolerance on the varactor and programmable capacitor values is $\pm 15 \%$.

Figure 137. First Local Oscillator Internal Capacitor Selection

1st LO Cap. Bit 3	1st LO Cap. Bit 2	1st LO Cap. Bit 1	1st LO Cap. Bit 0	1st LO Cap. Select	Internal Programmable Capacitor Value (pF)	Varactor Value over 0.3 to 2.5 V (pF)	Equivalent Internal Parallel Resistance at $40 \mathrm{MHz}(\mathrm{k} \Omega)$	Equivalent Internal Parallel Resistance at $51 \mathrm{MHz}(\mathrm{k} \Omega)$
0	0	0	0	0	0.0	9.7 to 5.8	1200	736
0	0	0	1	1	0.6	9.7 to 5.8	79.3	48.8
0	0	1	0	2	1.7	9.7 to 5.8	131	80.8
0	0	1	1	3	2.8	9.7 to 5.8	31.4	19.3
0	1	0	0	4	3.9	9.7 to 5.8	33.8	20.8
0	1	0	1	5	4.9	9.7 to 5.8	66.6	41
0	1	1	0	6	6.0	9.7 to 5.8	49.9	30.7
0	1	1	1	7	7.1	9.7 to 5.8	40.7	25.1
1	0	0	0	8	8.2	9.7 to 5.8	27.1	16.7
1	0	0	1	9	9.4	9.7 to 5.8	21.6	13.3
1	0	1	0	10	10.5	9.7 to 5.8	20.5	12.6
1	0	1	1	11	11.6	9.7 to 5.8	18.6	11.5
1	1	0	0	12	12.7	9.7 to 5.8	17.2	10.6
1	1	0	1	13	13.8	9.7 to 5.8	15.8	9.7
1	1	1	0	14	14.9	9.7 to 5.8	15.3	9.4
1	1	1	1	15	16.0	9.7 to 5.8	14.2	8.7

PCB Board Lay-Out Considerations

The ideal printed circuit board (PCB) lay out would be double-sided with a full ground plane on one side. The ground plane would be divided into separate sections to prevent any audio signal from feeding into the first local oscillator via the ground plane. Leaded components, can likewise, be inserted on the ground plane side to improve shielding and isolation from the circuit side of the PCB. The opposite side of the PCB is typically the circuit side. It has the interconnect traces and surface mount components. In cases where cost allows, it may be beneficial to use multi-layer boards to further improve isolation of components and sensitive sections (i.e. RF and audio). For the CT-0 band, it is also permissible to use single-sided PC layouts, but with continuous full ground fill in and around the components.

The proper placement of certain components specified in the application circuit may be very critical. In a lay-out design, these components should be placed before the other less critical components are inserted. It is also imperative that all RF paths be kept as short as possible. Finally, the MC13110A/B and MC13111A/B ground pins should be tied to ground at the pins and $V_{C C}$ pins should have adequate decoupling to ground as close to the IC as possible. In mixed mode systems where digital and RF/Analog circuitry are present, the VCC and VEE buses need to be ac-decoupled and isolated from each other. The design must also take great caution to avoid interference with low level analog circuits. The receiver can be particularly susceptible to interference as they respond to signals of only a few microvolts. Again, be sure to keep the dc supply lines for the digital and analog portions separate. Avoid ground paths carrying common digital and analog currents, as well.

Component Selection

The evaluation circuit schematics specify particular components that were used to achieve the results shown in the typical curves and tables, but alternate components should give similar results. The MC13110A/B and MC13111A /B IC are capable of matching the sensitivity, IMD, adjacent channel rejection, and other performance criteria of a multi-chip analog cordless telephone system. For the most part, the same external components are used as in the multi-chip solution.

VB and PLL Vref

VB is an internally generated bandgap voltage. It functions as an ac reference point for the operational amplifiers in the audio section as well as for the battery detect circuitry. This pin needs to be sufficiently filtered to reduce noise and prevent crosstalk between R_{X} audio to T_{X} audio signal paths. A practical capacitor range to choose that will minimize crosstalk and noise relative to start up time is $0.5 \mu \mathrm{f}$ to $10 \mu \mathrm{f}$. The start time for a $0.5 \mu \mathrm{f}$ capacitor is approximately 5.0 ms , while a $10 \mu \mathrm{f}$ capacitor is about 10 ms .

The "PLL $V_{r e f " ~}$ pin is the internal supply voltage for the R_{X} and T_{X} PLL's. It is regulated to a nominal 2.5 V . The " V_{CC} Audio" pin is the supply voltage for the internal voltage regulator. Two capacitors with $10 \mu \mathrm{~F}$ and $0.01 \mu \mathrm{~F}$ values must be connected to the "PLL $V_{\text {ref" pin to filter and stabilize this }}$ regulated voltage. The "PLL $V_{\text {ref" }}$ pin may be used to power other IC's as long as the total external load current does not exceed 1.0 mA . The tolerance of the regulated voltage is initially $\pm 8.0 \%$, but is improved to $\pm 4.0 \%$ after the internal Bandgap voltage reference is adjusted electronically through the MPU serial interface. The voltage regulator is turned off in the Standby and Inactive modes to reduce current drain. In these modes, the "PLL $V_{\text {ref" }}$ pin is internally connected to the " $\mathrm{V}_{\text {CC }}$ Audio" pin (i.e., the power supply voltage is maintained but is now unregulated).

It is important to note that the momentary drop in voltage below 2.5 V during this transition may affect initial PLL lock times and also may trigger the reset. To prevent this, the PLL $\mathrm{V}_{\text {ref }}$ capacitor described above should be kept the same or larger than the VB capacitor, say $10 \mu \mathrm{f}$ as shown in the evaluation and application diagrams.

DC Coupling

Choosing the right coupling capacitors for the compander is also critical. The coupling capacitors will have an affect on the audio distortion, especially at lower audio frequencies. A useful capacitor range for the compander timing capacitors is $0.1 \mu \mathrm{f}$ to $1.0 \mu \mathrm{f}$. It is advised to keep the compander capacitors the same value in both the handset and baseset applications.

All other dc coupling capacitors in the audio section will form high pass filters. The designer should choose the overall cut off frequency (-3.0 dB) to be around 200 Hz . Designing for lower cut off frequencies may add unnecessary cost and capacitor size to the design, while selecting too high of a cut off frequency may affect audio quality. It is not necessary or advised to design each audio coupling capacitors for the same cut off frequency. Design for the overall system cut off frequency. (Note: Do not expect the application, evaluation, nor production test schematics to necessarily be the correct capacitor selections.) The goals of these boards may be different than the systems approach a designer must consider.

For the supply pins (VCC Audio and $\mathrm{V}_{\mathrm{CC}} \mathrm{RF}$) choose a 10 μf in parallel with a high quality $0.01 \mu \mathrm{f}$ capacitor. Separation of the these two supply planes is essential, too. This is to prevent interference between the RF and audio sections. It is always a good design practice to add additional coupling on each supply plane to ground as well.

The IF limiter capacitors are recommended to be $0.1 \mu \mathrm{f}$. Smaller values lower the gain of the limiter stage. The -3.0 dB limiting sensitivity and SINAD may be adversely affected.

MC13110A/B MC13111A/B
 APPENDIX A

MC13110A/B MC13111A/B
 APPENDIX A

Figure 139. Evaluation Board Bill of Materials for U.S. and French Application

Comp. Number	USA Application Handset		French Application Base		
	$\begin{gathered} \text { RF } \\ (50 \Omega) \end{gathered}$	RF Matched	$\begin{gathered} \text { RF Crystal } \\ (50 \Omega) \end{gathered}$	$\begin{aligned} & \text { RF Ceramic } \\ & (50 \Omega) \end{aligned}$	RF Matched
INPUT MATCHING					
T1	n.m.	Toko 1:5 292GNS-765A0	n.m.	n.m.	Toko 1:5 292GNS-765A0
C38	0.01	n.m.	0.01	0.01	n.m.
C39	0.01	n.m.	0.01	0.01	n.m.

10.7 MHz FILTER

F1	Ceramic	Ceramic	Crystal	Ceramic	Ceramic
R37	0	0	1.2 k	0	0
R34	360	360	3.01 k	360	360

450 kHz FILTER

F2	4 Element Murata E	4 Element Murata E	4 Element Murata G	4 Element Murata G	4 Element Murata G

DEMODULATOR

L1	Q Coil Toko 7MCS-8128Z	Q Coil Toko 7MCS-8128Z	Ceramic Murata CDBM 450C34	Ceramic Murata CDBM 450C34	Ceramic Murata CDBM 450C34
R28	22.1 k	22.1 k	2.7 k	2.7 k	2.7 k
C28	10 p	10 p	390 p	390 p	390 p

OSCILLATOR

Xtal	10.24 $\mathrm{C} 1=10 \mathrm{p}$	10.24 $\mathrm{C} 1=10 \mathrm{p}$	11.15 $\mathrm{C} 1=18 \mathrm{p}$	11.15 $\mathrm{C} 1=18 \mathrm{p}$	11.15 $\mathrm{C} 1=18 \mathrm{p}$
C 2	18 p	18 p	33 p	33 p	33 p
C 1	$5-25 \mathrm{p}$	$5-25 \mathrm{p}$	$15 \mathrm{p}+5-25 \mathrm{p}$	$15 \mathrm{p}+5-25 \mathrm{p}$	$15 \mathrm{p}+5-25 \mathrm{p}$

FIRST LO

L2	0.47 Toko T1370	0.47 Toko T1370	0.22 Toko T1368	0.22 Toko T1368	0.22 Toko T1368
C40 HS/BS	HS: 27 pF	HS: 27 pF	BS: 100 p	BS: 100 p	BS: 100 p
	BS: 22 pF	BS: 22 pF	HS: 68 pF	HS: 68 pF	HS: 68 pF

LOOP FILTER HANDSET/BASESET

R4a	HS: 0 BS: 0				
R4b	HS: 0				
	BS: 0				
C4	HS: 6800	HS: 6800	HS: 8600	HS: 8600	HS: 8600
	BS: 8200	BS: 8200	BS: 6800	BS: 6800	BS: 6800
R42a	HS: 100 k				
	BS: 100 k				
R42b	HS: 22 k	HS: 22 k	HS: 18 k	HS: 18 k	HS: 18 k
	BS: 18 k	BS: 18 k	BS: 22 k	BS: 22 k	BS: 22 k
C42a	HS: 1000				
	BS: 1000				
C42b	HS: 0068	HS: 0.068	HS: 0082	HS: 0.082	HS: 0.082
	BS: 0.082	BS: 0.082	BS: 0.068	BS: 0.068	BS: 0.068

MC13110A/B MC13111A/B
 APPENDIX B

APPLICATIONS CIRCUIT

MC13110A/B MC13111A/B
 APPENDIX B

Figure 140. Basic Cordless Telephone Transceiver Application Circuit (continued)

MC13110A/B MC13111A/B

APPENDIX C - MEASUREMENT OF COMPANDER ATTACK/DECAY TIME

This measurement definition is based on EIA/CCITT recommendations.

Compressor Attack Time

For a 12 dB step up at the input, attack time is defined as the time for the output to settle to 1.5 X of the final steady state value.

Compressor Decay Time

For a 12 dB step down at the input, decay time is defined as the time for the input to settle to 0.75 X of the final steady state value.

Expander Attack

For a 6.0 dB step up at the input, attack time is defined as the time for the output to settle to 0.57 X of the final steady state value.

Expander Decay

For a 6.0 dB step down at the input, decay time is defined as the time for the output to settle to 1.5 X of the final steady state value.

\qquad

FM Communications Receivers

The MC13135/MC13136 are the second generation of single chip, dual conversion FM communications receivers developed by Motorola. Major improvements in signal handling, RSSI and first oscillator operation have been made. In addition, recovered audio distortion and audio drive have improved. Using Motorola's MOSAICTM 1.5 process, these receivers offer low noise, high gain and stability over a wide operating voltage range.

Both the MC13135 and MC13136 include a Colpitts oscillator, VCO tuning diode, low noise first and second mixer and LO, high gain limiting IF, and RSSI. The MC13135 is designed for use with an LC quadrature detector and has an uncommitted op amp that can be used either for an RSSI buffer or as a data comparator. The MC13136 can be used with either a ceramic discriminator or an LC quad coil and the op amp is internally connected for a voltage buffered RSSI output.

These devices can be used as stand-alone VHF receivers or as the lower IF of a triple conversion system. Applications include cordless telephones, short range data links, walkie-talkies, low cost land mobile, amateur radio receivers, baby monitors and scanners.

- Complete Dual Conversion FM Receiver - Antenna to Audio Output
- Input Frequency Range - 200 MHz
- Voltage Buffered RSSI with 70 dB of Usable Range
- Low Voltage Operation - 2.0 to 6.0 Vdc (2 Cell NiCad Supply)
- Low Current Drain - 3.5 mA Typ
- Low Impedance Audio Output < 25Ω
- VHF Colpitts First LO for Crystal or VCO Operation
- Isolated Tuning Diode
- Buffered First LO Output to Drive CMOS PLL Synthesizer

MC13135 MC13136

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC13135P		Plastic DIP
MC13135DW	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-24L
		Plastic DIP
MC13136P		SO-24L
MC13136DW		

Each device contains 142 active transistors

MC13135 MC13136

MAXIMUM RATINGS

Rating	Pin	Symbol	Value	Unit
Power Supply Voltage	4,19	$\mathrm{~V}_{\mathrm{CC}}(\max)$	6.5	Vdc
RF Input Voltage	22	$\mathrm{RF}_{\text {in }}$	1.0	Vrms
Junction Temperature	-	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Rating	Pin	Symbol	Value	Unit
Power Supply Voltage	4,19	$\mathrm{~V}_{\mathrm{CC}}$	2.0 to 6.0	Vdc
Maximum 1st IF	-	$\mathrm{f}_{\mathrm{IF} 1}$	21	MHz
Maximum 2nd IF	-	$\mathrm{f}_{\mathrm{IF} 2}$	3.0	MHz
Ambient Temperature Range	-	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{O}}=49.7 \mathrm{MHz}, \mathrm{f}_{\mathrm{MOD}}=1.0 \mathrm{kHz}\right.$, Deviation $= \pm 3.0 \mathrm{kHz}, \mathrm{f}_{1} \mathrm{stLO}=39 \mathrm{MHz}, \mathrm{f}_{2 \mathrm{nd}}$ $\mathrm{LO}=10.245 \mathrm{MHz}, \mathrm{IF} 1=10.7 \mathrm{MHz}, \mathrm{IF} 2=455 \mathrm{kHz}$, unless otherwise noted. All measurements performed in the test circuit of Figure 1.)

Characteristic	Condition	Symbol	Min	Typ	Max	Unit
Total Drain Current	No Input Signal	ICC	-	4.0	6.0	mAdc
Sensitivity (Input for 12 dB SINAD)	Matched Input	$\mathrm{V}_{\text {SIN }}$	-	1.0	-	$\mu \mathrm{Vrms}$
Recovered Audio MC13135 MC13136	$\mathrm{V}_{\mathrm{RF}}=1.0 \mathrm{mV}$	AFO_{0}	$\begin{aligned} & 170 \\ & 215 \end{aligned}$	$\begin{aligned} & 220 \\ & 265 \end{aligned}$	$\begin{aligned} & 300 \\ & 365 \end{aligned}$	mVrms
Limiter Output Level (Pin 14, MC13136)		VLIM	-	130	-	mVrms
1st Mixer Conversion Gain	$\mathrm{V}_{\text {RF }}=-40 \mathrm{dBm}$	M $X_{\text {gain1 }}$	-	12	-	dB
2nd Mixer Conversion Gain	$V_{\text {RF }}=-40 \mathrm{dBm}$	M $X_{\text {gain2 }}$	-	13	-	dB
First LO Buffered Output	-	VLO	-	100	-	mVrms
Total Harmonic Distortion	$\mathrm{V}_{\mathrm{RF}}=-30 \mathrm{dBm}$	THD	-	1.2	3.0	\%
Demodulator Bandwidth	-	BW	-	50	-	kHz
RSSI Dynamic Range	-	RSSI	-	70	-	dB
First Mixer 3rd Order Intercept (Input)	Matched Unmatched	TOIMix1	-	$\begin{aligned} & -17 \\ & -11 \end{aligned}$	-	dBm
Second Mixer 3rd Order Intercept (RF Input)	Matched Input	TOIMix2	-	-27	-	dBm
First LO Buffer Output Resistance	-	RLO	-	-	-	Ω
First Mixer Parallel Input Resistance	-	R	-	722	-	Ω
First Mixer Parallel Input Capacitance	-	C	-	3.3	-	pF
First Mixer Output Impedance	-	ZO	-	330	-	Ω
Second Mixer Input Impedance	-	Z	-	4.0	-	$\mathrm{k} \Omega$
Second Mixer Output Impedance	-	zo	-	1.8	-	$\mathrm{k} \Omega$
Detector Output Impedance	-	ZO	-	25	-	Ω

MC13135 MC13136

TEST CIRCUIT INFORMATION

Although the MC13136 can be operated with a ceramic discriminator, the recovered audio measurements for both the MC13135 and MC13136 are made with an LC quadrature detector. The typical recovered audio will depend on the external circuit; either the Q of the quad coil, or the RC matching network for the ceramic discriminator. On the MC13136, an external capacitor between Pins 13 and 14 can be used with a quad coil for slightly higher recovered audio. See Figures 10 through 13 for additional information.

Since adding a matching circuit to the RF input increases the signal level to the mixer, the third order intercept (TOI) point is better with an unmatched input (50Ω from Pin 21 to Pin 22). Typical values for both have been included in the Electrical Characterization Table. TOI measurements were taken at the pins with a high impedance probe/spectrum analyzer system. The first mixer input impedance was measured at the pin with a network analyzer.

Figure 1a. MC13135 Test Circuit

Figure 1b. MC13136 Quad Detector Test Circuit

Figure 2. Supply Current versus Supply Voltage

Figure 4. Varactor Capacitance, Resistance

V_{B}, VARACTOR BIAS VOLTAGE, $\mathrm{V}_{\text {Pin24 }}$ to $\mathrm{V}_{\text {Pin } 23}(\mathrm{Vdc})$

Figure 6. Signal Levels versus RF Input

Figure 3. RSSI Output versus RF Input

Figure 5. Oscillator Frequency versus Varactor Bias

Figure 7. Signal + Noise, Noise, and AM Rejection versus Input Power

Figure 8. Op Amp Gain and Phase versus Frequency

Figure 10. Recovered Audio versus Deviation for MC13135

Figure 12. Recovered Audio versus

Deviation for MC13136

Figure 9. First Mixer Third Order Intermodulation
(Unmatched Input)

Figure 11. Distortion versus Deviation for MC13135

Figure 13. Distortion versus Deviation for MC13136

CIRCUIT DESCRIPTION

The MC13135/13136 are complete dual conversion receivers. They include two local oscillators, two mixers, a limiting IF amplifier and detector, and an op amp. Both provide a voltage buffered RSSI with 70 dB of usable range, isolated tuning diode and buffered LO output for PLL operation, and a separate V_{CC} pin for the first mixer and LO. Improvements have been made in the temperature performance of both the recovered audio and the RSSI.

V_{CC}

Two separate V_{CC} lines enable the first LO and mixer to continue running while the rest of the circuit is powered down. They also isolate the RF from the rest of the internal circuit.

Local Oscillators

The local oscillators are grounded collector Colpitts, which can be easily crystal-controlled or VCO controlled with the on-board varactor and external PLL. The first LO transistor is internally biased, but the emitter is pinned-out and I_{Q} can be increased for high frequency or VCO operation. The collector is not pinned out, so for crystal operation, the LO is generally limited to 3rd overtone crystal frequencies; typically around 60 MHz . For higher frequency operation, the LO can be provided externally as shown in Figure 16.

Buffer

An amplifier on the 1st LO output converts the single-ended LO output to a differential signal to drive the mixer. Capacitive coupling between the LO and the amplifier minimizes the effects of the change in oscillator current on the mixer. Buffered LO output is pinned-out at Pin 3 for use with a PLL, with a typical output voltage of $320 \mathrm{mV}_{\mathrm{pp}}$ at V_{CC} $=4.0 \mathrm{~V}$ and with a 5.1 k resistor from Pin 3 to ground. As seen in Figure 14, the buffered LO output varies with the supply voltage and a smaller external resistor may be needed for low voltage operation. The LO buffer operates up to 60 MHz , typically. Above 60 MHz , the output at Pin 3 rolls off at approximately 6.0 dB per octave. Since most PLLs require about 200 mV pp drive, an external amplifier may be required.

Figure 14. Buffered LO Output Voltage versus Supply Voltage

Mixers

The first and second mixer are of similar design. Both are double balanced to suppress the LO and input frequencies to give only the sum and difference frequencies out. This configuration typically provides 40 to 60 dB of LO suppression. New design techniques provide improved mixer linearity and third order intercept without increased noise. The gain on the output of the 1st mixer starts to roll off at about 20 MHz , so this receiver could be used with a 21 MHz first IF. It is designed for use with a ceramic filter, with an output impedance of 330Ω. A series resistor can be used to raise the impedance for use with a crystal filter, which typically has an input impedance of $4.0 \mathrm{k} \Omega$. The second mixer input impedance is approximately $4.0 \mathrm{k} \Omega$; it requires an external 360Ω parallel resistor for use with a standard ceramic filter.

Limiting IF Amplifier and Detector

The limiter has approximately 110 dB of gain, which starts rolling off at 2.0 MHz . Although not designed for wideband operation, the bandwidth of the audio frequency amplifier has been widened to 50 kHz , which gives less phase shift and enables the receiver to run at higher data rates. However, care should be taken not to exceed the bandwidth allowed by local regulations.

The MC13135 is designed for use with an LC quadrature detector, and does not have sufficient drive to be used with a ceramic discriminator. The MC13136 was designed to use a ceramic discriminator, but can also be run with an LC quad coil, as mentioned in the Test Circuit Information section. The data shown in Figures 12 and 13 was taken using a muRata CDB455C34 ceramic discriminator which has been specially matched to the MC13136. Both the choice of discriminators and the external matching circuit will affect the distortion and recovered audio.

RSSI/Op Amp

The Received Signal Strength Indicator (RSSI) on the MC13135/13136 has about 70 dB of range. The resistor needed to translate the RSSI current to a voltage output has been included on the internal circuit, which gives it a tighter tolerance. A temperature compensated reference current also improves the RSSI accuracy over temperature. On the MC13136, the op amp on board is connected to the output to provide a voltage buffered RSSI. On the MC13135, the op amp is not connected internally and can be used for the RSSI or as a data slicer (see Figure 17c).

MC13135 MC13136

Figure 15. PLL Controlled Narrowband FM Receiver at $46 / 49 \mathrm{MHz}$

Figure 16. 144 MHz Single Channel Application Circuit

Figure 17a. Single Channel Narrowband FM Receiver at 49.7 MHz

Figure 17b. PC Board Component View

NOTES: 1. $0.2 \mu \mathrm{H}$ tunable (unshielded) inductor
2. 39 MHz Series mode resonant 3rd Overtone Crystal
3. $1.5 \mu \mathrm{H}$ tunable (shielded) inductor
4. 10.245 MHz Fundamental mode crystal, 32 pF load
5. 455 kHz ceramic filter, muRata CFU 455B or equivalent
6. Quadrature coil, Toko 7MC-8128Z (7mm) or Toko RMC-2A6597HM (10mm)
7. 10.7 MHz ceramic filter, muRata SFE10.7MJ-A or equivalent

Figure 17c. Optional Data Slicer Circuit
(Using Internal Op Amp)

Figure 18. PC Board Solder Side View

Figure 19. PC Board Component View

NOTES: 1. $0.2 \mu \mathrm{H}$ tunable (unshielded) inductor 2. 39 MHz Series mode resonant 3rd Overtone Crystal
3. $1.5 \mu \mathrm{H}$ tunable (shielded) inductor
4. 10.245 MHz Fundamental mode crystal, 32 pF load
5. 455 kHz ceramic filter, muRata CFU 455B or equivalent
6. Ceramic discriminator, muRata CDB455C34 or equivalent
7. 10.7 MHz ceramic filter, muRata SFE10.7MJ-A or equivalent

Figure 20a. Single Channel Narrowband FM Receiver at 49.7 MHz

Figure 20b. Optional Audio Amplifier Circuit

This device contains 142 active transistors.

Advance Information

Low Power DC - 1.8 GHz LNA, Mixer and VCO

The MC13142 is intended to be used as a first amplifier, voltage controlled oscillator and down converter for RF applications. It features wide band operation, low noise, high gain and high linearity while maintaining low current consumption. The circuit consists of a Low Noise Amplifier (LNA), a Voltage Controlled Oscillator (VCO), a buffered oscillator output, a mixer, an Intermediate Frequency amplifier ($\mathrm{IF}_{\mathrm{amp}}$) and a dc control section. The wide mixer IF bandwidth allows this part also to be used as an up converter and exciter amplifier.

- Wide RF Bandwidth: DC-1.8 GHz
- Wide LO Bandwidth: DC-1.8 GHz
- Wide IF Bandwidth: DC-1.8 GHz
- Low Power: $13 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{CC}}=2.7-6.5 \mathrm{~V}$
- High Mixer Linearity: Pi1.0 dB $=3.0 \mathrm{dBm}$
- Linearity Adjustment Increases $\mathrm{IP}_{3 i n}$ Up to 20 dBm
- Single-Ended 50Ω Mixer Input
- Double Balanced Mixer Operation
- Open Collector Mixer Output
- Single Transistor Oscillator with Collector, Base and Emitter Pinned Out
- Buffered Oscillator Output

LOW POWER DC - 1.8 GHz LNA, MIXER and VCO

SEMICONDUCTOR TECHNICAL DATA

This device contains 176 active transistors.

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC 13142 D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{SO}-16$

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}(}(\max)$	7.0	Vdc
Operating Supply Voltage Range	V_{CC}	2.7 to 6.5	Vdc

NOTE: ESD data available upon request.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{LO}_{\text {in }}=-10 \mathrm{dBm} @ 950 \mathrm{MHz}\right.$, IF @ 50 MHz .)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current (Disable) Pin 15 with Pin 1 @ 0 V Pin 10 and 11 with Pin $1 @ 0$ V Pin 6 with Pin 1 @ 0 V	$\begin{gathered} \text { ICC_Total } \\ \text { ICC_15 } \\ \text { ICC_Mix } \\ \text { ICC_6 } \\ \hline \end{gathered}$	$\begin{gathered} \hline-230 \\ -110 \\ -20 \\ -100 \end{gathered}$	-	$\begin{gathered} 230 \\ 110 \\ 20 \\ 100 \end{gathered}$	$\mu \mathrm{A}$
Supply Current (Enable) Pin 15 with Pin 1 @ 3.0 V Pin 10 with Pin 1 @ 3.0 V Pin 6 with Pin 1 @ 3.0 V	$\begin{gathered} \text { ICC_Total } \\ \text { ICC_15 } \\ \text { ICC_Mix } \\ \text { ICC_6 } \end{gathered}$	$\begin{gathered} 8.25 \\ 1.0 \\ 1.25 \\ 6.0 \end{gathered}$	$\begin{gathered} 13.5 \\ - \\ - \end{gathered}$	$\begin{aligned} & 26 \\ & 4.5 \\ & 7.5 \\ & 14 \end{aligned}$	mA
Amplifier Gain (50 Ω Insertion Gain)	S_{21}	6.5	12	13	dB
Amplifier Reverse Isolation	S_{12}	-	-33	-	dB
Amplifier Input Match	$\Gamma_{\text {in amp }}$	-	-10	-	dB
Amplifier Output Match	$\Gamma_{\text {out amp }}$	-	-15	-	dB
Amplifier 1.0 dB Gain Compression	Pin -1.0 dB	-18	-15	-8.0	dBm
Amplifier Input Third Order Intercept	$\mathrm{IP}_{3}{ }_{\text {n }}$	-	-5.0	-	dBm
Amplifier Noise Figure (Application Circuit)	NF	1.0	1.8	4.0	dB
Amplifier Gain @ N.F.	G_{NF}	-	17	-	dB
Mixer Voltage Conversion Gain ($\mathrm{RP}^{\text {a }} \mathrm{R}_{\mathrm{L}}=800 \Omega$)	VGC	-	9.0	-	dB
Mixer Power Conversion Gain ($\mathrm{RP}^{\text {a }} \mathrm{R}_{\mathrm{L}}=800 \Omega$)	${ }^{P G} \mathrm{C}$	-7.0	-3.0	-2.0	dB
Mixer Input Match	$\Gamma_{\text {in M }}$	-	-20	-	dB
Mixer SSB Noise Figure	NFSSBM	-	12	-	dB
Mixer 1.0 dB Gain Compression	Pin-1.0 dBM	-	3.0	-	dBm
Mixer Input Third Order Intercept	IP3InM	-	-1.0	-	dBm
Oscillator Buffer Drive (50 Ω)	PVco	-19.5	-16	-12	dBm
Oscillator Phase Noise @ 25 kHz Offset	N_{Φ}	-	-90	-	$\mathrm{dBc} / \mathrm{Hz}$
$\mathrm{RF}_{\text {in }}$ Feedthrough to RF_{m}	PRFin-RFm	-	-35	-	dB
RF ${ }_{\text {out }}$ Feedthrough to RF_{m}	PRFout-RFm	-	-35	-	dB
LO Feedthrough to IF	PLO-IF	-	-35	-	dBm
LO Feedthrough to RFin	PLO-RFin	-	-35	-	dBm
LO Feedthrough to RF_{m}	PLO-RFm	-	-35	-	dBm
Mixer RF Feedthrough to IF	PRFm-IF	-	-25	-	dB
Mixer RF Feedthrough to RFin	PRFm-RFin	-	-25	-	dB

MC13142
 CIRCUIT DESCRIPTION

General

The MC13142 is a low power LNA, double-balanced Mixer, and VCO. This device is designated for use as the frontend section in analog and digital FM systems such as Digital European Cordless Telephone (DECT), PHS, PCS, Cellular, UHF and 800 MHz Special Mobile Radio (SMR), UHF Family Radio Services and 902 to 928 MHz cordless telephones. It features a mixer linearity control to preset or auto program the mixer dynamic range, an enable function and a wideband IF so the IC may be used either as a down converter or an up converter. Further details are covered in the Pin by Pin Description which shows the equivalent internal circuit and external circuit requirements.

Current Regulation/Enable

Temperature compensating voltage independent current regulators are controlled by the enable function in which "high" powers up the IC.

Low Noise Amplifier (LNA)

The LNA is internally biased at low supply current (approximately 2.0 mA emitter current) for optimal noise figure and gain. The LNA output is biased internally with a 600Ω resistor to $V_{\text {CC }}$. Input and output matching may be achieved at various frequencies using few external components. Matching the LNA for Maximum stable gain
(MSG) yields noise performance within a few tenths of a dB of the minimum noise figure.

Mixer

The mixer is a double-balanced four quadrant multiplier biased class $A B$ allowing for programmable linearity control via an external current source. An input third order intercept point of 20 dBm may be achieved. All 3 ports of the mixer are designed to work up to 1.8 GHz . The mixer has a 50Ω single-ended RF input and open collector differential IF outputs. An on-board Local Oscillator transistor has the emitter, base and collector pinned out to implement a low phase noise VCO in various configurations. Additionally, a buffered LO output is provided for operation with a frequency synthesizer. The linear gain of the mixer is approximately 0 dB with a SSB noise figure of 12 dB in the IF output circuit configuration shown in the application example.

Local Oscillator

The on-chip transistor operates with coaxial transmission line or LC resonant elements to over 2.0 GHz . Biasing is done with a temperature compensated current source in the emitter and a collector to base internal resistor of $7.6 \mathrm{k} \Omega$; however, an RFC from $V_{C C}$ to base is recommended. The application circuit shows a voltage controlled Clapp oscillator operating at center frequency of 975 MHz .

PIN FUNCTION DESCRIPTION j

Pin			
$\begin{aligned} & 16 \text { Pin } \\ & \text { soIC } \end{aligned}$	Symbol	Equivalent Internal Circuit (20 Pin LQFP)	Description
1	$\begin{aligned} & \text { EN } \\ & \text { E Osc } \end{aligned}$		Enable, E Osc In SO-16, both enables, (for the Oscillator/LO Buffer and LNA/Mixer) are bonded to Pin 1. In the LQFP, two pins are provided, Pin 5, E Osc enables the oscillator and buffer while Pin 4, EN enables the LNA/Mixer. Enable by pulling up to V_{CC} or to greater than $2.0 \mathrm{~V}_{\mathrm{BE}}$.
2	$\mathrm{RF}_{\text {in }}$		RF Input The input is the base of an NPN low noise amplifier. Minimum external matching is required to optimize the input return loss and gain.
3	V_{EE}		VEE - Negative Supply $V_{E E}$ pin is taken to an ample dc ground plane through a low impedance path. The path should be kept as short as possible. A two sided PCB is implemented so that ground returns can be easily made through via holes.
16	$\mathrm{RF}_{\text {out }}$		RF Output The output is from the collector of the LNA; it is internally biased with a 600Ω resistor to V_{CC}. As shown in the 926 MHz application receiver the output is conjugately matched with a shunt L , and series L and C network.
$\begin{aligned} & 4 \\ & 5 \\ & 6 \end{aligned}$	$\begin{aligned} & \text { Osc E } \\ & \text { Osc B } \\ & \text { Osc C } \end{aligned}$		On-Board VCO Transistor The transistor has the emitter, base and collector $+\mathrm{V}_{\mathrm{CC}}$ pins available. Internal biasing which is compensated for stability over temperature is provided. It is recommended that the base pin is pulled up to V_{CC} through an RFC chosen for the particular oscillator center frequency. The application circuit shows a modified Colpitts or Clapp oscillator configuration and its design is discussed in detail in the application section.
$\begin{aligned} & 6 \\ & 8 \end{aligned}$	V_{CC} V_{CC}		Supply Voltage (V_{CC}) Two VCC pins are provided for the Local Oscillator and LO Buffer Amplifier. The operating supply voltage range is from 2.7 Vdc to 6.5 Vdc . In the PCB layout, the V_{CC} trace must be kept as wide as feasible to minimize inductive reactances along the trace. V_{CC} should be decoupled to V_{EE} at the IC pin as shown in the component placement view.
7	LO Buff		Local Oscillator Buffer This is a buffered output providing -16 dBm (50Ω termination) to drive the $f_{\text {in }}$ pin of a PLL synthesizer. Impedance matching to the synthesizer may be necessary to deliver the optimal signal and to improve the phase noise performance of the VCO.

PIN FUNCTION DESCRIPTION (continued)

Pin		Equivalent Internal Circuit (20 Pin LQFP)	
$\begin{aligned} & 16 \text { Pin } \\ & \text { SOIC } \end{aligned}$	Symbol		Description
9, 12	V_{EE}		V_{EE}, Negative Supply These pins are $\mathrm{V}_{\text {EE }}$ supply for the mixer IF output. In the application PC board these pins are tied to a common V_{EE} trace with other V_{EE} pins.
10, 11	IF-, IF+		IF Output The IF is a differential open collector configuration which designed to use over a wide frequency range for up conversion as well as down conversion. Differential to single-ended circuit configuration and matching options are discussed in the application section. 6.0 dB of additional Mixer gain can be achieved by conjugately matching at the desired IF frequency.
13	RF_{m}		Mixer RF Input The mixer input impedance is broadband 50Ω for applications up to 1.8 GHz . It easily interfaces with a RF ceramic filter as shown in the application schematic.
14	Mix Lin Cont		Mixer Linearity Control The mixer linearity control circuit accepts approximately 0 to 2.3 mA control current to set the dynamic range of the mixer. An Input Third Order Intercept Point, IIP3 of 20 dBm may be achieved at 2.3 mA of control current (approximately 7.0 mA of additional supply current).

MC13142

APPLICATIONS INFORMATION

Evaluation PC Board

The evaluation PCB is very versatile and is intended to be used across the entire useful frequency range of this device. The PC board accommodates all SMT components on the circuit side (see Circuit Side Component Placement View). This evaluation board will be discussed and referenced in this section.

Component Selection

The evaluation PC board is designed to accommodate specific components, while also being versatile enough to use components from various manufacturers. The circuit side placement view is illustrated for the components specified in the application circuit. The application circuit schematic specifies particular components that were used to achieve the results given and specified in the tables but alternate components of the same Q and value should give equivalent results.

Figure 1. Application Circuit
(926.5 MHz)

NOTE: *50 Ω Microstrip Transmission Line; length shown in Figure 2.

Figure 2. 900 MHz Circuit Side Component Placement View

NOTES: The PCB is laidout for the 4DFA (2 pole SMD type) and 4DFB (3 pole SMD type) filters which are available for applications in cellular and GSM,GPS (1.2-1.5 GHz), DECT, PHS and PCS (1.8-2.0 GHz) and ISM Bands (902-928 MHz and 2.4-2.5 GHz). In the component placement shown above, the 926.5 MHz dielectric type image filter is used (Toko Part \# 4DFA-926A10).
The PCB also accommodates a surface mount SAW filter in an eight or six pin ceramic package for the cellular base and handset frequencies. Recommended manufacturers are Siemens and Murata.
Traces are provided on the PCB to evaluate the LNA and mixer separately. The component placement view shows external circuit components used for the 926.5 MHz application circuit. Note: some traces must be cut to accommodate placement of components; likewise some traces must be shorted. The voltage controlled oscillator is shown with the varactor referenced to V_{EE} ground. The PCB is modified as shown to do this.
16:1 broadband impedance transformer is mini circuits part \#TX16-R3T; it is in the leadless surface mount "TX" package. Components L and C comprise a low pass filter used to provide narrowband matching at a given IF frequency. For example at $49 \mathrm{MHz} \mathrm{C}=36 \mathrm{p}$ and $\mathrm{L}=330 \mathrm{nH}$.
The microstrip trace on the ground side of the PCB is intended for a microstrip resonator; it is cut free when using a lump inductor as done above.

Input Matching/Components

It is desirable to use a RF ceramic or SAW filter before the mixer to provide image frequency rejection. The filter is selected based on cost, size and performance tradeoffs. Typical RF filters have 3.0 to 5.0 dB insertion loss. The PC board layout accommodates both ceramic and SAW RF filters which are offered by various suppliers such as Siemens, Toko and Murata.

Interface matching between the LNA, RF filter and the mixer will be required. The interface matching networks shown in the application circuit are designed for 50Ω interfaces.

In the application circuit, the LNA is conjugately matched to 50Ω input and output for 3.0 to $5.0 \mathrm{Vdc} \mathrm{V}_{\mathrm{CC}} .17 \mathrm{~dB}$ gain and 1.8 dB noise figure is typical at 926 MHz . The mixer measures 0 dB gain and 12 dB noise figure as shown in the application circuit. Typical insertion loss of the Toko ceramic filter is 3.0 dB . Thus, the overall gain of the frontend receiver is 14 dB with a 3.3 dB noise figure.

System Noise Considerations

The block diagram shows the cascaded noise stages of the MC13142 in the frontend receiver subsystem; it
represents the application circuit. In the cascaded noise analysis the system noise equation is:

Fsystem $=$ F1 $+[(\mathrm{F} 2-1) / \mathrm{G} 1]+[(\mathrm{F} 3-1)] /[(\mathrm{G} 1)(\mathrm{G} 2)]$
where:
F1 = the Noise Factor of the MC13142 LNA
G1 = the Gain of the LNA
F2 = the Noise factor of the RF Ceramic Filter
G2 = the Gain of the Ceramic Filter
F3 = the Noise factor of the Mixer
Note: the above terms are defined as linear relationships and are related to the log form for gain and noise figure by the following:
$\mathrm{F}=\log ^{-1}[(\mathrm{NF}$ in dB$) / 10]$ and similarly
$\mathrm{G}=\log ^{-1}$ [(Gain in dB)/10].
Calculating in terms of gain and noise factor yields the following:
$\mathrm{F} 1=1.51 ; \mathrm{G} 1=50.11$
F2 $=1.99 ; \mathrm{G} 2=0.5$
F3 $=15.85$
Thus, substituting in the equation for system noise factor:
Fsystem $=2.12$; NFsystem $=3.3 \mathrm{~dB}$

Figure 3. Frontend Subsystem Block Diagram for Noise Analysis

Figure 4. Circuit Side View

NOTES: Critical dimensions are 50 mil centers lead to lead in SO-16 footprint. Also line widths to labeled ports excluding V_{CC} are 50 mil (0.050 inch). FR4 PCB, 1/32 inch.

Figure 5. Ground Side View

NOTES: FR4 PCB, 1/32 inch.

1.9 GHz FRONT-END FOR WIRELESS SYSTEMS

This application is applicable to both Analog and Digital systems. With the correct VCO tuning and the appropriate filter, it will do the front-end for DECT, PHS or PCS. The MC13142D is available in a SOIC 16 pin package. The part requires minimal external components, leading to a low cost system. A circuit board layout with a circuit diagram to evaluate the IC is shown. Except for the PLL control, all the wireless systems front-ends will look the same and have the same basic performance characteristic as the test circuit.

Circuit Operation:
 LNA Input/Output

An LC filter is incorporated before the LNA to provide some selectivity. In addition to selectivity, its other function is to match the antenna impedance (50Ω) to the LNA input for best gain and sensitivity (low noise figure). The network reflects about a 200Ω source impedance to the device.

The output circuit is a pie network consisting of; the LNA output capacity, the inductance (the bond wire, package pin and L2), and the input capacity of the dielectric filter, along with some added shunt. A 2.4 pF with Toko 4DFA 2 pole filter. The 2.4 pF is for matching the in-band filter impedance to the LNA output and has little effect on tuning.

Both networks are tuned to band center by adjusting L1 and L2. L1 and L2, as well as L3, are short length of wire formed in a half loop. Once the correct length is determined in
centering the tuning range, adjustment is accomplished by moving the loop toward or away from some conductive surface such as a ground plane.

The dielectric filter is referenced to the dc supply which lessen the parts count and adds distributive capacity for high frequency bypassing. DC feed to the LNA is through a low value resistor (220 to 330Ω) tapped at the filter input, so as not to load the circuit unnecessarily. There is a small voltage drop across the resistor, as well as some signal loss. The signal loss is about 0.73 dB for a 220Ω resistor and less for larger values. If one can not afford the voltage drop, an inductor could replace the resistor at a somewhat increased cost.

Mixer

Looking from the dielectric filter's output, the Mixer input is 50Ω in series with an inductor. This inductor consists of the printed circuit run, the package pin and bond wire, all in series. It is modified, to some extent, by the package pin distributive capacity, but overall at the bandpass frequency remains inductive. Matching the filter impedance to the Mixer input only requires a capacitor with a value that, when placed in series, will resonate with this inductor at the filter bandpass frequency.

The single-ended input signal is converted internally into balanced current signals. The two signals drive the two low impedance inputs (emitters) of a Gilbert Cell. They appear as
current sources to the Cell and can be programmed (via Pin 15) for more current. The current is often adjusted for minimum third order response. In this Fixture it is fixed biased for most conversion gain.

The Mixer circuit is balanced where both oscillator and RF are suppressed. This provides IF signals at Pins 9 and 10 which are equal in amplitude and 180 degrees out of phase. To realize a positive gain one needs to reflect a higher impedance from the load impedance (50Ω for this fixture) to the Mixer output or outputs. Maximum signal transfer would require a balance to unbalance network. Center tapped tuned transformers can perform this function but are quite expensive. If one can afford 3.0 dB less signal, a simple LC circuit at one of the outputs will work well. The other output is unused and bypassed to ground.

The most gain is realized when no shunt capacity is added and $L 4$ is selected to resonate with the terminal capacity. Adding shunt capacity will lower the gain and increase the circuit's bandwidth. A small value series capacitor C4 to the 50Ω output will control the reflected impedance and complete the circuit. L4 and C4 will vary in value depending on the IF frequency.

vco

The base of the device is the source for driving both the Gilbert cell and prescaler buffer stages. Because of this, the oscillator device will operate and drive the Mixer only in the grounded collector configuration. Additional dc bias is added through a $1.3 \mathrm{k} \Omega$ resistor (tapped for minimum VCO loading) to reduce the off-set between base and supply.

The external circuit is a modified Colpitts where the capacitance between base and emitter (Pins 4 and 5), along with a capacitor from emitter to ac ground, forms the circuit capacity and the feedback that sustains oscillations. The effective circuit inductance (looking from the top of the circuit, the transistor base) consist of L3 in series with varactor diode D1 and a blocking capacitor. This circuit must appear inductive for the VCO to operate properly. If the capacity is too small, the feedback ratio is reduced and the VCO can cease oscillating. When it becomes to large, it will not vary the frequency due to the limiting effect of the series loop capacitance.

In this application, the VCO is not required to cover a large tuning range. Limiting the tuning range to no more than is required to cover the band (making allowance for temperature and aging effects) will result in a VCO less susceptible to on board noise sources. To assure oscillation while controlling the tuning range the varactor (plus series capacitor) minimum capacity is chosen to be about equal to the capacity from Pin 5 (transistor base) to RF ground. The maximum tuning ratio could be no greater than 1.41 because the circuit capacity could only double whatever the upper value capacity the varactor attained. An upper limit on the varactor capacity along with the effects of the series capacitor reduces the VCO tuning range to about 1.2 times. The varactors chosen for the test fixtures were Loral KV2111.

The VCO buffer, as most emitter follower circuits, has the potential of generating a parasitic oscillation. When a collector is RF bypassed, a tuned LC circuit is formed consisting of the bypass capacitor, bond wire plus package pin inductance and the device effective output capacity. If the base is low impedance, there is normally enough distributive collector to emitter capacity for the device to oscillate in the common base mode. A simple fix without affecting the buffer otherwise, is to place a small value series resistor in the collector lead. This will lower the Q of the circuit where it cannot sustain oscillations. Without the series resistor at Pin 8 or some other damping element, the buffer will oscillate.

PLL

A phase lock loop is added to the test board to evaluate the VCO. The MC12179 multiplies the crystal reference frequency by 256 to obtain lock. In a frequency agile system, the MC12210 would control the VCO and its reference derived from a crystal. The crystal frequency would be selected to coincide with the required VCO frequencies and channels spacing requirements.

Expected Performance

As stated earlier, the MC13142 performance in any of the systems should mirror the performance obtained in the test fixture. Fixture power gains of 15 dBm and noise figures of 5.5 dB are typical. The Mixer current can be varied to enhances battery life as well as alter its output characteristic for peak performance of a desired or undesired response.

Figure 6. 1.9 GHz Circuit Component Placement View

MC13142

Figure 7. 1.9 GHz Application Circuit

Advance Information

Ultra Low Power DC 2.4 GHz Linear Mixer

The MC13143 is a high compression linear mixer with single-ended RF input, differential IF output and differential LO inputs which consumes as little as 1.8 mW . A new circuit topology is used to achieve a high third order intermodulation intercept point, high linearity and high 1.0 dB output compression point while maintaining a linear 50Ω input impedance. It is designed for Up or Down conversion anywhere from dc to 2.4 GHz .

Ultra Low Power: 1.0 mA @ VCC = 1.8-6.5 V

- Wide Input Bandwidth: DC-2.4 GHz
- Wide Output Bandwidth: DC-2.4 GHz
- Wide LO Bandwidth: DC-2.4 GHz
- High Mixer Linearity: Pi1.0 dB $=3.0 \mathrm{dBm}$

Linearity Adjustment of up to $\mathrm{IP}_{3 \text { in }}=20 \mathrm{dBm}$

- 50Ω Mixer Input
- Single-Ended Mixer Input
- Double Balanced Mixer Operation
- Differential Open Collector Mixer Output

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC13143D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{SO}-8$

MAXIMUM RATINGS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}(\max)$	7.0	Vdc
Junction Temperature	$\mathrm{T}_{\mathrm{Jmax}}$	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

[^16]
ULTRA LOW POWER DC -
 2.4 GHz LINEAR MIXER

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

This device contains 29 active transistors.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Min	Typ	Max	Unit
Power Supply Voltage	$V_{C C}$	1.8	-	6.0	Vdc

DC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{f}_{\mathrm{RF}}=1.0 \mathrm{GHz}\right.$, Pin $=-25 \mathrm{dBm}$.)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current (Lin Control Current $=0$)	ICC1	-	1.0	-	mA
Supply Current (Lin Control Current $=1.6 \mathrm{~mA}$)	ICC2	-	4.1	-	mA

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}\right.$, fRF $=1.0 \mathrm{GHz}$, Pin $\left.=-25 \mathrm{dBm}.\right)$

Characteristic	Symbol	Min	Typ	Max	Unit
Mixer Voltage Conversion Gain ($\mathrm{RP}^{\text {a }} \mathrm{R}_{\mathrm{L}}=800 \Omega$)	VGC	-	9.0	-	dB
Mixer Power Conversion Gain ($\mathrm{RP}_{\mathrm{P}}=\mathrm{R}_{\mathrm{L}}=800 \Omega$)	PGC	-3.5	-2.6	-1.5	dB
Mixer Input Return Loss	$\Gamma^{\text {in }}$ mx	-	-20	-	dB
Mixer SSB Noise Figure	NFSSB	-	14	15	dB
Mixer 1.0 dB Compression Point (Mx Lin Control Current = 1.6 mA)	Pin-1.0 dB	-1	0	-	dBm
Mixer Input Third Order Intercept Point $\left(\mathrm{d}_{\mathrm{f}}=1.0 \mathrm{MHz}, \mathrm{I}_{\text {control }}=1.6 \mathrm{~mA}\right)$	$\mathrm{IP}_{\text {in }}$	-	16	-	dBm
LO Drive Level	LOin	-	-5.0	-	dBm
LO Leakage to Mixer IF Outputs	PLO-IF	-	-33	-25	dB
Mixer Input Feedthrough Output	PRFm-IF	-	-25	-	dB
LO Leakage to Mixer Input	PLO-RFm	-	-40	-25	dB
Mixer Input Leakage to LO	PRFm-LO	-	-35	-	dB

Figure 1. Test Circuit

Figure 2. Power Conversion Gain and Supply Current versus Supply Voltage

Figure 4. Mixer Input Return Loss versus RF Input Frequency

Figure 3. Noise Figure and Gain versus LO Power

Figure 5. Power Conversion Gain and Supply Current versus RF Input Power

Figure 6. Noise Figure and Gain versus RF Frequency

Figure 7. IIP3, Gain, Supply Current versus Mixer Linearity Control Current

CIRCUIT DESCRIPTION

General

The MC13143 is a double-balanced Mixer. This device is designated for use as the frontend section in analog and digital FM systems such as Wireless Local Area Network (LAN), Digital European Cordless Telephone (DECT), PHS, PCS, GPS, Cellular, UHF and 800 MHz Special Mobile Radio (SMR), UHF Family Radio Services and 902 to 928 MHz cordless telephones. It features a mixer linearity control to preset or auto program the mixer dynamic range, an enable function and a wideband IF so the IC may be used either as a down converter or an up converter.

Current Regulation

Temperature compensating voltage independent current regulators provide typical supply current at 1.0 mA with no mixer linearity control current.

Mixer

The mixer is a unique and patented double-balanced four quadrant multiplier biased class $A B$ allowing for programmable linearity control via an external current source. An input third order intercept point of 20 dBm may be achieved. All 3 ports of the mixer are designed to work up to 2.4 GHz. The mixer has a 50Ω single-ended RF input and open collector differential IF outputs (see Internal Circuit Schematic for details). The linear gain of the mixer is approximately -5.0 dB with a SSB noise figure of 12 dB .

Local Oscillator

The local oscillator has differential input configuration that requires typically -10 dBm input from an external source to achieve the optimal mixer gain.

Figure 8. MC13143 Internal Circuit*

NOTE: * The MC13143 uses a unique and patented circuit topology.

MC13143

APPLICATIONS INFORMATION

Evaluation PC Board

The evaluation PCB is very versatile and is intended to be used across the entire useful frequency range of this device. The PC board is laid out to accommodate all SMT components on the circuit side (see Circuit Side Component Placement View).

Component Selection

The evaluation PC board is designed to accommodate specific components, while also being versatile enough to use components from various manufacturers. The circuit side placement view is illustrated for the components specified in the application circuit. The Component Placement View specifies particular components that were used to achieve the results shown in the typical curves and tables.

Mixer Input

The mixer input impedance is broadband 50Ω for applications up to 2.4 GHz . It easily interfaces with a RF ceramic filter as shown in the application schematic.

Mixer Linearity Control

The mixer linearity control circuit accepts approximately 0 to 2.3 mA control current. An Input Third Order Intercept Point, IIP3 of 20 dBm may be achieved at 2.3 mA of control current (approximately 7.0 mA of additional supply current).

Local Oscillator Inputs

The differential LO inputs are internally biased at $\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}_{\mathrm{BE}}$; this is suitable for high voltage and high gain operation.

For low voltage operation, the inputs are taken to V_{CC} through 51Ω

IF Output

The IF is a differential open collector configuration which is designed to use over a wide frequency range for up conversion as well as down conversion.

Input/Output Matching

It is desirable to use a RF ceramic or SAW filter before the mixer to provide image frequency rejection. The filter is selected based on cost, size and performance tradeoffs. Typical RF filters have 3.0 to 5.0 dB insertion loss. The PC board layout accommodates both ceramic and SAW RF filters which are offered by various suppliers such as Siemens, Toko and Murata.

Interface matching between the RF input, RF filter and the mixer will be required. The interface matching networks shown in the application circuit are designed for 50Ω interfaces.

Differential to single-ended circuit configuration is shown in the test circuit. 6.0 dB of additional mixer gain can be achieved by conjugately matching the output of the MiniCircuits transformer to 50Ω at the desired IF frequency. With narrowband IF output matching the mixer performance is 3.0 dB gain and 12 dB noise figure (see Narrowband 49 and 83 MHz IF Output Matching Options). Typical insertion loss of the Toko ceramic filter is 3.0 dB . Thus, the overall gain of the circuit is 0 dB with a 15 dB noise figure.

Figure 9. Narrowband IF Output Matching with 16:1 Z Transformer and LC Network

Figure 10. Circuit Side Component Placement View

NOTES: 926.5 MHz preselect dielectric filter is Toko part \# 4DFA-926A10; the 4DFA (2 and 3 pole SMD type) filters are available for applications in cellular and GSM, GPS, DECT, PHS, PCS and ISM bands at $902-928 \mathrm{MHz}, 1.8-1.9 \mathrm{GHz}$ at $2.4-2.5 \mathrm{GHz}$.
The PCB also accommodates a surface mount RF SAW filter in an eight or six pin ceramic package for the cellular base and handset frequencies. Recommended manufacturers are Siemens and Murata.

The PCB may also be used without a preselector filter; AC coupled to the mixer as shown in the test circuit schematic. All other external circuit components shown in the PCB layout above are the same as used in the test circuit schematic.
16:1 broadband impedance transformer is mini circuits part \#TX16-R3T; it is in the leadless surface mount "TX" package. For a more selective narrowband match, a lowpass filter may be used after the transformer. The PCB is designed to accommodate lump inductors and capacitors in more selective narrowband matching of the mixer differential outputs to a single-ended output at a given IF frequency.
The local oscillator may also be driven in a differential configuration using a coaxial transformer. Recommended sources are the Toko Balun transformers type B4F, B5FL and B5F (SMD component).

MC13143

Figure 11. Circuit Side View

NOTES: Critical dimensions are 50 mil centers lead to lead in SO-8 footprint.
Also line widths to labeled ports excluding V_{CC} are 50 mil.

Figure 12. Ground Side View

Advance Information VHF - 2.0 GHz Low Noise Amplifier with Programmable Bias

The MC13144 is designed in the Motorola High Frequency Bipolar MOSIAC $V^{\text {TM }}$ wafer process to provide excellent performance in analog and digital communication systems. It includes a cascoded LNA usable up to 2.0 GHz and at 1.8 Vdc , with 2 bit digital programming of the LNA bias. Targeted applications are in the UHF Family Radio Services, UHF and 800 MHz Special Mobile Radio, 800 MHz Cellular and GSM, PCS, DECT and PHS at 1.8 to 2.0 GHz and Cordless Telephones in the 902 to 928 MHz band covered by FCC Title 47; Part 15. The MC13144 offers the following features:

- 17 dB Gain at 900 MHz
- 1.4 dB Noise Figure at 900 MHz
- 1.0 dB Compression Point of -7.0 dBm ; Input Third Order Intercept Point of -5.0 dBm
- Low Operating Supply Voltage (1.8 to 6.0 Vdc)
- Programmable Bias with Enable 1 and Enable 2
- Enable 1 and Enable 2 Programmed High for Optimal Noise Figure and Gain Associated with NF
- Can Override Enable and Externally Program In Up to 15 mA

MOSAIC V is a trademark of Motorola, Inc.

VHF - 2.0 GHz LOW NOISE AMPLIFIER WITH PROGRAMMABLE BIAS

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS AND FUNCTIONAL BLOCK DIAGRAM

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC 13144 D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{SO}-8$

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}(\max)$	7.0	Vdc
Junction Temperature	$\mathrm{T}_{\text {Jmax }}$	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES: 1. Devices should not be operated at or outside these values. The "Recommended Operating Conditions" provide for actual device operation.
2. ESD data available upon request.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Min	Typ	Max	Unit
Power Supply Voltage	V_{CC}	1.8	-	6.0	Vdc

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc} ; \mathrm{f}_{\mathrm{RF}}=1.0 \mathrm{GHz} ;\right.$ Pin $\left.=-25 \mathrm{dBm}\right)$

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current (Power Down) (En1 = En2 = Low)	ICC0	-	0.0001	20	$\mu \mathrm{~A}$
Supply Current (Power Up) (En1 = High; En2 = Low)	ICC1	-	1.2	2.0	mA
Supply Current (Power Up) (En1 = High; En2 = Low)	ICC2	-	3.4	5.0	mA
Supply Current (Power Up) (En1 = High; En2 = Low)	ICC3	-	8.2	12	mA

AC ELECTRICAL CHARACTERISTICS $\left(T_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc} ;\right.$ fRF $=1.0 \mathrm{GHz} ;$ Pin $\left.=-25 \mathrm{dBm}\right)$

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Amplifier Gain (50 } \Omega \text { Insertion Gain) } \\ & \text { (En1 = En2 = High) } \end{aligned}$	$\mathrm{S}_{21}{ }^{2}$	-	12	-	dB
Amplifier Reverse Isolation $\text { (En1 = En2 = High })$	S12	-	-35	-	dB
Amplifier Input Return Loss $\text { (En1 = En2 = High })$	$\Gamma \mathrm{in} \mathrm{amp}$	-	-10	-	dB
Amplifier Output Return Loss $\text { (En1 = En2 = High })$	Гoutamp	-	-15	-	dB
$\begin{aligned} & \text { Input 3rd Order Intercept Point (En1 = En2 = High }) \\ & \mathrm{df}=100 \mathrm{kHz} \\ & \mathrm{df}=1.0 \mathrm{MHz} \end{aligned}$	IIP3		$\begin{aligned} & -11 \\ & -5.0 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	dBm
Amplifier Noise Figure (Figure 1; En1 = En2 = High)	NF	-	1.4	2.0	dB
Amplifier Gain @ NF (Figure 1; En1 = En2 = High)	G_{NF}	-	17	-	dB
Amplifier Gain (En1 = En2 = High)	$\mathrm{G}_{\text {ain3 }}$	14	17	-	dB
Amplifier Gain (En1 = High; En2 = Low)	$G_{\text {ain2 }}$	10	13.3	-	dB
Amplifier Gain (En1 = High; En2 = Low)	Gain1	6.0	9.2	-	dB

General

The MC13144 is a low noise amplifier with programmable bias. This device is designated for use in the front end section in analog and digital FM systems such as Wireless Local Area Network (LAN), Digital European Cordless Telephone (DECT), PHS, PCS, GPS, Cellular, UHF and 800 MHz Special Mobile Radio (SMR), UHF Family Radio Services and 902 to 928 MHz cordless telephones.

Current Regulation/Enable

Temperature compensating voltage independent current regulation is digitally controlled by a 2 bit programmable bias/enable circuit.

LNA

The LNA is a unique and patented cascode amplifier with digitally (2 bit) programmable bias (see Internal Circuit Schematic). Typical gain of the LNA is 17 dB for minimum noise figure of 1.4 dB at 900 MHz .

Programmable Bias/Enable Circuit

This unique circuit allows for 3 bias levels and a standby mode in which the LNA can be externally biased as desired.

Figure 1. MC13144 Internal Circuit*

NOTE: * The MC13144 uses a unique and patent pending circuit topology.

APPLICATIONS INFORMATION

Evaluation PC Board

The evaluation PCB is very versatile and is intended to be used across the entire useful frequency range of this device. The PC board layout accommodates all SMT components on the circuit side (see Circuit Side Component Placement View).

Component Selection

The evaluation PC board is laid out for the 4DFA (2 pole SMD Type) and 4DFB (3 pole SMD Type) filters which are available for applications in Cellular and GSM, GPS (1.2 to 1.5 GHz), DECT, PHS and PCS (1.8 to 2.0 GHz) and ISM Bands (902 to 928 MHz and 2.4 to 2.5 GHz). In the 926.5 MHz Application Circuit, a ceramic deielectric filter is used (Toko part \# 4DFA-926A10).

LNA Input/Output

The LNA input impedance is the base of a common emitter cascode amplifier. The LNA output is the collector of the cascode stage and it is loaded with a series resistor of 400Ω and a capacitor of 10 pF to provide stability.

Digitally Programmable Bias/Enable

The LNA is enabled by a 2 bit (En1 and En2) programmable bias circuit. The internal circuit shows the comparator circuit which programs the internal regulator. The logic table below shows the bias and typical performance.
$f=1900 \mathrm{mHz}$

ICC/Gain	En2 Low	En2 High
En1 Low	$0 \mathrm{~mA} /-22 \mathrm{~dB}$	$1.2 \mathrm{~mA} / 7.5 \mathrm{~dB}$
En1 High	$3.4 \mathrm{~mA} / 10 \mathrm{~dB}$	$8.2 \mathrm{~mA} / 13 \mathrm{~dB}$

Input/Output Matching

A typical application at 900 MHz yields 17 dB gain and 1.4 dB noise figure. In this circuit a series inductor of 5.6 nH is used to match the input and a shunt inductor of 8.2 nH which also serves as an RFC and a series capacitor of $0.9 p$ is used to match the LNA output to 50Ω load impedance.

It may be desirable to use a RF ceramic or SAW filter after the LNA when driving a mixer to provide image frequency rejection. The image filter is selected based on cost, size and performance tradeoffs. Typical RF filters have 3.0 to 5.0 dB insertion loss. Interface matching between the RF input, RF filter and the mixer is shown in Application Circuit and the Component Placement View.

A typical application at 1900 MHz yields 13 dB gain and 2.7 dB noise figure. In this circuit a series inductor of 5.6 nH and a series capacitor of 1.0 pF are used to match the input and a shut inductor of 2.0 nH and a series capacitor of 2.0 pF are used to match the LNA output to 50Ω load impedance.
$\mathrm{f}=900 \mathrm{mHz}$

Icc/Gain	En2 Low	En2 High
En1 Low	$0 \mathrm{~mA} /-22 \mathrm{~dB}$	$1.2 \mathrm{~mA} / 9.2 \mathrm{~dB}$
En1 High	$3.4 \mathrm{~mA} / 13 \mathrm{~dB}$	$9.4 \mathrm{~mA} / 17 \mathrm{~dB}$

Figure 2. MC13144D Application Circuit
(926.5 MHz)

MC13144

Figure 3. Typical S-Parameters VCC $=3.0 \mathrm{Vdc} ; \mathrm{En} 1=\mathrm{En} 2=1$

Freq (MHz)	S11 Mag	S11 Ang	S21 Mag	S21 Ang	S12 Mag	S12 Ang	S22 Mag	S22 Ang
100	0.91	-11	4.2	143	0.00028	24	0.80	-10
125	0.92	-14	4.2	136	0.00033	71	0.79	-10
150	0.90	-16	4.2	127	0.0006	60	0.79	-11
175	0.89	-19	4.2	118	0.0011	80	0.78	-12
200	0.89	-22	4.0	108	0.0014	35	0.78	-13
250	0.88	-26	3.8	97	0.0015	39	0.78	-14
300	0.86	-32	4.1	77	0.0022	52	0.78	-17
350	0.85	-36	3.5	59	0.0017	65	.078	-19
400	0.84	-41	3.7	50	0.0024	68	0.79	-21
450	0.83	-46	3.7	26	0.0021	63	0.79	-24
500	0.81	-50	3.2	15	0.0028	56	0.79	-26
550	0.80	-55	3.5	-3.0	0.0027	51	0.80	-29
600	0.79	-59	3.1	-22	0.0038	46	0.81	-32
650	0.77	-63	3.0	-36	0.0057	30	0.82	-35
700	0.77	-67	2.8	-52	0.0067	32	0.83	-39
750	0.77	-72	2.5	-68	0.0095	26	0.83	-43
800	0.76	-77	2.2	-77	0.014	13	0.80	-49
850	0.74	-82	2.2	-86	0.019	12	0.75	-51
900	0.71	-85	2.3	-100	0.020	38	0.73	-51
950	0.69	-88	2.3	-117	0.021	55	0.74	-51
1000	0.67	-91	2.3	-132	0.020	72	0.76	-54
1100	0.67	-98	2.2	-163	0.022	87	0.76	-59
1200	0.66	-106	2.1	168	0.026	107	0.79	-65
1300	0.79	-72	1.9	136	0.030	134	0.64	-73
1400	0.64	-121	1.9	100	0.038	150	0.80	-80
1500	0.62	-128	1.9	74	0.053	170	0.81	-87
1600	0.61	-135	1.7	40	0.068	157	0.82	-96
1700	0.59	-145	1.5	7.0	0.076	120	0.81	-105
1800	0.58	-152	1.4	-24	0.092	97	0.80	-115
1900	0.54	-125	1.2	-57	0.11	59	0.74	-125
2000	0.47	-130	1.0	-79	0.093	195	0.68	-130

Figure 4. Circuit Side Component Placement View

Figure 5. Circuit Side View

NOTES: Critical dimensions are 50 MIL centers lead to lead in SO-8 footprint.
Also line widths to labeled ports excluding V_{CC}, E 1 and E 2 are 50 MIL (0.050 inch $)$.
FR4 PCB, 1/32 inch.

Figure 6. Ground Side View

NOTES: FR4 PCB, 1/32 inch.

Product Preview

Low Power Integrated Receiver for ISM Band Applications

The MC13145 is a dual conversion integrated RF receiver intended for ISM band applications. It features a Low Noise Amplifier (LNA), two 50Ω linear Mixers with linearity control, Voltage Controlled Oscillator (VCO), second LO amplifier, divide by 64/65 dual modulus Prescalar, split IF Amplifier and Limiter, RSSI output, Coilless FM/FSK Demodulator and power down control. Together with the transmit chip (MC13146) and the baseband chip (MC33410), a complete 900 MHz cordless phone system can be implemented. This device may be used in applications within 2.0 GHz since its RF bandwidth is greater than 2.4 GHz .

- Low ($<1.8 \mathrm{~dB}$ @ 900 MHz) Noise Figure LNA with 14 dB Gain
- Externally Programmable Mixer linearity: IIP3 = 10 (nom.) to +20 dBm (Mixer1); IIP3 = 10 (nom.) to 20 dBm (Mixer2)
- 50Ω Mixer Input Impedance and Open Collector Output (Mixer 1 and Mixer 2); 50Ω Second LO (LO2) Input Impedance
- Low Power 64/65 Dual Modulus Prescalar (MC12053 type)
- Split IF for Improved Filtering and Extended RSSI Range
- Internal 330Ω Terminations for 10.7 MHz Filters
- Linear Coilless FM/FSK Demodulator with Externally Programmable Bandwidth, Center Frequency and Audio level
- 2.7 V to 6.5 V Operation, Low Current Drain (<30 mA @ 3.0 V) with Power Down Mode (<1.0 $\mu \mathrm{A}$)
- 2.4 GHz RF, 1.0 GHz IF1 and 50 MHz IF2 Bandwidth

UHF WIDEBAND RECEIVER SUBSYSTEM (LNA, Mixer, VCO, Prescalar, IF Subsystem, Coilless Detector)

ORDERING INFORMATION

Device	Temperature Range	Package
XC13145FTA	-40° to $+85^{\circ} \mathrm{C}$	LQFP- 48

ESD Sensitive - Handle with Care

MC13145

OVERALL RECEIVER SPECIFICATIONS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}(\max)$	7.0	Vdc
Junction Temperature	$\mathrm{T}_{\mathrm{J}}(\max)$	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} 2.7 \text { to } 6.5 \\ 0 \end{gathered}$	Vdc
Input Frequency	$\mathrm{f}_{\text {in }}$	100 to 2000	MHz
Ambient Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Maximum Input Signal Level: - with no damage - with minor performance degradation	$\mathrm{P}_{\text {in }}$	$\begin{gathered} 5.0 \\ -10 \end{gathered}$	dBm

RECEIVER DC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}\right.$; No Input Signal, unless otherwise noted)

Characteristics	Symbol	Typical	Unit
Total Supply Current (Enable $\left.=\mathrm{V}_{\mathrm{CC}}\right)$	$\mathrm{I}_{\text {total }}$	30	mA
Power Down Current $\left(\right.$ Enable $\left.=\mathrm{V}_{\mathrm{EE}}\right)$	$\mathrm{I}_{\text {total }}$	<1.0	$\mu \mathrm{~A}$

RECEIVER AC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc} ; \mathrm{F}_{\mathrm{mod}}=1.0 \mathrm{kHz} ; \mathrm{F}_{\mathrm{dev}}= \pm 25 \mathrm{kHz}\right.$;
IF filter bandwidth $=150 \mathrm{kHz}$, unless otherwise noted)

Characteristics	Symbol	Typical		Unit MHz
		900	1900	
12 dB SINAD Sensitivity (with C-message filter at DetOut)		-115	TBD	dBm
30 dB SINAD Sensitivity (No IF filter distortion within $\pm 40 \mathrm{kHz}$)		-100	TBD	dBm
SINAD Variation with IF Offset of $\pm 40 \mathrm{kHz}$ (No IF filter distortion within $\pm 40 \mathrm{kHz}$)		5.0	TBD	dB
RSSI Dynamic Range		80	TBD	dB
Input 1.0 dB Compression Point(Measured at IF output)	Pin-1dB	-18	TBD	dBm
Input 3rd Order Intercept Point (Measured at IF output)	IIP3	-8.0	TBD	dBm
Demodulator Output Swing (5.0 k Load)		0.5	0.5	$V_{\text {pp }}$
Demodulator Bandwidth ($\pm 1.0 \mathrm{~dB}$ bandwidth)		100	100	kHz
Prescalar Output Level ($10 \mathrm{k} \Omega / / 8.0 \mathrm{pF}$ load)		0.5	0.5	V_{pp}
Modulus Control Input Level		0.5	0.5	V_{pp}
SNR @ -30 dBm Signal Input (<25 kHz deviation;with C-Message Filter)		50	TBD	dB
Total Harmonic Distortion (<25 kHz deviation;with C-Message Filter)		1.0	TBD	\%
Spurious Response SINAD (RF In: -50 dBm)		12	TBD	dB

MC13145

INDIVIDUAL BLOCK SPECIFICATIONS

LOW NOISE AMPLIFIER ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}\right.$, unless otherwise noted)

Characteristics	Symbol	Typical		Unit MHz
		900	1900	
Amplifier Gain	S21	14	TBD	dB
Noise Figure	NF	1.8	TBD	dB
1.0 dB Gain Compression Point	$\mathrm{P}_{\mathrm{in} \text {-1 }} \mathrm{dB}$	-8.0	TBD	dBm
3rd Order Intercept Point	IIP3	-5.0	TBD	dBm
Reverse Isolation	S12	-35	TBD	dB
Input Impedance (with externals)		50	50	Ω
Output Impedance (with externals)		50	50	Ω
Input Match (with externals)	S11	15	TBD	dB
Output Match (with externals)	S22	15	TBD	dB
LO1 to LNA Input Leakage		-45	TBD	dBm

FIRST MIXER ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}\right.$, unless otherwise noted)

Characteristics	Symbol	Typical		Unit MHz
		900	1900	
Power Conversion Gain ($\mathrm{Pin}_{\text {in }}=-30 \mathrm{dBm}$)	Pgc	0	TBD	dB
Noise Figure	NF	13	TBD	dB
1.0 dB Gain Compression Point	$\mathrm{P}_{\text {in }}$-1dB	-1.0	TBD	dBm
3rd Order Intercept Point	IIP3	9.0	TBD	dBm
Input Impedance (single-ended)		50	50	Ω
Output Impedance (differential with externals)		50	50	Ω
Input Match		20	TBD	dB
Output Match (with externals)		20	TBD	dB
RF to IF1 Leakage		-38	TBD	dB
LO to IF1 Leakage		-33	TBD	dBm
LO to RF Leakage		-33	TBD	dBm
Mixer Out to IF in Leakage		-80	TBD	dB

SECOND MIXER ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}$, unless otherwise noted)

Characteristics	Symbol	Typical	Unit
Noise Figure	NF	13	dB
1.0 dB Gain Compression Point	Pin-1dB	-1.0	dBm
3rd Order Intercept Point	$I I P 3$	9.0	dBm
Input Impedance (single-ended)		50	Ω
Output Impedance (differential with externals)		330	Ω
Input Match		20	dB
Output Match (with externals)		20	dB

MC13145

INDIVIDUAL BLOCK SPECIFICATIONS (continued)

LOCAL OSCILLATOR ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}\right.$, unless otherwise noted)

Characteristics	Symbol	Typical		Unit MHz
		900	1900	
LO Emitter Current (Enable = high)		2.0	TBD	mA
Phase Noise @ 10 kHz Offset		-80	-75	$\mathrm{dBc} / \mathrm{Hz}$
Modulation Sideband		-40	TBD	dBc

PRESCALAR ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}\right.$, unless otherwise noted)

Characteristics	Symbol	Typical		Unit MHz
		900	1900	
$\begin{aligned} & \text { Divide Ratio } \\ & -M C=\text { low } \\ & -M C=\text { high } \end{aligned}$		$\begin{aligned} & 65 \\ & 64 \end{aligned}$	$\begin{aligned} & 65 \\ & 64 \end{aligned}$	
Output Impedance		50	50	Ω
Prescalar Output Level (10 k $/ / / 8 \mathrm{pF}$ load)		0.5	0.5	V_{pp}
MC Input Level		0.5	0.5	$V_{\text {pp }}$
MC Current Input (optional)		200	200	$\mu \mathrm{A} p$ p
Prescalar Out to IF Amp and Lim Amp Input Leakage		-85	TBD	dBm

IF AND LIMITING AMPLIFIERS ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}\right.$, unless otherwise noted)

Characteristics	Symbol	Typical	Unit
IF and Lim Amplifier Bandwidth		40	MHz
IF Amplifier Gain		40	dB
IF Amplifier Noise Figure		7.0	dB
IF Input \& Output Impedance		330	Ω
IF Amp Input \& Output Match		20	dB
Limiting Amplifier Gain		85	dB
Lim Amp Input Impedance		330	Ω
Lim Amp Input Match		15	dB
IF Amp Output to Lim Amp Input Leakage (at 10.7 MHz$)$	80	dB	
RSSI Dynamic Range		80	dB
RSSI Slope		0.5	$\mu \mathrm{~A} / \mathrm{dB}$
RSSI Current Range		0 to 40	$\mu \mathrm{~A}$
RSSI Response Time	1.0	$\mu \mathrm{~s}$	

COILLESS DEMODULATOR ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}\right.$,
unless otherwise noted)

Characteristics	Symbol	Typical	Unit
Demodulator Output (at 25 kHz deviation)	DetOut	0.5	$\mathrm{~V}_{\mathrm{pp}}$
Center Frequency		10.7	MHz
Frequency Adjust		<20	MHz
Bandwidth Adjust		100 to 600	kHz
Output Impedance		2000	Ω
Settling Time (assert Enable pin)		TBD	ms

MC13145

Figure 1. Application Diagram

Product Preview

Low Power Integrated Transmitter for ISM Band Applications

The MC13146 is an integrated RF transmitter targeted at ISM band applications. It features a 50Ω linear Mixer with linearity control, voltage controlled oscillator, divide by 64/65 dual modulus Prescaler and Exciter. Together with the receiver chip (MC13145) and the baseband chip (MC33410), a complete 900 MHz cordless phone system can be implemented. This device may be used in applications within 2 GHz since its RF bandwidth is greater than 2.4 GHz .

- Low Distortion Exciter: Pout_1 dB Compression Point $\approx 8 \mathrm{dBm}$
- HIgh Mixer Linearity: IIP3 = 10 dBm
- 50Ω Mixer Input Impedance
- Differential Open Collector Mixer Output
- 20 dB Power Conversion Gain
- Low Power 64/65 Dual Modulus Prescaler (MC12054 type)
- 2.7 to 6.5 V Operation, Low Current Drain (25 mA @ 2.0 GHz)
- Powerdown Mode: $<1.0 \mu \mathrm{~A}$
- 2.4 GHz RF Bandwidth
- 1.8 GHz IF Bandwidth

LOW POWER DC - 2.0 GHz TRANSMITTER

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
XC13146FTA	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	LQFP-24

MC13146

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}(\max)$	7.0	Vdc
Junction Temperature	$\mathrm{T}_{\mathrm{J}}(\max)$	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: ESD data available upon request.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Typ	Max	Unit
Power Supply Voltage $\left(\mathrm{TA}=\mathbf{2 5}^{\circ} \mathrm{C}\right)$	VCC	2.7	-	6.5	Vdc
	VEE	-	0	-	Vdc
RF Frequency Range	fRF	1.0	-	2500	MHz
Ambient Temperature Range	T_{A}	-40	-	85	${ }^{\circ} \mathrm{C}$
Maximum Input Signal Level - with no damage - with minor performace degradation PIF					

TRANSMITTER DC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}\right.$, no input signal, unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Total Supply Current (Enable $\left.=V_{\text {CC }}\right)$	$I_{\text {total }}$	-	25	-	mA
Power Down Current (Enable $\left.=\mathrm{V}_{\mathrm{EE}}\right)$	$I_{\text {total }}$	-	0.1	-	$\mu \mathrm{A}$

TRANSMITTER AC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}\right.$, Enable $=3.0 \mathrm{Vdc}$, unless otherwise noted)

Characteristics	Symbol	Min	Typ	Max	Unit	
Output Power (with external matching)	$\mathrm{PA}_{\text {_ }} \mathrm{P}_{0}$	-	0	-	dBm	
Distortion (@820 MHz = fiF_out) (Note 1)	P1dBC.Pt.	-	8.0	-	dBm	
Mixer/Buffer (@ $900 \mathrm{MHz}=\mathrm{f}_{\text {osc }}$) (Note 1)	$\mathrm{P}_{\text {Mx/Buf_out }}$	-	-18	-	dBm	
Output Harmonics (with external matching @ 820 MHz) 2nd 3rd	$\begin{aligned} & P_{A-2 f} \\ & P_{A}-3 f \end{aligned}$		$\begin{aligned} & -25 \\ & -35 \end{aligned}$		$\begin{aligned} & \mathrm{dBc} \\ & \mathrm{dBc} \end{aligned}$	
VCO Phase Noise (@ 10 kHz offset) (Note 1)		-	-80	-	$\mathrm{dBc} / \mathrm{Hz}$	
Mixer/Buffer Output Impedance		-	50	-	Ω	
Prescalar Output Level (10 k \|	8.0 pF load)		-	0.5	-	V_{pp}
MC Current Input (optional)		-	200	-	$\mu \mathrm{A}_{\mathrm{pp}}$	

NOTE: Tests run during test system/device characterization.

MC13146

Figure 1. Test Circuit

Narrowband FM Coilless Detector IF Subsystem

The MC13150 is a narrowband FM IF subsystem targeted at cellular and other analog applications. Excellent high frequency performance is achieved, with low cost, through use of Motorola's MOSAIC 1.5™ RF bipolar process. The MC13150 has an onboard Colpitts VCO for Crystal controlled second LO in dual conversion receivers. The mixer is a double balanced configuration with excellent third order intercept. It is useful to beyond 200 MHz . The IF amplifier is split to accommodate two low cost cascaded filters. RSSI output is derived by summing the output of both IF sections. The quadrature detector is a unique design eliminating the conventional tunable quadrature coil.

Applications for the MC13150 include cellular, CT-1 900 MHz cordless telephone, data links and other radio systems utilizing narrowband FM modulation.

- Linear Coilless Detector
- Adjustable Demodulator Bandwidth
- 2.5 to 6.0 Vdc Operation
- Low Drain Current: < 2.0 mA
- Typical Sensitivity of $2.0 \mu \mathrm{~V}$ for 12 dB SINAD
- IIP3, Input Third Order Intercept Point of 0 dBm
- RSSI Range of Greater Than 100 dB
- Internal $1.4 \mathrm{k} \Omega$ Terminations for 455 kHz Filters
- Split IF for Improved Filtering and Extended RSSI Range

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC13150FTA	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	LQFP-24
MC13150FTB		LQFP-32

NARROWBAND FM COILLESS DETECTOR IF SUBSYSTEM FOR CELLULAR AND ANALOG APPLICATIONS

SEMICONDUCTOR TECHNICAL DATA

MAXIMUM RATINGS

Rating	Pin	Symbol	Value	Unit
Power Supply Voltage	2,9	$\mathrm{~V}_{\mathrm{CC}}(\max)$	6.5	Vdc
Junction Temperature	-	$\mathrm{T}_{\mathrm{Jmax}}$	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: 1. Devices should not be operated at or outside these values. The "Recommended Operating Limits" provide for actual device operation.
2. ESD data available upon request.

RECOMMENDED OPERATING CONDITIONS

Rating	Pin	Symbol	Value	Unit
Power Supply Voltage $\begin{array}{r} \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \\ -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C} \end{array}$ (See Figure 22)	$\begin{gathered} 2,9 \\ 21,31 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} 2.5 \text { to } 6.0 \\ 0 \end{gathered}$	Vdc
Input Frequency	32	$\mathrm{f}_{\text {in }}$	10 to 500	MHz
Ambient Temperature Range	-	$\mathrm{T}_{\text {A }}$	-40 to +85	${ }^{\circ} \mathrm{C}$
Input Signal Level	32	$\mathrm{V}_{\text {in }}$	0	dBm

DC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{C}} 1=\mathrm{V}_{\mathrm{C}} 2=3.0 \mathrm{Vdc}\right.$, No Input Signal. $)$

Characteristics	Condition	Pin	Symbol	Min	Typ	Max	Unit
Total Drain Current (See Figure 2)	$\mathrm{V}_{\mathrm{S}}=3.0 \mathrm{Vdc}$	$2+9$	ITOTAL	-	1.7	3.0	mA
Supply Current, Power Down (See Figure 3)	-	$2+9$	-	-	40	-	nA

AC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=3.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}, \mathrm{fLO}=50.455 \mathrm{MHz}\right.$,
LO Level $=-10 \mathrm{dBm}$, see Figure 1 Test Circuit*, unless otherwise specified.)

Characteristics	Condition	Pin	Symbol	Min	Typ	Max	Unit
12 dB SINAD Sensitivity (See Figure 15)	$\mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz} ;$ $\mathrm{f}_{\mathrm{dev}}= \pm 5.0 \mathrm{kHz}$	32	-	-	-100	-	dBm
RSSI Dynamic Range (See Figure 7)	-	25	-	-	100	-	dB
Input 1.0 dB Compression Point Input 3rd Order Intercept Point (See Figure 18)	-	-	-	1.0 dB C. Pt. IIP3	-	-11	
Coilless Detector Bandwidth Adjust (See Figure 11)	Measured with No IF Filters	-	$\Delta \mathrm{BW}$ adj	-	-	dBm	

MIXER

Conversion Voltage Gain (See Figure 5)	$\mathrm{Pin}=-30 \mathrm{dBm} ;$ $\mathrm{PLO}=-10 \mathrm{dBm}$	32	-	-	10	-	dB
Mixer Input Impedance	Single-Ended	32	-	-	200	-	Ω
Mixer Output Impedance	-	1	-	-	1.5	-	$\mathrm{k} \Omega$

LOCAL OSCILLATOR

LO Emitter Current (See Figure 26)	-	29	-	30	63	100	$\mu \mathrm{~A}$

IF \& LIMITING AMPLIFIERS SECTION

IF and Limiter RSSI Slope	Figure 7	25	-	-	0.4	-	$\mu \mathrm{A} / \mathrm{dB}$
IF Gain	Figure 8	4,8	-	-	42	-	dB
IF Input \& Output Impedance	-	4,8	-	-	1.5	-	$\mathrm{k} \Omega$
Limiter Input Impedance	-	10	-	-	1.5	-	$\mathrm{k} \Omega$
Limiter Gain	-	-	-	-	96	-	dB

[^17]AC ELECTRICAL CHARACTERISTICS (continued) $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=3.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{RF}}=50 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=50.455 \mathrm{MHz}\right.$,
LO Level $=-10 \mathrm{dBm}$, see Figure 1 Test Circuit*, unless otherwise specified.)

Characteristics	Condition	Pin	Symbol	Min	Typ	Max	Unit

DETECTOR

Frequency Adjust Current	Figure 9, $\mathrm{f}_{\mathrm{IF}}=455 \mathrm{kHz}$	16	-	41	49	56	$\mu \mathrm{~A}$
Frequency Adjust Voltage	Figure 10, $\mathrm{f}_{\mathrm{IF}}=455 \mathrm{kHz}$	16	-	600	650	700	mVdc
Bandwidth Adjust Voltage	Figure 12, $\mathrm{I}_{15}=1.0 \mu \mathrm{~A}$	15	-	-	570	-	mVdc
Detector DC Output Voltage (See Figure 25)	-	23	-	-	1.36	-	Vdc
Recovered Audio Voltage	$\mathrm{f}_{\mathrm{dev}}= \pm 3.0 \mathrm{kHz}$	23	-	85	122	175	mVrms

* Figure 1 Test Circuit uses positive $\left(\mathrm{V}_{\mathrm{CC}}\right)$ Ground.

Figure 1. Test Circuit

This device contains 292 active transistors.

MC13150 CIRCUIT DESCRIPTION

General

The MC13150 is a very low power single conversion narrowband FM receiver incorporating a split IF. This device is designated for use as the backend in analog narrowband FM systems such as cellular, 900 MHz cordless phones and narrowband data links with data rates up to 9.6 k baud. It contains a mixer, oscillator, extended range received signal strength indicator (RSSI), RSSI buffer, IF amplifier, limiting IF, a unique coilless quadrature detector and a device enable function (see Package Pin Outs/Block Diagram).

Low Current Operation

The MC13150 is designed for battery and portable applications. Supply current is typically 1.7 mAdc at 3.0 Vdc . Figure 2 shows the supply current versus supply voltage.

Enable

The enable function is provided for battery powered operation. The enabled pin is pulled down to enable the regulators. Figure 3 shows the supply current versus enable voltage, $\mathrm{V}_{\text {enable }}$ (relative to V_{CC}) needed to enable the device. Note that the device is fully enabled at $\mathrm{V}_{\mathrm{CC}}-1.3 \mathrm{Vdc}$. Figure 4 shows the relationship of enable current, lenable to enable voltage, $\mathrm{V}_{\text {enable }}$

Mixer

The mixer is a double-balanced four quadrant multiplier and is designed to work up to 500 MHz . It has a single ended input. Figure 5 shows the mixer gain and saturated output response as a function of input signal drive and for -10 dBm LO drive level. This is measured in the application circuit shown in Figure 15 in which a single LC matching network is used. Since the single-ended input impedance of the mixer is 200Ω, an alternate solution uses a 1:4 impedance transformer to match the mixer to 50Ω input impedance. The linear voltage gain of the mixer alone is approximately 4.0 dB (plus an additional 6.0 dB for the transformer). Figure 6 shows the mixer gain versus the LO input level for various mixer input levels at 50 MHz RF input.

The buffered output of the mixer is internally loaded, resulting in an output impedance of $1.5 \mathrm{k} \Omega$.

Local Oscillator

The on-chip transistor operates with crystal and LC resonant elements up to 220 MHz . Series resonant, overtone crystals are used to achieve excellent local oscillator stability. 3rd overtone crystals are used through about 65 to 70 MHz . Operation from 70 MHz up to 200 MHz is feasible using the on-chip transistor with a 5th or 7th overtone crystal. To enhance operation using an overtone crystal, the internal transistor's bias is increased by adding an external resistor from Pin 29 (in 32 pin QFP package) to $\mathrm{V}_{\text {EE }}$ to keep the oscillator on continuously or it may be taken to the enable pin to shut it off when the receiver is disabled. -10 dBm of local oscillator drive is needed to adequately drive the mixer (Figure 6). The oscillator configurations specified above are described in the application section.

RSSI

The received signal strength indicator (RSSI) output is a current proportional to the log of the received signal amplitude. The RSSI current output is derived by summing the currents from the IF and limiting amplifier stages. An external resistor at Pin 25 (in 32 pin QFP package) sets the voltage range or swing of the RSSI output voltage. Linearity of the RSSI is optimized by using external ceramic bandpass filters which have an insertion loss of 4.0 dB . The RSSI circuit is designed to provide $100+\mathrm{dB}$ of dynamic range with temperature compensation (see Figures 7 and 23 which show the RSSI response of the applications circuit).

RSSI Buffer

The RSSI buffer has limitations in what loads it can drive. It can pull loads well towards the positive and negative supplies, but has problems pulling the load away from the supplies. The load should be biased at half supply to overcome this limitation.

Figure 2. Supply Current versus Supply Voltage

Figure 4. Enable Current versus Enable Voltage

Figure 6. Mixer IF Output Level versus Local Oscillator Input Level

Figure 3. Supply Current versus Enable Voltage

Figure 5. Mixer IF Output Level versus RF Input Level

Figure 7. RSSI Output Current versus Input Signal Level

IF Amplifier
The first IF amplifier section is composed of three differential stages. This section has internal dc feedback and external input decoupling for improved symmetry and stability. The total gain of the IF amplifier block is approximately 42 dB at 455 kHz . Figure 8 shows the gain of the IF amplifier as a function of the IF frequency.

The fixed internal input impedance is $1.5 \mathrm{k} \Omega$; it is designed for applications where a 455 kHz ceramic filter is used and no external output matching is necessary since the filter requires a $1.5 \mathrm{k} \Omega$ source and load impedance.

Figure 8. IF Amplifier Gain versus IF Frequency

Figure 10. Fadj Voltage versus Fadj Current

Overall RSSI linearity is dependent on having total midband attenuation of 10 dB (4.0 dB insertion loss plus 6.0 dB impedance matching loss) for the filter. The output of the IF amplifier is buffered and the impedance is $1.5 \mathrm{k} \Omega$.

Limiter

The limiter section is similar to the IF amplifier section except that six stages are used. The fixed internal input impedance is $1.5 \mathrm{k} \Omega$. The total gain of the limiting amplifier section is approximately 96 dB . This IF limiting amplifier section internally drives the quadrature detector section.

Figure 9. Fadj Current versus IF Frequency

Figure 11. BWadj Current versus IF Frequency

Coilless Detector

The quadrature detector is similar to a PLL. There is an internal oscillator running at the IF frequency and two detector outputs. One is used to deliver the audio signal and the other one is filtered and used to tune the oscillator.

The oscillator frequency is set by an external resistor at the $F_{\text {adj }}$ pin. Figure 9 shows the control current required for a particular frequency; Figure 10 shows the pin voltage at that current. From this the value of R_{F} is chosen. For example, 455 kHz would require a current of around $50 \mu \mathrm{~A}$. The pin voltage (Pin 16 in the 32 pin QFP package) is around 655 mV giving a resistor of $13.1 \mathrm{k} \Omega$. Choosing $12 \mathrm{k} \Omega$ as the nearest standard value gives a current of approximately $55 \mu \mathrm{~A}$. The $5.0 \mu \mathrm{~A}$ difference can be taken up by the tuning resistor, R_{T}.

The best nominal frequency for the $A_{\text {FT }}^{\text {out }}$ pin (Pin 17) would be half supply. A supply voltage of 3.0 Vdc suggests a resistor value of $(1.5-0.655) \mathrm{V} / 5.0 \mu \mathrm{~A}=169 \mathrm{k} \Omega$. Choosing $150 \mathrm{k} \Omega$ would give a tuning current of $3 / 150 \mathrm{k}=20 \mu \mathrm{~A}$. From Figure 9 this would give a tuning range of roughly $10 \mathrm{kHz} / \mu \mathrm{A}$ or $\pm 100 \mathrm{kHz}$ which should be adequate.

The bandwidth can be adjusted with the help of Figure 11. For example, $1.0 \mu \mathrm{~A}$ would give a bandwidth of $\pm 13 \mathrm{kHz}$. The

Figure 12. BWadj Current versus BWadj Voltage

voltage across the bandwidth resistor, R_{B} from Figure 12 is $\mathrm{V}_{\mathrm{CC}}-2.44 \mathrm{Vdc}=0.56 \mathrm{Vdc}$ for $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}$, so $R_{B}=0.56 \mathrm{~V} / 1.0 \mu \mathrm{~A}=560 \mathrm{k} \Omega$. Actually the locking range will be $\pm 13 \mathrm{kHz}$ while the audio bandwidth will be approximately $\pm 8.4 \mathrm{kHz}$ due to an internal filter capacitor. This is verified in Figure 13. For some applications it may be desirable that the audio bandwidth is increased; this is done by reducing R_{B}. Reducing R_{B} widens the detector bandwidth and improves the distortion at high input levels at the expense of 12 dB SINAD sensitivity. The low frequency 3.0 dB point is set by the tuning circuit such that the product

$$
\mathrm{R}^{2} \mathrm{C}_{\mathrm{T}}=0.68 / \mathrm{f} 3 \mathrm{~dB} .
$$

So, for example, 150 k and $1.0 \mu \mathrm{~F}$ give a 3.0 dB point of 4.5 Hz . The recovered audio is set by R_{L} to give roughly 50 mV per kHz deviation per 100 k of resistance. The dc level can be shifted by RS from the nominal 0.68 V by the following equation:

$$
\text { Detector DC Output }=\left(\left(R_{L}+R_{S}\right) / R_{S}\right) 0.68 \mathrm{Vdc}
$$

Thus, $R_{S}=R_{L}$ sets the output at $2 \times 0.68=1.36 \mathrm{~V}$; $R_{L}=2 R_{S}$ sets the output at $3 \times 0.68=2.0 \mathrm{~V}$.

Figure 13. Demodulator Output versus Frequency

MC13150

APPLICATIONS INFORMATION

Evaluation PC Board

The evaluation PCB is very versatile and is intended to be used across the entire useful frequency range of this device. The center section of the board provides an area for attaching all SMT components to the circuit side and radial leaded components to the component ground side (see Figures 29 and 30). Additionally, the peripheral area surrounding the RF core provides pads to add supporting and interface circuitry as a particular application dictates. There is an area dedicated for a LNA preamp. This evaluation board will be discussed and referenced in this section.

Component Selection

The evaluation PC board is designed to accommodate specific components, while also being versatile enough to use components from various manufacturers and coil types. The applications circuit schematic (Figure 15) specifies particular components that were used to achieve the results shown in the typical curves but equivalent components should give similar results. Component placement views are
shown in Figures 27 and 28 for the application circuit in Figure 15 and for the 83.616 MHz crystal oscillator circuit in Figure 16.

Input Matching Components

The input matching circuit shown in the application circuit schematic (Figure 15) is a series L, shunt C single L section which is used to match the mixer input to 50Ω. An alternative input network may use 1:4 surface mount transformers or BALUNs. The 12 dB SINAD sensitivity using the $1: 4$ impedance transformer is typically -100 dBm for $f_{\bmod }=1.0 \mathrm{kHz}$ and $f_{\mathrm{dev}}= \pm 5.0 \mathrm{kHz}$ at $\mathrm{f}_{\mathrm{in}}=50 \mathrm{MHz}$ and $\mathrm{fLO}=50.455 \mathrm{MHz}$ (see Figure 14).

It is desirable to use a SAW filter before the mixer to provide additional selectivity and adjacent channel rejection and improved sensitivity. SAW filters sourced from Toko (Part \# SWS083GBWA) and Murata (Part \# SAF83.16MA51X) are excellent choices to easily interface with the MC13150 mixer. They are packaged in a 12 pin low profile surface mount ceramic package. The center frequency is 83.161 MHz and the 3.0 dB bandwidth is 30 kHz .

Figure 14. S+N+D, N+D, N, 30\% AMR versus Input Signal Level

MC13150

Figure 15. Application Circuit

NOTES: 1. Alternate solution is 1:4 impedance transformer (sources include Mini Circuits, Coilcraft and Toko).
2. 455 kHz ceramic filters (source Murata CFU455 series which are selected for various bandwidths).
3. For external LO source, a 51Ω pull-up resistor is used to bias the base of the on-board transistor as shown in Figure 15. Designer may provide local oscillator with 3rd, 5th, or 7th overtone crystal oscillator circuit. The PC board is laid out to accommodate external components needed for a Butler emitter coupled crystal oscillator (see Figure 16).
4. Enable IC by switching the pin to V_{EE}.
5. The resistor is chosen to set the range of RSSI voltage output swing.
6. Details regarding the external components to setup the coilless detector are provided in the application section.

Local Oscillators

HF \& VHF Applications

In the application schematic, an external sourced local oscillator is utilized in which the base is biased via a 51Ω resistor to V_{CC}. However, the on-chip grounded collector transistor may be used for HF and VHF local oscillators with higher order overtone crystals. Figure 16 shows a 5th overtone oscillator at 83.616 MHz . The circuit uses a Butler overtone oscillator configuration. The amplifier is an emitter follower. The crystal is driven from the emitter and is coupled to the high impedance base through a capacitive tap network. Operation at the desired overtone frequency is ensured by the parallel resonant circuit formed by the variable inductor and the tap capacitors and parasitic capacitances of the on-chip transistor and PC board. The variable inductor specified in the schematic could be replaced with a high tolerance, high Q ceramic or air wound surface mount component if the other components have tight enough tolerances. A variable inductor provides an adjustment for gain and frequency of the resonant tank ensuring lock up and start-up of the crystal oscillator. The overtone crystal is chosen with ESR of typically 80Ω and 120Ω maximum; if the resistive loss in the crystal is too high the performance of oscillator may be impacted by lower gain margins.

A series LC network to ac ground (which is V_{CC}) is comprised of the inductance of the base lead of the on-chip transistor and PC board traces and tap capacitors. Parasitic oscillations often occur in the 200 to 800 MHz range. A small resistor is placed in series with the base (Pin 28) to cancel the negative resistance associated with this undesired mode of oscillation. Since the base input impedance is so large, a small resistor in the range of 27 to 68Ω has very little effect on the desired Butler mode of oscillation.

The crystal parallel capacitance, C_{0}, provides a feedback path that is low enough in reactance at frequencies of 5th overtones or higher to cause trouble. C_{0} has little effect near resonance because of the low impedance of the crystal motional arm ($\mathrm{R}_{\mathrm{m}}-\mathrm{L}_{\mathrm{m}}-\mathrm{C}_{\mathrm{m}}$). As the tunable inductor, which forms the resonant tank with the tap capacitors, is tuned off the crystal resonant frequency, it may be difficult to tell if the oscillation is under crystal control. Frequency jumps may occur as the inductor is tuned. In order to eliminate this behavior an inductor, L_{0}, is placed in parallel with the crystal. L_{0} is chosen to resonant with the crystal parallel capacitance, C_{0}, at the desired operation frequency. The inductor provides a feedback path at frequencies well below resonance; however, the parallel tank network of the tap capacitors and tunable inductor prevent oscillation at these frequencies.

Figure 16. MC13150FTB Overtone Oscillator fRF = 83.16 MHz; fLO = 83.616 MHz 5th Overtone Crystal Oscillator

MC13150

Receiver Design Considerations

The curves of signal levels at various portions of the application receiver with respect to RF input level are shown in Figure 17. This information helps determine the network topology and gain blocks required ahead of the MC13150 to achieve the desired sensitivity and dynamic range of the receiver system. The PCB is laid out to accommodate a low noise preamp followed by the 83.16 MHz SAW filter. In the
application circuit (Figure 15), the input 1.0 dB compression point is -10 dBm and the input third order intercept (IP3) performance of the system is approximately 0 dBm (see Figure 18).

Typical Performance Over Temperature

Figures 19-26 show the device performance over temperature.

Figure 17. Signal Levels versus RF Input Signal Level

Figure 18. 1.0 dB Compression Point and Input Third Order Intercept Point versus Input Power

TYPICAL PERFORMANCE OVER TEMPERATURE

Figure 19. Supply Current, IVEE1

Figure 20. Supply Current, IVEE2 versus Ambient Temperature

TYPICAL PERFORMANCE OVER TEMPERATURE

Figure 21. Total Supply Current versus Ambient Temperature

Figure 23. RSSI Current versus Ambient Temperature and Signal Level

Figure 25. Demod DC Output Voltage versus Ambient Temperature

Figure 22. Minimum Supply Voltage versus Ambient Temperature

Figure 24. Recovered Audio versus Ambient Temperature

Figure 26. LO Current versus Ambient Temperature

Figure 27. Component Placement View - Circuit Side

MC13150

Figure 28. Component Placement View - Ground Side

Figure 29. PCB Circuit Side View

Figure 30. PCB Ground Side View


```
MC13155
```


Wideband FM IF

The MC13155 is a complete wideband FM detector designed for satellite TV and other wideband data and analog FM applications. This device may be cascaded for higher IF gain and extended Receive Signal Strength Indicator (RSSI) range.

- 12 MHz Video/Baseband Demodulator
- Ideal for Wideband Data and Analog FM Systems
- Limiter Output for Cascade Operation
- Low Drain Current: 7.0 mA
- Low Supply Voltage: 3.0 to 6.0 V
- Operates to 300 MHz

MAXIMUM RATINGS

Rating	Pin	Symbol	Value	Unit
Power Supply Voltage	11,14	$\mathrm{~V}_{\text {EE }}(\max)$	6.5	Vdc
Input Voltage	1,16	$\mathrm{~V}_{\text {in }}$	1.0	Vrms
Junction Temperature	-	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: Devices should not be operated at or outside these values. The "Recommended Operating Conditions" provide for actual device operation.

ORDERING INFORMATION
ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC13155D	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$	$\mathrm{SO}-16$

RECOMMENDED OPERATING CONDITIONS

Rating	Pin	Symbol	Value	Unit
Power Supply Voltage $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$	11,14	$\mathrm{~V}_{\mathrm{EE}}$	-3.0 to -6.0	Vdc
$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	3,6	$\mathrm{~V}_{\mathrm{CC}}$	Grounded	
Maximum Input Frequency	1,16	$\mathrm{f}_{\text {in }}$	300	MHz
Ambient Temperature Range	-	T_{J}	-40 to +85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$, no input signal.)

Characteristic	Pin	Symbol	Min	Typ	Max	Unit
Drain Current	11	I_{11}	2.0	2.8	4.0	mA
$\left(\mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}\right)$	14	I_{14}	3.0	4.3	6.0	
$\left(\mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}\right)$	14	I_{14}	3.0	4.3	6.0	
Drain Current Total (see Figure 3)	11,14	$\mathrm{I}_{\text {Total }}$	5.0	7.1	10	mA
$\left(\mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}\right)$			5.0	7.5	10.5	
$\left(\mathrm{~V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc}\right)$		5.0	7.5	10.5		
$\left(\mathrm{~V}_{\mathrm{EE}}=-3.0 \mathrm{Vdc}\right)$			4.7	6.6	9.5	

AC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{f}_{\mathrm{IF}}=70 \mathrm{MHz}, \mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}\right.$ Figure 2, unless otherwise noted. $)$

Characteristic	Pin	Min	Typ	Max	Unit
Input for - 3 dB Limiting Sensitivity	1,16	-	1.0	2.0	mVrms
$\begin{aligned} & \hline \text { Differential Detector Output Voltage }\left(\mathrm{V}_{\text {in }}=10 \mathrm{mVrms}\right) \\ &\left(\mathrm{f}_{\mathrm{dev}}= \pm 3.0 \mathrm{MHz}\right)\left(\mathrm{V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc}\right) \\ &\left(\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}\right) \\ &\left(\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{Vdc}\right) \end{aligned}$	4, 5	$\begin{aligned} & 470 \\ & 450 \\ & 380 \end{aligned}$	$\begin{aligned} & 590 \\ & 570 \\ & 500 \end{aligned}$	$\begin{aligned} & 700 \\ & 680 \\ & 620 \end{aligned}$	$m V_{p-p}$
Detector DC Offset Voltage	4, 5	-250	-	250	mVdc
RSSI Slope	13	1.4	2.1	2.8	$\mu \mathrm{A} / \mathrm{dB}$
RSSI Dynamic Range	13	31	35	39	dB
RSSI Output $\begin{aligned} & \left(\mathrm{V}_{\text {in }}=100 \mu \mathrm{Vrms}\right) \\ & \left(\mathrm{V}_{\text {in }}=1.0 \mathrm{mVrms}\right) \\ & \left(\mathrm{V}_{\text {in }}=10 \mathrm{mV} \mathrm{Vms}\right) \\ & \left(\mathrm{V}_{\mathrm{in}}=100 \mathrm{mVrms}\right) \\ & \left(\mathrm{V}_{\text {in }}=500 \mathrm{mVrms}\right) \end{aligned}$	12	16	$\begin{aligned} & 2.1 \\ & 2.4 \\ & 24 \\ & 65 \\ & 75 \end{aligned}$	36	$\mu \mathrm{A}$
RSSI Buffer Maximum Output Current ($\mathrm{V}_{\text {in }}=10 \mathrm{mVrms}$)	13	-	2.3	-	mAdc
Differential Limiter Output $\begin{aligned} & \left(\mathrm{V}_{\text {in }}=1.0 \mathrm{mVrms}\right) \\ & \left(\mathrm{V}_{\text {in }}=10 \mathrm{mVrms}\right) \end{aligned}$	7, 10	100	$\begin{aligned} & 140 \\ & 180 \end{aligned}$	-	mVrms
Demodulator Video 3.0 dB Bandwidth	4, 5	-	12	-	MHz
Input Impedance (Figure 14) @ $70 \mathrm{MHz} \quad \mathrm{Rp}\left(\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}\right)$ $\mathrm{Cp}\left(\mathrm{C}_{2}=\mathrm{C}_{15}=100 \mathrm{p}\right)$	1,16	-	$\begin{gathered} 450 \\ 4.8 \end{gathered}$	-	$\begin{gathered} \Omega \\ \mathrm{pF} \end{gathered}$
Differential IF Power Gain	1, 7, 10, 16	-	46	-	dB

[^18]
CIRCUIT DESCRIPTION

The MC13155 consists of a wideband three-stage limiting amplifier, a wideband quadrature detector which may be operated up to 200 MHz , and a received signal strength
indicator (RSSI) circuit which provides a current output linearly proportional to the IF input signal level for approximately 35 dB range of input level.

Figure 2. Test Circuit

APPLICATIONS INFORMATION

Evaluation PC Board

The evaluation PCB shown in Figures 19 and 20 is very versatile and is designed to cascade two ICs. The center section of the board provides an area for attaching all surface mount components to the circuit side and radial leaded components to the component ground side of the PCB (see Figures 17 and 18). Additionally, the peripheral area surrounding the RF core provides pads to add supporting and interface circuitry as a particular application dictates. This evaluation board will be discussed and referenced in this section.

Limiting Amplifier

Differential input and output ports interfacing the three stage limiting amplifier provide a differential power gain of typically 46 dB and useable frequency range of 300 MHz . The IF gain flatness may be controlled by decoupling of the internal feedback network at Pins 2 and 15.

Scattering parameter (S-parameter) characterization of the IF as a two port linear amplifier is useful to implement maximum stable power gain, input matching, and stability over a desired bandpass response and to ensure stable operation outside the bandpass as well. The MC13155 is unconditionally stable over most of its useful operating frequency range; however, it can be made unconditionally stable over its entire operating range with the proper decoupling of Pins 2 and 15. Relatively small decoupling capacitors of about 100 pF have a significant effect on the wideband response and stability. This is shown in the scattering parameter tables where S-parameters are shown for various values of C2 and C15 and at VEE of -3.0 and - 5.0 Vdc.

TYPICAL PERFORMANCE AT TEMPERATURE

(See Figure 2. Test Circuit)

Figure 3. Drain Current versus Supply Voltage

Figure 5. Total Drain Current versus Ambient Temperature and Supply Voltage

Figure 7. RSSI Output versus Ambient Temperature and Supply Voltage

Figure 4. RSSI Output versus Frequency and Input Signal Level

Figure 6. Detector Drain Current and Limiter Drain Current versus Ambient Temperature

Figure 8. RSSI Output versus Input Signal Voltage ($\mathrm{V}_{\text {in }}$ at Temperature)

Figure 9. Differential Detector Output Voltage versus Ambient Temperature and Supply Voltage

Figure 11A. Differential Detector Output Voltage versus Q of Quadrature LC Tank

Figure 12. RSSI Output Voltage versus IF Input

Figure 10. Differential Limiter Output Voltage versus Ambient Temperature
$\left(\mathrm{V}_{\text {in }}=1\right.$ and 10 mVrms$)$

Figure 11B. Differential Detector Output Voltage versus Q of Quadrature LC Tank

Figure 13. - $\mathbf{S + N}$, \mathbf{N} versus IF Input

MC13155

In the S-parameters measurements, the IF is treated as a two-port linear class A amplifier. The IF amplifier is measured with a single-ended input and output configuration in which the Pins 16 and 7 are terminated in the series combination of a 47Ω resistor and a 10 nF capacitor to V_{CC} ground (see Figure 14. S-Parameter Test Circuit).

The S-parameters are in polar form as the magnitude (MAG) and angle (ANG). Also listed in the tables are the calculated values for the stability factor (K) and the Maximum

Available Gain (MAG). These terms are related in the following equations:

$$
K=\left(1-\left|S_{11}\right|^{2}-\left|S_{22} I^{2}+|\Delta|^{2}\right) /\left(2\left|S_{12} S_{21}\right|\right)\right.
$$

where: $I \Delta I=I S_{11} S_{22}-S_{12} S_{21} I$.
$M A G=10 \log \left|S_{21}\right| /\left|S_{12}\right|+10 \log \left|K-\left(K^{2}-1\right)^{1 / 2}\right|$
where: $K>1$. The necessary and sufficient conditions for unconditional stability are given as $\mathrm{K}>1$:

$$
\mathrm{B} 1=1+\mathrm{I} \mathrm{~S}_{11} \mathrm{I}^{2}-\mathrm{I} \mathrm{~S}_{22} \mathrm{I}^{2}-\mathrm{I} \Delta \mathrm{I}^{2}>0
$$

Figure 14. S-Parameter Test Circuit

MC13155

S-Parameters ($\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{2}$ and $\mathrm{C}_{15}=0 \mathrm{pF}$)

Frequency	Input S11		Forward S21		Rev S12		Output S22		K	MAG
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG	MAG	dB
1.0	0.94	-13	8.2	143	0.001	7.0	0.87	-22	2.2	32
2.0	0.78	-23	23.5	109	0.001	-40	0.64	-31	4.2	33.5
5.0	0.48	1.0	39.2	51	0.001	-97	0.34	-17	8.7	33.7
7.0	0.59	15	40.3	34	0.001	-41	0.33	-13	10.6	34.6
10	0.75	17	40.9	19	0.001	-82	0.41	-1.0	5.7	36.7
20	0.95	7.0	42.9	-6.0	0.001	-42	0.45	0	1.05	46.4
50	0.98	-10	42.2	-48	0.001	-9.0	0.52	-3.0	0.29	-
70	0.95	-16	39.8	-68	0.001	112	0.54	-16	1.05	46.4
100	0.93	-23	44.2	-93	0.001	80	0.53	-22	0.76	-
150	0.91	-34	39.5	-139	0.001	106	0.50	-34	0.94	-
200	0.87	-47	34.9	-179	0.002	77	0.42	-44	0.97	-
500	0.89	-103	11.1	-58	0.022	57	0.40	-117	0.75	-
700	0.61	-156	3.5	-164	0.03	0	0.52	179	2.6	13.7
900	0.56	162	1.2	92	0.048	-44	0.47	112	4.7	4.5
1000	0.54	131	0.8	42	0.072	-48	0.44	76	5.1	0.4

S-Parameters ($\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{2}$ and $\left.\mathrm{C}_{15}=100 \mathrm{pF}\right)$

Frequency	Input S11		Forward S21		Rev S12		Output S22		K	MAG
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG	MAG	dB
1.0	0.98	-15	11.7	174	0.001	-14	0.84	-27	1.2	37.4
2.0	0.50	-2.0	39.2	85.5	0.001	-108	0.62	-35	6.0	35.5
5.0	0.87	8.0	39.9	19	0.001	100	0.47	-9.0	4.2	39.2
7.0	0.90	5.0	40.4	9.0	0.001	-40	0.45	-8.0	3.1	40.3
10	0.92	3.0	41	1.0	0.001	-40	0.44	-5.0	2.4	41.8
20	0.92	-2.0	42.4	-14	0.001	-87	0.49	-6.0	2.4	41.9
50	0.91	-8.0	41.2	-45	0.001	85	0.50	-5.0	2.3	42
70	0.91	-11	39.1	-63	0.001	76	0.52	-4.0	2.2	41.6
100	0.91	-15	43.4	-84	0.001	85	0.50	-11	1.3	43.6
150	0.90	-22	38.2	-126	0.001	96	0.43	-22	1.4	41.8
200	0.86	-33	35.5	-160	0.002	78	0.43	-21	1.3	39.4
500	0.80	-66	8.3	-9.0	0.012	75	0.57	-63	1.7	23.5
700	0.62	-96	2.9	-95	0.013	50	0.49	-111	6.3	12.5
900	0.56	-120	1.0	-171	0.020	53	0.44	-150	13.3	2.8
1000	0.54	-136	0.69	154	0.034	65	0.44	-179	12.5	-0.8

MC13155

S-Parameters ($\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{2}$ and $\mathrm{C}_{15}=680 \mathrm{pF}$)

Frequency	Input S11		Forward S21		Rev S12		Output S22		K	MAG
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG	MAG	dB
1.0	0.74	4.0	53.6	110	0.001	101	0.97	-35	0.58	-
2.0	0.90	3.0	70.8	55	0.001	60	0.68	-34	1.4	45.6
5.0	0.91	0	87.1	21	0.001	-121	0.33	-60	1.1	49
7.0	0.91	0	90.3	11	0.001	-18	0.25	-67	1.2	48.4
10	0.91	-2.0	92.4	2.0	0.001	33	0.14	-67	1.5	47.5
20	0.91	-4.0	95.5	-16	0.001	63	0.12	-15	1.3	48.2
50	0.90	-8.0	89.7	-50	0.001	-43	0.24	26	1.8	46.5
70	0.90	-10	82.6	-70	0.001	92	0.33	21	1.4	47.4
100	0.91	-14	77.12	-93	0.001	23	0.42	-1.0	1.05	49
150	0.94	-20	62.0	-122	0.001	96	0.42	-22	0.54	-
200	0.95	-33	56.9	-148	0.003	146	0.33	-62	0.75	-
500	0.82	-63	12.3	-12	0.007	79	0.44	-67	1.8	26.9
700	0.66	-98	3.8	-107	0.014	84	0.40	-115	4.8	14.6
900	0.56	-122	1.3	177	0.028	78	0.39	-166	8.0	4.7
1000	0.54	-139	0.87	141	0.048	76	0.41	165	7.4	0.96

S-Parameters ($\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{2}$ and $\left.\mathrm{C}_{15}=0 \mathrm{pF}\right)$

Frequency	Input S11		Forward S21		Rev S12		Output S22		K	MAG
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG	MAG	dB
1.0	0.89	-14	9.3	136	0.001	2.0	0.84	-27	3.2	30.7
2.0	0.76	-22	24.2	105	0.001	-90	0.67	-37	3.5	34.3
5.0	0.52	5.0	35.7	46	0.001	-32	0.40	-13	10.6	33.3
7.0	0.59	12	38.1	34	0.001	-41	0.40	-10	9.1	34.6
10	0.78	15	37.2	16	0.001	-92	0.40	-1.0	5.7	36.3
20	0.95	5.0	38.2	-9.0	0.001	47	0.51	-4.0	0.94	-
50	0.96	-11	39.1	-50	0.001	-103	0.48	-6.0	1.4	43.7
70	0.93	-17	36.8	-71	0.001	-76	0.52	-13	2.2	41.4
100	0.91	-25	34.7	-99	0.001	-152	0.51	-19	3.0	39.0
150	0.86	-37	33.8	-143	0.001	53	0.49	-34	1.7	39.1
200	0.81	-49	27.8	86	0.003	76	0.55	-56	2.4	35.1
500	0.70	-93	6.2	-41	0.015	93	0.40	-110	2.4	19.5
700	0.62	-144	1.9	-133	0.049	56	0.40	-150	3.0	8.25
900	0.39	-176	0.72	125	0.11	-18	0.25	163	5.1	-1.9
1000	0.44	166	0.49	80	0.10	-52	0.33	127	7.5	-4.8

MC13155

S-Parameters ($\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{2}$ and $\mathrm{C}_{15}=100 \mathrm{pF}$)

Frequency	Input S11		Forward S21		Rev S12		Output S22		K	MAG
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG	MAG	dB
1.0	0.97	-15	11.7	171	0.001	-4.0	0.84	-27	1.4	36.8
2.0	0.53	2.0	37.1	80	0.001	-91	0.57	-31	6.0	34.8
5.0	0.88	7.0	37.7	18	0.001	-9.0	0.48	-7.0	3.4	39.7
7.0	0.90	5.0	37.7	8.0	0.001	-11	0.49	-7.0	2.3	41
10	0.92	2.0	38.3	1.0	0.001	-59	0.51	-9.0	2.0	41.8
20	0.92	-2.0	39.6	-15	0.001	29	0.48	-3.0	1.9	42.5
50	0.91	-8.0	38.5	-46	0.001	-21	0.51	-7.0	2.3	41.4
70	0.91	-11	36.1	-64	0.001	49	0.50	-8.0	2.3	40.8
100	0.91	-15	39.6	-85	0.001	114	0.52	-13	1.7	37.8
150	0.89	-22	34.4	-128	0.001	120	0.48	-23	1.6	40.1
200	0.86	-33	32	-163	0.002	86	0.40	-26	1.7	37.8
500	0.78	-64	7.6	-12	0.013	94	0.46	-71	1.9	22.1
700	0.64	-98	2.3	-102	0.027	58	0.42	-109	4.1	10.1
900	0.54	-122	0.78	179	0.040	38.6	0.35	-147	10.0	-0.14
1000	0.53	-136	0.47	144	0.043	23	0.38	-171	15.4	-4.52

S-Parameters ($\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{2}$ and $\mathrm{C}_{15}=680 \mathrm{pF}$)

Frequency	Input S11		Forward S21		Rev S12		Output S22		K	MAG
MHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG	MAG	dB
1.0	0.81	3.0	37	101	0.001	-19	0.90	-32	1.1	43.5
2.0	0.90	2.0	47.8	52.7	0.001	-82	0.66	-39	0.72	-
5.0	0.91	0	58.9	20	0.001	104	0.37	-56	2.3	44
7.0	0.90	-1	60.3	11	0.001	-76	0.26	-55	2.04	44
10	0.91	-2.0	61.8	3.0	0.001	105	0.18	-52	2.2	43.9
20	0.91	-4.0	63.8	-15	0.001	59	0.11	-13	2.0	44.1
50	0.90	-8.0	60.0	-48	0.001	96	0.22	33	2.3	43.7
70	0.90	-11	56.5	-67	0.001	113	0.29	15	2.3	43.2
100	0.91	-14	52.7	-91	0.001	177	0.36	5.0	2.0	43
150	0.93	-21	44.5	-126	0.001	155	0.35	-17	1.8	42.7
200	0.90	-43	41.2	-162	0.003	144	0.17	-31	1.6	34.1
500	0.79	-65	7.3	-13	0.008	80	0.44	-75	3.0	22
700	0.65	-97	2.3	-107	0.016	86	0.38	-124	7.1	10.2
900	0.56	-122	0.80	174	0.031	73	0.38	-174	12	0.37
1000	0.55	-139	0.52	137	0.50	71	0.41	157	11.3	-3.4

DC Biasing Considerations

The DC biasing scheme utilizes two V_{CC} connections (Pins 3 and 6) and two VEE connections (Pins 14 and 11). $V_{E E 1}$ (Pin 14) is connected internally to the IF and RSSI circuits' negative supply bus while $\mathrm{V}_{\mathrm{EE}} 2$ (Pin 11) is connected internally to the quadrature detector's negative bus. Under positive ground operation, this unique configuration offers the ability to bias the RSSI and IF separately from the quadrature detector. When two ICs are cascaded as shown in the 70 MHz application circuit and provided by the PCB (see Figures 17 and 18), the first MC13155 is used without biasing its quadrature detector, thereby saving approximately 3.0 mA . A total current of 7.0 mA is used to fully bias each IC, thus the total current in the application circuit is approximately 11 mA . Both V_{CC} pins are biased by the same supply. $\mathrm{V}_{\mathrm{CC}} 1$ (Pin 3) is connected internally to the positive bus of the first half of the IF limiting amplifier, while $V_{C C} 2$ is internally connected to the positive bus of the RSSI, the quadrature detector circuit, and the second half of the IF limiting amplifier (see Figure 15). This distribution of the V_{CC} enhances the stability of the IC.

RSSI Circuitry

The RSSI circuitry provides typically 35 dB of linear dynamic range and its output voltage swing is adjusted by
selection of the resistor from Pin 12 to VEE. The RSSI slope is typically $2.1 \mu \mathrm{~A} / \mathrm{dB}$; thus, for a dynamic range of 35 dB , the current output is approximately $74 \mu \mathrm{~A}$. A 47 k resistor will yield an RSSI output voltage swing of 3.5 Vdc . The RSSI buffer output at Pin 13 is an emitter-follower and needs an external emitter resistor of 10 k to VEE.

In a cascaded configuration (see circuit application in Figure 16), only one of the RSSI Buffer outputs (Pin 13) is used; the RSSI outputs (Pin 12 of each IC) are tied together and the one closest to the $\mathrm{V}_{\text {EE }}$ supply trace is decoupled to V_{CC} ground. The two pins are connected to $\mathrm{V}_{\text {EE }}$ through a 47 k resistor. This resistor sources a RSSI current which is proportional to the signal level at the IF input; typically, $1.0 \mathrm{mVrms}(-47 \mathrm{dBm})$ is required to place the MC13155 into limiting. The measured RSSI output voltage response of the application circuit is shown in Figure 12. Since the RSSI current output is dependent upon the input signal level at the IF input, a careful accounting of filter losses, matching and other losses and gains must be made in the entire receiver system. In the block diagram of the application circuit shown below, an accounting of the signal levels at points throughout the system shows how the RSSI response in Figure 12 is justified.

Block Diagram of 70 MHz Video Receiver Application Circuit

Cascading Stages

The limiting IF output is pinned-out differentially, cascading is easily achieved by AC coupling stage to stage. In the evaluation PCB, AC coupling is shown, however, interstage filtering may be desirable in some applications. In which case, the S-parameters provide a means to implement a low loss interstage match and better receiver sensitivity.

Where a linear response of the RSSI output is desired when cascading the ICs, it is necessary to provide at least 10 dB of interstage loss. Figure 12 shows the RSSI response with and without interstage loss. A 15 dB resistive attenuator is an inexpensive way to linearize the RSSI response. This has its drawbacks since it is a wideband noise source that is dependent upon the source and load impedance and the amount of attenuation that it provides. A better, although more costly, solution would be a bandpass filter designed to the desired center frequency and bandpass response while carefully selecting the insertion loss. A network topology
shown below may be used to provide a bandpass response with the desired insertion loss.

Network Topology

Quadrature Detector

The quadrature detector is coupled to the IF with internal 2.0 pF capacitors between Pins 7 and 8 and Pins 9 and 10. For wideband data applications, such as FM video and satellite receivers, the drive to the detector can be increased with additional external capacitors between these pins, thus, the recovered video signal level output is increased for a given bandwidth (see Figure 11A and Figure 11B).

The wideband performance of the detector is controlled by the loaded Q of the LC tank circuit. The following equation defines the components which set the detector circuit's bandwidth:

$$
\begin{equation*}
\mathrm{Q}=\mathrm{RT}_{\mathrm{T}} / \mathrm{X}_{\mathrm{L}} \tag{1}
\end{equation*}
$$

where: R_{T} is the equivalent shunt resistance across the LC Tank and X_{L} is the reactance of the quadrature inductor at the IF frequency ($\mathrm{XL}_{\mathrm{L}}=2 \pi \mathrm{fL}$).

The inductor and capacitor are chosen to form a resonant LC Tank with the PCB and parasitic device capacitance at the desired IF center frequency as predicted by:

$$
\begin{equation*}
\mathrm{fc}=\left(2 \pi \sqrt{ }\left(\mathrm{LC}_{\mathrm{p}}\right)\right)-1 \tag{2}
\end{equation*}
$$

where: L is the parallel tank inductor and C_{p} is the equivalent parallel capacitance of the parallel resonant tank circuit.

The following is a design example for a wideband detector at 70 MHz and a loaded Q of 5 . The loaded Q of the quadrature detector is chosen somewhat less than the Q of the IF bandpass. For an IF frequency of 70 MHz and an IF bandpass of 10.9 MHz , the IF bandpass Q is approximately 6.4.

Example:

Let the external Cext $=20 \mathrm{pF}$. (The minimum value here should be greater than 15 pF making it greater than the internal device and PCB parasitic capacitance, Cint \approx 3.0 pF).

$$
C_{p}=C i n t+C e x t=23 p F
$$

Rewrite Equation 2 and solve for L :
$L=(0.159)^{2} /\left(\mathrm{C}_{\mathrm{p}} \mathrm{fc}^{2}\right)$
$\mathrm{L}=198 \mathrm{nH}$, thus, a standard value is chosen.
$\mathrm{L}=0.22 \mu \mathrm{H}$ (tunable shielded inductor).

The value of the total damping resistor to obtain the required loaded Q of 5 can be calculated by rearranging Equation 1:

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{T}}=\mathrm{Q}(2 \pi \mathrm{fL}) \\
& \mathrm{R}_{\mathrm{T}}=5(2 \pi)(70)(0.22)=483.8 \Omega .
\end{aligned}
$$

The internal resistance, Rint between the quadrature tank Pins 8 and 9 is approximately 3200Ω and is considered in determining the external resistance, Rext which is calculated from:

Rext $=\left(\left(R_{\top}\right)(\right.$ Rint $\left.)\right) /\left(\right.$ Rint $\left.-R_{T}\right)$
Rext $=570$, thus, choose the standard value.
Rext $=560 \Omega$.

SAW Filter

In wideband video data applications, the IF occupied bandwidth may be several MHz wide. A good rule of thumb is to choose the IF frequency about 10 or more times greater than the IF occupied bandwidth. The IF bandpass filter is a SAW filter in video data applications where a very selective response is needed (i.e., very sharp bandpass response). The evaluation PCB is laid out to accommodate two SAW filter package types: 1) A five-leaded plastic SIP package. Recommended part numbers are Siemens X6950M which operates at 70 MHz ; 10.4 MHz 3 dB passband, X6951M (X252.8) which operates at $70 \mathrm{MHz} ; 9.2 \mathrm{MHz} 3 \mathrm{~dB}$ passband; and X6958M which operates at $70 \mathrm{MHz}, 6.3 \mathrm{MHz} 3 \mathrm{~dB}$ passband, and 2) A four-leaded TO-39 metal can package. Typical insertion loss in a wide bandpass SAW filter is 25 dB .

The above SAW filters require source and load impedances of 50Ω to assure stable operation. On the PC board layout, space is provided to add a matching network, such as a 1:4 surface mount transformer between the SAW filter output and the input to the MC13155. A 1:4 transformer, made by Coilcraft and Mini Circuits, provides a suitable interface (see Figures 16, 17 and 18). In the circuit and layout, the SAW filter and the MC13155 are differentially configured with interconnect traces which are equal in length and symmetrical. This balanced feed enhances RF stability, phase linearity, and noise performance.

MC13155

MC13155

Figure 16. 70 MHz Video Receiver Application Circuit

Figure 17. Component Placement (Circuit Side)

Figure 18. Component Placement (Ground Side)

Figure 19. Circuit Side View

Figure 20. Ground Side View

Wideband FM IF System

The MC13156 is a wideband FM IF subsystem targeted at high performance data and analog applications. Excellent high frequency performance is achieved at low cost using Motorola's MOSAIC 1.5 ${ }^{\text {TM }}$ bipolar process. The MC13156 has an onboard grounded collector VCO transistor that may be used with a fundamental or overtone crystal in single channel operation or with a PLL in multichannel operation. The mixer is useful to 500 MHz and may be used in a balanced-differential, or single-ended configuration. The IF amplifier is split to accommodate two low cost cascaded filters. RSSI output is derived by summing the output of both IF sections. A precision data shaper has a hold function to preset the shaper for fast recovery of new data.

Applications for the MC13156 include CT-2, wideband data links and other radio systems utilizing GMSK, FSK or FM modulation.

- 2.0 to 6.0 Vdc Operation
- Typical Sensitivity at 200 MHz of $2.0 \mu \mathrm{~V}$ for 12 dB SINAD
- RSSI Dynamic Range Typically 80 dB
- High Performance Data Shaper for Enhanced CT-2 Operation
- Internal 330Ω and $1.4 \mathrm{k} \Omega$ Terminations for 10.7 MHz and 455 kHz Filters
- Split IF for Improved Filtering and Extended RSSI Range
- 3rd Order Intercept (Input) of -25 dBm (Input Matched)

NOTE: Pin Numbers shown for SOIC package only. Refer to Pin Assignments Table.

This device contains 197 active transistors.

WIDEBAND FM IF SYSTEM FOR DIGITAL AND ANALOG APPLICATIONS

SEMICONDUCTOR TECHNICAL DATA

1

DW SUFFIX
PLASTIC PACKAGE CASE 751E
(SO-24L)

FB SUFFIX
PLASTIC QFP PACKAGE
CASE 873

PIN CONNECTIONS

Function	SO-24L	QFP
RF Input 1	1	31
RF Input 2	2	32
Mixer Output	3	1
$\mathrm{V}_{\text {CC1 }}$	4	2
IF Amp Input	5	3
IF Amp Decoupling 1	6	4
IF Amp Decoupling 2	7	5
$\mathrm{V}_{\text {CC }}$ Connect (N/C Internal)	-	6
IF Amp Output	8	7
$\mathrm{V}_{\mathrm{CC} 2}$	9	8
Limiter IF Input	10	9
Limiter Decoupling 1	11	10
Limiter Decoupling 2	12	11
$\mathrm{V}_{\text {CC }}$ Connect (N/C Internal)	-	12, 13, 14
Quad Coil	13	15
Demodulator Output	14	16
Data Slicer Input	15	17
$\mathrm{V}_{\text {CC }}$ Connect (N/C Internal)	-	18
Data Slicer Ground	16	19
Data Slicer Output	17	20
Data Slicer Hold	18	21
$\mathrm{V}_{\text {EE2 }}$	19	22
RSSI Output/Carrier Detect In	20	23
Carrier Detect Output	21	24
$\mathrm{V}_{\mathrm{EE} 1}$ and Substrate	22	25
LO Emitter	23	26
LO Base	24	27
$\mathrm{V}_{\text {CC }}$ Connect (N/C Internal)	-	28, 29, 30

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC13156DW	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$	SO-24L
MC13156FB		QFP

MC13156

MAXIMUM RATINGS

Rating	Pin	Symbol	Value	Unit
Power Supply Voltage	$16,19,22$	$\mathrm{~V}_{\mathrm{EE}}(\max)$	-6.5	Vdc
Junction Temperature	-	$\mathrm{T}_{\mathrm{J}(\max)}$	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTES: 1. Devices should not be operated at or outside these values. The "Recommended Operating
Conditions" table provides for actual device operation.
2. ESD data available upon request.

RECOMMENDED OPERATING CONDITIONS

Rating	Pin	Symbol	Value	Unit
Power Supply Voltage @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+85^{\circ} \mathrm{C}$	$\begin{gathered} 4,9 \\ 16,19,22 \end{gathered}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{EE}} \end{aligned}$	$\begin{gathered} 0 \text { (Ground) } \\ -2.0 \text { to }-6.0 \end{gathered}$	Vdc
Input Frequency	1, 2	f_{in}	500	MHz
Ambient Temperature Range	-	TA	-40 to +85	${ }^{\circ} \mathrm{C}$
Input Signal Level	1, 2	$\mathrm{V}_{\text {in }}$	200	mVrms

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC} 1}=\mathrm{V}_{\mathrm{CC} 2}=0\right.$, no input signal.)

Characteristic	Pin	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Total Drain Current (See Figure 2) } \\ & \mathrm{V}_{\mathrm{EE}}=-2.0 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{EE}}=-3.0 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc} \end{aligned}$	19, 22	${ }^{\prime}$ Total	3.0 $-$	$\begin{aligned} & 4.8 \\ & 5.0 \\ & 5.2 \\ & 5.4 \end{aligned}$	$\begin{gathered} - \\ 8.0 \\ - \end{gathered}$	mA
Drain Current, I_{22} (See Figure 3) $\begin{aligned} & \mathrm{V}_{\mathrm{EE}}=-2.0 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{EE}}=-3.0 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc} \\ & \mathrm{~V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc} \end{aligned}$	22	l_{22}		$\begin{aligned} & 3.0 \\ & 3.1 \\ & 3.3 \\ & 3.4 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	mA
Drain Current, I 19 (See Figure 3) $\mathrm{V}_{\mathrm{EE}}=-2.0 \mathrm{Vdc}$ $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{Vdc}$ $\mathrm{V}_{\mathrm{EE}}=-5.0 \mathrm{Vdc}$ $\mathrm{V}_{\mathrm{EE}}=-6.0 \mathrm{Vdc}$	19	I_{19}	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	$\begin{aligned} & 1.8 \\ & 1.9 \\ & 1.9 \\ & 2.0 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & - \end{aligned}$	mA

DATA SLICER (Input Voltage Referenced to $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{Vdc}$, no input signal; See Figure 15.)

Input Threshold Voltage (High $\mathrm{V}_{\text {in }}$)	15	$\mathrm{~V}_{15}$	1.0	1.1	1.2	Vdc
Output Current (Low $\mathrm{V}_{\text {in }}$						
Data Slicer Enabled (No Hold)	17	I_{17}	-	1.7	-	mA
$\mathrm{V}_{15}>1.1$ Vdc						
$\mathrm{V}_{18}=0$ Vdc						

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{RF}}=130 \mathrm{MHz}, \mathrm{f}_{\mathrm{LO}}=140.7 \mathrm{MHz}\right.$, Figure 1 test circuit, unless otherwise specified.)

Characteristic	Pin	Symbol	Min	Typ	Max	Unit
12 dB SINAD Sensitivity (See Figures 17,25$)$ $\mathrm{f}_{\mathrm{in}}=144.45 \mathrm{MHz} ; \mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz} ; \mathrm{f}_{\mathrm{dev}}= \pm 75 \mathrm{kHz}$	1,14	-	-	-100	-	dBm

MIXER

$\begin{aligned} & \text { Conversion Gain } \\ & P_{\text {in }}=-37 \mathrm{dBm} \text { (Figure 4) } \end{aligned}$	1,3	-	-	22	-	dB
Mixer Input Impedance Single-Ended (Table 1)	1, 2	$\begin{aligned} & \mathrm{R}_{\mathrm{p}} \\ & \mathrm{C}_{\mathrm{p}} \end{aligned}$		$\begin{aligned} & 1.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & \hline \mathrm{k} \Omega \\ & \mathrm{pF} \end{aligned}$
Mixer Output Impedance	3	-	-	330	-	Ω

IF AMPLIFIER SECTION

IF RSSI Slope (Figure 6)	20	-	0.2	0.4	0.6	$\mu \mathrm{~A} / \mathrm{dB}$
IF Gain (Figure 5)	5,8	-	-	39	-	dB
Input Impedance	5	-	-	1.4	-	$\mathrm{k} \Omega$
Output Impedance	8	-	-	290	-	Ω

MC13156

AC ELECTRICAL CHARACTERISTICS (continued) $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{Vdc}, \mathrm{fRF}=130 \mathrm{MHz}\right.$, $\mathrm{fLO}=140.7 \mathrm{MHz}$, Figure 1 test circuit, unless otherwise specified.)

Characteristic	Pin	Symbol	Min	Typ	Max	Unit
LIMITING AMPLIFIER SECTION						
Limiter RSSI Slope (Figure 7)	20	-	0.2	0.4	0.6	$\mu \mathrm{A} / \mathrm{dB}$
Limiter Gain	-	-	-	55	-	dB
Input Impedance	10	-	-	1.4	-	$\mathrm{k} \Omega$

CARRIER DETECT

Output Current - Carrier Detect (High $\left.\mathrm{V}_{\text {in }}\right)$	21	-	-	0	-	$\mu \mathrm{A}$
Output Current - Carrier Detect (Low Vin^{\prime}	21	-	-	3.0	-	mA
Input Threshold Voltage - Carrier Detect Input Voltage Referenced to $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{Vdc}$	20	-	0.9	1.2	1.4	Vdc

Figure 2. Total Drain Current versus Supply Voltage and Temperature

Figure 4. Mixer Gain versus Input Signal Level

Figure 6. IF Amplifier RSSI Output Current versus Input Signal Level and Ambient Temperature

Figure 3. Drain Currents versus Supply Voltage

Figure 5. IF Amplifier Gain versus Input Signal Level and Ambient Temperature

Figure 7. Limiter Amplifier RSSI Output Current versus Input Signal Level and Temperature

Figure 8. MC13156DW Internal Circuit Schematic

CIRCUIT DESCRIPTION

General

The MC13156 is a low power single conversion wideband FM receiver incorporating a split IF. This device is designated for use as the backend in digital FM systems such as CT-2 and wideband data links with data rates up to 500 kbaud. It contains a mixer, oscillator, signal strength meter drive, IF amplifier, limiting IF, quadrature detector and a data slicer with a hold function (refer to Figure 8, Simplified Internal Circuit Schematic).

Current Regulation

Temperature compensating voltage independent current regulators are used throughout.

Mixer

The mixer is a double-balanced four quadrant multiplier and is designed to work up to 500 MHz . It can be used in differential or in single-ended mode by connecting the other input to the positive supply rail.

Figure 4 shows the mixer gain and saturated output response as a function of input signal drive. The circuit used to measure this is shown in Figure 1. The linear gain of the mixer is approximately 22 dB . Figure 9 shows the mixer gain versus the IF output frequency with the local oscillator of 150 MHz at 100 mVrms LO drive level. The RF frequency is swept. The sensitivity of the IF output of the mixer is shown in Figure 10 for an RF input drive of 10 mVrms at 140 MHz and IF at 10 MHz .

The single-ended parallel equivalent input impedance of the mixer is $\mathrm{Rp} \sim 1.0 \mathrm{k} \Omega$ and $\mathrm{Cp} \sim 4.0 \mathrm{pF}$ (see Table 1 for details). The buffered output of the mixer is internally loaded resulting in an output impedance of 330Ω.

Local Oscillator

The on-chip transistor operates with crystal and LC resonant elements up to 220 MHz . Series resonant, overtone crystals are used to achieve excellent local oscillator stability. 3rd overtone crystals are used through about 65 to 70 MHz . Operation from 70 MHz up to 180 MHz is feasible using the on-chip transistor with a 5th or 7th overtone crystal. To enhance operation using an overtone crystal, the internal transistor's bias is increased by adding an external resistor from Pin 23 to $\mathrm{V}_{\mathrm{EE}} .-10 \mathrm{dBm}$ of local oscillator drive is needed to adequately drive the mixer (Figure 10).

The oscillator configurations specified above, and two others using an external transistor, are described in the application section:

1) A 133 MHz oscillator multiplier using a 3rd overtone crystal, and
2) A 307.8 to 309.3 MHz manually tuned, varactor controlled local oscillator.

RSSI

The Received Signal Strength Indicator (RSSI) output is a current proportional to the log of the received signal
amplitude. The RSSI current output is derived by summing the currents from the IF and limiting amplifier stages. An external resistor at Pin 20 sets the voltage range or swing of the RSSI output voltage. Linearity of the RSSI is optimized by using external ceramic or crystal bandpass filters which have an insertion loss of 8.0 dB . The RSSI circuit is designed to provide $70+\mathrm{dB}$ of dynamic range with temperature compensation (see Figures 6 and 7 which show RSSI responses of the IF and Limiter amplifiers). Variation in the RSSI output current with supply voltage is small (see Figure 11).

Carrier Detect

When the meter current flowing through the meter load resistance reaches 1.2 Vdc above ground, the comparator flips, causing the carrier detect output to go high. Hysteresis can be accomplished by adding a very large resistor for positive feedback between the output and the input of the comparator.

IF Amplifier

The first IF amplifier section is composed of three differential stages with the second and third stages contributing to the RSSI. This section has internal dc feedback and external input decoupling for improved symmetry and stability. The total gain of the IF amplifier block is approximately 39 dB at 10.7 MHz . Figure 5 shows the gain and saturated output response of the IF amplifier over temperature, while Figure 12 shows the IF amplifier gain as a function of the IF frequency.

The fixed internal input impedance is $1.4 \mathrm{k} \Omega$. It is designed for applications where a 455 kHz ceramic filter is used and no external output matching is necessary since the filter requires a $1.4 \mathrm{k} \Omega$ source and load impedance.

For 10.7 MHz ceramic filter applications, an external 430Ω resistor must be added in parallel to provide the equivalent load impedance of 330Ω that is required by the filter; however, no external matching is necessary at the input since the mixer output matches the 330Ω source impedance of the filter. For 455 kHz applications, an external $1.1 \mathrm{k} \Omega$ resistor must be added in series with the mixer output to obtain the required matching impedance of $1.4 \mathrm{k} \Omega$ of the filter input resistance. Overall RSSI linearity is dependent on having total midband attenuation of $12 \mathrm{~dB}(6.0 \mathrm{~dB}$ insertion loss plus 6.0 dB impedance matching loss) for the filter. The output of the IF amplifier is buffered and the impedance is 290Ω.

Limiter

The limiter section is similar to the IF amplifier section except that four stages are used with the last three contributing to the RSSI. The fixed internal input impedance is $1.4 \mathrm{k} \Omega$. The total gain of the limiting amplifier section is approximately 55 dB . This IF limiting amplifier section internally drives the quadrature detector section.

Figure 9. Mixer Gain versus IF Frequency

Figure 10. Mixer IF Output Level versus Local Oscillator Input Level

Figure 12. IF Amplifier Gain versus IF Frequency

Figure 13. Recovered Audio Output Voltage versus Supply Voltage

Quadrature Detector

The quadrature detector is a doubly balanced four quadrant multiplier with an internal 5.0 pF quadrature capacitor to couple the IF signal to the external parallel RLC resonant circuit that provides the 90 degree phase shift and drives the quadrature detector. A single pin (Pin 13) provides for the external LC parallel resonant network and the internal connection to the quadrature detector.

The bandwidth of the detector allows for recovery of relatively high data rate modulation. The recovered signal is converted from differential to single ended through a push-pull NPN/PNP output stage. Variation in recovered audio output voltage with supply voltage is very small (see Figure 13). The output drive capability is approximately $\pm 9.0 \mu \mathrm{~A}$ for a frequency deviation of $\pm 75 \mathrm{kHz}$ and 1.0 kHz modulating frequency (see Application Circuit).

Data Slicer

The data slicer input (Pin 15) is self centering around 1.1 V with clamping occurring at $1.1 \pm 0.5 \mathrm{~V}_{\mathrm{be}} \mathrm{Vdc}$. It is designed to square up the data signal. Figure 14 shows a detailed schematic of the data slicer.

The Voltage Regulator sets up 1.1 Vdc on the base of Q12, the Differential Input Amplifier. There is a potential of 1.0 V be on the base-collector of transistor diode Q11 and 2.0 V be on the base-collector of Q10. This sets up a 1.5 V be ($\sim 1.1 \mathrm{Vdc}$) on the node between the $36 \mathrm{k} \Omega$ resistors which is connected to the base of Q12. The differential output of the data slicer Q12 and Q13 is converted to a single-ended output by the Driver Circuit. Additional circuitry, not shown in Figure 14, tends to keep the data slicer input centered at 1.1 Vdc as input signal levels vary.

The Input Diode Clamp Circuit provides the clamping at 1.0 V be (0.75 Vdc) and $2.0 \mathrm{~V}_{\mathrm{be}}(1.45 \mathrm{Vdc})$. Transistor diodes Q7 and Q8 are on, thus, providing a $2.0 \mathrm{~V}_{\text {be }}$ potential at the base of Q1. Also, the voltage regulator circuit provides a potential of 2.0 Vbe on the base of Q 3 and 1.0 V be on the emitter of Q3 and Q2. When the data slicer input (Pin 15) is
pulled up, Q1 turns off; Q2 turns on, thereby clamping the input at $2.0 \mathrm{~V}_{\mathrm{be}}$. On the other hand, when Pin 15 is pulled down, Q1 turns on; Q2 turns off, thereby clamping the input at $1.0 \mathrm{~V}_{\mathrm{be}}$.

The recovered data signal from the quadrature detector is ac coupled to the data slicer via an input coupling capacitor. The size of this capacitor and the nature of the data signal determine how faithfully the data slicer shapes up the recovered signal. The time constant is short for large peak to peak voltage swings or when there is a change in dc level at the detector output. For small signal or for continuous bits of the same polarity which drift close to the threshold voltage, the time constant is longer. When centered there is no input current allowed, which is to say, that the input looks high in impedance.

Another unique feature of the data slicer is that it responds to various logic levels applied to the Data Slicer Hold Control pin (Pin 18). Figure 15 illustrates how the input and output currents under "no hold" condition relate to the input voltage. Figure 16 shows how the input current and input voltage relate for both the "no hold" and "hold" condition.

The hold control (Pin18) does three separate tasks:

1) With Pin 18 at $1.0 \mathrm{~V}_{\text {be }}$ or greater, the output is shut off (sets high). Q19 turns on which shunts the base drive from Q20, thereby turning the output off.
2) With Pin 18 at $2.0 \mathrm{~V}_{\mathrm{be}}$ or greater, internal clamping diodes are open circuited and the comparator input is shut off and effectively open circuited. This is accomplished by turning off the current source to emitters of the input differential amplifier, thus, the input differential amplifier is shut off.
3) When the input is shut off, it allows the input capacitor to hold its charge during transmit to improve recovery at the beginning of the next receive period. When it is turned on, it allows for very fast charging of the input capacitor for quick recovery of new tuning or data average. The above features are very desirable in a TDD digital FM system.

MC13156

Figure 14. Data Slicer Circuit

Figure 15. Data Slicer Input/Output Currents versus Input Voltage

Figure 16. Data Slicer Input Current versus Input Voltage

Figure 17. MC13156DW Application Circuit

NOTES: 1. $0.1 \mu \mathrm{H}$ Variable Shielded Inductor: Coilcraft part \# M1283-A or equivalent.
2. 10.7 MHz Ceramic Filter: Toko part \# SK107M5-A0-10X or Murata Erie part \# SFE10.7MHY-A.
3. $1.5 \mu \mathrm{H}$ Variable Shielded Inductor: Toko part \# 292SNS-T1373.
4. 3rd Overtone, Series Resonant, 25 PPM Crystal at 44.585 MHz .
5. $0.814 \mu \mathrm{H}$ Variable Shielded Inductor: Coilcraft part \# 143-18J12S.
6. $0.146 \mu \mathrm{H}$ Variable Inductor: Coilcraft part \# 146-04J08.

Figure 18. MC13156DW Circuit Side Component Placement

Figure 19. MC13156DW Ground Side Component Placement

APPLICATIONS INFORMATION

Component Selection

The evaluation PC board is designed to accommodate specific components, while also being versatile enough to use components from various manufacturers and coil types. Figures 18 and 19 show the placement for the components specified in the application circuit (Figure 17). The applications circuit schematic specifies particular components that were used to achieve the results shown in the typical curves and tables but equivalent components should give similar results.

Input Matching Networks/Components

The input matching circuit shown in the application circuit schematic is passive high pass network which offers effective image rejection when the local oscillator is below the RF input frequency. Silver mica capacitors are used for their high Q and tight tolerance. The PC board is not dedicated to any particular input matching network topology; space is provided for the designer to breadboard as desired.

Alternate matching networks using $4: 1$ surface mount transformers or BALUNs provide satisfactory performance. The 12 dB SINAD sensitivity using the above matching networks is typically -100 dBm for $\mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}$ and $\mathrm{f}_{\mathrm{dev}}= \pm 75 \mathrm{kHz}$ at $\mathrm{f}_{\mathrm{I}} \mathrm{N}=144.45 \mathrm{MHz}$ and $\mathrm{f} \mathrm{OSC}=133.75 \mathrm{MHz}$ (see Figure 25).

It is desirable to use a SAW filter before the mixer to provide additional selectivity and adjacent channel rejection and improved sensitivity. The SAW filter should be designed to interface with the mixer input impedance of approximately $1.0 \mathrm{k} \Omega$. Table 1 displays the series equivalent single-ended mixer input impedance.

Local Oscillators

VHF Applications - The local oscillator circuit shown in the application schematic utilizes a third overtone crystal and an RF transistor. Selecting a transistor having good phase noise performance is important; a mandatory criteria is for the
device to have good linearity of beta over several decades of collector current. In other words, if the low current beta is suppressed, it will not offer good 1/f noise performance. A third overtone series resonant crystal having at least 25 ppm tolerance over the operating temperature is recommended. The local oscillator is an impedance inversion third overtone Colpitts network and harmonic generator. In this circuit a 560 to $1.0 \mathrm{k} \Omega$ resistor shunts the crystal to ensure that it operates in its overtone mode; thus, a blocking capacitor is needed to eliminate the dc path to ground. The resulting parallel LC network should "free-run" near the crystal frequency if a short to ground is placed across the crystal. To provide sufficient output loading at the collector, a high Q variable inductor is used that is tuned to self resonate at the 3rd harmonic of the overtone crystal frequency.

The on-chip grounded collector transistor may be used for HF and VHF local oscillator with higher order overtone crystals. Figure 20 shows a 5th overtone oscillator at 93.3 MHz and Figure 21 shows a 7th overtone oscillator at 148.3 MHz. Both circuits use a Butler overtone oscillator configuration. The amplifier is an emitter follower. The crystal is driven from the emitter and is coupled to the high impedance base through a capacitive tap network. Operation at the desired overtone frequency is ensured by the parallel resonant circuit formed by the variable inductor and the tap capacitors and parasitic capacitances of the on-chip transistor and PC board. The variable inductor specified in the schematic could be replaced with a high tolerance, high Q ceramic or air wound surface mount component if the other components have good tolerances. A variable inductor provides an adjustment for gain and frequency of the resonant tank ensuring lock up and startup of the crystal oscillator. The overtone crystal is chosen with ESR of typically 80Ω and 120Ω maximum; if the resistive loss in the crystal is too high, the performance of the oscillator may be impacted by lower gain margins.

Table 1. Mixer Input Impedance Data
(Single-ended configuration, $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}$, local oscillator drive $=100 \mathrm{mVrms}$)

Frequency $(\mathbf{M H z})$	Series Equivalent Complex Impedance $(\mathbf{R}+\mathrm{jX})$ (Ω)	Parallel Resistance $\mathbf{R p}$ (Ω)	Parallel Capacitance $\mathbf{C p}$
90	$190-\mathrm{j} 380$	950	$(\mathbf{p F})$

A series LC network to ground (which is V_{CC}) is comprised of the inductance of the base lead of the on-chip transistor and PC board traces and tap capacitors. Parasitic oscillations often occur in the 200 to 800 MHz range. A small resistor is placed in series with the base (Pin 24) to cancel the negative resistance associated with this undesired mode of oscillation. Since the base input impedance is so large a small resistor in the range of 27 to 68Ω has very little effect on the desired Butler mode of oscillation.

The crystal parallel capacitance, C_{0}, provides a feedback path that is low enough in reactance at frequencies of 5th overtone or higher to cause trouble. C_{0} has little effect near resonance because of the low impedance of the crystal motional arm ($\mathrm{R}_{\mathrm{m}}-\mathrm{L}_{\mathrm{m}}-\mathrm{C}_{\mathrm{m}}$). As the tunable inductor which forms the resonant tank with the tap capacitors is tuned off the crystal resonant frequency, it may be difficult to tell if the oscillation is under crystal control. Frequency jumps may occur as the inductor is tuned. In order to eliminate this behavior an inductor (L_{0}) is placed in parallel with the crystal. L_{0} is chosen to resonant with the crystal parallel capacitance $\left(\mathrm{C}_{0}\right)$ at the desired operation frequency. The inductor provides a feedback path at frequencies well below resonance; however, the parallel tank network of the tap capacitors and tunable inductor prevent oscillation at these frequencies.

UHF Application

Figure 22 shows a 318.5 to 320 MHz receiver which drives the mixer with an external varactor controlled (307.8 to 309.3 MHz) LC oscillator using an MPS901 (RF low power transistor in a TO-92 plastic package; also MMBR901 is available in a SOT-23 surface mount package). With the $50 \mathrm{k} \Omega 10$ turn potentiometer this oscillator is tunable over a range of approximately 1.5 MHz . The MMBV909L is a low
voltage varactor suitable for UHF applications; it is a dual back-to-back varactor in a SOT-23 package. The input matching network uses a 1:4 impedance matching transformer (Recommended sources are Mini-Circuits and Coilcraft).

Using the same IF ceramic filters and quadrature detector circuit as specified in the applications circuit in Figure 17, the 12 dB SINAD performance is -95 dBm for a $\mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{kHz}$ sinusoidal waveform and $\mathrm{f}_{\mathrm{dev}} \pm 40 \mathrm{kHz}$.

This circuit is breadboarded using the evaluation PC board shown in Figures 32 and 33. The RF ground is V_{CC} and path lengths are minimized. High quality surface mount components were used except where specified. The absolute values of the components used will vary with layout placement and component parasitics.

RSSI Response

Figure 26 shows the full RSSI response in the application circuit. The $10.7 \mathrm{MHz}, 110 \mathrm{kHz}$ wide bandpass ceramic filters (recommended sources are TOKO part \# SK107M5-AO-10X or Murata Erie SFE10.7MHY-A) provide the correct bandpass insertion loss to linearize the curve between the limiter and IF portions of RSSI. Figure 25 shows that limiting occurs at an input of -100 dBm . As shown in Figure 26, the RSSI output linear from -100 dBm to -30 dBm .

The RSSI rise and fall times for various RF input signal levels and R20 values are measured at Pin 20 without 10 nF filter capacitor. A 10 kHz square wave pulses the RF input signal on and off. Figure 27 shows that the rise and fall times are short enough to recover greater than 10 kHz ASK data; with a wider IF bandpass filters data rates up to 50 kHz may be achieved. The circuit used is the application circuit in Figure 17 with no RSSI output filter capacitor.

Figure 20. MC13156DW Application Circuit $\mathrm{f}_{\mathrm{RF}}=104 \mathrm{MHz}$; fLO $=93.30 \mathrm{MHz}$ 5th Overtone Crystal Oscillator

(4) $0.135 \mu \mathrm{H}$

NOTES: 1. $0.1 \mu \mathrm{H}$ Variable Shielded Inductor: Coilcraft part \# M1283-A or equivalent.
2. Capacitors are Silver Mica.
3. 5th Overtone, Series Resonant, 25 PPM Crystal at 93.300 MHz .
4. $0.135 \mu \mathrm{H}$ Variable Shielded Inductor: Coilcraft part \# 146-05J08S or equivalent.

MC13156

Figure 21. MC13156DW Application Circuit

$$
\begin{aligned}
& \mathrm{fRF}=159 \mathrm{MHz} \text {; } \mathrm{LO}=148.30 \mathrm{MHz} \\
& \text { 7th Overtone Crystal Oscillator }
\end{aligned}
$$

NOTES: $1.0 .08 \mu \mathrm{H}$ Variable Shielded Inductor: Toko part \# 292SNS-T1365Z or equivalent.
2. Capacitors are Silver Mica.
3. 7th Overtone, Series Resonant, 25 PPM Crystal at 148.300 MHz .
4.76 nH Variable Shielded Inductor: Coilcraft part \# 150-03J08S or equivalent.

Figure 22. MC13156DW Varactor Controlled LC Oscillator

NOTES: 1.1:4 Impedance Transformer: Mini-Circuits.
2. 50 k Potentiometer, 10 turns.
3. Spring Coil; Coilcraft A05T.
4. Dual Varactor in SOT-23 Package.
5. All other components are surface mount components.

6 . Ferrite beads through loop of 24 AWG wire.

MC13156

45 MHz Narrowband Receiver

The above application examples utilize a 10.7 MHz IF. In this section a narrowband receiver with a 455 kHz IF will be described. Figure 23 shows a full schematic of a 45 MHz receiver that uses a 3rd overtone crystal with the on-chip oscillator transistor. The oscillator configuration is similar to the one used in Figure 17; it is called an impedance inversion Colpitts. A 44.545 MHz 3rd overtone, series resonant crystal is used to achieve an IF frequency at 455 kHz . The ceramic IF filters selected are Murata Erie part \# SFG455A3. $1.2 \mathrm{k} \Omega$ chip resistors are used in series with the filters to achieve the terminating resistance of $1.4 \mathrm{k} \Omega$ to the filter. The IF decoupling is very important; $0.1 \mu \mathrm{~F}$ chip capacitors are used at Pins 6, 7, 11 and 12. The quadrature detector tank circuit uses a 455 kHz quadrature tank from Toko.

The 12 dB SINAD performance is -109 dBm for a $\mathrm{fmod}=$ 1.0 kHz and a $\mathrm{f}_{\mathrm{dev}}= \pm 4.0 \mathrm{kHz}$. The RSSI dynamic range is approximately 80 dB of linear range (see Figure 24).

Receiver Design Considerations

The curves of signal levels at various portions of the application receiver with respect to RF input level are shown in Figure 28. This information helps determine the network topology and gain blocks required ahead of the MC13156 to achieve the desired sensitivity and dynamic range of the receiver system. In the application circuit the input third order intercept (IP3) performance of the system is approximately -25 dBm (see Figure 29).

Figure 23. MC13156DW Application Circuit at 45 MHz

4. 3rd Overtone, Series Resonant, 25 PPM Crystal at 44.540 MHz .
5. $0.416 \mu \mathrm{H}$ Variable Shielded Inductor: Coilcraft part \# 143-10J12S.
6. $1.8 \mu \mathrm{H}$ Molded Inductor.

Figure 24. RSSI Output Voltage versus Input Signal Level

Figure 26. RSSI Output Voltage versus Input Signal Level

Figure 28. Signal Levels versus RF Input Signal Level

Figure 25. S + N/N versus RF Input Signal Level

Figure 27. RSSI Output Rise and Fall Times versus RF Input Signal Level

Figure 29. 1.0 dB Compression Pt. and Input Third Order Intercept Pt. versus Input Power

Description

The test setup shown in Figure 31 is configured so that the function generator supplies a 100 kHz clock source to the bit error rate tester. This device generates and receives a repeating data pattern and drives a 5 pole baseband data filter. The filter effectively reduces harmonic content of the baseband data which is used to modulate the RF generator which is running at 144.45 MHz . Following processing of the signal by the receiver (MC13156), the recovered baseband sinewave (data) is AC coupled to the data slicer. The data slicer is essentially an auto-threshold comparator which tracks the zero crossing of the incoming sinewave and provides logic level data at its ouput. Data errors associated with the recovered data are collected by the bit error rate receiver and displayed.

Bit error rate versus RF signal input level and IF filter bandwidth are shown in Figure 30. The bit error rate data was taken under the following test conditions:

- Data rate $=100 \mathrm{kbps}$
- Filter cutoff frequency set to 39% of the data rate or 39 kHz .
- Filter type is a 5 pole equal-ripple with 0.5° phase error.
- $\mathrm{V}_{\mathrm{CC}}=4.0 \mathrm{Vdc}$
- Frequency deviation $= \pm 32 \mathrm{kHz}$.

Figure 30. Bit Error Rate versus RF Input Signal Level and IF Bandpass Filter

Evaluation PC Board

The evaluation PCB is very versatile and is intended to be used across the entire useful frequency range of this device. The center section of the board provides an area for attaching all SMT components to the circuit side and radial leaded components to the component ground side (see Figures 32 and 33). Additionally, the peripheral area surrounding the RF core provides pads to add supporting and interface circuitry as a particular application dictates.

Figure 31. Bit Error Rate Test Setup

Figure 32. Circuit Side View

Figure 33. Ground Side View

Wideband FM IF Subsystem

The MC13158 is a wideband IF subsystem that is designed for high performance data and analog applications. Excellent high frequency performance is achieved, with low cost, through the use of Motorola's MOSAIC 1.5 ${ }^{\text {™ }}$ RF bipolar process. The MC13158 has an on-board grounded collector VCO transistor that may be used with a fundamental or overtone crystal in single channel operation or with a PLL in multi-channel operation. The mixer is useful to 500 MHz and may be used in a balanced differential or single ended configuration. The IF amplifier is split to accommodate two low cost cascaded filters. RSSI output is derived by summing the output of both IF sections. A precision data shaper has an Off function to shut the output off to save current. An enable control is provided to power down the IC for power management in battery operated applications.

Applications include DECT, wideband wireless data links for personal and portable laptop computers and other battery operated radio systems which utilize GFSK, FSK or FM modulation.

- Designed for DECT Applications
- 1.8 to 6.0 Vdc Operating Voltage
- Low Power Consumption in Active and Standby Mode
- Greater than 600 kHz Detector Bandwidth
- Data Slicer with Special Off Function
- Enable Function for Power Down of Battery Operated Systems
- RSSI Dynamic Range of 80 dB Minimum
- Low External Component Count

WIDEBAND FM IF SUBSYSTEM FOR DECT AND DIGITAL APPLICATIONS

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC 13158 FTB	$\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$	TQFP- 32

MC13158

MAXIMUM RATINGS

Rating	Pin	Symbol	Value	Unit
Power Supply Voltage	16,26	$\mathrm{~V}_{\mathrm{S}(\max)}$	6.5	Vdc
Junction Temperature		$\mathrm{T}_{\mathrm{JMAX}}$	+150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range		$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: 1. Devices should not be operated at or outside these values. The "Recommended Operating Conditions" provide for actual device operation.

RECOMMENDED OPERATING CONDITIONS $\left(\mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{2}=\mathrm{V}_{7} ; \mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{16}=\mathrm{V}_{22}=\mathrm{V}_{26} ; \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}\right)$

Rating	Pin	Symbol	Value	Unit
Power Supply Voltage $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq 85^{\circ} \mathrm{C}$	2,7	$\mathrm{~V}_{\mathrm{S}}$	2.0 to 6.0	Vdc
Input Frequency	16,26			
Ambient Temperature Range	31,32	$\mathrm{~F}_{\text {in }}$	10 to 500	MHz
Input Signal Level		T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$; $\mathrm{V}_{\mathrm{S}}=3.0 \mathrm{Vdc}$; No Input Signal; See Figure 1.)

Characteristic	Condition	Pin	Symbol	Min	Typ	Max	Unit
Total Drain Current	$\mathrm{V}_{\mathrm{S}}=2.0 \mathrm{Vdc}$	16,26	ITOTAL	2.5	5.5	8.5	mA
	$\mathrm{VS}_{\mathrm{S}}=3.0 \mathrm{Vdc}$			3.5	5.7	8.5	
	$\mathrm{VS}_{\mathrm{S}}=6.0 \mathrm{Vdc}$			3.5	6.0	9.5	
	See Figure 2						

DATA SLICER (Input Voltage Referenced to $\mathrm{V}_{\mathrm{EE}} ; \mathrm{V}_{\mathrm{S}}=3.0 \mathrm{Vdc}$; No Input Signal)

Output Current; $\mathrm{V}_{18} \mathrm{LO} ;$ Data Slicer Enabled (DS "on")	$\mathrm{V}_{19}=\mathrm{V}_{\mathrm{EE}}$ $\mathrm{V}_{18}<\mathrm{V}_{20}$ $\mathrm{~V}_{20}=\mathrm{V}_{\mathrm{S}} / 2$ See Figure 3	21	I_{21}	2.0	5.9	-	mA
Output Current; $\mathrm{V}_{18} \mathrm{HI} ;$ Data Slicer Enabled (DS "on")	$\mathrm{V}_{19}=\mathrm{V}_{\mathrm{EE}}$ $\mathrm{V}_{18}>\mathrm{V}_{20}$ $\mathrm{~V}_{20}=\mathrm{V}_{\mathrm{S}} / 2$ See Figure 4	21	I_{21}	-	0.1	1.0	$\mu \mathrm{~A}$
Output Current;							
Data Slicer Disabled (DS "off")	$\mathrm{V}_{19}=\mathrm{V}_{\mathrm{CC}}$	21	I_{21}	-	0.1	1.0	$\mu \mathrm{~A}$

AC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{S}}=3.0 \mathrm{Vdc} ; \mathrm{f}_{\mathrm{RF}}=110.7 \mathrm{MHz} ; \mathfrak{f L O}=100 \mathrm{MHz}\right.$; See Figure 1.)

| Characteristic | Condition | Pin | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| MIXER | | | | | | | |
| \begin{tabular}{\|l|c|c|c|c|c|c|}
\hline
\end{tabular} | | | | | | | |
Mixer Conversion Gain	Vin $=1.0 \mathrm{mVrms}$ See Figure 5	$31,32,1$	-	-	22	-	dB
Noise Figure	Input Matched	$31,32,1$	NF	-	14	-	dB
Mixer Input Impedance	Single-Ended	31,32	Rp	-	865	-	Ω
	See Figure 15		Cp	-	1.6	-	pF
Mixer Output Impedance		1	-	-	330	-	Ω

AC ELECTRICAL CHARACTERISTICS (continued) $\left(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{S}}=3.0 \mathrm{Vdc} ; \mathrm{f}_{\mathrm{RF}}=110.7 \mathrm{MHz} ; \mathrm{fLO}^{2}=100 \mathrm{MHz}\right.$; See Figure 1.)

| Characteristic | Condition | Pin | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IF AMPLIFIER SECTION | | | | | | | |
| IF RSSI Slope | See Figure 8 | 23 | - | 0.15 | 0.3 | 0.4 | $\mu \mathrm{~A} / \mathrm{dB}$ |
| IF Gain | $\mathrm{f}=10.7 \mathrm{MHz}$
 See Figure 7 | 3,6 | - | - | 36 | - | dB |
| Input Impedance | | 3 | - | - | 330 | - | Ω |
| Output Impedance | | 6 | - | - | 330 | - | Ω |

LIMITING AMPLIFIER SECTION

Limiter RSSI Slope	See Figure 9	23	-	0.15	0.3	0.4	$\mu \mathrm{~A} / \mathrm{dB}$
Limiter Gain	$\mathrm{f}=10.7 \mathrm{MHz}$	8,12	-	-	70	-	dB
Input Impedance		8	-	-	330	-	Ω

Figure 1. Test Circuit

MC13158

Typical Performance Over Temperature
(per Figure 1)

Figure 2. Total Supply Current versus Ambient Temperature, Supply Voltage

Figure 4. Data Slicer On Output Current versus Ambient Temperature

Figure 6. Mixer RSSI Output Current versus Ambient Temperature, Mixer Input Level

Figure 3. Data Slicer On Output Current versus Ambient Temperature

Figure 5. Normalized Mixer Gain versus Ambient Temperature

Figure 7. Normalized IF Amp Gain versus Ambient Temperature

MC13158

tTypical Performance Over Temperature
(per Figure 1)

Figure 8. IF Amp RSSI Output Current versus Ambient Temperature, IF Input Level

Figure 10. Total RSSI Output Current versus Ambient Temperature (No Signal)

Figure 9. Limiter Amp RSSI Output Current versus Ambient Temperature, Input Signal Level

Figure 11. Demodulator DC Voltage versus Ambient Temperature

SYSTEM LEVEL AC ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{S}}=3.0 \mathrm{Vdc} ; \mathrm{f}_{\mathrm{RF}}=112 \mathrm{MHz} ; \mathrm{f}_{\mathrm{LO}}=122.7 \mathrm{MHz}\right)$

Characteristic	Condition	Notes	Symbol	Typ	Unit
12 dB SINAD Sensitivity: Narrowband Application Without Preamp With Preamp	$\mathrm{f}_{\mathrm{RF}}=112 \mathrm{MHz}$ $f_{\text {mod }}=1.0 \mathrm{kHz}$ $f_{\text {dev }}= \pm 125 \mathrm{kHz}$ SINAD Curve Figure 25 Figure 26	1	-	$\begin{aligned} & -101 \\ & -113 \end{aligned}$	dBm
Third Order Intercept Point 1.0 dB Comp. Point	$\begin{gathered} \mathrm{f}_{\mathrm{RF} 1}=112 \mathrm{MHz} \\ \mathrm{f}_{\mathrm{RF} 2}=112.1 \mathrm{MHz} \\ \mathrm{~V}_{\mathrm{S}}=3.5 \mathrm{Vdc} \\ \text { Figure } 28 \end{gathered}$	2	$\begin{gathered} \text { IIP3 } \\ 1.0 \mathrm{~dB} \text { C.Pt. } \end{gathered}$	$\begin{aligned} & \hline-32 \\ & -39 \end{aligned}$	dBm

NOTES: 1. Test Circuit \& Test Set per Figure 24.
2. Test Circuit \& Test Set per Figure 27.

General

The MC13158 is a low power single conversion wideband FM receiver incorporating a split IF. This device is designated for use as the backend in digital FM systems such as Digital European Cordless Telephone (DECT) and wideband data links with data rates up to 2.0 Mbps . It contains a mixer, oscillator, Received Signal Strength Indicator (RSSI), IF amplifier, limiting IF, quadrature detector, power down or enable function, and a data slicer with output off function. Further details are covered in the Pin Function Description which shows the equivalent internal circuit and external circuit requirements.

Current Regulation/Enable

Temperature compensating voltage independent current regulators which are controlled by the enable pin (Pin 25) where "low" powers up and "high" powers down the entire circuit.

Mixer

The mixer is a double-balanced four quadrant multiplier and is designed to work up to 500 MHz . It can be used in differential or in single ended mode by connecting the other input to the positive supply rail. The linear gain of the mixer is approximately 22 dB at 100 mVrms LO drive level. The mixer gain and noise figure have been emphasized at the expense of intermodulation performance. RSSI measurements are added in the mixer to extend the range to higher signal levels. The single-ended parallel equivalent input impedance of the mixer is $\mathrm{Rp} \sim 1.0 \mathrm{k} \Omega$ and $\mathrm{Cp} \sim 2.0 \mathrm{pF}$. The buffered output of the mixer is internally loaded resulting in an output impedance of 330Ω.

Local Oscillator

The on-chip transistor operates with crystal and LC resonant elements up to 220 MHz . Series resonant, overtone crystals are used to achieve excellent local oscillator stability. Third overtone crystals are used through about 65 to 70 MHz . Operation from 70 MHz up to 180 MHz is feasible using the on-chip transistor with a 5th or 7th overtone crystal. To enhance operation using an overtone crystal, the internal transistor bias is increased by adding an external resistor from Pin 29 to V_{EE}; however, with an external resistor the oscillator stays on during power down. Typically, -10 dBm of local oscillator drive is needed to adequately drive the mixer. With an external oscillator source, the IC can be operated up to 500 MHz .

RSSI

The received signal strength indicator (RSSI) output is a current proportional to the log of the received signal amplitude. The RSSI current output is derived by summing the currents from the mixer, IF and limiting amplifier stages. An increase in RSSI dynamic range, particularly at higher input signal levels is achieved. The RSSI circuit is designed to provide typically 85 dB of dynamic range with temperature compensation.

Linearity of the RSSI is optimized by using external ceramic bandpass filters which have an insertion loss of 4.0 dB and 330Ω source and load impedance. For higher data rates used in DECT and related applications, LC bandpass filtering is necessary to acquire the desired
bandpass response; however, the RSSI linearity will require the same insertion loss.

RSSI Buffer

The RSSI output current creates a voltage across an external resistor. A unity voltage-gain amplifier is used to buffer this voltage. The output of this buffer has an active pull-up but no pull-down, so it can also be used as a peak detector. The negative slew rate is determined by external capacitance and resistance to the negative supply.

IF Amplifier

The first IF amplifier section is composed of three differential stages with the second and third stages contributing to the RSSI. This section has internal DC feedback and external input decoupling for improved symmetry and stability. The total gain of the IF amplifier block is approximately 40 dB at 10.7 MHz .

The fixed internal input impedance is 330Ω. When using ceramic filters requiring source and loss impedances of 330Ω, no external matching is necessary. Overall RSSI linearity is dependent on having total midband attenuation of 10 dB (4.0 dB insertion loss plus 6.0 dB impedance matching loss) for the filter. The output of the IF amplifier is buffered and the impedance is 330Ω.

Limiter

The limiter section is similar to the IF amplifier section except that five differential stages are used. The fixed internal input impedance is 330Ω. The total gain of the limiting amplifier section is approximately 70 dB . This IF limiting amplifier section internally drives the quadrature detector section and it is also brought out on Pin 12.

Quadrature Detector

The quadrature detector is a doubly balanced four quadrant multiplier with an internal 5.0 pF quadrature capacitor between Pins 12 and 13. An external capacitor may be added between these pins to increase the IF signal to the external parallel RLC resonant circuit that provides the 90 degree phase shift and drives the quadrature detector. A single pin (Pin 13) provides for the external LC parallel resonant network and the internal connection to the quadrature detector.

Internal low pass filter capacitors have been selected to control the bandwidth of the detector. The recovered signal is brought out by the inverting amplifier buffer. An external feedback resistor from the output (Pin 17) to the input of the inverting amplifier (Pin 15) controls the output amplitude; it is combined with another external resistor from the input to the negative supply (Pin 16) to set the output dc level. For a resistor ratio of 1, the DC level at the detector output is 2.0 $V_{B E}$ (see Figure 12). A small capacitor C_{17} across the first resistor (from Pin 17 to 15) can be used to reduce the bandwidth.

Data Slicer

The data slicer is a comparator that is designed to square up the data signal. Across the data slicer inputs (Pins 18 and 20) are back to back diodes.

The recovered data signal from the quadrature detector can be DC coupled to the data slicer DS IN1 (Pin 18). In the application circuit shown in Figure 1 it will be centered at 2.0 $V_{B E}$ and allowed to swing $\pm \mathrm{V}_{\mathrm{BE}}$. A capacitor is placed from DS IN2 (Pin 20) to V_{EE}. The size of this capacitor and the nature of the data signal determine how faithfully the data slicer shapes up the recovered signal. The time constant is short for large peak to peak voltage swings or when there is a change in DC level at the detector output. For small signal or for continuous bits of the same polarity which drift close to the threshold voltage, the time constant is longer.

A unique feature of the data slicer is that the inverting switching stages in the comparator are supplied through the emitter pin of the output transistor (Pin 22 - DS Gnd) to V_{EE} rather than internally to V_{EE}. This is provided in order to reduce switching feedback to the front end. A control pin is provided to shut the data slicer output off (DS "off" - Pin 19). With DS "off" pin at $V_{C C}$ the data slicer output is shut off by shutting down the base drive to the output transistor. When a channel is being monitored to make an RSSI measurement, but not to collect data, the data output may be shut off to save current.

PIN FUNCTION DESCRIPTION

\begin{tabular}{|c|c|c|c|}
\hline Pin \& Symbol \& Internal Equivalent Circuit \& Description/External Circuit Requirements

\hline 1

2 \& \begin{tabular}{l}
Mix

Out

$\mathrm{V}_{\mathrm{CC} 1}$

 \& \&

Mixer Output

The mixer output impedance is 330Ω; it matches to 10.7 MHz ceramic filters with 330Ω input impedance.

Supply Voltage (VCC1)

This pin is the VCC pin for the Mixer, Local Oscillator, and IF Amnlifer. The onerating supply voltage range is from 1.8 Vdc to 5.0 Vdc . In the PCB layout, the VCC trace must be kept as wide as possible to minimize inductive reactances along the trace; it is best to have it completely fill around the surface mount components and traces on the circuit side of the PCB.
\end{tabular}

\hline 3

4

5 \& \begin{tabular}{l}
IF

In

IF Dec1

IF Dec2

 \& \&

IF Input

The input impedance at Pin 3 is 330Ω. It matches the 330Ω load impedance of a 10.7 MHz ceramic filter. Thus, no external matching is required.

IF DEC1 \& DEC2

IF decoupling pins. Decoupling capacitors should be placed directly at the pins to enhance stability. Two capacitors are decoupled to the RF ground V_{CC}; one is placed between DEC1 \& DEC2.
\end{tabular}

\hline 6 \& \[
$$
\begin{aligned}
& \text { IF } \\
& \text { Out }
\end{aligned}
$$

\] \& \& | IF Output |
| :--- |
| The output impedance is 330Ω; it matches the 330 input resistance of a 10.7 MHz ceramic filter. |

\hline
\end{tabular}

PIN FUNCTION DESCRIPTION (continued)

\begin{tabular}{|c|c|c|c|}
\hline Pin \& Symbol \& Internal Equivalent Circuit \& Description/External Circuit Requirements

\hline 7

8
8
9

10 \& \begin{tabular}{l}
V_{CC}

Lim

In

Lim

Dec1

Lim

Dec2

 \& \&

Supply Voltage (VCC2)

This pin is V_{CC} supply for the Limiter, Quadrature Detector, data slicer and RSSI buffer circuits. In the application PC board this pin is tied to a common $V_{C C}$ trace with $V_{C C 1}$.

Limiter Input

The limiter input impedance is 330Ω.

Limiter Decoupling

Decoupling capacitors are placed directly at these pins and to V_{CC} (RF ground). Use the same procedure as in the IF decoupling.
\end{tabular}

\hline \[
$$
\begin{gathered}
11,14 \\
27 \& 28
\end{gathered}
$$

\] \& N/C \& \& | No Connects |
| :--- |
| There is no internal connection to these pins; however it is recommended that these pins be connected externally to V_{CC} (RF ground). |

\hline 12

13 \& \begin{tabular}{l}
Lim

Out

Quad

 \& \&

Limiter Output

The output impedance is low. The limiter drives a quadrature detector circuit with inphase and quadrature phase signals.

Quadrature Detector Circuit

The quadrature detector is a doubly balanced four-quadrant multiplier with an internal 5.0 pF capacitor between Pins 12 and 13. An external capacitor may be added to increase the IF signal to Pin 13. The quadrature detector pin is provided to connect the external RLC parallel resonant network which provides the 90 degree phase shift and drives the quadrature detector.
\end{tabular}

\hline 15
17

16 \& \begin{tabular}{l}
Det

Gain

Det

Out

VEE2

 \& \&

Detector Buffer Amplifier

This is an inverting amplifier. An external feedback resistor from Pin 17 to 15, (the inverting input) controls the output amplitude; another resistor from Pin 15 to the negative supply (Pin 16) sets the DC output level. A 1:1 resistor ratio sets the output DC level at two V_{BE} with respect to V_{EE}. A small capacitor from Pin 17 to 15 can be used to set the bandwidth.

Supply Ground (VEE2)

In the PCB layout, the ground pins (also applies to Pin 26) should be connected directly to chassis ground. Decoupling capacitors to V_{CC} should be placed directly at the ground pins.
\end{tabular}

\hline
\end{tabular}

PIN FUNCTION DESCRIPTION (continued)

Pin	Symbol	Internal Equivalent Circuit	Description/External Circuit Requirements
19	DS "off" DS Out DS Gnd		Data Slicer Off The data output may be shut off to save current by placing DS "off" (Pin 19) at V_{CC}. Data Slicer Output In the application example a $10 \mathrm{k} \Omega$ pull-up resistor is connected to the collector of the output transistor at Pin 21. Data Slicer Ground All the inverting switching stages in the comparator are supplied through the emitter pin of the output transistor (Pin 22) to ground rather than internally to V_{EE} in order to reduce switching feedback to the front end.
18 20	$\begin{aligned} & \text { DS } \\ & \text { In1 } \\ & \text { DS } \\ & \text { In2 } \end{aligned}$		Data Slicer Inputs The data slicer has differential inputs with back to back diodes across them. The recovered signal is DC coupled to DS IN1 (Pin 18) at nominally V_{18} with respect to V_{EE}; thus, it will maintain $\mathrm{V}_{18} \pm \mathrm{V}_{\mathrm{BE}}$ at Pin 18 . DS IN2 (Pin 20) is AC coupled to VEE. The choice of coupling capacitor is dependent on the nature of the data signal. For small signal or continuous bits of the same polarity, the response time is relatively large. On the other hand, for large peak to peak voltage swings or when the DC level at the detector output changes, the response time is short. See the discussion in the application section for external circuit design details.
23 24	RSSI Buf RSSI		RSSI Buffer A unity gain amplifier is used to buffer the voltage at Pin 24 to 23 . The output of the unity gain buffer ($\operatorname{Pin} 23$) has an active pull up but no pull down. An external resistor is placed from Pin 23 to VEE to provide the pull down. RSSI The RSSI output current creates a voltage drop across an external resistor from Pin 24 to VEE. The maximum RSSI current is $26 \mu \mathrm{~A}$; thus, the maximum RSSI voltage using a $100 \mathrm{k} \Omega$ resistor is approximately 2.6 Vdc . Figure 22 shows the RSSI Output Voltage versus Input Signal Level in the application circuit. The negative slew rate is determined by an external capacitor and resistor to VEE (negative supply). The RSSI rise and fall times for various RF input signal levels and R24 values without the capacitor, C_{24} are displayed in Figure 24. This is the maximum response time of the RSSI.

PIN FUNCTION DESCRIPTION (continued)

Pin	Symbol	Internal Equivalent Circuit	Description/External Circuit Requirements
25	Enable $\mathrm{V}_{\mathrm{EE}} 1$		Enable The IC regulators are enabled by placing this pin at V_{EE}.
			V_{CC} and V_{EE} ESD Protection ESD protection diodes exist between the V_{CC} and $V_{E E}$ pins. It is important to note that significant differences in potential (> $0.5 \mathrm{~V}_{\mathrm{BE}}$) between the two V_{CC} pins or between the $\mathrm{V}_{E E}$ pins can cause these structures to start to conduct, thus compromising isolation between the supply busses. $\mathrm{V}_{\mathrm{CC}} \& \mathrm{~V}_{\mathrm{CC} 2}$ should be maintained at the same DC potential, as should $\mathrm{V}_{\mathrm{EE} 1}$ \& $\mathrm{V}_{\mathrm{EE} 2}$.
28 29	Osc Base Osc Emitter		Oscillator Base This pin is connected to the base lead of the common collector transistor. Since there is no internal bias resistor to the base, V_{CC} is applied through an external choke or coil. Oscillator Emitter This pin is connected to the emitter lead; the emitter is connected internally to a current source of about $200 \mu \mathrm{~A}$. Additional emitter current may be obtained by connecting an external resistor to $\mathrm{V}_{\mathrm{EE}} ; \mathrm{IE}_{\mathrm{E}}=\mathrm{V}_{29} / \mathrm{R}_{29}$. Details of circuits using overtone crystal and LC varactor controlled oscillators are discussed in the application section.
31 32	$\begin{aligned} & \hline \operatorname{Mix} \\ & \operatorname{In} 1 \\ & \\ & \text { Mix } \\ & \operatorname{In} 2 \end{aligned}$		Mixer Inputs The parallel equivalent differential input impedance of the mixer is approximately 2.0 $\mathrm{k} \Omega$ in parallel with 1.0 pF . This equates to a single ended input impedance of $1.0 \mathrm{k} \Omega$ in parallel with 2.0 pF . The application circuit utilizes a SAW filter having a differential output that requires a $2.0 \mathrm{k} \Omega$ II 2.0 pF load. Therefore, little matching is required between the SAW filter and the mixer inputs. This and alternative circuits are discussed in more detail in the application section.

MC13158

APPLICATIONS INFORMATION

Evaluation PC Board

The evaluation PCB is very versatile and is intended to be used across the entire useful frequency range of this device. The center section of the board provides an area for attaching all SMT components to the circuit side and radial leaded components to the component ground side (see Figures 29 and 30). Additionally, the peripheral area surrounding the RF core provides pads to add supporting and interface circuitry as a particular application dictates. This evaluation board will be discussed and referenced in this section.

Component Selection

The evaluation PC board is designed to accommodate specific components, while also being versatile enough to use components from various manufacturers and coil types. Figures 13 and 14 show the placement for the components specified in the application circuit (Figure 12). The application circuit schematic specifies particular components that were used to achieve the results shown in the typical curves and tables but alternate components should give similar results.

Figure 12. Application Circuit

NOTES: 1. Saw Filter - Siemens part number Y6970M(5 pin SIP plastic package).
2. An LCR filter reduces the broadband noise in the IF; ceramic filters may be used for data rates under 500 kHz .4 .0 dB insertion loss filters optimize the linearity of RSSI.
3. The quadrature tank components are chosen to optimize linearity of the recovered signal while maintaining adequate recovered signal level. $1.5 \mu \mathrm{H} 7.0 \mathrm{~mm}$ variable shielded inductor: Toko part \# 292SNS-T1373Z. The shunt resistor is approximately equal to $\mathrm{Q}(2 \pi \mathrm{fL})$, where $\mathrm{Q} \sim 18$ ($3.0 \mathrm{~dB} \mathrm{BW}=600 \mathrm{kHz}$).
4. The local oscillator circuit utilizes a 122.7 MHz , 5th overtone, series resonant crystal specified with a frequency tolerance of 25 PPM, ESR of 120Ω max. The oscillator configuration is an emitter coupled butler.
5. The 95 NH (Nominal) inductor is a 7.0 mm variable shielded inductor: Coilcraft part \# 150-04J08S or equivalent.
6. $0.68 \mu \mathrm{H}$ axial lead chokes (molded inductor): Coilcraft part \# 90-11.
7. To enable the IC, Pin 25 is taken to $\mathrm{V}_{\text {EE }}$. The external pull down resistor at Pin 29 could be linked to the enable function; otherwise if it is taken to V_{EE} as shown, it will keep the oscillator biased at about $500 \mu \mathrm{~A}$ depending on the V_{CC} level.
8. The other resistors and capacitors are surface mount components.

Figure 14. Ground Side Component Placement

Input Matching/Components

It is desirable to use a SAW filter before the mixer to provide additional selectivity and adjacent channel rejection. In a wideband system the primary sensitivity of the receiver backend may be achieved before the last mixer. Bandpass filtering in the limiting IF is costly and difficult to achieve for bandwidths greater than 280 kHz .

The SAW filter should be selected to easily interface with the mixer differential input impedance of approximately $2.0 \mathrm{k} \Omega$ in parallel with 1.0 pF . The PC board is dedicated to the Siemens SAW filter (part number Y6970M); the part is designed for DECT at 112 MHz 1st IF frequency. It is designed for a load impedance of $2.0 \mathrm{k} \Omega$ in parallel with
2.0 pF ; thus, no or little input matching is required between the SAW filter and the mixer.

The Siemens SAW filter has an insertion loss of typically 10 dB and a 3.0 dB bandwidth of 1.0 MHz . The relatively high insertion loss significantly contributes to the system noise and a filter having lower insertion loss would be desirable. In existing low loss SAW filters, the required load impedance is 50Ω; thus, interface matching between the filter and the mixer will be required. Figure 15 is a table of the single-ended mixer input impedance. A careful noise analysis is necessary to determine the secondary contribution to system noise.

Figure 15. Mixer Input Impedance
(Single-ended)

\mathbf{f} $(\mathbf{M H z})$	Rs (Ω)	Xs (Ω)	Rp (Ω)	Xp (Ω)	$\mathbf{C p}$ $(\mathbf{p F})$
50	930	-350	1060	-2820	1.1
100	480	-430	865	-966	1.6
150	270	-400	860	-580	1.8
200	170	-320	770	-410	1.9
250	130	-270	690	-330	1.85
300	110	-250	680	-300	1.8
400	71	-190	580	-220	1.8
500	63	-140	370	-170	1.9
600	49	-110	300	-130	2.0

System Noise Considerations

The system block diagram in Figure 16 shows the cascaded noise stages contributing to the system noise; it represents the application circuit in Figure 12 and a low noise preamp using a MRF941 transistor (see Figure 17). The preamp is designed for a conjugately matched input and output at 2.0 Vdc V_{CE} and $3.0 \mathrm{mAdc} \mathrm{I}_{\mathrm{C}}$. S -parameters at $2.0 \mathrm{~V}, 3.0 \mathrm{~mA}$ and 100 MHz are:

$$
\begin{aligned}
& \mathrm{S} 11=0.86,-20 \\
& \mathrm{~S} 21=9.0,164 \\
& \mathrm{~S} 12=0.02,79 \\
& \mathrm{~S} 22=0.96,-12
\end{aligned}
$$

The bias network sets V_{CE} at 2.0 V and I_{C} at 3.0 mA for $\mathrm{V}_{\mathrm{CC}}=3.0$ to 3.5 Vdc . The preamp operates with 18 dB gain and 2.7 dB noise figure.

In the cascaded noise analysis the system noise equation is:

$$
\text { Fsystem }=\mathrm{F} 1+[(\mathrm{F} 2-1) / \mathrm{G} 1]+[(\mathrm{F} 3-1)] /[(\mathrm{G} 1)(\mathrm{G} 2)]
$$ where:

> F1 $=$ the Noise Factor of the Preamp
> G1 $=$ the Gain of the Preamp
> F2 $=$ the Noise factor of the SAW Filter
> G2 $=$ the Gain of the SAW Filter
> F3 $=$ the Noise factor of the Mixer

Note: the proceeding terms are defined as linear relationships and are related to the log form for gain and noise figure by the following:

$$
\begin{aligned}
& F=\log ^{-1}[(N F \text { in } d B) / 10] \text { and similarly } \\
& G=\log ^{-1}[(\text { Gain in } d B) / 10]
\end{aligned}
$$

The noise figure and gain measured in dB are shown in the system block diagram. The mixer noise figure is typically 14 dB and the SAW filter adds typically 10 dB insertion loss. Addition of a low noise preamp having a 18 dB gain and 2.7 dB noise figure not only improves the system noise figure but it increases the reverse isolation from the local oscillator to the antenna input at the receiver. Calculating in terms of gain and noise factor yields the following:

```
F1 = 1.86; G1 = 63.1
F2 = 10;G2 = 0.1
F3 = 25.12
```

Thus, substituting in the equation for system noise factor:
Fsystem $=5.82$; NFsystem $=7.7 \mathrm{~dB}$

Figure 16. System Block Diagram for Noise Analysis

Figure 17. 112 MHz LNA

LOCAL OSCILLATORS

VHF Applications

The on-chip grounded collector transistor may be used for HF and VHF local oscillator with higher order overtone crystals. The local oscillator in the application circuit (Figure 12) shows a 5th overtone oscillator at 122.7 MHz . This circuit uses a Butler overtone oscillator configuration. The amplifier is an emitter follower. The crystal is driven from the emitter and is coupled to the high impedance base through a capacitive tap network. Operation at the desired overtone frequency is ensured by the parallel resonant circuit formed by the variable inductor and the tap capacitors and parasitic capacitances of the on-chip transistor and PC board. The variable inductor specified in the schematic could be replaced with a high tolerance, high Q ceramic or air wound surface mount component if the other components have tight enough tolerances. A variable inductor provides an adjustment for gain and frequency of the resonant tank ensuring lock up and start-up of the crystal oscillator. The overtone crystal is chosen with ESR of typically 80Ω and 120Ω maximum; if the resistive loss in the crystal is too high the performance of oscillator may be impacted by lower gain margins.

A series LC network to ground (which is V_{CC}) is comprised of the inductance of the base lead of the on-chip transistor and PC board traces and tap capacitors. Parasitic oscillations often occur in the 200 to 800 MHz range. A small resistor is placed in series with the base (Pin 28) to cancel the
negative resistance associated with this undesired mode of oscillation. Since the base input impedance is so large a small resistor in the range of 27 to 68Ω has very little effect on the desired Butler mode of oscillation.

The crystal parallel capacitance, C_{0}, provides a feedback path that is low enough in reactance at frequencies of 5 th overtones or higher to cause trouble. C_{0} has little effect near resonance because of the low impedance of the crystal motional arm ($\mathrm{R}_{\mathrm{m}}-\mathrm{L}_{\mathrm{m}}-\mathrm{C}_{\mathrm{m}}$). As the tunable inductor which forms the resonant tank with the tap capacitors is tuned "off" the crystal resonant frequency it may be difficult to tell if the oscillation is under crystal control. Frequency jumps may occur as the inductor is tuned. In order to eliminate this behavior an inductor, L_{0}, is placed in parallel with the crystal. L_{0} is chosen to be resonant with the crystal parallel capacitance, C_{0}, at the desired operation frequency. The inductor provides a feedback path at frequencies well below resonance; however, the parallel tank network of the tap capacitors and tunable inductor prevent oscillation at these frequencies.

IF Filtering/Matching

In wideband data systems the IF bandpass needed is greater than can be found in low cost ceramic filters operating at 10.7 MHz . It is necessary to bandpass limit with LC networks or series-parallel ceramic filter networks. Murata offers a series-parallel resonator pair (part number

KMFC545) with a 3.0 dB bandwidth of $\pm 325 \mathrm{kHz}$ and a maximum insertion loss of 5.0 dB . The application PC board is laid out to accommodate this filter pair (a filter pair is used at both locations of the split IF). However, even using a series parallel ceramic filter network yields only a maximum bandpass of 650 kHz . In some applications a wider band IF bandpass is necessary.

A simple LC network yields a bandpass wider than the SAW filter but it does reduce an appreciable amount of wideband IF noise. In the application circuit an LC network is specified using surface mount components. The parallel LC components are placed from the outputs of the mixer and IF amplifier to the V_{CC} trace; internal 330 loads are connected from the mixer and IF amplifier outputs to DEC2 (Pin 5 and 10 respectively).This loads the outputs with the optimal load impedance but creates a low insertion loss filter. An external shunt resistor may be used to widen the bandpass and to acquire the 10 dB composite loss necessary to linearize the RSSI output. The equivalent circuit is shown in Figure 18.

Figure 18. IF LCR Filter

The following equations satisfy the 12 dB loss (1:4 resistive ratio):

$$
\begin{aligned}
& (R e x t)(330) /(\text { Rext }+330)=\text { Requivalent } \\
& \text { Requivalent/(Requivalent }+330)=1 / 4
\end{aligned}
$$

Solve for Requivalent:

$$
\begin{aligned}
& 4(\text { Requivalent })=\text { Requivalent }+330 \\
& 3 \text { (Requivalent })=330 \\
& \text { Requivalent }=110
\end{aligned}
$$

Substitute for Requivalent and solve for Rext:

$$
\begin{aligned}
& 330(\text { Rext })=110(\text { Rext })+(330)(110) \\
& \text { Rext }=(330)(110) / 220 \\
& \text { Rext }=165 \Omega
\end{aligned}
$$

The IF is 10.7 MHz although any IF between 10 to 20 MHz could be used. The value of the coil is lowered from that used in the quadrature circuit because the unloaded Q must be maintained in a surface mount component. A standard value component having an unloaded $\mathrm{Q}=100$ at 10.7 MHz is 330 nH ; therefore the capacitor is 669 pF . Standard values have been chosen for these components;

$$
\begin{aligned}
& \text { Rext }=150 \Omega \\
& \mathrm{C}=680 \mathrm{pF} \\
& \mathrm{~L}=330 \mathrm{nH}
\end{aligned}
$$

Computation of the loaded Q of this LCR network is

$$
\mathrm{Q}=\text { Requivalent } / \mathrm{X}_{\mathrm{L}}
$$

where: $\mathrm{XL}=2 \pi \mathrm{fL}$ and Requivalent is 103Ω
Thus, $Q=4.65$
The total system loss is

$$
20 \log (103 / 433)=-12.5 \mathrm{~dB}
$$

Quadrature Detector

The quadrature detector is coupled to the IF with an internal 5.0 pF capacitor between Pins 12 and 13. For wideband data applications, the drive to the detector can be increased with an additional external capacitor between these pins; thus, the recovered signal level output is increased for a given bandwidth

The wideband performance of the detector is controlled by the loaded Q of the LC tank circuit. The following equation defines the components which set the detector circuit's bandwidth:

$$
\begin{equation*}
\mathrm{Q}=\mathrm{R}_{\mathrm{T}} / \mathrm{X}_{\mathrm{L}} \tag{1}
\end{equation*}
$$

where $R \top$ is the equivalent shunt resistance across the LC Tank
X_{L} is the reactance of the quadrature inductor at the IF frequency ($X_{L}=2 \pi \mathrm{fL}$).

The inductor and capacitor are chosen to form a resonant LC tank with the PCB and parasitic device capacitance at the desired IF center frequency as predicted by

$$
\begin{equation*}
\mathrm{f}_{\mathrm{C}}=\left[2 \pi\left(\mathrm{LC}_{\mathrm{p}}\right)^{1 / 2}\right]^{-1} \tag{2}
\end{equation*}
$$

where L is the parallel tank inductor C_{p} is the equivalent parallel capacitance of the parallel resonant tank circuit.

The following is a design example for a wideband detector at 10.7 MHz and a loaded Q of 18. The loaded Q of the quadrature detector is chosen somewhat less than the Q of the IF bandpass. For an IF frequency of 10.7 MHz and an IF bandpass of 600 kHz , the IF bandpass Q is approximately 6.4.

Example:

Let the external Cext = 139 pF . (The minimum value here should be much greater than the internal device and PCB parasitic capacitance, Cint $\approx 3.0 \mathrm{pF}$). Thus, $\mathrm{C}_{\mathrm{p}}=$ Cint + Cext $=142 \mathrm{pF}$.

Rewrite equation (2) and solve for L :

$$
\mathrm{L}=(0.159)^{2 /\left(C_{p f c}\right)}
$$

$\mathrm{L}=1.56 \mu \mathrm{H}$; Thus, a standard value is
choosen:

$$
\mathrm{L}=1.56 \mu \mathrm{H} \text { (tunable shielded inductor) }
$$

The value of the total damping resistor to obtain the required loaded Q of 18 can be calculated by rearranging equation (1):

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{T}}=\mathrm{Q}(2 \pi \mathrm{fL}) \\
& \mathrm{R}_{\mathrm{T}}=18(2 \pi)(10.7)(1.5)=1815 \Omega
\end{aligned}
$$

The internal resistance, Rint at the quadrature tank Pin 13 is approximately $13 \mathrm{k} \Omega$ and is considered in determining the external resistance, Rext which is calculated from

$$
\begin{aligned}
& \text { Rext }=\left(\left(\mathrm{R}_{\mathrm{T}}\right)(\text { Rint })\right) /\left(\text { Rint }-\mathrm{R}_{\mathrm{T}}\right) \\
& \text { Rext }=2110 ; \text { Thus, choose the standard value: } \\
& \text { Rext }=2.2 \mathrm{k} \Omega
\end{aligned}
$$

It is important to set the DC level of the detector output at Pin 17 to center the peak to peak swing of the recovered signal. In the equivalent internal circuit shown in the Pin Function Description, the reference voltage at the positive terminal of the inverting op amp buffer amplifier is set at $1.0 \mathrm{~V}_{\mathrm{BE}}$. The detector DC level, V_{17} is determined by the following equation:

$$
v_{17}=\left[\left(\left(R_{15} / R_{17}\right)+1\right) /\left(R_{15} / R_{17}\right)\right] V_{B E}
$$

Thus, for a $1: 1$ ratio of $\mathrm{R}_{15} / \mathrm{R}_{17}, \mathrm{~V}_{17}=2.0 \mathrm{~V}_{\mathrm{BE}}=1.4 \mathrm{Vdc}$. Similarly for a $2: 1, \mathrm{~V}_{17}=1.5 \mathrm{~V}_{\mathrm{BE}}=1.05 \mathrm{Vdc}$; and for 3:1, $\mathrm{V}_{17}=1.33 \mathrm{~V}_{\mathrm{BE}}=0.93 \mathrm{Vdc}$.

Figure 19 shows the detector " S -Curves", in which the resistor ratio is varied while maintaining a constant gain (R_{17} is held at $62 k$). R_{15} is $62 k$ for a $1: 1$ ratio; while $R_{15}=120 k$ and 180 k to produce the $2: 1$ and $3: 1$ ratios. The IF signal into the detector is swept $\pm 500 \mathrm{kHz}$ about the 10.7 MHz IF center frequency. The resulting curve show how the resistor ratio and the supply voltage effects the symmetry of the "S-curve" (Figure 21 Test Setup). For the $3: 1$ and $2: 1$ ratio, symmetry is maintained with V_{S} from 2.0 to 5.0 Vdc ; however, for the $1: 1$ ratio, symmetry is lost at 2.0 Vdc .

Figure 19. Detector Output Voltage versus Frequency Deviation

Figure 20. Demodulator "S-Curve" Test Setup

Data Slicer Circuit

C_{20} at the input of the data slicer is chosen to maintain a time constant long enough to hold the charge on the capacitor for the longest strings of bits at the same polarity. For a data rate at 576 kHz a bit stream of 15 bits at the same polarity would equate to an apparent data rate of approximately 77 kbps or 38 kHz . The time constant would be approximately $26 \mu \mathrm{~s}$. The following expression equates the time constant, t, to the external components:

$$
t=2 \pi\left(R_{18}\right)\left(C_{20}\right)
$$

Solve for C_{20} :

$$
C_{20}=t / 2 \pi\left(R_{18}\right)
$$

where the effective resistance R_{18} is a complex function of the demodulator feedback resistance and the data slicer input circuit. In the data input network the back to back diodes form a charge and discharge path for the capacitor at Pin 20; however, the diodes create a non-linear response. This resistance is loaded by the B, beta of the detector output transistor; beta $=100$ is a typical value (see Figure 21). Thus, the apparent value of the resistance at Pin 18 (DS IN1) is approximately equal to:

$$
R_{18}-R_{17} / 100
$$

where R_{17} is $82 k \Omega$, the feedback resistor from Pin 17 to 15 . Therefore, substituting for R_{18} and solving for C_{20} :

$$
\mathrm{C}_{20}=15.9(\mathrm{t}) / \mathrm{R}_{17}=5.04 \mathrm{nF}
$$

The closest standard value is 4.7 nF .
Figure 21. Data Slicer Equivalent Input Circuit

RSSI

In Figure 22, the RSSI versus RF Input Level shows the linear response of RSSI over a 65 dB range but it has extended capability over 80 dB from -80 dBm to +10 dBm . The RSSI is measured in the application circuit (Figure 12) in which a SAW filter is used before the mixer; thus, the overall sensitivity is compromised for the sake of selectivity. The curves are shown for three filters having different bandwidths:

1) LCR Filter with 2.3 MHz 3.0 dB BW (Circuit and Component Placement is shown in Figure 12)
2) Series-Parallel Ceramic Filter with 650 kHz 3.0 dB BW (Murata Part \# KMFC-545)
3) Ceramic Filter with 280 kHz 3.0 dB BW.

Figure 22. RSSI Output Voltage versus Signal Input Level

Figure 23. RSSI Output Rise and Fall Times versus RF Input Signal Level

SINAD Performance

Figure 24 shows a test setup for a narrowband demodulator output response in which a C-message filter and an active de-emphasis filter is used following the demodulator. The input is matched using a 1:4 impedance transformer. The SINAD performance is shown in Figure 25 with no preamp and in Figure 26 with a preamp (Preamp Figure 16). The 12 dB SINAD sensitivity is -101 dBm with no preamp and -113 dBm with the preamp.

Figure 24. Test Setup for Narrowband SINAD

Figure 25. S+N+D, N+D, N versus Input Signal Level (without preamp)

Figure 26. $\mathrm{S}+\mathrm{N}+\mathrm{D}, \mathrm{N}+\mathrm{D}, \mathrm{N}$ versus Input Signal Level (with preamp)

Figure 27. Input IP3, 1.0 dB Compression Pt. Test Setup

Figure 28. -1.0 dB Compression Pt. and Input Third Order Intercept

Figure 30. Ground Side View

MOTOROLA

```
MC13159
```


Advance Information Wideband FM IF Subsystem

The MC13159 is a wideband FM IF subsystem that is designed for high performance data and digital applications. Excellent high frequency performance is achieved, with low cost, through the use of Motorola's RF bipolar process. The MC13159 includes a mixer, local oscillator buffer amplifier, IF amplifier, limiter amplifier and RSSI functions. The mixer is useful for a 240 MHz input used in a single-ended/balanced differential configuration. The IF and limiter amplifier are separated so that an external filter can be used in series, or connected directly with an external capacitor. The RSSI output is derived by summing the output of both the IF and Limiter sections. An enable control is provided to power down the IC for power management in battery powered applications.

Suitable applications include PHS, DECT, PDC, and PCS telephones, wideband wireless data links, and other battery powered radio systems.

- Designed for PHS Applications
- 2.7 to 5.5 V Operating Voltage
- Low Drain Current: 5.5 mA (Typ)
- Wide Input Dynamic Range of Mixer (Maximum -16 dBm Input)
- Enable Function for Power Down Mode
- Over 80 dB of RSSI Dynamic Range (AC Coupling between IF Amplifier and Limiter Amplifier)
- Few External Components Required

WIDEBAND FM IF SUBSYSTEM FOR PHS
 AND DIGITAL APPLICATIONS

SEMICONDUCTOR

 TECHNICAL DATA

DTB SUFFIX
PLASTIC PACKAGE
CASE 948F
(TSSOP-16

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC13159DTB	$\mathrm{T}_{\mathrm{A}}=-30^{\circ}$ to $+85^{\circ} \mathrm{C}$	TSSOP-16

Simplified Block Diagram

This device contains 164 active transistors.

MC13159

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{S}(\max)}$	6.0	Vdc
Junction Temperature	$\mathrm{T}_{\mathrm{Jmax}}$	150	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

NOTE: ESD data available upon request.

RECOMMENDED OPERATING CONDITIONS

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{S}	2.7 to 5.5	Vdc
Input Frequency	$\mathrm{f}_{\text {in }}$	10 to 600	MHz
Ambient Temperature Range	T_{A}	-30 to +85	${ }^{\circ} \mathrm{C}$
Input Signal Level at Local Input	$\mathrm{V}_{\text {in }}$	-10	dBm

DC ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=3.0 \mathrm{~V}\right.$; No Input Signal)

Characteristics	Conditions	Symbol	Min	Typ	Max	Unit
Total Drain Current 1	Active Mode	$I^{\text {ICC1 }}$	4.5	5.5	7.5	mA
Total Drain Current 2	Disable Mode	ICC2	-	0.1	10	$\mu \mathrm{~A}$

AC ELECTRICAL CHARACTERISTICS

Characteristics	Conditions	Symbol	Min	Typ	Max	Unit
MIXER ($\mathrm{T}_{\text {A }}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{S}}=3.0$; $\mathrm{f}_{\mathrm{RF}}=240 \mathrm{MHz}$, $\mathrm{fLO}=229.3 \mathrm{MHz}$)						
Mixer Conversion Gain	50Ω Termination Input Matched	-	11	$\begin{aligned} & 14 \\ & 21 \end{aligned}$	17	dB
Noise Figure	Input Matched	NF	-	14	-	dB
Mixer Input Impedance	Single-Ended	$\begin{aligned} & \mathrm{Rp} \\ & \mathrm{Cp} \end{aligned}$	-	$\begin{aligned} & 400 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & \Omega \\ & \mathrm{pF} \end{aligned}$
Mixer Output Impendance	-	-	-	330	-	Ω
1.0 dB Gain Compression	$@ M$ ixin	Vicp	-	-16	-	dBm
3rd Order Input Intercept	50Ω Termination	IIP3	-	-8.0	-	dBm

IF AMPLIFIER SECTION $\left(T_{A}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{S}}=3.0 \mathrm{~V} ; \mathrm{f}_{\mathrm{IF}}=10.7 \mathrm{MHz}\right)$

IF Gain	$\mathrm{f}=10.7 \mathrm{MHz}$	-	32	36	45	dB
Input Impedance	-	-	-	330	-	Ω
Output Impedance	-	-	-	330	-	Ω

LIMITING AMPLIFIER SECTION $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{S}}=3.0 \mathrm{~V} ; \mathrm{f}_{\mathrm{IF}}=10.7 \mathrm{MHz}\right)$

Limiter Gain	$\mathrm{f}=10.7 \mathrm{MHz}$	-	-	70	-	dB
Input Impedance	-	-	-	330	-	Ω
Output Swing	-	-	400	500	600	mVpp
Output Rise Time	-	-	-	10	-	ns
Output Fall Time	-	-	-	20	-	ns

RSSI SECTION $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{S}}=3.0 \mathrm{~V} ; \mathrm{f}_{\mathrm{IF}}=10.7 \mathrm{MHz}\right)$

RSSI Slope	-	-	10	14	18	$\mathrm{mV} / \mathrm{dB}$
RSSI Output DC Voltage 1	No Input Signal	-	0.8	0.9	1.0	V
RSSI Output DC Voltage 2	$\mathrm{V}_{\text {IF }}=-85 \mathrm{dBm}$	-	0.82	0.95	1.02	V
RSSI Output DC Voltage 3	$\mathrm{V}_{\text {IF }}=-80 \mathrm{dBm}$	-	0.85	1.0	1.15	V
RSSI Output DC Voltage 4	$\mathrm{V}_{\text {IF }}=-40 \mathrm{dBm}$	-	1.4	1.5	1.6	V
RSSI Output DC Voltage 5	$\mathrm{V}_{\text {in }}=0 \mathrm{dBm}$	-	1.95	2.1	2.25	V

MC13159

Figure 1. Test Circuit

MC13159

Figure 2. Test Circuit for Evaluation

PIN FUNCTION DESCRIPTION

Pin	Symbol	Internal Equivalent Circuit	Description
1	Mix Decoup		Mixer Decoupling Mixer decoupling pin. 220 pF is decoupled to the RF ground. This pin also can be used for differential input with Mixin.
16	Mix ${ }_{\text {in }}$		Mixer Input Input impedance is about 400Ω at 240 MHz . Single-ended matching section at 240 MHz is referenced at application circuit.
2	VCC		Supply Voltage Supply voltage range range is from 2.7 Vdc to 5.5 Vdc .1 .0 nF of decoupling capacitor is placed directly at this pin to reduce the floor noise.
3	LOin		Local Oscillator Input Connected to external local oscillator. Input impedance is about 900Ω at 230 MHz .
4	RSSI		RSSI The RSSI current creates a voltage drop across an internal $15 \mathrm{k} \Omega$ resistor.
5	LIM ${ }_{\text {Dec2 }}$ LIM ${ }_{\text {Dec1 }}$		Limiter Decoupling Limiter decoupling pins. Decoupling capacitors are connected to the RF ground, and one is placed between Dec1 and Dec2.
8	LIM $\mathrm{in}_{\text {in }}$		Limiter Input The input impedance is 330Ω; it matches the 330 input resistance of a $10.7 / 10.8 \mathrm{MHz}$ ceramic filter.
6	$\mathrm{LIM}_{\text {out }}$		Limiter Output The output level is about 0.5 Vpp .

PIN FUNCTION DESCRIPTION (continued)

Pin	Symbol	Internal Equivalent Circuit	Description
9	$\mathrm{IF}_{\text {out }}$		IF Output The output impedance is 330Ω; it matches the 330 input resistance of a $10.7 / 10.8 \mathrm{MHz}$ ceramic filter.
10 11 12	${ }^{I} F_{\text {Dec2 }}$ IFDec1		IF Decoupling IF decoupling pins. Decoupling capacitor is connected from Dec1 to the RF ground, and one is placed between Dec1 and Dec2. IF Input
12	$\mathrm{IF}_{\text {in }}$		IF Input The input impedance is 330Ω; it matches the 330 input resistance of a $10.7 / 10.8 \mathrm{MHz}$ ceramic filter.
13	Enable		Enable The IC regulators are enabled by placing this pin at $V_{E E}$.
14	$\mathrm{Mix}_{\text {out }}$		Mixer Output The mixer output impedance is 330Ω; it matches the 330 input resistance of a $10.7 / 10.8 \mathrm{MHz}$ ceramic filter.
15	V_{EE}		Supply Ground

Infrared Integrated Transceiver IC

The MC13173 is a low power infrared integrated system (IRIS). It is a unique blend of a split IF wideband FM receiver and a specialized infrared LED transmitter. This device was designed to provide communications between portable computers via a half duplex infrared link at data rates up to 200 kbps.

The receiver includes a mixer, IF amplifier and limiter and data slicer. The IF amplifier is split to accommodate two low cost cascaded filters. The RSSI output is derived by summing the output of both IF sections.

The transmitter section includes a frequency synthesizer, FSK modulator, harmonic low pass filter and an IR LED driver.

- Transmitter Operates in Two Modes:
- On/Off Pulsing for Remote Control
- FSK Modulation at 1.4 MHz for Data Communications
- Over 70 dB of RSSI Range
- Split IF for Improved Filtering and Extended RSSI Range
- Digitally controlled Via a Six Line Interface Bus
- Individual Circuit Blocks Can Be Powered Down When Not In Use for Power Conservation

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC13173FTB	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	TQFP-32

MC13173

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	6.0	$\mathrm{Vdc}_{\mathrm{E}}$
Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

NOTE: Devices should not be operated at or outside these values. The "Recommended Operating Conditions" table provides for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Value	Unit
Power Supply Voltage	$\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$	2.7 to 5.5	Vdc
Ambient Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{Vdc}, \mathrm{f}_{\mathrm{REF}}=32.768 \mathrm{kHz}\right.$. Measured using test circuit in Figure 1 , unless otherwise noted.)

DATA SLICER

Data Slicer Threshold Voltage	20	V $_{\text {TH1 }}$	0.85	1.1	1.4	Vdc
Maximum Pull-Down Current	22	IDS	1.0	1.8	-	mA

CARRIER DETECT

Carrier Detect Threshold Voltage	16	$\mathrm{~V}_{\mathrm{TH} 2}$	1.0	1.15	1.3	Vdc
Maximum Pull-Down Current	17	I_{CD}	1.1	3.0	-	mA

TRANSMITTER

Maximum Pull-Up Current	25	I OH	5.8	7.0	-	mA
Maximum Pull-Down Current	25	IOL	-	150	700	$\mu \mathrm{~A}$
DC Output Voltage	24	$\mathrm{~V}_{\mathrm{O}}$	-	200	-	mV
Transmit PLL Charge Current	30	ITX	-	± 25	-	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{Vdc}\right.$, f REF $=32.768 \mathrm{kHz}$. Measured using test circuit in Figure 1, unless otherwise noted.)

Characteristic
Pin
TRANSMITTER
\begin{tabular}{\|l
\hline
\end{tabular}
Upper Sideband Frequency (Mark)

RECEIVER

Receiver Sensitivity -12 dB SINAD	4,19	V SIN	-	5.0	-	$\mu \mathrm{V}$

MIXER

Mixer Conversion Gain	$4,5,6$	$\mathrm{AV}_{(\text {Mix })}$	-	23.5	-	dB
Mixer Output Impedance	6	Z_{O}	-	330	-	Ω

MC13173

AC ELECTRICAL CHARACTERISTICS (continued) $\left(T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{Vdc}, \mathrm{f}_{\mathrm{REF}}=32.768 \mathrm{kHz}\right.$. Measured using test circuit in Figure 1, unless otherwise noted.)

Characteristic
Pin Symbol Min Typ Max Unit IF AMPLIFIER
IF Amplifier Gain 8,11 - - 54 - IF Amplifier RSSI Slope 16 - - 275 - $\mathrm{nA} / \mathrm{dB}$ Input Impedance 8 Z_{IN} - 330 - Output Impedance 11 Z_{O} - 330 - RSSI Current Range 16 - - 20 - RSSI Dynamic Range 16 - - 70 -

LIMITING AMPLIFIER

Input Impedance	13	$Z_{I N}$	-	330	-	Ω
Limiter RSSI Slope	16	-	-	360	-	$\mathrm{nA} / \mathrm{dB}$
RSSI Current Range	16	-	-	20	-	$\mu \mathrm{A}$
RSSI Dynamic Range	16	-	-	58	-	dB

Figure 1. Test Circuit

General

The MC13173 infrared transceiver integrates a split IF wideband FM receiver and an IR LED transmitter into a single IC. The transmitter is comprised of an FSK modulator, harmonic low pass filter, and IR LED driver. The receiver consists of a mixer, IF amplifier and limiting IF, detector, and data slicer. It includes RSSI and carrier detect functions.

The transmitter is capable of two modes of operation. It was primarily designed for use in the Communications Mode, which enables point-to-point data links, such as the communication from keyboard to computer, or for the
exchange of data between portable computers. In this mode it is capable of 200 kbps half duplex FSK operation.

The transmitter can also operate in an "A/V" Mode, which pulses the LED on and off with no carrier. (See Figure 11).

Digital Interface Bus

The MC13173 is controlled via a six line 3.3 V digital interface bus. That includes three control pins, data in and out pins, and a carrier detect pin. Listed below is a brief description of each pin and its function.

Table 1. Digital Interface Pin Descriptions

Pin	Pin Name	Symbol	I/O	Description
28	Transmit Enable	T	I	High - Transmitter is enabled Low - Transmitter is disabled
27	Data In	DI	I	Data Input - 38.2 kbps Communication Mode
3	Receive Enable	I	High - Receiver is enabled Low - Receiver is disabled	
22	Data Out	DO	O	Demodulated Output Signal
17	Carrier Detect	CD	O	High - Carrier is present Low - Carrier is not present
26	Transmit Modulation Enable	E	I	High - Transmitter is in A/V Mode Low - Transmitter is in Communications Mode

This transceiver was designed for use in battery powered, hand-held consumer products. To minimize power consumption, the digital interface enables individual system
blocks to be powered down while not in use. The following diagram shows the mode of the IC and the power state of each circuit block for a given set of control levels.

Table 2. Power State Table

Control Pins*			Mode	Circuit Block Power States (See Figures 2 and 3)				Supply Current (Typical)
T	R	E		Master VCO	FSK Modulator	Receiver	LED Driver	
0	0	0	OFF	Off	Off	Off	Off	10 nA
0	0	1	OFF	Off	Off	Off	Off	$70 \mu \mathrm{~A}$
0	1	X	Receive	On	Off	On	Off	6.5 mA
1	1	1	Receive	On	Off	On	On	7.5 mA
1	1	0	Transmit - Comm Mode	On	On	On	On	9.0 mA
1	0	0	Transmit - Comm Mode	On	On	Off	On	4.75 mA
1	0	1	Transmit - A/V Mode	Off	Off	Off	On	1.5 mA

[^19]
Master VCO/PLL

The master VCO provides the reference frequency for the FSK modulator and the LO frequency for the receiver downconverter. With a 32.768 kHz input frequency to the master VCO on Pin 1, the LO frequency for the receiver will be at 12.075 MHz . The reference frequency for the FSK modulator will be at approximately 1.1 MHz . The master VCO and FSK modulator are not used when the transmitter is used in A/V mode, and both are powered down.

Receiver Description

The single conversion receiver portion of the MC13173 is low power and wideband, and incorporates a split IF. This section includes a mixer, IF amplifier, limiting IF, quadrature detector and data slicer.

Mixer

The mixer is a double balanced four quadrant multiplier. It can be driven either differentially or single-ended by connecting the unused input to the positive supply rail.

The buffered output is internally loaded for an output impedance of 330Ω for use with a standard ceramic filter.

IF Amplifier

The first IF amplifier section is composed of three differential stages with the second and third stages contributing to the RSSI. This section has internal DC feedback and external input decoupling for improved symmetry and stability. The total gain of the IF amplifier block is approximately 40 dB . The fixed internal input impedance is 330Ω for use with a 10.7 MHz ceramic filter. The output of the IF amplifier is buffered and the impedance is 330Ω.

Limiter

The limiter section is similar to the IF amplifier section, except that four stages are used with the last three contributing to the RSSI. This IF limiting amplifier section drives the quadrature detector internally.

RSSI/Carrier Detect

The received signal strength indicator (RSSI) outputs a current proportional to the log of the received signal amplitude. The RSSI current output is derived by summing the currents from the IF and limiting amplifier stages. An external resistor sets the output voltage range.

The carrier detect threshold is set at approximately 1.2 Vdc. When the RSSI level exceeds that threshold, the
carrier detect output will go high. A large resistor may be added externally between the comparator output and the positive input for hysteresis.

Quadrature Detector

The demodulator is a conventional quadrature type with an external LC tank driven through an internal 5 pF capacitor. The output is buffered to give an output impedance of less than $1.0 \mathrm{k} \Omega$ at an average DC level of around 1.1 V .

Data Slicer

The data slicer is designed to square up the data signal. It is self centering at about 1.1 V , and clips at about 0.75 V and 1.45 V . There is a short time constant for large peak-to-peak voltage swings or when there is a change in DC level at the detector output. The time constant is longer for small signals or for continuous bits of the same polarity which drift close to the threshold voltage.

Transmission Description

The MC13173 uses a dual modulus PLL to frequency shift key (FSK) modulate the baseband digital input signal, producing the necessary logic high and low frequencies for transmission. The transmit frequency for a logic high is 1.427 MHz , and the frequency for a low is 1.317 MHz with a 32.768 kHz reference frequency.

FSK Modulator

In the communications mode, the FSK modulator uses the reference frequency from the Master VCO to produce the two frequencies required for a logic high and a logic low. In the A/V mode, the FSK modulator is not used and is powered down.

LED Driver Stage

A low pass filter following the FSK modulator removes the undesired harmonic frequencies from the square-wave output of the divider circuits in PLLs. The resulting sinusoidal waveforms are fed into a unity gain difference amplifier, which drives the base of an external transistor, modulating the IR LED.

In A/V mode, the data is input directly into the inverting input of the op amp, and the low pass filter is not used.

MC13173

Figure 2. Transmitter Block Diagram

Figure 3. Receiver Block Diagram

Table 3. PIN FUNCTION DESCRIPTION $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{REF}}=32.768 \mathrm{kHz}, \mathrm{f}_{\mathrm{MOD}}=32.768 \mathrm{kHz}\right)$

MC13173
Table 3. PIN FUNCTION DESCRIPTION (continued) $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{REF}}=32.768 \mathrm{kHz}, \mathrm{f}_{\mathrm{MOD}}=32.768 \mathrm{kHz}\right)$

Pin	Symbol	Description	Internal Equivalent Circuit	Waveform
$\begin{aligned} & 9, \\ & 10 \end{aligned}$	IF Dec	IF decoupling as shown in Figure 15.	See Circuit for Pin 8.	
11	IF Out	IF Output. $\mathrm{Z}_{\mathrm{O}}=330 \Omega .$ -20 dBm RF input level. Output is sinusoidal with lower drive levels.		toT 10 . cothr Trig DC Od
13 14	Lim In	Limiter input. $Z_{\text {ln }}=330 \Omega .$		
$\begin{aligned} & 14, \\ & 15 \end{aligned}$	Lim Dec	External limiter decoupling as shown in application circuit.		
16	RSSI	Received Signal Strength Indicator Output. (See Figure 13)		
17	Carrier Detect	Logic output of the carrier detect comparator.		
18	Quad Coil	Quadrature tuning circuit. Modulated 10.7 MHz IF. Measured with a low capacitance FET probe.		
19	Demod	Demodulated signal output measured at the pin (before filtering). Modulation = 32.768 kHz sine wave.		

MC13173
Table 3. PIN FUNCTION DESCRIPTION (continued) $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{REF}}=32.768 \mathrm{kHz}, \mathrm{f}_{\mathrm{MOD}}=32.768 \mathrm{kHz}\right)$

MC13173
Table 3. PIN FUNCTION DESCRIPTION (continued) $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{Vdc}, \mathrm{f}_{\mathrm{REF}}=32.768 \mathrm{kHz}, \mathrm{f}_{\mathrm{MOD}}=32.768 \mathrm{kHz}\right)$

Pin	Symbol	Description	Internal Equivalent Circuit	Waveform
30	Tx PLL	Phase detector output for the FSK Modulator. (With loop closed and locked.) No modulation (Data In low).		
		With 32.768 kHz square wave modulation. Note: Probing the output of the phase detectors directly may disturb the loop. It is best to probe the output of the op amp when evaluating loop response.		
31	Ma PLL	Output of the phase detector charge pump for the Master PLL. (With loop closed and locked.)		10 mil 2010
32	$32 \mathrm{kHz}$ Ref	Input to 32.768 kHz reference. Filtered from TTL oscillator using application circuit in Figure 15. Approximately 1.0 Vp-p triangle wave at 32.768 kHz .		

MC13173

Typical Performance Over Temperature
(Measured using test circuit in Figure 1)

Figure 4. Normalized Mixer Gain versus Temperature

Figure 6. Maximum Pull-Up Current versus Temperature (Pin 25)

Figure 8. Supply Current

Figure 5. Normalized IF Amp Gain versus Temperature

Figure 7. Maximum Pull-Down Current versus Temperature (Pin 25)

Figure 9. Data Slicer and Carrier Detect Threshold Voltages versus Temperature

APPLICATIONS INFORMATION

The MC13173 transceiver is specially designed to operate from a 32.768 kHz reference which is readily available in most computer applications. The frequency synthesizer on chip generates a receiver local oscillator frequency and the transmit mark and space frequencies from this fixed reference frequency, eliminating the need for additional crystals or manual tuning.

Large divide ratios are needed to generate these frequencies, however. For example, the receiver LO frequency is 368.5 times the 32.768 kHz reference frequency. This requires that the reference frequency be both accurate and stable. A two percent error in the reference frequency would pull the LO off frequency by over 240 kHz , putting the IF frequency out of the usable bandwidth of the filters and discriminator. For this reason, a 32.768 kHz oscillator circuit has been included on the demonstration board design. Although TTL crystal oscillators are available, this oscillator circuit uses an inexpensive tuning fork crystal and a hex inverter to generate a square wave reference frequency, which is then filtered and level adjusted to a $1.0 \mathrm{Vp}-\mathrm{p}$ triangle wave to drive pin 32. A TTL Clock Oscillator could also be used with the filter circuit as shown.

Frequency Synthesizer

The recommended op amp for the external loop filter is the MC33202. For low voltage operation, ($\mathrm{V}_{\mathrm{CC}} \leq 3.3 \mathrm{~V}$) an op amp that is rail-to-rail on both the input and output is advisable to obtain the widest possible output voltage range without distortion. Sufficient distortion from the op amp such as phase reversal on the output caused by overdriving the inputs could prevent the loop from locking to the reference.

In debugging the loop filter, it is important to note that the FSK Modulator phase locked loop will not lock until the Master VCO is locked to the reference. If the application circuit in Figure 15 is used, both loops should lock without the need for any additional tweaking. Since the VCO has $\pm 2.0 \mathrm{MHz}$ of range using the MV209 varactor diode (see Figure 11), neither precision components nor tuning should be required. To ensure both loops are operating properly, first evaluate each VCO with the loop open and a voltage equal to $\mathrm{V}_{\mathrm{CC}} / 2$ applied to the resistor in series with the varactor. Since there is a relatively small capacitance ($<40 \mathrm{pF}$) in series with the LC tank circuit, the VCO pin is sensitive to any parasitic capacitance. Thus when using a standard oscilloscope probe having 10 to 20 pF capacitance it is difficult to measure the VCO frequency without shifting its frequency. A low capacitance FET probe used with a frequency counter will enable you to accurately measure the VCO frequency without altering it in the process.

The free running frequency of the VCO should be approximately on frequency when the loop is open and the varactor is biased at mid-supply. The VCO for the Master PLL should run at 12.05 MHz . The free running frequency of the FSK Modulator should be at 13.72 MHz , midway between the two VCO frequencies needed to generate the transmit mark and space frequencies. The FSK Modulator loop is only active when the transmitter is enabled and the device is in the communications mode (see Tables $1 \& 2$). If either the "T" pin is low or the "E" pin is high, the VCO will be off and you will see no oscillation on Pin 29.

Once the loops are closed, the VCO frequencies should track the reference frequency within the hold-in range of the
loop. Although the FSK Modulator loop is dependent on the Master VCO, the Master VCO is completely independent of the FSK Modulator. In fact, the FSK Modulator can be powered down (see Table 2) without affecting the Master VCO operation. In the application circuit in Figure 15 a single reference voltage for both op amps in the loop filters is provided by two diodes to V_{CC}. If the Master VCO is affected by the FSK Modulator loop, this generally indicates a problem with the common reference voltage to the op amp, and may mean the diodes are in backwards.

Once the loops are closed you should see a phase detector output such as is shown in the Pin Function Description in Table 3. If the VCO was on frequency when the loop was open, the phase detector outputs should swing around mid supply and not hit against either the positive or negative rail. Latching to V_{CC} or V_{EE} may indicate the loop filter circuitry is not implemented correctly.

Due to the digital design of the phase detectors, the transmitter can only transition between mark and space frequencies on a clock edge. On the receive side this may be seen as a double image on the detector output, with a discrete time delay which does not vary with the frequency of the data input (see Figure 10). This is a normal consequence of using a digital phase detector and should not be confused with jitter from the data slicer.

Figure 10. Receive Data Output
(Data Transmitted from Companion MC13173)

Transmitter

The light emitting diode (LED) driver in the transmitter is capable of 6.0 to 10 mA of pull-up current. Selection of the external transistor and biasing resistor will depend on the LEDs used. Typical infrared LEDs require 50 to 100 mA of current and have a forward voltage of 1.5 V . Sufficient current is needed to obtain the maximum power output without distorting the output by overdriving the LED. Key specifications include rise and fall time, wavelength, beam width (generally given in half-angle), maximum power output and efficiency. Choice of wavelengths is generally determined by cost and power efficiency, which may vary between vendors. The LEDs used in this application are at 880 nm and were chosen for best efficiency. However LEDs in general are very inefficient, converting only 1 or 2 percent of the electrical power into optical power. Multiple LEDs can be used to increase transceiver range.

Disabling the transmitter via the data bus turns off the output of the LED driver, removing the base current from the external transistor and thereby turning off the IR LED. Because of the high current drawn by the LED, this offers considerable power savings when the transmitter is not in use and can be easily controlled by a microcontroller with no additional circuitry.

In the "A/V" transmit mode, the data output is on/off keyed, with the LED on for a data high, and off for a data low. It is a baseband signal, with no carrier present (see Figure 11).

Figure 11. LED Driver Output in A/V Mode

Receiver

The receiver portion of the MC13173 is similar to the design of Motorola's MC13156 Wideband FM Receiver. Instead of using the mixer to downconvert from a higher RF frequency, this application is designed to upconvert the 1.372 MHz input to a 10.7 MHz IF. The wide deviation, relative to the RF input frequency, requires a low Q tuned circuit to recover this bandwidth:

$$
\mathrm{Q} \approx \frac{\mathrm{f}_{\mathrm{C}}}{\mathrm{BW}_{3 \mathrm{~dB}}} \text {, where } \mathrm{f}_{\mathrm{C}}=1.372 \mathrm{MHz}
$$

By Carson's Rule, the BW = 2(fdev + fmod). Since for mark/space frequencies of 1.317 MHz and 1.427 MHz the deviation is fixed at $\pm 50 \mathrm{kHz}$, the bandwidth for a 50 kHz square wave (100 kbps) would be 200 kHz , and the tuned input requires a Q of less than 7. The low Q of the tank circuit reduces both the selectivity and the sensitivity of the receiver. For a Q of 7, the resistor required across the $56 \mu \mathrm{H}$ inductor can be calculated:

$$
\begin{aligned}
& \mathrm{R}=\mathrm{QX}_{\mathrm{L}}=(7) \bullet(2 \pi) \bullet(1.372 \mathrm{E} 6) \bullet(56 \mathrm{E}-6) \\
& \mathrm{R}=3.3 \mathrm{k} \Omega
\end{aligned}
$$

The 10.7 MHz ceramic filters also need to be wide enough to pass the full frequency range which will include some
harmonics. In the application circuit in Figure 15, Toko filters with a bandwidth of 330 kHz or 360 kHz are recommended to accommodate higher data rates. If the IF filters are too narrow, the recovered signal may have noise on the peaks (see Figure 12).

Figure 12. Receive Data Output

The RSSI has over 70 dB of dynamic range and $20 \mu \mathrm{~A}$ of current range. The RSSI output provides the input to the carrier detect comparator (see Figure 13) and a logarithmic output proportional to the input signal level. It can, therefore, be used to recover amplitude shift keyed (ASK) data.

The key specifications for the infrared detectors are response time, sensitivity, acceptance angle, and wavelength. Some vendors offer detectors in a black package with a built-in daylight filter. Although the transparent packages offer better sensitivity, the detectors with the daylight filter offer a much better signal to noise ratio. Response time (or maximum frequency) of the system is generally limited by the capability of the emitters rather than the detectors. For this application, a rise and fall time of 500 ns is sufficient.

Design and Layout Considerations

Although the frequencies in this design are low by RF standards, careful layout and good decoupling are still good practice. The high gain limiter and IF blocks should be decoupled as shown in the application circuit as near the IC as possible for best receiver performance. Also the TTL levels from the reference oscillator and the wide current swing applied to the IR LEDs can easily be picked up on V_{CC}, creating problems for the sensitive phase detector circuits and receiver RF inputs. Avoid long parallel traces and use plenty of decoupling to keep the supply rail clean.

MC13173
Typical Performance
(Measured using Application Circuit in Figure 15)

Figure 13. RSSI Output Current versus

Figure 14. VCO Frequency versus Varactor Voltage

Figure 15. Application Circuit

MC13173

Figure 16. Component Placement

MC13173
Figure 17. Solder Side View

Figure 18. Component Side View

MC13173
Figure 19. Detailed Internal Block Diagram

UHF FM/AM Transmitter

The MC13175 and MC13176 are one chip FM/AM transmitter subsystems designed for AM/FM communication systems. They include a Colpitts crystal reference oscillator, UHF oscillator, $\div 8$ (MC13175) or $\div 32$ (MC13176) prescaler and phase detector forming a versatile PLL system. Targeted applications are in the 260 to 470 MHz band and 902 to 928 MHz band covered by FCC Title 47; Part 15. Other applications include local oscillator sources in UHF and 900 MHz receivers, UHF and 900 MHz video transmitters, RF Local Area Networks (LANs), and high frequency clock drivers. The MC13175/76 offer the following features:

- UHF Current Controlled Oscillator
- Uses Easily Available 3rd Overtone or Fundamental Crystals for Reference
- Fewer External Parts Required
- Low Operating Supply Voltage (1.8 to 5.0 Vdc)
- Low Supply Drain Currents
- Power Output Adjustable (Up to +10 dBm)
- Differential Output for Loop Antenna or Balun Transformer Networks
- Power Down Feature
- ASK Modulated by Switching Output On and Off
- (MC13175) $\mathrm{f}_{\mathrm{O}}=8 \times \mathrm{f}_{\mathrm{ref}} ;(\mathrm{MC13176}) \mathrm{f}_{\mathrm{O}}=32 \times \mathrm{f}_{\mathrm{ref}}$

Figure 1. Typical Application as $\mathbf{3 2 0}$ MHz AM Transmitter

NOTES: 1. 50Ω coaxial balun, $1 / 10$ wavelength at 320 MHz equals 1.5 inches.
2. Pins $5,10 \& 15$ are ground and connected to V_{EE} which is the component/DC ground plane side of PCB. These pins must be decoupled to V_{CC}; decoupling capacitors should be placed as close as possible to the pins.
3. The crystal oscillator circuit may be adjusted for frequency with the variable inductor (MC13175); recommended source is Coilcraft "slot seven" 7 mm tuneable inductor, Part \#7M3-821. 1.0k resistor. Shunting the crystal prevents it from oscillating in the fundamental mode.

UHF FM/AM TRANSMITTER

SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC13175D	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+85^{\circ} \mathrm{C}$	SO-16
MC13176D		

MAXIMUM RATINGS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.)

Rating	Symbol	Value	Unit
Power Supply Voltage	V_{CC}	$7.0(\mathrm{max})$	Vdc
Operating Supply Voltage Range	V_{CC}	1.8 to 5.0	Vdc
Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (Figure 2; $\mathrm{V}_{\mathrm{EE}}=-3.0 \mathrm{Vdc}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.) ${ }^{*}$

Characteristic	Pin	Symbol	Min	Typ	Max	Unit
Supply Current (Power down: I_{11} \& $I_{16}=0$)	-	IEE1	-0.5	-	-	$\mu \mathrm{A}$
Supply Current (Enable [Pin 11] to V_{CC} thru $30 \mathrm{k}, \mathrm{I}_{16}=0$)	-	leE2	-18	-14	-	mA
Total Supply Current (Transmit Mode) ($I_{\text {mod }}=2.0 \mathrm{~mA} ; \mathrm{f}_{\mathrm{o}}=320 \mathrm{MHz}$)	-	leE3	-39	-34	-	mA
$\begin{aligned} & \text { Differential Output Power }\left(f_{o}=320 \mathrm{MHz} ; \mathrm{V}_{\text {ref }}[\text { Pin } 9]\right. \\ & \left.=500 \mathrm{mV} \mathrm{~V}_{\mathrm{p}-\mathrm{p}} ; \mathrm{f}_{\mathrm{o}}=\mathrm{N} \times \mathrm{f}_{\text {ref }}\right) \\ & \left.I_{\mathrm{mod}}=2.0 \mathrm{~mA} \text { (see Figures } 7 \text { and } 8\right) \\ & I_{\text {mod }}=0 \mathrm{~mA} \end{aligned}$	13 \& 14	$\mathrm{P}_{\text {out }}$	2.0	$\begin{aligned} & +4.7 \\ & -45 \end{aligned}$	-	dBm
Hold-in Range ($\pm \Delta f_{\text {ref }} \times \mathrm{N}$) MC13175 (see Figure 7) MC13176 (see Figure 8)	13 \& 14	$\pm \Delta \mathrm{f} \mathrm{H}$	$\begin{aligned} & 3.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 8.0 \end{aligned}$	-	MHz
Phase Detector Output Error Current MC13175 MC13176	7	lerror	$\begin{aligned} & 20 \\ & 22 \end{aligned}$	$\begin{aligned} & 25 \\ & 27 \end{aligned}$	-	$\mu \mathrm{A}$
Oscillator Enable Time (see Figure 27)	11 \& 8	tenable	-	4.0	-	ms
Amplitude Modulation Bandwidth (see Figure 29)	16	$\mathrm{BW}_{\text {AM }}$	-	25	-	MHz
Spurious Outputs ($I_{\text {mod }}=2.0 \mathrm{~mA}$) Spurious Outputs (1 mod $=0 \mathrm{~mA}$)	$\begin{aligned} & 13 \& 14 \\ & 13 \& 14 \end{aligned}$	$P_{\text {son }}$ $P_{\text {soff }}$	-	$\begin{aligned} & -50 \\ & -50 \end{aligned}$	-	dBc
Maximum Divider Input Frequency Maximum Output Frequency	$13 \& 14$	$\begin{aligned} & \hline f_{\text {div }} \\ & f_{0} \end{aligned}$	-	$\begin{aligned} & 950 \\ & 950 \end{aligned}$	-	MHz

* For testing purposes, V_{CC} is ground (see Figure 2).

Figure 2. 320 MHz Test Circuit

MC13175 MC13176
PIN FUNCTION DESCRIPTIONS

Pin	Symbol	Internal Equivalent Circuit	Description/External Circuit Requirements
$1 \& 4$	Osc 1, Osc 4		CCO Inputs The oscillator is a current controlled type. An external oscillator coil is connected to Pins 1 and 4 which forms a parallel resonance LC tank circuit with the internal capacitance of the IC and with parasitic capacitance of the PC board. Three base-emitter capacitances in series configuration form the capacitance for the parallel tank. These are the base-emitters at Pins 1 and 4 and the base-emitter of the differential amplifier. The equivalent series capacitance in the differential amplifier is varied by the modulating current from the frequency control circuit (see Pin 6, internal circuit). A more thorough discussion is found in the Applications Information section.
5	VEE		Supply Ground (VEE) In the PCB layout, the ground pins (also applies to Pins 10 and 15) should be connected directly to chassis ground. Decoupling capacitors to V_{CC} should be placed directly at the ground returns.
6	${ }^{\text {I Cont }}$		Frequency Control For $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}$, the voltage at Pin 6 is approximately 1.55 Vdc. The oscillator is current controlled by the error current from the phase detector. This current is amplified to drive the current source in the oscillator section which controls the frequency of the oscillator. Figures 9 and 10 show the $\Delta f_{\text {osc }}$ versus ICont, Figure 5 shows the $\Delta \mathrm{f}_{\mathrm{osc}}$ versus ICont at $-40^{\circ} \mathrm{C},+25^{\circ} \mathrm{C}$ and $+85^{\circ} \mathrm{C}$ for 320 MHz . The CCO may be FM modulated as shown in Figures 18 and 19, MC13176 320 MHz FM Transmitter. A detailed discussion is found in the Applications Information section.
7	PD out		Phase Detector Output The phase detector provides $\pm 30 \mu \mathrm{~A}$ to keep the CCO locked at the desired carrier frequency. The output impedance of the phase detector is approximately $53 \mathrm{k} \Omega$. Under closed loop conditions there is a DC voltage which is dependent upon the free running oscillator and the reference oscillator frequencies. The circuitry between Pins 7 and 6 should be selected for adequate loop filtering necessary to stabilize and filter the loop response. Low pass filtering between Pin 7 and 6 is needed so that the corner frequency is well below the sum of the divider and the reference oscillator frequencies, but high enough to allow for fast response to keep the loop locked. Refer to the Applications Information section regarding loop filtering and FM modulation.

PIN FUNCTION DESCRIPTIONS

\begin{tabular}{|c|c|c|c|}
\hline Pin \& Symbol \& Internal Equivalent Circuit \& Description/External Circuit Requirements

\hline 8 \& Xtale

Xtalb \& \& | Crystal Oscillator Inputs |
| :--- |
| The internal reference oscillator is configured as a common emitter Colpitts. It may be operated with either a fundamental or overtone crystal depending on the carrier frequency and the internal prescaler. Crystal oscillator circuits and specifications of crystals are discussed in detail in the applications section. With $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}$, the voltage at Pin 8 is approximately 1.8 Vdc and at Pin 9 is approximately 2.3 Vdc. 500 to $1000 \mathrm{mVp}-\mathrm{p}$ should be present at Pin 9. The Colpitts is biased at $200 \mu \mathrm{~A}$; additional drive may be acquired by increasing the bias to approximately $500 \mu \mathrm{~A}$. Use 6.2 k from Pin 8 to ground. |

\hline 10

11 \& Reg. Gnd

Enable \& \& | Regulator Ground |
| :--- |
| An additional ground pin is provided to enhance the stability of the system. Decoupling to the V_{CC} (RF ground) is essential; it should be done at the ground return for Pin 10. |
| Device Enable |
| The potential at Pin 11 is approximately 1.25 Vdc . When Pin 11 is open, the transmitter is disabled in a power down mode and draws less than $1.0 \mu \mathrm{~A}$ ICC if the MOD at Pin 16 is also open (i.e., it has no current driving it). To enable the transmitter a current source of $10 \mu \mathrm{~A}$ to $90 \mu \mathrm{~A}$ is provided. Figures 3 and 4 show the relationship between ICC, V_{CC} and $I_{\text {reg. enable. Note }}$ that ICC is flat at approximately 10 mA for I reg. enable $=5.0$ to $100 \mu \mathrm{~A}\left(\mathrm{I}_{\bmod }=0\right)$. |

\hline 12 \& V_{CC} \& \[
$$
\begin{gathered}
\mathrm{V}_{\mathrm{CC}} \\
\overbrace{0} \\
12 \\
\mathrm{~V}_{\mathrm{CC}}
\end{gathered}
$$

\] \& | Supply Voltage (V_{CC}) |
| :--- |
| The operating supply voltage range is from 1.8 Vdc to 5.0 Vdc . In the PCB layout, the V_{CC} trace must be kept as wide as possible to minimize inductive reactances along the trace; it is best to have it completely fill around the surface mount components and traces on the circuit side of the PCB. |

\hline 13 \& 14 \& Out 1 and Out 2 \& \& | Differential Output |
| :--- |
| The output is configured differentially to easily drive a loop antenna. By using a transformer or balun, as shown in the application schematic, the device may then drive an unbalanced low impedance load. Figure 6 shows how much the Output Power and Free-Running Oscillator Frequency change with temperature at $3.0 \mathrm{Vdc} ; I_{\mathrm{mod}}=2.0 \mathrm{~mA}$. |

\hline 15 \& Out_Gnd \& \& | Output Ground |
| :--- |
| This additional ground pin provides direct access for the output ground to the circuit board V_{EE}. |

\hline 16 \& 1 mod \& \& | AM Modulation/Power Output Level |
| :--- |
| The DC voltage at this pin is 0.8 Vdc with the current source active. An external resistor is chosen to provide a source current of 1.0 to 3.0 mA , depending on the desired output power level at a given V_{CC}. Figure 28 shows the relationship of Power Output to Modulation Current, $I_{\text {mod }}$. At $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}, 3.5 \mathrm{dBm}$ power output can be acquired with about 35 mA ICC. For FM modulation, Pin 16 is used to set the desired output power level as described above. |
| For AM modulation, the modulation signal must ride on a positive DC bias offset which sets a static (modulation off) modulation current. External circuitry for various schemes is further discussed in the Applications Information section. |

\hline
\end{tabular}

Figure 3. Supply Current versus Supply Voltage

Figure 5. Change Oscillator Frequency versus Oscillator Control Current

Figure 7. MC13175 Reference Oscillator

Figure 4. Supply Current versus Regulator Enable Current

Figure 6. Change in Oscillator Frequency and Output Power versus Ambient Temperature

Figure 8. MC13176 Reference Oscillator

Evaluation PC Board

The evaluation PCB, shown in Figures 33 and 34, is very versatile and is intended to be used across the entire useful frequency range of this device. The center section of the board provides an area for attaching all SMT components to the circuit side and radial leaded components to the component ground side of the PCB (see Figures 35 and 36). Additionally, the peripheral area surrounding the RF core provides pads to add supporting and interface circuitry as a particular application dictates. This evaluation board will be discussed and referenced in this section.

Current Controlled Oscillator (Pins 1 to 4)

It is critical to keep the interconnect leads from the CCO (Pins 1 and 4) to the external inductor symmetrical and equal in length. With a minimum inductor, the maximum free running frequency is greater than 1.0 GHz . Since this inductor will be small, it may be either a microstrip inductor, an air wound inductor or a tuneable RF coil. An air wound inductor may be tuned by spreading the windings, whereas tuneable RF coils are tuned by adjusting the position of an aluminum core in a threaded coilform. As the aluminum core coupling to the windings is increased, the inductance is decreased. The temperature coefficient using an aluminum core is better than a ferrite core. The UniCoilTM inductors made by Coilcraft may be obtained with aluminum cores (Part No. 51-129-169).

Ground (Pins 5, 10 and 15)

Ground Returns: It is best to take the grounds to a backside ground plane via plated through holes or eyelets at the pins. The application PCB layout implements this technique. Note that the grounds are located at or less than 100 mils from the devices pins.

Decoupling: Decoupling each ground pin to V_{CC} isolates each section of the device by reducing interaction between sections and by localizing circulating currents.

Loop Characteristics (Pins 6 and 7)

Figure 11 is the component block diagram of the MC1317XD PLL system where the loop characteristics are described by the gain constants. Access to individual components of this PLL system is limited, inasmuch as the loop is only pinned out at the phase detector output and the
frequency control input for the CCO. However, this allows for characterization of the gain constants of these loop components. The gain constants $\mathrm{K}_{\mathrm{p}}, \mathrm{K}_{\mathrm{o}}$ and K_{n} are well defined in the MC13175 and MC13176.

Phase Detector (Pin 7)

With the loop in lock, the difference frequency output of the phase detector is DC voltage that is a function of the phase difference. The sinusoidal type detector used in this IC has the following transfer characteristic:

$$
\mathrm{I}_{\mathrm{e}}=\mathrm{A} \operatorname{Sin} \theta_{\mathrm{e}}
$$

The gain factor of the phase detector, K_{p} (with the loop in lock) is specified as the ratio of DC output current, l_{e} to phase error, θ_{e} :

$$
\begin{aligned}
& K_{p}=I_{e} / \theta_{e}(\text { Amps } / \text { radians }) \\
& K_{p}=A \operatorname{Sin} \theta_{\mathrm{e}} / \theta_{\mathrm{e}} \\
& \operatorname{Sin} \theta_{\mathrm{e}} \sim \theta_{\mathrm{e}} \text { for } \theta_{\mathrm{e}} \leq 0.2 \text { radians; } \\
& \text { thus, } \mathrm{K}_{\mathrm{p}}=\mathrm{A} \text { (Amps/radians) }
\end{aligned}
$$

Figures 7 and 8 show that the detector DC current is approximately $30 \mu \mathrm{~A}$ where the loop loses lock at $\theta_{\mathrm{e}}= \pm \pi / 2$ radians; therefore, K_{p} is $30 \mu \mathrm{~A} /$ radians.

Current Controlled Oscillator, CCO (Pin 6)

Figures 9 and 10 show the non-linear change in frequency of the oscillator over an extended range of control current for 320 and 450 MHz applications. Ko ranges from approximately $6.3 \times 10^{5} \mathrm{rad} / \mathrm{sec} / \mu \mathrm{A}$ or $100 \mathrm{kHz} / \mu \mathrm{A}$ (Figure 9) to $8.8 \times 10^{5} \mathrm{rad} / \mathrm{sec} / \mu \mathrm{A}$ or $140 \mathrm{kHz} / \mathrm{\mu A}$ (Figure 10) over a relatively linear response of control current (0 to $100 \mu \mathrm{~A}$). The oscillator gain factor depends on the operating range of the control current (i.e., the slope is not constant). Included in the CCO gain factor is the internal amplifier which can sink and source at least $30 \mu \mathrm{~A}$ of input current from the phase detector. The internal circuitry at Pin 6 limits the CCO control current to $50 \mu \mathrm{~A}$ of source capability while its sink capability exceeds $200 \mu \mathrm{~A}$ as shown in Figures 9 and 10. Further information to follow shows how to use the full capabilities of the CCO by addition of an external loop amplifier and filter (see Figure 15). This additional circuitry yields at $\mathrm{K}_{0}=$ $0.145 \mathrm{MHz} / \mu \mathrm{A}$ or $9.1 \times 10^{5} \mathrm{rad} / \mathrm{sec} / \mu \mathrm{A}$.

Figure 11. Block Diagram of MC1317XD PLL

Loop Filtering

The fundamental loop characteristics, such as capture range, loop bandwidth, lock-up time and transient response are controlled externally by loop filtering.

The natural frequency (ω_{n}) and damping factor (∂) are important in the transient response to a step input of phase or frequency. For a given ∂ and lock time, ω_{n} can be determined from the plot shown in Figure 12.

Figure 12. Type 2 Second Order Response

Where: $K_{p}=$ Phase detector gain constant in $\mu \mathrm{A} / \mathrm{rad} ; \mathrm{K}_{\mathrm{p}}=30 \mu \mathrm{~A} / \mathrm{rad}$
$K_{f}=$ Filter transfer function
$K_{n}=1 / N ; N=8$ for the MC13175 and
$\mathrm{K}_{\mathrm{O}} \quad \mathrm{N}=32$ for the MC13176
$=\mathrm{CCO}$ gain constant in rad $/ \mathrm{sec} / \mu \mathrm{A}$
$\mathrm{K}_{\mathrm{O}}=9.1 \times 10^{5} \mathrm{rad} / \mathrm{sec} / \mu \mathrm{A}$

For $\partial=0.707$ and lock time $=1.0 \mathrm{~ms}$; then $\omega_{\mathrm{n}}=5.0 / \mathrm{t}=5.0 \mathrm{krad} / \mathrm{sec}$.
The loop filter may take the form of a simple low pass filter or a lag-lead filter which creates an additional pole at origin in the loop transfer function. This additional pole along with that of the CCO provides two pure integrators (1/s2). In the lag-lead low pass network shown in Figure 13 , the values of the low pass filtering parameters R_{1}, R_{2} and C determine the loop constants ω_{n} and ∂. The equations $\mathrm{t}_{1}=\mathrm{R}_{1} \mathrm{C}$ and $\mathrm{t}_{2}=\mathrm{R}_{2} \mathrm{C}$ are related in the loop filter transfer functions $F(s)=1+t_{2} s / 1+\left(t_{1}+t_{2}\right) s$.

Figure 13. Lag-Lead Low Pass Filter

The closed loop transfer function takes the form of a 2nd order low pass filter given by,

$$
\mathrm{H}(\mathrm{~s})=\mathrm{K}_{\mathrm{v}} \mathrm{~F}(\mathrm{~s}) / \mathrm{s}+\mathrm{K}_{\mathrm{v}} \mathrm{~F}(\mathrm{~s})
$$

From control theory, if the loop filter characteristic has $F(0)=$ 1 , the DC gain of the closed loop, K_{V} is defined as,

$$
K_{V}=K_{p} K_{0} K_{n}
$$

and the transfer function has a natural frequency,

$$
\omega_{\mathrm{n}}=\left(\mathrm{K}_{\mathrm{v}} / \mathrm{t}_{1}+\mathrm{t}_{2}\right)^{1 / 2}
$$

and a damping factor,

$$
\partial=\left(\omega_{n} / 2\right)\left(\mathrm{t}_{2}+1 / K_{v}\right)
$$

Rewriting the above equations and solving for the MC13176 with $\partial=0.707$ and $\omega_{\mathrm{n}}=5.0 \mathrm{krad} / \mathrm{sec}$:

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{v}}=\mathrm{K}_{\mathrm{p}} \mathrm{~K}_{0} \mathrm{~K}_{\mathrm{n}}=(30)\left(0.91 \times 10^{6}\right)(1 / 32)=0.853 \times 10^{6} \\
& \mathrm{t}_{1}+\mathrm{t}_{2}=\mathrm{K}_{\mathrm{v}} / \omega_{\mathrm{n}} 2=0.853 \times 10^{6} /(25 \times 106)=34.1 \mathrm{~ms} \\
& \mathrm{t}_{2}=2 \partial / \omega_{\mathrm{n}}=(2)(0.707) /\left(5 \times 10^{3}\right)=0.283 \mathrm{~ms} \\
& \mathrm{t}_{1}=\left(\mathrm{K}_{\mathrm{v}} / \omega_{\mathrm{n}} 2\right)-\mathrm{t}_{2}=(34.1-0.283)=33.8 \mathrm{~ms}
\end{aligned}
$$

For $\mathrm{C}=0.47 \mu$;
then, $R_{1}=t_{1} / C=33.8 \times 10-3 / 0.47 \times 10^{-6}=72 k$ dthus, $R_{2}=\mathrm{t}_{2} / \mathrm{C}=0.283 \times 10^{-3 / 0.47} \times 10^{-6}=0.60 \mathrm{k}$ In the above example, the following standard value components are used,

$$
\mathrm{C}=0.47 \mu ; \mathrm{R}_{2}=620 \text { and } \mathrm{R}_{1}^{\prime}=72 \mathrm{k}-53 \mathrm{k} \sim 18 \mathrm{k}
$$

($R^{\prime}{ }_{1}$ is defined as $R_{1}-53 k$, the output impedance of the phase detector.)

Since the output of the phase detector is high impedance ($\sim 50 \mathrm{k}$) and serves as a current source, and the input to the frequency control, Pin 6 is low impedance (impedance of the two diode to ground is approximately 500Ω), it is imperative that the second order low pass filter design above be modified. In order to minimize loading of the $\mathrm{R}_{2} \mathrm{C}$ shunt network, a higher impedance must be established to Pin 6. A simple solution is achieved by adding a low pass network between the passive second order network and the input to Pin 6. This helps to minimize the loading effects on the second order low pass while further suppressing the sideband spurs of the crystal oscillator. A low pass filter with $\mathrm{R}_{3}=1.0 \mathrm{k}$ and $\mathrm{C}_{2}=1500 \mathrm{p}$ has a corner frequency (f_{C}) of 106 kHz ; the reference sideband spurs are down greater than -60 dBc .

Figure 14. Modified Low Pass Loop Filter

Hold-In Range

The hold-in range, also called the lock range, tracking range and synchronization range, is the ability of the CCO frequency, f_{0} to track the input reference signal, $f_{r e f} \bullet N$ as it gradually shifted away from the free running frequency, f_{f}. Assuming that the CCO is capable of sufficient frequency deviation and that the internal loop amplifier and filter are not overdriven, the CCO will track until the phase error, θ_{e} approaches $\pm \pi / 2$ radians. Figures 5 through 8 are a direct
measurement of the hold-in range (i.e. $\Delta f_{\text {ref }} \times N= \pm \Delta f H \times$ $2 \pi)$. Since $\sin \theta_{\mathrm{e}}$ cannot exceed ± 1.0, as θ_{e} approaches $\pm \pi / 2$ the hold-in range is equal to the DC loop gain, $\mathrm{K}_{\mathrm{V}} \times \mathrm{N}$.

$$
\begin{aligned}
\pm \Delta \omega H & = \pm K_{V} \times N \\
\text { where, } K_{V} & =K_{p} K_{0} K_{n} .
\end{aligned}
$$

In the above example,

$$
\begin{aligned}
& \pm \Delta \omega \mathrm{H}= \pm 27.3 \mathrm{Mrad} / \mathrm{sec} \\
& \pm \Delta \mathrm{f} \mathrm{H}= \pm 4.35 \mathrm{MHz}
\end{aligned}
$$

Extended Hold-in Range

The hold-in range of about 3.4% could cause problems over temperature in cases where the free-running oscillator drifts more than 2 to 3% because of relatively high temperature coefficients of the ferrite tuned CCO inductor. This problem might worsen for lower frequency applications where the external tuning coil is large compared to internal capacitance at Pins 1 and 4. To improve hold-in range performance, it is apparent that the gain factors involved must be carefully considered.
$\begin{aligned} K_{n}= & \text { is either } 1 / 8 \text { in the MC13175 or } 1 / 32 \text { in the } \\ & \text { MC13176. }\end{aligned}$
$K_{p}=$ is fixed internally and cannot be altered.
$\mathrm{K}_{\mathrm{O}}=$ Figures 9 and 10 suggest that there is capability of greater control range with more current swing. However, this swing must be symmetrical about the center of the dynamic response. The suggested zero current operating point for $\pm 100 \mu \mathrm{~A}$ swing of the CCO is at about $+70 \mu \mathrm{~A}$ offset point.
$\mathrm{Ka}=$ External loop amplification will be necessary since the phase detector only supplies $\pm 30 \mu \mathrm{~A}$.
In the design example in Figure 15, an external resistor $\left(R_{5}\right)$ of 15 k to $\mathrm{V}_{\mathrm{CC}}(3.0 \mathrm{Vdc})$ provides approximately $100 \mu \mathrm{~A}$ of current boost to supplement the existing $50 \mu \mathrm{~A}$ internal source current. $R_{4}(1.0 \mathrm{k})$ is selected for approximately 0.1 Vdc across it with $100 \mu \mathrm{~A} . \mathrm{R}_{1}, \mathrm{R}_{2}$ and R_{3} are selected to set the potential at Pin 7 and the base of 2N4402 at approximately 0.9 Vdc and the emitter at 1.55 Vdc when error current to Pin 6 is approximately zero $\mu \mathrm{A} . \mathrm{C}_{1}$ is chosen to reduce the level of the crystal sidebands.

Figure 15. External Loop Amplifier

Figure 16 shows the improved hold-in range of the loop. The $\Delta f_{\text {ref }}$ is moved 950 kHz with over $200 \mu \mathrm{~A}$ swing of control current for an improved hold-in range of $\pm 15.2 \mathrm{MHz}$ or $\pm 95.46 \mathrm{Mrad} / \mathrm{sec}$.

Figure 16. MC13176 Reference Oscillator

Lock-in Range/Capture Range

If a signal is applied to the loop not equal to free running frequency, f_{f}, then the loop will capture or lock-in the signal by making $f_{s}=f_{0}$ (i.e. if the initial frequency difference is not too great). The lock-in range can be expressed as $\Delta \omega_{L} \sim \pm 2 \partial \omega_{n}$

FM Modulation

Noise external to the loop (phase detector input) is minimized by narrowing the bandwidth. This noise is minimal in a PLL system since the reference frequency is usually derived from a crystal oscillator. FM can be achieved by applying a modulation current superimposed on the control current of the CCO. The loop bandwidth must be narrow enough to prevent the loop from responding to the modulation frequency components, thus, allowing the CCO to deviate in frequency. The loop bandwidth is related to the natural frequency ω_{n}. In the lag-lead design example where the natural frequency, $\omega_{\mathrm{n}}=5.0 \mathrm{krad} / \mathrm{sec}$ and a damping factor, $\partial=0.707$, the loop bandwidth $=1.64 \mathrm{kHz}$. Characterization data of the closed loop responses for both the MC13175 and MC13176 at 320 MHz (Figures 7 and 8, respectively) show satisfactory performance using only a simple low-pass loop filter network. The loop filter response is strongly influenced by the high output impedance of the push-pull current output of the phase detector.
$\mathrm{f}_{\mathrm{C}}=0.159 / R C ;$
For $R=1.0 k+R_{7}\left(R_{7}=53 k\right)$ and $C=390 p F$
$\mathrm{f}_{\mathrm{C}}=7.55 \mathrm{kHz}$ or $\omega_{\mathrm{C}}=47 \mathrm{krad} / \mathrm{sec}$
The application example in Figure 18 of a 320 MHz FM transmitter demonstrates the FM capabilities of the IC. A high value series resistor (100 k) to Pin 6 sets up the current source to drive the modulation section of the chip. Its value is dependent on the peak to peak level of the encoding data and the maximum desired frequency deviation. The data input is AC coupled with a large coupling capacitor which is selected for the modulating frequency. The component placements on the circuit side and ground side of the PC board are shown in Figures 35 and 36, respectively. Figure 20 illustrates the input data of a 10 kHz modulating signal at $1.6 \mathrm{Vp}-\mathrm{p}$. Figures 21 and 22 depict the deviation and resulting modulation spectrum showing the carrier null at -40 dBc . Figure 23 shows the unmodulated carrier power output at 3.5 dBm for $\mathrm{V}_{\mathrm{C}}=3.0 \mathrm{Vdc}$.

For voice applications using a dynamic or an electret microphone, an op amp is used to amplify the microphone's low level output. The microphone amplifier circuit is shown in Figure 17. Figure 19 shows an application example for NBFM audio or direct FSK in which the reference crystal oscillator is modulated.

Figure 17. Microphone Amplifier

Local Oscillator Application

To reduce internal loop noise, a relatively wide loop bandwidth is needed so that the loop tracks out or cancels the noise. This is emphasized to reduce inherent CCO and divider noise or noise produced by mechanical shock and environmental vibrations. In a local oscillator application the CCO and divider noise should be reduced by proper selection of the natural frequency of the loop. Additional low pass filtering of the output will likely be necessary to reduce the crystal sideband spurs to a minimal level.

Figure 18. 320 MHz MC13176D FM Transmitter

NOTES: 1.50Ω coaxial balun, 2 inches long.
2. Pins 5,10 and 15 are grounds and connnected to $\mathrm{V}_{\text {EE }}$ which is the component's side ground plane.

These pins must be decoupled to V_{C}; decoupling capacitors should be placed as close as possible to the pins.
3. RFC ${ }_{1}$ is 180 nH Coilcraft surface mount inductor or 190 nH Coilcraft 146-05J08.
4. Recommended source is a Coilcraft "slot seven" 7.0 mm tuneable inductor, part \#7M3-682.
5. The crystal is a parallel resonant, fundamental mode calibrated with 32 pF load capacitance.

Figure 19. 320 MHz NBFM Transmitter

2. Pins 5, 10 and 15 are grounds and connnected to $\mathrm{V}_{\text {EE }}$ which is the component's side ground plane. These pins must be decoupled to V_{CC}; decoupling capacitors should be placed as close as possible to the pins.
3. RFC_{1} is 180 nH Coilcraft surface mount inductor.
4. RFC_{2} and RFC_{3} are high impedance crystal frequency of $10 \mathrm{MHz} ; 8.2 \mu \mathrm{H}$ molded inductor gives $\mathrm{XL}>1000 \Omega$..
5. A single varactor like the MV2105 may be used whereby RFC $_{2}$ is not needed.

6 . The crystal is a parallel resonant, fundamental mode calibrated with 32 pF load capacitance.

Figure 20. Input Data Waveform

Figure 22. Modulation Spectrum

Reference Crystal Oscillator (Pins 8 and 9)

Selection of Proper Crystal: A crystal can operate in a number of mechanical modes. The lowest resonant frequency mode is its fundamental while higher order modes are called overtones. At each mechanical resonance, a crystal behaves like a RLC series-tuned circuit having a large inductor and a high Q . The inductor L_{s} is series resonance with a dynamic capacitor, C_{S} determined by the elasticity of the crystal lattice and a series resistance R_{S}, which accounts for the power dissipated in heating the crystal. This series RLC circuit is in parallel with a static capacitance, C_{p} which is created by the crystal block and by the metal plates and leads that make contact with it.

Figure 24 is the equivalent circuit for a crystal in a single resonant mode. It is assumed that other modes of resonance are so far off frequency that their effects are negligible.
Series resonant frequency, f_{S} is given by;

$$
f_{S}=1 / 2 \pi\left(L_{S} C_{S}\right)^{1 / 2}
$$

and parallel resonant frequency, f_{p} is given by;

$$
f_{p}=f_{S}\left(1+C_{S} / C_{p}\right)^{1 / 2}
$$

Figure 21. Frequency Deviation

Figure 23. Unmodulated Carrier

Figure 24. Crystal Equivalent Circuit

the frequency separation at resonance is given by;

$$
\Delta f=f_{p}-f_{S}=f_{S}\left[1-\left(1+C_{S} / C_{p}\right)^{1 / 2}\right]
$$

Usually f_{p} is less than 1% higher than f_{s}, and a crystal exhibits an extremely wide variation of the reactance with frequency between f_{p} and f_{s}. A crystal oscillator circuit is very stable with frequency. This high rate of change of impedance with frequency stabilizes the oscillator, because any significant change in oscillator frequency will cause a large phase shift in the feedback loop keeping the oscillator on frequency.

MC13175 MC13176

Manufacturers specify crystal for either series or parallel resonant operation. The frequency for the parallel mode is calibrated with a specified shunt capacitance called a "load capacitance." The most common value is 30 to 32 pF . If the load capacitance is placed in series with the crystal, the equivalent circuit will be series resonance at the specified parallel-resonant frequency. Frequencies up to 20 MHz use parallel resonant crystal operating in the fundamental mode, while above 20 MHz to about 60 MHz , a series resonant crystal specified and calibrated for operation in the overtone mode is used.

Application Examples

Two types of crystal oscillator circuits are used in the applications circuits: 1) fundamental mode common emitter Colpitts (Figures 1, 18, 19, and 25), and 2) third overtone impedance inversion Colpitts (also Figures 1 and 25).

The fundamental mode common emitter Colpitts uses a parallel resonant crystal calibrated with a 32 pf load capacitance. The capacitance values are chosen to provide excellent frequency stability and output power of $>500 \mathrm{mVp}-\mathrm{p}$ at Pin 9. In Figures 1 and 25 , the fundamental mode reference oscillator is fixed tuned relying on the repeatability of the crystal and passive network to maintain the frequency, while in the circuit shown in Figures 18 and 19, the oscillator frequency can be adjusted with the variable inductor for the precise operating frequency.

The third overtone impedance inversion Colpitts uses a series resonance crystal with a 25 ppm tolerance. In the application examples (Figures 1 and 25), the reference oscillator operates with the third overtone crystal at 40.0000 MHz . Thus, the MC13175 is operated at 320 MHz ($\mathrm{f}_{\mathrm{o}} / 8=$ crystal; $320 / 8=40.0000 \mathrm{MHz}$. The resistor across the crystal ensures that the crystal will operate in the series resonant mode. A tuneable inductor is used to adjust the oscillation frequency; it forms a parallel resonant circuit with the series and parallel combination of the external capacitors forming the divider and feedback network and the base-emitter capacitance of the device. If the crystal is shorted, the reference oscillator should free-run at the frequency dictated by the parallel resonant LC network.

The reference oscillator can be operated as high as 60 MHz with a third overtone crystal. Therefore, it is possible to use the MC13175 up to at least 480 MHz and the MC13176 up to 950 MHz (based on the maximum capability of the divider network).

Enable (Pin 11)

The enabling resistor at Pin 11 is calculated by: $R_{\text {eg. enable }}=\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{Vdc} / \mathrm{I}_{\text {reg. }}$. enable

From Figure 4, Ireg. enable is chosen to be $75 \mu \mathrm{~A}$. So, for a $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc}$ Rreg. enable $=26.6 \mathrm{k} \Omega$, a standard value $27 \mathrm{k} \Omega$ resistor is adequate.

Layout Considerations

Supply (Pin 12): In the PCB layout, the V_{CC} trace must be kept as wide as possible to minimize inductive reactance along the trace; it is best that V_{CC} (RF ground) completely fills around the surface mounted components and interconnect traces on the circuit side of the board. This technique is demonstrated in the evaluation PC board.

Battery/Selection/Lithium Types

The device may be operated from a 3.0 V lithium battery. Selection of a suitable battery is important. Because one of the major problems for long life battery powered equipment is oxidation of the battery terminals, a battery mounted in a clip-in socket is not advised. The battery leads or contact post should be isolated from the air to eliminate oxide build-up. The battery should have PC board mounting tabs which can be soldered to the PCB. Consideration should be given for the peak current capability of the battery. Lithium batteries have current handling capabilities based on the composition of the lithium compound, construction and the battery size. A $1300 \mathrm{~mA} / \mathrm{hr}$ rating can be achieved in the cylindrical cell battery. The Rayovac CR2/3A lithium-manganese dioxide battery is a crimp sealed, spiral wound $3.0 \mathrm{Vdc}, 1300 \mathrm{~mA} / \mathrm{hr}$ cylindrical cell with PC board mounting tabs. It is an excellent choice based on capacity and size ($1.358^{\prime \prime}$ long by $0.665^{\prime \prime}$ in diameter).

Differential Output (Pins 13, 14)

The availability of micro-coaxial cable and small baluns in surface mount and radial-leaded components allows for simple interface to the output ports. A loop antenna may be directly connected with bias via RFC or 50Ω resistors. Antenna configuration will vary depending on the space available and the frequency of operation.

AM Modulation (Pin 16)

Amplitude Shift Key: The MC13175 and MC13176 are designed to accommodate Amplitude Shift Keying (ASK). ASK modulation is a form of digital modulation corresponding to AM. The amplitude of the carrier is switched between two or more values in response to the PCM code. For the binary case, the usual choice is On-Off Keying (often abbreviated OOK). The resultant amplitude modulated waveform consists of RF pulses called marks, representing binary 1 and spaces representing binary 0 .

Figure 25. ASK 320 MHz Application Circuit

NOTES: 1.50Ω coaxial balun, $1 / 10$ wavelength line (1.5") provides the best match to a 50Ω load.
2. Pins 5,10 and 15 are ground and connnected to $V_{E E}$ which is the component/DC ground plane side of PCB. These pins must be decoupled to V_{CC}; decoupling capacitors should be placed as close as possible to the pins.
3. The crystal oscillator circuit may be adjusted for frequency with the variable inductor (MC13175); 1.0 k resistor shunting the crystal prevents it from oscillating in the fundamental mode. Recommended source is Coilcraft "slot seven" 7.0 mm tuneable inductor, part \#7M3-821.
4. The On-Off keyed signal turns the output of the transmitter off and on with TTL level pulses through $\mathrm{R}_{\text {mod }}$ at Pin 16. The "On" power and I_{CC} is set by the resistor which sets $I_{\bmod }=$ VTTL $-0.8 / R_{\text {mod }}$. (see Figure 28).
5. S1 simulates an enable gate pulse from a microprocessor which will enable the transmitter. (see Figure 4 to determine precise value of the enabling resistor based on the potential of the gate pulse and the desired enable.)

Figure 25 shows a typical application in which the output power has been reduced for linearity and current drain. The current draw on the device is 16 mA ICC (average) and -22.5 dBm (average power output) using a 10 kHz modulating rate for the on-off keying. This equates to 20 mA and - 2.3 dBm "On", 13 mA and -41 dBm "Off". In Figure 26, the device's modulating waveform and encoded carrier are
displayed. The crystal oscillator enable time is needed to set the acquisition timing. It takes typically 4.0 msec to reach full magnitude of the oscillator waveform (see Figure 27, Oscillator Waveform, at Pin 8). A square waveform of 3.0 V peak with a period that is greater than the oscillator enable time is applied to the Enable (Pin 11).

Figure 26. ASK Input Waveform and Modulated Carrier

Figure 27. Oscillator Enable Time, Tenable

Figure 28. Power Output versus Modulation Current

Analog AM

In analog AM applications, the output amplifier's linearity must be carefully considered. Figure 28 is a plot of Power Output versus Modulation Current at $320 \mathrm{MHz}, 3.0 \mathrm{Vdc}$. In order to achieve a linear encoding of the modulating sinusoidal waveform on the carrier, the modulating signal must amplitude modulate the carrier in the linear portion of its power output response. When using a sinewave modulating signal, the signal rides on a positive DC offset called $\mathrm{V}_{\mathrm{mod}}$ which sets a static (modulation off) modulation current, ImodImod controls the power output of the IC. As the modulating signal moves around this static bias point the modulating current varies causing power output to vary or to be AM modulated. When the IC is operated at modulation current levels greater than 2.0 mAdc the differential output stage starts to saturate.

In the design example, shown in Figure 29, the operating point is selected as a tradeoff between average power output and quality of the AM .

For $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{Vdc} ; \mathrm{I} \mathrm{CC}=18.5 \mathrm{~mA}$ and $\mathrm{I}_{\mathrm{mod}}=0.5 \mathrm{mAdc}$ and a static DC offset of 1.04 Vdc , the circuit shown in Figure 29 completes the design. Figures 30, 31 and 32 show the results of -6.9 dBm output power and 100% modulation by the 10 kHz and 1.0 MHz modulating sinewave signals. The amplitude of the input signals is approximately $800 \mathrm{mVp}-\mathrm{p}$.

Where $R_{\text {mod }}=\left(\mathrm{V}_{\mathrm{CC}}-1.04 \mathrm{Vdc}\right) / 0.5 \mathrm{~mA}=3.92 \mathrm{k}$, use a standard value resistor of 3.9 k .

Figure 29. Analog AM Transmitter

Figure 30. Power Output of Unmodulated Carrier

\#e\#trat ath F-) 320,0000 wnz		
-06,9 dam input level 101,0 - V		
		- 73
-15,	-	+15,
-0.0	PC* AM	+ 0.0
-100	\%	+100

Figure 31. Input Signal and AM Modulated
Carrier for $\mathrm{f}_{\mathrm{mod}}=10 \mathrm{kHz}$

Figure 32. Input Signal and AM Modulated
Carrier for $\mathrm{f}_{\mathrm{mod}}=1.0 \mathrm{MHz}$

MC13175 MC13176
Figure 33. Circuit Side View of MC1317XD

Figure 34. Ground Side View

MC13175 MC13176
Figure 35. Surface Mounted Components Placement (on Circuit Side)

Figure 36. Radial Leaded Components Placement (on Ground Side)

MOTOROLA

Low Voltage Compander Silicon Monolithic Integrated Circuit

The MC33110 contains two variable gain circuits configured for compressing and expanding the dynamic range of an audio signal. One circuit is configured as an expander, while the other circuit can be configured as a compressor or expander. Each circuit has a full wave rectifier to provide average value information to a variable gain cell located in either the input stage or the feedback path. An internal, temperature stable bandgap reference provides the necessary precision voltages and currents required.

The MC33110 will operate from a supply voltage of 2.1 to 7.0 V , over a temperature range of -40° to $+85^{\circ} \mathrm{C}$. The device is designed to accommodate an 80 dB dynamic range from -60 dB to +20 dB , referenced to 100 mVrms .

Applications include cordless telephone, CB, walkie-talkie, most voice RF links, and any application where the signal-to-noise ratio can be improved by reducing the transmitted dynamic range. Other applications include speakerphone and voice activated intercom, dictating machine, standard telephone, etc.

The MC33110 is packaged in a 14 pin DIP for through-the-hole applications and an SO-14 surface mount.

- Operating Supply Voltage: 2.1 to 7.0 V
- No Precision External Components Required
- 80 dB Dynamic Range Compressed to 40 dB , Re-expandable to 80 dB
- Unity Gain Level: 100 mVrms
- Adjustable Response Time
- Ambient Operating Temperature: -40 to $+85^{\circ} \mathrm{C}$
- Temperature Compensated Reference
- Applications Include Cordless Phone, CB Radio, Speakerphone, etc.

SIMPLIFIED BLOCK DIAGRAM

PIN DESCRIPTION

Name	Pin	Description
$\mathrm{V}_{\text {ref }}$	1	Normally this pin is not used and is left open. It can be used to make limited adjustments to the 0 dB level. Any noise or leakage at this pin will affect the 0 dB level and gain tracking.
NC	2, 13	No connection. These pins are not internally connected.
Expander Filter	3	Connect to an external capacitor to filter the full wave rectifier's output. This capacitor affects attack and decay times, as well as low frequency accuracy.
Expander Output	4	Output of the expander amplifier.
Expander Input	5	The input impedance is nominally $3.2 \mathrm{k} \Omega$. Nominal signal range is 3.16 mVrms to 316 mVrms . Must be capacitor coupled to the signal source.
V_{B}	6	An internal reference voltage, nominally $\mathrm{V}_{\mathrm{CC}} / 2$. This is an ac ground and must be well filtered to obtain high power supply rejection and low crosstalk.
Ground	7	Connect to a clean power supply ground.
Compressor Feedback	8	Input to the compressor variable gain stage and rectifier. Normally the signal is supplied by the compressor's output (Pin 11). Input impedance is nominally $3.2 \mathrm{k} \Omega$.
Inverting Input	9	Inverting input to the compressor amplifier. Normally, this is connected to the compressor's output through a filtered DC feedback path.
Compressor Input	10	The input impedance is nominally $10 \mathrm{k} \Omega$. Nominal signal range is $100 \mu \mathrm{Vrms}$ to 1.0 Vrms . Must be capacitor coupled to the signal source.
Compressor Output	11	Output of the compressor amplifier.
Compressor Filter	12	Connect to an external capacitor to filter the full wave rectifier's output. This capacitor affects attack \& decay times, and low frequency accuracy.
V_{CC}	14	Power supply pin. Connect to a power supply providing between 2.1 V and 7.0 V. Nominal current consumption is 3.5 mA .

COMPRESSOR

$$
V_{\text {out }}=\sqrt{\frac{R_{5} \times R_{6} \times I_{\text {ref }} \times V_{\text {in }}}{7.2 \times R_{4}}}
$$

$$
=0.3162 \times \sqrt{V_{\text {in }}}
$$

TRANSFER FUNCTIONS
COMPRESSION EXPANSION

(VOLTAGES ARE RMS)

EXPANDER

MC33110

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
V_{CC} Supply Voltage	V_{CC}	$+12,-0.5$	Vdc
High Input Voltage (Pin 5 \& 10)	V_{IH}	$\mathrm{V}_{\mathrm{CC}}+0.5$	Vdc
Low Input Voltage	V_{IL}	-0.5	Vdc
Output Source Current (Pin 4 \& 11)	I_{O}	Self-Limiting	
Output Sink Current	I_{-}	20	mA
Junction Temperature	T_{J}	$-65,+150$	${ }^{\circ} \mathrm{C}$

Devices should not be operated at these values. The "Recommended Operating Conditions" table provides conditions for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Typ	Max	Unit
$V_{\text {CC }}$ Supply Voltage	V_{CC}	2.1	-	7.0	Vdc
Input Voltage Range	V_{IR}				Vrms
Compressor, 2.1 $\mathrm{V}<\mathrm{V}_{\mathrm{CC}}<7.0 \mathrm{~V}$		0	-	1.0	
Expander, $\mathrm{V}_{\mathrm{CC}}=2.1 \mathrm{~V}$	0	-	0.25		
Expander, $3.0 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<7.0 \mathrm{~V}$		0	-	0.316	
Input Frequency	F_{in}	100	-	20 k	Hz
Output Load	R_{L}				Ω
\quad Compressor (Pin 11, $\mathrm{V}_{\mathrm{O}}=100 \mathrm{mV}$)		300	-	∞	
\quad Expander (Pin 4, $\mathrm{V}_{\mathrm{O}}=100 \mathrm{mV}$)	150	-	∞		
Ambient Temperature	T_{A}	-40	-	+85	${ }^{\circ} \mathrm{C}$

All limits are not necessarily functional concurrently.
ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}\right.$, unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, see Figure 1)

Characteristic	Symbol	Min	Typ	Max	Unit
POWER SUPPLY					
$\begin{gathered} \hline \text { Power Supply Current } \\ \mathrm{V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=+2.1 \mathrm{~V} \end{gathered}$	ICC	-	$\begin{aligned} & 3.5 \\ & 3.3 \end{aligned}$	5.5	mA
V_{B} Voltage $\begin{aligned} & V_{C C}=+5.0 \mathrm{~V} \\ & 2.1 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<7.0 \mathrm{~V} \end{aligned}$	V_{B}	2.4	$\begin{gathered} 2.5 \\ \mathrm{v}_{\mathrm{CC}} / 2 \end{gathered}$	2.6	Vdc

COMPRESSOR

0 dB Gain $V_{\text {in }}=100 \mathrm{mVrms}$, Pin $1=$ Open	G (CO)	-1.5	0	1.5	dB
Gain Tracking @ $\mathrm{V}_{\text {in }}=1.0 \mathrm{Vrms}$, output relative to $\mathrm{G}_{(\mathrm{CO})}$ @ $\mathrm{V}_{\text {in }}=10 \mathrm{mVrms}$, output relative to $\mathrm{G}(\mathrm{CO})$ $@ V_{\text {in }}=1.0 \mathrm{mVrms}$, output relative to $G_{(C O)}$ @ $\mathrm{V}_{\text {in }}=100 \mu \mathrm{Vrms}$, output relative to $\mathrm{G}_{(\mathrm{CO})}$	G_{t}	$\begin{gathered} +9.0 \\ - \\ -31 \end{gathered}$	$\begin{aligned} & +10 \\ & -10 \\ & -20 \\ & -30 \end{aligned}$	$\begin{gathered} +11 \\ - \\ -29 \end{gathered}$	dB
Total Harmonic Distortion $\mathrm{V}_{\text {in }}=100 \mathrm{mVrms}, \mathrm{f}=1.0 \mathrm{kHz}$	THD	0	0.1	1.5	\%
$\begin{aligned} & \text { Power Supply Rejection } \\ & \quad \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{CVB}=10 \mu \mathrm{~F}, \mathrm{~V} \text { in }=-20 \mathrm{~dB} \end{aligned}$	PSRR	-	22	-	dB
Attack Time (Capacitor @ Pin $12=2.2 \mu \mathrm{~F}$)	$\mathrm{ta}_{\mathrm{a}}(\mathrm{C})$	-	6.0	-	ms
Decay Time (Capacitor @ Pin $12=2.2 \mu \mathrm{~F}$)	$\mathrm{t}_{\mathrm{d}(\mathrm{C})}$	-	20	-	ms
$\begin{array}{lr}\text { Input Impedance } & \text { Pin } 10 \\ \text { Pin } 8\end{array}$	$\mathrm{R}_{\text {in }}$	-	$\begin{aligned} & \hline 10 \\ & 3.2 \end{aligned}$	-	$\mathrm{k} \Omega$
Peak Output Current Pin 11	lpk	-	0.3	-	mA
Output Offset Pin 11, with respect to Pin 6, NO SIGNAL Change from NO SIGNAL to 1.0 Vrms at Input	VOO	-150	$\begin{gathered} 0 \\ 50 \end{gathered}$	$+150$	mVdc

MC33110

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V} C \mathrm{C}=5.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}\right.$, unless otherwise noted, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, see Figure 1)

Characteristic	Symbol	Min	Typ	Max	Unit

EXPANDER

0 dB Gain ($\mathrm{V}_{\text {in }}=100 \mathrm{mVrms}$, Pin $1=$ open $)$	G (EO)	-1.5	0	1.5	dB
Gain Tracking @ $\mathrm{V}_{\text {in }}=316 \mathrm{mV}$ rms, output relative to $\mathrm{G}_{\text {(EO) }}$ $@ V_{\text {in }}=31.6 \mathrm{mVrms}$, output relative to $\mathrm{G}_{(\mathrm{EO})}$ @ $V_{\text {in }}=10 \mathrm{mVrms}$, output relative to $\mathrm{G}_{(\mathrm{EO})}$ @ $\mathrm{V}_{\text {in }}=3.16 \mathrm{mVrms}$, output relative to $\mathrm{G}(\mathrm{EO})$	G_{t}	$\begin{gathered} +19 \\ - \\ -61 \end{gathered}$	$\begin{aligned} & +20 \\ & -20 \\ & -40 \\ & -60 \end{aligned}$	$\begin{gathered} +21 \\ - \\ -59 \end{gathered}$	dB
Total Harmonic Distortion $\mathrm{V}_{\text {in }}=100 \mathrm{mVrms}, \mathrm{f}=1.0 \mathrm{kHz}$	THD	0	0.06	1.5	\%
Power Supply Rejection ($\mathrm{f}=1.0 \mathrm{kHz}, \mathrm{CVB}=10 \mu \mathrm{~F}$)	PSRR	-	37	-	dB
Attack Time (Capacitor @ Pin 3 = 2.2 $\mu \mathrm{F}$)	$\mathrm{ta}_{\mathrm{a}}(\mathrm{E})$	-	19	-	ms
Decay Time (Capacitor @ Pin 3 = $2.2 \mu \mathrm{~F}$)	$\mathrm{t}_{\mathrm{d}}(\mathrm{E})$	-	20	-	ms
Input Impedance Pin 5	$\mathrm{R}_{\text {in }}$	-	3.2	-	$\mathrm{k} \Omega$
Peak Output Current Pin 4	${ }_{\text {l }}$ p	-	1.0	-	mA
Output Offset Pin 4, with respect to Pin 6, NO SIGNAL Change from NO SIGNAL to 316 mVrms at Input	VOO	-150	$\begin{gathered} 0 \\ 25 \end{gathered}$	$+150$	mVdc

MISCELLANEOUS

$\begin{aligned} & \text { Gain (Pin } 10 \text { to Pin 4; Pin } 11 \text { capacitor coupled to Pin 5) } \\ & \mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.0 \mathrm{Vrms} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {in }}=1.0 \mathrm{Vrms} \\ & \mathrm{~V}_{\mathrm{CC}}=2.1 \mathrm{~V}, \mathrm{~V}_{\text {in }}=31.6 \mathrm{mVrms} \end{aligned}$	A_{V}	$\begin{aligned} & -2.5 \\ & -2.5 \\ & -2.5 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & +2.5 \\ & +2.5 \\ & +2.5 \end{aligned}$	dB
Channel Separation Expander to Compressor, output measured at Pin 11 $\mathrm{V}_{\text {in }} @ \operatorname{Pin} 5=316 \mathrm{mVrms}, \mathrm{f}=1.0 \mathrm{kHz}$ $\mathrm{V}_{\text {in }} @ \operatorname{Pin} 5=316 \mathrm{mVrms}, \mathrm{f}=10 \mathrm{kHz}$	CS				dB
Compressor to Expander, output measured at Pin 4 $\mathrm{V}_{\text {in }} @ \operatorname{Pin} 10=1.0 \mathrm{Vrms}, \mathrm{f}=1.0 \mathrm{kHz}$ $\mathrm{V}_{\text {in }} @ \operatorname{Pin} 10=1.0 \mathrm{Vrms}, \mathrm{f}=10 \mathrm{kHz}$		65	$\begin{aligned} & 107 \\ & 114 \end{aligned}$	-	

Figure 1. Test Circuit

COMPRESSOR

Figure 2. Compressor Transfer Characteristics

Figure 4. Compressor Transfer Characteristics

Figure 6. Power Supply Rejection (Compressor)

EXPANDER

Figure 3. Expander Transfer Characteristics

Figure 5. Expander Transfer Characteristics

Figure 7. Power Supply Rejection (Expander)

COMPRESSOR

Figure 8. Power Supply Rejection (Compressor)

Figure 10. Frequency Response (Compressor)

Figure 12. Frequency Response (Compressor)

EXPANDER

Figure 9. Power Supply Rejection (Expander)

Figure 11. Frequency Response (Expander)

Figure 13. Frequency Response (Expander)

Figure 14. Attack and Decay Times (Compressor)

Attack Time $=$ Time to 63% of $\Delta \mathrm{V} 1$.
Decay Time $=$ Time to 63% of $\Delta \mathrm{V} 2$.
Figure 16. Attack and Decay Times (Compressor)

Figure 18. Maximum Input Signal

Figure 15. Attack and Decay Times (Expander)

Attack Time $=$ Time to 63% of $\Delta \mathrm{V} 1$. Decay Time $=$ Time to 63% of $\Delta \mathrm{V} 2$.

Figure 17. Attack and Decay Times (Expander)

Figure 19. Channel Separation

COMPRESSOR

Figure 20. Compressor Gain Tracking versus Temperature

Figure 22. Compressor THD versus Temperature

Figure 21. Expander Gain Tracking versus Temperature

Figure 23. Expander THD versus Temperature

FUNCTIONAL DESCRIPTION

Introduction

The MC33110 compander (COMpressor and exPANDER) is composed of two variable gain circuits which provide compression and expansion of the signal dynamic range. The compressor will take a signal with an 80 dB dynamic range ($100 \mu \mathrm{~V}$ to 1.0 Vrms), and reduce that to a 40 dB dynamic range by attenuating strong signals, while amplifying low level signals. The expander does the opposite in that the 40 dB signal range is increased to a dynamic
range of 80 dB by amplifying strong signals and attenuating low level signals. The 0 dB level is internally set at 100 mVrms - that is the signal level which is neither amplified nor attenuated. Both circuits contain the necessary precision full wave rectifier, variable gain cell, and temperature compensated references required for accurate and stable performance.

Note: All dB values mentioned in this data sheet, unless otherwise noted, are referred to 100 mVrms .

Compressor

The compressor is an operational amplifier with a fixed input resistor and a variable gain cell in its feedback path as shown in Figure 24.

Figure 24. Compressor

The amplifier output is sampled by the precision rectifier which, in turn, supplies a DC signal (IControl), representative of the rectifier's AC signal, to the variable gain cell. The reference current (lref) is an internally generated precision current. The effective impedance of the variable gain cell varies with the ratio of the two currents, and decreases as IControl increases, thereby providing compression. The output is related to the input by the following equation:

$$
V_{\text {out }}=0.3162 \times \sqrt{V_{\text {in }}}
$$

(Equation 1)
In terms of dB levels, the relationship is:

$$
\mathrm{V}_{\text {out }}(\mathrm{dB})=0.5 \times \mathrm{V}_{\text {in }}(\mathrm{dB})
$$

(Equation 2)
where $0 \mathrm{~dB}=100 \mathrm{mVrms}$ (see Figure 2 and 4).
The inputs and output are internally biased at $\mathrm{V}_{\mathrm{B}}\left(\mathrm{V}_{\mathrm{CC} / 2}\right)$, and must therefore be capacitor coupled to external circuitry. Pin 10 input impedance is nominally $10 \mathrm{k} \Omega$ ($\pm 20 \%$), and the maximum functional input signal is shown in Figure 18. Bias currents required by the op amp and the variable gain cell are internally supplied. Due to clamp diodes at the input (to $V_{C C}$ and ground), the input signal must be maintained between the supply rails. If the input signal goes more than 0.5 V above V_{CC} or below ground, excessive currents will flow and distortion will show up at the output.

When no AC signals are present at the input, the variable gain cell will attempt to set such a high gain that the circuit may be come unstable. For this reason resistors R1 and R2, and capacitor C1 are added to provide DC stability. The pole formed by R1, R2 and C1 should have a pole frequency no
more than $1 / 10$ th of the lowest frequency of interest. The pole frequency is calculated from:

$$
\begin{equation*}
f=\frac{R_{1}+R_{2}}{2 \pi \times R_{1} R_{2} C_{1}} \tag{Equation3}
\end{equation*}
$$

for the component values shown, the pole frequency is $\approx 16 \mathrm{~Hz}$.

Likewise, the capacitor between Pins 11 and 8 should be selected such that, in conjunction with the input impedance at Pin $8(\approx 3200 \Omega, \pm 20 \%)$, the resulting pole frequency is no more than $1 / 10$ of the lowest frequency of interest. With the components shown, the pole frequency is $<30 \mathrm{~Hz}$. This pole frequency is calculated from:

$$
f=\frac{1}{2 \pi \times 3.2 \mathrm{kxC}}
$$

(Equation 4)
The output of the rectifier is filtered by the capacitor at Pin 12, which, in conjunction with an internal 10 k resistor, provides the time constant for the attack and decay times. Figure 14 and 16 indicate how the times vary with the capacitor value. The attack time for the compressor is always faster than the decay time due to the fact that the rectifier is fed from the output rather than the input. Since the output is initially larger than expected (immediately after the input has increased), the external capacitor is charged more quickly during the initial part of the time constant. When the input is decreased, the time constant is closer to that calculated by $t=R C$. If the attack and decay times are decreased by using a smaller capacitor, performance at low frequencies will degrade.

Expander

The expander is an operational amplifier with a fixed feedback resistor and a variable gain cell in its input path as shown in Figure 25.

Figure 25. Expander

The input signal is sampled by the precision rectifier which, in turn, supplies a DC signal (IControl), representative of the AC input signal, to the variable gain cell. The reference current ($l_{\text {ref }}$) is an internally generated precision current. The effective impedance of the variable gain cell varies with the ratio of the two currents, and decreases as IControl increases, thereby providing expansion. The output is related to the input by the following equation:

$$
\begin{equation*}
V_{\text {out }}=10 \times\left(V_{\text {in }}\right)^{2} \tag{Equation5}
\end{equation*}
$$

In terms of dB levels, the relationship is:

$$
\begin{equation*}
\mathrm{V}_{\text {out }}(\mathrm{dB})=2.0 \times \mathrm{V}_{\mathrm{in}}(\mathrm{~dB}) \tag{Equation6}
\end{equation*}
$$

where $0 \mathrm{~dB}=100 \mathrm{mVrms}$ (see Figure 3 and 5).
The inputs and output are internally biased at $\mathrm{V}_{\mathrm{B}}\left(\mathrm{V}_{\mathrm{CC} / 2}\right)$, and must therefore be capacitor coupled to external circuitry. The input impedance at Pin 5 is nominally $3.2 \mathrm{k} \Omega(\pm 20 \%)$, and the maximum functional input signal is shown in Figure 18. Bias currents required by the op amp and the variable gain cell are internally supplied. Due to clamp diodes at the input (to V_{CC} and ground), the input signal must be maintained between the supply rails. If the input signal
goes more than 0.5 V above V_{CC} or below ground, excessive currents will flow, and distortion will show up at the output.

The output of the rectifier is filtered by the capacitor at Pin 3, which, in conjunction with an internal 10 k resistor, provides the time constant for the attack and decay times. Figure 15 and 17 indicate how the times vary with the capacitor value. If the attack and decay times are decreased by using a smaller capacitor, performance at low frequencies will degrade.

Power Supply

The MC33110 requires a power supply voltage between 2.1 V and 7.0 V , and a nominal current of 3.5 mA . The supply voltage should be well filtered and free of ripple. A minimum of $4.7 \mu \mathrm{~F}$ in parallel with a $0.01 \mu \mathrm{~F}$ capacitor is recommended for filtering and RF bypass.
V_{B} (Pin 6) is an internally generated mid supply reference, and is used internally as an AC ground. The external capacitor at Pin 6 filters this voltage, and its value affects the power supply noise rejection as shown in Figures 6 through 9. This reference voltage may be used to bias external circuitry as long as the current draw is limited to $<10 \mu \mathrm{~A}$.

MC33110

APPLICATIONS INFORMATION

Signal-to-Noise Improvement

Among the basic reasons for the original development of compander type circuits was to improve the signal-to-noise ratio of long distance telecom circuits, and of voice circuits which are transmitted over RF links (CBs, walkie-talkies, cordless phones, etc.). Since much of the noise heard at the receiving end of a transmission is due to noise picked up, for example, in the airway portion of the RF link, the compressor was developed to increase the low-level signals at the transmitting end. Then any noise picked in the RF link would be a smaller percentage of the transmitted signal level. At the receiving end, the signal is then expanded back to its original level, retaining the same high signal-to-noise ratio. While the above explanation indicates it is not necessary to attenuate strong signals (at the transmitting end), a benefit of doing this is the reduced dynamic range which must be
handled by the system transmitter and receiver. The MC33110 was designed for a two-to-one compression and expansion, i.e. an 80 dB dynamic signal is compressed to a 40 dB dynamic range, transmitted to the receiving end and then expanded back to an 80 dB dynamic range.

The MC33110 compander is not limited to RF or long distance telephony applications. It can be used in any system requiring an improved signal-to-noise ratio such as telephones, speakerphones, tape recorders, digital recording, and many others.

Second Expander

Should the application require it, the MC33110 can be configured as two expanders by reconfiguring the compressor side as shown in Figure 26.

Figure 26. Second Expander

Power Supplies, Grounding

The PC board layout, the quality of the power supplies and the ground system at the IC are very important in order to obtain proper operation. Noise, from any source, coming into the device on V_{CC} or ground, can cause a distorted output, or incorrect gain level.
V_{CC} must be decoupled to the appropriate ground at the IC (within $1^{\prime \prime}$ max) with a $4.7 \mu \mathrm{~F}$ capacitor and a $0.01 \mu \mathrm{~F}$ ceramic. A tantalum capacitor is recommended for the larger value if very high frequency noise is present since electrolytic capacitors simply have too much inductance at those frequencies. The quality of the power supply voltage should be checked at the IC with a high frequency scope. Noise spikes (always present if digital circuits are near this IC) can
easily exceed 400 mV , and if they get into the IC, the output can have noise or distortion. Noise can be reduced by inserting resistors and/or inductors between the supply and the IC.

If switching power supplies are used, there will usually be spikes of 0.5 V or greater at frequencies of 50 kHz to 1.0 MHz . These spikes are generally more difficult to reduce because of their greater energy content. In extreme cases, a three terminal regulator (MC78L05ACP), with appropriate high frequency filtering, should be used and dedicated to the analog portion of the circuit.

The ripple content of the supply should not allow its magnitude to exceed the values in the Recommended Operating Conditions table.

MC33110

The PC board tracks supplying V_{CC} and ground to the MC33110 should preferably not be at the tail end of the bus distribution, after passing through a maze of digital circuitry. The analog circuitry containing the MC33110 should be close to the power supply, or the connector where the supply voltages enter the board. If V_{CC} is supplying considerable current to other parts of the board, then it is preferable to have dedicated lines from the supply or connector directly to the MC33110 and associated circuitry.

PC Board Layout

Although this device is intended for use in the audio frequency range, the amplifiers have a bandwidth of
$\approx 300 \mathrm{kHz}$, and can therefore oscillate at frequencies outside the voiceband should there be excessive stray capacitance or other unintended feedback loops. A solid ground plane is strongly recommended to minimize coupling of any digital noise into the analog section. Use of wire wrapped boards should definitely be avoided.

Since many applications of the MC33110 compander involve voice transmission over RF links, care must be taken in the design of the product to keep RF signals out of the MC33110 and associated circuitry. This involves proper layout of the PC boards, the physical arrangement of the boards, shielding, proper RF ground, etc.

GLOSSARY

ATTACK TIME — The settling time for a circuit after its input signal has been increased.

ATTENUATION - A decrease in magnitude of a communication signal, usually expressed in dB.

BANDWIDTH - The range of information carrying frequencies of a communication system.

CHANNEL SEPARATION - The ability of one circuit to reject outputting signals which are being processed by another circuit. Also referred to as crosstalk, it is usually expressed in dB.

COMPANDER - A contraction of the words compressor and expander. A compander is composed of two circuits, one of each kind.

COMPRESSOR - A circuit which compresses or reduces the dynamic range of a signal by attenuating strong signals and amplifying low level signals.
dB - A power or voltage measurement unit, referred to another power or voltage. It is generally computed as:
$10 \times \log \left(\mathrm{P}_{1} / \mathrm{P}_{2}\right)$ for power measurements, and
$20 \times \log \left(\mathrm{V}_{1} / \mathrm{V}_{2}\right)$ for voltage measurements.
dBm - An indication of signal power. 1.0 mW across 600Ω or 0.775 V rms , is typically defined as 0 dBm for telecom applications. Any voltage level is converted to dBm by:

$$
\begin{aligned}
& \mathrm{dBm}=20 \times \log (\mathrm{Vrms} / 0.775), \text { or } \\
& \mathrm{dBm}=[20 \times \log (\mathrm{Vrms})]+2.22 .
\end{aligned}
$$

dBrn - Indicates a dBm measurement relative to 1.0 pW power level into 600Ω. Generally used for noise measurements, $0 \mathrm{dBrn}=-90 \mathrm{dBm}$.
dBrnC - Indicates a dBrn measurement using a C -message weighting filter.

DECAY TIME - The settling time for a circuit after its input signal has been decreased.

EXPANDER - A circuit which expands or increases the dynamic range of a signal by amplifying strong signals and attenuating low level signals.

GAIN - The change in signal amplitude (increase or decrease) after passing through an amplifier, or other circuit stage. Usually expressed in dB , an increase is a positive number and a decrease is a negative number.

POWER SUPPLY REJECTION RATIO - The ability of a circuit to reject outputting noise, or ripple, which is present on the power supply lines. PSRR is usually expressed in dB .

SIGNAL-TO-NOISE RATIO - The ratio of the desired signal to unwanted signals (noise) within a defined frequency range. The larger the number, the better.

VOICEBAND - That portion of the audio frequency range used for transmission across the telephone system. Typically, it is 300 to 3400 Hz .

Advance Information
 Low Voltage Compander

The MC33111 contains two variable gain circuits configured for compressing and expanding the dynamic range of an audio signal. One circuit is configured as an expander, and the other is configured as a compressor. Each circuit has a full wave rectifier to provide average value information to a variable gain cell located in either the input stage or the feedback path. An internal temperature stable bandgap reference provides the necessary precision voltages.

Included in the MC33111 are controls for muting each section independently, and for passthrough of both. Two uncommitted op amps are available for peripheral functions.

The MC33111 will operate from a supply voltage of 3.0 V to 7.0 V , and over a temperature range of -40° to $+85^{\circ} \mathrm{C}$. It is designed to accommodate a 60 dB dynamic range; from -40 dB to +20 dB referenced to 100 mVrms .

Applications include cordless telephone, CBs, walkie-talkies, and most voice RF links, and any application where an improvement in the signal to noise ratio is desired. Other applications include speakerphones and voice activated intercoms, dictating machines, etc.

- Operating Supply Voltage: 3.0 V to 7.0 V
- Output Voltage Swing = 2.8 Vp-p with $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
- No Precision External Components Required
- 60 dB Dynamic Range Compressed to 30 dB , Re-expandable to 60 dB
- Unity Gain Level set at 100 mVrms
- Attack and Decay Times Adjustable
- Mute and Passthrough Controls
- Two Uncommitted Op Amps
- Temperature Compensated Reference
- Available in Standard DIP and Surface Mount Packages

LOW VOLTAGE COMPANDER

SILICON MONOLITHIC INTEGRATED CIRCUIT

TRUTH TABLE

CM	EM	PT	Function
0	0	0	Normal
1	X	X	Comp. Mute
X	1	X	Expander Mute Passthrough

ORDERING INFORMATION

Device	Temperature Range	Package
MC33111D	-40° to $+85^{\circ} \mathrm{C}$	SO-16
MC33111P		

MC33111

PIN FUNCTION DESCRIPTION

Name	Pin	
Ground	1	Connect to a clean power supply ground.
Compressor Output	2	Output of the compressor section.
Compressor Input	3	Compressor input. The input impedance is nominally $10 \mathrm{k} \Omega$. Nominal signal range is 1.0 mVrms to 1.0 Vrms in normal mode, and up to 0.8 Vrms in passthrough mode. Must be capacitor coupled to the signal source.
Compressor Mute	4	A logic high mutes the compressor. A logic low permits normal operation and passthrough.
Compressor Filter	5	Connect an external capacitor to filter the full wave rectifier's output. This capacitor affects attack and decay times, and low frequency accuracy.
Amplifier \#1	6,7	Inverting input (7) and output (6) of an op amp internally referenced to Vb.
Passthrough	8	A logic high sets the gain of both expander and compressor to $\sim 0 \mathrm{~dB}$, independent of input level.
Amplifier \#2	9,10	Inverting input (9) and output (10) of an op amp internally referenced to Vb.
Expander Filter	11	Connect an external capacitor to filter the full wave rectifier's output. This capacitor affects attack and decay times, and low frequency accuracy.
Expander Mute	12	A logic high mutes the expander. A logic low permits normal operation and passthrough.
No Connect	13	This pin is not internally connected to anything.
Expander Input	14	Expander input. The input impedance is nominally $10.9 \mathrm{k} \Omega$. Nominal signal range is 10 mVrms to $316 ~ m V r m s ~ i n ~ n o r m a l ~ m o d e, ~ a n d ~ u p ~ t o ~$ Must be capacitor coupled to the signal source.
Expander Output passthrough mode.		
VCC	15	Output of the expander section.

TRANSFER FUNCTIONS

(Voltages are rms)

Expander

$V_{\text {out }}=10 \times V_{\text {in }}{ }^{2}$

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
V_{CC} Supply Voltage (Pin 16 - Pin 1)	V_{CC}	$-0.5,+12$	Vdc
High Input Voltage (Pins 3, 4, 8, 12, 14)	V_{IH}	$\mathrm{V}_{\mathrm{CC}}+0.5$	Vdc
Low Input Voltage (Pins 3, 4, 8, 12, 14)	V_{IL}	-0.5	Vdc
Output Source Current (Pins 2, 6, 10, 15)	$\mathrm{IO}+$	Self-limiting	mA
Output Sink Current (Pins 2, 6, 10, 15)	$\mathrm{IO}-$	Self-limiting	mA
Storage Temperature	$\mathrm{T}_{\text {stg }}$	$-65,+150$	${ }^{\circ} \mathrm{C}$

NOTE: Devices should not be operated at these limits. The "Recommended Operating Conditions" provides for actual device operation.

RECOMMENDED OPERATING CONDITIONS

Characteristic	Symbol	Min	Typ	Max	Unit
$\mathrm{V}_{\text {CC }}$ Supply Voltage	V_{CC}	3.0	-	7.0	Vdc
Input Signal Voltage Range ($3.0 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<7.0 \mathrm{~V}$) Compressor - Normal and Mute Mode - Passthrough Mode Expander - Normal Mode - Mute Mode - Passthrough Mode	$\mathrm{V}_{\text {in }}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	-	$\begin{gathered} 1.3 \\ 0.8 \\ 0.32 \\ \\ 1.3 \\ 1.0 \end{gathered}$	Vrms
Frequency Range ($\pm 1.0 \mathrm{~dB}$ accuracy)	Fin	0.300	-	10	kHz
Logic Input Voltage Range (Pins 4, 8, 12)	$\mathrm{V}_{\text {in }}$	0	-	V_{CC}	Vdc
Operating Ambient Temperature	$\mathrm{T}_{\text {A }}$	-40	-	+ 85	${ }^{\circ} \mathrm{C}$

NOTE: All limits are not necessarily functional concurrently.
ELECTRICAL CHARACTERISTICS ($\mathrm{V} C \mathrm{C}=3.6 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
COMPRESSOR (Pin 4 = Low unless noted)					
0 dB Gain ($\mathrm{V}_{\text {in }}=100 \mathrm{mVrms}$)	Goc	-1.5	0	1.5	dB
$\begin{aligned} & \text { Gain tracking relative to GOC } \\ & V_{\text {in }}=1.0 \mathrm{Vrms} \\ & V_{\text {in }}=1.0 \mathrm{mVrms} \end{aligned}$	GTC	$\begin{gathered} 9.0 \\ -21 \end{gathered}$	$\begin{gathered} 10 \\ -20 \end{gathered}$	$\begin{gathered} 11 \\ -19 \end{gathered}$	dB
Passthrough Gain (Pin $8=$ High, Pin $4=$ Low, $\mathrm{V}_{\text {in }}=1.0 \mathrm{Vrms}$)	Gptc	-2.0	0	1.0	dB
Muting (Δ Gain) with Pin $4=\operatorname{High}\left(\mathrm{V}_{\text {in }}=1.0 \mathrm{Vrms}\right)$	GMTC	55	67	-	dB
Max. Output Swing @ Pin $2\left(3.0 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}}<7.0 \mathrm{~V}\right)$ Normal Mode Passthrough Mode	$V_{\text {out }}$	-	$\begin{aligned} & 1.1 \\ & 2.3 \end{aligned}$	-	$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$
Peak Output Current ($3.0 \leq \mathrm{V}_{\mathrm{CC}} \leq 7.0 \mathrm{~V}$, Normal or Passthrough Modes, $\left.V_{\text {in }}=M a x\right)$	IPK	-	± 4.0	-	mA
Total Harmonic Distortion ($\mathrm{V}_{\text {in }}=100 \mathrm{mVrms}$)	THD	-	0.2	1.0	\%
$\begin{aligned} & \text { Power Supply Rejection @ } 1.0 \mathrm{KHz} \\ & \mathrm{~V}_{\text {in }}(\text { Pin } 3)=0 \\ & \mathrm{~V}_{\text {in }}(\operatorname{Pin} 3)=10 \mathrm{mVrms} \\ & \mathrm{~V}_{\text {in }}(\operatorname{Pin} 3)=1.0 \mathrm{Vrms} \end{aligned}$	PSRR	-	$\begin{aligned} & 37 \\ & 64 \\ & 72 \end{aligned}$	-	dB
$\begin{aligned} & \text { Attack Time (Capacitor @ Pin } 5=1.0 \mu \mathrm{~F} \text {, per EIA-553) } \\ & \text { Decay Time (Capacitor @ Pin } 5=1.0 \mu \mathrm{~F} \text {, per EIA-553) } \end{aligned}$	${ }^{\mathrm{t}} \mathrm{AT}(\mathrm{C})$ tD(C)	-	$\begin{aligned} & 3.0 \\ & 14 \end{aligned}$		ms
Input Impedance at Pin 3	Rin	8.0	10	14	k Ω
DC Bias Level (Pin 2) Output DC Shift (Vin Changed from 0 to 100 mVrms)	VbIAS	$\begin{array}{r} 1.4 \\ -20 \end{array}$	$\begin{aligned} & \hline \mathrm{Vb} \\ & 1.6 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 2.0 \end{aligned}$	Vdc mVdc

EXPANDER (Pin $12=$ Low, unless noted)

0 dB Gain ($\mathrm{V}_{\text {in }}=100 \mathrm{mVrms}$)	GoE	-1.5	0	1.5	dB
$\begin{aligned} & \text { Gain Tracking Relative to GOE } \\ & V_{\text {in }}=316 \mathrm{mVrms} \\ & \mathrm{~V}_{\text {in }}=10 \mathrm{mVrms} \end{aligned}$	GTE	$\begin{array}{r} 19 \\ -41 \\ \hline \end{array}$	$\begin{array}{r} 20 \\ -40 \\ \hline \end{array}$	$\begin{array}{r} 21 \\ -39 \\ \hline \end{array}$	dB
Passthrough Gain (Pin $8=$ High, Pin $12=$ Low, $\mathrm{V}_{\text {in }}=1.0 \mathrm{Vrms}$)	Gpte	-1.0	0	2.0	dB
Muting (Δ Gain) with Pin $12=\operatorname{High}\left(\mathrm{V}_{\text {in }}=0.316 \mathrm{Vrms}\right)$	$G_{\text {MTE }}$	60	76	-	dB
Max. Output Swing @ Pin 15 (3.0 V < VCC, 7.0 V) Normal Mode Passthrough Mode	$V_{\text {out }}$		$\begin{aligned} & 2.8 \\ & 2.8 \end{aligned}$		$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$
$\begin{aligned} & \text { Peak Output Current } \\ & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {out }} \leq 2.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=2.7 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 3.6 \mathrm{~V}, \mathrm{~V}_{\text {out }} \leq 2.8 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \end{aligned}$	IPK	-	$\begin{aligned} & \pm 3.5 \\ & \pm 1.0 \\ & \pm 4.0 \end{aligned}$	-	mA
Total Harmonic Distortion ($\mathrm{V}_{\mathrm{in}}=100 \mathrm{mVrms}$)	THD	-	0.2	1.0	\%

MC33111

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{kHz}, \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
EXPANDER (Pin 12 = Low, unless noted)					
$\begin{aligned} & \text { Power Supply Rejection @ } 1.0 \mathrm{kHz} \\ & \mathrm{~V}_{\text {in }}(\text { Pin 14 })=0 \\ & \mathrm{~V}_{\text {in }}(\text { Pin 14 })=10 \mathrm{mVrms} \\ & \mathrm{~V}_{\text {in }}(\text { Pin 14 })=316 \mathrm{mVrms} \end{aligned}$	PSRR	-	$\begin{aligned} & 74 \\ & 76 \\ & 62 \end{aligned}$	-	dB
Attack Time (Capacitor @ Pin $11=1.0 \mu$ F, per EIA-553) Decay Time (Capacitor @ Pin $11=1.0 \mu \mathrm{~F}$, per EIA-553)	${ }^{\mathrm{t}} \mathrm{AT}$ (E) tD(E)		$\begin{aligned} & 3.0 \\ & 14 \end{aligned}$		ms
Input Impedance at Pin 14	$\mathrm{R}_{\text {in }}$	8.0	10.9	14	$\mathrm{k} \Omega$
DC Bias Level (Pin 15) Output DC Shift (Vin changed from 0 to 100 mVrms)	VbIAS	$\begin{gathered} 1.4 \\ -20 \end{gathered}$	$\begin{aligned} & \mathrm{Vb} \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.6 \\ & 20 \end{aligned}$	Vdc mVdc

LOGIC INPUTS (Pins 4, 8, 12)

Switching Threshold (3.0 < $\left.\mathrm{V}_{\mathrm{CC}}<7.0 \mathrm{~V}\right)$	$\mathrm{V}_{\text {ST }}$	-	1.3	-	Vdc
Input Current @ $\mathrm{V}_{\text {in }}=0 \mathrm{~V}$ @ $\mathrm{V}_{\text {in }}=3.6 \mathrm{~V}$	Rin				$\mu \mathrm{A}$
Timing $\left(V_{\text {in }} @\right.$ Pins 3 and $14=300 \mathrm{mVrms}$, See Figures 1, 2) Comp. Mute (Pin 4) to Comp. Output Low-to-High High-to-Low Exp. Mute (Pin 12) to Exp. Output Low-to-High High-to-Low Passthrough (Pin 8) to Comp. Output Low-to-High High-to-Low Passthrough (Pin 8) to Exp. Output Low-to-High High-to-Low	tcmLH ${ }^{\mathrm{t}} \mathrm{CMHL}$ temLh temHL tpCLH tPCHL tpelh tpenl	- - - - - - -	2.0 3.0 2.0 3.0 2.0 5.0 6.0 7.0	- - - - - - - -	$\mu \mathrm{S}$

OP AMPS (Pins 6, 7, 9, 10)

Open Loop Gain	AVOL	-	100	-	dB
Gain Bandwidth	BW	-	300	-	kHz
Input Bias Current @ Pins 7, 9	IIB	-	8.0	-	nA
Max Output Swing @ Pins 6, 10 (3.0 V $<\mathrm{V}_{\mathrm{CC}}<7.0 \mathrm{~V}$)	$\mathrm{V}_{\text {out }}$	-	2.8	-	$\mathrm{V}_{\mathrm{p}-\mathrm{p}}$
Peak Output Current $\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {out }} \leq 2.4 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{~V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \mathrm{~V}_{\text {out }}=2.6 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \\ & \mathrm{~V}_{\mathrm{CC}} \geq 3.6 \mathrm{~V}, \mathrm{~V}_{\text {out }} \leq 2.8 \mathrm{~V}_{\mathrm{p}-\mathrm{p}} \end{aligned}$	IPK		$\begin{aligned} & \pm 3.0 \\ & \pm 2.0 \\ & \pm 3.7 \end{aligned}$	-	mA
Total Harmonic Distortion (V $\mathrm{V}_{\text {out }}=1.0 \mathrm{Vrms}$, Unity Gain)	THD	-	0.02	0.2	\%

MISCELLANEOUS

Power Supply Current @ $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ @ $\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}$	ICC	-	1.5 1.7	2.0	mA
Reference Voltage	Vb	-	1.5	-	Vdc
Channel Separation Expander to Compressor (Pin $14=316 \mathrm{mVrms} @ 1.0 \mathrm{kHz}$ and Pin $3=0 \mathrm{mVrms}$) (Pin $14=100 \mathrm{mVrms}(300 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz})$, Pin $3=100 \mathrm{mVrms} @ 1.2 \mathrm{kHz}$) Compressor to Expander (Pin $3=1.0 \mathrm{Vrms} @ 1.0 \mathrm{kHz}$ and Pin $14=0 \mathrm{mVrms}$) (Pin $3=100 \mathrm{mVrms}(300 \mathrm{~Hz}<\mathrm{f}<20 \mathrm{kHz}$), Pin $14=100 \mathrm{mVrms} @ 1.2 \mathrm{kHz}$)	cS	40 - 60	70 96 100 97	-	dB

MC33111

TEMPERATURE PERFORMANCE (Typical performance based on device characterization, not guaranteed.)

Characteristic	$-40^{\circ} \mathrm{C}$	$+25^{\circ} \mathrm{C}$	$+85^{\circ} \mathrm{C}$
Power Supply Current @ $\mathrm{V}_{\mathrm{CC}}=3.6 \mathrm{~V}$ @ $\mathrm{V}_{\mathrm{CC}}=7.0 \mathrm{~V}$	$\begin{aligned} & 1.2 \mathrm{~mA} \\ & 1.4 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1.5 \mathrm{~mA} \\ & 1.7 \mathrm{~mA} \end{aligned}$	$\begin{aligned} & 1.6 \mathrm{~mA} \\ & 1.9 \mathrm{~mA} \end{aligned}$
Reference Voltage (Vb)	1.495 V	1.5 V	1.505 V
0 dB Gain ($\mathrm{V}_{\text {in }}=100 \mathrm{mVrms}$) - Compressor	0.08 dB	0 dB	$-0.04 \mathrm{~dB}$
0 dB Gain ($\mathrm{V}_{\text {in }}=100 \mathrm{mVrms}$) - Expander	0.04 dB	0 dB	$-0.03 \mathrm{~dB}$
Total Harmonic Distortion ($\mathrm{V}_{\text {in }}=100 \mathrm{mVrms}$) - Compressor	0.3\%	0.2\%	0.2\%
Total Harmonic Distortion ($\mathrm{V}_{\text {in }}=100 \mathrm{mVrms}$) - Expander	0.3\%	0.2\%	0.16\%
Gain Tracking Relative to 0 dB Gain - Compressor $\begin{aligned} & \mathrm{V}_{\mathrm{in}}=1.0 \mathrm{Vrms} \\ & \mathrm{~V}_{\text {in }}=1.0 \mathrm{mVrms} \end{aligned}$	$\begin{gathered} 10.8 \mathrm{~dB} \\ -19.95 \mathrm{~dB} \end{gathered}$	$\begin{gathered} 10 \mathrm{~dB} \\ -20 \mathrm{~dB} \end{gathered}$	$\begin{gathered} 10 \mathrm{~dB} \\ -20.1 \mathrm{~dB} \end{gathered}$
Gain Tracking Relative to 0 dB Gain - Expander $\begin{aligned} & \mathrm{V}_{\mathrm{in}}=316 \mathrm{mV} \mathrm{rms} \\ & \mathrm{~V}_{\text {in }}=10 \mathrm{mVrms} \end{aligned}$	$\begin{gathered} 18.6 \mathrm{~dB} \\ -40.2 \mathrm{~dB} \end{gathered}$	$\begin{gathered} 20 \mathrm{~dB} \\ -40 \mathrm{~dB} \end{gathered}$	$\begin{array}{r} 19.95 \mathrm{~dB} \\ -39.9 \mathrm{~dB} \end{array}$
Muting (Δ Gain) with Pin $4=$ High ($\mathrm{V}_{\text {in }}=1.0 \mathrm{Vrms}$) - Compressor	68 dB	67 dB	66 dB
Muting (Δ Gain) with Pin $12=$ High ($\mathrm{V}_{\text {in }}=0.316 \mathrm{Vrms}$) - Expander	76 dB	76 dB	75 dB

Figure 1. Mute Timing

Figure 2. Passthrough Timing

Figure 3. Transfer Characteristics

Figure 5. Frequency Response (Compressor)

Figure 7. Attack and Decay Times (Compressor)

> Attack Time $=$ Time to $1.5 \times$ V1 from input increase. Decay Time $=$ Time to $0.75 \times$ V2 from input decrease. Test per EIA-553.

Figure 4. Transfer Characteristics

Figure 6. Frequency Response (Expander)

Figure 8. Attack and Decay Times (Expander)

[^20]Figure 9. Attack and Decay Times (Compressor)

Figure 11. Compressor Gain Tracking versus Temperature

Figure 13. THD versus Temperature

Figure 10. Attack and Decay Times (Expander)

Figure 12. Expander Gain Tracking versus Temperature

Figure 14. Logic Inputs' Current

FUNCTIONAL DESCRIPTION

Introduction

The MC33111 compander (COMpressor and exPANDER) is composed of two variable gain circuits which provide compression and expansion of a signal's dynamic range. The compressor will take a signal with a 60 dB dynamic range (1.0 mV to 1.0 Vrms), and reduce that to a 30 dB dynamic range (10 mV to 316 mV) by attenuating strong signals, while amplifying low level signals. The expander does the opposite in that the 30 dB signal range is increased to a dynamic range of 60 dB by amplifying strong signals and attenuating low level signals. The 0 dB level is internally set at 100 mVrms - that is the signal level which is neither amplified nor attenuated. Both circuits contain the necessary precision full wave rectifier, variable gain cell, and temperature compensated references required for accurate and stable performance.

Both the compressor and expander can be muted independently by the use of Pins 4 and 12, respectively. A minimum of 55 dB of muting is guaranteed for the compressor, and 60 dB for the expander. A passthrough function (Pin 8) is provided which sets both sections to unity gain, regardless of input level.

Two uncommitted op amps are provided which can be used for perpherial functions. Each is internally biased at Vb ($\approx+1.5 \mathrm{~V}$), and has a bandwidth of $\approx 300 \mathrm{kHz}$.

NOTE: All dB values mentioned in this data sheet, unless otherwise noted, are referenced to 100 mVrms .

Figure 15. Compressor

Compressor

The compressor is a noninverting amplifier with a fixed input resistor and a variable gain cell in its feedback path as shown in Figure 15.

The amplifier output is sampled by the precision rectifier which, in turn, supplies a DC signal (ICONTROL), representative of the rectifier's AC signal, to the variable gain cell. The reference current (IREF) is an internally generated precision current. The effective impedance of the variable gain cell varies with the ratio of the two currents, and decreases as ICONTROL increases, thereby providing compression. The output is related to the input by the following equation
($\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ are rms volts):

$$
\begin{equation*}
v_{\text {out }}=0.3162 \times \sqrt{v_{\text {in }}} \tag{1}
\end{equation*}
$$

In terms of dB levels, the relationship is:

$$
\begin{equation*}
\mathrm{Vo}(\mathrm{~dB})=0.5 \times \operatorname{Vi}(\mathrm{dB}) \tag{2}
\end{equation*}
$$

where $0 \mathrm{~dB}=100 \mathrm{mVrms}$ (See Figures 3 and 4).
The input and output are internally biased at $\mathrm{Vb}(\approx+1.5 \mathrm{~V})$, and must therefore be capacitor coupled to external circuitry. Pin 3 input impedance is nominally $10 \mathrm{k} \Omega(\pm 20 \%)$, and the maximum functional input signal is listed in the

Recommended Operating Conditions table. Bias currents required by the op amp and the variable gain cell are internally supplied. Due to clamp diodes at the input (to V_{CC} and ground), the input signal must be maintained between the supply rails. If the input signal goes more than 0.5 V above V_{CC} or below ground, excessive currents will flow, and distortion will show up at the output and possibly in other parts of the circuit.

When AC signals are not present at the input, the variable gain cell will attempt to set a very high gain to comply with Equation 2. An internal clamp limits the maximum gain to $\approx 26 \mathrm{~dB}$ to prevent instabilities.

The output of the rectifier is filtered by the capacitor at Pin 5, which, in conjunction with an internal 20 k resistor, provides the time constant for the attack and decay times. The attack and decay times listed in the Electrical Characteristics were determined using the test procedure defined in EIA-553. Figure 9 indicates how the times vary with the capacitor value. If the attack and decay times are decreased using a smaller capacitor, performance at low frequencies will degrade.

Figure 16. Expander

Expander

The expander is an noninverting amplifier with a fixed feedback resistor and a variable gain cell in its input path as shown in Figure 16.

The input signal is sampled by the precision rectifier which, in turn, supplies a DC signal (ICONTROL), representative of the AC input signal, to the variable gain cell. The reference current (IREF) is an internally generated precision current. The effective impedance of the variable gain cell varies with the ratio of the two currents, and decreases as ICONTROL increases, thereby providing expansion. The output is related to the input by the following equation ($\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ are rms volts):

$$
V_{\text {out }}=10 \times\left(V_{\text {in }}\right)^{2}
$$

In terms of dB levels, the relationship is:
$\mathrm{Vo}(\mathrm{dB})=2.0 \times \mathrm{Vi}(\mathrm{dB})$
where $0 \mathrm{~dB}=100 \mathrm{mVrms}$ (See Figures 3 and 4).
The input and output are internally biased at $\mathrm{Vb}(\approx+1.5 \mathrm{~V})$, and must therefore be capacitor coupled to external circuitry. The input impedance at Pin 14 is nominally $10.9 \mathrm{k} \Omega(\pm 20 \%)$, and the maximum functional input signal is listed in the Recommended Operating Conditions table. Bias currents required by the op amp and the variable gain cell are internally supplied. Due to clamp diodes at the input (to V_{CC} and ground), the input signal must be maintained between the supply rails. If the input signal goes more than 0.5 V above V_{CC} or below ground, excessive currents will flow, and distortion will show up at the output, and possibly in other parts of the circuit.

The output of the rectifier is filtered by the capacitor at Pin 11, which, in conjunction with an internal 20 k resistor, provides the time constant for the attack and decay times. The attack and decay times listed in the Electrical Characteristics were determined using the test procedure defined in EIA-553. Figure 10 indicates how the times vary with the capacitor value. If the attack and decay times are decreased by using a smaller capacitor, performance at low frequencies will degrade.

Op Amps

The two op amps (at Pins 6, 7, 9, and 10) are identical and can be used for peripheral functions, such as a microphone amplifier, buffer, filter, etc. They have an open loop gain of $\approx 100 \mathrm{~dB}$, and a bandwidth of $\approx 300 \mathrm{kHz}$. The noninverting inputs are internally biased at $\mathrm{Vb}(\approx+1.5 \mathrm{~V})$. The inverting inputs (Pins 7,9) require a bias current of $\approx 8.0 \mathrm{nA}$, which flows into the pin. The outputs can typically supply a maximum of 3.7 mA load current (see Electrical Characteristics).

NOTE: If an op amp is unused, its output MUST be tied to its input (Pin 6 to 7 and/or 9 to 10). Leaving an input open can affect other portions of the IC.

Logic Inputs

The three inputs (Pins 4, 8, 12) provide for muting and passthrough functions for the compressor and expander according to the following truth table:

CM (Pin 4)	EM (Pin 12)	PT (Pin 8)	Function
0	0	0	Normal Operation
1	X	X	Compressor Mute
X	1	X	Expander Mute
0	0	1	Passthrough

The logic section permits the compressor and expander to be muted independently. The Passthrough control affects both sections simultaneously, but only if the Mute inputs are at a logic level 0 . If both the Passthrough and a Mute input are asserted, the Mute will override the Passthrough. The logic controls do not affect the two uncommitted op amps in any way.

Figure 17 depicts a typical logic input stage configuration, and Figure 14 indicates the typical input current. The inputs' threshold is $\approx+1.3 \mathrm{~V}$, independent of V_{CC}. An open input is equivalent to a logic low, but good design practices dictate that inputs should never be left open. The inputs must be kept within the range of V_{CC} and GND. If an input is taken more than 0.5 V above V_{CC} or below GND excessive currents will flow, and the device's operation will be distorted.

Figure 17. Logic Input Stage

Power Supply

The MC33111 requires a supply voltage between 3.0 V and 7.0 V , and a nominal current of $\approx 1.6 \mathrm{~mA}$. The supply voltage should be well filtered and free of ripple. A minimum of $4.7 \mu \mathrm{~F}$ in parallel with a $0.01 \mu \mathrm{~F}$ capacitor is recommended for filtering and RF bypass.

Vb is an internally generated reference set at $\approx+1.5 \mathrm{~V}$, and is used internally as an AC ground. It is not available directly at any pins, but can be obtained as a buffered reference from either op amp by connecting the op amp as a follower.

APPLICATION INFORMATION

Typical Application Circuit

Figure 18 indicates a typical implementation of the MC33111 compander. The following points apply:
a) The values shown adjacent to some components are based on the expected use of the IC:

- The input capacitors (Pins 3 and 14) provide a 3.0 dB rolloff of $\approx 30 \mathrm{~Hz}$, a decade below the nominal voiceband.
- The rectifier capacitors provide attack and decay times as indicated in the Electrical Tables.
b) The values for the unlabeled components are application dependent:
- The components around the op amps depend on their use.
- The value of the capacitors at the compressor and expander outputs depend on the circuit to which they are connected.
c) If either the compressor or expander is not used, its input must not be left open. It can be connected to ground either through a capacitor, or directly to ground.
d) The two op amps can be used for any purpose which suits the application. The indicated use of the one op amp as a microphone amplifier is only an example.
e) If an op amp is not used, its output and input must be connected together. Do not leave Pin 7 or Pin 9 open.
f) The logic inputs (Pins 4, 8, 12) are TTL/CMOS compatible. The logic high voltage must not exceed the VCC voltage on the MC33111. Any unused input should be connected to ground and not left open.

Figure 18. Typical Application

Signal-To-Noise Improvement

Among the basic reasons for the original development of compander type circuits was to improve the signal-to-noise ratio of long distance communications circuits, and of voice circuits which are transmitted over RF links (CBs, walkie-talkies, cordless phones, etc.). Since much of the interfering noise heard at the receiving end of a transmission is due to noise picked up, for example, in the airway portion of the RF link, the compressor was developed to increase the low-level signals at the transmitting end. Then any noise picked up in the RF link would be a smaller percentage of the transmitted signal level. At the receiving end, the signal is
then expanded back to is original level, retaining the same high signal-to-noise ratio. While the above explanation indicates it is not necessary to attenuate strong signals (at the transmitting end), a benefit of doing this is the reduced dynamic range which must be handled by the system transmitter and receiver. The MC33111 was designed for a two-to-one compression and expansion, i.e. a 60 dB dynamic signal is compressed to a 30 dB dynamic range, transmitted to the receiving end, and then expanded back to a 60 dB dynamic range.

The MC33111 compander is not limited to RF or long distance telephony applications. It can be used in any system requiring either an improved signal-to-noise ratio, or a reduced dynamic range. Such applications include telephones, speakerphones, tape recorders, wireless microphones, digital recording, and many others.

Power Supplies, Grounding

The PC board layout, and the quality of the power supplies and the ground system at the IC are very important in order to obtain proper operation. Noise, from any source, coming into the device on V_{CC} or ground, can cause a distorted output, or incorrect gain levels.
V_{CC} must be decoupled to the appropriate ground at the IC (within 1" max.) with a $4.7 \mu \mathrm{~F}$ capacitor and a $0.01 \mu \mathrm{~F}$ ceramic. A tantalum capacitor is recommended for the larger value if very high frequency noise is present, since electrolytic capacitors simply have too much inductance at those frequencies. The quality of the power supply voltage should be checked at the IC with a high frequency scope. Noise spikes (always present if digital circuits are near this IC) can easily exceed 400 mV , and if they get into the IC, the output can have noise or distortion. Noise can be reduced by inserting resistors and/or inductors between the supply and the IC.

If switching power supplies are used, there will be spikes of 0.5 V or greater at frequencies of $50 \mathrm{kHz}-1.0 \mathrm{MHz}$. These spikes are generally more difficult to reduce because of their greater energy content. In extreme cases, a 3-terminal regulator (e.g., MC78L05ACP), with appropriate high
frequency filtering, should be used and dedicated to the analog portion of the circuit.

The ripple content of the supply should not allow its magnitude to exceed the values in the Recommended Operating Conditions table.

The PC board tracks supplying V_{CC} and ground to the MC33111 should preferably not be at the tail end of the bus distribution, after passing through a maze of digital circuitry. The analog circuitry containing the MC33111 should be close to the power supply, or the connector where the supply voltages enter the board. If V_{CC} is supplying considerable current to other parts of the board, then it is preferable to have dedicated lines directly to the MC33111 and associated circuitry.

PC Board Layout

Although this device is intended for use in the audio frequency range, the various amplifiers have a bandwidth of $\approx 300 \mathrm{kHz}$, and can therefore oscillate at frequencies outside the voiceband should there be excessive stray capacitance or other unintended feedback loops. A solid ground plane is strongly recommended to minimize coupling of any digital noise into the analog section. Use of wire wrapped boards should definitely be avoided.

Since many applications of the MC33111 compander involve voice transmission over RF links, care must be taken in the design of the product to keep RF signals out of the MC33111 and associated circuitry. This involves proper layout of the PC boards and the physical arrangement of the boards, shielding, proper RF ground, etc.

DEFINITIONS

Attack Time - The settling time for a circuit after its input signal has been increased.

Attenuation - A decrease in magnitude of a communication signal, usually expressed in dB .

Bandwidth - The range of information carrying frequencies of a communication system.

Channel Separation - The ability of one circuit to reject outputting signals which are being processed by another circuit. Also referred to as crosstalk rejection, it is usually expressed in dB.

Compander - A contraction of the words compressor and expander. A compander is composed of two circuits, one of each kind.

Compressor - A circuit which compresses, or reduces, the dynamic range of a signal by attenuating strong signals and amplifying low level signals.
dB - A power or voltage measurement unit, referred to another power or voltage. It is generally computed as:
$10 \times \log \left(\mathrm{P}_{1} / \mathrm{P}_{2}\right)$ for power signals, and $20 \times \log \left(\mathrm{V}_{1} / \mathrm{V}_{2}\right)$ for voltage signals.
dBm - An indication of signal power. 1.0 mW across 600Ω, or 0.775 Vrms , is typically defined as 0 dBm for telecom applications. Any voltage level is converted to dBm by:

$$
\mathrm{dBm}=20 \times \log (\mathrm{Vrms} / 0.775), \text { or }
$$

$$
\mathrm{dBm}=[20 \times \log (\mathrm{Vrms})]+2.22
$$

dBrn - Indicates a dBm measurement relative to 1.0 pW power level into 600Ω. Generally used for noise measurements, $0 \mathrm{dBm}=-90 \mathrm{dBm}$.
dBrnC - Indicates a dBrn measurement using a C -message weighting filter.

Decay Time - The settling time for a circuit after its input signal has been decreased.

Expander - A circuit which expands, or increases the dynamic range of a signal by amplifying strong signals and attenuating low level signals.

Gain - The change in signal amplitude (increase or decrease) after passing through an amplifier, or other circuit stage. Usually expressed in dB , an increase is a positive number, and a decrease is a negative number.

Mute - Reducing the level of an audio signal, generally so that it is inaudible. Partial muting is used in some applications.

Passthrough - Bypassing the compression and/or expansion function by setting the gain to a fixed value (usually unity). This is usually employed when data, rather than voice, is to be transmitted without attenuation.

Power Supply Rejection Ratio - The ability of a circuit to reject outputting noise, or ripple, which is present on the power supply lines. PSRR is usually expressed in dB .

Signal to Noise Ratio - The ratio of the desired signal to unwanted signals (noise) within a defined frequency range. The larger the number, the better.

Voiceband - That portion of the audio frequency range used for transmission in the telephone system. Typically it is $300-3400 \mathrm{~Hz}$.

Zero dB Point — The signal level which has its amplitude unchanged by a compressor or expander.

Power Management Controller

The MC33128 is a power management controller specifically designed for use in battery powered cellular telephone and pager applications. This device contains all of the active functions required to interface the user to the system electronics via a microprocessor. This integrated circuit consists of a low dropout voltage regulator with power-up reset for MPU power, two low dropout voltage regulators for independant powering of analog and digital circuitry, and a negative charge pump voltage regulator for full depletion of gallium arsenide MESFETs.

Also included are protective system shutdown features consisting of a battery latch that is activated upon battery insertion, low battery voltage shutdown, and a thermal over temperature detector. This device is available in a 16-pin narrow body surface mount plastic package.

- Three Positive Regulated Outputs Featuring Low Dropout Voltage
- Negative Regulated Output for Full Depletion of GaAs MESFETs
- MPU Power Up Reset
- Battery Latch
- Low Battery Shutdown
- Pinned-Out Reference for MPU A/D Converter
- Low Start-Up and Operating Current
- Thermal Protection

POWER MANAGEMENT CONTROLLER

SEMICONDUCTOR TECHNICAL DATA

D SUFFIX
PLASTIC PACKAGE
CASE 751B
(SO-16)

PIN CONNECTIONS

(Top View)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Power Supply Input Voltage (Pin 16)	V_{CC}	+7.0	V
Input Voltage Range Power Up, Power Down, and Battery Saver Inputs (Pins 11, 10, 9)	$\mathrm{V}_{\text {in }}$	$\begin{gathered} -1.0 \text { to } \\ v_{C C}+1.0 \end{gathered}$	V
Charge Pump Capacitor Drive Outputs, Source or Sink Current (Pins 3, 8)	IO(max)	30	mA
Schottky Diode Forward Current (Pins 16 to 2, 2 to 4 , and 7 to 6)	${ }^{\mathrm{I}}$ (max)	30	mA
Output Source Current (Note 1) Regulator Output 1 (Pin 15) Regulator Output 2 (Pin 1) Regulator Output 3 (Pin 14) Regulator Output 4 (Pin 5) Reference (Pin 12)	ISource	$\begin{gathered} 150 \\ 250 \\ 50 \\ 10 \\ 40 \end{gathered}$	mA
Reset Sink Current (Pin 13)	ISink	5.0	mA
Power Dissipation and Thermal Characteristic D Suffix, Plastic Package Case 751B Maximum Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}$ Thermal Resistance, Junction-to-Air	PD $R \varnothing J A$	$\begin{aligned} & 560 \\ & 180 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$
Operating Junction Temperature	TJ	+150	${ }^{\circ} \mathrm{C}$
Operating Ambient Temperature (Note 1)	$\mathrm{T}_{\text {A }}$	-30 to +60	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-60 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{C}_{\text {in }}=33 \mu \mathrm{~F}\right.$ with $\mathrm{ESR} \leq 1.6 \Omega, \mathrm{C}_{\mathrm{O}}=4.7 \mu \mathrm{~F}$ with $\mathrm{ESR} \leq 4.5 \Omega$, $\mathrm{IO} 1=30 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{O} 2}=60 \mathrm{~mA}, \mathrm{I}_{\mathrm{O} 3}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{O} 4}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{Oref}}=10 \mathrm{~mA}$ [Note 2], $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.)

Characteristic
POWER UP INPUT (Pin 11)
Low State Input Threshold Voltage
Input Current (Vin $=\mathrm{V}_{\text {O3 }}$)
Internal Pull Up Resistance

POWER DOWN INPUT (Pin 10)

High State Input Threshold Voltage (Places IC in Standby Mode)	$\mathrm{V}_{\text {th(PDI }}$	1.3	1.5	1.8	V
Input Current $\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{O} 3}\right)$	$\left.\mathrm{I}_{\text {in(PDI }}\right)$	-	-	120	$\mu \mathrm{~A}$

BATTERY SAVER INPUT (Pin 9)

High State Input Threshold Voltage $\left(\mathrm{V}_{\mathrm{BB}}, \mathrm{V}_{\mathrm{O} 1}, \mathrm{~V}_{\mathrm{O} 2}, \mathrm{~V}_{\mathrm{O} 4}\right.$ Activated $)$	$\mathrm{V}_{\mathrm{th}}(\mathrm{BSI})$	1.2	1.4	1.7	V
Input Current $\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{O} 3}\right)$	$\mathrm{I}_{\text {in }}(\mathrm{BSI})$	-	-	120	$\mu \mathrm{~A}$

$V_{B B}$ GENERATOR

Oscillator Frequency	fosc	85	95	105	kHz
Oscillator Duty Cycle	DC	35	50	65	\%
```Charge Pump Capacitor Drive Output Voltage Swing (Pin 3) High State (ISource \(=3.0 \mathrm{~mA}\) ) Low State (ISink \(=3.0 \mathrm{~mA}\) )```	$\mathrm{V}_{\mathrm{OH}}$   $\mathrm{V}_{\mathrm{OL}}$	-	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}-0.9 \\ 0.15 \end{gathered}$	-	V
```Schottky Diode (Pins 2, 4) Forward Voltage Drop ( \(\mathrm{I}_{\mathrm{F}}=3.0 \mathrm{~mA}\) ) Reverse Leakage Current ( \(\mathrm{V}_{\mathrm{BB}}=7.0 \mathrm{~V}\) )```	$\begin{aligned} & \mathrm{V}_{\mathrm{F}} \\ & \mathrm{I}_{\mathrm{L}} \end{aligned}$	-	$\begin{gathered} 0.5 \\ 0.01 \end{gathered}$	-	$\begin{gathered} \mathrm{V} \\ \mu \mathrm{~A} \end{gathered}$
$\begin{gathered} \hline \text { Output Voltage (Pin 4) } \\ \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{CC}}=2.9 \mathrm{~V} \end{gathered}$	$\mathrm{V}_{\mathrm{O}}(\mathrm{VBB})$	-	$\begin{aligned} & 7.9 \\ & 4.4 \end{aligned}$	-	V

NOTES: 1. Maximum package power dissipation limits must be observed.
2. All outputs are fully loaded as stated in the Electrical Characteristics Table above, except for the one under test.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{C}_{\mathrm{in}}=33 \mu \mathrm{~F}\right.$ with $\mathrm{ESR} \leq 1.6 \Omega, \mathrm{CO}=4.7 \mu \mathrm{~F}$ with $\mathrm{ESR} \leq 4.5 \Omega, \mathrm{IO}=30 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{O} 2}=60 \mathrm{~mA}, \mathrm{I}_{\mathrm{O} 3}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{O} 4}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{Oref}}=10 \mathrm{~mA}$ [Note 2], $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.)

Characteristic	Symbol	Min	Typ	Max	Unit
REGULATOR OUTPUT 1 (Pin 15)					
Output Voltage ($\mathrm{V}_{\mathrm{CC}}=3.15 \mathrm{~V}$ to $\left.4.5 \mathrm{~V}, \mathrm{l} \mathrm{O} 1=30 \mathrm{~mA}\right)$	Regline1	2.9	3.0	3.1	V
Load Regulation ($\mathrm{l}^{\prime} 1=0 \mathrm{~mA}$ to 35 mA)	Regload1	-	5.0	30	mV
Dropout Voltage ($\mathrm{V}_{\mathrm{CC}}=2.9 \mathrm{~V}, \mathrm{I}_{\mathrm{O} 1}=30 \mathrm{~mA}$)	$\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O} 1}$	-	-	0.1	V
Power Supply Rejection Ratio $\begin{aligned} & f=120 \mathrm{~Hz} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	PSRR 1	-	$\begin{aligned} & 70 \\ & 40 \end{aligned}$	-	dB
Turn ON Delay Time (Battery Saver Input to $90 \% \mathrm{~V}_{\mathrm{O} 1}$ Output)	tDLY1	-	0.2	2.0	ms

REGULATOR OUTPUT 2 (Pin 1)

Output Voltage ($\mathrm{V}_{\mathrm{CC}}=3.15 \mathrm{~V}$ to 4.5 V , $\left.\mathrm{I}_{\mathrm{O} 2}=60 \mathrm{~mA}\right)$	Reg	2.9	3.0	3.1	V
Load Regulation ($\mathrm{l}^{2} 2=0 \mathrm{~mA}$ to 60 mA)	Regload2	-	5.0	40	mV
Dropout Voltage ($\left.\mathrm{V}_{\mathrm{CC}}=2.9 \mathrm{~V}, \mathrm{l} \mathrm{O} 2=60 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {in }}-\mathrm{V}_{\mathrm{O} 2}$	-	-	0.11	V
Power Supply Rejection Ratio $\begin{aligned} & f=120 \mathrm{~Hz} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$	PSRR 2	-	$\begin{aligned} & 70 \\ & 40 \end{aligned}$	-	dB
Turn ON Delay Time (Battery Saver Input to 90\% V O 2 Output)	tDLY2	-	0.2	2.0	ms

REGULATOR OUTPUT 3 (Pin 14)

Output Voltage ($\mathrm{V}_{\mathrm{CC}}=3.15 \mathrm{~V}$ to 4.5 V , $\mathrm{I} 33=20 \mathrm{~mA}$)	Regline3	2.9	3.0	3.1	V
Load Regulation ($\mathrm{I}_{\text {O3 }}=0 \mathrm{~mA}$ to 20 mA)	Regload3	-	5.0	25	mV
Dropout Voltage (VCC $=2.9 \mathrm{~V}, \mathrm{I} \mathrm{O} 3=20 \mathrm{~mA}$)	$\mathrm{V}_{\text {in }}-\mathrm{V}_{\text {O3 }}$	-	-	0.1	V
Power Supply Rejection Ratio $\begin{aligned} & f=120 \mathrm{~Hz} \\ & f=100 \mathrm{kHz} \end{aligned}$	PSRR 3	-	$\begin{aligned} & 70 \\ & 40 \end{aligned}$	-	dB
Turn ON Delay Time (ON/OFF Toggle Input to $90 \% \mathrm{~V}_{\text {O3 }}$ Output)	tDLY3	-	0.5	3.0	ms

REGULATOR OUTPUT 4 (Pin 5)

Output Voltage ($\mathrm{V}_{\mathrm{CC}}=3.15 \mathrm{~V}$ to 4.5 V , $\mathrm{I} \mathrm{O} 4=1.0 \mathrm{~mA}$)	Regline4	-2.35	-2.5	-2.65	V
Load Regulation ($\mathrm{l} 4=0 \mathrm{~mA}$ to 1.0 mA)	Regload4	-	5.0	20	mV
Power Supply Rejection Ratio $\begin{aligned} & f=120 \mathrm{~Hz} \\ & f=100 \mathrm{kHz} \end{aligned}$	PSRR 4	-	$\begin{aligned} & 70 \\ & 40 \end{aligned}$	-	dB
Schottky Diode Forward Voltage Drop (Pins 7, 6, $\mathrm{I}_{\mathrm{F}}=1.0 \mathrm{~mA}$)	V_{F}	-	0.5	-	V
Charge Pump Capacitor Drive Output Voltage Swing (Pin 8) High State (ISource $=1.0 \mathrm{~mA}$) Low State (ISink = 1.0 mA)	V_{OH} VOL	-	$\begin{gathered} \mathrm{V}_{\mathrm{BB}}-0.25 \\ 0.15 \end{gathered}$	-	V
Turn ON Delay Time (Battery Saver Input to $90 \% \mathrm{~V}_{\text {O4 }}$ Output)	tDLY4	-	4.0	10	ms

REFERENCE OUTPUT (Pin 12)

Output Voltage (IO $=0 \mathrm{~mA}$ to 10 mA$)$	Regload	1.46	1.5	1.54	V

MPU POWER UP RESET COMPARATOR (Pin 13)

Threshold Voltage Low State Output (V) $\mathrm{V}_{\mathrm{O} 3}$ Decreasing) Hysteresis (V) V_{O} Increasing)	$\begin{gathered} \mathrm{V}_{\text {th(low) }} \\ \mathrm{V}_{\mathrm{H}} \end{gathered}$	$\begin{aligned} & 2.5 \\ & 40 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 60 \end{aligned}$	$\begin{aligned} & 2.7 \\ & 100 \end{aligned}$	$\begin{gathered} \mathrm{V} \\ \mathrm{mV} \end{gathered}$
Output Sink Saturation (ISink $=100 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{O} 3}=2.5 \mathrm{~V}$ to 1.0 V)	$\mathrm{V}_{\text {CE }}$ (sat)	-	130	300	mV
Internal Pull-up Resistance	Rpu	10	26	40	$\mathrm{k} \Omega$
High State Output Voltage ($\mathrm{V}_{\mathrm{O} 3}=2.8 \mathrm{~V}$)	V_{OH}	$0.95 \mathrm{~V}_{\mathrm{O} 3}$	$\mathrm{V}_{\mathrm{O} 3}$	-	V

NOTE: 2. All outputs are fully loaded as stated in the Electrical Characteristics Table above, except for the one under test.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}, \mathrm{C}_{\mathrm{in}}=33 \mu \mathrm{~F}\right.$ with $\mathrm{ESR} \leq 1.6 \Omega, \mathrm{C}_{\mathrm{O}}=4.7 \mu \mathrm{~F}$ with $\mathrm{ESR} \leq 4.5 \Omega$, $\mathrm{I} 1=30 \mathrm{~mA}$, $\mathrm{I}_{\mathrm{O} 2}=60 \mathrm{~mA}, \mathrm{I}_{\mathrm{O} 3}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{O} 4}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{Oref}}=10 \mathrm{~mA}$ [Note 2], $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.)

Characteristic	Symbol	Min	Typ	Max	Unit
LOW BATTERY SHUTDOWN COMPARATOR (Pin 16)					
Shutdown Threshold Voltage (VCC Decreasing, Pin 10 = Gnd)	$\mathrm{V}_{\text {th(LBSC }}$	2.25	2.4	2.55	V
TOTAL DEVICE (Pin 16)					
Power Supply Current (No Load On All Outputs) Operating Battery Saver Input High (Pin $9=2.0 \mathrm{~V}$) Battery Saver Input Low (Pin $9 \leq 0.8 \mathrm{~V}$) Standby (After Power Down Input Strobe)	${ }^{\text {I CC }}$	-	$\begin{aligned} & 2.6 \\ & 270 \\ & 8.0 \end{aligned}$	4.0 330 12	$\begin{aligned} & \mathrm{mA} \\ & \mu \mathrm{~A} \\ & \mu \mathrm{~A} \\ & \hline \end{aligned}$

NOTE: 2. All outputs are fully loaded as stated in the Electrical Characteristics Table above, except for the one under test.

Figure 1. Dropout Voltage versus Source Current

Figure 3. Reference Output Voltage Change versus Source Current

Figure 2. Output 4 Voltage versus Source Current

Figure 4. VBB Output Voltage Change versus Source Current

NOTE: All outputs are fully loaded as stated in the Electrical Characteristics Table above, except for the one under test.

The MC33128 is a complete power management controller that is designed to interface the user to the system electronics via a microprocessor.

Outputs

Three low dropout voltage regulators are provided at outputs 1,2 and 3 . Outputs 1 and 2 were contemplated for independent powering of the systems analog and digital circuitry. This significantly reduces the possibility of digitally generated noise and spurious signals from coupling into the RF and analog circuits. The low dropout characteristic of Outputs 1 and 2 is achieved by applying a boosted battery voltage, V_{BB}, to their respective driver transistors. This allows the output pass transistors to be driven into saturation when the battery voltage approaches 3.0 V . The VBB Output appears at Pin 4 and can be used to provide gate bias for enhancing external N channel MOSFET switches. Excessive loading of the V_{BB} output will result in an increase in dropout voltage.

Output 4 is derived from a voltage inverting charge pump circuit and is intended to provide the negative gate bias required for full depletion of RF gallium arsenide MESFETs. In personal communication system applications such as cellular telephone, negative gate bias is usually required by the antenna switch and power amplifier circuit blocks with a typical combined current of less than 1.0 mA . Output 4 can supply in excess of 2.0 mA , but there will be an increase in dropout voltage of Outputs 1, 2 and 3.

Outputs 1, 2, 4, VBB Generator and Thermal Protection are all enabled and disabled in unison by the Battery Saver Input, Pin 9. The microprocessor can be programmed to significantly extend the system battery operating time by periodically enabling the receiver circuitry.

Output 3 provides power to the microprocessor, flash EPROM and the system display. These blocks are enabled by the Power Up Input, Pin 11, and disabled by the Power Down Input, Pin 10. By having separate power up and power down inputs, the microprocessor can store any pending information before turning the system and then itself OFF. This allows a controlled or graceful shutdown. Note that the power down request is initiated by pressing the toggle switch while the system is "ON". This action generates a microprocessor non-maskable interrupt that initiates the graceful shutdown.

Battery Voltage Detection

Reverse biasing and eventual failure of the lowest capacity cell in the battery pack can occur if the system is
accidentally left on for an extended time period. To prevent this condition the following circuit blocks were incorporated.

A means for low battery detection is accomplished by using the Reference Output, Pin 12, in conjunction with the microprocessor's analog to digital converter input. A microprocessor output (LBO) can be designated to flash a display enunciator when a low battery condition exists. The Reference Output is $1.5 \mathrm{~V} \pm 2.7 \%$ and is capable of sourcing in excess of 10 mA .

The Power Up Reset Output, Pin 13, is designed to hold the microprocessor reset input low until the voltage at Output 3 rises above 2.66 V . This feature prevents the microprocessor from hanging or writing invalid information into its memory during power up. Notice that the output of the MPU Power Up Reset comparator also drives the base of transistor QpD. If Output 3 should fall below 2.6 V , due to an overload or a low battery condition, the comparator will drive QPD "ON", causing its collector to pull high on the Power Down Input, immediately forcing the system into standby mode. Externally pulling down on Pin 13, base of QPD, will also force the system into standby mode.

A redundant Low Battery Shutdown circuit is included. This circuit directly monitors the battery voltage and also forces the system into standby mode when the battery voltage falls below 2.4 V . To test the functionality of this circuit, the high state signal generated by transistor QpD must be clamped low, to prevent resetting the ON/OFF Latch. An external short or a pull-down, capable of sinking 2.0 mA at less than 0.8 V , must be connected to Pin 10.

A Battery Latch circuit is designed into the IC to prevent the system from turning on when the batteries are inserted into the finished product. This feature is useful for the end customer as well as the equipment manufacturer. Upon initial application of battery voltage, the lower comparator (0.7 V threshold) forces the Battery Latch into a reset state with its "Q" output low. This in turn triggers a reset of the ON/OFF Latch via the OR gate and also locks out the set signal present at the upper input of the AND gate. As the voltage at Pin 11 rises above ($\mathrm{V}_{\mathrm{CC}}-1.5 \mathrm{~V}$), the set signal disappears, leaving the state of the ON/OFF Latch unchanged (reset). When the voltage at Pin 11 rises above ($\mathrm{V}_{\mathrm{CC}}-1.0 \mathrm{~V}$), the upper comparator forces the Battery Latch into a set state causing its "Q" output to go high. This allows the AND gate and the ON/OFF Latch to receive a set signal from Pin 11. The initial Battery Latch lockout time is controlled by the internal $20 \mathrm{k} \Omega$ resistor and the external $0.1 \mu \mathrm{~F}$ capacitor.

MC33128

Figure 5. MC33128 Block Diagram

Figure 6. Voltage Tripler and Switch Driver

Tripler Output Voltage

Load Current (mA)	V $_{\text {CC }}=3.15 \mathrm{~V}$	$\mathrm{~V}_{\mathbf{C C}}=4.5 \mathrm{~V}$
0	7.96	12.01
0.5	7.48	11.54
1.0	7.24	11.29
1.5	6.99	11.04
2.0	6.62	10.69

Load Turn ON/OFF Time

External Switch

A low threshold N-channel MOSFET can be used to switch the transmitting power amplifier (R_{L}) ON and OFF. To ensure that all of the available battery voltage appears across the load, the MOSFET must be fully enhanced over the system's required operating voltage range. With the addition of two Schottky diodes and two capacitors, the V_{BB} Generator can be made to function as a voltage tripler. The table in Figure 6 shows the output voltage characteristics of the tripler circuit.

In order to minimize adjacent channel splatter, the RF power amplifier must be turned ON and OFF in a controlled (soft) manner. The applied voltage rise and fall time, as well as the rate of change in rise and fall time, must be tailored to the amplifiers characteristics. The circuit consisting of resistors $R, R_{F B}$, and capacitors C_{1} and C_{2} is a simple solution allowing the system designer a means to control the ON and OFF time as well as the waveshape. Feedback resistor RFB controls the waveshape. Capacitors C_{1} and C_{2} are usually of equal value.

Product Preview Dual CVSD/PLL Cordless Phone System

The MC33410 Dual CVSD/Cordless Phone system is designed to fit the requirements of a 900 MHz digital cordless telephone system. The device contains a CVSD (Continuously Variable Slope Delta Modulator/Demodulator) Encoder to digitize the speech for the RF transmission, and a CVSD Decoder to reconstruct the received digital speech from the RF receiver. Provisions are made to transmit and receive data as well. Included are three PLLs (Phase-Locked Loops). Two are intended for use with external VCOs and 64/65 or 128/129 dual modulus prescalers, and can control the transmit and receive (LO1) frequencies for the 900 MHz communication. The third PLL is configured as the 2nd local oscillator (LO2), and is functional to 80 MHz . Also included are muting, audio gain adjust (internal and external), low battery/carrier detect, and a wide range for the PLL reference frequency. The power supply range is 2.7 to 5.5 V. A data only (non-voice) mode is also included.

- Two Complete CVSD Sections for Full Duplex Operation
- Two PLLs and an LO Suitable for a 900 MHz System
- Adjustable Detection for Low Battery or Carrier Signal (RSSI)
- Minimal External Components
- Encode Path Includes Adjustable Gain Amplifiers, Filters, Mute, CVSD Encoder, Data Insert, and Scrambler
- Decoder Path Contains Data Slicer, Clock Recovery, Descrambler, Data Detect, CVSD Decoder, Filters, Mute and Power Amplifier
- Data can be Transmitted During Voice Conversation with Minimal or No Noticeable Audio Disruption
- Idle Channel Noise Control
- Independent Power Amplifier with Differential Outputs, Mute
- Selectable Frequency for Switched Capacitor Filters, CVSD Function, PLLs, and the LO
- Reference Frequency Source can be a Crystal or System Clock
- Serial μ P Port to Control Gain, Mute, Frequency Selection, Phase Detector Gain, Power Down Modes, Idle Channel Control, Scrambler Operation, Low Battery Detect, and Others
- Mode Available for Data Only Transmission (non-voice)
- Ambient Temperature Range: -40 to $85^{\circ} \mathrm{C}$
- Power Supply Range: 2.7 to 5.5 V
- Power Down Modes for Power Conservation
- 48 Pin LQFP with 0.5 mm Lead Pitch

DUAL CVSD/PLL CORDLESS PHONE SYSTEM

SEMICONDUCTOR

 TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature	Package
XC33410FTA	-40° to $+85^{\circ} \mathrm{C}$	LQFP-48

Simplified Block Diagram

PRELIMINARY SPECIFICATIONS (Subject to change)

Parameter	Symbol	Min	Typ	Max	Units
Supply Voltage		-	2.7 to 5.5	-	V
Supply Current (All sections active)		-	13	-	mA
Remote Gain Adjust Range		-	16	-	dB
Receive Path Gain Control Range		-	28.5	-	dB
Output Current Capability (PAO+, PAO-)		-	± 5.0	-	mA
Max. 2nd LO frequency		-	80	-	MHz
Phase Detector Charge Pump Output Current High Low		-	$\begin{aligned} & \pm 400 \\ & \pm 100 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\mu \mathrm{A}$
Digital Input Signal Amplitude to Data Slicer		-	>200	-	mVpp
Operating Ambient Temperature		-	-40 to +85	-	${ }^{\circ} \mathrm{C}$

NOTE: 1. Above specs represent design objectives, and are subject to change.

Figure 1. Typical Applications Circuit

NOTE: Pin numbers are not firm and are not to be used for design-in purposes.

RECOMMENDED OPERATING CONDITIONS (Subject to change)

Parameter	Symbol	Min	Typ	Max	Units
Supply Voltage		-	2.7 to 5.5	-	V
CVSD Clock Rate		-	$\begin{gathered} 32,50 \text {, or } \\ 64 \end{gathered}$	-	kHz
Encoder in Signal Level (max)		-	3.0	-	V_{pp}
Peak Output Current at PAO+, PAO-		-	± 5.0	-	mA
Reference Frequency Amplitude ($\mathrm{Fref}^{\text {In }}$)		-	>200	-	mVpp
R_{X} Digital Input Signal Amplitude Min Max		-	$\begin{gathered} 0.20 \\ 0 \text { to } \mathrm{V}_{\mathrm{CC}} \end{gathered}$	-	V_{pp}
Crystal or Reference Frequency at Pin 14		-	$\begin{aligned} & \hline 4.0 \text { to } \\ & 18.25 \end{aligned}$	-	MHz
Max. Input Frequency at $\mathrm{FR}_{\mathrm{x}}, \mathrm{FT}_{\mathrm{X}}$		-	TBD	-	MHz
LO2 VCO Control Voltage (Pin 44)		-	TBD	-	V
Max. 2nd LO Frequency		-	80	-	MHz
12 Bit Reference Counter Range (Note 1)		-	3 to 4095	-	-
13 Bit N Counter Range (Note 1)		-	3 to 8191	-	-
7 Bit A Counter Range (Note 1) with a 64/65 Modulus Prescaler with a 128/129 Modulus Prescaler		$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 0 \text { to } 63 \\ 0 \text { to } 127 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	-
14 Bit LO2 Counter Range (Note 1)		-	$\begin{gathered} \hline 12 \mathrm{to} \\ 16383 \end{gathered}$	-	-
6 Bit Counters (for SCF and Encode Clock) (Note 1)		-	3 to 63	-	-
Receive Path Gain Control Code Range (Note 1)		-	6 to 25	-	-
Operating Ambient Temperature		-	-40 to 85	-	${ }^{\circ} \mathrm{C}$

NOTES: 1. Values specified are pure numbers to the base 10.
2. Above specs represent design objectives, and are subject to change.

PIN FUNCTION DESCRIPTION

Pin	Name	Description
1	$\mathrm{FR}_{\mathrm{x}} \mathrm{MC}$	Modulus Control Output to the $\mathrm{R}_{\mathrm{X}} 64 / 65$ or 128/129 dual modulus prescaler.
2	FR_{X}	Input to the $\mathrm{R}_{\mathrm{X}} \mathrm{PLL}$.
3	PLL V_{CC}	Supply pin for the $\mathrm{R}_{\mathrm{X}} \mathrm{PLL}$ section. Allowable range is 2.7 to 5.5 V .
4	$\mathrm{R}_{\mathrm{X}} \mathrm{PD}$	Phase detector charge pump output of the R_{X} PLL.
5	PLL Gnd	Ground pin for the PLL sections.
6	Tx PD	Phase detector charge pump output of the T_{X} PLL.
7	PLL $V_{\text {CC }}$	Supply pin for the T_{X} PLL section and the MPU Serial Interface section. Allowable range is 2.7 to 5.5 V .
8	FT_{X}	Input to the $\mathrm{T}_{\mathrm{X}} \mathrm{PLL}$.
9	$\mathrm{FT}_{\mathrm{X}} \mathrm{MC}$	Modulus Control Output to the $T_{x} 64 / 65$ or 128/129 dual modulus prescaler.
10	EN	Enable input for the $\mu \mathrm{P}$ port. This signal latches in the register address and data.
11	CLK	Clock input for the $\mu \mathrm{P}$ port. Maximum frequency is 2.0 MHz .
12	Data	Bi-directional data line for the $\mu \mathrm{P}$ port. In Data Modem mode, this pin provides the recovered clock.
13	Status	Logic output which indicates that a predetermined 16 or 24-bit code word has been detected in the Data Detect register, and the following data word has been loaded into register 10. In Data Modem mode, this pin provides the Transmit Data clock.
14, 15	Fref In, $\mathrm{F}_{\text {ref }}$ Out	A crystal, in the range of 4.0 to 18.25 MHz can be connected to these pins to provide the reference frequency. If an external reference source is used, it is to be capacitively coupled to $\mathrm{F}_{\text {ref }}$ In.

NOTE: 1. All V_{CC} pins must be within $\pm 0.5 \mathrm{~V}$ of each other.

PIN FUNCTION DESCRIPTION (continued)

Pin	Name	Description
16	Low Battery/CD	An open collector output. When low, indicates either the supply voltage $\left(\mathrm{V}_{\mathrm{CC}}\right)$ is low, or the carrier level is above the threshold. This output is off when disabled.
17	Enc Out	The digital output of the scrambler, which passes data from the CVSD encoder, or the T_{X} Data register, or the $T_{X} 1010$ Generator. Source selection is done through the $\mu \mathrm{P}$ port.
18	V_{CC}	Supply input for the audio sections, filters, and CVSD blocks. Allowable range is 2.7 to 5.5 V . Internally connected to Pins 27 and 37.
19	Enc In	The analog input to the CVSD encoder. Max. input level is $3.0 \mathrm{~V}_{\mathrm{pp}}$.
20	TX Audio Out	Output of the transmit speech processing section.
21	Ground	Ground for the audio sections, filters, and CVSD blocks. Internally connected to Pins 30 and 40.
22	MCO	Output of the microphone amplifier, and input to the filters. This output has rail-to-rail capability.
23	MCI	Inverting input of the microphone amplifier. Gain and frequency response is set with external resistors and capacitors.
24	Enc Cap	This capacitor sets the time constant for the CVSD encoder. This pin is sensitive to leakage.
25	VAG	Analog ground for the audio section and the CVSD encoder and decoder.
26	Dec Cap	The capacitor sets the time constant for the CVSD decoder. This pin is sensitive to leakage.
27	V_{CC}	Supply input for the audio sections, filters, and CVSD blocks. Allowable range is 2.7 to 5.5 V . Internally connected to Pins 18 and 37.
28, 29	PAO+, PAO-	Differential outputs of the power amplifier stage for driving an earpiece or hybrid network. The gain and frequency response are set with external resistors and capacitors.
30	Gnd	Ground for the audio sections, filters, and CVSD blocks. Internally connected to Pins 21 and 40.
31	PAI	Input to the power amplifier stage. This pin is a summing node.
32	R ${ }_{\text {X }}$ Audio Output	Output of the receive speech processing section.
33	VB	The capacitor filters the internal 1.5 V reference voltage. If VB is adjusted, it may be monitored at this pin. Max. load current is $10 \mu \mathrm{~A}$.
34	R ${ }_{\text {X }}$ Audio In	Input to the receive speech processing section.
35	Dec Out	The analog output of the CVSD decoder.
36	MP1	As an output, provides the recovered R_{X} data, or the Data Detect output, or the data slicer output. Or it can be set to a high impedance input ($600 \mathrm{k} \Omega$) for the carrier detect input signal. Selection is done through the $\mu \mathrm{P}$ port. See Table 6.
37	V_{CC}	Supply input for the audio sections, filters, and CVSD blocks. Allowable range is 2.7 to 5.5 V . Internally connected to Pins 18 and 27.
38	R_{X} Digital Input	The digital stream from the RF receiver is applied to the data slicer at this pin. Minimum amplitude is 200 mVpp . Hysteresis $\approx 50 \mathrm{mV}$.
39	MP2	As an output, this pin provides the recovered clock from the Clock Recovery block. As an input, the CVSD decoder clock can be applied to this pin. Or this pin may be set to a disabled state. Selection is done through the $\mu \mathrm{P}$ port. See Table 7. In Data Modem mode, the data to be transmitted is input to this pin.
40	Gnd	Ground for the audio sections, filters, and CVSD blocks. Internally connected to Pins 21 and 30.
41	LO2 Out	Buffered output of the 2nd LO frequency. A pullup resistor is required.
42	LO2 V CC	Supply pin for the 2nd LO. Allowable range is 2.7 to 5.5 V .
43, 45	LO2+, LO2-	A tank circuit is connected to these pins for the 2nd LO.
44	LO2 Ctl	The varactor control pin for the 2nd LO.
46	LO2 Gnd	Ground for the 2nd LO section.
47	LO2 PD	Phase detector charge pump output of the 2nd LO PLL.
48	LO2 Gnd	Ground for the 2nd LO section.

NOTE: 1. All V_{CC} pins must be within $\pm 0.5 \mathrm{~V}$ of each other.

Note: In the following descriptions, control bits in the MPU Serial Interface for the various functions will be identified by register number and bit number. For example, bit 3/19 indicates bit 19 of register 3 . Bits 5/14-11 indicates register 5, bits 14 through 11. Please refer to Figure 1.

Transmit Speech Processing Section

This section is made up of the externally adjustable microphone amplifier (Pins 22 to 23), internally adjustable gain stage, two low pass filters, and a mute switch.

The gain of the microphone amplifier is set with external resistors to receive the audio from the microphone (in the handset), or from the hybrid (in the base unit), or from any other audio source. The MCO output has rail-to-rail capability, and the dc bias level is at VB ($\approx 1.5 \mathrm{~V}$).

The adjustable gain stage, referred to as the Remote Gain Adjust, provides 5 levels of gain in 4.0 dB increments. It is controlled with bits 6/15-11 as shown in Table 1.

Table 1. Remote Gain Adjust

Register 6	Gain
Bits 15-11	
00001	-4.0 dB
00010	0 dB
00100	+4.0 dB
01000	+8.0 dB
10000	

Other combinations for the 5 bits are invalid.
The Low Pass Filter after the gain stage is a switched capacitor filter with a corner frequency at 5.0 kHz . The subsequent smoothing low pass filter has a corner frequency at 30 kHz , and is designed to filter out high frequency clock noise from the previously mentioned switched capacitor filter.

The mute switch at Pin 20 will mute a minimum of 60 dB . Bit $6 / 2$ controls the mute.

CVSD Encoder/Idle Channel/Tx Data Register

The analog signals to be digitized are input at Pin 19 to the CVSD Encoder. The output of the encoder will be the digital equivalent of the audio, at the selected clock rate. Based on the reference frequency, bits 4/23-18 are used to set the 6 Bit Encoder Counter, in conjunction with the subsequent $\div 16$ divider, to set the CVSD Encoder frequency to 32, 50, or 64 kHz . Bits $3 / 16-15$ will set the CVSD for proper operation at the selected frequency, according to Table 2.

Table 2. CVSD Clock/Data Rates

Register 3		
Bit 16	Bit 15	
0	1	32 kHz
1	0	50 kHz
1	1	64 kHz

The Encoder's minimum step size can be selected using bits 2/22-21, according to Table 3.

Table 3. Minimum Step Size

Encoder Register 2 Bits 22, 21	Decoder Register 1 Bits 22, 21	Step Size
00	00	No minimum
01	01	1.4 mV
10	10	5.6 mV
11	11	22.4 mV

The $\mathrm{T}_{\mathrm{x}} 1010$ Generator, when selected, provides an alternating " $1-0$ " pattern (a square wave at half the CVSD clock rate) to the scrambler. This represents the lowest amplitude analog signal, and can be used when it is desired to send a quiet signal. Selection of this block can occur either automatically, or intentionally, as follows:
a. The automatic selection occurs when the Idle Channel Detector senses the average audio signal at Pin 19 is below a threshold which is set with bits 5/17-15 (See Table 4). Bits 5/14-11 select a time delay for the automatic threshold detection to occur. The minimum delay is zero, with these bits set to 0000 . Changing the bits provides delay in increments of 32 clock cycles (of the CVSD Encoder clock). The maximum delay is 480 clock cycles, $(7.5 \mathrm{mS}$ at 64 kHz). When the average audio signal at Pin 19 increases above the threshold, the $T_{x} 1010$ Generator will be deselected with no delay. This automatic switchover feature can be disabled with bit $7 / 2$. Bit $5 / 21$ indicates when an idle channel condition has been detected. This output bit will be functional even when the idle channel detector is disabled with bit $7 / 2$. Bit $5 / 18$ will power down the Idle Channel Detect Circuit as a power saving measure.
b. Bit $6 / 4$ can be used to intentionally select the $T_{X} 1010$ Generator at any time.

Table 4. Idle Channel Detection Threshold

Register 5			Register 5	
Bits 17-15	Threshold		Bits 17-15	Threshold
000	-50 dBV		100	-60 dBV
001	-52.5		101	-62.5
0010	-55	110	-65	
011	-57.5		111	-67.5

The T_{X} Data Register is used for the transmission of data between the handset and base units. The procedure is as follows:
a. At the receiving unit: The code word (16 or 24 bits, set with bit $7 / 11$) identifying that a data transmission is occurring must be loaded into the T_{x} Data Register (by loading register 8). This is used to detect when a code word is sent from the transmitting unit.
b. At the transmitting unit: The same code word as above is loaded into register 8. It is automatically loaded into the T_{x} Data Register.
c. The data word (16 or 24 bits, set with bit $7 / 12$) is then loaded into register 9.
d. Upon loading register 9 , the MC33410 automatically sends out (at Pin 17) the code word, followed by the data word, at the CVSD clock rate.
When the data word is completely sent out, the MC33410 will then return Pin 17 to its previous source of digital information (CVSD Encoder or TX 1010 Generator).

Scrambler/Digital Output

The scrambler receives digital data from the CVSD Encoder, or the $T_{X} 1010$ Generator, or the T_{X} Data Register, to be output at Pin 17. The output level is 0 to V_{CC}. The scrambler can be bypassed with Bit $7 / 1$.

The scrambler, better known as a randomizer, provides not only a level of communication security, but also helps ensure the digital output will not contain an abnormally long string of 1 s or 0 s which can adversely affect the CVSD Decoder operation, as well as the RF section. The scrambler is a maximal-length shift register sequence generator. The length of the shift register is selectable to one of eight values with bits 7/10-8 (the descrambler in the receiving unit must be set the same). Table 5 lists the polynomial associated with each tap selection.

Table 5. Scrambler/Descrambler Tap Selection

Tap No.	Register 7			Shift Register Length	Polynomial
	Bit 10	Bit $\mathbf{9}$	Bit $\mathbf{8}$		2
0	0	0	0	1	3
1	0	0	$z^{-1}+z^{-2}$		
2	0	1	0	4	$1+z^{-2}+z^{-3}$
3	0	1	1	5	$1+z^{-3}+z^{-4}$
4	1	0	0	6	$1+z^{-3}+z^{-5}$
5	1	0	1	7	$1+z^{-5}+z^{-6}$
6	1	1	0	9	$1+z^{-6}+z^{-7}$
7	1	1	1	10	$1+z^{-5}+z^{-9}$

Data Slicer/Clock Recovery

The data slicer will receive the low level digital signal from the RF receiver section at Pin 38. The input signal to the data slicer must be $>200 \mathrm{mVpp}$. Hysteresis of 50 mV is internally provided. The output of the data slicer will be same waveform, but with an amplitude of 0 to V_{CC}, and can be observed at Pin 36 (MP1) if bits 7/5-4 are set to 10. The output can be inverted by setting bit $5 / 19=1$.

The clock recovery block will generate a phase locked clock, equal to the CVSD data rate, from the incoming data, as long as the Encoder Counter (bits 4/23-18) is set for that data rate. The recovered clock can be observed at Pin 39 (MP2) if bits 7/7-6 are set to 00. The data from the clock recovery block can be observed at Pin 36 if bits 7/5-4 are set to 00 . The clock recovery block may be bypassed by setting bit $7 / 0$ to 1 . With this setting the data slicer output will go directly to the descrambler, and the encoder clock will replace the Clock Recovery Clock.

Tables 6 and 7 summarize the options available at MP1 and MP2 (Pins 36 and 39).

Table 6. MP1 Options (Pin 36)

Register 7		Function
Bit 5	Bit 4	
0	1	Data Detect Output
1	0	Data Slicer Output
1	1	Hi-Z/ CD Input

Table 7. MP2 Options (Pin 39)

Register 7		
Bit 7	Bit 6	
0	0	Output recovered clock
0	1	Input CVSD Decoder clock
1	X	Disabled (Hi-Z)

When MP1 is set to a $\mathrm{Hi}-\mathrm{Z}$ condition, the pin is an input for the CD (Carrier Detect) function, with an input impedance of $600 \mathrm{~K} \Omega$. See the section entitled Low Battery/Carrier Detect for an explanation of this function.

Descrambler

The descrambler receives the scrambled data from the clock recovery block (or the data slicer if bit $7 / 0=1$), and descrambles it to the original data as long as the selected taps are the same as those in the transmitting scrambler (see Table 5). The descrambler block is the same configuration as the scrambler, and is self-synchronizing. The descrambler can be bypassed with bit 7/1.

Data Detect Register/Status Output/RX Data Register

The Data Detect register will continuously compare the descrambled data it receives with the 16 or 24-bit code word stored in the T_{X} Data Register (loaded through register 8). Upon detecting a match, and after the code word passes through the shift register, the following (16 or 24-bit) data word will be stored into the R_{X} Data Register, and then loaded into register 10 of the MPU Interface. At this time the Status
output at Pin 13 , and bit $5 / 22$, will go high. The external microprocessor can then retrieve the data word by reading register 10, at which time the Status pin and bit will go low.

Upon detection of a code word as described above, the CVSD Decoder will be provided with 32, 40, or 48-bits of a 1010 pattern (idle channel) to minimize disturbances to the audio. After the data word is loaded into register 10, the CVSD Decoder resumes receiving data from the descrambler. The audio is therefore interrupted with a low level signal for a maximum of 48 clock cycles $(0.75 \mathrm{mSec}$ at 64 kHz).

The Data Detect register can be bypassed by setting bit $7 / 3=1$.

CVSD Decoder/Decoder Clock/Idle Channel

The CVSD Decoder will provide the analog equivalent, at Pin 35, of the digital data it receives from the descrambler, or from the 1010 generator (idle channel generator). There is a single pole filter at the Decoder output to reduce the clock noise normally present on a CVSD analog output. The CVSD Decoder is self synchronizing as long as the decoder clock matches the data rate, and the Decoder has been set with bits 3/16-15 according to Table 2.

The Decoder clock is provided from the Clock Recovery block by setting bits 7/7-6 to 00 or 1 X . The clock is internally provided to the Decoder, and is available at Pin 39. Alternately, a Decoder clock can be provided from an external source to Pin 39 by setting bit 7/7-6 to 01 (see Table 7).

The $R_{X} 1010$ Generator provides an alternating 1-0 pattern (a square wave at half the CVSD clock rate) to the CVSD Decoder, resulting in the lowest amplitude analog signal at Pin 35. The 1010 Generator is automatically selected whenever data is detected and received by the Data Detection Circuit, as described above. Additionally, the 1010 Generator can be selected with bit $6 / 3$ at any time.

The Decoder's minimum step size can be selected using bits 1/22-21, according to Table 3.

Receive Audio Path

The Receive Audio Path (Pins 34 to 32) consists of an anti-aliasing filter, a low pass filter, a gain adjust stage, and a mute switch.

Since the analog output of the CVSD Decoder (typically input at Pin 34) will contain noise at the CVSD clock rate, the anti-aliasing filter, with a corner frequency at 30 kHz , is provided to prevent aliasing of that clock noise with the subsequent switched capacitor filter.

The switched capacitor low pass filter is a 3 pole filter, with a corner frequency at 5.0 kHz . This is designed to remove the clock noise from the CVSD Decoder output signal, as well as provide bandwidth limiting in the audio range.

The gain stage provides 28.5 dB of gain adjustment in 19 steps (1.5 dB each), measured from Pin 34 to 32. Bits 6/10-6 are used to set the gain according to Table 8.

The mute switch at Pin 32 , controlled by bit $6 / 1$, will mute a minimum of 60 dB .

Table 8. Receive Gain Adjustment

Register 6	Gain	Register 6	Gain
Bits 10... 6		Bits 10... 6	
00110	-13.5 dB	10000	+1.5 dB
00111	-12.0 dB	10001	+3.0 dB
01000	$-10.5 \mathrm{~dB}$	10010	+4.5 dB
01001	$-9.0 \mathrm{~dB}$	10011	+6.0 dB
01010	$-7.5 \mathrm{~dB}$	10100	+7.5 dB
01011	$-6.0 \mathrm{~dB}$	10101	+9.0 dB
01100	$-4.5 \mathrm{~dB}$	10110	$+10.5 \mathrm{~dB}$
01101	$-3.0 \mathrm{~dB}$	10111	+12.0 dB
01110	$-1.5 \mathrm{~dB}$	11000	$+13.5 \mathrm{~dB}$
01111	0.0 dB	11001	+15.0 dB

Power Amplifiers

The power amplifiers (Pins 28, 29, 31) are designed to drive the earpiece in a handset, or the telephone line via a hybrid circuit in the base unit. Each output (PAO+ and PAO-) can source and sink 5 mA , and can swing 2.0 V pp each. The gain of the amplifiers is set with a feedback resistor from Pin 29 to 31, and an input resistor at Pin 31. The differential gain is $2 x$ the resistor ratio. Capacitors can be used for frequency shaping. The pins' dc level is VB ($\approx 1.5 \mathrm{~V}$).

The Mute switch, controlled with bit 6/0, will provide 90 dB of muting with a $50 \mathrm{k} \Omega$ feedback resistor. The amount of muting will depend on the value of the feedback resistor.

Reference Clock

The reference clock provides the frequency basis for the three PLLs, the switched capacitor filters, and the CVSD Encoder section. The source for the reference clock can be a crystal in the range of 4.0 to 18.25 MHz connected to Pins 14 \& 15, or it can be an external source connected to Fref \ln (Pin 14). The reference frequency is directed to:
a. A programmable 12-bit counter to provide the reference frequency for the three PLLs. The 12-bit counter is to be set such that, in conjunction with the programmable counters within each PLL, the proper frequencies can be produced by each VCO.
b. A programmable 6 -bit counter, followed by a $\div 2$ stage, to set the frequency for the switched capacitor filters to 256 kHz , or as close to that as possible.
c. A programmable 6 -bit counter which provides the $16 x$ clock for the Clock Recovery block. This is followed by a $\div 16$ stage which provides the CVSD Encoder clock. This is followed by a $\div 32$ stage, and a programmable 4 -bit counter which sets the delay for the Idle Channel Detect circuit.

Transmit and Receive (LO1) PLL Sections

The transmit and receive PLLs (Pins 6 to 9 and 1 to 4 , respectively) are designed to be part of a 900 MHz system. In
a typical application the Transmit PLL section will be set up to generate the transmit frequency, and the Receive PLL section will be set up to generate the LO1 frequency. The two sections are identical, and function independently. External requirements for each include a low pass filter, a 900 MHz VCO, and a 64/65 or 128/129 dual modulus prescaler.

The frequency output of the VCO is to be reduced by the dual modulus prescaler, and then input to the MC33410 (at Pin 2 or 8). That frequency is then further reduced by the programmable 13-bit counter (bits $1 / 19-7$ or $2 / 19-7$), and provided to one side of the Phase Detector, where it is compared with the PLL reference frequency. The output of the phase detector (at Pin 4 or 6) is a bi-directional charge pump which drives the VCO through the low pass filter. Bits $1 / 20$ and $2 / 20$ set the gain of each of the two charge pumps to either $100 / 2 \pi \mu \mathrm{~A} /$ Radian or $400 / 2 \pi \mu \mathrm{~A} /$ Radian. The polarity of the two phase detector outputs is set with bits $7 / 22$ and $7 / 23$. If the bit=0, the appropriate PLL is configured to operate with a non-inverting low pass filter/VCO combination. If the low pass filter/VCO combination is inverting, the polarity bit should be set to 1 .

The 7-bit A and A' counters (bits $1 / 6-0$ and $2 / 6-0$) are to be set to drive the Modulus Control input of the $64 / 65$ or 128/129 dual modulus prescalers. The Modulus Control outputs (Pins 1 and 9) can be set to either a voltage mode or a current mode with bit $7 / 13$.

To calculate the settings of the N and A registers, the following procedure is used:

$$
\frac{\mathrm{f}^{\mathrm{VCO}}}{\mathrm{f}_{\mathrm{PLL}}}=\mathrm{Nt}(\mathrm{Nt} \text { must be an integer) }
$$

$$
\frac{N t}{P}=N
$$

Equation 2
where: $\mathrm{fVCO}=$ the VCO frequency
fPLL = the PLL Reference Frequency set within the MC33410
$P=$ the smaller divisor of the dual modulus prescaler (64 for a 64/65 prescaler)
$\mathrm{N}=$ the whole number portion is the setting for the N (or N') counter within the MC33410
$A=$ the setting for the $A\left(\right.$ or $\left.A^{\prime}\right)$ counter within the MC33410
For example, if the VCO is to provide 910 MHz , and the internal PLL reference frequency is 50 kHz , then the equations yield:

$$
\begin{aligned}
& \mathrm{Nt}=\frac{910 \times 10^{6}}{50 \times 10^{3}}=18,200 \\
& \mathrm{~N}=\frac{18,200}{64}=284.375 \\
& \mathrm{~A}=0.375 \times 64=24
\end{aligned}
$$

The N register setting is 284_{d} (0000100011100), and the A register setting is 24 d (001 1000).

2nd LO (LO2)

This PLL is designed to be the 2nd Local Oscillator in a typical 900 MHz system, and is designed for frequencies up to 80 MHz . The VCO and varactor diodes are included, and are to be used with an external tank circuit (Pins 43 to 45).

$$
\begin{aligned}
& A=\text { Remainder of Equation } 2 \\
& \text { (decimal part of } \mathrm{N} \times \mathrm{P} \text {) }
\end{aligned}
$$

Bits 7/20-18 are used to select an internal capacitor, with a value in the range of 0 to 7.6 pF , to parallel the varactor diodes and the tank's external capacitor. This permits a certain amount of fine tuning of the oscillator's performance. See Table 9.

A buffered output is provided to drive, e.g., a mixer. The frequency is set with the programmable 14-bit counter (bits $3 / 13-0$) in conjunction with the PLL reference frequency. For example, if the reference frequency is 50 kHz , and the 2nd LO frequency is to be 63.3 MHz , the 14-bit counter needs to be set to 1266 d (00 01001111 0010). The output level is dependent on the value of the impedance at Pin 41, partly determined by the external pullup resistor.

The output of the phase detector is a bi-directional charge pump which drives the varactor diodes through an external low pass filter. Bit $3 / 14$ sets the gain of the charge pump to either $100 / 2 \pi \mu \mathrm{~A} /$ Radian or $400 / 2 \pi \mu \mathrm{~A} /$ Radian. Bit $7 / 21$ sets its polarity - if 0 , the PLL is configured to operate with a non-inverting low pass filter/VCO combination. If the low pass filter/VCO combination is inverting, the polarity bit should be set to 1 .

Table 9. LO2 Capacitor Selection

Register 7	Capacitor Value		Register 7	Capacitor Bits 20-18
000			Bits 20-18	
001	1.1 pF		100	4.3 pF
010	2.2 pF		5.4 pF	
011	3.3 pF		110	6.5 pF
		111	7.6 pF	

VB Reference Voltage

The VB voltage $(\approx 1.5 \mathrm{~V})$ is available at Pin 33 . It will have a production tolerance of $\pm 6 \%$, and can be adjusted over a $\pm 9 \%$ range using bits $3 / 20-17$. The adjustment steps will be $\approx 1.2 \%$ each. VB can be used to bias external circuitry, as long as the load current on this pin does not exceed $10 \mu \mathrm{~A}$.

Low Battery/Carrier Detect

This circuit will provide an indication of either Low Battery voltage, or a low carrier signal applied to Pin 36 (MP1) from an RSSI circuit. The desired mode is selected with bit 6/5.
A) Low Battery Mode (Bit $6 / 5=0$)

The supply voltage at Pin 18 is applied to the comparator through an internal resistor divider, and is compared to the internal reference VB ($\approx 1.5 \mathrm{~V}$). The comparator has $\approx 15 \mathrm{mV}$ of hysteresis, measured at V_{CC}. The resistor divider is adjustable using bits $3 / 23-21$. The Low Battery threshold voltage will then be equal to the VB voltage multiplied by the factor listed in Table 10. For example, if $\mathrm{VB}=1.5 \mathrm{~V}$, and bits $3 / 23-21=011$, the threshold will be 3.21 V .
B) Carrier Detect Mode (Bit 6/5=1)

Pin 36 (MP1) must be set to the Hi-Z/CD Input mode by setting bits 7/5-4 to 11 . MP1 will then be an input with an input impedance of $\approx 600 \mathrm{k} \Omega$, referenced to VB. An analog signal applied to MP1 will be applied to the comparator through an internal adjustable gain stage (adjustable using bits $3 / 23-21$), and is compared to the internal reference VB. The comparator has $\approx 18.0 \mathrm{mV}$ of hysteresis, measured at Pin 36. The threshold voltage will then be equal to the VB voltage multiplied by the factor listed in Table 10. For
example, if $\mathrm{VB}=1.5 \mathrm{~V}$, and bits $3 / 23-21=011$, the threshold will be 0.576 V .

Table 10. LB/CD Threshold Adjustment Factor

Register 3 Bits 23-21	Low Battery Mode	Carrier Detect Mode
000	1.96	0.574
001	2.02	0.524
010	2.08	0.453
011	2.14	0.384
100	2.19	0.314
101	2.25	0.247
110	2.30	0.177
111	2.37	0.110

The comparator output is at bit $5 / 23$, and at Pin 16 (open collector output). The outputs are high if the monitored V_{CC} voltage is above the threshold, or if the Carrier signal is below the threshold. Pin 16 requires an external pullup resistor. When this circuit is disabled (bit $5 / 10=1$), bit $5 / 23$ and Pin 16 will be high.

MPU Serial Interface

The MPU Serial Interface is a 3-wire interface, consisting of a Clock line, an Enable line, and a bi-directional Data line. The interface is always active, i.e. it cannot be powered down as all other sections of the MC33410 are disabled and enabled through this interface.

The clock must be supplied to the MC33410 at Pin 11 to write or read data, and can be any frequency up to 2.0 MHz . The clock need not be present when data is not being transferred. The Enable line must be low when data is not being transferred.

Internally there are 10 data registers, 24 bits each, addressed with four bits ranging from $\$ 1$ to $\$$ A. Register 10 , and bits 23-21 of register 5 contain data to be read out by the microprocessor, while all other register bits are to be written to by the microprocessor. The contents of the 10 registers can be read out at any time. All bits are written in, or read out, on the clock's positive transition. The write and read operations are as follows:
a) Write Operation:

To write data to the MC33410, the following sequence is required (see Figure 2):
7. The Enable line is taken high.
8. Five bits are entered:

- The first bit must be a 0 to indicate a Write operation.
- The next four bits identify the register address (0001-1010). The MSB is entered first.

9. After the 5th clock pulse is low, the Enable line is taken low. At this transition, the address is latched in and decoded.
10. The Enable line is maintained low while the data bits are clocked in. The MSB is entered first, and the LSB last. If 24 bits are written to a register which has less than 24 active bits (e.g., register 6), the unassigned bits are to be 0.
11.After the last bit is entered, the Enable line is to be taken high and then low. The falling edge of this pulse latches in the just entered data. The clock line can be at a logic high or low, but must not transition in either direction during this Enable pulse.
11. The Enable line must then be kept low until the next communication.
Note: If less than 24 bits are to be written to a data register, it is not necessary to enter the full 24 bits, as long as they are all lower order bits. For example, if bits 0-6 of a register are to be updated, they can be entered as 7 bits with 7 clock cycles in step 4 above. However, if this procedure is used, a minimum of 4 bits, with 4 clock pulses, must be entered.

Figure 2. Writing Data to the MC33410

Figure 3. Reading Data from the MC33410

b) Read Operation:

To read the output bits (bits $5 / 23-21$, or all of register 10), or the contents of any register, the following sequence is required (see Figure 3):

1. The Enable line is taken high.
2. Five bits are entered:

- The first bit must be a 1 to indicate a Read operation.
- The next four bits identify the register address (0001-1010). The MSB is entered first.

3. After the 5th clock is taken low, the Enable line is taken low. At this transition, the address is latched in and decoded, and the contents of the selected register is loaded into the 24-bit output shift register. At this point, the Data line (Pin 12) is still an input.
4. While maintaining the Enable line low, the data is read out. The first clock rising edge will change the Data line to an output, and the MSB will be present on this line.
5. The full contents of the register are then read out (MSB first, LSB last) with a total of 24 clock rising edges, including the one in step 4 above. It is recommended that the MPU read the bits at the clock's falling edge. If only bit 23,22 , or 21 of register 5 are to be read, this can be done with one, two, or three clock rising edges, respectively.
6. After the last clock pulse, the Enable line is to be taken high and then low. The falling edge of this pulse returns the Data pin to be an input. The clock line can be at a logic high or low, but must not transition in either direction during this Enable pulse.
7. The Enable line must then be kept low until the next communication.

Data Modem Mode

For applications where the MC33410 is to be used in a 900 MHz wireless system for transmitting data only (non-voice), a mode can be set which bypasses the speech digitizing sections. The resulting configuration makes use of those sections associated with data only, i.e., the scrambler, descrambler, and clock recovery section. Also functional are the three PLLs, the audio receive path (Pins 34 to 28), the
transmit audio path (Pins 23 to 20), and the Low Battery circuit (but not the Carrier Detect mode).

In this mode, the MC33410 will provide the transmit data clock from the crystal, in conjunction with the internal 6-bit counter (bits 4/23-18) and the $\div 16$ block associated with that counter. The transmit data clock is available at Pin 13, and can be used to synchronize the external data source. The T_{X} data is input at Pin 39, passes through the scrambler, and outputs at Pin 17.

The demodulated data from the RF receiver is input at Pin 38, and is applied to the data slicer, and the clock recovery block. The recovered clock is output at Pin 12. The data passes through the descrambler, and is output at Pin 36.

Figure 4 is a diagram of the data paths through the MC33410.

The procedure for entering the Data Modem mode is in Table 11:

Table 11. Entering Data Modem Mode

Function	Bits	Bit Value
Set T_{X} Clock to desired frequency T_{X} Clk $=\mathrm{F}_{\text {crystal/(} 16 \times \text { Counter). }}$	$4 / 23-18$	As Desired
Set Scrambler \& Descrambler tap setting (Bit 7/1 = 0).	$7 / 10-8$	As Desired
Bypass Data Detect.	$7 / 3$	1
Set MP1 to Data Detect Output.	$7 / 5-4$	01
Set Test Mode bits to connect Encode Clock to Status (Pin 13).	$7 / 17-15$	110
Set Data Modem Mode (MP2 to scrambler Input).	$5 / 20$	1
Write to Register 11 as shown in Figure 5 to configure Pin 12.	N/A	N/A

The above sequence is not critical, except that the last two steps must be the setting of bit $5 / 20$, and writing to register 11. Writing to register 11 is shown in Figure 5.

Figure 4. Data Modem Mode Configuration

Figure 5. Entering/Exiting Data Modem Mode

After address 11 is clocked in, the Enable falling edge will cause Pin 12 (Data) to switch to an output, providing the recovered clock. The microprocessor's data pin must be changed to an input prior to this falling edge. This sequence is effective only if bit $5 / 20$ is set to a 1 .

During the time that recovered clock is available at Pin 12, the microprocessor port is unavailable for any control functions.

To exit the Data Modem mode, the Enable line is to be taken high and low (the clock is to be stable during this active high pulse). The falling edge will set Pin 12 to be an input, allowing normal use of the microprocessor port. The next step is to set bit $5 / 20$ to a 0 . Other register bits can then be set as needed.

To prevent inadvertent incorrect operation of the microprocessor port, bit $5 / 20$ must always be set to 0 when the Data Modem mode is not in use.

Power Supply/Power Saving Modes

The power supply voltage, applied to all V_{CC} pins, can range from 2.7 to 5.5 V . All V_{CC} pins must be within $\pm 0.5 \mathrm{~V}$ of each other, and each must be bypassed. It is recommended a ground plane be used, and all leads to the MC33410 be as short and direct as possible. The supply and ground pins are distributed as follows:

1. Pins 18,27 and 37 are internally connected together, and provide power to the audio amplifiers, filters, CVSD encoder and decoder, and the low frequency (CVSD rate) logic circuits. Pins 21, 30 and 40 are the ground pins for these sections.
2. Pin 3 provides power to the R_{X} PLL section. Pin 5 is the ground pin.
3. Pin 7 provides power to the T_{X} PLL section, and the MPU interface. Pin 5 is the ground pin.
4. Pin 42 provides power to the 2 nd LO section. Pins 46 and 48 are the ground pins.
To conserve power, various sections can be individually disabled, using bits 5/10-0 (setting a bit to 1 disables the section).
5. Reference Oscillator Disable (bit $5 / 0$) - The reference oscillator at Pins 14 and 15 is disabled, thereby denying a clock to the three PLLs, the CVSD Encoder, and the switched capacitor filters.
6. T_{X} PLL Disable (bit $5 / 1$) - The 13-bit and 7-bit counters, input buffer, phase detector, and modulus control blocks are disabled. The charge pump output at Pin 6 will be in a $\mathrm{Hi}-\mathrm{Z}$ state.
7. R_{X} PLL Disable (bit $5 / 2$) - The 13 -bit and 7-bit counters, input buffer, phase detector, and modulus control blocks are disabled. The charge pump output at Pin 4 will be in a $\mathrm{Hi}-\mathrm{Z}$ state.
8. LO2 PLL Disable (bit $5 / 3$) - The VCO, 14-bit counter, output buffer, and phase detector are disabled. The charge pump output at Pin 47 will be in a $\mathrm{Hi}-\mathrm{Z}$ state.
9. R_{X} Data Path Disable (bit $5 / 4$) - The data slicer, clock recovery block, descrambler, data detect register, and the status output circuit are disabled. The state of the status line (Pin 13 and bit $5 / 22$) will not change upon disabling this section.
10. CVSD Decoder Disable (bit $5 / 5$) - The CVSD Decoder and the $R_{X} 1010$ Generator are disabled.
11. R_{X} Audio Path Disable (bit $5 / 6$) - The anti-aliasing filter, low pass filter, and variable gain stage are disabled.
12. Power Amplifier Disable (bit $5 / 7$) - The two power amplifiers are disabled. Their outputs will go to a $\mathrm{Hi}-\mathrm{Z}$ state.
13. T_{X} Audio Path Disable (bit 5/8) - Disables the microphone amplifier, low pass filter, and smoothing filter.
14. CVSD Encoder Disable (bit 5/9) - The CVSD Encoder, Idle Channel detect circuit, the $T_{X} 1010$ Generator, the T_{X} Data register, and the scrambler are disabled.
15. Low Battery/Carrier Detect Disable (bit $5 / 10$) - The LB/CD circuit is disabled. The output, at bit $5 / 23$ and Pin 16 will be at a logic high.
16. Idle Channel Detect Disable (bit $5 / 18$) - Powers down the Idle Channel Detect circuit.
Note: The 12-bit reference counter is disabled if the three PLLs are disabled (bits 5/1-3 = 1).

Table 12. Control Bit Listing (By Register Number)

Register	Bit No.	Power Up Default	Function (when bit = 1 if appropriate)
$\begin{gathered} 1 \\ (23 \text { bits total) } \end{gathered}$	6-0	1000000	Sets the 7-bit $\mathrm{T}_{\mathrm{X}} \mathrm{A}$ counter for the T_{X} PLL.
	19-7	10.... 0	Sets the 13-bit $\mathrm{T}_{X} \mathrm{~N}$ counter for the T_{X} PLL.
	20	0	Sets the T_{X} phase detector charge pump output current. $0= \pm 100 \mu \mathrm{~A}$, and $1= \pm 400 \mu \mathrm{~A}$.
	22, 21	00	Sets CVSD Decoder minimum step size per Table 3.
2(23 bits total)	6-0	1000000	Sets the 7-bit $\mathrm{R}_{\mathrm{X}} \mathrm{A}^{\prime}$ counter for the R_{X} PLL.
	19-7	10.... 0	Sets the 13-bit $\mathrm{R}_{\mathrm{X}} \mathrm{N}^{\prime}$ counter for the R_{X} PLL.
	20	0	Sets the R_{X} phase detector charge pump output current. $0= \pm 100 \mu \mathrm{~A}$, and $1= \pm 400 \mu \mathrm{~A}$.
	22, 21	00	Sets CVSD Encoder minimum step size per Table 3.
$\stackrel{3}{3}$	13-0	10.... 0	Sets the 14-bit counter for the 2nd LO.
	14	0	Sets the LO2 phase detector charge pump output current. $0= \pm 100 \mu \mathrm{~A}$, and $1= \pm 400$ $\mu \mathrm{A}$.
	16-15	11	Set the CVSD encoder/decoder for the selected clock rate. (Table 2)
	20-17	0111	Adjusts the VB reference voltage ($\approx 1.5 \mathrm{~V}$) to improve low battery detection accuracy. Total adjustment range is $\approx \pm 9 \%$.
	23-21	011	Selects the threshold for Low Battery Detection or Carrier Signal Detection. See Table 10.
$\begin{gathered} 4 \\ (24 \text { bits total) } \end{gathered}$	11-0	\$800	Sets the 12-bit counter for the PLL Reference Clock.
	17-12	100000	Sets the 6-bit counter for the Switched Capacitor Filter clock.
	23-18	100000	Sets the 6-bit counter to set the CVSD Encoder clock rate.
$\begin{gathered} 5 \\ (24 \text { bits total) } \end{gathered}$	0	0	Power down the Reference Oscillator
	1	0	Power down the T_{X} PLL.
	2	0	Power down the R_{X} PLL.
	3	0	Power down the LO2 PLL.
	4	0	Power down the RXD Data Path. Includes Data Slicer, Clock Recovery, Descrambler, Data Detect, and Status circuits.
	5	0	Power down the CVSD Decoder.
	6	0	Power down the RXA Audio path (Pin 32 to 30). Includes AALPF, LPF, and Gain Adjust circuits.
	7	0	Power down the Power Amplifiers (Pins 27, 28)
	8	0	Power down the T_{X} Audio Path (Pin 25 to 22). Includes micro-phone amplifier, LPF, and Smoothing LPF circuits.
	9	0	Power down the CVSD Encoder, Idle Channel Detector, 1010 Generator, T_{x} Data Register, and Scrambler circuits.
	10	0	Power down the Low Battery/Carrier Detect Circuit.
	14-11	0111	Sets the 4-bit counter to set the response delay for the idle channel detect circuit.
	17-15	100	Sets the idle channel detect threshold level. See Table 4.
	18	0	Power down the Idle Channel Detect Circuit.
	19	0	Inverts the Data Slicer output.
	20	0	Sets the Data Modem mode of operation.
	21	N/A	Indicates an idle channel condition has been detected (Output). This output is unaffected by bit $7 / 2$.
	22	N/A	The Status Output (same as Pin 13) is read out from this bit.
	23	N/A	The output of the Low Battery/Carrier Detect Circuit is read from this bit.

Table 12. Control Bit Listing (By Register Number) (continued)

Register	Bit No.	Power Up Default	Function (when bit = 1 if appropriate)
$\begin{gathered} 6 \\ \text { (16 bits total) } \end{gathered}$	0	0	Mutes the power amplifiers (Pins 27 to 29).
	1	0	Mutes the receive speech processing path (Pin 30).
	2	0	Mutes the transmit speech processing path (Pin 22).
	3	0	Selects the R 1010 Generator to the CVSD decoder.
	4	0	Selects the $\mathrm{T}_{\mathrm{X}} 1010$ Generator to the scrambler.
	5	0	Sets Carrier Detect Mode vs. Low Battery mode.
	10-6	01111	Provides 19 steps, 1.5 dB each (28.5 dB range), of gain adjust in the receive speech audio path (Pins 32 to 30). See Table 8.
	15-11	00100	Provides 4 steps of 4.0 dB each, for the remote gain adjust in the transmit speech audio path (Pins 23 to 20).
7(24 bits total)	0	0	Bypass the Clock Recovery Block (Data slicer output goes directly to the descrambler).
	1	0	Bypass the scrambler and descrambler.
	2	0	Disables the automatic idle channel detect at the CVSD encoder. Bit 5/21 is still active.
	3	0	Bypass the Data Detect block (Descrambler output goes directly to the CVSD Decoder).
	5-4	00	Determines the function for Pin 36 (MP1). See Table 6.
	7-6	00	Determines the function for Pin 39 (MP2). See Table 7.
	10-8	010	Selects one of 8 programmable taps in the scrambler and descrambler. See Table 5.
	11	1	Sets the code word size to be sent out via the T_{x} Data Register to 24 bits. If this bit is 0 , the code word size is 16 bits.
	12	1	Sets the data word size to be sent out via the T_{X} Data Register to 24 bits. If this bit is 0 , the data word size is 16 bits.
	13	0	Sets the $\mathrm{FT}_{x} \mathrm{MC}$ and $\mathrm{FR}_{\mathrm{x}} \mathrm{MC}$ output level to be from ground to V_{C}. If this bit is 0 , the output level is $\pm 100 \mu \mathrm{~A}$.
	14	0	Disables the CVSD charge compensation circuit.
	17-15	000	Test modes for production testing only.
	20-18	000	Selects the value of the internal capacitor between Pins 43 to 45 , to fine tune the LO2 tank circuit. See Table 9.
	21	0	Sets the polarity of the 2nd LO phase detector charge pump output for an inverting low pass filter/VCO combination.
	22	0	Sets the polarity of the R_{X} phase detector charge pump output for an inverting low pass filter/VCO combination.
	23	0	Sets the polarity of the T_{X} phase detector charge pump output for an inverting low pass filter/VCO combination.
8	23-0	\$000000	Code word for the T_{X} Data Register is entered into this register.
9	23-0	\$000000	Data word for the T_{X} Data Register is entered into this register.
10	23-0	\$000000	The data word received into the R_{X} Data Register is read out via the $\mu \mathrm{P}$ port from this register.

MC33410

Table 13. Control Bit Listing (By Function)

PLL Controls

Register	Bit No.	Power Up Default	Function (when bit = 1 if appropriate)
1	6-0	1000000	Sets the 7-bit $\mathrm{T}_{\mathrm{X}} \mathrm{A}$ counter for the T_{X} PLL.
1	19-7	10.... 0	Sets the 13-bit $\mathrm{T}_{X} \mathrm{~N}$ counter for the T_{X} PLL.
2	6-0	1000000	Sets the 7-bit $\mathrm{R}_{\mathrm{X}} \mathrm{A}^{\prime}$ counter for the R_{X} PLL.
2	19-7	10.... 0	Sets the 13-bit $\mathrm{R}_{\mathrm{X}} \mathrm{N}^{\prime}$ counter for the R_{X} PLL.
3	13-0	10.... 0	Sets the 14-bit counter for the 2nd LO.
4	11-0	\$800	Sets the 12-bit counter for the PLL Reference Clock.
7	13	0	Sets the $\mathrm{FT}_{\mathrm{X}} \mathrm{MC}$ and $\mathrm{FR}_{\mathrm{X}} \mathrm{MC}$ output level to be from ground to V_{CC}. If this bit is 0 , the output level is $\pm 100 \mu \mathrm{~A}$.

PLL Phase Detectors

| Register | Bit No. | Power Up
 Default | Function (when bit = 1 if appropriate) |
| :---: | :---: | :---: | :--- |$|$| Sets the T_{X} phase detector charge pump output current. $0= \pm 100 \mu \mathrm{~A}$, |
| :--- |
| and $1= \pm 400 \mu \mathrm{~A}$. |

CVSD Controls

Register	Bit No.	Power Up Default	Function (when bit = 1 if appropriate)
1	22,21	00	Sets CVSD Decoder minimum step size per Table 3.
2	22,21	00	Sets CVSD Encoder minimum step size per Table 3.
3	$16-15$	11	Set the CVSD encoder/decoder for the selected clock rate. (Table 2)
4	$23-18$	100000	Sets the 6-bit counter to set the CVSD Encoder clock rate.
6	3	0	Selects the $R_{\mathrm{X}} 1010$ Generator to the CVSD decoder.
6	4	0	Selects the $T_{\mathrm{X}} 1010$ Generator to the scrambler.
7	14	0	Disables the CVSD charge compensation circuit, which affects idle channel performance.

Idle Channel Detector

Register	Bit No.	Power Up Default	Function (when bit $=1$ if appropriate)

MC33410

Table 13. Control Bit Listing (By Function) (continued)

Data Transmission/Reception

Register	Bit No.	Power Up Default	Function (when bit = 1 if appropriate)
5	19	0	Inverts Data Slicer output.
5	20	0	Sets Data Modem mode.
5	22	N/A	The Status Output (same as Pin 13) is read out from this bit. A logic 1 indicates the Data Detect register has detected a code word.
7	0	0	Bypass the Clock Recovery Block (Data slicer output goes directly to the descrambler).
7	3	0	Bypass the Data Detect block (Descrambler output goes directly to the CVSD Decoder).
7	11	1	Sets the code word size to be sent out via the T_{X} Data Register to 24 bits. If this bit is 0 , the code word size is 16 bits.
7	12	1	Sets the data word size to be sent out via the T_{X} Data Register to 24 bits. If this bit is 0 , the data word size is 16 bits.
8	23-0	\$000000	Code word for the T_{X} Data Register is entered into this register.
9	23-0	\$000000	Data word for the T_{X} Data Register is entered into this register.
10	23-0	\$000000	The data word received into the R_{X} Data Register is read out via the $\mu \mathrm{P}$ port from this register.

Scrambler/Descrambler

Register	Bit No.	Power Up Default	Function (when bit $=1$ if appropriate)
7	1	0	Bypass the scrambler and descrambler.
7	$10-8$	010	Selects one of 8 programmable taps in the scrambler and descrambler. See Table 5.

Multi Purpose Pin Control

Register	Bit No.	Power Up Default	Function (when bit $=1$ if appropriate)
7	$5-4$	00	Determines the function for Pin 36 (MP1). See Table 6.
7	$7-6$	00	Determines the function for Pin 39 (MP2). See Table 7.

Audio Paths

Register	Bit No.	Power Up Default	Function (when bit = 1 if appropriate)
4	17-12	100000	Sets the 6-bit counter for the Switched Capacitor Filter clock.
6	0	0	Mutes the power amplifiers (Pins 27 to 29).
6	1	0	Mutes the receive speech processing path (Pin 30).
6	2	0	Mutes the transmit speech processing path (Pin 22).
6	10-6	01111	Provides 19 steps, 1.5 dB each (28.5 dB range), of gain adjust in the receive speech audio path (Pins 32 to 30). See Table 8.
6	15-11	00100	Provides 4 steps of 4.0 dB each, of gain adjust in the transmit speech audio path (Pins 23 to 20).

Low Battery/Carrier Detection

Register	Bit No.	Power Up Default	Function (when bit $=1$ if appropriate)

MC33410

Table 13. Control Bit Listing (By Function) (continued)
Power Down Control

Register	Bit No.	Power Up Default	Function (when bit = 1 if appropriate)
5	0	0	Power down the Reference Oscillator
5	1	0	Power down the T_{X} PLL.
5	2	0	Power down the R X_{X} PLL.
5	3	0	Power down the LO2 PLL.
5	4	0	Power down the R X_{X} Data Path. Includes Data Slicer, Clock Recovery, Descrambler, Data Detect, and Status circuits.
5	5	0	Power down the CVSD Decoder.
5	6	0	Power down the R R_{X} Audio path (Pin 32 to 30). Includes AALPF, LPF, and Gain Adjust circuits.
5	7	0	Power down the Power Amplifiers (Pins 27, 28)
5	8	0	Power down the TX Audio Path (Pin 25 to 22). Includes micro-phone amplifier, LPF, and Smoothing LPF circuits.
5	9	0	Power down the CVSD Encoder, Idle Channel Detector, 1010 Generator, TXX Data Register, and Scrambler circuits.
5	10	0	Power down the Low Battery/Carrier Detect Circuit.
5	18	0	Power down the Idle Channel Detection Circuit.

Table 14. Register Map

Register Address	Register Number	$\begin{gathered} \text { MSB } \\ 23 \end{gathered}$	22	21	20	19	18	17	16	15	14	13	12
0001	1		CVSD Decoder Minimum Step Size		Tx PhDet Curr. Sel.	13 Bit Tx N Counter Divide Value (Bits 19-7)							
0010	2		CVSD Encoder Minimum Step Size		Rx PhDet Curr. Sel.	13 Bit Rx N' Counter Divide Value (Bits $19-7$)							
0011	3	Sets Low Battery/Carrier Detect Threshold			Adjust VB Reference Voltage				Set CVSD for the selected Clock Rate		LO2 PhD Curr. Sel.	14 bit LO2 Counter Divide Value (Bits $13-0$)	
0100	4	6 Bit Encode Clock Counter Divide Value						6 Bit Switched Capacitor Filter Counter Divide Value					
0101	5	$\begin{aligned} & \text { LB/CD } \\ & \text { Det. Out } \end{aligned}$	Status Output	Idle Chan. Output	Data Modem Mode	Invert Data Slicer	Idle Channel Disable	Sets Idle Channel Threshold Level			4 Bit Idle Channel Counter Delay Value (Bits 14 - 11)		
0110	6							Remote Gain Adjust (Bits 15-11)					
0111	7	Tx Phase Detector Polarity	Rx Phase Detector Polarity	LO2 Ph. Detector Polarity	LO2 Capacitor Select			Production Test Modes \& Data Modem Mode			Idle Charge Disable	$\begin{aligned} & \text { FTxMC/ } \\ & \text { FRxMC } \\ & \text { Level } \end{aligned}$	Data Word Size (16/24 bit)
1000	8	16 or 24 Bit Code Word for the Tx Data Register (Bits $23-0$)											
1001	9	16 or 24 Bit Data Word for the Tx Data Register (Bits $23-0$)											
1010	10	16 or 24 Bit Data Word Output from the Rx Data Register (Bits $23-0$)											

Register Address	Register Number	11	10	9	8	7	6	5	4	3	2	1	$\underset{0}{\text { LSB }}$
0001	1	13 Bit Tx N Counter Divide Value (Bits 19-7)					7 Bit Tx A Counter Divide Value						
0010	2	13 Bit Rx N' Counter Divide Value (Bits 19-7)					7 Bit Rx A ' Counter Divide Value						
0011	3	14 bit LO2 Counter Divide Value (Bits 13-0)											
0100	4	12 Bit Reference Counter Divide Value											
0101	5	4 Bit Idle Channel Ctr. Value	LB/CD Detect Disable	CVSD Encoder Disable	Tx Audio Path Disable	Power Amplifier Disable	Rx Audio Path Disable	CVSD Decoder Disable	Rx Data Path Disable		$\begin{gathered} \mathrm{RX} \\ \mathrm{PLL} \\ \text { Disable } \end{gathered}$		Ref. Osc. Disable
0110	6	Remote Gain Adj.	Rx Audio Path Gain Adjust (28.5 dB range)					Set CD Mode	Tx 1010 Generator	Rx 1010 Generator	Mute Tx Audio	Mute Rx Audio	Mute Pwr. Amps
0111	7	Code Word Size (16/24 bit)	Scrambler/Descrambler Tap Selection			MP2 Mode (See Table 7)		MP1 Mode (See Table 6)		Bypass Data Detect	Disable Idle Chnl. Detection	Bypass Scrambler/ Descrambler	$\begin{aligned} & \text { Bypass } \\ & \text { Clock } \end{aligned}$ Recovery
1000	8	16 or 24 Bit Code Word for the Tx Data Register (Bits $23-0$)											
1001	9	16 or 24 Bit Data Word for the Tx Data Register (Bits $23-0$)											
1010	10	16 or 24 Bit Data Word Output from the Rx Data Register (Bits $23-0$)											

[^21]MOTOROLA

Cordless Universal Telephone Interface

The MC34016 is a telephone line interface meant for use in cordless telephone base stations for CT0, CT1, CT2 and DECT. The circuit forms the interface towards the telephone line and performs all speech and line interface functions like dc and ac line termination, 2-4 wire conversion, automatic gain control and hookswitch control. Adjustment of transmission parameters is accomplished by two 8-bit registers accessible via the integrated serial bus interface and by external components.

- DC Masks for Voltage and Current Regulation
- Supports Passive or Active AC Set Impedance Applications
- Double Wheatstone Bridge Sidetone Architecture
- Symmetrical Inputs and Outputs with Large Signal Swing Capability
- Gain Setting and Mute Function for T_{X} and R_{X} Amplifiers
- Very Low Noise Performance
- Serial Bus Interface SPI Compatible
- Operation from 3.0 to 5.5 V

FEATURES

Line Driver Architecture

- Two DC Masks for Voltage Regulation
- Two DC Masks for Current Regulation
- Passive or Active Set Impedance Adjustment
- Double Wheatstone Bridge Architecture
- Automatic Gain Control Function

Transmit Channel

- Symmetrical Inputs Capable of Handling Large Voltage Swing
- Gain Select Option via Serial Bus Interface
- Transmit Mute Function, Programmable via Bus
- Large Voltage Swing Capability at the Telephone Line

Receive Channel

- Double Sidetone Architecture for Optimum Line Matching
- Symmetrical Outputs Capable of Producing High Voltage Swing
- Gain Select Option via Serial Bus Interface
- Receive Mute Function, Programmable via Serial Bus

Serial Bus Interface

- 3-Wire Connection to Microcontroller
- One Programmable Output Meant for Driving a Hookswitch
- Two Programmable Outputs Capable of Driving Low Ohmic Loads
- Two 8-Bit Registers for Parameter Adjustment

CORDLESS UNIVERSAL TELEPHONE INTERFACE

SEMICONDUCTOR TECHNICAL DATA

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MC34016P	$\mathrm{T}_{\mathrm{A}}=-20^{\circ}$ to $+70^{\circ} \mathrm{C}$	DIP
MC34016DW		$\mathrm{SO}-20$

This device contains 610 active transistors +242 gates.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Operation Supply Voltage	V_{CC}	$-0.5,6.5$	V
All Other Inputs	$\mathrm{V}_{\text {in }}$	-0.5, $\mathrm{~V}_{\mathrm{CC}}+0.5$	V
Operating Ambient Temperature	T_{A}	-20 to +70	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	+150	${ }^{\circ} \mathrm{C}$

NOTE: ESD data available upon request.

MC34016

DC ELECTRICAL CHARACTERISTICS (All parameters are specified with Bit 0 of Register 1 set to 1 , the rest of the bits in both registers set to $0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, $\mathrm{l}_{\text {line }}=15 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$, Test Circuit in Figure 9, unless otherwise noted.)

Parameter
\begin{tabular}{\|l
\hline
\end{tabular} Condition
VOLTAGE REGULATION
Line Voltage $\mathrm{V}_{\text {line }}$

CURRENT REGULATION (Bit 4, Reg. $1=1$; Bit 1, Reg. $2=1 ;$ R $_{\text {AGC }}=47 \mathrm{k} \Omega$)

Line Voltage $\mathrm{V}_{\text {line }}$	$\mathrm{l}_{\text {line }}=15 \mathrm{~mA}$	4.2	4.5	4.8	V
Line Current $\mathrm{l}_{\text {line }}$	$\mathrm{V}_{\text {line }}=10 \mathrm{~V}$	-	35	-	mA
	$\mathrm{V}_{\text {line }}=35 \mathrm{~V}$	-	56	-	
Line Current $l_{\text {line }}$ in Protection Mode	$\mathrm{V}_{\text {line }}=70 \mathrm{~V}$	-	28	-	mA

DC BIASING

Operating Supply Voltage V_{CC}	-	3.0	-	5.5	V
Current Consumption from V_{CC}	$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$, all Bits to 0 $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, all Bits to 0	-	$\begin{aligned} & 3.0 \\ & 3.5 \end{aligned}$	$\begin{aligned} & 4.0 \\ & 4.5 \end{aligned}$	mA
Source Capabiltiy Pin LAO in Speech Mode	$\mathrm{V}_{\mathrm{LAO}}=0.7 \mathrm{~V}$	-	-	-2.0	mA
Source Capability Pin LAO in Dialing Mode (Bit 5, Reg. $1=1$)	$\mathrm{V}_{\mathrm{LAO}}=0.7 \mathrm{~V}$	-	-	-5.0	mA
Internal Pull Down Resistor at Pin LAO	-	-	11	-	k Ω
Bias Voltage at Pins HYL, HYS and LAI	-	-	1.3	-	v
Bias Voltage at Pins $T_{x 1}$ and $T_{x 2}$	-	-	1.5	-	V
Bias Voltage at Pins $\mathrm{R}_{\mathrm{x} 1}$ and $\mathrm{R}_{\mathrm{x} 2}$	-	-	1.3	-	V

LOGIC INPUTS

Logic Low Level Pins CIk, Data, BEN	-	-	-	0.6	V
Logic High Level Pins CIk, Data, BEN	-	2.2	-	-	V

LOGIC OUTPUTS

Source Capability from Pins HKSW, Out1, Out2	Output Voltage at $\mathrm{V}_{\mathrm{CC}}-1.3 \mathrm{~V}$	-	-	-1.0	mA
Sink Capability into Pins HKSW, Out1, Out2	Output Voltage at 0.5 V	5.0	-	-	mA

AC ELECTRICAL CHARACTERISTICS (All parameters are specified with Bit 0 of Register 1 set to 1 , the rest of the bits in both registers set to $0, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, $\mathrm{l}_{\text {line }}=15 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$, Test Circuit in Figure 9 , unless otherwise noted.)

Parameter	Condition	Min	Typ	Max	Unit
TRANSMIT CHANNEL					
Transmit Gain from VT_{X} to $\mathrm{V}_{\text {line }}$	$\begin{gathered} \text { MC34016P } \\ \text { MC34016DW } \\ V T_{\mathrm{X}}=0.1 \mathrm{Vrms} \end{gathered}$	$\begin{gathered} \hline-1.0 \\ -1.25 \end{gathered}$	$\begin{gathered} 0.25 \\ -0.20 \end{gathered}$	$\begin{gathered} 1.5 \\ 0.85 \end{gathered}$	dB
Gain Variation with Line Current Referred to line $=15 \mathrm{~mA}$ with the AGC Function Switched "Off"	$\begin{gathered} \text { line }=70 \mathrm{~mA}, \\ \text { Bit } 0, \text { Reg. } 2=1 \end{gathered}$	-0.7	-	0.7	dB
Gain Increase in 6.0 dB Mode	Bit 4, Reg. $2=1$	5.3	6.0	6.7	dB
Gain Reduction in Mute Condition	Bit 2 , Reg. $2=1$	65	-	-	dB
Input Impedance at $\mathrm{T}_{\mathrm{x} 1}$ or $\mathrm{T}_{\mathrm{x} 2}$	-	-	30	-	$\mathrm{k} \Omega$
Maximum Input Swing for VT_{X}	THD $\leq 2 \%$	-	4.0	-	Vpp
THD at the Line ($\mathrm{V}_{\text {line }}$)	$V T_{x}=3.0 \mathrm{dBm}$	-	1.0	2.0	\%
Psophometrically Weighted Noise Level at the Line ($\mathrm{V}_{\text {line }}$)	200Ω Between $\mathrm{T}_{\mathrm{x} 1}$ and $\mathrm{T}_{\mathrm{x} 2}$	-	-79	-	dBmp
RECEIVE CHANNEL					
Receive Gain from $\mathrm{V}_{\text {line }}$ to VR_{X}	$\mathrm{V}_{\text {line }}=0.1 \mathrm{Vrms}$	-1.0	0	1.0	dB

AC ELECTRICAL CHARACTERISTICS (continued) (All parameters are specified with Bit 0 of Register 1 set to 1 , the rest of the bits in both registers set to $0, T_{A}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$, Iline $=15 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{kHz}$, Test Circuit in Figure 9, unless otherwise noted.)

Parameter	Condition	Min	Typ	Max	Unit
RECEIVE CHANNEL					
Gain Variation with Line Current Referred to lline $=15 \mathrm{~mA}$ with the AGC Function Switched "Off"	$\begin{gathered} \text { line }=70 \mathrm{~mA}, \\ \text { Bit } 0, \text { Reg. } 2=1 \end{gathered}$	-0.7	-	0.7	dB
Gain Increase in 6.0 dB Mode	Bit 5, Reg. $2=1$	5.3	6.0	6.7	dB
Gain Reduction in Mute Condition	Bit 3, Reg. $2=1$	70	-	-	dB
Input Impedance at HYL or HYS	-	-	30	-	$\mathrm{k} \Omega$
Output Impedance at $\mathrm{R}_{\mathrm{X} 1}$ or $\mathrm{R}_{\mathrm{X} 2}$	-	-	150	-	Ω
Maximum Input Swing at HYL or HYS	for THD $\leq 2 \%$	-	800	-	mVpp
Maximum Output Swing VR_{X}	for THD $\leq 10 \%$	-	3.5	-	Vpp
Total Harmonic Distortion at VR_{X}	$\mathrm{V}_{\text {line }}=3.0 \mathrm{dBm}$	-	1.0	2.0	\%
Psophometrically Weighted Noise Level at VR_{X}	200Ω Between $\mathrm{T}_{\mathrm{x} 1}$ and $\mathrm{T}_{\mathrm{x} 2}$	-	80	-	$\mu \mathrm{Vrms}$

AUTOMATIC GAIN CONTROL

Gain Reduction in Transmit and Receive Channel with Respect to lline $=15 \mathrm{~mA}$	lline $=70 \mathrm{~mA}$	5.0	6.0	7.0
Highest Line Current for Maximum Gain	-	-	20	-
Lowest Line Current for Minimum Gain	-	-	60	-
Gain Reduction in Transmit and Receive Channel with Respect to lline $=35 \mathrm{~mA}$	line $=85 \mathrm{~mA}$, Bit 1, Reg. 2 1	5.0	6.0	7.0
Highest Line Current for Maximum Gain	Bit 1, Reg. 2 =1	-	40	-
Lowest Line Current for Minimum Gain	Bit 1, Reg. 2 $=1$	-	80	-

BALANCE RETURN LOSS

Balance Return Loss with Respect to 600Ω	$\mathrm{f}=1.0 \mathrm{kHz}$	20	-	-	dB
SIDETONE					
Voltage Gain from VT_{X} to VR_{X}	line $=15 \mathrm{~mA}$, Bit 0, Reg. $2=1$	-			

SERIAL BUS

Clock Frequency	-	-	-	550	kHz
BEN Rising Edge Setup Time Before First CIk Rising Edge	See t1 in Timing Diagram	500	-	-	ns
Data Setup Time Before CIk Rising Edge	See t2 in Timing Diagram	500	-	-	ns
Data Hold Time After CIk Rising Edge	See t3 in Timing Diagram	500	-	-	ns
BEN Falling Edge Delay Time After Last CIk Rising Edge	See t4 in Timing Diagram	1.5	-	-	$\mu \mathrm{s}$
BEN Rising Edge Delay Time After Last BEN Falling Edge	See t5 in Timing Diagram	6.0	-	-	$\mu \mathrm{s}$
Power Supply Reset Voltage VCC	-	-	2.5	-	V

MC34016

PIN FUNCTION DESCRIPTION

Pin	Symbol	Description
1	CIk	Serial bus clock input
2	Data	Serial bus data input
3	Out2	Logic output 2
4	Stab	Line driver compensation
5	Gnd	Ground
6	HKSW	Logic output for the hook switch
7	Out1	Logic output 1
8	V_{CC}	Supply input (+5.0 V)
9	Iref	Reference current adjustment
10	HYL	Hybrid input for long lines
11	HYS	Hybrid input for short lines
12	$\mathrm{R}_{\mathrm{x} 2}$	Receive output 2
13	$\mathrm{R}_{\mathrm{X} 1}$	Receive output 1
14	$\mathrm{T}_{\mathrm{x} 1}$	Transmit input 1
15	Tx2	Transmit input 2
16	AGC	Automatic gain control input
17	SRF	Sidetone reference input
18	LAI	Line amplifier input
19	LAO	Line amplifier output
20	BEN	Serial bus enable input

Throughout this part, please refer to the typical application of Figure 10. The data given in this chapter refers to typical data of the characteristics.

DC OPERATION

For dc, the MC34016 incorporates four different masks which can be selected via the serial bus interface:

Bit 4, Reg. 1 'DC Mask'	Bit 5, Reg. 1 'DC Mode'	Bit 1, Reg. 2 'AGC Ratio'	DC Mask Selected
0	0	X	Voltage Regula- tion Mask
X	1	X	Pulse Dial Mask
1	0	0	Current Regula- tion Mask with AGC Ratio 1:2
1	0	1	Current Regula- tion Mask with AGC Ratio 3:5

X = don't care

Voltage Regulation Mask

The voltage regulation mask is the default setting of the MC34016 after power-up. In this mode, the circuit behaves as a zener with a series resistor. The line voltage can be expressed as:

$$
\begin{aligned}
& \begin{aligned}
\mathrm{V}_{\text {line }} & =\mathrm{V}_{\mathrm{BG}}+\left(\mathrm{I}_{\mathrm{BG}} \times \mathrm{R}_{\mathrm{DC} 1}\right)+\left(\text { line } \times \mathrm{R}_{\mathrm{S}}\right) \\
\text { with: } & \mathrm{V}_{\mathrm{BG}}
\end{aligned}=1.3 \mathrm{~V} \\
\mathrm{I}_{\mathrm{BG}} & =5.2 \mu \mathrm{~A} \\
\mathrm{R}_{\mathrm{DC}} & =\mathrm{DC} \text { setting resistor of } 470 \mathrm{k} \Omega \text { in the typical } \\
& \text { application } \\
\text { l line } & =\text { Line current } \\
\mathrm{R}_{\mathrm{S}} & =\text { Slope resistor of } 50 \Omega \text { in the typical } \\
& \text { application } \\
\text { thus: } \quad \mathrm{V}_{\text {line }} & =3.75+(50 \times \text { line })
\end{aligned}
$$

By choosing different values of RDC1, the zener voltage can be adjusted to fit country specific requirements. In Figure 1, a curve shows $\mathrm{V}_{\text {line }}$ versus $\mathrm{l}_{\text {line }}$ for different R_{DC} 1 values.

Pulse Dial Mask

In this mask, the circuit is forced into a very low voltage drop mode meant for pulse dialing (e.g. make period during pulse dialing). Pin LAO of the MC34016 sources a current of 5.0 mA in this mode, saturating output transistor Q1. The line voltage $\mathrm{V}_{\text {line }}$ is now determined by the saturation voltage of Q1 and the dc slope resistor RS:

$$
\mathrm{V}_{\text {line }}=\mathrm{V}_{\mathrm{CE}}(\text { sat }) \mathrm{Q} 1+\left(\mathrm{R}_{\mathrm{S}} \times l_{\text {line }}\right) \cong 0.1+\left(50 \times l_{\text {line }}\right)
$$

Figure 2 shows $\mathrm{V}_{\text {line }}$ versus $l_{\text {line }}$.

Current Regulation Masks

These masks are equal to the voltage regulation mask up to a knee current. Above this current, the dc slope changes to a higher value fulfilling requirements such as those in France.

$$
\begin{gathered}
\mathrm{V}_{\text {line }}=3.75+\left(\mathrm{RS} \times \mathrm{l}_{\text {line }}\right) \quad \text { for } \mathrm{I}_{\mathrm{AGC}}<\mathrm{I}_{\text {knee }} \\
\mathrm{V}_{\text {line }}=\left[\mathrm{I}_{\mathrm{BG}}+\left(2.5 \times\left(\mathrm{I}_{\mathrm{AGC}}-\mathrm{I}_{\mathrm{knee})}\right)\right] \times \mathrm{R}_{\mathrm{DC} 1}+\right. \\
{\left[\mathrm{V}_{\mathrm{BG}}+\left(\mathrm{RS} \times \mathrm{l}_{\text {line }}\right)\right] \quad \text { for } \mathrm{I}_{\mathrm{AGC}}>\mathrm{I}_{\text {knee }}}
\end{gathered}
$$

with: $I_{A G C}=l_{\text {line }} \times \frac{R_{S}}{R_{A G C}}$
$I_{\text {knee }}=21 \mu \mathrm{~A}$ for AGC ratio 1:2
$I_{\text {knee }}=31 \mu \mathrm{~A}$ for AGC ratio 3:5
With RS $=50 \Omega$ and $R_{A G C}=47 \mathrm{k} \Omega$, and the AGC ratio set to $3: 5$, $I_{A G C}$ will equal $I_{k n e e ~}$ at a line current of 29 mA . With the AGC ratio set to 1:2, the knee occurs at 20 mA . Above these line currents, it can be derived that the dc slope of the circuit changes to:

$$
R_{\text {Slope }}=2.5 \times \frac{R_{\mathrm{S}} \times R_{\mathrm{DC} 1}}{R_{\text {AGC }}}+R_{S}
$$

With the component values mentioned, a slope of 1300Ω will occur. Figures 3 and 4 shows $\mathrm{V}_{\text {line }}$ versus $\mathrm{l}_{\text {line }}$ in the two current regulation masks for different values of RDC1.

When IAGC reaches $62 \mu \mathrm{~A}$ for AGC ratio $3: 5$ or $52 \mu \mathrm{~A}$ in case of AGC ratio 1:2, the MC34016 will enter protection mode after about 800 ms . In practice this mode occurs only under overload conditions. In protection mode, the MC34016 decreases the power dissipation in Q1 by drastically increasing the dc slope starting from $I_{k n e e}$. This results in a reduced line current which remains practically constant over line voltage. With the equation for lagc it can be derived that:

AGC ratio	Line Current to Enter Protection Mode	Line Current in Protection Mode
$3: 5$	58 mA	29 mA
$1: 2$	49 mA	20 mA

Once the MC34016 enters protection mode, it remains there until the output HKSW is toggled via Bit 0 of Register 1 (on-hook, off-hook).

Supply Voltage VCc

The MC34016 operates from an external supply within a voltage range of 3.0 to 5.5 V . The current consumption with all bits set to 0 , equals 3.0 mA at 3.0 V and 3.5 mA at 5.5 V .

AC SET IMPEDANCE

The MC34016 offers two possibilities for the adjustment of the ac set impedance. Either a passive or an active set impedance can be obtained.

Passive Set Impedance

In this application, the set impedance is formed by the ac impedance of the circuit itself in parallel with resistor RSET and capacitor CSET. An equivalent network equals:

With the component values of the typical application, the inductor has a value of about 2.4 H and RDC1 equals $470 \mathrm{k} \Omega$. In the audio range of $300-3400 \mathrm{~Hz}$, these components form a fairly large parallel impedance to RSET and CSET. Therefore, the set impedance is mainly determined by the passive network RSET and CSET. In the typical application, RSET is 600Ω, but it can easily be replaced by a complex network to obtain a complex set impedance.

Active Set Impedance

An active set impedance can be obtained by placing a resistor between pin LAI and SRF (RSRF) as shown in Figure 11. By doing so, the MC34016 itself generates the ac set impedance and RSET and CSET can be omitted. An equivalent network now equals:

Ignoring the effect of the inductor and the parallel path RDC1 + RSRF again for audio frequencies, the set impedance is now determined by:

$$
Z_{S E T}=\frac{R_{S}}{R_{S R F}} \times\left(R_{D C 1}+R_{S R F}\right)
$$

With RS $=50 \Omega$ and $\mathrm{RDC}_{\mathrm{D}}=470 \mathrm{k} \Omega$, RSRF should be $43 \mathrm{k} \Omega$ to obtain a 600Ω set impedance. To obtain a complex set impedance, RDC1 can be made complex. In such case, the dc mask can be adjusted with the dc value of RDC1 and the set impedance can be adjusted with the ac value of RDC1. An application with an active set impedance is interesting, particularly in countries like France, where with the dc current regulation mask, rather high line voltages can be reached. With a passive set impedance, this would result in a high cost for capacitor CSET.

TRANSMIT CHANNEL

Inputs

The inputs $T_{x 1}$ and $T_{x 2}$ are designed to handle large signal levels of up to +3.0 dBm . The input impedance for both $\mathrm{T}_{\mathrm{x} 1}$ and $T_{x 2}$ equals $30 \mathrm{k} \Omega$. The inputs are designed for symmetrical as well as asymmetrical use. In asymmetrical drive, one input can be tied to Gnd via an external capacitor.

Gain

The gain from inputs $T_{x 1}$ and $T_{x 2}$ to the line is dependent on the set impedance, the line load impedance and dc slope resistor RS in the following way:

$$
A_{T X}=\frac{1}{6 \times R_{S}} \times \frac{Z_{S E T} \times Z_{\text {line }}}{Z_{S E T}+Z_{\text {line }}}
$$

With $Z_{\text {SET }}=600 \Omega$, $Z_{\text {line }}=600 \Omega$ and $R_{S}=50 \Omega$ the gain equals 0 dB . By setting Bit 4 of Register 2 to 1 , the gain is raised by 6.0 dB .

Outputs

In order to transmit signals to the line, the output stage of the MC34016 (line driver) modulates the zener previously described. To guarantee stability of the output stage capacitor CSTB of 100 pF is required

SIDETONE

The MC34016 is equipped with a double Wheatstone bridge architecture to optimize sidetone. One sidetone network is used for short lines and one for long lines. Switchover between both networks is dependent on line current and is described in the automatic gain control section. Different sidetone equations apply depending on whether a passive or an active set impedance is set.

Sidetone Cancellation with Passive Set Impedance

In a passive set impedance application, the set impedance is a part of the equations for optimum sidetone. For short lines optimum cancellation occurs if:

$$
Z_{\mathrm{HS} 1}=\frac{\mathrm{R}_{\mathrm{HS} 2}}{R_{\mathrm{S}}} \times \frac{\mathrm{Z}_{\mathrm{SET}} \times \mathrm{Z}_{\text {lineshort }}}{\mathrm{Z}_{\mathrm{SET}}+\mathrm{Z}_{\text {lineshort }}}
$$

with: $\quad Z_{\text {lineshort }}=$ impedance of a short telephone line and for long lines:

$$
Z_{H L 1}=\frac{R_{H L 2}}{R_{S}} \times \frac{Z_{S E T} \times Z_{\text {linelong }}}{Z_{S E T}+Z_{\text {linelong }}}
$$

with: \quad Zlinelong $=$ impedance of a long telephone line

Sidetone Cancellation with Active Set Impedance

In the active set impedance application, the set impedance does not appear in the equations for optimum sidetone cancellation as it does in the passive application. For short lines, optimum cancellation occurs if:

$$
Z_{H S 1}=\frac{R_{H S 2}}{R_{S}} \times Z_{\text {lineshort }}
$$

and for long lines:

$$
\mathrm{Z}_{\mathrm{HL} 1}=\frac{\mathrm{R}_{\mathrm{HL} 2}}{\mathrm{R}_{\mathrm{S}}} \times \mathrm{Z}_{\text {linelong }}
$$

RECEIVE CHANNEL

Inputs

The inputs HYS and HYL have an input resistance of $30 \mathrm{k} \Omega$ and can handle signals up to 800 mVpp . This corresponds to a signal at the telephone line of about 8.0 dBm in the typical application. The switchover from HYS to HYL is dependent on line current and described in the automatic gain control section.

Gain

The overall gain from the line to the outputs $R_{X 1}$ and $R_{X 2}$ for short lines and passive impedance equals:

$$
\mathrm{A}_{\mathrm{RX}}=7.6 \times \frac{\mathrm{R} 14^{\prime}}{\mathrm{R} 14^{\prime}+\mathrm{Z}_{\mathrm{HYS}}}
$$

For active impedance it follows:

$$
A_{R X}=7.6 \times \frac{R 14^{\prime}}{R 14^{\prime}+Z_{H Y S}} \times\left(1+\frac{\mathrm{R} 1 \times \mathrm{Z}_{\mathrm{HYS}}}{\mathrm{R} 14 \times \mathrm{Z}_{\mathrm{SET}}}\right)
$$

In these relations, R14' is the resistor R14 in parallel with the input impedance at HYS of $30 \mathrm{k} \Omega$. The gain for long
lines can be derived by replacing Z_{H} YS and R 14 by $\mathrm{Z}_{H Y L}$ and R17. With $\mathrm{R} 14=3.0 \mathrm{k} \Omega$ and $\mathrm{ZHYS}=18 \mathrm{k} \Omega$ the receive gain equals 0 dB for the passive impedance application.

Outputs

The outputs $R_{x 1}$ and $R_{x 2}$ of the receive channel have an output impedance of 150Ω and are designed to drive a $10 \mathrm{k} \Omega$ resistive load or a 47 nF capacitive load with a 3.5 Vpp swing.

AUTOMATIC GAIN CONTROL

The automatic gain control function (AGC) controls the transmit and receive gains and the switchover for the sidetone networks for short and long lines according to the line current (which represents line length). The effect of AGC on the transmit and receive amplifiers is 6.0 dB at default and it can be disabled via the serial bus. The switchover for the sidetone networks tracks the AGC curves for the transmit and receive amplifier gain. This feature can also be disabled via the serial bus:

| Bit 6, Reg. 2
 'PABX Mode' | Bit 0, Reg. 2
 'AGC Range' | Description |
| :---: | :---: | :--- |$|$| 0 | 0 | AGC Gain Range of 6.0 dB,
 Sidetone Switchover Enabled |
| :---: | :---: | :--- |
| 0 | 1 | No AGC Gain Range, Sidetone
 Switchover Enabled |
| 1 | 0 | AGC Range of 6.0 dB, only
 HYS Input Active, HYL Muted |
| 1 | 1 | No AGC Gain Range, only
 HYS Input Active, HYL Muted |

The ratio between start and stop current for the AGC curves is programmable for both voltage and current regulation mode:

Bit 4, Reg. 1 'DC Mask'	Bit 1, Reg. 2 'AGC Ratio'	AGC Ratio Selected	IAGCstart $(\mu$ A)	I AGCstop $_{(\mu \text { A) }}$
0	0	Voltage Regu- lation, AGC Ratio 1:3	10	31
0	1	Voltage Regu- lation, AGC Ratio 1:2	21	42
1	0	Current Regu- lation, AGC Ratio 1:2	21	42
1	1	Current Regu- lation, AGC Ratio 3:5	31	52

The relation between line current and $I_{\text {start }}$ and $I_{\text {stop }}$ is given by:

$$
\begin{aligned}
& l_{\text {linestart }}=\frac{R_{\text {AGC }}}{R_{S}} \times I_{\text {AGCstart }} \\
& I_{\text {linestop }}=\frac{R_{A G C}}{R_{S}} \times I_{\text {AGCstop }}
\end{aligned}
$$

Figures 5, 6, 7 and 8 show the AGC curves for both voltage regulation and current regulation. In current regulation, the start point for the AGC curves is coupled to the knee point of the dc characteristic, or: I $I_{\text {knee }}=I_{\text {AGCstart }}$.

LOGIC OUTPUT DRIVERS

The MC34016 is equipped with three logic outputs meant to interface to the front end of a telephone. The outputs can be controlled via the serial bus interface. As shown in the characteristics, the logic outputs are capable of sourcing at least 1.0 mA and sinking at least 5.0 mA .

Output HKSW

Output HKSW is dedicated to drive the hookswitch. With HKSW low, the line is opened via Q2 and Q3 and automatically switches off the line driver transistor Q1. This feature guarantees fast dc settling after line breaks occurring during pulse dialing.

Outputs Out1 and Out2

Outputs Out1 and Out2 may be used for any logic function, such as control of an earth switch and/or a shunt wire.

SERIAL BUS INTERFACE

The serial interface of the MC34016 enables a simple three wire connection to a micro controller.

Timing

Times t1, t2, t3, t4 and t5 are specified in the electrical characteristics.

With BEN high, data can be clocked into the serial port by using Data and Clk lines. On the rising edge of the Clk, the data enters the MC34016. The last 8-bits of data entered are shifted into the registers when BEN is forced low. With BEN low, the serial port of the MC34016 is disabled. BEN must be kept low until the next register update is needed. Data should be written by entering the most significant bit first (Bit 7) and the least significant bit (Bit 0) last.

With BEN low, the Data and Clk lines may be used to control other devices in the application.

Timing Diagram

Registers

The MC34016 is equipped with two 8-bit registers which are selected by the value of the most significant bit (Bit 7). If the supply voltage of the MC34016 drops below 2.5 V , all registers are set to 0 . This RESET function enables a smooth power-up of the device. The registers are as follows:
Register 1 (Bit $7=0$)

Bit	Function	Operation	Default
0	Output HKSW	0: HKSW is Low 1: HKSW is High	0
1	Output Out1	0: Out1 is Low 1: Out1 is High	0
2	Output Out2	0: Out2 is Low 1: Out2 is High	0
3	Not Used	-	-
4	DC Mask	0: Voltage Regulation Mask 1: Current Regulation Mask for France	0
5	DC Mode	0: Speech Mode/Normal Operation 1: Dialing Mode for Low Voltage Drop	0
6	Test Mode	Only Used During Manufacturing	0

Figure 1. Line Voltage versus Line Current (Voltage Regulation Mask)

Register 2 (Bit $7=1$)

Bit	Function	Operation	Default	
0	AGC Range	0: AGC Range 6.0 dB 1: AGC Range 0 dB (Switched "Off")	0	
1	AGC Ratio	Voltage Regulation: (Bit 4, Reg. $1=0)$ $0:$ Ratio 1:3 1: Ratio 1:2	Current Regulation: (Bit 4, Reg. $1=1)$ $0:$ Ratio 1:2 1: Ratio 3:5	0
2	Transmit Mute	0: Transmit Channel Active 1: Transmit Channel Muted	0	
3	Receive Mute	0: Receive Channel Active 1: Receive Channel Muted	0	
4	Transmit Gain	0: Transmit Channel Gain $=0 \mathrm{~dB}$ 1: Transmit Channel Gain = 6.0 dB	0	
5	Receive Gain	0: Receive Channel Gain $=0 \mathrm{~dB}$ 1: Receive Channel Gain $=6.0 \mathrm{~dB}$	0	
6	PABX Mode	0: Normal Mode 1: PABX Mode (only Input HYS Selected)	0	

Figure 2. Line Voltage versus Line Current
(Pulse Dial Mask)

Figure 3. Line Voltage versus Line Current
(Current Regulation Mask)

Figure 5. AGC Weighting Factor versus line (Voltage Regulation Mask)

Figure 7. AGC Weighting Factor versus line (Current Regulation Mask)

Figure 4. Line Voltage versus Line Current
(Current Regulation Mask)

Figure 6. AGC Weighting Factor versus line (Voltage Retulation Mask)

Figure 8. AGC Weighting Factor versus lline (Currrent Regulation Mask)

MC34016

Figure 9. Test Diagram

MC34016

Figure 10. Typical Application with Passive Impedance and Voltage Regulation

Figure 11. Typical Application with Active Impedance and Current Regulation

Encoder and Decoder Pairs CMOS

These devices are designed to be used as encoder/decoder pairs in remote control applications.

The MC145026 encodes nine lines of information and serially sends this information upon receipt of a transmit enable (TE) signal. The nine lines may be encoded with trinary data (low, high, or open) or binary data (low or high). The words are transmitted twice per encoding sequence to increase security.

The MC145027 decoder receives the serial stream and interprets five of the trinary digits as an address code. Thus, 243 addresses are possible. If binary data is used at the encoder, 32 addresses are possible. The remaining serial information is interpreted as four bits of binary data. The valid transmission (VT) output goes high on the MC145027 when two conditions are met. First, two addresses must be consecutively received (in one encoding sequence) which both match the local address. Second, the 4 bits of data must match the last valid data received. The active VT indicates that the information at the Data output pins has been updated.

The MC145028 decoder treats all nine trinary digits as an address which allows 19,683 codes. If binary data is encoded, 512 codes are possible. The VT output goes high on the MC145028 when two addresses are consecutively received (in one encoding sequence) which both match the local address.

- Operating Temperature Range: -40 to $+85^{\circ} \mathrm{C}$
- Very-Low Standby Current for the Encoder: 300 nA Maximum @ $25^{\circ} \mathrm{C}$
- Interfaces with RF, Ultrasonic, or Infrared Modulators and Demodulators
- RC Oscillator, No Crystal Required
- High External Component Tolerance; Can Use $\pm 5 \%$ Components
- Internal Power-On Reset Forces All Decoder Outputs Low
- Operating Voltage Range: MC145026 = 2.5 to $18 \mathrm{~V}^{*}$

$$
\text { MC145027, MC145028 = } 4.5 \text { to } 18 \mathrm{~V}
$$

- Low-Voltage Versions Available:

SC41343 = 2.8 to 10 V Version of the MC145027
SC41344 = 2.8 to 10 V Version of the MC145028

- For Infrared Applications, See Application Note AN1016/D

MC145026 MC145027 MC145028 SC41343 SC41344

ORDERING INFORMATION

MC145026P
MC145026D
MC145027P, SC41343P
MC145027DW, SC41343DW
MC145028P, SC41344P
MC145028DW, SC41344DW

Plastic DIP SOG Package

Plastic DIP SOG Package
Plastic DIP SOG Package

PIN ASSIGNMENTS

MC145026
ENCODER

A1 \square	1 -	16	$7 V_{D D}$
A2	2	15	$\mathrm{D}_{\text {out }}$
A3	3	14	$\overline{T E}$
A4 $\square^{\text {¢ }}$	4	13	RTC
A5	5	12	C_{TC}
A6/D6	6	11	$\square \mathrm{R}_{S}$
A7/D7 [7	10	$7 \mathrm{Ag} / \mathrm{D} 9$
$v_{S S}[$	8	9] A8/D8

MC145027/SC41343 DECODERS

MC145028/SC41344 DECODERS

$1 \bullet$	16
2	15
3	14
4	13
5	12
6	11
7	10
8	9

* All MC145026 devices manufactured after date code 9314 or 314 are guaranteed over this wider voltage range. All previous designs using the low-voltage SC41342 should convert to the MC145026, which is a drop-in replacement. The SC41342 part number has been discontinued.

Figure 1. MC145026 Encoder Block Diagram

Figure 2. MC145027 Decoder Block Diagram

Figure 3. MC145028 Decoder Block Diagram

MAXIMUM RATINGS* (Voltages Referenced to V_{SS})

Rating	Symbol	Value	Unit
V_{DD}	DC Supply Voltage (except SC41343, SC41344)	-0.5 to +18	V
$\mathrm{~V}_{\mathrm{DD}}$	DC Supply Voltage (SC41343, SC41344 only)	-0.5 to +10	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}$	DC Input Current, per Pin	± 10	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 10	mA
P_{D}	Power Dissipation, per Package	500	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$.

ELECTRICAL CHARACTERISTICS — MC145026*, MC145027, and MC145028 (Voltage Referenced to VSS)

Symbol	Characteristic	V_{VD}	Guaranteed Limit						Unit
			$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$85^{\circ} \mathrm{C}$		
			Min	Max	Min	Max	Min	Max	
V OL	Low-Level Output Voltage $\quad\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {DD }}\right.$ or 0$)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	V
V_{OH}	High-Level Output Voltage $\quad\left(\mathrm{V}_{\text {in }}=0\right.$ or $\left.\mathrm{V}_{\mathrm{DD}}\right)$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} \hline 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	$\begin{gathered} 4.95 \\ 9.95 \\ 14.95 \end{gathered}$	-	V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage $\begin{gathered} \left(\mathrm{V}_{\text {out }}=4.5 \text { or } 0.5 \mathrm{~V}\right) \\ \left(\mathrm{V}_{\text {out }}=9.0 \text { or } 1.0 \mathrm{~V}\right) \\ \left(\mathrm{V}_{\text {out }}=13.5 \text { or } 1.5 \mathrm{~V}\right) \end{gathered}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	-	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	$-$	$\begin{aligned} & 1.5 \\ & 3.0 \\ & 4.0 \end{aligned}$	V
V_{IH}	$\begin{array}{\|cc\|} \hline \text { High-Level Input Voltage } & \\ & \left(\mathrm{V}_{\text {out }}=0.5 \text { or } 4.5 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {out }}=1.0 \text { or } 9.0 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {out }}=1.5 \text { or } 13.5 \mathrm{~V}\right) \\ \hline \end{array}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 7.0 \\ & 11 \end{aligned}$	$-$	$\begin{gathered} 3.5 \\ 7.0 \\ 11 \end{gathered}$	-	V
IOH	High-Level Output Current $\begin{gathered} \left(\mathrm{V}_{\text {out }}=2.5 \mathrm{~V}\right) \\ \left(\mathrm{V}_{\text {out }}=4.6 \mathrm{~V}\right) \\ \left(\mathrm{V}_{\text {out }}=9.5 \mathrm{~V}\right) \\ \left(\mathrm{V}_{\text {out }}=13.5 \mathrm{~V}\right) \end{gathered}$	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} -2.5 \\ -0.52 \\ -1.3 \\ -3.6 \end{gathered}$	-	$\begin{gathered} -2.1 \\ -0.44 \\ -1.1 \\ -3.0 \end{gathered}$	-	$\begin{gathered} -1.7 \\ -0.36 \\ -0.9 \\ -2.4 \end{gathered}$	-	mA
${ }^{\text {IOL }}$	Low-Level Output Current $\begin{aligned} & \left(\mathrm{V}_{\text {out }}=0.4 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {out }}=1.5 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{gathered} 0.52 \\ 1.3 \\ 3.6 \end{gathered}$	-	$\begin{gathered} 0.44 \\ 1.1 \\ 3.0 \end{gathered}$	-	$\begin{gathered} 0.36 \\ 0.9 \\ 2.4 \\ \hline \end{gathered}$	-	mA
lin	Input Current - TE (MC145026, Pull-Up Device)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	-	$\begin{aligned} & 3.0 \\ & 16 \\ & 35 \end{aligned}$	$\begin{gathered} 11 \\ 60 \\ 120 \end{gathered}$	-	-	$\mu \mathrm{A}$
lin	Input Current R_{S} (MC145026), $D_{\text {in }}$ (MC145027, MC145028)	15	-	± 0.3	-	± 0.3	-	± 1.0	$\mu \mathrm{A}$
1 in	```Input Current A1 - A5, A6/D6 - A9/D9 (MC145026), A1 - A5 (MC145027), A1 - A9 (MC145028)```	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	-	-	$\begin{gathered} \pm 110 \\ \pm 500 \\ \pm 1000 \end{gathered}$	-	-	$\mu \mathrm{A}$
$\mathrm{C}_{\text {in }}$	Input Capacitance ($\mathrm{V}_{\text {in }}=0$)	-	-	-	-	7.5	-	-	pF
IDD	Quiescent Current - MC145026	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	-	-	$\begin{aligned} & 0.1 \\ & 0.2 \\ & 0.3 \end{aligned}$	-	-	$\mu \mathrm{A}$
IDD	Quiescent Current - MC145027, MC145028	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	-	-	$\begin{gathered} \hline 50 \\ 100 \\ 150 \end{gathered}$	-	-	$\mu \mathrm{A}$
$I_{\text {dd }}$	Dynamic Supply Current — MC145026 ($\mathrm{f}_{\mathrm{C}}=20 \mathrm{kHz}$)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	-	-	$\begin{aligned} & 200 \\ & 400 \\ & 600 \end{aligned}$	-	-	$\mu \mathrm{A}$
$I_{\text {dd }}$	Dynamic Supply Current — MC145027, MC145028 ($\mathrm{f}_{\mathrm{C}}=20 \mathrm{kHz}$)	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	-	-	$\begin{gathered} \hline 400 \\ 800 \\ 1200 \end{gathered}$	-	-	$\mu \mathrm{A}$

[^22]ELECTRICAL CHARACTERISTICS — MC145026 (Voltage Referenced to VSS)

Symbol	Characteristic		$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit						Unit	
			$-40^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$		$85^{\circ} \mathrm{C}$					
			Min	Max	Min	Max	Min	Max			
VOL	Low-Level Output Voltage	$\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right.$ or $\left.\mathrm{V}_{\mathrm{DD}}\right)$		2.5	-	0.05	-	0.05	-	0.05	V
V_{OH}	High-Level Output Voltage	$\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right.$ or $\left.\mathrm{V}_{\mathrm{DD}}\right)$		2.5	2.45	-	2.45	-	2.45	-	V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage	$\left(\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}\right.$ or 2.0 V$)$	2.5	-	0.3	-	0.3	-	0.3	V	
V_{IH}	High-Level Input Voltage	$\left(\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}\right.$ or 2.0 V$)$	2.5	2.2	-	2.2	-	2.2	-	V	
${ }^{\mathrm{IOH}}$	High-Level Output Current	$\left(\mathrm{V}_{\text {out }}=1.25 \mathrm{~V}\right)$	2.5	0.28	-	0.25	-	0.2	-	mA	
$\mathrm{IOL}^{\text {I }}$	Low-Level Output Current	$\left(\mathrm{V}_{\text {out }}=0.4 \mathrm{~V}\right)$	2.5	0.22	-	0.2	-	0.16	-	mA	
lin	Input Current (TE - Pull-Up	Device)	2.5	-	-	0.09	1.8	-	-	$\mu \mathrm{A}$	
1 in	Input Current (A1-A5, A6/D	-A9/D9)	2.5	-	-	-	± 25	-	-	$\mu \mathrm{A}$	
IDD	Quiescent Current		2.5	-	-	-	0.05	-	-	$\mu \mathrm{A}$	
$I_{\text {dd }}$	Dynamic Supply Current (f_{C}	= 20 kHz)	2.5	-	-	-	40	-	-	$\mu \mathrm{A}$	

ELECTRICAL CHARACTERISTICS — SC41343 and SC41344 (Voltage Referenced to VSS)

Symbol	Characteristic		$\underset{\mathrm{V}}{\mathrm{~V}_{\mathrm{DD}}}$	Guaranteed Limit						Unit	
			$-40^{\circ} \mathrm{C}$	$25^{\circ} \mathrm{C}$		$85^{\circ} \mathrm{C}$					
			Min	Max	Min	Max	Min	Max			
VOL	Low-Level Output Voltage	$\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right.$ or $\left.\mathrm{V}_{\mathrm{DD}}\right)$		$\begin{aligned} & \hline 2.8 \\ & 5.0 \\ & 10 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	V
V_{OH}	High-Level Output Voltage	$\left(\mathrm{V}_{\text {in }}=0 \mathrm{~V}\right.$ or V_{DD})		$\begin{aligned} & 2.8 \\ & 5.0 \\ & 10 \end{aligned}$	$\begin{aligned} & 2.75 \\ & 4.95 \\ & 9.95 \end{aligned}$	-	$\begin{aligned} & 2.75 \\ & 4.95 \\ & 9.95 \end{aligned}$	-	$\begin{aligned} & 2.75 \\ & 4.95 \\ & 9.95 \end{aligned}$	-	V
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage	$\begin{aligned} & \left(\mathrm{V}_{\text {out }}=2.3 \mathrm{~V} \text { or } 0.5 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {out }}=4.5 \mathrm{~V} \text { or } 0.5 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {out }}=9.0 \mathrm{~V} \text { or } 1.0 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & 2.8 \\ & 5.0 \\ & 10 \end{aligned}$	-	$\begin{gathered} 0.84 \\ 1.5 \\ 3.0 \end{gathered}$	-	$\begin{gathered} 0.84 \\ 1.5 \\ 3.0 \end{gathered}$	-	$\begin{gathered} 0.84 \\ 1.5 \\ 3.0 \end{gathered}$	V	
V_{IH}	High-Level Input Voltage	$\begin{aligned} & \left(\mathrm{V}_{\text {out }}=0.5 \mathrm{~V} \text { or } 2.3 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {out }}=0.5 \mathrm{~V} \text { or } 4.5 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {out }}=1.0 \mathrm{~V} \text { or } 9.0 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & 2.8 \\ & 5.0 \\ & 10 \\ & \hline \end{aligned}$	$\begin{gathered} 1.96 \\ 3.5 \\ 7.0 \\ \hline \end{gathered}$	-	$\begin{gathered} 1.96 \\ 3.5 \\ 7.0 \\ \hline \end{gathered}$	-	$\begin{gathered} 1.96 \\ 3.5 \\ 7.0 \end{gathered}$	-	V	
${ }^{\mathrm{I} O H}$	High-Level Output Current	$\begin{aligned} & \left(\mathrm{V}_{\text {out }}=1.4 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {out }}=4.5 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {out }}=9.0 \mathrm{~V}\right) \end{aligned}$	$\begin{gathered} 2.8 \\ 5.0 \\ 10 \end{gathered}$	$\begin{gathered} -0.73 \\ -0.59 \\ -1.3 \end{gathered}$	-	$\begin{aligned} & -0.7 \\ & -0.5 \\ & -1.1 \end{aligned}$	-	$\begin{gathered} -0.55 \\ -0.41 \\ -0.9 \end{gathered}$	-	mA	
${ }^{\text {IOL }}$	Low-Level Output Current	$\begin{aligned} & \left(\mathrm{V}_{\text {out }}=0.4 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {out }}=1.0 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & 2.8 \\ & 5.0 \\ & 10 \end{aligned}$	$\begin{gathered} 0.35 \\ 0.8 \\ 3.5 \end{gathered}$	-	$\begin{aligned} & 0.3 \\ & 0.6 \\ & 2.9 \end{aligned}$	-	$\begin{gathered} 0.24 \\ 0.4 \\ 2.3 \end{gathered}$	-	mA	
lin	Input Current - Din		10	-	± 0.3	-	± 0.3	-	± 1.0	$\mu \mathrm{A}$	
1 in	Input Current A1 - A5 (SC41343) A1 - A9 (SC41344)		$\begin{aligned} & \hline 2.8 \\ & 5.0 \\ & 10 \end{aligned}$	-	-	-	$\begin{aligned} & \pm 30 \\ & \pm 140 \\ & \pm 600 \end{aligned}$	-	-	$\mu \mathrm{A}$	
Cin	Input Capacitance ($\mathrm{V}_{\text {in }}=0$)		-	-	-	-	7.5	-	-	pF	
IDD	Quiescent Current		$\begin{aligned} & \hline 2.8 \\ & 5.0 \\ & 10 \end{aligned}$	-	-	-	$\begin{gathered} 60 \\ 75 \\ 150 \end{gathered}$	-	-	$\mu \mathrm{A}$	
$I_{\text {dd }}$	Dynamic Supply Current ($\mathrm{f}_{\mathrm{C}}=20 \mathrm{kHz}$)		$\begin{aligned} & 2.8 \\ & 5.0 \\ & 10 \end{aligned}$	-	-	-	300 500 1000	-	-	$\mu \mathrm{A}$	

SWITCHING CHARACTERISTICS — MC145026*, MC145027, and MC145028 ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Characteristic	Figure No.	V ${ }_{\text {D }}$	Guaranteed Limit		Unit
				Min	Max	
tTLH, tTHL	Output Transition Time	4,8	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 200 \\ & 100 \\ & 80 \end{aligned}$	ns
tr_{r}	Din Rise Time - Decoders	5	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\mu \mathrm{s}$
t_{f}	Din Fall Time - Decoders	5	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	-	$\begin{aligned} & 15 \\ & 5.0 \\ & 4.0 \end{aligned}$	$\mu \mathrm{s}$
$\mathrm{f}_{\text {osc }}$	Encoder Clock Frequency	6	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 0.001 \\ & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 5.0 \\ & 10 \end{aligned}$	MHz
f	Decoder Frequency - Referenced to Encoder Clock	12	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 240 \\ & 410 \\ & 450 \end{aligned}$	kHz
$t_{\text {w }}$	TE Pulse Width - Encoders	7	$\begin{aligned} & 5.0 \\ & 10 \\ & 15 \end{aligned}$	$\begin{aligned} & 65 \\ & 30 \\ & 20 \end{aligned}$	-	ns

* Also see next Switching Characteristics table for 2.5 V specifications.

SWITCHING CHARACTERISTICS - MC145026 ($\left.C_{L}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Characteristic	Figure No.	VDD	Guaranteed Limit		Unit
				Min	Max	
tTLH, tTHL	Output Transition Time	4, 8	2.5	-	450	ns
$\mathrm{f}_{\text {osc }}$	Encoder Clock Frequency	6	2.5	1.0	250	kHz
tw	TE Pulse Width	7	2.5	1.5	-	$\mu \mathrm{s}$

SWITCHING CHARACTERISTICS - SC41343 and SC41344 ($\left.\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Symbol	Characteristic	Figure No.	VDD	Guaranteed Limit		Unit
				Min	Max	
${ }^{\text {tTLH, }}$, ${ }^{\text {THL }}$	Output Transition Time	4, 8	$\begin{aligned} & 2.8 \\ & 5.0 \\ & 10 \end{aligned}$	-	$\begin{aligned} & 320 \\ & 200 \\ & 100 \end{aligned}$	ns
tr_{r}	Din Rise Time	5	$\begin{aligned} & 2.8 \\ & 5.0 \\ & 10 \end{aligned}$	-	$\begin{aligned} & 15 \\ & 15 \\ & 15 \end{aligned}$	$\mu \mathrm{s}$
t_{f}	Din Fall Time	5	$\begin{aligned} & 2.8 \\ & 5.0 \\ & 10 \end{aligned}$	-	$\begin{aligned} & 15 \\ & 15 \\ & 5.0 \end{aligned}$	$\mu \mathrm{s}$
\dagger	Decoder Frequency - Referenced to Encoder Clock	12	$\begin{aligned} & 2.8 \\ & 5.0 \\ & 10 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 240 \\ & 410 \end{aligned}$	kHz

Figure 4.

Figure 6.

Figure 5.

Figure 7.

* Includes all probe and fixture capacitance.

Figure 8. Test Circuit

OPERATING CHARACTERISTICS

MC145026

The encoder serially transmits trinary data as defined by the state of the A1 - A5 and A6/D6 - A9/D9 input pins. These pins may be in either of three states (low, high, or open) allowing 19,683 possible codes. The transmit sequence is initiated by a low level on the TE input pin. Upon power-up, the MC145026 can continuously transmit as long as TE remains low (also, the device can transmit two-word sequences by pulsing TE low). However, no MC145026 application should be designed to rely upon the first data word transmitted immediately after power-up because this word may be invalid. Between the two data words, no signal is sent for three data periods (see Figure 10).

Each transmitted trinary digit is encoded into pulses (see Figure 11). A logic 0 (low) is encoded as two consecutive short pulses, a logic 1 (high) as two consecutive long pulses, and an open (high impedance) as a long pulse followed by a short pulse. The input state is determined by using a weak "output" device to try to force each input high then low. If only a high state results from the two tests, the input is assumed to be hardwired to V_{DD}. If only a low state is obtained, the input is assumed to be hardwired to V_{SS}. If both a high and a low can be forced at an input, an open is assumed and is encoded as such. The "high" and "low" levels are 70\% and 30% of the supply voltage as shown in the Electrical Characteristics table. The weak "output" device sinks/sources up to $110 \mu \mathrm{~A}$ at a 5 V supply level, $500 \mu \mathrm{~A}$ at 10 V , and 1 mA at 15 V .

The TE input has an internal pull-up device so that a simple switch may be used to force the input low. While TE is high and the second-word transmission has timed out, the encoder is completely disabled, the oscillator is inhibited, and the current drain is reduced to quiescent current. When TE is brought low, the oscillator is started and the transmit sequence begins. The inputs are then sequentially selected, and determinations are made as to the input logic states. This information is serially transmitted via the $D_{\text {out }}$ pin.

MC145027

This decoder receives the serial data from the encoder and outputs the data, if it is valid. The transmitted data, consisting of two identical words, is examined bit by bit during reception. The first five trinary digits are assumed to be the address. If the received address matches the local address, the next four (data) bits are internally stored, but are not transferred to the output data latch. As the second encoded word is received, the address must again match. If a match occurs, the new data bits are checked against the previously stored data bits. If the two nibbles of data (four bits each) match, the data is transferred to the output data latch by VT and remains until new data replaces it. At the same time, the VT output pin is brought high and remains high until an error is received or until no input signal is received for four data periods (see Figure 10).

Although the address information may be encoded in trinary, the data information must be either a 1 or 0 . A trinary (open) data line is decoded as a logic 1.

MC145028

This decoder operates in the same manner as the MC145027 except that nine address lines are used and no data output is available. The VT output is used to indicate that a valid address has been received. For transmission security, two identical transmitted words must be consecutively received before a VT output signal is issued.

The MC145028 allows 19,683 addresses when trinary levels are used. 512 addresses are possible when binary levels are used.

PIN DESCRIPTIONS

MC145026 ENCODER

A1 - A5, A6/D6 - A9/D9
 Address, Address/Data Inputs (Pins 1 - 7, 9, and 10)

These address/data inputs are encoded and the data is sent serially from the encoder via the $D_{\text {out }}$ pin.

RS, Ctc, Rtc
(Pins 11, 12, and 13)
These pins are part of the oscillator section of the encoder (see Figure 9).

If an external signal source is used instead of the internal oscillator, it should be connected to the R_{S} input and the $\mathrm{RTC}_{\mathrm{T}}$ and $\mathrm{CTC}_{\mathrm{T}}$ pins should be left open.

TE

Transmit Enable (Pin 14)

This active-low transmit enable input initiates transmission when forced low. An internal pull-up device keeps this input normally high. The pull-up current is specified in the Electrical Characteristics table.

Dout
 Data Out (Pin 15)

This is the output of the encoder that serially presents the encoded data word.

VSS
 Negative Power Supply (Pin 8)

The most-negative supply potential. This pin is usually ground.

VDD
 Positive Power Supply (Pin 16)

The most-positive power supply pin.

MC145027 AND MC145028 DECODERS

```
A1 - A5, A1 - A9
Address Inputs (Pins 1-5) - MC145027,
Address Inputs (Pins 1-5, 15, 14, 13, 12) — MC145028
```

These are the local address inputs. The states of these pins must match the appropriate encoder inputs for the VT pin to go high. The local address may be encoded with trinary or binary data.

D6 - D9

Data Outputs (Pins 15, 14, 13, 12) — MC145027 Only
These outputs present the binary information that is on encoder inputs A6/D6 through A9/D9. Only binary data is
acknowledged; a trinary open at the MC145026 encoder is decoded as a high level (logic 1).

$D_{\text {in }}$
 Data In (Pin 9)

This pin is the serial data input to the decoder. The input voltage must be at CMOS logic levels. The signal source driving this pin must be dc coupled.

$\mathrm{R}_{1}, \mathrm{C}_{1}$
 Resistor 1, Capacitor 1 (Pins 6, 7)

As shown in Figures 2 and 3, these pins accept a resistor and capacitor that are used to determine whether a narrow pulse or wide pulse has been received. The time constant $\mathrm{R}_{1} \times \mathrm{C}_{1}$ should be set to 1.72 encoder clock periods:

$$
\mathrm{R}_{1} \mathrm{C}_{1}=3.95 \mathrm{RTC}_{\top} \mathrm{C}_{\top}
$$

$\mathrm{R}_{2} / \mathrm{C}_{2}$

Resistor 2/Capacitor 2 (Pin 10)

As shown in Figures 2 and 3, this pin accepts a resistor and capacitor that are used to detect both the end of a received word and the end of a transmission. The time constant $\mathrm{R}_{2} \times \mathrm{C}_{2}$ should be 33.5 encoder clock periods (four data periods per Figure 11): $\mathrm{R}_{2} \mathrm{C}_{2}=77 \mathrm{R}_{\mathrm{T}} \mathrm{C} \mathrm{C}_{\mathrm{T}}$. This time
constant is used to determine whether the $D_{\text {in }}$ pin has remained low for four data periods (end of transmission). A separate on-chip comparator looks at the voltage-equivalent two data periods ($0.4 \mathrm{R}_{2} \mathrm{C}_{2}$) to detect the dead time between received words within a transmission.

VT

Valid Transmission Output (Pin 11)
This valid transmission output goes high after the second word of an encoding sequence when the following conditions are satisfied:

1. the received addresses of both words match the local decoder address, and
2. the received data bits of both words match.

VT remains high until either a mismatch is received or no input signal is received for four data periods.

VSS
 Negative Power Supply (Pin 8)

The most-negative supply potential. This pin is usually ground.

VDD
 Positive Power Supply (Pin 16)

The most-positive power supply pin.

This oscillator operates at a frequency determined by the external RC network; i.e.,
$\mathrm{f} \approx \frac{1}{2.3 \mathrm{RTC}_{\mathrm{TC}} \mathrm{Cl}^{\prime}}(\mathrm{Hz})$
for $1 \mathrm{kHz} \leq \mathrm{f} \leq 400 \mathrm{kHz}$
where: $\mathrm{C}_{\text {TC }}{ }^{\prime}=\mathrm{C}_{\text {TC }}+\mathrm{C}_{\text {layout }}+12 \mathrm{pF}$
$R_{S} \approx 2 R_{T C}$
RS $\geq 20 \mathrm{k}$
RTC $\geq 10 \mathrm{k}$
$400 \mathrm{pF}<\mathrm{C}_{\mathrm{TC}}<15 \mu \mathrm{~F}$

The value for R_{S} should be chosen to be ≥ 2 times RTC^{2}. This range ensures that current through R_{S} is insignificant compared to current through RTC. The upper limit for R_{S} must ensure that $R_{S} \times 5 \mathrm{pF}$ (input capacitance) is small compared to RTC $\times \mathrm{C}_{\mathrm{T} C}$.
For frequencies outside the indicated range, the formula is less accurate. The minimum recommended oscillation frequency of this circuit is 1 kHz . Susceptibility to externally induced noise signals may occur for frequencies below 1 kHz and/or when resistors utilized are greater than $1 \mathrm{M} \Omega$.

Figure 9. Encoder Oscillator Information

Figure 10. Timing Diagram

Figure 11. Encoder Data Waveforms

Figure 12. $\mathrm{f}_{\text {max }}$ vs $\mathrm{Cl}_{\text {layout }}$ — Decoders Only

Figure 13. MC145027 Flowchart

Figure 14. MC145028 Flowchart

MC145027 AND MC145028 TIMING

To verify the MC145027 or MC145028 timing, check the waveforms on C1 (Pin 7) and R2/C2 (Pin 10) as compared to the incoming data waveform on $\mathrm{D}_{\text {in }}($ Pin 9).

The R-C decay seen on C1 discharges down to $1 / 3 V_{D D}$ before being reset to VDD. This point of reset (labelled "DOS" in Figure 15) is the point in time where the decision is made whether the data seen on $D_{\text {in }}$ is a 1 or 0 . DOS should not be too close to the $\mathrm{D}_{\text {in }}$ data edges or intermittent operation may occur.

The other timing to be checked on the MC145027 and MC145028 is on R2/C2 (see Figure 16). The R-C decay is continually reset to V_{DD} as data is being transmitted. Only between words and after the end-of-transmission (EOT) does R2/C2 decay significantly from VDD. R2/C2 can be used to identify the internal end-of-word (EOW) timing edge which is generated when $\mathrm{R} 2 / \mathrm{C} 2$ decays to $2 / 3 \mathrm{~V}_{D D}$. The internal EOT timing edge occurs when R2/C2 decays to $1 / 3$ VDD. When the waveform is being observed, the R-C decay should go down between the $2 / 3$ and $1 / 3 V_{\text {DD }}$ levels, but not too close to either level before data transmission on $D_{\text {in }}$ resumes.

Verification of the timing described above should ensure a good match between the MC145026 transmitter and the MC145027 and MC145028 receivers.

Figure 15. R-C Decay on Pin 7 (C1)

Figure 16. R-C Decay on Pin 10 (R2/C2)

Example R/C Values (All Resistors and Capacitors are $\pm 5 \%$)
($\mathrm{C}_{T C^{\prime}}=\mathrm{C}_{\mathrm{TC}}+20 \mathrm{pF}$)

$\mathrm{f}_{\text {Osc }}(\mathrm{kHz}$)	RTC	$\mathrm{C}_{\text {TC }}$	RS	R_{1}	C_{1}	R2	C_{2}
362	10 k	120 pF	20 k	10 k	470 pF	100 k	910 pF
181	10 k	240 pF	20 k	10 k	910 pF	100 k	1800 pF
88.7	10 k	490 pF	20 k	10 k	2000 pF	100 k	3900 pF
42.6	10 k	1020 pF	20 k	10 k	3900 pF	100 k	7500 pF
21.5	10 k	2020 pF	20 k	10 k	8200 pF	100 k	$0.015 \mu \mathrm{~F}$
8.53	10 k	5100 pF	20 k	10 k	$0.02 \mu \mathrm{~F}$	200 k	$0.02 \mu \mathrm{~F}$
1.71	50 k	5100 pF	100 k	50 k	$0.02 \mu \mathrm{~F}$	200 k	$0.1 \mu \mathrm{~F}$

Figure 17. Typical Application

APPLICATIONS INFORMATION

INFRARED TRANSMITTER

In Figure 18, the MC145026 encoder is set to run at an oscillator frequency of about 4 to 9 kHz . Thus, the time required for a complete two-word encoding sequence is about 20 to 40 ms . The data output from the encoder gates an RC oscillator running at 50 kHz ; the oscillator shown starts rapidly enough to be used in this application. When the "send" button is not depressed, both the MC145026 and oscillator are in a low-power standby state. The RC oscillator has to be trimmed for 50 kHz and has some drawbacks for frequency stability. A superior system uses a ceramic resonator oscillator running at 400 kHz . This oscillator feeds a divider as shown in Figure 19. The unused inputs of the MC14011UB must be grounded.

The MLED81 IRED is driven with the 50 kHz square wave at about 200 to 300 mA to generate the carrier. If desired, two IREDs wired in series can be used (see Application Note AN1016 for more information). The bipolar IRED switch, shown in Figure 18, offers two advantages over a FET. First, a logic FET has too much gate capacitance for the MC14011UB to drive without waveform distortion. Second, the bipolar drive permits lower supply voltages, which are an advantage in portable battery-powered applications.

The configuration shown in Figure 18 operates over a supply range of 4.5 to 18 V . A low-voltage system which operates down to 2.5 V could be realized if the oscillator section of a MC74HC4060 is used in place of the MC14011UB. The data output of the MC145026 is inverted and fed to the RESET pin of the MC74HC4060. Alternately, the MC74HCU04 could be used for the oscillator.

Information on the MC14011UB is in book number DL131/D. The MC74HCU04 and MC74HC4060 are found in book number DL129/D.

INFRARED RECEIVER

The receiver in Figure 20 couples an IR-sensitive diode to input preamp A1, followed by band-pass amplifier A2 with a gain of about 10. Limiting stage A3 follows, with an output of about $800 \mathrm{mV} \mathrm{p}-\mathrm{p}$. The limited 50 kHz burst is detected by comparator A4 that passes only positive pulses, and peak-
detected and filtered by a diode/RC network to extract the data envelope from the burst. Comparator A5 boosts the signal to logic levels compatible with the MC145027/28 data input. The $\mathrm{D}_{\text {in }}$ pin of these decoders is a standard CMOS high-impedance input which must not be allowed to float. Therefore, direct coupling from A5 to the decoder input is utilized.

Shielding should be used on at least A1 and A2, with good ground and high-sensitivity circuit layout techniques applied.

For operation with supplies higher than +5 V , limiter A4's positive output swing needs to be limited to 3 to 5 V . This is accomplished via adding a zener diode in the negative feedback path, thus avoiding excessive system noise. The biasing resistor stack should be adjusted such that V3 is 1.25 to 1.5 V .

This system works up to a range of about 10 meters. The gains of the system may be adjusted to suit the individual design needs. The 100Ω resistor in the emitter of the first 2 N 5088 and the $1 \mathrm{k} \Omega$ resistor feeding A2 may be altered if different gain is required. In general, more gain does not necessarily result in increased range. This is due to noise floor limitations. The designer should increase transmitter power and/or increase receiver aperature with Fresnal lensing to greatly improve range. See Application Note AN1016 for additional information.

Information on the MC34074 is in data book DL128/D.

TRINARY SWITCH MANUFACTURERS

Midland Ross-Electronic Connector Div. Greyhill
Augat/Alcoswitch
Aries Electronics
The above companies may not have the switches in a DIP. For more information, call them or consult eem Electronic Engineers Master Catalog or the Gold Book. Ask for SPDT with center OFF.

Alternative: An SPST can be placed in series between a SPDT and the Encoder or Decoder to achieve trinary action.

Motorola cannot recommend one supplier over another and in no way suggests that this is a complete listing of trinary switch manufacturers.

Figure 18. IRED Transmitter Using RC Oscillator to Generate Carrier Frequency

Figure 19. Using a Ceramic Resonator to Generate Carrier Frequency

Figure 20. Infrared Receiver

MC145106

PLL Frequency Synthesizer CMOS

The MC145106 is a phase-locked loop (PLL) frequency synthesizer constructed in CMOS on a single monolithic structure. This synthesizer finds applications in such areas as CB and FM transceivers. The device contains an oscillator/amplifier, a 210 or 211 divider chain for the oscillator signal, a programmable divider chain for the input signal, and a phase detector. The MC145106 has circuitry for a 10.24 MHz oscillator or may operate with an external signal. The circuit provides a 5.12 MHz output signal, which can be used for frequency tripling. A 2^{9} programmable divider divides the input signal frequency for channel selection. The inputs to the programmable divider are standard ground-to-supply binary signals. Pull-down resistors on these inputs normally set these inputs to ground enabling these programmable inputs to be controlled from a mechanical switch or electronic circuitry.

The phase detector may control a VCO and yields a high level signal when input frequency is low, and a low level signal when input frequency is high. An out-of-lock signal is provided from the on-chip lock detector with a "0" level for the out-of-lock condition.

- Single Power Supply
- Wide Supply Range: 4.5 to 12 V
- Provision for 10.24 MHz Crystal Oscillator
- 5.12 MHz Output
- Programmable Division Binary Input Selects up to 2^{9}
- On-Chip Pull-Down Resistors on Programmable Divider Inputs
- Selectable Reference Divider, 2^{10} or 2^{11} (Including $\div 2$)
- Three-State Phase Detector
- See Application Note AN535 and Article Reprint AR254
- Chip Complexity: 880 FETs or 220 Equivalent Gates
- See the MC145151-2 and MC145152-2 for Higher Performance and Added Flexibility

BLOCK DIAGRAM

	PLASTIC DIP	
$V_{\text {DD }} \ 1 \bullet$	18	$\mathrm{V}_{S S}$
f in 2	17	P0
OSCin C^{3}	16	P1
OSC $_{\text {out }} 4$	15	P2
$\div 2_{\text {out }}[5$	14	P3
FS[6	13	P4
¢Detout 7	12	P5
LD\8	11	P6
P8¢9	10	P7

SOG PACKAGE

$\mathrm{V}_{\text {D }} 1^{\bullet}$	20	$\mathrm{v}_{\text {S }}$
$\mathrm{fin}_{\text {in }} 2$	19	$\bigcirc \mathrm{P} 0$
$\mathrm{OSC}_{\text {in }} \mathrm{C} 3$	18	NC
OSC $_{\text {out }} 4$	17	P1
$\div 2_{\text {out }} 5$	16	P2
FS 6	15	P3
¢Detout 4	14	P4
LD 8	13	NC
P8 9	12	P5
P7 10	11	P6

NC = NO CONNECTION

MAXIMUM RATINGS (Voltages Referenced to V_{SS})

Parameter	Symbol	Value	Unit
DC Supply Voltage	V_{DD}	-0.5 to +12	V
Input Voltage, All Inputs	$\mathrm{V}_{\text {in }}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
DC Input Current, per Pin	I	± 10	mA
Operating Temperature Range	T_{A}	-40 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

This device contains circuitry to protect the inputs against damage due to high static voltages or electric fields; however, it is advised that normal precautions be taken to avoid application of any voltage higher than maximum rated voltages to this high impedance circuit. For proper operation it is recommended that $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\text {DD }}$.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ Unless Otherwise Stated, Voltages Referenced to VSS)

*Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

Figure 1. Maximum Divider Input Frequency versus Supply Voltage

Figure 2. Maximum Oscillator Input Frequency versus Supply Voltage

* Data labelled "Typ" is not to be used for design purposes but is intended as an indication of the IC's potential performance.

TRUTH TABLE

Selection									
P8	P7	P6	P5	P4	P3	P2	P1		Divide by N
0	0	0	0	0	0	0	0	0	2^{*}
0	0	0	0	0	0	0	0	1	3^{*}
0	0	0	0	0	0	0	1	0	2
0	0	0	0	0	0	0	1	1	3
0	0	0	0	0	0	1	0	0	4
\vdots									
0	1	1	\vdots	\vdots	\vdots	\vdots	\vdots	\vdots	255
\vdots									
1	1	1	1	\vdots	1	1	1	1	511

1: Voltage level = VDD.
0 : Voltage level $=0$ or open circuit input.
*The binary setting of 00000000 and 00000001 on P8 to P0 results in a 2 and 3 division which is not in the $2 \mathrm{~N}-1$ sequence. When pin is not connected the logic signal on that pin can be treated as a " 0 ".

PIN DESCRIPTIONS

P0 - P8
Programmable Inputs (PDIP — Pins 17 - 9; SOG — Pins 19, 17 - 14, 12 - 9)

Programmable divider inputs (binary).
$f_{\text {in }}$
Frequency Input (PDIP, SOG — Pin 2)
Frequency input to programmable divider (derived from VCO).

OSC $_{\text {in }}$, OSC $_{\text {out }}$
Oscillator Input and Oscillator Output (PDIP, SOG -

Pins 3, 4)

Oscillator/amplifier input and output terminals.

LD
 Lock Detector (PDIP, SOG — Pin 8)

LD is high when loop is locked, pulses low when out-oflock.

ϕ Detout $^{(P D I P, ~ S O G ~ — ~ P i n ~ 7) ~}$

Signal for control of external VCO, output high when $\mathrm{f}_{\mathrm{in}} / \mathrm{N}$ is less than the reference frequency; output low when $f_{i n} / \mathrm{N}$ is greater than the reference frequency. Reference frequency is the divided down oscillator - input frequency typically 5.0 or 10 kHz .

NOTE

Phase Detector Gain $=\mathrm{V}_{\mathrm{DD}} / 4 \pi$.

FS
 Reference Oscillator Frequency Division Select (PDIP, SOG - Pin 6)

When using 10.24 MHz OSC frequency, this control selects 10 kHz , a " 0 " selects 5.0 kHz .
\div 2out (PDIP, SOG — Pin 5)
Reference OSC frequency divided by 2 output; when using 10.24 MHz OSC frequency, this output is 5.12 MHz for frequency tripling applications.

```
VDD
Positive Power Supply (PDIP, SOG - Pin 1)
```

[^23]
PLL SYNTHESIZER APPLICATIONS

The MC145106 is well suited for applications in CB radios because of the channelized frequency requirements. A typical 40 channel CB transceiver synthesizer, using a single crystal reference, is shown in Figure 3 for receiver IF values of 10.695 MHz and 455 kHz .

In addition to applications in CB radios, the MC145106 can be used as a synthesizer for several other systems. Various frequency spectrums can be achieved through the use of proper offset, prescaling, and loop programming techniques. In general, 300-400 channels can be synthesized using a single loop, with many additional channels available when multiple loop approaches are employed. Figures 4 and 5 are examples of some possibilities.

In the aircraft synthesizer of Figure 5, the VHF loop (top) will provide a $50 \mathrm{kHz}, 360$ channel system with 10.7 MHz R/T offset when only the 11.0500 MHz (transmit) and
12.1200 MHz (receive) frequencies are provided to mixer \#1. When these signals are provided with crystal oscillators, the result is a three crystal 360 channel, 50 kHz step synthesizer. When using the offset loop (bottom) in Figure 5 to provide the indicated injection frequencies for mixer \#1 (two for transmit and two for receive) 360 additional channels are possible. This results in a 720-channel, 25 kHz step synthesizer which requires only two crystals and provides R / T offset capability. The receive offset value is determined by the 11.31 MHz crystal frequency and is 10.7 MHz for the example.

The VHF marine synthesizer in Figure 4 depicts a single loop approach for FM transceivers. The VCO operates on frequency during transmit and is offset downward during receive. The offset corresponds to the receive IF (10.7 MHz) for channels having identical receive/transmit frequencies (simplex), and is ($10.7-4.6=6.1$) MHz for duplex channels. Carrier modulation is introduced in the loop during transmit.

Figure 3. Single Crystal CB Synthesizer Featuring On-Frequency VCO During Transmit

- Duplex Offset = 4.6 MHz.
- Step Size = 25 kHz .
- Frequencies in MHz unless noted.
- Values in parentheses are for a 5.0 kHz reference frequency.
- Example frequencies for Channel 28 shown by *.
\#Can be eliminated by adding 184 to $\div \mathrm{N}$ for Duplex Channels.

Figure 4. VHF Marine Transceiver Synthesizer

Figure 5. VHF Aircraft 720 Channel Two Crystal Frequency Synthesizer

4-Bit Data Bus Input PLL Frequency Synthesizer Interfaces with Single-Modulus Prescalers

The MC145145-2 is programmed by a 4-bit input, with strobe and address lines. The device features consist of a reference oscillator, 12-bit programmable reference divider, digital phase detector, 14-bit programmable divide-by-N counter, and the necessary latch circuitry for accepting the 4-bit input data.

- Operating Temperature Range: - 40 to $85^{\circ} \mathrm{C}$
- Low Power Consumption Through the Use of CMOS Technology
- 3.0 to 9.0 V Supply Range
- Single Modulus 4-Bit Data Bus Programming
- \div N Range $=3$ to $16,383, \div R$ Range $=3$ to 4,095
- "Linearized" Digital Phase Detector Enhances Transfer Function Linearity
- Two Error Signal Options:

Single-Ended (Three-State)
Double-Ended

NOT RECOMMENDED FOR NEW DESIGNS;
 PRODUCT TO BE PHASED OUT.

Closest equivalents are the MC145151-2, MC145170-1, MC14519X series, and MC14520X series.

MC145146-2

4-Bit Data Bus Input PLL Frequency Synthesizer Interfaces with Dual-Modulus Prescalers

The MC145146-2 is programmed by a 4-bit input, with strobe and address lines. The device features consist of a reference oscillator, 12-bit programmable reference divider, digital phase detector, 10-bit programmable divide-by-N counter, 7-bit divide-by-A counter, and the necessary latch circuitry for accepting the 4-bit input data.

- Operating Temperature Range: - 40 to $85^{\circ} \mathrm{C}$
- Low Power Consumption Through the Use of CMOS Technology
- 3.0 to 9.0 V Supply Range
- Programmable Reference Divider for Values Between 3 and 4095
- Dual-Modulus 4-Bit Data Bus Programming
- \div N Range $=3$ to $1023, \div$ A Range $=0$ to 127
- "Linearized" Digital Phase Detector Enhances Transfer Function Linearity
- Two Error Signal Options:

Single-Ended (Three-State)
Double-Ended

NOT RECOMMENDED FOR NEW DESIGNS;

 PRODUCT TO BE PHASED OUT.Closest equivalents are the MC145152-2, MC145170-1,
MC14519X series, and MC14520X series.

BLOCK DIAGRAM

PLL Frequency Synthesizer Family CMOS

The devices described in this document are typically used as low-power, phase-locked loop frequency synthesizers. When combined with an external low-pass filter and voltage-controlled oscillator, these devices can provide all the remaining functions for a PLL frequency synthesizer operating up to the device's frequency limit. For higher VCO frequency operation, a down mixer or a prescaler can be used between the VCO and the synthesizer IC.

These frequency synthesizer chips can be found in the following and other applications:

CATV
AM/FM Radios
Two-Way Radios

TV Tuning
Scanning Receivers
Amateur Radio

DEVICE DETAIL SHEETS
MC145151-2 Parallel-Input, Single-Modulus 3.2-4MC145152-2 Parallel-Input, Dual-Modulus
MC145155-2 Serial-Input, Single-Modulus (Not Recommended for New Designs) 3.2-11
MC145156-2 Serial-Input, Dual-Modulus (Not Recommended for New Designs) 3.2-15
MC145157-2 Serial-Input, Single-Modulus 3.2-19
MC145158-2 Serial-Input, Dual-Modulus 3.2-22
FAMILY CHARACTERISTICS
Maximum Ratings 3.2-25
DC Electrical Characteristics 3.2-25
AC Electrical Characteristics 3.2-27
Timing Requirements 3.2-28
Frequency Characteristics 3.2-29
Phase Detector/Lock Detector Output Waveforms 3.2-29
DESIGN CONSIDERATIONS
Phase-Locked Loop - Low-Pass Filter Design 3.2-30
Crystal Oscillator Considerations 3.2-31
Dual-Modulus Prescaling 3.2-32Page

Parallel-Input PLL Frequency Synthesizer
 Interfaces with Single-Modulus Prescalers

The MC145151-2 is programmed by 14 parallel-input data lines for the N counter and three input lines for the R counter. The device features consist of a reference oscillator, selectable-reference divider, digital-phase detector, and 14-bit programmable divide-by-N counter.

The MC145151-2 is an improved-performance drop-in replacement for the MC145151-1. The power consumption has decreased and ESD and latch-up performance have improved.

- Operating Temperature Range: -40 to $85^{\circ} \mathrm{C}$
- Low Power Consumption Through Use of CMOS Technology
- 3.0 to 9.0 V Supply Range
- On- or Off-Chip Reference Oscillator Operation
- Lock Detect Signal
- \div N Counter Output Available
- Single Modulus/Parallel Programming
- 8 User-Selectable \div R Values: 8, 128, 256, 512, 1024, 2048, 2410, 8192
- \div N Range $=3$ to 16383
- "Linearized" Digital Phase Detector Enhances Transfer Function Linearity
- Two Error Signal Options: Single-Ended (Three-State) or Double-Ended
- Chip Complexity: 8000 FETs or 2000 Equivalent Gates

PIN ASSIGNMENT	
$f _ { \text { in } } \longdiv { 1 \bullet }$	28 LD
vSS V^{2}	27 OSCin
$\mathrm{V}_{\text {DD }}[3$	26 OSC ${ }_{\text {out }}$
$\mathrm{PD}_{\text {out }} \mathrm{C}_{4}$	$25]$ N11
RAOL 5	24 N10
RA1 0^{6}	23 N13
RA2 ${ }^{\text {P }}$	22 N 12
¢R ¢ $_{8}$	21 T/R
¢V ¢9	20 N9
fv ¢ 10	19 N8
No ¢ 11	18 N7
N1[12	17 N6
N2 ¢ 13	16 N5
N3 14	15 N4

NOTE: N0 - N13 inputs and inputs RAO, RA1, and RA2 have pull-up resistors that are not shown.

PIN DESCRIPTIONS

INPUT PINS

$f_{\text {in }}$

Frequency Input (Pin 1)
Input to the \div N portion of the synthesizer. $\mathrm{f}_{\text {in }}$ is typically derived from loop VCO and is ac coupled into the device. For larger amplitude signals (standard CMOS logic levels) dc coupling may be used.

RA0 - RA2

Reference Address Inputs (Pins 5, 6, 7)

These three inputs establish a code defining one of eight possible divide values for the total reference divider, as defined by the table below.

Pull-up resistors ensure that inputs left open remain at a logic 1 and require only a SPST switch to alter data to the zero state.

Reference Address Code			Total Divide Value
RA2	RA1	RA0	
0	0	0	8
0	0	1	128
0	1	0	256
0	1	1	512
1	0	0	1024
1	0	1	2048
1	1	0	2410
1	1	1	8192

N0 - N11
N Counter Programming Inputs (Pins 11-20, 22-25)
These inputs provide the data that is preset into the $\div \mathrm{N}$ counter when it reaches the count of zero. N0 is the least significant and N13 is the most significant. Pull-up resistors en-
sure that inputs left open remain at a logic 1 and require only an SPST switch to alter data to the zero state.

T/R

Transmit/Receive Offset Adder Input (Pin 21)

This input controls the offset added to the data provided at the N inputs. This is normally used for offsetting the VCO frequency by an amount equal to the IF frequency of the transceiver. This offset is fixed at 856 when T/R is low and gives no offset when T/R is high. A pull-up resistor ensures that no connection will appear as a logic 1 causing no offset addition.

OSC $_{\text {in }}$, OSC $_{\text {out }}$

Reference Oscillator Input/Output (Pins 27, 26)

These pins form an on-chip reference oscillator when connected to terminals of an external parallel resonant crystal. Frequency setting capacitors of appropriate value must be connected from OSC in to ground and OSC Out to ground. $_{\text {on }}$ $\mathrm{OSC}_{\text {in }}$ may also serve as the input for an externally-generated reference signal. This signal is typically ac coupled to $\mathrm{OSC}_{\mathrm{in}}$, but for larger amplitude signals (standard CMOS logic levels) dc coupling may also be used. In the external reference mode, no connection is required to OSC out.

OUTPUT PINS
PDout
Phase Detector A Output (Pin 4)
Three-state output of phase detector for use as loop-error signal. Double-ended outputs are also available for this purpose (see $\phi \mathrm{V}$ and $\phi \mathrm{R}$).

Frequency $f V>f R$ or fV Leading: Negative Pulses
Frequency fV < fR or fV Lagging: Positive Pulses
Frequency $f V=f R$ and Phase Coincidence: High-Impedance State
$\phi \mathbf{R}, \phi \mathbf{V}$

Phase Detector B Outputs (Pins 8, 9)

These phase detector outputs can be combined externally for a loop-error signal. A single-ended output is also available for this purpose (see PDout).

If frequency $f V$ is greater than f_{R} or if the phase of $f V$ is leading, then error information is provided by $\phi \vee$ pulsing low. $\phi \mathrm{R}$ remains essentially high.

If the frequency $f v$ is less than f_{R} or if the phase of $f v$ is lagging, then error information is provided by ϕR pulsing low. $\phi \vee$ remains essentially high.

If the frequency of $f V=f R$ and both are in phase, then both ϕV and ϕR remain high except for a small minimum time period when both pulse low in phase.

fV

N Counter Output (Pin 10)

This is the buffered output of the $\div \mathrm{N}$ counter that is inter-
nally connected to the phase detector input. With this output available, the $\div \mathrm{N}$ counter can be used independently.

LD
 Lock Detector Output (Pin 28)

Essentially a high level when loop is locked ($\mathrm{f}_{\mathrm{R}}, \mathrm{fV}$ of same phase and frequency). Pulses low when loop is out of lock.

POWER SUPPLY

VDD

Positive Power Supply (Pin 3)

The positive power supply potential. This pin may range from +3 to +9 V with respect to V SS.

VSS
 Negative Power Supply (Pin 2)

The most negative supply potential. This pin is usually ground.

TYPICAL APPLICATIONS

Figure 1. 5 MHz to 5.5 MHz Local Oscillator Channel Spacing = 1 kHz

1. $\mathrm{f}_{\mathrm{R}}=4.1667 \mathrm{kHz} ; \div \mathrm{R}=2410 ; 21.4 \mathrm{MHz}$ low side injection during receive.
2. Frequency values shown are for the $440-470 \mathrm{MHz}$ band. Similar implementation applies to the $406-440 \mathrm{MHz}$ band. For $470-512 \mathrm{MHz}$, consider reference oscillator frequency X9 for mixer injection signal (90.3750 MHz).

Figure 2. Synthesizer for Land Mobile Radio UHF Bands

Parallel-Input PLL Frequency Synthesizer
 Interfaces with Dual-Modulus Prescalers

The MC145152-2 is programmed by sixteen parallel inputs for the N and A counters and three input lines for the R counter. The device features consist of a reference oscillator, selectable-reference divider, two-output phase detector, 10 -bit programmable divide-by-N counter, and 6-bit programmable $\div \mathrm{A}$ counter.

The MC145152-2 is an improved-performance drop-in replacement for the MC145152-1. Power consumption has decreased and ESD and latch-up performance have improved.

- Operating Temperature Range: -40 to $85^{\circ} \mathrm{C}$
- Low Power Consumption Through Use of CMOS Technology
- 3.0 to 9.0 V Supply Range
- On- or Off-Chip Reference Oscillator Operation
- Lock Detect Signal
- Dual Modulus/Parallel Programming
- 8 User-Selectable \div R Values: 8, 64, 128, 256, 512, 1024, 1160, 2048
- $\div \mathrm{N}$ Range $=3$ to $1023, \div \mathrm{A}$ Range $=0$ to 63
- Chip Complexity: 8000 FETs or 2000 Equivalent Gates
- See Application Note AN980

NOTE: N0 - N9, A0 - A5, and RA0 - RA2 have pull-up resistors that are not shown.

PIN DESCRIPTIONS

INPUT PINS

$f_{\text {in }}$
 Frequency Input (Pin 1)

Input to the positive edge triggered $\div \mathrm{N}$ and \div A counters. f_{in} is typically derived from a dual-modulus prescaler and is ac coupled into the device. For larger amplitude signals (standard CMOS logic levels) dc coupling may be used.

RA0, RA1, RA2

Reference Address Inputs (Pins 4, 5, 6)

These three inputs establish a code defining one of eight possible divide values for the total reference divider. The total reference divide values are as follows:

Reference Address Code			Total Divide Value
RA2	RA1	RA0	
0	0	0	8
0	0	1	64
0	1	0	128
0	1	1	256
1	0	0	512
1	0	1	1024
1	1	0	1160
1	1	1	2048

N0 - N9

N Counter Programming Inputs (Pins 11-20)
The N inputs provide the data that is preset into the $\div \mathrm{N}$ counter when it reaches the count of 0 . N0 is the least significant digit and N9 is the most significant. Pull-up resistors ensure that inputs left open remain at a logic 1 and require only a SPST switch to alter data to the zero state.

A0 - A5

A Counter Programming Inputs
(Pins 23, 21, 22, 24, 25, 10)
The A inputs define the number of clock cycles of $f_{\text {in }}$ that require a logic 0 on the MC output (see Dual-Modulus

Prescaling section). The A inputs all have internal pull-up resistors that ensure that inputs left open will remain at a logic 1.

OSC $_{\text {in }}$, OSC $_{\text {out }}$
 Reference Oscillator Input/Output (Pins 27, 26)

These pins form an on-chip reference oscillator when connected to terminals of an external parallel resonant crystal. Frequency setting capacitors of appropriate value must be connected from OSC in to ground and OSC Out to ground. $_{\text {on }}$ $\mathrm{OSC}_{\text {in }}$ may also serve as the input for an externally-generated reference signal. This signal is typically ac coupled to OSC ${ }_{i n}$, but for larger amplitude signals (standard CMOS logic levels) dc coupling may also be used. In the external reference mode, no connection is required to OSCout.

OUTPUT PINS

$\phi \mathbf{R}, \phi \mathbf{V}$

Phase Detector B Outputs (Pins 7, 8)

These phase detector outputs can be combined externally for a loop-error signal.

If the frequency $f v$ is greater than f_{R} or if the phase of $f V$ is leading, then error information is provided by $\phi \vee$ pulsing low. ϕR remains essentially high.

If the frequency $f v$ is less than f_{R} or if the phase of $f v$ is lagging, then error information is provided by ϕR pulsing low. $\phi \mathrm{V}$ remains essentially high.

If the frequency of $f V=f_{R}$ and both are in phase, then both ϕV and ϕR remain high except for a small minimum time period when both pulse low in phase.

MC

Dual-Modulus Prescale Control Output (Pin 9)

Signal generated by the on-chip control logic circuitry for controlling an external dual-modulus prescaler. The MC level will be low at the beginning of a count cycle and will remain low until the \div A counter has counted down from its programmed value. At this time, MC goes high and remains high until the $\div \mathrm{N}$ counter has counted the rest of the way down from its programmed value ($\mathrm{N}-\mathrm{A}$ additional counts since both $\div \mathrm{N}$ and $\div \mathrm{A}$ are counting down during the first
portion of the cycle). MC is then set back low, the counters preset to their respective programmed values, and the above sequence repeated. This provides for a total programmable divide value $(N T)=N \cdot P+A$ where P and $P+1$ represent the dual-modulus prescaler divide values respectively for high and low MC levels, N the number programmed into the $\div \mathrm{N}$ counter, and A the number programmed into the \div A counter.

LD

Lock Detector Output (Pin 28)

Essentially a high level when loop is locked (fR , fv of same phase and frequency). Pulses low when loop is out of lock.

POWER SUPPLY

VDD
 Positive Power Supply (Pin 3)

The positive power supply potential. This pin may range from +3 to +9 V with respect to V_{SS}.

Vss
Negative Power Supply (Pin 2)
The most negative supply potential. This pin is usually ground.

TYPICAL APPLICATIONS

NOTES:

1. Off-chip oscillator optional.
2. The $\phi \mathrm{R}$ and $\phi \mathrm{V}$ outputs are fed to an external combiner/loop filter. See the Phase-Locked Loop - Low-Pass Filter Design page for additional information. The ϕR and ϕV outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode input range of the op amp used in the combiner/loop filter.

Figure 1. Synthesizer for Land Mobile Radio VHF Bands

NOTES:

1. Receiver 1st I.F. $=45 \mathrm{MHz}$, low side injection; Receiver 2nd I.F. $=11.7 \mathrm{MHz}$, low side injection.
2. Duplex operation with 45 MHz receiver/transmit separation.
3. $\mathrm{f}_{\mathrm{R}}=7.5 \mathrm{kHz} ; \div \mathrm{R}=2048$
4. $N_{\text {total }}=N \cdot 64+A=27501$ to 28166; $N=429$ to $440 ; A=0$ to 63.
5. MC145158-2 may be used where serial data entry is desired.
6. High frequency prescalers (e.g., MC12018 [520 MHz] and MC12022 [1 GHz]) may be used for higher frequency VCO and fref implementations.
7. The ϕR and ϕV outputs are fed to an external combiner/loop filter. See the Phase-Locked Loop — Low-Pass Filter Design page for additional information. The ϕR and ϕV outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode input range of the op amp used in the combiner/loop filter.

Figure 2. 666-Channel, Computer-Controlled, Mobile Radiotelephone Synthesizer for 800 MHz Cellular Radio Systems

Serial-Input PLL Frequency Synthesizer
 Interfaces with Single-Modulus Prescalers

The MC145155-2 is programmed by a clocked, serial input, 16-bit data stream. The device features consist of a reference oscillator, selectable-reference divider, digital-phase detector, 14-bit programmable divide-by-N counter, and the necessary shift register and latch circuitry for accepting serial input data.

The MC145155-2 is an improved-performance drop-in replacement for the MC145155-1. Power consumption has decreased and ESD and latch-up performance have improved.

- Operating Temperature Range: -40 to $85^{\circ} \mathrm{C}$
- Low Power Consumption Through Use of CMOS Technology
- 3.0 to 9.0 V Supply Range
- On- or Off-Chip Reference Oscillator Operation with Buffered Output
- Compatible with the Serial Peripheral Interface (SPI) on CMOS MCUs
- Lock Detect Signal
- Two Open-Drain Switch Outputs
- 8 User-Selectable \div R Values: 16, 512, 1024, 2048, 3668, 4096, 6144, 8192
- Single Modulus/Serial Programming
- \div N Range $=3$ to 16383
- "Linearized" Digital Phase Detector Enhances Transfer Function Linearity
- Two Error Signal Options: Single-Ended (Three-State) or Double-Ended
- Chip Complexity: 6504 FETs or 1626 Equivalent Gates

> NOT RECOMMENDED FOR NEW DESIGNS; PRODUCT TO BE PHASED OUT.
> Closest equivalents are the MC145157-2, MC145170-1, MC14519X series, and MC14520X series.

PIN DESCRIPTIONS

INPUT PINS

```
fin
Frequency Input (PDIP - Pin 9, SOG - Pin 10)
```

Input to the $\div \mathrm{N}$ portion of the synthesizer. $\mathrm{f}_{\text {in }}$ is typically derived from loop VCO and is ac coupled into the device. For larger amplitude signals (standard CMOS logic levels) dc coupling may be used.

RA0, RA1, RA2
Reference Address Inputs (PDIP - Pins 18, 1, 2; SOG - Pins 20, 1, 2)

These three inputs establish a code defining one of eight possible divide values for the total reference divider, as defined by the table below:

Reference Address Code			Total Divide Value
RA2	RA1	RA0	
0	0	0	16
0	0	1	512
0	1	0	1024
0	1	1	2048
1	0	0	3668
1	0	1	4096
1	1	0	6144
1	1	1	8192

CLK, DATA
 Shift Register Clock, Serial Data Inputs
 (PDIP - Pins 10, 11; SOG - Pins 11, 12)

Each low-to-high transition clocks one bit into the on-chip 16 -bit shift register. The Data input provides programming
information for the 14-bit \div N counter and the two switch signals SW1 and SW2. The entry format is as follows:

ENB

Latch Enable Input (PDIP - Pin 12, SOG - Pin 13)
When high (1), ENB transfers the contents of the shift register into the latches, and to the programmable counter inputs, and the switch outputs SW1 and SW2. When low (0), ENB inhibits the above action and thus allows changes to be made in the shift register data without affecting the counter programming and switch outputs. An on-chip pull-up establishes a continuously high level for ENB when no external signal is applied. ENB is normally low and is pulsed high to transfer data to the latches.
OSC $_{\text {in }}$, OSC $_{\text {out }}$
Reference Oscillator Input/Output (PDIP - Pins 17, 16;
SOG - Pins 19, 18)
These pins form an on-chip reference oscillator when connected to terminals of an external parallel resonant crystal. Frequency setting capacitors of appropriate value must be connected from OSC in to ground and OSC out to ground. $_{\text {in }}$ $\mathrm{OSC}_{\text {in }}$ may also serve as the input for an externally-generated reference signal. This signal is typically ac coupled to OSC $_{\text {in }}$, but for larger amplitude signals (standard CMOS logic levels) dc coupling may also be used. In the external reference mode, no connection is required to $\mathrm{OSC}_{\text {out }}$.

OUTPUT PINS

PDout
Phase Detector A Output (PDIP, SOG - Pin 6)
Three-state output of phase detector for use as loop error signal. Double-ended outputs are also available for this purpose (see $\phi \mathrm{V}$ and $\phi \mathrm{R}$).

Frequency $f V>f R$ or $f v$ Leading: Negative Pulses
Frequency fV < fR or fV Lagging: Positive Pulses
Frequency $f V=f_{R}$ and Phase Coincidence: High-Impedance State
$\phi \mathbf{R}, \phi \mathbf{V}$
Phase Detector B Outputs (PDIP, SOG - Pins 4, 3)
These phase detector outputs can be combined externally for a loop-error signal. A single-ended output is also available for this purpose (see PDout).

If frequency fV_{V} is greater than f_{R} or if the phase of f_{V} is leading, then error information is provided by $\phi \vee$ pulsing low. $\phi \mathrm{R}$ remains essentially high.

If the frequency $f V$ is less than f_{R} or if the phase of $f V$ is lagging, then error information is provided by ϕR pulsing low. ϕV remains essentially high.

If the frequency of $f V=f R$ and both are in phase, then both ϕV and ϕR remain high except for a small minimum time period when both pulse low in phase.

LD

Lock Detector Output (PDIP - Pin 8, SOG - Pin 9)

Essentially a high level when loop is locked (f , fV of same phase and frequency). LD pulses low when loop is out of lock.

SW1, SW2
Band Switch Outputs (PDIP - Pins 13, 14;
SOG - Pins 14, 15)
SW1 and SW2 provide latched open-drain outputs corresponding to data bits numbers one and two. These outputs can be tied through external resistors to voltages as high as 15 V , independent of the V_{DD} supply voltage. These are typically used for band switch functions. A logic 1 causes the output to assume a high-impedance state, while a logic 0 causes the output to be low.

REF ${ }_{\text {out }}$
 Buffered Reference Oscillator Output (PDIP, SOG Pin 15)

Buffered output of on-chip reference oscillator or externally provided reference-input signal.

POWER SUPPLY

VDD

Positive Power Supply (PDIP, SOG - Pin 5)
The positive power supply potential. This pin may range from +3 to +9 V with respect to V_{SS}.

VSS
 Negative Power Supply (PDIP, SOG - Pin 7)

The most negative supply potential. This pin is usually ground.

TYPICAL APPLICATIONS

$*$ The ϕR and ϕV outputs are fed to an external combiner/loop filter. See the Phase-Locked Loop - Low-Pass Filter Design page
for additional information. The ϕR and ϕV outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common
mode input range of the op amp used in the combiner/loop filter.
Figure 1. Microprocessor-Controlled TV/CATV Tuning System with Serial Interface

* The ϕR and ϕV outputs are fed to an external combiner/loop filter. See the Phase-Locked Loop - Low-Pass Filter Design page for additional information. The $\phi \mathrm{R}$ and $\phi \vee$ outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode input range of the op amp used in the combiner/loop filter.

Figure 2. AM/FM Radio Synthesizer

Serial-Input PLL Frequency Synthesizer
 Interfaces with Dual-Modulus Prescalers

The MC145156-2 is programmed by a clocked, serial input, 19-bit data stream. The device features consist of a reference oscillator, selectable-reference divider, digital-phase detector, 10-bit programmable divide-by-N counter, 7-bit programmable divide-by-A counter, and the necessary shift register and latch circuitry for accepting serial input data.

The MC145156-2 is an improved-performance drop-in replacement for the MC145156-1. Power consumption has decreased and ESD and latch-up performance have improved.

- Operating Temperature Range: -40 to $85^{\circ} \mathrm{C}$
- Low Power Consumption Through Use of CMOS Technology
- 3.0 to 9.0 V Supply Range
- On- or Off-Chip Reference Oscillator Operation with Buffered Output
- Compatible with the Serial Peripheral Interface (SPI) on CMOS MCUs
- Lock Detect Signal
- Two Open-Drain Switch Outputs
- Dual Modulus/Serial Programming
- 8 User-Selectable \div R Values: 8, 64, 128, 256, 640, 1000, 1024, 2048
- \div N Range $=3$ to $1023, \div$ A Range $=0$ to 127
- "Linearized" Digital Phase Detector Enhances Transfer Function Linearity
- Two Error Signal Options: Single-Ended (Three-State) or Double-Ended
- Chip Complexity: 6504 FETs or 1626 Equivalent Gates

> NOT RECOMMENDED FOR NEW DESIGNS; PRODUCT TO BE PHASED OUT.
> Closest equivalents are the MC145158-2, MC145170-1, MC14519X series, and MC14520X series.

PIN DESCRIPTIONS

INPUT PINS

$f_{\text {in }}$

Frequency Input (Pin 10)

Input to the positive edge triggered $\div \mathrm{N}$ and \div A counters. $f_{i n}$ is typically derived from a dual-modulus prescaler and is ac coupled into the device. For larger amplitude signals (standard CMOS logic levels), dc coupling may be used.

RA0, RA1, RA2

Reference Address Inputs (Pins 20, 1, 2)

These three inputs establish a code defining one of eight possible divide values for the total reference divider, as defined by the table below:

Reference Address Code			Total Divide Value
RA2	RA1	RA0	
0	0	0	8
0	0	1	64
0	1	0	128
0	1	1	256
1	0	0	640
1	0	1	1000
1	1	0	1024
1	1	1	2048

CLK, DATA

Shift Register Clock, Serial Data Inputs (Pins 11, 12)

Each low-to-high transition clocks one bit into the on-chip 19-bit shift register. The data input provides programming information for the 10 -bit $\div \mathrm{N}$ counter, the 7 -bit \div A counter, and the two switch signals SW1 and SW2. The entry format is as follows:

ENB

Latch Enable Input (Pin 13)

When high (1), ENB transfers the contents of the shift register into the latches, and to the programmable counter inputs, and the switch outputs SW1 and SW2. When low (0), ENB inhibits the above action and thus allows changes to be made in the shift register data without affecting the counter programming and switch outputs. An on-chip pull-up establishes a continuously high level for ENB when no external signal is applied. ENB is normally low and is pulsed high to transfer data to the latches.

OSC $_{\text {in }}$, OSC $_{\text {out }}$
 Reference Oscillator Input/Output (Pins 19, 18)

These pins form an on-chip reference oscillator when connected to terminals of an external parallel resonant crystal. Frequency setting capacitors of appropriate value must be
 OSC ${ }_{\text {in }}$ may also serve as the input for an externally-generated reference signal. This signal is typically ac coupled to $\mathrm{OSC}_{\text {in }}$, but for larger amplitude signals (standard CMOS logic levels) dc coupling may also be used. In the external reference mode, no connection is required to OSC out .

TEST

Factory Test Input (Pin 16)
Used in manufacturing. Must be left open or tied to VSS.

OUTPUT PINS

PDout

Phase Detector A Output (Pin 6)
Three-state output of phase detector for use as loop-error signal. Double-ended outputs are also available for this purpose (see $\phi \mathrm{V}$ and $\phi \mathrm{R}$).

Frequency $f V>f R$ or $f V$ Leading: Negative Pulses
Frequency $f V<f_{R}$ or fV Lagging: Positive Pulses
Frequency $f V=f R$ and Phase Coincidence: High-Impedance State
$\phi \mathbf{R}, \phi \mathbf{V}$
Phase Detector B Outputs (Pins 4, 3)
These phase detector outputs can be combined externally for a loop-error signal. A single-ended output is also available for this purpose (see PDout).

If frequency $f V$ is greater than f_{R} or if the phase of $f V$ is leading, then error information is provided by $\phi \vee$ pulsing low. ϕR remains essentially high.

If the frequency $f V$ is less than f_{R} or if the phase of $f V$ is lagging, then error information is provided by $\phi \mathrm{R}$ pulsing low. ϕV remains essentially high.

If the frequency of $f V=f R$ and both are in phase, then both ϕV and ϕR remain high except for a small minimum time period when both pulse low in phase.

MC Dual-Modulus Prescale Control Output (Pin 8)

Signal generated by the on-chip control logic circuitry for controlling an external dual-modulus prescaler. The MC level will be low at the beginning of a count cycle and will remain low until the \div A counter has counted down from its programmed value. At this time, MC goes high and remains high until the $\div \mathrm{N}$ counter has counted the rest of the way down from its programmed value ($\mathrm{N}-\mathrm{A}$ additional counts since both $\div \mathrm{N}$ and $\div \mathrm{A}$ are counting down during the first portion of the cycle). MC is then set back low, the counters
preset to their respective programmed values, and the above sequence repeated. This provides for a total programmable divide value $(N T)=N \cdot P+A$ where P and $P+1$ represent the dual-modulus prescaler divide values respectively for high and low MC levels, N the number programmed into the $\div \mathrm{N}$ counter, and A the number programmed into the $\div \mathrm{A}$ counter.

LD
 Lock Detector Output (Pin 9)

Essentially a high level when loop is locked (f_{R}, fV of same phase and frequency). LD pulses low when loop is out of lock.

SW1, SW2

Band Switch Outputs (Pins 14, 15)

SW1 and SW2 provide latched open-drain outputs corresponding to data bits numbers one and two. These outputs can be tied through external resistors to voltages as high as 15 V , independent of the VDD supply voltage. These are typically used for band switch functions. A logic 1 causes the output to assume a high-impedance state, while a logic 0 causes the output to be low.

REF ${ }_{\text {out }}$
 Buffered Reference Oscillator Output (Pin 17)

Buffered output of on-chip reference oscillator or externally provided reference-input signal.

POWER SUPPLY

VDD
Positive Power Supply (Pin 5)
The positive power supply potential. This pin may range from +3 to +9 V with respect to V SS.

VSS
 Negative Power Supply (Pin 7)

The most negative supply potential. This pin is usually ground.

TYPICAL APPLICATIONS

NOTES:

1. For AM: channel spacing $=5 \mathrm{kHz}, \div \mathrm{R}=\div 640$ (code 100).
2. For FM: channel spacing $=25 \mathrm{kHz}, \div \mathrm{R}=\div 128$ (code 010).
3. The ϕR and $\phi \vee$ outputs are fed to an external combiner/loop filter. See the Phase-Locked Loop—Low-Pass Filter Design page for additional information. The $\phi \mathrm{R}$ and $\phi \mathrm{V}$ outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode input range of the op amp used in the combiner/loop filter.

Figure 1. AM/FM Radio Broadcast Synthesizer

NOTES:

1. For NAV: $f_{R}=50 \mathrm{kHz}, \div \mathrm{R}=64$ using 10.7 MHz lowside injection, $\mathrm{N}_{\text {total }}=1946-2145$. For COM-T: $\mathrm{f}_{\mathrm{R}}=25 \mathrm{kHz}, \div \mathrm{R}=128, \mathrm{~N}_{\text {total }}=4720-5439$. For COM-R: $\mathrm{f}_{\mathrm{R}}=25 \mathrm{kHz}, \div \mathrm{R}=128$, using 21.4 MHz highside injection, $\mathrm{N}_{\text {total }}=5576-6295$.
2. $\mathrm{A} \div 32 / 33$ dual modulus approach is provided by substituting an MC12015 for the MC12016. The devices are pin equivalent.
3. A 6.4 MHz oscillator crystal can be used by selecting $\div R=128$ (code 010) for NAV and $\div R=256$ (code 011) for COM.
4. MC12013 + MC10131 combination may also be used to form the $\div 40 / 41$ prescaler.
5. The ϕR and ϕV outputs are fed to an external combiner/loop filter. See the Phase-Locked Loop - Low-Pass Filter Design page for additional information. The $\phi \mathrm{R}$ and $\phi \mathrm{V}$ outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode input range of the op amp used in the combiner/loop filter.

Figure 2. Avionics Navigation or Communication Synthesizer
MC145156-2 Data Sheet Continued on Page 3.2-25

Serial-Input PLL Frequency Synthesizer
 Interfaces with Single-Modulus Prescalers

The MC145157-2 has a fully programmable 14-bit reference counter, as well as a fully programmable $\div \mathrm{N}$ counter. The counters are programmed serially through a common data input and latched into the appropriate counter latch, according to the last data bit (control bit) entered.

The MC145157-2 is an improved-performance drop-in replacement for the MC145157-1. Power consumption has decreased and ESD and latch-up performance have improved.

- Operating Temperature Range: -40 to $85^{\circ} \mathrm{C}$
- Low Power Consumption Through Use of CMOS Technology
- 3.0 to 9.0 V Supply Range
- Fully Programmable Reference and $\div \mathrm{N}$ Counters
- \div R Range $=3$ to 16383
- \div N Range $=3$ to 16383
- fV and fr Outputs
- Lock Detect Signal
- Compatible with the Serial Peripheral Interface (SPI) on CMOS MCUs
- "Linearized" Digital Phase Detector
- Single-Ended (Three-State) or Double-Ended Phase Detector Outputs
- Chip Complexity: 6504 FETs or 1626 Equivalent Gates

PIN DESCRIPTIONS

INPUT PINS

$f_{\text {in }}$

Frequency Input (Pin 8)
Input frequency from VCO output. A rising edge signal on this input decrements the $\div \mathrm{N}$ counter. This input has an inverter biased in the linear region to allow use with ac coupled signals as low as 500 mV p-p. For larger amplitude signals (standard CMOS logic levels), dc coupling may be used.

CLK, DATA
 Shift Clock, Serial Data Inputs (Pins 9, 10)

Each low-to-high transition of the clock shifts one bit of data into the on-chip shift registers. The last data bit entered determines which counter storage latch is activated; a logic 1 selects the reference counter latch and a logic 0 selects the $\div \mathrm{N}$ counter latch. The entry format is as follows:

ENB

Latch Enable Input (Pin 11)

A logic high on this pin latches the data from the shift register into the reference divider or $\div \mathrm{N}$ latches depending on the control bit. The reference divider latches are activated if the control bit is at a logic high and the $\div \mathrm{N}$ latches are activated
if the control bit is at a logic low. A logic low on this pin allows the user to change the data in the shift registers without affecting the counters. ENB is normally low and is pulsed high to transfer data to the latches.

OSC $_{\text {in }}$, OSC $_{\text {out }}$

Reference Oscillator Input/Output (Pins 1, 2)
These pins form an on-chip reference oscillator when connected to terminals of an external parallel resonant crystal. Frequency setting capacitors of appropriate value must be connected from OSC in to ground and OSC out to ground. $^{\text {ond }}$ $\mathrm{OSC}_{\text {in }}$ may also serve as the input for an externally-generated reference signal. This signal is typically ac coupled to $\mathrm{OSC}_{\mathrm{in}}$, but for larger amplitude signals (standard CMOS logic levels) dc coupling may also be used. In the external reference mode, no connection is required to OSC out.

OUTPUT PINS

PDout
 Single-Ended Phase Detector A Output (Pin 5)

This single-ended (three-state) phase detector output produces a loop-error signal that is used with a loop filter to control a VCO.

Frequency $f V>f_{R}$ or $f V$ Leading: Negative Pulses
Frequency fV < fR or fV Lagging: Positive Pulses
Frequency $f V=f R$ and Phase Coincidence: High-Impedance State

$\phi \mathbf{R}, \phi \mathbf{V}$

Double-Ended Phase Detector B Outputs (Pins 16, 15)
These outputs can be combined externally for a loop-error signal. A single-ended output is also available for this purpose (see PDout).

If frequency $f V$ is greater than f_{R} or if the phase of $f V$ is leading, then error information is provided by $\phi \vee$ pulsing low. ϕR remains essentially high.

If the frequency $f v$ is less than $f R$ or if the phase of $f v$ is lagging, then error information is provided by ϕR pulsing low. ϕV remains essentially high.

If the frequency of $f V=f R$ and both are in phase, then both ϕV and ϕR remain high except for a small minimum time period when both pulse low in phase.

$\mathrm{f}_{\mathrm{R}}, \mathrm{f} \mathrm{V}$
 R Counter Output, N Counter Output (Pins 13, 3)

Buffered, divided reference and f_{in} frequency outputs. The ff_{R} and fV outputs are connected internally to the $\div \mathrm{R}$ and $\div \mathrm{N}$ counter outputs respectively, allowing the counters to be used independently, as well as monitoring the phase detector inputs.

LD

Lock Detector Output (Pin 7)

This output is essentially at a high level when the loop is locked (f_{R}, fv of same phase and frequency), and pulses low when loop is out of lock.

REF ${ }_{\text {out }}$

Buffered Reference Oscillator Output (Pin 14)

This output can be used as a second local oscillator, reference oscillator to another frequency synthesizer, or as the system clock to a microprocessor controller.

S/Rout
 Shift Register Output (Pin 12)

This output can be connected to an external shift register to provide band switching, control information, and counter programming code checking.

POWER SUPPLY

VDD

Positive Power Supply (Pin 4)
The positive power supply potential. This pin may range from +3 to +9 V with respect to V_{SS}.

VSS
 Negative Power Supply (Pin 6)

The most negative supply potential. This pin is usually ground.

Serial-Input PLL Frequency Synthesizer
 Interfaces with Dual-Modulus Prescalers

The MC145158-2 has a fully programmable 14-bit reference counter, as well as fully programmable $\div \mathrm{N}$ and $\div \mathrm{A}$ counters. The counters are programmed serially through a common data input and latched into the appropriate counter latch, according to the last data bit (control bit) entered.

The MC145158-2 is an improved-performance drop-in replacement for the MC145158-1. Power consumption has decreased and ESD and latch-up performance have improved.

- Operating Temperature Range: -40 to $85^{\circ} \mathrm{C}$
- Low Power Consumption Through Use of CMOS Technology
- 3.0 to 9.0 V Supply Range
- Fully Programmable Reference and $\div \mathrm{N}$ Counters
- \div R Range $=3$ to 16383
- \div N Range $=3$ to 1023
- Dual Modulus Capability; \div A Range $=0$ to 127
- fV_{V} and f_{R} Outputs
- Lock Detect Signal
- Compatible with the Serial Peripheral Interface (SPI) on CMOS MCUs
- "Linearized" Digital Phase Detector
- Single-Ended (Three-State) or Double-Ended Phase Detector Outputs
- Chip Complexity: 6504 FETs or 1626 Equivalent Gates

PIN DESCRIPTIONS

INPUT PINS

f_{in}
Frequency Input (Pin 8)
Input frequency from VCO output. A rising edge signal on this input decrements the $\div \mathrm{A}$ and $\div \mathrm{N}$ counters. This input has an inverter biased in the linear region to allow use with ac coupled signals as low as $500 \mathrm{mV} p-\mathrm{p}$. For larger amplitude signals (standard CMOS logic levels), dc coupling may be used.

CLK, DATA
 Shift Clock, Serial Data Inputs (Pins 9, 10)

Each low-to-high transition of the CLK shifts one bit of data into the on-chip shift registers. The last data bit entered determines which counter storage latch is activated; a logic 1 selects the reference counter latch and a logic 0 selects the $\div A, \div N$ counter latch. The data entry format is as follows:

ENB
 Latch Enable Input (Pin 11)

A logic high on this pin latches the data from the shift register into the reference divider or $\div \mathrm{N}, \div$ A latches depending on the control bit. The reference divider latches are activated if the control bit is at a logic high and the $\div \mathrm{N}, \div \mathrm{A}$ latches are activated if the control bit is at a logic low. A logic low on this pin allows the user to change the data in the shift registers without affecting the counters. ENB is normally low and is pulsed high to transfer data to the latches.

OSC $_{\text {in }}$, OSC $_{\text {out }}$

Reference Oscillator Input/Output (Pins 1, 2)

These pins form an on-chip reference oscillator when connected to terminals of an external parallel resonant crystal. Frequency setting capacitors of appropriate value must be connected from OSCin to ground and OSC Out to ground. $^{\text {O }}$ $\mathrm{OSC}_{\text {in }}$ may also serve as the input for an externally-generated reference signal. This signal is typically ac coupled to $\mathrm{OSC}_{\mathrm{in}}$, but for larger amplitude signals (standard CMOS logic levels) dc coupling may also be used. In the external reference mode, no connection is required to OSC out-

OUTPUT PINS

PDout
 Phase Detector A Output (Pin 5)

This single-ended (three-state) phase detector output produces a loop-error signal that is used with a loop filter to control a VCO.

Frequency $f v>f_{R}$ or fv Leading: Negative Pulses
Frequency fV < fR or fV Lagging: Positive Pulses
Frequency $f V=f_{R}$ and Phase Coincidence: High-Impedance State
$\phi \mathbf{R}, \phi \mathbf{V}$
Phase Detector B Outputs (Pins 16, 15)
Double-ended phase detector outputs. These outputs can be combined externally for a loop-error signal. A singleended output is also available for this purpose (see PDout).

If frequency $f V$ is greater than f_{R} or if the phase of $f V$ is leading, then error information is provided by $\phi \vee$ pulsing low. ϕR remains essentially high.

If the frequency f_{V} is less than f_{R} or if the phase of $f v$ is lagging, then error information is provided by ϕR pulsing low. $\phi \mathrm{V}$ remains essentially high.

If the frequency of $f V=f R$ and both are in phase, then both ϕV and ϕR remain high except for a small minimum time period when both pulse low in phase.

MC
 Dual-Modulus Prescale Control Output (Pin 12)

This output generates a signal by the on-chip control logic circuitry for controlling an external dual-modulus prescaler. The MC level is low at the beginning of a count cycle and remains low until the \div A counter has counted down from its programmed value. At this time, MC goes high and remains high until the $\div \mathrm{N}$ counter has counted the rest of the way down from its programmed value ($\mathrm{N}-\mathrm{A}$ additional counts since both $\div \mathrm{N}$ and $\div \mathrm{A}$ are counting down during the first portion of the cycle). MC is then set back low, the counters preset to their respective programmed values, and the above sequence repeated. This provides for a total programmable divide value $(N T)=N \cdot P+A$ where P and $P+1$ represent the
dual-modulus prescaler divide values respectively for high and low modulus control levels, N the number programmed into the $\div \mathrm{N}$ counter, and A the number programmed into the \div A counter. Note that when a prescaler is needed, the dualmodulus version offers a distinct advantage. The dualmodulus prescaler allows a higher reference frequency at the phase detector input, increasing system performance capability, and simplifying the loop filter design.

fR, fV

R Counter Output, N Counter Output (Pins 13, 3)

Buffered, divided reference and $f_{\text {in }}$ frequency outputs. The f_{R} and f_{V} outputs are connected internally to the $\div R$ and $\div \mathrm{N}$ counter outputs respectively, allowing the counters to be used independently, as well as monitoring the phase detector inputs.

LD

Lock Detector Output (Pin 7)

This output is essentially at a high level when the loop is locked (f_{R}, fV of same phase and frequency), and pulses low when loop is out of lock.

REF out

Buffered Reference Oscillator Output (Pin 14)
This output can be used as a second local oscillator, reference oscillator to another frequency synthesizer, or as the system clock to a microprocessor controller.

POWER SUPPLY

VDD Positive Power Supply (Pin 4)

The positive power supply potential. This pin may range from +3 to +9 V with respect to V SS.

VSS

Negative Power Supply (Pin 6)
The most negative supply potential. This pin is usually ground.

MC14515X-2 FAMILY CHARACTERISTICS AND DESCRIPTIONS

MAXIMUM RATINGS* (Voltages Referenced to V_{SS})

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage	-0.5 to +10.0	V
$\mathrm{~V}_{\text {in }}, \mathrm{V}_{\text {out }}$	$\begin{array}{l}\text { Input or Output Voltage (DC or Transient) } \\ \text { except SW1, SW2 }\end{array}$	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{\text {out }}$	$\begin{array}{l}\text { Output Voltage (DC or Transient), } \\ \text { SW1, SW2 (R }\end{array}$ pull-up $=4.7 \mathrm{k} \Omega$)		

These devices contain protection circuitry to protect against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to these high-impedance circuits. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\mathrm{DD}}$ except for SW1 and SW2.

SW1 and SW2 can be tied through external resistors to voltages as high as 15 V , independent of the supply voltage.

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either $\mathrm{V}_{\text {SS }}$ or $\left.\mathrm{V}_{\mathrm{DD}}\right)$, except for inputs with pull-up devices. Unused outputs must be left open.

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section.
\dagger Power Dissipation Temperature Derating:
Plastic DIP: $-12 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65 to $85^{\circ} \mathrm{C}$
SOG Package: $-7 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ from 65 to $85^{\circ} \mathrm{C}$
ELECTRICAL CHARACTERISTICS (Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Symbol	Parameter	Test Condition	$\underset{\mathrm{VD}}{\mathrm{v}}$	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$85^{\circ} \mathrm{C}$		Unit
				Min	Max	Min	Max	Min	Max	
VDD	Power Supply Voltage Range		-	3	9	3	9	3	9	V
$\mathrm{I}_{\text {ss }}$	Dynamic Supply Current	$\begin{aligned} & \mathrm{f}_{\text {in }}=O S C_{\text {in }}=10 \mathrm{MHz}, \\ & 1 \mathrm{Vp-p} \text { ac coupled sine } \\ & \text { wave } \\ & R=128, A=32, N=128 \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 9 \end{aligned}$	-	$\begin{aligned} & 3.5 \\ & 10 \\ & 30 \end{aligned}$	二	$\begin{gathered} \hline 3 \\ 7.5 \\ 24 \end{gathered}$	-	$\begin{gathered} \hline 3 \\ 7.5 \\ 24 \end{gathered}$	mA
ISS	Quiescent Supply Current (not including pull-up current component)	$\begin{aligned} & V_{\text {in }}=V_{D D} \text { or } V_{S S} \\ & l_{\text {out }}=0 \mu \mathrm{~A} \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 9 \\ & 9 \end{aligned}$	-	$\begin{gathered} \hline 800 \\ 1200 \\ 1600 \end{gathered}$	-	$\begin{gathered} \hline 800 \\ 1200 \\ 1600 \end{gathered}$	-	$\begin{aligned} & 1600 \\ & 2400 \\ & 3200 \end{aligned}$	$\mu \mathrm{A}$
$\mathrm{V}_{\text {in }}$	Input Voltage - $\mathrm{fin}_{\mathrm{in}}$, OSC $\mathrm{in}^{\text {n }}$	Input ac coupled sine wave	-	500	-	500	-	500	-	mV p-p
$\mathrm{V}_{\text {IL }}$	Low-Level Input Voltage $-f_{\mathrm{in}}, \mathrm{OSC}_{\mathrm{in}}$	$V_{\text {out }} \geq 2.1 \mathrm{~V}$ Input dc $V_{\text {out }} \geq 3.5 \mathrm{~V}$ coupled $V_{\text {out }} \geq 6.3 \mathrm{~V}$ square wave	$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	-	0 0 0	-	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	V
V_{IH}	High-Level Input Voltage $-\mathrm{f}_{\mathrm{in}}, \mathrm{OSC}_{\mathrm{in}}$	$\mathrm{V}_{\text {out }} \leq 0.9 \mathrm{~V}$ Input dc $\mathrm{V}_{\text {out }} \leq 1.5 \mathrm{~V}$ coupled $\mathrm{V}_{\text {out }} \leq 2.7 \mathrm{~V}$ square wave	$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 5.0 \\ & 9.0 \end{aligned}$	-	$\begin{aligned} & \hline 3.0 \\ & 5.0 \\ & 9.0 \end{aligned}$	-	$\begin{aligned} & 3.0 \\ & 5.0 \\ & 9.0 \end{aligned}$	-	V
VIL	Low-Level Input Voltage - except f_{in}, OSC $_{\mathrm{in}}$		$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	-	$\begin{aligned} & 0.9 \\ & 1.5 \\ & 2.7 \end{aligned}$	-	$\begin{aligned} & 0.9 \\ & 1.5 \\ & 2.7 \end{aligned}$	-	$\begin{aligned} & 0.9 \\ & 1.5 \\ & 2.7 \end{aligned}$	V
V_{IH}	High-Level Input Voltage - except $f_{i n}$, OSC $_{\text {in }}$		$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 2.1 \\ & 3.5 \\ & 6.3 \end{aligned}$	-	$\begin{aligned} & \hline 2.1 \\ & 3.5 \\ & 6.3 \end{aligned}$	-	$\begin{aligned} & 2.1 \\ & 3.5 \\ & 6.3 \end{aligned}$	-	V
lin	Input Current ($\mathrm{fin}_{\text {in }}$, OSC ${ }_{\text {in }}$)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$	9	± 2	± 50	± 2	± 25	± 2	± 22	$\mu \mathrm{A}$
IIL	Input Leakage Current (Data, CLK, ENB without pull-ups)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {SS }}$	9	-	-0.3	-	-0.1	-	-1.0	$\mu \mathrm{A}$
${ }^{1 / \mathrm{H}}$	Input Leakage Current (all inputs except f_{in}, OSC $_{\text {in }}$)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{DD}}$	9	-	0.3	-	0.1	-	1.0	$\mu \mathrm{A}$

(continued)

DC ELECTRICAL CHARACTERISTICS (continued)

Symbol	Parameter	Test Condition	$\underset{\mathrm{V}}{\mathrm{~V}}$	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$85^{\circ} \mathrm{C}$		Unit
				Min	Max	Min	Max	Min	Max	
IIL	Pull-up Current (all inputs with pull-ups)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {SS }}$	9	-20	-400	-20	-200	-20	-170	$\mu \mathrm{A}$
$\mathrm{Cin}_{\text {in }}$	Input Capacitance		-	-	10	-	10	-	10	pF
$\mathrm{V}_{\text {OL }}$	Low-Level Output Voltage - OSC ${ }_{\text {out }}$	$\begin{aligned} & I_{\text {out }} \approx 0 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {in }}=\mathrm{V}_{\mathrm{DD}} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	-	$\begin{aligned} & 0.9 \\ & 1.5 \\ & 2.7 \end{aligned}$	-	$\begin{aligned} & 0.9 \\ & 1.5 \\ & 2.7 \end{aligned}$	-	$\begin{aligned} & 0.9 \\ & 1.5 \\ & 2.7 \end{aligned}$	V
V_{OH}	High-Level Output Voltage - OSC ${ }_{\text {out }}$	$\begin{aligned} & I_{\text {out }} \approx 0 \mu \mathrm{~A} \\ & \mathrm{~V}_{\text {in }}=\mathrm{V}_{\text {SS }} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 3.5 \\ & 6.3 \end{aligned}$	-	$\begin{aligned} & 2.1 \\ & 3.5 \\ & 6.3 \end{aligned}$	-	$\begin{aligned} & 2.1 \\ & 3.5 \\ & 6.3 \end{aligned}$	-	V
VOL	Low-Level Output Voltage - Other Outputs	$\mathrm{l}_{\text {out }} \approx 0 \mu \mathrm{~A}$	$\begin{aligned} & 3 \\ & 5 \\ & 9 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	-	$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \end{aligned}$	V
V_{OH}	High-Level Output Voltage - Other Outputs	$\mathrm{l}_{\text {out }} \approx 0 \mu \mathrm{~A}$	$\begin{aligned} & 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 2.95 \\ & 4.95 \\ & 8.95 \end{aligned}$	-	$\begin{aligned} & 2.95 \\ & 4.95 \\ & 8.95 \end{aligned}$	-	$\begin{aligned} & 2.95 \\ & 4.95 \\ & 8.95 \end{aligned}$	-	V
$\mathrm{V}_{(\text {(BR) } \mathrm{DSS}}$	Drain-to-Source Breakdown Voltage SW1, SW2	$R_{\text {pull-up }}=4.7 \mathrm{k} \Omega$	-	15	-	15	-	15	-	V
${ }^{\text {IOL }}$	Low-Level Sinking Current - MC	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.3 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 1.30 \\ & 1.90 \\ & 3.80 \end{aligned}$	-	$\begin{aligned} & 1.10 \\ & 1.70 \\ & 3.30 \end{aligned}$	-	$\begin{aligned} & 0.66 \\ & 1.08 \\ & 2.10 \end{aligned}$	-	mA
${ }^{\mathrm{IOH}}$	High-Level Sourcing Current - MC	$\begin{aligned} & V_{\text {out }}=2.7 \mathrm{~V} \\ & V_{\text {out }}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=8.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{array}{\|l\|} \hline-0.60 \\ -0.90 \\ -1.50 \end{array}$	-	$\begin{aligned} & -0.50 \\ & -0.75 \\ & -1.25 \end{aligned}$	-	$\begin{array}{\|l\|} \hline-0.30 \\ -0.50 \\ -0.80 \end{array}$	-	mA
${ }^{\text {IOL}}$	Low-Level Sinking Current - LD	$\begin{aligned} & V_{\text {out }}=0.3 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.64 \\ & 1.30 \end{aligned}$	-	$\begin{aligned} & 0.20 \\ & 0.51 \\ & 1.00 \end{aligned}$	-	$\begin{aligned} & 0.15 \\ & 0.36 \\ & 0.70 \end{aligned}$	-	mA
IOH	High-Level Sourcing Current - LD	$\begin{aligned} & V_{\text {out }}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=8.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{array}{\|l\|} \hline-0.25 \\ -0.64 \\ -1.30 \end{array}$	-	$\begin{aligned} & -0.20 \\ & -0.51 \\ & -1.00 \end{aligned}$	-	$\begin{aligned} & -0.15 \\ & -0.36 \\ & -0.70 \end{aligned}$	-	mA
${ }^{\text {IOL }}$	Low-Level Sinking Current - SW1, SW2	$\begin{aligned} & V_{\text {out }}=0.3 \mathrm{~V} \\ & V_{\text {out }}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 0.80 \\ & 1.50 \\ & 3.50 \end{aligned}$	-	$\begin{aligned} & 0.48 \\ & 0.90 \\ & 2.10 \end{aligned}$	-	$\begin{aligned} & 0.24 \\ & 0.45 \\ & 1.05 \end{aligned}$	-	mA
${ }^{\text {IOL }}$	Low-Level Sinking Current - Other Outputs	$\begin{aligned} & \mathrm{V}_{\text {out }}=0.3 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.64 \\ & 1.30 \end{aligned}$	-	$\begin{aligned} & 0.35 \\ & 0.51 \\ & 1.00 \end{aligned}$	-	$\begin{aligned} & 0.22 \\ & 0.36 \\ & 0.70 \end{aligned}$	-	mA
${ }^{\mathrm{I}} \mathrm{H}$	High-Level Sourcing Current - Other Outputs	$\begin{aligned} & V_{\text {out }}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=4.6 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=8.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{array}{\|l\|} \hline-0.44 \\ -0.64 \\ -1.30 \end{array}$	-	$\begin{aligned} & -0.35 \\ & -0.51 \\ & -1.00 \end{aligned}$	-	$\begin{array}{\|l\|} \hline-0.22 \\ -0.36 \\ -0.70 \end{array}$	-	mA
Ioz	Output Leakage Current PDout	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS} Output in Off State	9	-	± 0.3	-	± 0.1	-	± 1.0	$\mu \mathrm{A}$
Ioz	Output Leakage Current SW1, SW2	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS} Output in Off State	9	-	± 0.3	-	± 0.1	-	± 3.0	$\mu \mathrm{A}$
$\mathrm{C}_{\text {out }}$	Output Capacitance PDout	PD out - Three-State	-	-	10	-	10	-	10	pF

AC ELECTRICAL CHARACTERISTICS ($\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$)

Symbol	Parameter	$\begin{gathered} \hline \mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit $25^{\circ} \mathrm{C}$	Guaranteed Limit $-40 \text { to } 85^{\circ} \mathrm{C}$	Unit
tPLH, tPHL	Maximum Propagation Delay, fin to MC (Figures 1 and 4)	$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 110 \\ & 60 \\ & 35 \end{aligned}$	$\begin{aligned} & 120 \\ & 70 \\ & 40 \end{aligned}$	ns
tPHL	Maximum Propagation Delay, ENB to SW1, SW2 (Figures 1 and 5)	$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 160 \\ & 80 \\ & 50 \end{aligned}$	$\begin{aligned} & \hline 180 \\ & 95 \\ & 60 \end{aligned}$	ns
$t_{\text {w }}$	Output Pulse Width, $\phi \mathrm{R}, \phi \mathrm{V}$, and LD with f_{R} in Phase with f V (Figures 2 and 4)	$\begin{aligned} & 3 \\ & 5 \\ & 9 \end{aligned}$	25 to 200 20 to 100 10 to 70	25 to 260 20 to 125 10 to 80	ns
t'LH	Maximum Output Transition Time, MC (Figures 3 and 4)	$\begin{aligned} & 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 115 \\ & 60 \\ & 40 \end{aligned}$	$\begin{aligned} & 115 \\ & 75 \\ & 60 \end{aligned}$	ns
${ }^{\text {t }}$ HL	Maximum Output Transition Time, MC (Figures 3 and 4)	$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 60 \\ & 34 \\ & 30 \end{aligned}$	$\begin{aligned} & 70 \\ & 45 \\ & 38 \end{aligned}$	ns
${ }_{\text {t }}$ LH, ${ }^{\text {tTHL }}$	Maximum Output Transition Time, LD (Figures 3 and 4)	$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 180 \\ & 90 \\ & 70 \end{aligned}$	$\begin{gathered} \hline 200 \\ 120 \\ 90 \end{gathered}$	ns
${ }_{\text {t }}$ LH, ${ }^{\text {tTHL }}$	Maximum Output Transition Time, Other Outputs (Figures 3 and 4)	$\begin{aligned} & 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 160 \\ & 80 \\ & 60 \end{aligned}$	$\begin{gathered} 175 \\ 100 \\ 65 \end{gathered}$	ns

SWITCHING WAVEFORMS

Figure 1.

${ }^{*} f_{R}$ in phase with $f v$.
Figure 2.

Figure 3.

* Includes all probe and fixture capacitance.

Figure 4. Test Circuit

* Includes all probe and fixture capacitance.

Figure 5. Test Circuit

TIMING REQUIREMENTS (Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$ unless otherwise indicated)

Symbol	Parameter	V_{DD}	Guaranteed Limit $25^{\circ} \mathrm{C}$	Guaranteed Limit $-40 \text { to } 85^{\circ} \mathrm{C}$	Unit
${ }^{\text {f clk }}$	Serial Data Clock Frequency, Assuming 25\% Duty Cycle NOTE: Refer to CLK $\mathrm{t}_{\mathrm{w}(\mathrm{H})}$ below (Figure 6)	$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	dc to 5.0 dc to 7.1 dc to 10	dc to 3.5 dc to 7.1 dc to 10	MHz
${ }^{\text {tsu }}$	Minimum Setup Time, Data to CLK (Figure 7)	$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & 18 \end{aligned}$	$\begin{aligned} & 30 \\ & 20 \\ & 18 \end{aligned}$	ns
th	Minimum Hold Time, CLK to Data (Figure 7)	$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 15 \end{aligned}$	$\begin{aligned} & 40 \\ & 20 \\ & 15 \end{aligned}$	ns
$\mathrm{t}_{\text {su }}$	Minimum Setup Time, CLK to ENB (Figure 7)	$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 70 \\ & 32 \\ & 25 \end{aligned}$	$\begin{aligned} & 70 \\ & 32 \\ & 25 \end{aligned}$	ns
$t_{\text {rec }}$	Minimum Recovery Time, ENB to CLK (Figure 7)	$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{gathered} \hline 5 \\ 10 \\ 20 \end{gathered}$	$\begin{gathered} \hline 5 \\ 10 \\ 20 \end{gathered}$	ns
$t_{w}(\mathrm{H})$	Minimum Pulse Width, CLK and ENB (Figure 6)	$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & 50 \\ & 35 \\ & 25 \end{aligned}$	$\begin{aligned} & 70 \\ & 35 \\ & 25 \end{aligned}$	ns
$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}$	Maximum Input Rise and Fall Times - Any Input (Figure 8)	$\begin{aligned} & 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 4 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 4 \\ & 2 \end{aligned}$	$\mu \mathrm{S}$

SWITCHING WAVEFORMS

*Assumes 25\% Duty Cycle.
Figure 6.

Figure 7.

Figure 8.

FREQUENCY CHARACTERISTICS (Voltages References to $V_{S S}, C_{L}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$ unless otherwise indicated)

Symbol	Parameter	Test Condition	$\underset{\mathrm{VD}}{\mathrm{~V}}$	$-40^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$85^{\circ} \mathrm{C}$		Unit
				Min	Max	Min	Max	Min	Max	
f_{i}	Input Frequency ($\mathrm{f}_{\mathrm{in}}, \mathrm{OSC}_{\mathrm{in}}$)	$\begin{array}{\|l} \mathrm{R} \geq 8, \mathrm{~A} \geq 0, \mathrm{~N} \geq 8 \\ \mathrm{~V}_{\text {in }}=500 \mathrm{mV} \mathrm{p}-\mathrm{p} \\ \text { ac coupled sine wave } \end{array}$	$\begin{aligned} & 3 \\ & 5 \\ & 9 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} \hline 6 \\ 15 \\ 15 \end{gathered}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{gathered} 6 \\ 15 \\ 15 \end{gathered}$	-	$\begin{gathered} \hline 6 \\ 15 \\ 15 \end{gathered}$	MHz
		$\begin{aligned} & R \geq 8, A \geq 0, N \geq 8 \\ & V_{\text {in }}=1 \vee p-p \text { ac coupled } \\ & \text { sine wave } \end{aligned}$	$\begin{aligned} & \hline 3 \\ & 5 \\ & 9 \end{aligned}$	-	$\begin{aligned} & 12 \\ & 22 \\ & 25 \end{aligned}$	-	$\begin{aligned} & 12 \\ & 20 \\ & 22 \end{aligned}$	-	$\begin{gathered} \hline 7 \\ 20 \\ 22 \end{gathered}$	MHz
		$\begin{array}{\|l} \hline R \geq 8, A \geq 0, N \geq 8 \\ V_{\text {in }}=V_{D D} \text { to } V_{S S} \\ \text { dc coupled square wave } \end{array}$	$\begin{aligned} & 3 \\ & 5 \\ & 9 \end{aligned}$	-	$\begin{aligned} & 13 \\ & 25 \\ & 25 \end{aligned}$	-	$\begin{aligned} & 12 \\ & 22 \\ & 25 \end{aligned}$	-	$\begin{gathered} \hline 8 \\ 22 \\ 25 \end{gathered}$	MHz

NOTE: Usually, the PLL's propagation delay from $f_{\text {in }}$ to MC plus the setup time of the prescaler determines the upper frequency limit of the system. The upper frequency limit is found with the following formula: $f=P /\left(t p+t_{s e t}\right)$ where f is the upper frequency in $H z, P$ is the lower of the dual modulus prescaler ratios, $t p$ is the $f_{i n}$ to $M C$ propagation delay in seconds, and $t_{\text {set }}$ is the prescaler setup time in seconds.
For example, with a 5 V supply, the f_{in} to MC delay is 70 ns . If the MC12028A prescaler is used, the setup time is 16 ns . Thus, if the $64 / 65$ ratio is utilized, the upper frequency limit is $f=P /\left(t p+t_{\text {set }}\right)=64 /(70+16)=744 \mathrm{MHz}$.

$\mathrm{V}_{\mathrm{H}}=$ High Voltage Level.
$\mathrm{V}_{\mathrm{L}}=$ Low Voltage Level.

* At this point, when both f_{R} and fv are in phase, the output is forced to near mid-supply.

NOTE: The PD $_{\text {out }}$ generates error pulses during out-of-lock conditions. When locked in phase and frequency the output is high and the voltage at this pin is determined by the low-pass filter capacitor.

Figure 9. Phase Detector/Lock Detector Output Waveforms

DESIGN CONSIDERATIONS

PHASE-LOCKED LOOP - LOW-PASS FILTER DESIGN

A)

$$
\begin{aligned}
\omega_{n} & =\sqrt{\frac{K_{\phi} K V C O}{N R_{1} C}} \\
\zeta & =\frac{N \omega_{n}}{2 K_{\phi} K_{V C O}} \\
F(s) & =\frac{1}{R_{1} s C+1} \\
\omega_{n} & =\sqrt{\frac{K_{\phi} K V C O}{N C\left(R_{1}+R_{2}\right)}} \\
\zeta & =0.5 \omega_{n}\left(R_{2} C+\frac{N}{K_{\phi} K V C O}\right) \\
F(s) & =\frac{R_{2} s C+1}{\left(R_{1}+R_{2}\right) s C+1}
\end{aligned}
$$

B)

$$
\omega_{\mathrm{n}}=\sqrt{\frac{\mathrm{K}_{\phi} K_{V C O}}{\mathrm{NCR}_{1}}}
$$

$$
\zeta=\frac{\omega_{n} R_{2} C}{2}
$$

ASSUMING GAIN A IS VERY LARGE, THEN:
$F(s)=\frac{R_{2} s C+1}{R_{1} s C}$

NOTE: Sometimes R_{1} is split into two series resistors, each $R_{1} \div 2$. A capacitor C_{C} is then placed from the midpoint to ground to further filter ϕV and ϕR. The value of C_{C} should be such that the corner frequency of this network does not significantly affect ω_{n}. The $\phi \mathrm{R}$ and $\phi \vee$ outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode input range of the op amp used in the combiner/loop filter.

DEFINITIONS:

$\mathrm{N}=$ Total Division Ratio in feedback loop
K_{ϕ} (Phase Detector Gain) $=\mathrm{V}_{\mathrm{DD}} / 4 \pi$ for $\mathrm{PD}_{\text {out }}$
K_{ϕ} (Phase Detector Gain) $=\mathrm{V}_{\mathrm{DD}} / 2 \pi$ for $\phi \mathrm{V}$ and $\phi \mathrm{R}$
$\mathrm{K}_{\mathrm{VCO}}(\mathrm{VCO}$ Gain $)=\frac{2 \pi \Delta \mathrm{f}_{\mathrm{VCO}}}{\Delta \mathrm{V}_{\mathrm{VCO}}}$
for a typical design w_{n} (Natural Frequency) $\approx \frac{2 \pi f r}{10}$ (at phase detector input).
Damping Factor: $\zeta \cong 1$

RECOMMENDED READING:

Gardner, Floyd M., Phaselock Techniques (second edition). New York, Wiley-Interscience, 1979.
Manassewitsch, Vadim, Frequency Synthesizers: Theory and Design (second edition). New York, Wiley-Interscience, 1980.
Blanchard, Alain, Phase-Locked Loops: Application to Coherent Receiver Design. New York, Wiley-Interscience, 1976.
Egan, William F., Frequency Synthesis by Phase Lock. New York, Wiley-Interscience, 1981.
Rohde, Ulrich L., Digital PLL Frequency Synthesizers Theory and Design. Englewood Cliffs, NJ, Prentice-Hall, 1983.
Berlin, Howard M., Design of Phase-Locked Loop Circuits, with Experiments. Indianapolis, Howard W. Sams and Co., 1978.
Kinley, Harold, The PLL Synthesizer Cookbook. Blue Ridge Summit, PA, Tab Books, 1980.
AN535, Phase-Locked Loop Design Fundamentals, Motorola Semiconductor Products, Inc., 1970.
AR254, Phase-Locked Loop Design Articles, Motorola Semiconductor Products, Inc., Reprinted with permission from Electronic Design, 1987.

CRYSTAL OSCILLATOR CONSIDERATIONS

The following options may be considered to provide a reference frequency to Motorola's CMOS frequency synthesizers.

Use of a Hybrid Crystal Oscillator

Commercially available temperature-compensated crystal oscillators (TCXOs) or crystal-controlled data clock oscillators provide very stable reference frequencies. An oscillator capable of sinking and sourcing $50 \mu \mathrm{~A}$ at CMOS logic levels may be direct or dc coupled to OSC in. In general, the highest frequency capability is obtained utilizing a direct-coupled square wave having a rail-to-rail (VDD to V_{SS}) voltage swing. If the oscillator does not have CMOS logic levels on the outputs, capacitive or ac coupling to OSC in may be used. OSC ${ }_{\text {out }}$, an unbuffered output, should be left floating.

For additional information about TCXOs and data clock oscillators, please consult the latest version of the eem Electronic Engineers Master Catalog, the Gold Book, or similar publications.

Design an Off-Chip Reference

The user may design an off-chip crystal oscillator using ICs specifically developed for crystal oscillator applications, such as the MC12061 MECL device. The reference signal from the MECL device is ac coupled to OSC in. For large amplitude signals (standard CMOS logic levels), dc coupling is used. OSC $_{\text {out }}$, an unbuffered output, should be left floating. In general, the highest frequency capability is obtained with a direct-coupled square wave having rail-to-rail voltage swing.

Use of the On-Chip Oscillator Circuitry

The on-chip amplifier (a digital inverter) along with an appropriate crystal may be used to provide a reference source frequency. A fundamental mode crystal, parallel resonant at the desired operating frequency, should be connected as shown in Figure 10.

*May be deleted in certain cases. See text.
Figure 10. Pierce Crystal Oscillator Circuit
For $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$, the crystal should be specified for a loading capacitance, CL_{L}, which does not exceed 32 pF for frequencies to approximately $8.0 \mathrm{MHz}, 20 \mathrm{pF}$ for frequencies in the area of 8.0 to 15 MHz , and 10 pF for higher frequencies. These are guidelines that provide a reasonable compromise between IC capacitance, drive capability, swamping variations in stray and IC input/output capacitance, and realistic
C_{L} values. The shunt load capacitance, C_{L}, presented across the crystal can be estimated to be:

$$
C_{L}=\frac{C_{\text {in }} C_{\text {out }}}{C_{\text {in }}+C_{\text {out }}}+C_{a}+C_{0}+\frac{C_{1} \cdot C_{2}}{C 1+C_{2}}
$$

where
$\mathrm{C}_{\text {in }}=5 \mathrm{pF}$ (see Figure 11)
$\mathrm{C}_{\text {out }}=6 \mathrm{pF}$ (see Figure 11)
$\mathrm{C}_{\mathrm{a}}=1 \mathrm{pF}$ (see Figure 11)
CO = the crystal's holder capacitance
(see Figure 12)
C1 and C2 = external capacitors (see Figure 10)

Figure 11. Parasitic Capacitances of the Amplifier

NOTE: Values are supplied by crystal manufacturer (parallel resonant crystal).

Figure 12. Equivalent Crystal Networks
The oscillator can be "trimmed" on-frequency by making a portion or all of C1 variable. The crystal and associated components must be located as close as possible to the OSCin and OSC ${ }_{\text {out }}$ pins to minimize distortion, stray capacitance, stray inductance, and startup stabilization time. In some cases, stray capacitance should be added to the value for C_{in} and $\mathrm{C}_{\text {out }}$.

Power is dissipated in the effective series resistance of the crystal, R_{e}, in Figure 12. The drive level specified by the crystal manufacturer is the maximum stress that a crystal can withstand without damage or excessive shift in frequency. R1 in Figure 10 limits the drive level. The use of R1 may not be necessary in some cases (i.e., R1 $=0 \Omega$).

To verify that the maximum dc supply voltage does not overdrive the crystal, monitor the output frequency as a function of voltage at OSC out. (Care should be taken to minimize loading.) The frequency should increase very slightly as the dc supply voltage is increased. An overdriven crystal will decrease in frequency or become unstable with an increase in supply voltage. The operating supply voltage must be reduced or R1 must be increased in value if the overdriven condition exists. The user should note that the oscillator start-up time is proportional to the value of R1.

Through the process of supplying crystals for use with CMOS inverters, many crystal manufacturers have developed expertise in CMOS oscillator design with crystals. Discussions with such manufacturers can prove very helpful (see Table 1).

Table 1. Partial List of Crystal Manufacturers

Motorola - Internet Address http://motorola.com \quad (Search for resonators)
United States Crystal Corp.
Crystek Crystal
Statek Corp.
Fox Electronics

NOTE: Motorola cannot recommend one supplier over another and in no way suggests that this is a complete listing of crystal manufacturers.

RECOMMENDED READING

Technical Note TN-24, Statek Corp.
Technical Note TN-7, Statek Corp.
E. Hafner, "The Piezoelectric Crystal Unit - Definitions and Method of Measurement", Proc. IEEE, Vol. 57, No. 2 Feb., 1969.
D. Kemper, L. Rosine, "Quartz Crystals for Frequency Control", Electro-Technology, June, 1969.
P. J. Ottowitz, "A Guide to Crystal Selection", Electronic Design, May, 1966.

DUAL-MODULUS PRESCALING

OVERVIEW

The technique of dual-modulus prescaling is well established as a method of achieving high performance frequency synthesizer operation at high frequencies. Basically, the approach allows relatively low-frequency programmable counters to be used as high-frequency programmable counters with speed capability of several hundred MHz. This is possible without the sacrifice in system resolution and performance that results if a fixed (single-modulus) divider is used for the prescaler.

In dual-modulus prescaling, the lower speed counters must be uniquely configured. Special control logic is necessary to select the divide value P or $\mathrm{P}+1$ in the prescaler for the required amount of time (see modulus control definition). Motorola's dual-modulus frequency synthesizers contain this feature and can be used with a variety of dual-modulus prescalers to allow speed, complexity and cost to be tailored to the system requirements. Prescalers having $P, P+1$ divide values in the range of $\div 3 / \div 4$ to $\div 128 / \div 129$ can be controlled by most Motorola frequency synthesizers.

Several dual-modulus prescaler approaches suitable for use with the MC145152-2, MC145156-2, or MC145158-2 are:

MC12009	$\div 5 / \div 6$	440 MHz
MC12011	$\div 8 / \div 9$	500 MHz
MC12013	$\div 10 / \div 11$	500 MHz
MC12015	$\div 32 / \div 33$	225 MHz
MC12016	$\div 40 / \div 41$	225 MHz
MC12017	$\div 64 / \div 65$	225 MHz
MC12018	$\div 128 / \div 129$	520 MHz
MC12028A	$\div 32 / 33$ or $\div 64 / 65$	1.1 GHz
MC12052A	$\div 64 / 65$ or $\div 128 / 129$	1.1 GHz
MC12054A	$\div 64 / 65$ or $\div 128 / 129$	2.0 GHz

DESIGN GUIDELINES

The system total divide value, $\mathrm{N}_{\text {total }}(\mathrm{N} T)$ will be dictated by the application:

$$
\mathrm{N}_{\mathrm{T}}=\frac{\text { frequency into the prescaler }}{\text { frequency into the phase detector }}=\mathrm{N} \bullet \mathrm{P}+\mathrm{A}
$$

N is the number programmed into the $\div N$ counter, A is the number programmed into the $\div A$ counter, P and $P+1$ are the two selectable divide ratios available in the dual-modulus prescalers. To have a range of N_{T} values in sequence, the $\div A$ counter is programmed from zero through $P-1$ for a particular value N in the $\div \mathrm{N}$ counter. N is then incremented to $N+1$ and the $\div \mathrm{A}$ is sequenced from 0 through $\mathrm{P}-1$ again.

There are minimum and maximum values that can be achieved for $N T$. These values are a function of P and the size of the $\div \mathrm{N}$ and \div A counters.

The constraint $N \geq A$ always applies. If $A_{\max }=P-1$, then $N_{\text {min }} \geq P-1$. Then $N_{\text {Tmin }}=(P-1) P+A$ or $(P-1) P$ since A is free to assume the value of 0 .

$$
\mathrm{N}_{\operatorname{Tmax}}=\mathrm{N}_{\max } \bullet \mathrm{P}+\mathrm{A}_{\max }
$$

To maximize system frequency capability, the dual-modulus prescaler output must go from low to high after each group of P or $P+1$ input cycles. The prescaler should divide by P when its modulus control line is high and by $P+1$ when its MC is low.

For the maximum frequency into the prescaler (fVCOmax), the value used for P must be large enough such that:

1. fVCOmax divided by P may not exceed the frequency capability of f_{in} (input to the $\div \mathrm{N}$ and $\div \mathrm{A}$ counters).
2. The period of fVCO divided by P must be greater than the sum of the times:
a. Propagation delay through the dual-modulus prescaler.
b. Prescaler setup or release time relative to its MC signal.
c. Propagation time from $f_{i n}$ to the MC output for the frequency synthesizer device.
A sometimes useful simplification in the programming code can be achieved by choosing the values for P of 8,16 , 32 , or 64 . For these cases, the desired value of N_{T} results when N in binary is used as the program code to the $\div \mathrm{N}$ and \div A counters treated in the following manner:
3. Assume the $\div A$ counter contains " a " bits where $2 a \geq P$.
4. Always program all higher order \div A counter bits above "a" to 0 .
5. Assume the $\div \mathrm{N}$ counter and the $\div \mathrm{A}$ counter (with all the higher order bits above "a" ignored) combined into a single binary counter of $n+a$ bits in length ($n=$ number of divider stages in the $\div \mathrm{N}$ counter). The MSB of this "hypothetical" counter is to correspond to the MSB of $\div \mathrm{N}$ and
the LSB is to correspond to the LSB of $\div \mathrm{A}$. The system divide value, N_{T}, now results when the value of N_{\top} in binary is used to program the "new" $\mathrm{n}+\mathrm{a}$ bit counter.
By using the two devices, several dual-modulus values are achievable (shown in Figure 13).

NOTE: MC12009, MC12011, and MC12013 are pin equivalent. MC12015, MC12016, and MC12017 are pin equivalent.

Figure 13. Dual-Modulus Values

Serial-Input PLL Frequency Synthesizer with Analog Phase Detector
 Interfaces with Dual-Modulus Prescalers

The MC145159-1 has a programmable 14-bit reference counter, as well as fully programmable divide-by-N/divide-by-A counters. The counters are programmed serially through a common data input and latched into the appropriate counter latch, according to the last data bit (control bit) entered.

When combined with a loop filter and VCO, this device can provide all the remaining functions for a PLL frequency synthesizer operating up to the device's frequency limit. For higher VCO frequency operations, a down mixer or a dual-modulus prescaler can be used between the VCO and the PLL.

- Operating Temperature Range: - 40 to $85^{\circ} \mathrm{C}$
- Low Power Consumption Through Use of CMOS Technology
- 3.0 to 9.0 V Supply Range
- On- or Off-Chip Reference Oscillator Operation
- Compatible with the Serial Peripheral Interface (SPI) on CMOS MCUs
- \div R Range $=3$ to 16383
- \div N Range $=16$ to 1023, \div A Range $=0$ to 127
- High-Gain Analog Phase Detector
- See Application Note AN969

PIN ASSIGNMENTS

PLASTIC DIP				
AND SO	ACKAGE	SSOP		
$\mathrm{R}_{0}[1 \bullet$	$20 \mathrm{R}_{\mathrm{R}}$	$\mathrm{V}_{S S^{\prime}}$ 1•	20	C_{R}
$\mathrm{OSC}_{\text {in }} \mathrm{C} 2$	$19 V_{D D^{\prime}}$	APD ${ }_{\text {out }}[2$	19	$\mathrm{SR}_{\text {out }}$
OSC $_{\text {out }}[3$	18 [CH_{H}	$\mathrm{CH}^{2} 3$	18	\bigcirc ENB
CHARGE [4	17 APD ${ }_{\text {out }}$	VDD^{\prime} [4	17	DATA
$V_{\text {DD }}[5$	$16 \mathrm{~V}_{S S}{ }^{\prime}$	$\mathrm{R}_{\mathrm{R}} \mathrm{L} 5$	16	CLK
FSO [6	15 - C_{R}	R 06	15	7 fin
$\mathrm{V}_{S S}[7$	14 SR ${ }_{\text {out }}$	$\mathrm{OSC}_{\text {in }}[7$	14	$\square \mathrm{LD}$
MC [8	13 ENB	OSC $_{\text {out }}$ [8	13	MC
LD [9	12 DATA	CHARGE 9	12	$\mathrm{V}_{\text {SS }}$
fin 10	11.1 CLK	VDD 10	11	FSO

60 MHz and 85 MHz Universal Programmable Dual PLL Frequency Synthesizers CMOS

The MC145162 is a dual phase-locked loop (PLL) frequency synthesizer especially designed for CT-1 cordless phone applications worldwide. This frequency synthesizer is also for any product with a frequency operation at 60 MHz or below.

The MC145162-1 is a high frequency derivative of the MC145162, for products with operating frequencies of 85 MHz or below.

The device features fully programmable receive, transmit, reference, and auxiliary reference counters accessed through an MCU serial interface. This feature allows this device to operate in any CT-1 cordless phone application. The device consists of two independent phase detectors for transmit and receive loops. A common reference oscillator, driving two independent reference frequency counters, provides independent reference frequencies for transmit and receive loops. The auxiliary reference counter allows the user to select an additional reference frequency for receive and transmit loops if required.

- Operating Voltage Range: 2.5 to 5.5 V
- Operating Temperature Range: -40 to $+75^{\circ} \mathrm{C}$
- Operating Power Consumption: $3.0 \mathrm{~mA} @ 2.5 \mathrm{~V}$
- Maximum Operating Frequency:

$$
\begin{aligned}
& \text { MC145162-60 MHz @ } 200 \mathrm{mV} p-\mathrm{p}, \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V} \\
& \mathrm{MC145162-1}-85 \mathrm{MHz} @ 250 \mathrm{mV} p-\mathrm{p}, \mathrm{~V}_{\mathrm{DD}}=2.5 \mathrm{~V}
\end{aligned}
$$

- Three or Four Pins Used for Serial MCU Interface
- Built-In MCU Clock Output with Frequency of Reference Oscillator $\div 3 / \div 4$
- Power Saving Mode Controlled by MCU
- Lock Detect Signal
- On-Chip Reference Oscillator Supports External Crystals to 16.0 MHz
- Reference Frequency Counter Division Range: 16 to 4095
- Auxiliary Reference Frequency Counter Division Range: 16 to 16,383
- Transmit Counter Division Range: 16 to 65,535
- Receive Counter Division Range: 16 to 65,535

MC145162 MC145162-1

MAXIMUM RATINGS* (Voltages Referenced to V_{SS})

Symbol	Rating	Value	Unit
V_{DD}	DC Supply Voltage	-0.5 to +6.0	V
$\mathrm{~V}_{\text {in }}$	Input Voltage, All Inputs	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, \mathrm{I}_{\text {out }}$	DC Current Drain Per Pin	10	mA
$\mathrm{I}_{\mathrm{DD}}, I_{\mathrm{SS}}$	DC Current Drain $\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$ Pins	30	mA
$\mathrm{~T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid application of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $V_{\text {SS }} \leq\left(V_{\text {in }}\right.$ or $\left.V_{\text {out }}\right) \leq V_{\text {DD }}$.
Unused pins must always be tied to an appropriate logic voltage level (e.g., either VSS or V_{DD}). Unused outputs must be left open.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

Symbol	Characteristic	VDD	Guaranteed Limit		Unit
			Min	Max	
$V_{\text {DD }}$	Power Supply Voltage Range	-	2.5	5.5	V
VOL	Output Voltage $\left(l_{\text {out }}=0\right)$ 0 Level $\left(\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{DD}}\right.$ or 0$)$ 1 Level	$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	V
V_{OH}		$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 2.45 \\ & 5.45 \end{aligned}$	-	
VIL	Input Voltage 0 Level $\left(\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}\right.$ or $\left.\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}\right)$	$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & 0.75 \\ & 1.65 \end{aligned}$	V
V_{IH}		$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.75 \\ & 3.85 \end{aligned}$	-	
IOH	Output Current $\left(\mathrm{V}_{\text {out }}=2.2 \mathrm{~V}\right)$ Source $\left(\mathrm{V}_{\text {out }}=5.0 \mathrm{~V}\right)$	$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -0.18 \\ & -0.55 \end{aligned}$	-	mA
IOL	$\begin{aligned} & \left(\mathrm{V}_{\text {out }}=0.3 \mathrm{~V}\right) \\ & \left(\mathrm{V}_{\text {out }}=0.5 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.18 \\ & 0.55 \end{aligned}$	-	
IIL	Input Current $\left(V_{\text {in }}=0\right)$$\quad$ OSC $_{\text {in }}, f_{\text {in }}-T, f_{\text {in }}-R$	$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & \hline-30 \\ & -66 \end{aligned}$	$\mu \mathrm{A}$
	ADin $, C L K, D_{i n}, E N B$	$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & -1.0 \\ & -1.0 \end{aligned}$	
IIH	$\left(V_{\text {in }}=V_{D D}-0.5\right) \quad O S C_{\text {in }}, f_{\text {in }}-T, f_{\text {in }}-R$	$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & \hline 30 \\ & 66 \end{aligned}$	
	$A D_{\text {in }}, C L K, D_{\text {in }}, E N B$	$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$	
IOZ	Three-State Leakage Current ($\mathrm{V}_{\text {out }}=0 \mathrm{~V}$ or 5.5 V $)$	5.5	-	± 100	nA
$\mathrm{C}_{\text {in }}$	Input Capacitance	-	-	8.0	pF
Cout	Output Capacitance	-	-	8.0	pF
IDD(stdby)	Standby Current (All Counters are in Power-Down Mode with Oscillator On)	$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & 0.3 \\ & 1.5 \end{aligned}$	mA
IDD	Operating Current MC145162: 200 mV p-p input at $\mathrm{f}_{\mathrm{in}}-\mathrm{T}$ and $\mathrm{f}_{\mathrm{in}}-\mathrm{R}=60 \mathrm{MHz}$ MC145162-1: 250 mV p-p input at $\mathrm{f}_{\mathrm{in}}-\mathrm{T}$ and $\mathrm{f}_{\mathrm{in}}-\mathrm{R}=85 \mathrm{MHz}$ with $\mathrm{OSC}=10.24 \mathrm{MHz}$	$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & 3.0 \\ & 10 \end{aligned}$	mA

SWITCHING CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right)$

Symbol	Characteristic		Figure No.	$V_{\text {DD }}$	Guaranteed Limit		Unit	
			Min		Max			
${ }_{\text {t }}^{\text {L }}$ LH	Output Rise Time			1	$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	ns
tTHL	Output Fall Time		1	$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	ns	
t_{r}, t_{f}	Input Rise and Fall Time	OSC $\mathrm{in}^{\text {I }}$	2	$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\mu \mathrm{s}$	
tw	Input Pulse Width	CLK and ENB	3	$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 60 \end{aligned}$	-	ns	
$f_{\text {max }}$	```Input Frequency Input = Sine Wave @ \geq200 mV p-p for MC145162 Input = Sine Wave @ \geq250 mV p-p for MC145162-1```	$\begin{array}{r} O S C_{i n} \\ \mathrm{f}_{\mathrm{in}}-\mathrm{R}, \mathrm{f}_{\mathrm{in}}-\mathrm{T} \\ \mathrm{f}_{\mathrm{in}}-\mathrm{R}, \mathrm{f}_{\mathrm{in}}-\mathrm{T} \end{array}$		$\begin{aligned} & 2.5-5.5 \\ & 2.5-5.5 \\ & 2.5-5.5 \end{aligned}$	$\begin{aligned} & - \\ & - \end{aligned}$	$\begin{aligned} & 16 \\ & 60 \\ & 85 \end{aligned}$	MHz	
$\mathrm{t}_{\text {st }}$	Minimum Start-Up Time					10	ms	
$\mathrm{t}_{\text {su }}$	Setup Time	DATA to CLK ENB to CLK	5	$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 100 \\ & 200 \end{aligned}$	-	ns	
th	Hold Time	CLK to DATA	5	$\begin{aligned} & \hline 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 80 \\ & 40 \end{aligned}$	-	ns	
trec	Recovery Time	ENB to CLK	5	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 40 \end{aligned}$	-	ns	
$\mathrm{t}_{\text {su1 }}$	Setup Time	ENB to CLK	4	2.5-5.5	80	-	ns	
th1	Hold Time	CLK to ENB	4	2.5-5.5	600	-	ns	
f	Phase Detector Frequency				dc	12.5	kHz	
$\mathrm{f}_{\text {MCUCLK }}$	Output Clock Frequency $\left(\text { OSC }_{\text {in }} \div 3\right)$	MCUCLK			dc	5.33	MHz	

SWITCHING WAVEFORMS

Figure 1.

Figure 3.

Figure 4. ENB High During Serial Transfer

Figure 5. ENB Low During Serial Transfer

PIN DESCRIPTIONS

INPUT PINS

OSC $_{\text {in }} /$ OSC $_{\text {out }}$
 Reference Oscillator Input/Output (Pins 7, 8)

These pins form a reference oscillator when connected to an external parallel-resonant crystal. Figure 6 shows the relationship of different crystal frequencies and reference frequencies for cordless phone applications in various countries. OSC in may also serve as input for an externally generated reference signal which is typically ac coupled.

MCUCLK

System Clock (Pin 5)

This output pin provides a signal of the crystal frequency (OSC ${ }_{\text {out }}$) divided by 3 or 4 that is controlled by a bit in the control register.

This signal can be a clock source for the MCU or other system clocks.

$A D_{\text {in }}, D_{\text {in }}, C L K, E N B$

Auxiliary Data In, Data In, Clock, Enable (Pins 2, 3, 1, 4)
These four pins provide an MCU serial interface for programming the reference counter, the transmit-channel counter, and the receive-channel counter. They also provide various controls of the PLL including the power saving mode and the programming format.

TxPS/fTx, RxPS/fRx

Transmit Power Save, Receive Power Save (Pins 13, 11)
For a normal application, these output pins provide the status of the internal power saving mode operation. If the transmit-channels counter circuitry is in power down mode, TxPS/fTx outputs a high state. If the receive-channels counter circuitry is in power down mode, RxPS/f $R x$ is set high. These outputs can be applied for controlling the external power switch for the transmitter and the receiver to save MCU control pins.

In the Tx/Rx channel counter test mode, the TxPS/fTx and RxPS/fRx pins output the divided value of the transmit channel counter (f Tx) and the receive channel counter (f Rx), respectively. This test mode operation is controlled by the
control register. Details of the counter test mode are in the Tx/Rx Channel Counter Test section of this data sheet.

$\mathrm{f}_{\mathrm{in}}-\mathrm{T} / \mathrm{f}_{\mathrm{in}}-\mathrm{R}$

Transmit/Receive Counter Inputs (Pins 14, 9)

$\mathrm{f}_{\mathrm{in}}-\mathrm{T}$ and $\mathrm{f}_{\mathrm{in}}-\mathrm{R}$ are inputs to the transmit and the receive counters, respectively. These signals are typically driven from the loop VCO and ac coupled. The minimum input signal level is 200 mV p-p @ 60.0 MHz.

OUTPUT PINS

TxPD $_{\text {out }} /$ RxPD $_{\text {out }}$

Transmit/Receive Phase Detector Outputs (Pins 15, 10)
These are three-state outputs of the transmit and receive phase detectors for use as loop error signals (see Figure 7 for phase detector output waveforms). Phase detector gain is VDD/4 π volts per radian.

Frequency $\mathrm{fV}>\mathrm{fR}$ or fV leading: output $=$ negative pulse.
Frequency $\mathrm{fV}_{\mathrm{V}}<\mathrm{ff}_{\mathrm{R}}$ or fV lagging: output = positive pulse.
Frequency $\mathrm{fV}=\mathrm{f}_{\mathrm{R}}$ and phase coincidence: output $=$ highimpedance state.
NOTE: f_{R} is the divided-down reference frequency at the phase detector input and $f \mathrm{~V}$ is the divided-down VCO frequency at the phase detector input.

LD

Lock Detect (Pin 16)

The lock detect signal is associated with the transmit loop. The output at a high level indicates an out-of-lock condition (see Figure 7 for the LD output waveform).

POWER SUPPLY

VDD
 Positive Power Supply (Pin 12)

$V_{D D}$ is the most positive power supply potential ranging from 2.5 to 5.5 V with respect to V_{SS}.

VSS
 Negative Power Supply (Pin 6)

$V_{\text {SS }}$ is the most negative supply potential and is usually connected to ground.

Figure 6. Reference Frequencies for Cordless Phone Applications of Various Countries

$\mathrm{V}_{\mathrm{H}}=$ High voltage level.
$\mathrm{V}_{\mathrm{L}}=$ Low voltage level.
*At this point, when both f_{R} and $f v$ are in phase, the output is forced to near mid supply.
NOTE: The TxPD ${ }_{\text {out }}$ and RxPD out generate error pulses during out-of-lock conditions. When locked in phase and frequency, the output is high impedance and the voltage at that pin is determined by the low-pass filter capacitor.

Figure 7. Phase Detector/Lock Detector Output Waveforms

MCU PROGRAMMING SCHEME

The MCU programming scheme is defined in two formats controlled by the ENB input. If the enable signal is high during the serial data transfer, control register/reference frequency programming is selected. If the ENB is low, programming of the transmit and receive counters is selected. During programming of the transmit and receive counters, both $A D_{\text {in }}$ and $D_{\text {in }}$ pins can input the data to the transmit and receive counters. Both counters' data is clocked into the PLL internal shift register at the leading edge of the CLK signal. It is not necessary to reprogram the reference frequency counter/control register when using the enable signal to program the transmit/receive channels.

In programming the control register/reference frequency scheme, the most significant bit (MSB) of the programming word identifies whether the input data is the control word or the reference frequency data word. If the MSB is 1 , the input data is the control word (Figure 8). Also see Figure 8 and Table 1 for control register and bit function. If the MSB is 0 , the input data is the reference frequency (Figure 9).

The reference frequency data word is a 32-bit word containing the 12-bit reference frequency data, the 14-bit auxiliary reference frequency counter information, the reference frequency selection plus, the auxiliary reference frequency counter enable bit (Figure 9).

If the AUX REF ENB bit is high, the 14-bit auxiliary reference frequency counter provides an additional phase reference frequency output for the loops. If AUX REF ENB bit is low, the auxiliary reference frequency counter is forced into
power-down mode for current saving. (Other power down modes are also provided through the control register per Table 2 and Figure 8.) At the falling edge of the ENB signal, the data is stored in the registers.

There are two interfacing schemes for the universal channel mode: the three-pin and the four-pin interfacing schemes. The three-pin interfacing scheme is suited for use with the MCU SPI (serial peripheral interface) (Figure 10), while the four-pin interfacing scheme is commonly used for general I/O port connection (Figure 11).

For the three-pin interfacing scheme, the auxiliary data select bit is set to 0 . All 32 bits of data, which define both the 16-bit transmit counter and the 16-bit receive counter, latch into the PLL internal register through the data in pins at the leading edge of CLK. See Figures 12 and 13.

For the four-pin interfacing scheme, the auxiliary data select bit is set to 1 . In this scheme, the 16-bit transmit counter's data enters into the $A D_{\text {in }}$ pin at the same time as the 16-bit receive counter's data enters into the $\mathrm{D}_{\text {in }}$ pin. This simultaneous entry of the transmit and receive counters causes the programming period of the four-pin scheme to be half that of the three-pin scheme (see Figures 14 and 15).

While programming Tx/Rx Channel Counter, the ENB pin must be pulsed to provide falling edge to latch the shifted data after the rising edge of the last clock. Maximum data transfer rate is 500 kbps .

NOTE

10 ms should be allowed for initial start-up time for the oscillator to allow all registers to clear and enable programming of new register values.

NOTE: ENB must be high during the serial transfer.

Figure 8. Programming Format of the Control Register

Table 1. Control Register Function Bits Description

Test Bit	Set to 1 for Tx/Rx channel counter test mode Set to 0 for normal application
Aux Data Select	Set to 1 for both $A D_{\text {in }}$ and $D_{\text {in }}$ pins inputting the transmit 16-bits data and receive 16-bits data respectively. Set to 0 for normal application interfacing with MCU serial peripheral interface. Does not use $A D_{\text {in }}$ pin; tie $A D_{\text {in }}$ to $V_{S S}$.
REF ${ }_{\text {out }} \div 3 / \div 4$	If set to 1, REF $_{\text {out }}$ output frequency is equal to $\mathrm{OSC}_{\text {out }} \div 3$. If set to 0, REF $_{\text {out }}$ output is $\mathrm{OSC}_{\text {out }} \div 4$.
TxPD Enable	If set to 1 , the transmit counter, transmit phase detector, and the associated circuitry is in powerdown mode. Tx PS/fTx is set "High".
RxPD Enable	If set to 1 , the receive counter, receive phase detector, and the associated circuitry is in powerdown mode. $R x P S / f R x$ is set "High".
Ref PD Enable	If set to 1, both 12-bit and 14-bit reference frequency counters are in power-down mode.

Table 2. Control Register Power Down Bits Function

TxPD Enable	RxPD Enable	REF PD Enable	Tx-Channel Counter	Rx-Channel Counter	Reference Frequency Counter
0	0	0	-	-	-
0	0	1	-	-	Power Down
0	1	0	-	Power Down	-
0	1	1	-	Power Down	Power Down
1	0	0	Power Down	-	-
1	0	1	Power Down	-	Power Down
1	1	0	Power Down	Power Down	-
1	1	1	Power Down	Power Down	Power Down

NOTE: ENB must be high during the serial transfer.

Figure 9. Programming Format of the Auxiliary/Reference Frequency Counters

Figure 10. MCU Interface Using SPI

Figure 11. MCU Interface Using Normal I/O Ports with Both $\mathrm{D}_{\text {in }}$ and $\mathrm{AD}_{\text {in }}$ for Faster Programming Time

NOTE: ENB must be high during the serial transfer.
Figure 12. Programming Format for Control Register (3-Pin Interfacing Scheme)

NOTE: ENB must be low during the serial transfer.

Figure 13. Programming Format for Transmit and Receive Counters (3-Pin Interfacing Scheme)

NOTE: ENB must be high during the serial transfer.
Figure 14. Programming Format for Control Register (4-Pin Interfacing Scheme)

NOTE: ENB must be low during the serial transfer.

Figure 15. Programming Format for Transmit and Receive Counters (4-Pin Interfacing Scheme)

Table 3. Global CT-1 Reference Frequency Setting vs Channel Frequencies

Country	Channels Frequency	$\mathbf{f}_{\mathbf{R} 1}$	$\mathbf{f}_{\mathbf{R} \mathbf{2}}$
U.S.A.	$46 / 49 \mathrm{MHz}(10,15,25$ Channels $)$	5.0 kHz	-
France	$26 / 41 \mathrm{MHz}$	$6.25 \mathrm{kHz} / 12.5 \mathrm{kHz}$	-
Spain	$31 / 41 \mathrm{MHz}$	5.0 kHz	-
Australia	$30 / 39 \mathrm{MHz}$	5.0 kHz	-
U.K.	$1.7 / 47 \mathrm{MHz}$	6.25 kHz	1.0 kHz
New Zealand	$1.7 / 34 / 40 \mathrm{MHz}$	6.25 kHz	1.0 kHz

REFERENCE FREQUENCY SELECTION AND PROGRAMMING

Figure 16 shows the bit function of the reference frequency programming word. The user can either select the "fixed" reference frequency for all channels accordingly or provide a specific reference frequency for a particular channel by using two reference frequency counters (e.g., for an application in France, the base set transmit channel common fixed reference frequency is 6.25 kHz or 12.5 kHz). (See Table 3 and Figure 6 for reference frequencies for various countries.) However, transmit channels 6,8 , and 14 can be set to 25 kHz , and channel 8 reference frequency can be set to 50 kHz . But this reference frequency may not be applied to the receiving side; therefore, the receiving side reference frequency must be generated by another reference frequency counter. The higher the reference frequency, the better the phase noise performance and faster the lock time, but the PLL consumes more current if both reference frequency counters are in operation.

In general, the 12-bit reference frequency counter plus the $\div 4$ and $\div 25$ module can offer all the reference frequencies
for global CT-1 transmit and receive channel requirements. Users can select their own reference frequency by introducing the additional 14-bit auxiliary reference frequency counter.

Again, the 14-bit auxiliary reference frequency counter can be shut down by the auxiliary reference enable bit in the reference counter programming word by setting the bit to 0 . At this state, the fR2 is automatically connected to point C (the $\div 25$ block output), and $\mathrm{f}_{\mathrm{R} 1}$ can be connected to point A or B by setting the $\mathrm{fR}_{\mathrm{R}}-\mathrm{S} 1$ and $\mathrm{fR}_{\mathrm{R}}-\mathrm{S} 2$ bits in the reference counter program word. The 14-bit auxiliary reference frequency counter data will be in "Don't Care" state.

If the 14-bit auxiliary reference frequency counter is enabled (auxiliary reference enable $=1$), then $\mathrm{f}_{\mathrm{R} 2}$ is automatically connected to point D (14-bit counter output), and $\mathrm{f}_{\mathrm{R} 1}$ can be selected to connect to point A, B, or C , depending on the bit setting of $\mathrm{f}_{\mathrm{R} 1}-\mathrm{S} 1$ and $\mathrm{f}_{\mathrm{R} 1}-\mathrm{S} 2$.

Table 4 and Figure 16 describe the functions of the auxiliary reference enable bit and the $\mathrm{f}_{\mathrm{R} 1}-\mathrm{S} 1$ and $\mathrm{fR}_{\mathrm{R}}-\mathrm{S} 2$ bits selection.

NOTE: ENB must be high during the serial transfer.

Figure 16. Reference Frequency Counter/Selection Programming Mode

Table 4. Bit Function and the Reference Frequency Selection Bit Setting of the Reference Frequency Counter Programming Word

AUX REF Enable	Auxiliary Reference Frequency Counter Mode	Module Select	$\begin{aligned} & \hline \mathrm{f}_{\mathrm{R} 1} \\ & \mathrm{~S} 1 \end{aligned}$	$\begin{aligned} & \hline \mathrm{f}_{\mathrm{R} 1} \\ & \mathrm{~S} 2 \end{aligned}$	$\mathrm{f}_{\mathrm{R} 1}$ Routing
0	14-Bit Auxiliary Reference Frequency Counter Disable	${ }_{\mathrm{f}}^{\mathrm{R} 2} \mathrm{\rightarrow}$ C	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \mathrm{N} / \mathrm{A} \\ \mathrm{f}_{\mathrm{R} 1} \rightarrow \mathrm{~A} \\ \mathrm{f}_{\mathrm{R} 1} \rightarrow \mathrm{~B} \\ \mathrm{~N} / \mathrm{A} \end{gathered}$
1	14-Bit Auxiliary Reference Frequency Counter Enable	${ }^{\mathrm{f}} \mathrm{R}$ \rightarrow D	$\begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 1 \end{aligned}$	$\begin{aligned} & 0 \\ & 1 \\ & 0 \\ & 1 \end{aligned}$	$\begin{aligned} & \mathrm{N} / \mathrm{A} \\ & \mathrm{f}_{\mathrm{R} 1} \rightarrow \mathrm{~A} \\ & \mathrm{f}_{\mathrm{R} 1} \rightarrow \mathrm{~B} \\ & \mathrm{f}_{\mathrm{R} 1} \rightarrow \mathrm{C} \end{aligned}$

N/A = Not Applicable

POWER SAVING OPERATION

This PLL has a programmable power-saving scheme. The transmit and receive counters and the reference frequency counter can be powered down individually by setting the TxPD enable, RxPD enable, and Ref PD enable bits of the control register. The functions of the power down control bits are explained in Table 2 and the programming format is in Figure 8.

The output pins TxPS/fTx and RxPS/fRx output the status of the internal power saving setting. If the bit TxPD enable is set "high" (transmit counter is set to power-down mode), then the TxPS/fTx pin will also output a "high" state. This TxPS/fTx output can control an external power switch to switch off the transmitter, as shown in Figure 17. This scheme can be applied to the RxPS/fRx output to control the receiver power saving operation as required.

Figure 17. TxPS/fTx and RxPS/fRx Outputs to Control Power Switches of the Transmitter and the Receiver

Tx/Rx CHANNEL COUNTER TEST

In normal applications, the TxPS/fTx and the RxPS/fRx output pins indicate the power saving mode status. However, the user can examine the Tx and Rx channel counter outputs by setting the Test bit in the control register to 1 . The final
value of the transmit-channel counter and the receivechannel counter multiplex out to TxPS/fTx and RxPS/fRx respectively. The user can verify the divided-down output waveform associated with the RF input level in the PLL circuitry implementation (Figure 18).

Figure 18. RF Buffer Sensitivity

Table 5. France CT-1 Base Set Frequency

Channel Number	Tx Channel Frequency (MHz)	Tx Counter Value (Ref. Freq. 6.25 kHz)	$\mathbf{f}_{\text {in-R Input }}$ Frequency (MHz) [1st IF = 10.7 MHz]	Rx Counter Value (Ref. Freq. $=$ 6.25 kHz)
1	26.4875	4238	30.7875	4926
2	26.4750	4236	30.7750	4924
3	26.4625	4234	30.7625	4922
4	26.4500	4232	30.7500	4920
5	26.4375	4230	30.7375	4918
6	26.4250	4228	30.7250	4916
7	26.4125	4226	30.7125	4914
8	26.4000	4224	30.7000	4912
9	26.3875	4222	30.6875	4910
10	26.3750	4220	30.6750	4908
11	26.3625	4218	30.6625	4906
12	26.3500	4216	30.6500	4904
13	26.3375	4214	30.6375	4902
14	26.3250	4212	30.6250	4900
15	26.3125	4210	30.6125	4898

Table 6. France CT-1 Handset Frequency

Channel Number	Tx Channel Frequency (MHz)	Tx Counter Value (Ref. Freq. 6.25 kHz)	fin-R Input Frequency (MHz) [1st IF =10.7 MHz]	Rx Counter Value (Ref. Freq. $=$ 6.25 kHz)
1	41.4875	6638	37.1875	5950
2	41.4750	6636	37.1750	5948
3	41.4625	6634	37.1625	5946
4	41.4500	6632	37.1500	5944
5	41.4375	6630	37.1375	5942
6	41.4250	6628	37.1250	5940
7	41.4125	6626	37.1125	5938
8	41.4000	6624	37.1000	5936
9	41.3875	6622	37.0875	5934
10	41.3750	6620	37.0750	5932
11	41.3625	6618	37.0625	5930
12	41.3500	6616	37.0500	5928
13	41.3375	6614	37.0375	5926
14	41.3250	6612	37.0250	5924
15	41.3125	6610	37.0125	5922

Table 7. Spain CT-1 Base Set Frequency

Channel Number	Tx Channel Frequency $(\mathbf{M H z})$	Tx Counter Value (Ref. Freq. 5.00 kHz)	fin-R Input $^{\text {Frequency (MHz) }}$ [1st IF $=10.695 ~ M H z]$	Rx Counter Value (Ref. Freq. $=$ $5.00 \mathrm{kHz})$
1	31.0250	6205	29.2300	5846
2	31.0500	6210	29.2550	5851
3	31.0750	6215	29.2800	5856
4	31.1000	6220	29.3050	5861
5	31.1250	6225	29.3300	5866
6	31.1500	6230	29.3550	5871
7	31.1750	6235	29.3800	5876
8	31.2000	6240	29.4050	5881
9	31.2500	6250	29.4550	5891
10	31.2750	6255	29.4800	5896
11	31.3000	6260	29.5050	5901
12	31.3250	6265	29.5300	5906

Table 8. Spain CT-1 Handset Frequency

Channel Number	Tx Channel Frequency $(\mathbf{M H z})$	Tx Counter Value (Ref. Freq. 5.00 kHz)	fin-R Input $^{\text {Frequency (MHz) }}$ [1st IF $=10.7$ MHz]	Rx Counter Value (Ref. Freq. $=$ $5.00 \mathrm{kHz})$
1	39.9250	7985	20.3300	4066
2	39.9500	7990	20.3550	4071
3	39.9750	7995	20.3800	4076
4	40.0000	8000	20.4050	4081
5	40.0250	8005	20.4300	4086
6	40.0500	8010	20.4550	4091
7	40.0750	8015	20.4800	4096
8	40.1000	8020	20.5050	4101
9	40.1500	8030	20.5550	4111
10	40.1750	8035	20.5800	4116
11	40.2000	8040	20.6050	4121
12	40.2250	8045	20.6300	4126

Table 9. New Zealand CT-1 Base Set Frequency

Channel Number	Tx Channel Frequency (MHz)	Tx Counter Value	f_{in}-R Input Frequency (MHz) [1st IF = $\mathbf{1 0 . 7} \mathbf{~ M H z] ~}$	Rx Counter Value (Ref. Freq. = 6.25 kHz)
1	1.7820	1782	29.7625	4762
2	1.7620	1762	29.7500	4760
3	1.7420	1742 < Ref Freq	29.7375	4758
4	1.7220	1722	29.7250	4756
5	1.7020	1702)	29.7125	4754
6	34.3500	5496	29.7000	4752
7	34.3625	5498	29.6875	4750
8	34.3750	5500 -Ref Freq	29.6750	4748
9	34.3875	5502	29.6625	4746
10	34.4000	5504)	29.6500	4744

Table 10. New Zealand CT-1 Handset Frequency

Channel Number	Tx Channel Frequency (MHz)	Tx Counter Value (Ref. Freq. = 6.25 kHz)	f_{in}-R Input Frequency (MHz)	Rx Counter Value
1	40.4625	6474	2.2370)	2237
2	40.4500	6472	2.2170	2217
3	40.4375	6470	2.1970 ¢ ${ }^{\text {Ref Freq }}=455 \mathrm{kHz}$	2197 Ref Freq
4	40.4250	6468	2.1770	2177
5	40.4125	6466	2.1570)	2157 J
6	40.4000	6464	23.65007	3784
7	40.3875	6462	23.6625	3786
8	40.3750	6460	23.6750 Ref Freq	3788 < Ref Freq
9	40.3625	6458	23.6875	3790
10	40.3500	6456	23.7000	3792)

Table 11. Australia CT-1 Base Set Frequency

Channel Number	Tx Channel Frequency $(\mathbf{M H z})$	Tx Counter Value (Ref. Freq. 5.00 kHz)	$\mathbf{f}_{\text {in-R Input }}$ Frequency (MHz) [1st IF =10.695 MHz]	Rx Counter Value (Ref. Freq. $=$ 5.00 kHz)
1	30.0750	6015	29.0800	5816
2	30.1250	6025	29.1300	5826
3	30.1750	6035	29.1800	5836
4	30.2250	6045	29.2300	5846
5	30.2750	6055	29.2800	5856
6	30.1000	6020	29.1050	5821
7	30.1500	6030	29.1550	5831
8	30.2000	6040	29.2050	5841
9	30.2500	6050	29.2550	5851
10	30.3000	6060	29.3050	5861

Table 12. Australia CT-1 Handset Frequency

Channel Number	Tx Channel Frequency (MHz)	Tx Counter Value (Ref. Freq. 5.00 kHz)	$\mathbf{f}_{\text {in-R Input }}$ Frequency (MHz) [1st IF = 10.7 MHz]	Rx Counter Value (Ref. Freq. $=$ 5.00 kHz)
1	39.7750	7955	19.3800	3876
2	39.8250	7965	19.4300	3886
3	39.8750	7975	19.4800	3896
4	39.9250	7985	19.5300	3906
5	39.9750	7995	19.5800	3916
6	39.8000	7960	19.4050	3881
7	39.8500	7970	19.4550	3891
8	39.9000	7980	19.5050	3901
9	39.9500	7990	19.5550	3911
10	40.0000	8000	19.6050	3921

Table 13. U.K. CT-1 Base Set Frequency

Channel Number	Tx Channel Frequency (MHz)	Tx Counter Value (Ref. Freq. $\mathbf{1 . 0 0 ~ k H z)}$	$\mathrm{f}_{\text {in-R Input }}$ Frequency (MHz) [1st IF = 10.7 MHz]	Rx Counter Value (Ref. Freq. $=$ $6.25 \mathrm{kHz})$
1	1.6420	1642	36.75625	5881
2	1.6620	1662	36.76875	5883
3	1.6820	1682	36.78125	5885
4	1.7020	1702	36.79375	5887
5	1.7220	1722	36.80625	5889
6	1.7420	1742	36.81875	5891
7	1.7620	1762	36.83125	5893
8	1.7820	1782	36.84375	5895

Table 14. U.K. CT-1 Handset Frequency

Channel Number	Tx Channel Frequency (MHz)	Tx Counter Value (Ref. Freq. $\mathbf{6 . 2 5} \mathbf{k H z})$	$\mathbf{f}_{\text {in-R Input }}$ Frequency (MHz) [1st IF = 455 kHz]	Rx Counter Value (Ref. Freq. $=$ $\mathbf{1 . 0 0 ~ k H z) ~}$
1	47.45625	7593	2.097	2097
2	47.46875	7595	2.117	2117
3	47.48125	7597	2.137	2137
4	47.49375	7599	2.157	2157
5	47.50625	7601	2.177	2177
6	47.51875	7603	2.197	2197
7	47.53125	7605	2.217	2217
8	47.54375	7607	2.237	2237

Table 15. U.S.A. (10 Channels) CT-1 Base Set Frequency

Channel Number	Tx Channel Frequency $(\mathbf{M H z})$	Tx Counter Value (Ref. Freq. 5.00 kHz)	$\mathbf{f}_{\text {in-R Input }}$ Frequency (MHz) [1st IF $=\mathbf{1 0 . 6 9 5 ~ M H z] ~}$	Rx Counter Value (Ref. Freq. $=$ $\mathbf{5 . 0 0} \mathbf{~ k H z) ~}$
1	46.610	9322	38.975	7795
2	46.630	9326	38.150	7830
3	46.670	9334	38.165	7833
4	46.710	9342	39.075	7815
5	46.730	9346	39.180	7836
6	46.770	9354	39.135	7827
7	46.830	9366	39.195	7839
8	46.870	9374	39.235	7847
9	46.930	9386	39.295	7859
10	46.970	9394	39.275	7855

Table 16. U.S.A. (10 Channels) CT-1 Handset Frequency

Channel Number	Tx Channel Frequency $(\mathbf{M H z})$	Tx Counter Value (Ref. Freq. $\mathbf{5 . 0 0} \mathbf{~ k H z})$	$\mathbf{f}_{\text {in }}$-R Input Frequency (MHz) [1st IF = 10.7 MHz]	Rx Counter Value (Ref. Freq. $=$ $5.00 \mathrm{kHz})$
1	49.670	9934	35.915	7183
2	49.845	9969	35.935	7187
3	49.860	9972	35.975	7195
4	49.770	9954	36.015	7203
5	49.875	9975	36.035	7207
6	49.830	9966	36.075	7215
7	49.890	9978	36.135	7227
8	49.930	9986	36.175	7235
9	49.990	9998	36.235	7247
10	49.970	9994	36.275	7255

Table 17. U.S.A. (25 Channels) CT-1 Base Set Frequency

Channel Number	Tx Channel Frequency (MHz)	Tx Counter Value (Ref. Freq. 5.00 $\mathbf{k H z}$)	$\mathbf{f}_{\text {in-R Input }}$ Frequency (MHz) [1st IF =10.7 MHz]	Rx Counter Value (Ref. Freq. $=$ $5.00 \mathrm{kHz})$
1	43.72	8744	38.06	7612
2	43.74	8748	38.14	7628
3	43.82	8764	38.16	7632
4	43.84	8768	38.22	7644
5	43.92	8784	38.32	7664
6	43.96	8788	38.38	7676
7	44.12	8824	38.40	7680
8	44.16	8832	38.46	7692
9	44.18	8836	38.50	7700
10	44.20	8840	38.54	7708
11	44.32	8864	38.58	7716
12	44.36	8872	38.66	7732
13	44.40	8880	38.70	7740
14	44.46	8892	38.76	7752
15	44.48	8896	38.80	7760
16	46.61	9322	38.97	7794
17	46.63	9326	39.145	7829
18	46.67	9334	39.16	7832
19	46.71	9342	39.07	7814
20	46.73	9346	39.175	7835
21	46.77	9354	39.13	7826
22	46.83	9366	39.19	7838
23	46.87	9374	39.23	7846
24	46.93	9386	39.29	7854
25	46.97	9394		

Table 18. U.S.A. (25 Channels) CT-1 Handset Frequency

Channel Number	Tx Channel Frequency (MHz)	```Tx Counter Value (Ref. Freq. = 5.00 kHz)```	f_{in}-R Input Frequency (MHz) [1st IF = 10.7 MHz]	```Rx Counter Value (Ref. Freq. = 5.00 kHz)```
1	48.76	9752	33.02	6604
2	48.84	9768	33.04	6608
3	48.86	9772	33.12	6624
4	48.92	9748	33.14	6628
5	49.02	9804	33.22	6644
6	49.08	9816	33.26	6652
7	49.10	9820	33.42	6684
8	49.16	9832	33.46	6692
9	49.20	9840	33.48	6696
10	49.24	9848	33.50	6700
11	49.28	9856	33.62	6724
12	49.36	9872	33.66	6732
13	49.40	9880	33.70	6740
14	49.46	9892	33.76	6752
15	49.50	9900	33.78	6756
16	49.67	9934	33.91	7182
17	49.845	9969	33.93	7186
18	49.86	9972	33.97	7194
19	49.77	9954	36.01	7202
20	49.875	9975	36.03	7206
21	49.83	9966	36.07	7214
22	49.89	9978	36.13	7226
23	49.93	9986	36.17	7234
24	49.99	9998	36.23	7246
25	49.97	9994	36.27	7254

Table 19. Korea CT-1 Base Set Frequency

Channel Number	Tx Channel Frequency (MHz)	```Tx Counter Value (Ref. Freq. = 5.00 kHz)```	f_{in}-R Input Frequency (MHz) [1st IF = 10.695 MHz]	Rx Counter Value (Ref. Freq. = 5.00 kHz)
1	46.610	9322	38.975	7795
2	46.630	9326	38.150	7830
3	46.670	9334	38.165	7833
4	46.710	9342	39.075	7815
5	46.730	9346	39.180	7836
6	46.770	9354	39.135	7827
7	46.830	9366	39.195	7839
8	46.870	9374	39.235	7847
9	46.930	9386	39.295	7859
10	46.970	9394	39.275	7855
11	46.510	9302	39.000	7800
12	46.530	9306	39.015	7803
13	46.550	9310	39.030	7806
14	46.570	9314	39.045	7809
15	46.590	9318	39.060	7812

Table 20. Korea CT-1 Handset Frequency

Channel Number	Tx Channel Frequency (MHz)	Tx Counter Value (Ref. Freq. 5.00 kHz)	$\mathbf{f}_{\text {in-R Input }}$ Frequency (MHz) [1st IF = 10.7 MHz]	Rx Counter Value (Ref. Freq. $=$ 5.00 kHz)
1	49.670	9934	35.915	7183
2	49.845	9969	35.935	7187
3	49.860	9972	35.975	7195
4	49.770	9954	36.015	7203
5	49.875	9975	36.035	7207
6	49.830	9966	36.075	7215
7	49.890	9978	36.135	7227
8	49.930	9986	36.175	7235
9	49.990	9998	36.235	7247
10	49.970	9994	36.275	7255
11	49.695	9939	35.815	7163
12	49.710	9942	35.835	7167
13	49.725	9945	35.855	7171
14	49.740	9948	35.875	7175
15	49.755	9951	35.895	7179

Table 21. China CT-1 Base Set Frequency

Channel Number	Tx Channel Frequency $(\mathbf{M H z})$	Tx Counter Value (Ref. Freq. 5.00 kHz)	fin-R Input Frequency (MHz) [1st IF =10.7 MHz]	Rx Counter Value (Ref. Freq. $=$ 5.00 kHz)
1	45.250	9050	37.550	7510
2	45.275	9055	37.575	7515
3	45.300	9060	37.600	7520
4	45.325	9065	37.625	7525
5	45.350	9070	37.650	7530
6	45.375	9075	37.675	7535
7	45.400	9080	37.700	7540
8	45.425	9085	37.725	7545
9	45.450	9090	37.750	7550
10	45.475	9095	37.775	7555

Table 22. China CT-1 Handset Frequency

Channel Number	Tx Channel Frequency $(\mathbf{M H z})$	Tx Counter Value (Ref. Freq. 5.00 kHz)	fin-R Input $^{\text {Frequency (MHz) }}$ [1st IF $=10.7$ MHz]	Rx Counter Value (Ref. Freq. $=$ 5.00 kHz)
1	48.250	9650	34.550	6910
2	48.275	9655	34.575	6915
3	48.300	9660	34.600	6920
4	48.325	9665	34.625	6925
5	48.350	9670	34.650	6930
6	48.375	9675	34.675	6935
7	48.400	9680	34.700	6940
8	48.425	9685	34.725	6945
9	48.450	9690	34.750	6950
10	48.475	9695	34.775	6955

MC145165

Low-Voltage 60 MHz Universal Programmable Dual PLL Frequency Synthesizer CMOS

The MC145165 is a low-voltage dual phase-locked loop (PLL) frequency synthesizer especially designed for CT-1 cordless phone applications worldwide. This frequency synthesizer is also for any product with a frequency operation at 60 MHz or below.

This chip is suitable for any portable RF products which use two 1.2 V chargeable $\mathrm{Ni}-\mathrm{Cd}$ batteries. The feature of low operating voltage can reduce the current consumption and the cost of the portable RF products by reducing the number of batteries used.

The device features fully programmable receive, transmit, reference, and auxiliary reference counters accessed through an MCU serial interface. This feature allows this device to operate in any CT-1 cordless phone application. The device consists of two independent phase detectors for transmit and receive loops. A common reference oscillator, driving two independent reference frequency counters, provides independent reference frequencies for transmit and receive loops. The auxiliary reference counter allows the user to select an additional reference frequency for receive and transmit loops if required. All of the functions and features of the MC145165 are fully compatible with the MC145162.

- Operating Voltage Range: 1.8 to 3.6 V
- Operating Temperature Range: -40 to $+75^{\circ} \mathrm{C}$
- Operating Power Consumption: $1.5 \mathrm{~mA} @ 1.8 \mathrm{~V}$
- Maximum Operating Frequency: 60 MHz
- Minimum Input Sensitivity: $60 \mathrm{MHz} @ 200 \mathrm{mV}$ p-p, $\mathrm{V} D \mathrm{D}=1.8 \mathrm{~V}$
- Three or Four Pins Used for Serial MCU Interface
- Built-In MCU Clock Output with Frequency of Reference Oscillator $\div 3 / \div 4$
- Power Saving Mode Controlled by MCU
- Lock Detect Signal
- On-Chip Reference Oscillator Supports External Crystals to 16.0 MHz
- Reference Frequency Counter Division Range: 16 to 4095
- Auxiliary Reference Frequency Counter Division Range: 16 to 16,383
- Transmit Counter Division Range: 16 to 65,535
- Receive Counter Division Range: 16 to 65,535

NOT RECOMMENDED FOR NEW DESIGNS;

 PRODUCT TO BE PHASED OUT.The MC145162 is a drop-in replacement for supply voltages $\geq 2.5 \mathrm{~V}$.

Dual PLLs for $46 / 49 \mathrm{MHz}$ Cordless Telephones
 CMOS

These devices are dual phase-locked loop (PLL) frequency synthesizers intended for use primarily in $46 / 49 \mathrm{MHz}$ cordless phones with up to 10 channels. These parts contain two mask-programmable counter ROMs for receive and transmit loops with two independent phase detect circuits. A common reference oscillator and reference divider are shared by the receive and transmit circuits.

Frequency selection is accomplished via a 4-bit parallel input for the MC145166. The MC145167 utilizes a serial interface.

Other features include a lock detect circuit for the transmit loop, illegal code default, and a 5 kHz tone output.

- Synthesizes Up to Ten Channel Pairs
- Maximum Operating Frequency: $60 \mathrm{MHz} @ \mathrm{~V}_{\mathrm{in}}=200 \mathrm{mV} \mathrm{p}-\mathrm{p}$
- Operating Temperature Range: -40 to $+75^{\circ} \mathrm{C}$
- Operating Voltage Range: 2.5 to 5.5 V
- On-Chip Oscillator Circuit Supports External Crystal
- Lock Detect Signal
- Operating Power Consumption: $3.0 \mathrm{~mA} @ 3.0 \mathrm{~V}$
- Standby Mode for Power Savings: $1.5 \mathrm{~mA} @ 3.0 \mathrm{~V}$
- Also See MC145162

MC145166 MC145167

BLOCK DIAGRAM

MAXIMUM RATINGS* (Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Symbol	Rating	Value	Unit
$\mathrm{V}_{\text {DD }}$	DC Supply Voltage	-0.5 to +6.0	V
$\mathrm{~V}_{\text {in }}$	Input Voltage, All Inputs	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}, I_{\text {out }}$	DC Current Drain Per Pin	10	mA
$\mathrm{I}_{\text {DD }}$, ISS	DC Current Drain VDD or $\mathrm{V}_{\text {SS }}$ Pins	30	mA
$\mathrm{~T}_{\text {stg }}$	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit. For proper operation, $\mathrm{V}_{\text {in }}$ and $\mathrm{V}_{\text {out }}$ should be constrained to the range $\mathrm{V}_{\mathrm{SS}} \leq\left(\mathrm{V}_{\text {in }}\right.$ or $\left.\mathrm{V}_{\text {out }}\right) \leq \mathrm{V}_{\text {DD }}$.
Unused inputs must always be tied to an appropriate logic voltage level (e.g., either VSS or V_{DD}). Unused outputs must be left open.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

SWITCHING CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right)$

Symbol	Characteristic	Figure No.	$V_{\text {DD }}$	Guaranteed Limit		Unit
				Min	Max	
t'LH	Output Rise Time	1, 5	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	-	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	ns
tTHL	Output Fall Time	1, 5	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	-	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	ns
$\mathrm{tr}_{\mathrm{r}} \mathrm{tf}$	Input Rise and Fall Time, OSCin	2	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	-	$\begin{aligned} & 5.0 \\ & 4.0 \end{aligned}$	$\mu \mathrm{s}$
${ }_{\text {f max }}$	Input Frequency OSC $_{\text {in }}$ Input $=$ Sine Wave $200 ~ m V ~ p-p ~$ $f_{\text {in1 }}$ $f_{\text {in2 }}$		$\begin{aligned} & 3.0-5.0 \\ & 3.0-5.0 \\ & 3.0-5.0 \end{aligned}$	-	$\begin{aligned} & 12 \\ & 60 \\ & 60 \end{aligned}$	MHz
${ }^{\text {tsu }}$	$\begin{array}{ll}\text { Setup Time (MC145167) } & \text { DATA to CLK } \\ \text { ENB to CLK }\end{array}$	3	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 100 \\ & 50 \end{aligned}$	-	ns
			$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 200 \\ & 100 \end{aligned}$	-	
th	Hold Time (MC145167), CLK to DATA	3	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 80 \\ & 40 \end{aligned}$	-	ns
trec	Recovery Time (MC145167), ENB to CLK	3	$\begin{aligned} & 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 80 \\ & 40 \end{aligned}$	-	ns
$\mathrm{t}_{\text {w }}$	Input Pulse Width (MC145167), CLK and ENB	4	$\begin{aligned} & \hline 3.0 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 80 \\ & 60 \end{aligned}$	-	ns

SWITCHING WAVEFORMS

Figure 1.
Figure 2.

Figure 3.

Figure 4.

PIN DESCRIPTIONS

INPUT PINS

OSC $_{\text {in }} /$ OSC $_{\text {out }}$
 Reference Oscillator Input/Output (Pins 1,16)

These pins form a reference oscillator when connected to an external parallel-resonant crystal. For a $46 / 49 \mathrm{MHz}$ cordless phone application, a 10.24 MHz crystal is needed. OSC $_{\text {in }}$ may also serve as input for an externally generated reference signal. This signal is typically ac coupled to $\mathrm{OSC}_{\mathrm{in}}$, but for larger amplitude signals (standard CMOS logic levels) dc coupling may also be used. In the external reference mode, no connection is required for OSC out.

MODE

Mode Select (Pin 2)

Mode is for determining whether the part is to be used in the base or handset of a cordless phone. Internally, this pin is used in the decoding logic for selecting the ROM address. When high, the device is set in the base mode, and when low, it is set in the handset mode. This input has an internal pull-down device.

SB

Standby Input (Pin 3)

The standby pin is used to save power when not transmitting. When high, both the transmit and receive loops are in operation. When low, the transmit loop is disabled, thereby reducing power consumption. This input has an internal pulldown device.

D0 - D3
Data Inputs (MC145166 — Pins 5-8)
These inputs provide the BCD code for selecting the one of ten channels to be locked in both the transmit and receive loop. When address data other than $1-10$ are input, the decoding logic defaults to channel 10. The frequency assignments with reference to Mode and D0 - D3 are shown in Table 1. These inputs have internal pull-down devices.

$f_{\text {in1 }}, f_{\text {in2 }}$
 Frequency Inputs (Pins 14, 9)

$f_{i n 1}$ and $f_{i n 2}$ are inputs to the divide-by- N receive and transmit counters, respectively. These signals are typically derived from the loop VCO and are ac coupled. For larger amplitude signals (standard CMOS logic levels), dc coupling may be used. The minimum input level is 200 mV p-p.

CLK, DATA

Clock, Data (MC145167 — Pins 5, 6)
These pins provide the BCD input by using serial channel programming instead of parallel. Logical high represents a 1. Each low-to-high transition of the clock shifts one bit of data into the on-chip shift register.

ENB

Enable (MC145167 — Pin 8)

The enable pin controls the data transfer from the shift register to the 4 -bit latch. A positive pulse latches the data.

OUTPUT PINS

5 k

5 kHz Tone Signals (Pin 4)

The 5 kHz tone signals are N -channel, open-drain outputs derived from the reference oscillator.

LD

Lock Detect Signal (Pin 10)

The lock detect signal is associated with the transmit loop. The lock output goes high to indicate an out-of-lock condition. This is a P -channel open-drain output.

PD1, PD2

Phase Detector Outputs (Pins 13, 11)

These are three-state outputs of the transmit and receive phase detectors for use as loop error signals. Phase detector gain is $V_{D D} / 4 \pi$ volts per radian.

Frequency $f_{v}>f_{r}$ or f_{v} leading: Output = Negative pulses
Frequency $f_{V}<f_{r}$ or f_{V} lagging: Output $=$ Positive pulses
Frequency $f_{V}=f_{r}$ and phase coincidence: Output $=$ Highimpedance state

POWER SUPPLY

Vss

Negative Power Supply (Pin 12)
This pin is the negative supply potential and is usually ground.

VDD
 Positive Power Supply (Pin 15)

This pin is the positive supply potential and may range from +2.5 to +5.5 V with respect to V SS.

Table 1. MC145166/67 Divide Ratios and VCO Frequencies

Channels					Handset (Mode = 0)				Base (Mode = 1)			
					Transmit		Receive		Transmit		Receive	
D3	D2	D1	D0	CH\#	$\mathrm{f}_{\mathrm{in} 2}(\mathrm{MHz})$	$\div \mathbf{N}$	$\mathrm{f}_{\mathbf{i n} 1}(\mathrm{MHz})$	$\div \mathbf{N}$	$\mathrm{f}_{\mathrm{in} 2}(\mathrm{MHz})$	$\div \mathbf{N}$	$\mathrm{fin} 1^{(\mathrm{MHz})}$	$\div \mathrm{N}$
0	0	0	1	1	49.670	9934	35.915	7183	46.610	9322	38.975	7795
0	0	1	0	2	49.845	9969	35.935	7187	46.630	9326	39.150	7830
0	0	1	1	3	49.860	9972	35.975	7195	46.670	9334	39.165	7833
0	1	0	0	4	49.770	9954	36.015	7203	46.710	9342	39.075	7815
0	1	0	1	5	49.875	9975	36.035	7207	46.730	9346	39.180	7836
0	1	1	0	6	49.830	9966	36.075	7215	46.770	9354	39.135	7827
0	1	1	1	7	49.890	9978	36.135	7227	46.830	9366	39.195	7839
1	0	0	0	8	49.930	9986	36.175	7235	46.870	9374	39.235	7847
1	0	0	1	9	49.990	9998	36.235	7247	46.930	9386	39.295	7859
1	0	1	0	10	49.970	9994	36.275	7255	46.970	9394	39.275	7855

NOTES:

1. Other input combinations will be defaulted to channel 10.
2. $0=$ logic low, $1=$ logic high.

Figure 5. MC145166 Circuit Example

Figure 6. DPLL Application in 46/49 MHz Cordless Phone

Advance Information Dual PLLs for $46 / 49$ MHz Cordless Telephones CMOS

These devices are dual phase-locked loop frequency synthesizers intended for use primarily in $46 / 49 \mathrm{MHz}$ cordless phones with up to 15 channels. These parts contain two mask-programmable counter ROMs for receive and transmit loops with two independent phase detect circuits. A common reference oscillator and reference divider are shared by the receive and transmit circuits.

Other features include a lock detect circuit for the transmit loop, illegal code default, a buffered oscillator output for mixing purposes in the system, and a 5.0 kHz tone output.

- Maximum Operating Frequency: $60 \mathrm{MHz} @ \mathrm{~V}_{\text {in }}=200 \mathrm{mV}$ p-p
- Operating Temperature Range: -40 to $+75^{\circ} \mathrm{C}$
- Operating Voltage Range: 2.5 to 5.5 V
- On-Chip Oscillator Circuit Supports External Crystal
- Operating Power Consumption: $3.0 \mathrm{~mA} @ 3.0 \mathrm{~V}$
- Lock Detect Signal
- Standby Mode for Power Savings: $1.5 \mathrm{~mA} @ 3.0 \mathrm{~V}$
- Two Versions:

MC145168 - Up to 15-Channel ROM with 4-Bit Binary Code Input for Channel Pair Selection
MC145169 - Up to 15-Channel ROM with Serial Interface for Channel Pair Selection

- Custom 20-Channel ROM Versions of the MC145169 are Possible; Consult Factory

NOT RECOMMENDED FOR NEW DESIGNS;

PRODUCT TO BE PHASED OUT.
Closest equivalent is MC145162.

PIN ASSIGNMENTS
MC145168

MC145169

NC = NO CONNECTION

This document contains information on a new product. Specifications and information herein are subject to change without notice.

```
MC145170-1
```


Advance Information PLL Frequency Synthesizer with Serial Interface CMOS

The MC145170-1 is a single-chip synthesizer capable of direct usage in the MF, HF, and VHF bands. A special architecture makes this PLL the easiest to program in the industry. Either a bit- or byte-oriented format may be used. Due to the patented BitGrabber ${ }^{T \mathrm{M}}$ registers, no address/steering bits are required for random access of the three registers. Thus, tuning can be accomplished via a 2-byte serial transfer to the 16-bit N register.

The device features fully programmable R and N counters, an amplifier at the $f_{i n}$ pin, on-chip support of an external crystal, a programmable reference output, and both single- and double-ended phase detectors with linear transfer functions (no dead zones). A configuration (C) register allows the part to be configured to meet various applications. A patented feature allows the C register to shut off unused outputs, thereby minimizing noise and interference.

In order to reduce lock times and prevent erroneous data from being loaded into the counters, a patented jam-load feature is included. Whenever a new divide ratio is loaded into the N register, both the N and R counters are jam-loaded with their respective values and begin counting down together. The phase detectors are also initialized during the jam load.

- Operating Voltage Range: 2.5 to 5.5 V
- Maximum Operating Frequency:
$185 \mathrm{MHz} @ \mathrm{~V}_{\text {in }}=500 \mathrm{mV} \mathrm{p}-\mathrm{p}$, 4.5 V Minimum Supply
$100 \mathrm{MHz} @ \mathrm{~V}_{\text {in }}=500 \mathrm{mV} \mathrm{p}-\mathrm{p}, 3.0 \mathrm{~V}$ Minimum Supply
- Operating Supply Current: 0.6 mA @ $3 \mathrm{~V}, 30 \mathrm{MHz}$
$1.5 \mathrm{~mA} @ 3 \mathrm{~V}, 100 \mathrm{MHz}$
3.0 mA @ $5 \mathrm{~V}, 50 \mathrm{MHz}$
$5.8 \mathrm{~mA} @ 5 \mathrm{~V}, 185 \mathrm{MHz}$
- Operating Temperature Range: -40 to $85^{\circ} \mathrm{C}$
- R Counter Division Range: 1 and 5 to 32,767
- N Counter Division Range: 40 to 65,535
- Direct Interface to Motorola SPI and National MICROWIRE ${ }^{\text {TM }}$ Serial Data Ports
- Chip Complexity: 4800 FETs or 1200 Equivalent Gates
- See Application Note AN1207/D

PIN ASSIGNMENT

OSC in 1	16	$V_{D D}$
OSC $_{\text {out }}$ - 2	15	¢V
REF ${ }_{\text {out }}$ - 3	14	¢ R^{\prime}
$\mathrm{fin}_{\text {in }} 4$	13	P $\mathrm{PD}_{\text {out }}$
$\mathrm{Din}_{\text {in }} 5$	12	V_{SS}
ENB [6	11] LD
CLK [7	10	fv
Dout 8	9	f_{R}

The MC145170-2 is recommended for new designs.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

BLOCK DIAGRAM

MAXIMUM RATINGS* (Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage	-0.5 to +5.5	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}$	DC Input Current, per Pin	± 10	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 20	mA
I_{DD}	DC Supply Current, V_{DD} and $\mathrm{V}_{\text {SS }}$ Pins	± 30	mA
P_{D}	Power Dissipation, per Package	300	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 seconds	260	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit	Unit
$V_{\text {DD }}$	Power Supply Voltage Range		-	2.5 to 5.5	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage* ($\mathrm{D}_{\mathrm{in}}, \mathrm{CLK}, \mathrm{ENB}, \mathrm{f}_{\mathrm{in}}$)	dc Coupling to $\mathrm{fin}^{\text {n }}$	$\begin{aligned} & 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 1.35 \\ & 1.65 \end{aligned}$	V
V_{IH}	Minimum High-Level Input Voltage* ($\mathrm{D}_{\mathrm{in}}, \mathrm{CLK}, \mathrm{ENB}, \mathrm{f}_{\mathrm{in}}$)	dc Coupling to fin	$\begin{aligned} & 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.00 \\ & 3.15 \\ & 3.85 \end{aligned}$	V
$\mathrm{V}_{\mathrm{Hys}}$	Minimum Hysteresis Voltage (CLK, ENB)		$\begin{aligned} & 2.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.20 \end{aligned}$	V
V OL	Maximum Low-Level Output Voltage (Any Output)	$\mathrm{l}_{\text {out }}=20 \mu \mathrm{~A}$	$\begin{aligned} & \hline 2.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V
V_{OH}	Minimum High-Level Output Voltage (Any Output)	$\mathrm{l}_{\text {out }}=-20 \mu \mathrm{~A}$	$\begin{aligned} & \hline 2.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 5.4 \end{aligned}$	V
${ }^{\text {IOL }}$	Minimum Low-Level Output Current ($\mathrm{PD}_{\text {out }}, \mathrm{REF}_{\text {out }}, \mathrm{f}_{\mathrm{R}}, \mathrm{fv}, \mathrm{LD}, \phi \mathrm{R}, \phi \mathrm{V}$)	$\begin{aligned} & V_{\text {out }}=0.3 \mathrm{~V} \\ & V_{\text {out }}=0.4 \mathrm{~V} \\ & V_{\text {out }}=0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.36 \\ & 0.36 \end{aligned}$	mA
${ }^{\mathrm{I} O H}$	Minimum High-Level Output Current ($\mathrm{PD}_{\text {out }}, \mathrm{REF}_{\text {out, }}, \mathrm{f}_{\mathrm{R}}, \mathrm{f} \mathrm{V}, \mathrm{LD}, \phi \mathrm{R}, \phi \mathrm{V}$)	$\begin{aligned} & V_{\text {out }}=2.2 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=4.1 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -0.12 \\ & -0.36 \\ & -0.36 \end{aligned}$	mA
${ }^{\text {IOL }}$	Minimum Low-Level Output Current ($\mathrm{D}_{\text {out }}$)	$\mathrm{V}_{\text {out }}=0.4 \mathrm{~V}$	4.5	1.6	mA
${ }^{\mathrm{I} O H}$	Minimum High-Level Output Current (Dout)	$\mathrm{V}_{\text {out }}=4.1 \mathrm{~V}$	4.5	-1.6	mA
lin	Maximum Input Leakage Current ($\mathrm{D}_{\mathrm{in}}, \mathrm{CLK}, \mathrm{ENB}, \mathrm{OSC}_{\mathrm{in}}$)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$	5.5	± 1.0	$\mu \mathrm{A}$
lin	Maximum Input Current (f in)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$	5.5	± 120	$\mu \mathrm{A}$
IOZ	Maximum Output Leakage Current ($\mathrm{PD}_{\text {out }}$)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}, Output in High-Impedance State	5.5	± 100	nA
	($\mathrm{D}_{\text {out }}$)		5.5	± 5	$\mu \mathrm{A}$
IDD	Maximum Quiescent Supply Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}; Outputs Open; Excluding $f_{\text {in }}$ Amp Input Current Component	5.5	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {dd }}$	Maximum Operating Supply Current		-	**	mA

*When dc coupling to the OSC $_{\text {in }}$ pin is used, the pin must be driven rail-to-rail. In this case, OSC $_{\text {out }}$ should be floated.
${ }^{* *}$ The nominal values at 3 V are $0.6 \mathrm{~mA} @ 30 \mathrm{MHz}$, and $1.5 \mathrm{~mA} @ 100 \mathrm{MHz}$. The nominal values at 5 V are $3.0 \mathrm{~mA} @ 50 \mathrm{MHz}$, and 5.8 mA @ 185 MHz . These are not guaranteed limits.

AC INTERFACE CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$ unless otherwise indicated)

Symbol	Parameter	Figure No.	V_{DD}	Guaranteed Limit	Unit
${ }^{\mathrm{f}} \mathrm{clk}$	Serial Data Clock Frequency (Note: Refer to Clock tw Below)	1	$\begin{aligned} & 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	dc to 3.0 dc to 4.0 dc to 4.0	MHz
tPLH, tPHL	Maximum Propagation Delay, CLK to Dout	1, 5	$\begin{aligned} & \hline 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 150 \\ & 85 \\ & 85 \end{aligned}$	ns
tPLZ, tPHZ	Maximum Disable Time, Dout Active to High Impedance	2, 6	$\begin{aligned} & \hline 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 200 \\ & 200 \end{aligned}$	ns
tPZL, tPZH	Access Time, $\mathrm{D}_{\text {out }}$ High Impedance to Active	2, 6	$\begin{aligned} & \hline 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	0 to 200 0 to 100 0 to 100	ns
${ }^{\text {t }}$ LH, ${ }^{\text {t }}$ THL	Maximum Output Transition Time, $\mathrm{D}_{\text {out }} \quad \mathrm{CL}=50 \mathrm{pF}$	1,5	$\begin{aligned} & 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 150 \\ & 50 \\ & 50 \end{aligned}$	ns
	$C L=200 \mathrm{pF}$	1,5	$\begin{aligned} & \hline 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 900 \\ & 150 \\ & 150 \end{aligned}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance - $\mathrm{D}_{\text {in }}$, ENB, CLK		-	10	pF
$\mathrm{Cout}^{\text {out }}$	Maximum Output Capacitance - Dout		-	10	pF

TIMING REQUIREMENTS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$ unless otherwise indicated)

Symbol	Parameter	Figure No.	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit	Unit
$t_{\text {su }}, \mathrm{th}^{\text {r }}$	Minimum Setup and Hold Times, Din vs CLK	3	$\begin{aligned} & \hline 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 55 \\ & 40 \\ & 40 \end{aligned}$	ns
$t_{\text {su }}, \mathrm{th}_{\text {, }}$ trec	Minimum Setup, Hold, and Recovery Times, ENB vs CLK	4	$\begin{aligned} & 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 135 \\ & 100 \\ & 100 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	Minimum Inactive-High Pulse Width, ENB	4	$\begin{aligned} & 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 400 \\ & 300 \\ & 300 \end{aligned}$	ns
tw	Minimum Pulse Width, CLK	1	$\begin{aligned} & 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 166 \\ & 125 \\ & 125 \end{aligned}$	ns
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times, CLK	1	$\begin{aligned} & \hline 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\mu \mathrm{s}$

SWITCHING WAVEFORMS

Figure 1.

Figure 3.

* Includes all probe and fixture capacitance.

Figure 5. Test Circuit

Figure 2.

Figure 4.

* Includes all probe and fixture capacitance.

Figure 6. Test Circuit

LOOP SPECIFICATIONS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Figure No.	$\begin{gathered} \text { VDD } \\ \mathrm{V} \end{gathered}$	Guaranteed Range		Unit
					Min	Max	
f	Input Frequency, fin	$\mathrm{V}_{\text {in }} \geq 500 \mathrm{mV} \mathrm{p}-\mathrm{p}$ Sine Wave, N Counter Set to Divide Ratio Such that $\mathrm{fV} \leq 2 \mathrm{MHz}$	7	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline 5^{*} \\ 5^{*} \\ 25^{*} \\ 45^{*} \end{gathered}$	$\begin{aligned} & \hline \text { TBD } \\ & 100 \\ & 185 \\ & 185 \end{aligned}$	MHz
f	Input Frequency, OSC ${ }_{\text {in }}$ Externally Driven with ac-Coupled Signal	$\mathrm{V}_{\text {in }} \geq 1 \mathrm{Vp-p}$ Sine Wave, OSC ${ }_{\text {out }}=$ No Connect, R Counter Set to Divide Ratio Such that $\mathrm{f}_{\mathrm{R}} \leq 2 \mathrm{MHz}$	8	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 1^{*} \\ & 1^{*} \\ & 1^{*} \\ & 1^{*} \end{aligned}$	$\begin{aligned} & 12 \\ & 14 \\ & 25 \\ & 25 \end{aligned}$	MHz
${ }^{\text {f }}$ XTAL	Crystal Frequency, $\mathrm{OSC}_{\text {in }}$ and $\mathrm{OSC}_{\text {out }}$	$\begin{array}{\|l\|} \hline \mathrm{C} 1 \leq 30 \mathrm{pF} \\ \mathrm{C} 2 \leq 30 \mathrm{pF} \\ \text { Includes Stray Capacitance } \end{array}$	9	$\begin{aligned} & 2.5 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 15 \\ & 15 \end{aligned}$	MHz
fout	Output Frequency, REFout	$\mathrm{CL}_{\mathrm{L}}=30 \mathrm{pF}$	10, 12	$\begin{aligned} & 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{gathered} \hline \text { TBD } \\ 10 \\ 10 \end{gathered}$	MHz
f	Operating Frequency of the Phase Detectors			$\begin{aligned} & 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{gathered} \hline \text { TBD } \\ 2 \\ 2 \end{gathered}$	MHz
$\mathrm{t}_{\text {w }}$	Output Pulse Width, $\phi \mathrm{R}, \phi \mathrm{V}$, and LD	f_{R} in Phase with f_{V} $C_{L}=50 \mathrm{pF}$	11, 12	$\begin{aligned} & 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline \text { TBD } \\ 20 \\ 16 \end{gathered}$	$\begin{gathered} \hline \text { TBD } \\ 100 \\ 90 \end{gathered}$	ns
tTLH, ${ }^{\text {tTHL }}$	Output Transition Times, $\phi \mathrm{R}, \phi \mathrm{V}, \mathrm{LD}, \mathrm{ff}_{\mathrm{R}}$, and f V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	11, 12	$\begin{aligned} & 2.5 \\ & 4.5 \\ & 5.5 \end{aligned}$	-	$\begin{gathered} \hline \text { TBD } \\ 65 \\ 60 \end{gathered}$	ns
Cin	Input Capacitance $\begin{array}{r}f_{\text {in }} \\ \text { OSC }_{\text {in }}\end{array}$		-	-	-	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	pF

* If lower frequency is desired, use wave shaping or higher amplitude sinusoidal signal in ac-coupled case. Also, see Figure 22 for dc decoupling.

Figure 7. Test Circuit

Figure 9. Test Circuit

Figure 11. Switching Waveform

Figure 8. Test Circuit

Figure 10. Switching Waveform

Figure 12. Test Circuit

PIN DESCRIPTIONS

DIGITAL INTERFACE PINS

$D_{\text {in }}$

Serial Data Input (Pin 5)
The bit stream begins with the most significant bit (MSB) and is shifted in on the low-to-high transition of CLK. The bit pattern is 1 byte (8 bits) long to access the C or configuration register, 2 bytes (16 bits) to access the N register, or 3 bytes (24 bits) to access the R register. Additionally, the R register can be accessed with a 15-bit transfer (see Table 1). An optional pattern which resets the device is shown in Figure 13. The values in the C, N, and R registers do not change during shifting because the transfer of data to the registers is controlled by ENB.

The bit stream needs neither address nor steering bits due to the innovative BitGrabber registers. Therefore, all bits in the stream are available to be data for the three registers. Random access of any register is provided (i.e., the registers may be accessed in any sequence). Data is retained in the registers over a supply range of 2.5 to 5.5 V . The formats are shown in Figures 13, 14, 15, and 16.

Din typically switches near 50% of $V_{D D}$ to maximize noise immunity. This input can be directly interfaced to CMOS devices with outputs guaranteed to switch near rail-to-rail. When interfacing to NMOS or TTL devices, either a level shifter (MC74HC14A, MC14504B) or pull-up resistor of 1 to $10 \mathrm{k} \Omega$ must be used. Parameters to consider when sizing the resistor are worst-case IOL of the driving device, maximum tolerable power consumption, and maximum data rate.

Table 1. Register Access
(MSBs are shifted in first, C0, NO, and R0 are the LSBs)

Number of Clocks	Accessed Register	Bit Nomenclature
$4+5$	(Reset)	
8	C Register	$\mathrm{C} 7, \mathrm{C} 6, \mathrm{C} 5, \ldots, \mathrm{C} 0$
16	N Register	N15, N14, N13, ... N0
15 or 24	R Register	R14, R13, R12, ..., R0
Other Values ≤ 32	None	
Values >32	See Figures $24-31$	

CLK
 Serial Data Clock Input (Pin 7)

Low-to-high transitions on Clock shift bits available at D_{in}, while high-to-low transitions shift bits from $D_{\text {out. The chip's }}$ $16-1 / 2-$ stage shift register is static, allowing clock rates down to dc in a continuous or intermittent mode.

Four clock cycles followed by five clock cycles are needed to reset the device; this is optional. Eight clock cycles are required to access the C register. Sixteen clock cycles are needed for the N register. Either 15 or 24 cycles can be used to access the R register (see Table 1 and Figures 13, 14, 15, and 16). For cascaded devices, see Figures 24 - 31.

CLK typically switches near 50% of $V_{D D}$ and has a Schmitt-triggered input buffer. Slow CLK rise and fall times are allowed. See the last paragraph of $\mathbf{D}_{\mathbf{i n}}$ for more information.

NOTE

To guarantee proper operation of the power-on reset (POR) circuit, the CLK pin must be held at the potential of either the $\mathrm{V}_{\text {SS }}$ or V_{DD} pin during power up. That is, the CLK input should not be floated or toggled while the VDD pin is ramping from 0 to at least 2.5 V . If control of the CLK pin is not practical during power up, the initialization sequence shown in Figure 13 must be used.

ENB

Active-Low Enable Input (Pin 6)

This pin is used to activate the serial interface to allow the transfer of data to/from the device. When ENB is in an inactive high state, shifting is inhibited, $\mathrm{D}_{\text {out }}$ is forced to the highimpedance state, and the port is held in the initialized state. To transfer data to the device, ENB (which must start inactive high) is taken low, a serial transfer is made via $D_{\text {in }}$ and CLK, and ENB is taken back high. The low-to-high transition on ENB transfers data to the C, N, or R register depending on the data stream length per Table 1.

NOTE

Transitions on ENB must not be attempted while CLK is high. This puts the device out of synchronization with the microcontroller. Resynchronization occurs when ENB is high and CLK is low.
This input is also Schmitt-triggered and switches near 50% of VDD, thereby minimizing the chance of loading erroneous data into the registers. See the last paragraph of $\boldsymbol{D}_{\text {in }}$ for more information.

Dout
 Three-State Serial Data Output (Pin 8)

Data is transferred out of the $16-1 / 2$-stage shift register through $D_{\text {out }}$ on the high-to-low transition of CLK. This output is a No Connect, unless used in one of the manners discussed below.

Dout could be fed back to an MCU/MPU to perform a wraparound test of serial data. This could be part of a system check conducted at power up to test the integrity of the system's processor, PC board traces, solder joints, etc.

The pin could be monitored at an in-line QA test during board manufacturing.

Finally, $D_{\text {out }}$ facilitates troubleshooting a system and permits cascading devices.

REFERENCE PINS

OSC $_{\text {in }} /$ OSC $_{\text {out }}$ Reference Oscillator Input/Output (Pins 1, 2)

These pins form a reference oscillator when connected to terminals of an external parallel-resonant crystal. Fre-quency-setting capacitors of appropriate values as recommended by the crystal supplier are connected from each pin to ground (up to a maximum of 30 pF each, including stray capacitance). An external feedback resistor of 1 to $15 \mathrm{M} \Omega$ is connected directly across the pins to ensure linear operation of the amplifier. The required connections for the components are shown in Figure 9.

If desired, an external clock source can be ac coupled to OSC $_{\text {in }}$. A $0.01 \mu \mathrm{~F}$ coupling capacitor is used for measurement purposes and is the minimum size recommended for applications. An external feedback resistor of approximately $10 \mathrm{M} \Omega$ is required across the $\mathrm{OSC}_{\text {in }}$ and OSC out pins in the ac-coupled case (see Figure 8). OSC out is an internal node on the device and should not be used to drive any loads (i.e., OSC out is unbuffered). However, the buffered REF out is available to drive external loads.

The external signal level must be at least 1 V p-p; the maximum frequencies are given in the Loop Specifications table. These maximum frequencies apply for R Counter divide ratios as indicated in the table. For very small ratios, the maximum frequency is limited to the divide ratio times 2 MHz . (Reason: the phase/frequency detectors are limited to a maximum input frequency of 2 MHz .)

If an external source is available which swings rail-to-rail ($V_{D D}$ to $V_{S S}$), then dc coupling can be used. In the dccoupled case, no external feedback resistor is needed. OSC out t must be a No Connect to avoid loading an internal $^{\text {a }}$ node on the device, as noted above. For frequencies below 1 MHz , dc coupling must be used. The R counter is a static counter and may be operated down to dc. However, wave shaping by a CMOS buffer may be required to ensure fast rise and fall times into the OSC in pin. See Figure 22.
Each rising edge on the OSC $_{\text {in }}$ pin causes the R counter to decrement by one.

REF ${ }_{\text {out }}$
 Reference Frequency Output (Pin 3)

This output is the buffered output of the crystal-generated reference frequency or externally provided reference source. This output may be enabled, disabled, or scaled via bits in the C register (see Figure 14).
REF out can be used to drive a microprocessor clock input, $_{\text {ch }}$ thereby saving a crystal. Upon power up, the on-chip power-on-initialize circuit forces REF $_{\text {out }}$ to the OSC in divided-by-8 mode.

REF ${ }_{\text {out }}$ is capable of operation to 10 MHz ; see the Loop Specifications table. Therefore, divide values for the reference divider are restricted to two or higher for $\mathrm{OSC}_{\text {in }}$ frequencies above 10 MHz .

If unused, the pin should be floated and should be disabled via the C register to minimize dynamic power consumption and electromagnetic interference (EMI).

COUNTER OUTPUT PINS

f_{R}

R Counter Output (Pin 9)
This signal is the buffered output of the 15 -stage R counter. f_{R} can be enabled or disabled via the C register (patented). The output is disabled (static low logic level) upon power up. If unused, the output should be left disabled and unconnected to minimize interference with external circuitry.

The f_{R} signal can be used to verify the R counter's divide ratio. This ratio extends from 5 to 32,767 and is determined by the binary value loaded into the R register. Also, direct access to the phase detector via the $\mathrm{OSC}_{\text {in }}$ pin is allowed by choosing a divide value of 1 (see Figure 15). The maximum frequency which the phase detectors operate is 2 MHz . Therefore, the frequency of $f \mathrm{R}$ must not exceed 2 MHz .
When activated, the f_{R} signal appears as normally low and pulses high.
fv
N Counter Output (Pin 10)
This signal is the buffered output of the 16 -stage N counter. fv can be enabled or disabled via the C register (patented). The output is disabled (static low logic level) upon power up. If unused, the output should be left disabled and unconnected to minimize interference with external circuitry.
The fv signal can be used to verify the N counter's divide ratio. This ratio extends from 40 to 65,535 and is determined by the binary value loaded into the N register. The maximum frequency which the phase detectors operate is 2 MHz . Therefore, the frequency of $f \mathrm{v}$ must not exceed 2 MHz .

When activated, the fv signal appears as normally low and pulses high.

LOOP PINS

$f_{i n}$
Frequency Input (Pin 4)
This pin is a frequency input from the VCO. This pin feeds the on-chip amplifier which drives the N counter. This signal is normally sourced from an external voltage-controlled oscillator (VCO), and is ac-coupled into fin. A 100 pF coupling capacitor is used for measurement purposes and is the minimum size recommended for applications (see Figure 7). The frequency capability of this input is dependent on the supply voltage as listed in the Loop Specifications table. For small divide ratios, the maximum frequency is limited to the divide ratio times 2 MHz . (Reason: the phase/frequency detectors are limited to a maximum frequency of 2 MHz .)

For signals which swing from at least the $\mathrm{V}_{I L}$ to V_{IH} levels listed in the Electrical Characteristics table, dc coupling may be used. Also, for low frequency signals (less than the minimum frequencies shown in the Loop Specifications table), dc coupling is a requirement. The N counter is a static counter and may be operated down to dc. However, wave shaping by a CMOS buffer may be required to ensure fast rise and fall times into the fin pin. See Figure 22.
Each rising edge on the $\mathrm{f}_{\text {in }}$ pin causes the N counter to decrement by 1 .

PDout
 Single-Ended Phase/Frequency Detector Output (Pin 13)

This is a three-state output for use as a loop error signal when combined with an external low-pass filter. Through use of a Motorola patented technique, the detector's dead zone has been eliminated. Therefore, the phase/frequency detector is characterized by a linear transfer function. The operation of the phase/frequency detector is described below and is shown in Figure 17.
POL bit (C7) in the C register = low (see Figure 14)
Frequency of $f_{V}>f_{R}$ or Phase of f_{V} Leading f_{R} : negative pulses from high impedance

Frequency of $\mathrm{f}_{\mathrm{V}}<\mathrm{f}_{\mathrm{R}}$ or Phase of fv_{V} Lagging f_{R} : positive pulses from high impedance

Frequency and Phase of $\mathrm{f}_{\mathrm{V}}=\mathrm{f}_{\mathrm{R}}$: essentially high-impedance state; voltage at pin determined by loop filter

POL bit (C7) = high
Frequency of $\mathrm{f}_{\mathrm{V}}>\mathrm{f}_{\mathrm{R}}$ or Phase of fv_{V} Leading f_{R} : positive pulses from high impedance

Frequency of $f_{V}<f_{R}$ or Phase of $f v$ Lagging f_{R} : negative pulses from high impedance

Frequency and Phase of $f v=f_{R}$: essentially high-impedance state; voltage at pin determined by loop filter

This output can be enabled, disabled, and inverted via the C register. If desired, $\mathrm{PD}_{\text {out }}$ can be forced to the high-impedance state by utilization of the disable feature in the C register (patented).

$\phi \mathbf{R}$ and $\phi \mathbf{V}$

Double-Ended Phase/Frequency Detector Outputs (Pins 14, 15)

These outputs can be combined externally to generate a loop error signal. Through use of a Motorola patented technique, the detector's dead zone has been eliminated. Therefore, the phase/frequency detector is characterized by a linear transfer function. The operation of the phase/frequency detector is described below and is shown in Figure 17.

POL bit (C7) in the C register = low (see Figure 14)
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading $f_{R}: \phi V=$ negative pulses, $\phi \mathrm{R}=$ essentially high

Frequency of $f V<f_{R}$ or Phase of $f V$ Lagging $f_{R}: \phi V=$ essentially high, $\phi \mathrm{R}=$ negative pulses

Frequency and Phase of $f V=f_{R}: \phi V$ and ϕR remain essentially high, except for a small minimum time period when both pulse low in phase

POL bit (C7) = high
Frequency of $f V>f R$ or Phase of $f v$ Leading $f R$: $\phi R=$ negative pulses, $\phi \mathrm{V}=$ essentially high

Frequency of $f \mathrm{~V}<\mathrm{f}_{\mathrm{R}}$ or Phase of f V Lagging f_{R} : $\phi \mathrm{R}=$ essentially high, $\phi \mathrm{V}=$ negative pulses

Frequency and Phase of $f V=f R$: ϕV and ϕR remain essentially high, except for a small minimum time period when both pulse low in phase

These outputs can be enabled, disabled, and interchanged via the C register (patented).

LD
 Lock Detector Output (Pin 11)

This output is essentially at a high level with narrow lowgoing pulses when the loop is locked (f_{R} and fV of the same phase and frequency). The output pulses low when fv and fR are out of phase or different frequencies (see Figure 17).

This output can be enabled and disabled via the C register (patented). Upon power up, on-chip initialization circuitry disables LD to a static low logic level to prevent a false "lock" signal. If unused, LD should be disabled and left open.

POWER SUPPLY

VDD
 Most Positive Supply Potential (Pin 16)

This pin may range from +2.5 to 5.5 V with respect to V_{SS}.
For optimum performance, VDD should be bypassed to VSS using low-inductance capacitor(s) mounted very close to the device. Lead lengths on the capacitor(s) should be minimized. (The very fast switching speed of the device causes current spikes on the power leads.)

VSS
 Most Negative Supply Potential (Pin 12)

This pin is usually ground. For measurement purposes, the V_{SS} pin is tied to a ground plane.

NOTE: This initialization sequence must be used immediately after power up if control of the CLK pin is not possible. That is, if CLK (pin 7) toggles or floats upon power up, use the above sequence to reset the device.
Also, use this sequence if power is momentarily interrupted such that the supply voltage to the device is reduced to below 2.5 V , but not down to 0 V (for example, the supply drops down to 1 V). This is necessary because the on-chip power-on reset is only activated when the supply ramps up from 0 V .

Figure 13. Reset Sequence

* At this point, the new byte is transferred to the C register and stored. No other registers are affected.

C7 - POL: Selects the output polarity of the phase/frequency detectors. When set high, this bit inverts $P D_{\text {out }}$ and interchanges the ϕ_{R} function with ϕV as depicted in Figure 17. Also see the phase detector output pin descriptions for more information. This bit is cleared low at power up.

C6 - PDA/B: Selects which phase/frequency detector is to be used. When set high, enables the output of phase/frequency detector A ($\mathrm{PD}_{\text {out }}$) and disables phase/frequency detector B by forcing ϕ_{R} and ϕV to the static high state. When cleared low, phase/frequency detector B is enabled (ϕR and $\phi \mathrm{V}$) and phase/frequency detector A is disabled with $\mathrm{PD}_{\text {out }}$ forced to the high-impedance state. This bit is cleared low at power up.

C5 - LDE: Enables the lock detector output when set high. When the bit is cleared low, the LD output is forced to a static low level. This bit is cleared low at power up.

C4-C2, OSC2 - OSC0: Reference output controls which determine the REF out $^{\text {characteristics as shown below. Upon }}$ power up, the bits are initialized such that $\mathrm{OSC}_{\text {in }} / 8$ is selected.

$\mathbf{C 4}$	$\mathbf{C 3}$	$\mathbf{C} 2$	REF $_{\text {out }}$ Frequency
0	0	0	dc (Static Low)
0	0	1	OSC $_{\text {in }}$
0	1	0	OSC $_{\text {in }} / 2$
0	1	1	OSC $_{\text {in }} / 4$
1	0	0	OSC $_{\text {in }} / 8$
1	0	1	OSC $_{\text {in }} / 16$
1	1	0	OSC $_{\text {in }} / 8$
1	1	1	OSC $_{\text {in }} / 16$

C 1 - fyE: Enables the fv output when set high. When cleared low, the fy output is forced to a static low level. The bit is cleared low upon power up.
$\mathrm{CO}-\mathrm{f}_{\mathrm{R}} \mathrm{E}$: Enables the f_{R} output when set high. When cleared low, the f_{R} output is forced to a static low level. The bit is cleared low upon power up.

Figure 14. C Register Access and Format (8 Clock Cycles are Used)

Figure 15. R Register Access and Formats (Either 24 or 15 Clock Cycles Can Be Used)

* At this point, the two new bytes are transferred to the N register and stored. No other registers are affected. In addition, the N and R counters are jam-loaded and begin counting down together.

Figure 16. N Register Access and Format (16 Clock Cycles Are Used)

$\mathrm{V}_{\mathrm{H}}=$ High voltage level
$\mathrm{V}_{\mathrm{L}}=$ Low voltage level
*At this point, when both f_{R} and f_{V} are in phase, both the sinking and sourcing output FETs are turned on for a very short interval.
NOTE: The PD $_{\text {out }}$ generates error pulses during out-of-lock conditions. When locked in phase and frequency, the output is high impedance and the voltage at that pin is determined by the low-pass filter capacitor. $\mathrm{PD}_{\mathrm{out}}, \phi \mathrm{R}$, and $\phi \mathrm{V}$ are shown with the polarity bit $(\mathrm{POL})=$ low; see Figure 14 for POL.

Figure 17. Phase/Frequency Detectors and Lock Detector Output Waveforms

DESIGN CONSIDERATIONS

CRYSTAL OSCILLATOR CONSIDERATIONS

The following options may be considered to provide a reference frequency to Motorola's CMOS frequency synthesizers.

Use of a Hybrid Crystal Oscillator

Commercially available temperature-compensated crystal oscillators (TCXOs) or crystal-controlled data clock oscillators provide very stable reference frequencies. An oscillator capable of CMOS logic levels at the output may be direct or dc coupled to OSC C_{in}. If the oscillator does not have CMOS logic levels on the outputs, capacitive or ac coupling to OSC in may be used (see Figure 8).

For additional information about TCXOs and data clock oscillators, please consult the latest version of the eem Electronic Engineers Master Catalog, the Gold Book, or similar publications.

Design an Off-Chip Reference

The user may design an off-chip crystal oscillator using discrete transistors or ICs specifically developed for crystal oscillator applications, such as the MC12061 MECL device. The reference signal from the MECL device is ac coupled to $\mathrm{OSC}_{\text {in }}$ (see Figure 18). For large amplitude signals (standard CMOS logic levels), dc coupling is used.

Use of the On-Chip Oscillator Circuitry

The on-chip amplifier (a digital inverter) along with an appropriate crystal may be used to provide a reference source frequency. A fundamental mode crystal, parallel resonant at the desired operating frequency, should be connected as shown in Figure 18.

The crystal should be specified for a loading capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)$ which does not exceed 20 pF when used at the highest operating frequencies listed in the Loop Specifications table. Larger C_{L} values are possible for lower frequencies. Assuming R1 $=0 \Omega$, the shunt load capacitance $\left(\mathrm{CL}_{\mathrm{L}}\right)$ presented across the crystal can be estimated to be:

$$
C_{L}=\frac{C_{\text {in }} C_{\text {out }}}{C_{\text {in }}+C_{\text {out }}}+C_{a}+C_{\text {stray }}+\frac{C 1 \cdot C 2}{C 1+C 2}
$$

where
$\mathrm{C}_{\text {in }}=5 \mathrm{pF}$ (see Figure 19)
$\mathrm{C}_{\text {out }}=6 \mathrm{pF}$ (see Figure 19)
$\mathrm{C}_{\mathrm{a}}=1 \mathrm{pF}$ (see Figure 19)
C 1 and $\mathrm{C} 2=$ external capacitors (see Figure 18)
$\mathrm{C}_{\text {stray }}=$ the total equivalent external circuit stray capacitance appearing across the crystal terminals

The oscillator can be "trimmed" on-frequency by making a portion or all of C1 variable. The crystal and associated components must be located as close as possible to the OSC C_{in} and OSC Out $_{\text {pins to minimize distortion, stray capacitance, }}$ stray inductance, and startup stabilization time. Circuit stray capacitance can also be handled by adding the appropriate stray value to the values for C_{in} and $\mathrm{C}_{\text {out }}$. For this approach, the term $\mathrm{C}_{\text {stray }}$ becomes 0 in the above expression for C_{L}.

Power is dissipated in the effective series resistance of the crystal, R_{e}, in Figure 20. The maximum drive level specified
by the crystal manufacturer represents the maximum stress that the crystal can withstand without damage or excessive shift in operating frequency. R1 in Figure 18 limits the drive level. The use of R1 is not necessary in most cases.

To verify that the maximum dc supply voltage does not cause the crystal to be overdriven, monitor the output frequency at the $\mathrm{REF}_{\text {out }}$ pin ($\mathrm{OSC}_{\text {out }}$ is not used because loading impacts the oscillator). The frequency should increase very slightly as the dc supply voltage is increased. An overdriven crystal decreases in frequency or becomes unstable with an increase in supply voltage. The operating supply voltage must be reduced or R1 must be increased in value if the overdriven condition exists. The user should note that the oscillator start-up time is proportional to the value of R1.

Through the process of supplying crystals for use with CMOS inverters, many crystal manufacturers have developed expertise in CMOS oscillator design with crystals. Discussions with such manufacturers can prove very helpful (see Table 2).

Figure 18. Pierce Crystal Oscillator Circuit

Figure 19. Parasitic Capacitances of the Amplifier and $C_{\text {stray }}$

NOTE: Values are supplied by crystal manufacturer (parallel resonant crystal).

Figure 20. Equivalent Crystal Networks

RECOMMENDED READING

Technical Note TN-24, Statek Corp.
Technical Note TN-7, Statek Corp.
E. Hafner, "The Piezoelectric Crystal Unit-Definitions and Method of Measurement", Proc. IEEE, Vol. 57, No. 2, Feb. 1969.
D. Kemper, L. Rosine, "Quartz Crystals for Frequency Control", Electro-Technology, June 1969.
P. J. Ottowitz, "A Guide to Crystal Selection", Electronic Design, May 1966.
D. Babin, "Designing Crystal Oscillators", Machine Design, March 7, 1985.
D. Babin, "Guidelines for Crystal Oscillator Design", Machine Design, April 25, 1985.

Table 2. Partial List of Crystal Manufacturers

Motorola - Internet Address	http://motorola.com
(Search for resonators)	
United States Crystal Corp.	
Crystek Crystal	
Statek Corp.	
Fox Electronics	

NOTE: Motorola cannot recommend one supplier over another and in no way suggests that this is a complete listing of crystal manufacturers.
(A)

$$
\begin{aligned}
\omega_{n} & =\sqrt{\frac{K_{\phi} K_{v C O}}{N R_{1} C}} \\
\zeta & =\frac{N \omega_{n}}{2 K_{\phi} K_{v C O}} \\
F(s) & =\frac{1}{R_{1} s C+1}
\end{aligned}
$$

(B)

$$
\begin{aligned}
& \omega_{n}=\sqrt{\frac{K_{\phi} K_{V C O}}{N C\left(R_{1}+R_{2}\right)}} \\
& \zeta=0.5 \omega_{n}\left(R_{2} C+\frac{N}{K_{\phi} K_{V C O}}\right)
\end{aligned}
$$

$$
F(s)=\frac{R_{2} s C+1}{\left(R_{1}+R_{2}\right) s C+1}
$$

(C)

$$
\begin{gathered}
\omega_{\mathrm{n}} \\
= \\
=\frac{\mathrm{K}_{\phi} \mathrm{K}_{\mathrm{VCO}}}{\mathrm{NCR}_{1}} \\
\zeta \\
= \\
\omega_{\mathrm{n}} \mathrm{R}_{2} \mathrm{C} \\
=
\end{gathered}
$$

ASSUMING GAIN A IS VERY LARGE, THEN:
$F(s)=\frac{R_{2} s C+1}{R_{1} s C}$

NOTE:
For (C), R_{1} is frequently split into two series resistors; each resistor is equal to R_{1} divided by 2. A capacitor C_{C} is then placed from the midpoint to ground to further filter the error pulses. The value of C_{C} should be such that the corner frequency of this network does not significantly affect ω_{n}.

DEFINITIONS:
$\mathrm{N}=$ Total Division Ratio in Feedback Loop
K_{ϕ} (Phase Detector Gain) $=\mathrm{V}_{\mathrm{DD}} / 4 \pi \mathrm{~V} /$ radian for $\mathrm{PD}_{\text {out }}$
K_{ϕ} (Phase Detector Gain) $=\mathrm{V}_{\mathrm{DD}} / 2 \pi \mathrm{~V} /$ radian for $\phi \mathrm{V}$ and $\phi \mathrm{R}$
$\mathrm{K}_{\mathrm{VCO}}(\mathrm{VCO}$ Gain $)=\frac{2 \pi \Delta \mathrm{f} \mathrm{VCO}}{\Delta \mathrm{V}_{\mathrm{VCO}}}$
For a nominal design starting point, the user might consider a damping factor $\zeta \approx 0.7$ and a natural loop frequency $\omega_{\mathrm{n}} \approx\left(2 \pi \mathrm{f}_{\mathrm{R}} / 50\right)$ where f_{R} is the frequency at the phase detector input. Larger ω_{n} values result in faster loop lock times and, for similar sideband filtering, higher f_{R}-related VCO sidebands.

RECOMMENDED READING:

Gardner, Floyd M., Phaselock Techniques (second edition). New York, Wiley-Interscience, 1979.
Manassewitsch, Vadim, Frequency Synthesizers: Theory and Design (second edition). New York, Wiley-Interscience, 1980.
Blanchard, Alain, Phase-Locked Loops: Application to Coherent Receiver Design. New York, Wiley-Interscience, 1976.
Egan, William F., Frequency Synthesis by Phase Lock. New York, Wiley-Interscience, 1981.
Rohde, Ulrich L., Digital PLL Frequency Synthesizers Theory and Design. Englewood Cliffs, NJ, Prentice-Hall, 1983.
Berlin, Howard M., Design of Phase-Locked Loop Circuits, with Experiments. Indianapolis, Howard W. Sams and Co., 1978.
Kinley, Harold, The PLL Synthesizer Cookbook. Blue Ridge Summit, PA, Tab Books, 1980.
Seidman, Arthur H., Integrated Circuits Applications Handbook, Chapter 17, pp. 538-586. New York, John Wiley \& Sons.
Fadrhons, Jan, "Design and Analyze PLLs on a Programmable Calculator," EDN. March 5, 1980.
AN535, Phase-Locked Loop Design Fundamentals, Motorola Semiconductor Products, Inc., 1970.
AR254, Phase-Locked Loop Design Articles, Motorola Semiconductor Products, Inc., Reprinted with permission from Electronic Design, 1987.

AN1207, The MC145170 in Basic HF and VHF Oscillators, Motorola Semiconductor Products, Inc., 1992.

NOTES:

1. The ϕR and ϕV outputs are fed to an external combiner/loop filter. See the Phase-Locked Loop - Low-Pass Filter Design page for additional information. The ϕ_{R} and ϕV outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode input range of the op amp used in the combiner/loop filter.
2. For optimum performance, bypass the V_{DD} pin to V_{SS} (GND) with one or more low-inductance capacitors.
3. The R counter is programmed for a divide value $=\mathrm{OSC}_{i n} / f_{R}$. Typically, f_{R} is the tuning resolution required for the VCO. Also, the VCO frequency divided by $f_{R}=N$, where N is the divide value of the N counter.
4. May be an R-C low-pass filter.

Figure 21. Example Application

NOTE: The signals at Points A and B may be low-frequency sinusoidal or square waves with slow edge rates or noisy signal edges. At Points C and D, the signals are cleaned up, have sharp edge rates, and rail-to-rail signal swings. With signals as described at Points C and D, the MC145170-1 is guaranteed to operate down to a frequency as low as dc.

Figure 22. Low Frequency Operation Using dc Coupling

Figure 23. Input Impedance at f_{in} - Series Format ($\mathrm{R}+\mathrm{jX}$)
(5 MHz to 185 MHz)

Figure 24. Cascading Two MC145170-1 Devices

Figure 27. Accessing the N Registers of Two Cascaded MC145170-1 Devices

Figure 28. Cascading Two Different Device Types

Advance Information PLL Frequency Synthesizer with Serial Interface CMOS

The new MC145170-2 is pin-for-pin compatible with the MC145170-1. A comparison of the two parts is shown in the table below. The MC145170-2 is recommended for new designs and has a more robust power-on reset (POR) circuit that is more responsive to momentary power supply interruptions. The two devices are actually the same chip with mask options for the POR circuit. The more robust POR circuit draws approximately $20 \mu \mathrm{~A}$ additional supply current. Note that the maximum specification of $100 \mu \mathrm{~A}$ quiescent supply current has not changed.

The MC145170-2 is a single-chip synthesizer capable of direct usage in the MF, HF, and VHF bands. A special architecture makes this PLL easy to program. Either a bit- or byte-oriented format may be used. Due to the patented BitGrabber ${ }^{T M}$ registers, no address/steering bits are required for random access of the three registers. Thus, tuning can be accomplished via a 2-byte serial transfer to the 16-bit N register.

The device features fully programmable R and N counters, an amplifier at the $f_{\text {in }}$ pin, on-chip support of an external crystal, a programmable reference output, and both single- and double-ended phase detectors with linear transfer functions (no dead zones). A configuration (C) register allows the part to be configured to meet various applications. A patented feature allows the C register to shut off unused outputs, thereby minimizing noise and interference.

In order to reduce lock times and prevent erroneous data from being loaded into the counters, a patented jam-load feature is included. Whenever a new divide ratio is loaded into the N register, both the N and R counters are jam-loaded with their respective values and begin counting down together. The phase detectors are also initialized during the jam load.

- Operating Voltage Range: 2.7 to 5.5 V
- Maximum Operating Frequency: $185 \mathrm{MHz} @ \mathrm{~V}_{\text {in }}=500 \mathrm{mV} \mathrm{p}-\mathrm{p}$, 4.5 V Minimum Supply $100 \mathrm{MHz} @ \mathrm{~V}$ in $=500 \mathrm{mV} \mathrm{p}-\mathrm{p}, 3.0 \mathrm{~V}$ Minimum Supply
- Operating Supply Current: $0.6 \mathrm{~mA} @ 3 \mathrm{~V}, 30 \mathrm{MHz}$ $1.5 \mathrm{~mA} @ 3 \mathrm{~V}, 100 \mathrm{MHz}$ 3.0 mA @ $5 \mathrm{~V}, 50 \mathrm{MHz}$ 5.8 mA @ 5 V , 185 MHz
- Operating Temperature Range: -40 to $85^{\circ} \mathrm{C}$
- R Counter Division Range: 1 and 5 to 32,767
- N Counter Division Range: 40 to 65,535
- Direct Interface to Motorola SPI Serial Data Port
- Chip Complexity: 4800 FETs or 1200 Equivalent Gates
- See Application Note AN1207/D

See web site motorola.com/pll for MC145170-2 control software. Look under Overview/Support Products/PLL Demonstration Software. Choose PLLGEN.EXE.

COMPARISION OF THE PLL FREQUENCY SYNTHESIZERS

Parameter	MC145170-2	MC145170-1
Minimum Supply Voltage	2.7 V	2.5 V
Maximum Input Current, fin	$150 \mu \mathrm{~A}$	$120 \mu \mathrm{~A}$
Dynamic Characteristics, fin (Figure 23)	Unchanged	-
Power-On Reset Circuit	Improved	-

[^24]
BLOCK DIAGRAM

MAXIMUM RATINGS* (Voltages Referenced to $\mathrm{V}_{\text {SS }}$)

Symbol	Parameter	Value	Unit
V_{DD}	DC Supply Voltage	-0.5 to +5.5	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{I}_{\text {in }}$	DC Input Current, per Pin	± 10	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 20	mA
I_{DD}	DC Supply Current, V_{DD} and $\mathrm{V}_{\text {SS }}$ Pins	± 30	mA
P_{D}	Power Dissipation, per Package	300	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 seconds	260	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section.

ELECTRICAL CHARACTERISTICS (Voltages Referenced to $\mathrm{V}_{\mathrm{SS}}, \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit	Unit
$V_{\text {DD }}$	Power Supply Voltage Range		-	2.7 to 5.5	V
$\mathrm{V}_{\text {IL }}$	Maximum Low-Level Input Voltage* ($\mathrm{D}_{\mathrm{in}}, \mathrm{CLK}, \mathrm{ENB}, \mathrm{f}_{\mathrm{in}}$)	dc Coupling to $\mathrm{fin}^{\text {n }}$	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.54 \\ & 1.35 \\ & 1.65 \end{aligned}$	V
V_{IH}	Minimum High-Level Input Voltage* ($\mathrm{D}_{\mathrm{in}}, \mathrm{CLK}, \mathrm{ENB}, \mathrm{f}_{\mathrm{in}}$)	dc Coupling to fin	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.16 \\ & 3.15 \\ & 3.85 \end{aligned}$	V
$\mathrm{V}_{\mathrm{Hys}}$	Minimum Hysteresis Voltage (CLK, ENB)		$\begin{aligned} & 2.7 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.15 \\ & 0.20 \end{aligned}$	V
V OL	Maximum Low-Level Output Voltage (Any Output)	$\mathrm{l}_{\text {out }}=20 \mu \mathrm{~A}$	$\begin{aligned} & 2.7 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V
V_{OH}	Minimum High-Level Output Voltage (Any Output)	$\mathrm{l}_{\text {out }}=-20 \mu \mathrm{~A}$	$\begin{aligned} & 2.7 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.6 \\ & 5.4 \end{aligned}$	V
${ }^{\text {IOL }}$	Minimum Low-Level Output Current ($\mathrm{PD}_{\text {out }}, \mathrm{REF}_{\text {out }}, \mathrm{f}_{\mathrm{R}}, \mathrm{fv}, \mathrm{LD}, \phi \mathrm{R}, \phi \mathrm{V}$)	$\begin{aligned} & V_{\text {out }}=0.3 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\text {out }}=0.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 0.12 \\ & 0.36 \\ & 0.36 \end{aligned}$	mA
${ }^{\mathrm{I} O H}$	Minimum High-Level Output Current ($\mathrm{PD}_{\text {out }}, \mathrm{REF}_{\text {out, }}, \mathrm{f}_{\mathrm{R}}, \mathrm{f} \mathrm{V}, \mathrm{LD}, \phi \mathrm{R}, \phi \mathrm{V}$)	$\begin{aligned} & V_{\text {out }}=2.4 \mathrm{~V} \\ & V_{\text {out }}=4.1 \mathrm{~V} \\ & V_{\text {out }}=5.0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & -0.12 \\ & -0.36 \\ & -0.36 \end{aligned}$	mA
${ }^{\text {IOL }}$	Minimum Low-Level Output Current ($\mathrm{D}_{\text {out }}$)	$\mathrm{V}_{\text {out }}=0.4 \mathrm{~V}$	4.5	1.6	mA
${ }^{\mathrm{I} O H}$	Minimum High-Level Output Current (Dout)	$\mathrm{V}_{\text {out }}=4.1 \mathrm{~V}$	4.5	-1.6	mA
lin	Maximum Input Leakage Current ($\mathrm{D}_{\mathrm{in}}, \mathrm{CLK}, \mathrm{ENB}, \mathrm{OSC}_{\mathrm{in}}$)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$	5.5	± 1.0	$\mu \mathrm{A}$
lin	Maximum Input Current (f in)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {DD }}$ or $\mathrm{V}_{\text {SS }}$	5.5	± 150	$\mu \mathrm{A}$
IOZ	Maximum Output Leakage Current ($\mathrm{PD}_{\text {out }}$)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}, Output in High-Impedance State	5.5	± 100	nA
	($\mathrm{D}_{\text {out }}$)		5.5	± 5	$\mu \mathrm{A}$
IDD	Maximum Quiescent Supply Current	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{DD}}$ or V_{SS}; Outputs Open; Excluding $f_{\text {in }}$ Amp Input Current Component	5.5	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {dd }}$	Maximum Operating Supply Current		-	**	mA

*When dc coupling to the OSC $_{\text {in }}$ pin is used, the pin must be driven rail-to-rail. In this case, OSC $_{\text {out }}$ should be floated.
${ }^{* *}$ The nominal values at 3 V are $0.6 \mathrm{~mA} @ 30 \mathrm{MHz}$, and $1.5 \mathrm{~mA} @ 100 \mathrm{MHz}$. The nominal values at 5 V are $3.0 \mathrm{~mA} @ 50 \mathrm{MHz}$, and 5.8 mA @ 185 MHz . These are not guaranteed limits.

AC INTERFACE CHARACTERISTICS ($T_{A}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$ unless otherwise indicated)

Symbol	Parameter	Figure No.	V_{DD}	Guaranteed Limit	Unit
${ }^{\mathrm{f}} \mathrm{clk}$	Serial Data Clock Frequency (Note: Refer to Clock tw Below)	1	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	dc to 3.0 dc to 4.0 dc to 4.0	MHz
tPLH, tPHL	Maximum Propagation Delay, CLK to Dout	1, 5	$\begin{aligned} & \hline 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 150 \\ & 85 \\ & 85 \end{aligned}$	ns
tPLZ, tPHZ	Maximum Disable Time, Dout Active to High Impedance	2, 6	$\begin{aligned} & \hline 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 300 \\ & 200 \\ & 200 \end{aligned}$	ns
tPZL, tPZH	Access Time, $\mathrm{D}_{\text {out }}$ High Impedance to Active	2, 6	$\begin{aligned} & \hline 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	0 to 200 0 to 100 0 to 100	ns
${ }^{\text {t }}$ LH, ${ }^{\text {t }}$ THL	Maximum Output Transition Time, $\mathrm{D}_{\text {out }} \quad \mathrm{CL}=50 \mathrm{pF}$	1,5	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 150 \\ & 50 \\ & 50 \end{aligned}$	ns
	$C L=200 \mathrm{pF}$	1,5	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 900 \\ & 150 \\ & 150 \end{aligned}$	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance - $\mathrm{D}_{\text {in }}$, ENB, CLK		-	10	pF
$\mathrm{Cout}^{\text {out }}$	Maximum Output Capacitance - Dout		-	10	pF

TIMING REQUIREMENTS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$ unless otherwise indicated)

Symbol	Parameter	Figure No.	$\begin{gathered} \mathrm{V}_{\mathrm{DD}} \\ \mathrm{~V} \end{gathered}$	Guaranteed Limit	Unit
$t_{\text {su }}, \mathrm{th}^{\text {r }}$	Minimum Setup and Hold Times, Din vs CLK	3	$\begin{aligned} & \hline 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 55 \\ & 40 \\ & 40 \end{aligned}$	ns
$t_{\text {su }}, \mathrm{th}_{\text {, }}$ trec	Minimum Setup, Hold, and Recovery Times, ENB vs CLK	4	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 135 \\ & 100 \\ & 100 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{w}}(\mathrm{H})$	Minimum Inactive-High Pulse Width, ENB	4	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 400 \\ & 300 \\ & 300 \end{aligned}$	ns
tw	Minimum Pulse Width, CLK	1	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 166 \\ & 125 \\ & 125 \end{aligned}$	ns
$\mathrm{tr}_{\mathrm{r}} \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times, CLK	1	$\begin{aligned} & \hline 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 100 \\ & 100 \\ & 100 \end{aligned}$	$\mu \mathrm{s}$

SWITCHING WAVEFORMS

Figure 1.

Figure 3.

* Includes all probe and fixture capacitance.

Figure 5. Test Circuit

Figure 2.

Figure 4.

* Includes all probe and fixture capacitance.

Figure 6. Test Circuit

LOOP SPECIFICATIONS ($\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Figure No.	$\begin{gathered} \text { VDD } \\ \mathrm{V} \end{gathered}$	Guaranteed Range		Unit
					Min	Max	
f	Input Frequency, fin	$\mathrm{V}_{\text {in }} \geq 500 \mathrm{mV} \mathrm{p}-\mathrm{p}$ Sine Wave, N Counter Set to Divide Ratio Such that $\mathrm{f}_{\mathrm{V}} \leq 2 \mathrm{MHz}$	7	$\begin{aligned} & 2.7 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 5^{*} \\ & 5^{*} \\ & 25^{*} \\ & 45^{*} \end{aligned}$	$\begin{aligned} & \hline \text { TBD } \\ & 100 \\ & 185 \\ & 185 \end{aligned}$	MHz
f	Input Frequency, OSC ${ }_{\text {in }}$ Externally Driven with ac-Coupled Signal	$\mathrm{V}_{\text {in }} \geq 1 \mathrm{Vp-p}$ Sine Wave, OSC ${ }_{\text {out }}=$ No Connect, R Counter Set to Divide Ratio Such that $\mathrm{f}_{\mathrm{R}} \leq 2 \mathrm{MHz}$	8a	$\begin{aligned} & \hline 2.7 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 1^{*} \\ & 1^{*} \\ & 1^{*} \\ & 1^{*} \end{aligned}$	$\begin{aligned} & 12 \\ & 14 \\ & 25 \\ & 25 \end{aligned}$	MHz
${ }^{\text {f }}$ XTAL	Crystal Frequency, $\mathrm{OSC}_{\text {in }}$ and $\mathrm{OSC}_{\text {out }}$	$\begin{array}{\|l\|} \hline \mathrm{C} 1 \leq 30 \mathrm{pF} \\ \mathrm{C} 2 \leq 30 \mathrm{pF} \\ \text { Includes Stray Capacitance } \end{array}$	9	$\begin{aligned} & 2.7 \\ & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \\ & 15 \\ & 15 \end{aligned}$	MHz
fout	Output Frequency, REFout	$\mathrm{CL}_{\mathrm{L}}=30 \mathrm{pF}$	10, 12	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{gathered} \hline \text { TBD } \\ 10 \\ 10 \end{gathered}$	MHz
f	Operating Frequency of the Phase Detectors			$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \mathrm{dc} \\ & \mathrm{dc} \\ & \mathrm{dc} \end{aligned}$	$\begin{gathered} \hline \text { TBD } \\ 2 \\ 2 \end{gathered}$	MHz
$\mathrm{t}_{\text {w }}$	Output Pulse Width, $\phi \mathrm{R}, \phi \mathrm{V}$, and LD	f_{R} in Phase with f_{V} $C_{L}=50 \mathrm{pF}$	11, 12	$\begin{aligned} & 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} \hline \text { TBD } \\ 20 \\ 16 \end{gathered}$	$\begin{gathered} \hline \text { TBD } \\ 100 \\ 90 \end{gathered}$	ns
tTLH, ${ }^{\text {tTHL }}$	Output Transition Times, $\phi \mathrm{R}, \phi \mathrm{V}, \mathrm{LD}, \mathrm{ff}_{\mathrm{R}}$, and f V	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	11, 12	$\begin{aligned} & \hline 2.7 \\ & 4.5 \\ & 5.5 \end{aligned}$	-	$\begin{gathered} \hline \text { TBD } \\ 65 \\ 60 \end{gathered}$	ns
Cin	Input Capacitance $\begin{array}{r}f_{\text {in }} \\ \text { OSC }_{\text {in }}\end{array}$		-	-	-	$\begin{aligned} & 7 \\ & 7 \end{aligned}$	pF

* If lower frequency is desired, use wave shaping or higher amplitude sinusoidal signal in ac-coupled case. Also, see Figure 22 for dc coupling.

Figure 7. Test Circuit, f_{in}

Figure 8a. Test Circuit, OSC Circuit Externally Driven*

Figure 8.

Figure 9. Test Circuit, OSC Circuit with Crystal

Figure 11. Switching Waveform

Figure 10. Switching Waveform

Figure 12. Test Load Circuit

[^25]
PIN DESCRIPTIONS

DIGITAL INTERFACE PINS

$D_{\text {in }}$

Serial Data Input (Pin 5)
The bit stream begins with the most significant bit (MSB) and is shifted in on the low-to-high transition of CLK. The bit pattern is 1 byte (8 bits) long to access the C or configuration register, 2 bytes (16 bits) to access the N register, or 3 bytes (24 bits) to access the R register. Additionally, the R register can be accessed with a 15-bit transfer (see Table 1). An optional pattern which resets the device is shown in Figure 13. The values in the C, N, and R registers do not change during shifting because the transfer of data to the registers is controlled by ENB.

The bit stream needs neither address nor steering bits due to the innovative BitGrabber registers. Therefore, all bits in the stream are available to be data for the three registers. Random access of any register is provided (i.e., the registers may be accessed in any sequence). Data is retained in the registers over a supply range of 2.7 to 5.5 V . The formats are shown in Figures 13, 14, 15, and 16.

Din typically switches near 50% of $V_{D D}$ to maximize noise immunity. This input can be directly interfaced to CMOS devices with outputs guaranteed to switch near rail-to-rail. When interfacing to NMOS or TTL devices, either a level shifter (MC74HC14A, MC14504B) or pull-up resistor of 1 to $10 \mathrm{k} \Omega$ must be used. Parameters to consider when sizing the resistor are worst-case IOL of the driving device, maximum tolerable power consumption, and maximum data rate.

Table 1. Register Access

(MSBs are shifted in first, C0, NO, and R0 are the LSBs)

Number of Clocks	Accessed Register	Bit Nomenclature
9 to 13	See Figure 13	(Reset)
8	C Register	$\mathrm{C} 7, \mathrm{C} 6, \mathrm{C} 5, \ldots, \mathrm{C} 0$
16	N Register	$\mathrm{N} 15, \mathrm{~N} 14, \mathrm{~N} 13, \ldots, \mathrm{~N} 0$
15 or 24	R Register	$\mathrm{R} 14, \mathrm{R} 13, \mathrm{R} 12, \ldots, \mathrm{R} 0$
Other Values ≤ 32	None	
Values >32	See Figures	
	$24-31$	

CLK
 Serial Data Clock Input (Pin 7)

Low-to-high transitions on Clock shift bits available at D_{in}, while high-to-low transitions shift bits from $D_{\text {out. }}$ The chip's $16-1 / 2-$ stage shift register is static, allowing clock rates down to dc in a continuous or intermittent mode.

Four to eight clock cycles followed by five clock cycles are needed to reset the device; this is optional. Eight clock cycles are required to access the C register. Sixteen clock cycles are needed for the N register. Either 15 or 24 cycles can be used to access the R register (see Table 1 and Figures 13, 14, 15, and 16). For cascaded devices, see Figures 24 - 31.

CLK typically switches near 50% of $V_{D D}$ and has a Schmitt-triggered input buffer. Slow CLK rise and fall times are allowed. See the last paragraph of $\mathbf{D}_{\mathbf{i n}}$ for more information.

NOTE

To guarantee proper operation of the power-on reset (POR) circuit, the CLK pin must be held at the potential of either the $\mathrm{V}_{\text {SS }}$ or V_{DD} pin during power up. That is, the CLK input should not be floated or toggled while the VDD pin is ramping from 0 to at least 2.7 V . If control of the CLK pin is not practical during power up, the initialization sequence shown in Figure 13 must be used.

ENB

Active-Low Enable Input (Pin 6)

This pin is used to activate the serial interface to allow the transfer of data to/from the device. When ENB is in an inactive high state, shifting is inhibited, $\mathrm{D}_{\text {out }}$ is forced to the highimpedance state, and the port is held in the initialized state. To transfer data to the device, ENB (which must start inactive high) is taken low, a serial transfer is made via $D_{\text {in }}$ and CLK, and ENB is taken back high. The low-to-high transition on ENB transfers data to the C, N, or R register depending on the data stream length per Table 1.

NOTE

Transitions on ENB must not be attempted while CLK is high. This puts the device out of synchronization with the microcontroller. Resynchronization occurs when ENB is high and CLK is low.
This input is also Schmitt-triggered and switches near 50% of VDD, thereby minimizing the chance of loading erroneous data into the registers. See the last paragraph of $\boldsymbol{D}_{\text {in }}$ for more information.

Dout
 Three-State Serial Data Output (Pin 8)

Data is transferred out of the $16-1 / 2$-stage shift register through $D_{\text {out }}$ on the high-to-low transition of CLK. This output is a No Connect, unless used in one of the manners discussed below.

Dout could be fed back to an MCU/MPU to perform a wraparound test of serial data. This could be part of a system check conducted at power up to test the integrity of the system's processor, PC board traces, solder joints, etc.

The pin could be monitored at an in-line QA test during board manufacturing.

Finally, $D_{\text {out }}$ facilitates troubleshooting a system and permits cascading devices.

REFERENCE PINS

OSC $_{\text {in }} /$ OSC $_{\text {out }}$ Reference Oscillator Input/Output (Pins 1, 2)

These pins form a reference oscillator when connected to terminals of an external parallel-resonant crystal. Fre-quency-setting capacitors of appropriate values as recommended by the crystal supplier are connected from each pin to ground (up to a maximum of 30 pF each, including stray capacitance). An external feedback resistor of 1 to $5 \mathrm{M} \Omega$ is connected directly across the pins to ensure linear operation of the amplifier. The required connections for the components are shown in Figure 9.

If desired, an external clock source can be ac coupled to $\mathrm{OSC}_{\mathrm{in}}$. A $0.01 \mu \mathrm{~F}$ coupling capacitor is used for measurement purposes and is the minimum size recommended for applications. An external feedback resistor of approximately $5 \mathrm{M} \Omega$ is required across the OSC in and OSC out pins in the ac-coupled case (see Figure 8a or alternate circuit 8b). OSCout is an internal node on the device and should not be used to drive any loads (i.e., OSCout is unbuffered). However, the buffered REF out is available to drive external loads.

The external signal level must be at least $1 \mathrm{~V}-\mathrm{p}$; the maximum frequencies are given in the Loop Specifications table. These maximum frequencies apply for R Counter divide ratios as indicated in the table. For very small ratios, the maximum frequency is limited to the divide ratio times 2 MHz . (Reason: the phase/frequency detectors are limited to a maximum input frequency of 2 MHz .)

If an external source is available which swings virtually rail-to-rail (VDD to V_{SS}), then dc coupling can be used. In the dc-coupled case, no external feedback resistor is needed. OSC out $^{\text {must be a No Connect to avoid loading an internal }}$ node on the device, as noted above. For frequencies below 1 MHz , dc coupling must be used. The R counter is a static counter and may be operated down to dc. However, wave shaping by a CMOS buffer may be required to ensure fast rise and fall times into the OSC $\mathrm{in}_{\mathrm{in}}$ pin. See Figure 22.

Each rising edge on the OSC in_{n} pin causes the R counter to decrement by one.

REF ${ }_{\text {out }}$
 Reference Frequency Output (Pin 3)

This output is the buffered output of the crystal-generated reference frequency or externally provided reference source. This output may be enabled, disabled, or scaled via bits in the C register (see Figure 14).

REF out can be used to drive a microprocessor clock input, thereby saving a crystal. Upon power up, the on-chip power-on-initialize circuit forces REF out $^{\text {to }}$ the OSC $_{\text {in }}$ divided-by-8 mode.
$R E F_{\text {out }}$ is capable of operation to 10 MHz ; see the Loop Specifications table. Therefore, divide values for the reference divider are restricted to two or higher for OSC in frequencies above 10 MHz .

If unused, the pin should be floated and should be disabled via the C register to minimize dynamic power consumption and electromagnetic interference (EMI).

COUNTER OUTPUT PINS

f_{R}

R Counter Output (Pin 9)

This signal is the buffered output of the $15-$ stage R counter. f_{R} can be enabled or disabled via the C register (patented). The output is disabled (static low logic level) upon power up. If unused, the output should be left disabled and unconnected to minimize interference with external circuitry.

The f_{R} signal can be used to verify the R counter's divide ratio. This ratio extends from 5 to 32,767 and is determined by the binary value loaded into the R register. Also, direct access to the phase detector via the OSC in pin is allowed by choosing a divide value of 1 (see Figure 15). The maximum frequency which the phase detectors operate is 2 MHz . Therefore, the frequency of f_{R} must not exceed 2 MHz .

When activated, the f_{R} signal appears as normally low and pulses high. The pulse width is 4.5 cycles of the $\mathrm{OSC}_{\mathrm{in}}$ pin signal, except when a divide ratio of 1 is selected. When 1 is selected, the OSCin signal is buffered and appears at the f_{R} pin.

fV

N Counter Output (Pin 10)

This signal is the buffered output of the 16 -stage N counter. fV can be enabled or disabled via the C register (patented). The output is disabled (static low logic level) upon power up. If unused, the output should be left disabled and unconnected to minimize interference with external circuitry.

The fV signal can be used to verify the N counter's divide ratio. This ratio extends from 40 to 65,535 and is determined by the binary value loaded into the N register. The maximum frequency which the phase detectors operate is 2 MHz . Therefore, the frequency of fy must not exceed 2 MHz .

When activated, the fv signal appears as normally low and pulses high.

LOOP PINS

$f_{\text {in }}$

Frequency Input (Pin 4)

This pin is a frequency input from the VCO. This pin feeds the on-chip amplifier which drives the N counter. This signal is normally sourced from an external voltage-controlled oscillator (VCO), and is ac-coupled into f_{in}. A 100 pF coupling capacitor is used for measurement purposes and is the minimum size recommended for applications (see Figure 7). The frequency capability of this input is dependent on the supply voltage as listed in the Loop Specifications table. For small divide ratios, the maximum frequency is limited to the divide ratio times 2 MHz . (Reason: the phase/frequency detectors are limited to a maximum frequency of 2 MHz .)

For signals which swing from at least the V_{IL} to V_{IH} levels listed in the Electrical Characteristics table, dc coupling may be used. Also, for low frequency signals (less than the minimum frequencies shown in the Loop Specifications table), dc coupling is a requirement. The N counter is a static counter and may be operated down to dc. However, wave shaping by a CMOS buffer may be required to ensure fast rise and fall times into the fin pin. See Figure 22.

Each rising edge on the f_{in} pin causes the N counter to decrement by 1 .

PDout
 Single-Ended Phase/Frequency Detector Output (Pin 13)

This is a three-state output for use as a loop error signal when combined with an external low-pass filter. Through use of a Motorola patented technique, the detector's dead zone has been eliminated. Therefore, the phase/frequency detector is characterized by a linear transfer function. The operation of the phase/frequency detector is described below and is shown in Figure 17.

POL bit (C7) in the C register = low (see Figure 14)
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading f_{R} : negative pulses from high impedance

Frequency of $f V<f_{R}$ or Phase of $f V$ Lagging f_{R} : positive pulses from high impedance

Frequency and Phase of $f V=f_{R}$: essentially high-impedance state; voltage at pin determined by loop filter

POL bit (C7) = high
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading f_{R} : positive pulses from high impedance

Frequency of $f V<f_{R}$ or Phase of $f V$ Lagging $f R$: negative pulses from high impedance

Frequency and Phase of $\mathrm{f}_{\mathrm{V}}=\mathrm{f}_{\mathrm{R}}$: essentially high-impedance state; voltage at pin determined by loop filter

This output can be enabled, disabled, and inverted via the C register. If desired, $\mathrm{PD}_{\text {out }}$ can be forced to the high-impedance state by utilization of the disable feature in the C register (patented).
$\phi \mathbf{R}$ and $\phi \mathbf{V}$
Double-Ended Phase/Frequency Detector Outputs
(Pins 14, 15)
These outputs can be combined externally to generate a loop error signal. Through use of a Motorola patented technique, the detector's dead zone has been eliminated. Therefore, the phase/frequency detector is characterized by a linear transfer function. The operation of the phase/frequency detector is described below and is shown in Figure 17.

POL bit (C7) in the C register = low (see Figure 14)
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading $f_{R}: \phi V=$ negative pulses, $\phi \mathrm{R}=$ essentially high

Frequency of $f V<f_{R}$ or Phase of $f V$ Lagging $f_{R}: \phi V=$ essentially high, $\phi \mathrm{R}=$ negative pulses

Frequency and Phase of $f V=f_{R}: \phi V$ and ϕR remain essentially high, except for a small minimum time period when both pulse low in phase

POL bit (C7) = high
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading $f_{R}: \phi R=$ negative pulses, $\phi \mathrm{V}=$ essentially high

Frequency of $f V<f_{R}$ or Phase of $f V$ Lagging f_{R} : $\phi R=$ essentially high, $\phi \mathrm{V}=$ negative pulses

Frequency and Phase of $f V=f_{R}: \phi V$ and ϕR remain essentially high, except for a small minimum time period when both pulse low in phase

These outputs can be enabled, disabled, and interchanged via the C register (patented).

LD

Lock Detector Output (Pin 11)

This output is essentially at a high level with narrow lowgoing pulses when the loop is locked ($\mathrm{f} R$ and fV of the same phase and frequency). The output pulses low when fv and fR are out of phase or different frequencies (see Figure 17).

This output can be enabled and disabled via the C register (patented). Upon power up, on-chip initialization circuitry disables LD to a static low logic level to prevent a false "lock" signal. If unused, LD should be disabled and left open.

POWER SUPPLY

VDD
 Most Positive Supply Potential (Pin 16)

This pin may range from +2.7 to 5.5 V with respect to V_{SS}.
For optimum performance, VDD should be bypassed to VSS using low-inductance capacitor(s) mounted very close to the device. Lead lengths on the capacitor(s) should be minimized. (The very fast switching speed of the device causes current spikes on the power leads.)

VSS
 Most Negative Supply Potential (Pin 12)

This pin is usually ground. For measurement purposes, the $\mathrm{V}_{\text {SS }}$ pin is tied to a ground plane.

NOTE: This initialization sequence is usually not necessary because the on-chip power-on reset circuit performs the initialization function. However, this initialization sequence must be used immediately after power up if control of the CLK pin is not possible. That is, if CLK (pin 7) toggles or floats upon power up, use the above sequence to reset the device.
Also, use this sequence if power is momentarily interrupted such that the supply voltage to the device is reduced to below 2.7 V , but not down to at least 1 V (for example, the supply drops down to 2 V). This is necessary because the on-chip power-on reset is only activated when the supply ramps up from a voltage below approximately 1 V .

Figure 13. Reset Sequence

* At this point, the new byte is transferred to the C register and stored. No other registers are affected.

C7 - POL: Selects the output polarity of the phase/frequency detectors. When set high, this bit inverts $P D_{\text {out }}$ and interchanges the ϕ_{R} function with ϕV as depicted in Figure 17. Also see the phase detector output pin descriptions for more information. This bit is cleared low at power up.

C6 - PDA/B: Selects which phase/frequency detector is to be used. When set high, enables the output of phase/frequency detector A ($\mathrm{PD}_{\text {out }}$) and disables phase/frequency detector B by forcing ϕ_{R} and ϕV to the static high state. When cleared low, phase/frequency detector B is enabled (ϕR and $\phi \mathrm{V}$) and phase/frequency detector A is disabled with $\mathrm{PD}_{\text {out }}$ forced to the high-impedance state. This bit is cleared low at power up.

C5 - LDE: Enables the lock detector output when set high. When the bit is cleared low, the LD output is forced to a static low level. This bit is cleared low at power up.

C4-C2, OSC2 - OSC0: Reference output controls which determine the REF out $^{\text {characteristics as shown below. Upon }}$ power up, the bits are initialized such that $\mathrm{OSC}_{\text {in }} / 8$ is selected.

C4	$\mathbf{C 3}$	$\mathbf{C 2}$	REF $_{\text {out }}$ Frequency
0	0	0	dc (Static Low)
0	0	1	OSC $_{\text {in }}$
0	1	0	OSC $_{\text {in }} / 2$
0	1	1	OSC $_{\text {in }} / 4$
1	0	0	OSC $_{\text {in }} / 8$ (POR Default)
1	0	1	OSC $_{\text {in }} / 16$
1	1	0	OSC $_{\text {in }} / 8$
1	1	1	OSC $_{\text {in }} / 16$

C 1 - fyE: Enables the fv output when set high. When cleared low, the fy output is forced to a static low level. The bit is cleared low upon power up.
$\mathrm{CO}-\mathrm{f}_{\mathrm{R}} \mathrm{E}$: Enables the f_{R} output when set high. When cleared low, the f_{R} output is forced to a static low level. The bit is cleared low upon power up.

Figure 14. C Register Access and Format (8 Clock Cycles are Used)

Figure 15. R Register Access and Formats (Either 24 or 15 Clock Cycles Can Be Used)

* At this point, the two new bytes are transferred to the N register and stored. No other registers are affected. In addition, the N and R counters are jam-loaded and begin counting down together.

Figure 16. N Register Access and Format (16 Clock Cycles Are Used)

$\mathrm{V}_{\mathrm{H}}=$ High voltage level
$\mathrm{V}_{\mathrm{L}}=$ Low voltage level
*At this point, when both f_{R} and f_{V} are in phase, both the sinking and sourcing output FETs are turned on for a very short interval.
NOTE: The PD $_{\text {out }}$ generates error pulses during out-of-lock conditions. When locked in phase and frequency, the output is high impedance and the voltage at that pin is determined by the low-pass filter capacitor. $\mathrm{PD}_{\text {out }}, \phi \mathrm{R}$, and $\phi \mathrm{V}$ are shown with the polarity bit $(\mathrm{POL})=$ low; see Figure 14 for POL.

Figure 17. Phase/Frequency Detectors and Lock Detector Output Waveforms

DESIGN CONSIDERATIONS

CRYSTAL OSCILLATOR CONSIDERATIONS

The following options may be considered to provide a reference frequency to Motorola's CMOS frequency synthesizers.

Use of a Hybrid Crystal Oscillator

Commercially available temperature-compensated crystal oscillators (TCXOs) or crystal-controlled data clock oscillators provide very stable reference frequencies. An oscillator capable of CMOS logic levels at the output may be direct or dc coupled to OSC C_{in}. If the oscillator does not have CMOS logic levels on the outputs, capacitive or ac coupling to OSC in may be used (see Figures 8a and 8b).

For additional information about TCXOs, visit motorola.com on the world wide web.

Use of the On-Chip Oscillator Circuitry

The on-chip amplifier (a digital inverter) along with an appropriate crystal may be used to provide a reference source frequency. A fundamental mode crystal, parallel resonant at the desired operating frequency, should be connected as shown in Figure 18.

The crystal should be specified for a loading capacitance $\left(\mathrm{CL}_{\mathrm{L}}\right)$ which does not exceed 20 pF when used at the highest operating frequencies listed in the Loop Specifications table. Larger C_{L} values are possible for lower frequencies. Assuming R1 $=0 \Omega$, the shunt load capacitance $\left(C_{L}\right)$ presented across the crystal can be estimated to be:

$$
C_{L}=\frac{C_{\text {in }} C_{\text {out }}}{C_{\text {in }}+C_{\text {out }}}+C_{a}+C_{\text {stray }}+\frac{C 1 \cdot C 2}{C 1+C 2}
$$

where
$\mathrm{C}_{\mathrm{in}}=5 \mathrm{pF}$ (see Figure 19)
$\mathrm{C}_{\text {out }}=6 \mathrm{pF}$ (see Figure 19)
$C_{a}=1 \mathrm{pF}$ (see Figure 19)
C 1 and $\mathrm{C} 2=$ external capacitors (see Figure 18)
$\mathrm{C}_{\text {stray }}=$ the total equivalent external circuit stray capacitance appearing across the crystal terminals

The oscillator can be "trimmed" on-frequency by making a portion or all of C1 variable. The crystal and associated components must be located as close as possible to the OSC $\mathrm{On}_{\mathrm{in}}$ and OSC ${ }_{\text {out }}$ pins to minimize distortion, stray capacitance, stray inductance, and startup stabilization time. Circuit stray capacitance can also be handled by adding the appropriate stray value to the values for C_{in} and $\mathrm{C}_{\text {out }}$. For this approach, the term $\mathrm{C}_{\text {Stray }}$ becomes 0 in the above expression for C_{L}.

A good design practice is to pick a small value for C 1 , such as 5 to 10 pF . Next, C 2 is calculated. $\mathrm{C} 1<\mathrm{C} 2$ results in a more robust circuit for start-up and is more tolerant of crystal parameter variations.

Power is dissipated in the effective series resistance of the crystal, R_{e}, in Figure 20. The maximum drive level specified by the crystal manufacturer represents the maximum stress that the crystal can withstand without damage or excessive shift in operating frequency. R1 in Figure 18 limits the drive level. The use of R1 is not necessary in most cases.

To verify that the maximum dc supply voltage does not cause the crystal to be overdriven, monitor the output frequency at the REF out $^{\text {pin (OSC }}$ out is not used because loading impacts the oscillator). The frequency should increase very slightly as the dc supply voltage is increased. An overdriven crystal decreases in frequency or becomes unstable with an increase in supply voltage. The operating supply voltage must be reduced or R1 must be increased in value if the overdriven condition exists. The user should note that the oscillator start-up time is proportional to the value of R1.

Through the process of supplying crystals for use with CMOS inverters, many crystal manufacturers have developed expertise in CMOS oscillator design with crystals. Discussions with such manufacturers can prove very helpful (see Table 2).

Figure 18. Pierce Crystal Oscillator Circuit

Figure 19. Parasitic Capacitances of the Amplifier and $C_{\text {stray }}$

NOTE: Values are supplied by crystal manufacturer (parallel resonant crystal).

Figure 20. Equivalent Crystal Networks

RECOMMENDED READING

Technical Note TN-24, Statek Corp.
Technical Note TN-7, Statek Corp.
E. Hafner, "The Piezoelectric Crystal Unit-Definitions and Method of Measurement", Proc. IEEE, Vol. 57, No. 2, Feb. 1969.
D. Kemper, L. Rosine, "Quartz Crystals for Frequency Control", Electro-Technology, June 1969.
P. J. Ottowitz, "A Guide to Crystal Selection", Electronic Design, May 1966.
D. Babin, "Designing Crystal Oscillators", Machine Design, March 7, 1985.
D. Babin, "Guidelines for Crystal Oscillator Design", Machine Design, April 25, 1985.

Table 2. Partial List of Crystal Manufacturers

Motorola - Internet Address	http://motorola.com
(Search for resonators)	
United States Crystal Corp.	
Crystek Crystal	
Statek Corp.	
Fox Electronics	

NOTE: Motorola cannot recommend one supplier over another and in no way suggests that this is a complete listing of crystal manufacturers.
(A)

$$
\begin{aligned}
\omega_{n} & =\sqrt{\frac{K_{\phi} K_{V C O}}{N R_{1} C}} \\
\zeta & =\frac{N \omega_{n}}{2 K_{\phi} K_{V C O}} \\
F(s) & =\frac{1}{R_{1} s C+1}
\end{aligned}
$$

(B)

$$
\begin{aligned}
\omega_{n} & =\sqrt{\frac{K_{\phi} K_{V C O}}{N C\left(R_{1}+R_{2}\right)}} \\
\zeta & =0.5 \omega_{n}\left(R_{2} C+\frac{N}{K_{\phi} K_{V C O}}\right)
\end{aligned}
$$

$$
F(s)=\frac{R_{2} s C+1}{\left(R_{1}+R_{2}\right) s C+1}
$$

(C)

$\omega_{\mathrm{n}} \sqrt{\frac{\mathrm{K}_{\phi} \mathrm{K}_{\mathrm{VCO}}}{\mathrm{NCR}_{1}}}$
=

$$
\zeta \frac{\omega_{n} R_{2} C}{2}
$$

ASSUMING GAIN A IS VERY LARGE, THEN:

$$
F(s)=\frac{R_{2} s C+1}{R_{1} s C}
$$

NOTES:
4. For (C), R_{1} is frequently split into two series resistors; each resistor is equal to R_{1} divided by 2. A capacitor C_{C} is then placed from the midpoint to ground to further filter the error pulses. The value of C_{C} should be such that the corner frequency of this network does not significantly affect ω_{n}.
5. The ϕR and $\phi \vee$ outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode input range of the op amp.
6. For the latest information on MC33077 or equivalent, see the Motorola Analog IC web site at http://www.mot-sps.com/analog.

DEFINITIONS:

$N=$ Total Division Ratio in Feedback Loop
K_{ϕ} (Phase Detector Gain) $=\mathrm{V}_{\mathrm{DD}} / 4 \pi$ volts per radian for $\mathrm{PD}_{\text {out }}$
$\mathrm{K}_{\phi}\left(\right.$ Phase Detector Gain) $=\mathrm{V}_{\mathrm{DD}} / 2 \pi$ volts per radian for $\phi \mathrm{V}$ and $\phi \mathrm{R}$

$$
\mathrm{K}_{\mathrm{VCO}}(\mathrm{VCO} \text { Gain })=\frac{2 \pi \Delta \mathrm{fVCO}^{2}}{\Delta \mathrm{~V}_{\mathrm{VCO}}}
$$

For a nominal design starting point, the user might consider a damping factor $\zeta \approx 0.7$ and a natural loop frequency $\omega_{\mathrm{n}} \approx(2 \pi \mathrm{f} R / 50)$ where f_{R} is the frequency at the phase detector input. Larger ω_{n} values result in faster loop lock times and, for similar sideband filtering, higher f_{R}-related VCO sidebands.

RECOMMENDED READING:

Gardner, Floyd M., Phaselock Techniques (second edition). New York, Wiley-Interscience, 1979.
Manassewitsch, Vadim, Frequency Synthesizers: Theory and Design (second edition). New York, Wiley-Interscience, 1980.
Blanchard, Alain, Phase-Locked Loops: Application to Coherent Receiver Design. New York, Wiley-Interscience, 1976.
Egan, William F., Frequency Synthesis by Phase Lock. New York, Wiley-Interscience, 1981.
Rohde, Ulrich L., Digital PLL Frequency Synthesizers Theory and Design. Englewood Cliffs, NJ, Prentice-Hall, 1983.
Berlin, Howard M., Design of Phase-Locked Loop Circuits, with Experiments. Indianapolis, Howard W. Sams and Co., 1978.
Kinley, Harold, The PLL Synthesizer Cookbook. Blue Ridge Summit, PA, Tab Books, 1980.
Seidman, Arthur H., Integrated Circuits Applications Handbook, Chapter 17, pp. 538-586. New York, John Wiley \& Sons.
Fadrhons, Jan, "Design and Analyze PLLs on a Programmable Calculator," EDN. March 5, 1980.
AN535, Phase-Locked Loop Design Fundamentals, Motorola Semiconductor Products, Inc., 1970.
AR254, Phase-Locked Loop Design Articles, Motorola Semiconductor Products, Inc., Reprinted with permission from Electronic Design, 1987.

AN1207, The MC145170 in Basic HF and VHF Oscillators, Motorola Semiconductor Products, Inc., 1992.

NOTES:

1. The ϕR and ϕV outputs are fed to an external combiner/loop filter. See the Phase-Locked Loop - Low-Pass Filter Design page for additional information. The ϕR and ϕV outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode input range of the op amp used in the combiner/loop filter.
2. For optimum performance, bypass the V_{DD} pin to V_{SS} (GND) with one or more low-inductance capacitors.
3. The R counter is programmed for a divide value $=\mathrm{OSC}_{i n} / f_{R}$. Typically, f_{R} is the tuning resolution required for the VCO. Also, the VCO frequency divided by $\mathrm{f}_{\mathrm{R}}=\mathrm{N}$, where N is the divide value of the N counter.
4. May be an R-C low-pass filter.
5. May be a bipolar transistor.

Figure 21. Example Application

NOTE: The signals at Points A and B may be low-frequency sinusoidal or square waves with slow edge rates or noisy signal edges. At Points C and D, the signals are cleaned up, have sharp edge rates, and rail-to-rail signal swings. With signals as described at Points C and D, the MC145170-2 is guaranteed to operate down to a frequency as low as dc.
Refer to the MC74HC14A data sheet for input switching levels and hysteresis voltage range.

Figure 22. Low Frequency Operation Using dc Coupling

Figure 23. Input Impedance at f_{in} - Series Format ($\mathrm{R}+\mathrm{jX}$)
(5 MHz to 185 MHz)

Figure 24. Cascading Two MC145170-2 Devices

Figure 27. Accessing the N Registers of Two Cascaded MC145170-2 Devices

Figure 28. Cascading Two Different Device Types

*At this point, the new data is transferred to the C registers of both devices and stored. No other registers are affected.

[^26]

1.1 GHz PLL Frequency Synthesizers

Include On-Board 64/65 Prescalers

The MC145190 and MC145191 are single-package synthesizers with serial interfaces capable of direct usage up to 1.1 GHz . A special architecture makes these PLLs very easy to program because a byte-oriented format is utilized. Due to the patented BitGrabber ${ }^{T M}$ registers, no address/steering bits are required for random access of the three registers. Thus, tuning can be accomplished via a 3-byte serial transfer to the 24-bit A register. The interface is both SPI and MICROWIRE ${ }^{\text {TM }}$ compatible.

Each device features a single-ended current source/sink phase detector output and a double-ended phase detector output. Both phase detectors have linear transfer functions (no dead zones). The maximum current of the single-ended phase detector output is determined by an external resistor tied from the Rx pin to ground. This current can be varied via the serial port.

The MC145190 features logic-level converters and high-voltage phase/ frequency detectors; the detector supply may range up to 9.5 V . The MC145191 has lower-voltage phase/frequency detectors optimized for single-supply systems of $5 \mathrm{~V} \pm 10 \%$.

Each part includes a differential RF input which may be operated in a single-ended mode. Also featured are on-board support of an external crystal and a programmable reference output. The R, A, and N counters are fully programmable. The C register (configuration register) allows the parts to be configured to meet various applications. A patented feature allows the C register to shut off unused outputs, thereby minimizing system noise and interference.

In order to have consistent lock times and prevent erroneous data from being loaded into the counters, on-board circuitry synchronizes the update of the A register if the A or N counters are loading. Similarly, an update of the R register is synchronized if the R counter is loading.

The double-buffered R register allows new divide ratios to be presented to the three counters (R, A, and N) simultaneously.

- Maximum Operating Frequency: $1100 \mathrm{MHz} @ \mathrm{~V}_{\text {in }}=200 \mathrm{mV} \mathrm{p}-\mathrm{p}$
- Operating Supply Current: 7 mA Nominal
- Operating Supply Voltage Range (VDD and VCC Pins): 4.5 to 5.5 V
- Operating Supply Voltage Range of Phase Detectors (VPD Pin) -

MC145190: 8.0 to 9.5 V
MC145191: 4.5 to 5.5 V

- Current Source/Sink Phase Detector OUTPUT Capability: 2 mA Maximum
- Gain of Current Source/Sink Phase/Frequency Detector Controllable via Serial Port
- Operating Temperature Range: -40 to $+85^{\circ} \mathrm{C}$
- R Counter Division Range: (1 and) 5 to 8191
- Dual-Modulus Capability Provides Total Division up to 262,143
- High-Speed Serial Interface: 4 Mbps
- OUTPUT A Pin, When Configured as Data Out, Permits Cascading of Devices
- Two General-Purpose Digital Outputs - OUTPUT A: Totem-Pole (Push-Pull) OUTPUT B: Open-Drain
- Patented Power-Saving Standby Feature with Orderly Recovery for Minimizing Lock Times, Standby Current: $30 \mu \mathrm{~A}$
- Evaluation Kit Available (Part Numbers MC145190EVK and MC145191EVK)
- See Application Note AN1253/D for Low-Pass Filter Design, and AN1277/D for Offset Reference PLLs for Fine Resolution or Fast Hopping

BLOCK DIAGRAM

MAXIMUM RATINGS* (Voltages Referenced to GND, unless otherwise stated)

Symbol	Parameter	Value	Unit
$\overline{\mathrm{V}_{\mathrm{CC}}}$ V_{DD}	DC Supply Voltage (Pins 12 and 14)	-0.5 to +6.0	V
$V_{P D}$	$\begin{array}{ll}\text { DC Supply Voltage (Pin 5) } & \text { MC145190 } \\ & \text { MC145191 }\end{array}$	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{DD}}-0.5 \text { to }+9.5 \\ \mathrm{~V}_{\mathrm{DD}}-0.5 \text { to }+6.0 \end{array}$	V
$\mathrm{V}_{\text {in }}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$V_{\text {out }}$	DC Output Voltage (except OUTPUT B, PDout,申R, 申V)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$V_{\text {out }}$	DC Output Voltage (OUTPUT B, PD ${ }_{\text {out }}$, $\phi \mathrm{R}$, $\phi \mathrm{V}$)	-0.5 to $\mathrm{V}_{\mathrm{PD}}+0.5$	V
$l_{\text {in }}$, IPD	DC Input Current, per Pin (Includes $\mathrm{V}_{\text {PD }}$)	± 10	mA
Iout	DC Output Current, per Pin	± 20	mA
IDD	DC Supply Current, V ${ }_{\text {DD }}$ and GND Pins	± 30	mA
P_{D}	Power Dissipation, per Package	300	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to + 150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature, 1 mm from Case for 10 seconds	260	${ }^{\circ} \mathrm{C}$

[^27]This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=4.5\right.$ to 5.5 V , Voltages Referenced to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated;
MC145190: $\mathrm{V}_{\mathrm{PD}}=8.0$ to 9.5 V ; MC145191: $\mathrm{V}_{\mathrm{PD}}=4.5$ to 5.5 V with $\mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{PD}}$.)

Symbol	Parameter	Test Condition	Guaranteed Limit	Unit
VIL	Maximum Low-Level Input Voltage ($\mathrm{D}_{\text {in }}, \mathrm{CLK}, \mathrm{ENB}$, REF $_{\text {in }}$)	Device in Reference Mode, dc Coupled	$0.3 \times \mathrm{V}_{\text {D }}$	V
V_{IH}	Minimum High-Level Input Voltage ($\mathrm{D}_{\text {in }}, \mathrm{CLK}, \mathrm{ENB}$, REF $_{\text {in }}$)	Device in Reference Mode, dc Coupled	$0.7 \times \mathrm{V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\text {hys }}$	Minimum Hysteresis Voltage (CLK, ENB)		300	mV
VOL	Maximum Low-Level Output Voltage (REF ${ }_{\text {out }}$, OUTPUT A)	Iout $=20 \mu \mathrm{~A}$, Device in Reference Mode	0.1	V
V_{OH}	Minimum High-Level Output Voltage (REF ${ }_{\text {out }}$, OUTPUT A)	Iout $=-20 \mu \mathrm{~A}$, Device in Reference Mode	$\mathrm{V}_{\mathrm{DD}}-0.1$	V
${ }^{\text {IOL }}$	Minimum Low-Level Output Current (REF ${ }_{\text {out }}$, LD, $\phi \mathrm{R}, \phi \mathrm{V}$)	$\mathrm{V}_{\text {out }}=0.4 \mathrm{~V}$	0.36	mA
${ }^{\mathrm{I} O H}$	Minimum High-Level Output Current (REF ${ }_{\text {out }}$, LD, $\phi \mathrm{R}, \phi \mathrm{V}$)	$\begin{aligned} & V_{\text {out }}=V_{D D}-0.4 \mathrm{~V} \text { for } R E F_{\text {out }}, \text { LD } \\ & V_{\text {out }}=V_{\text {PD }}-0.4 \mathrm{~V} \text { for } \phi \mathrm{R}, \phi \mathrm{~V} \end{aligned}$	-0.36	mA
${ }^{\text {IOL}}$	Minimum Low-Level Output Current (OUTPUT A, OUTPUT B)	$\mathrm{V}_{\text {out }}=0.4 \mathrm{~V}$	1.0	mA
${ }^{\mathrm{I}} \mathrm{OH}$	Minimum High-Level Output Current (OUTPUT A, Only)	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DD}}-0.4 \mathrm{~V}$	-0.6	mA
lin	Maximum Input Leakage Current ($\mathrm{D}_{\text {in }}, \mathrm{CLK}, \mathrm{ENB}, \mathrm{REF}_{\text {in }}$)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {DD }}$ or GND, Device in XTAL Mode	± 1.0	$\mu \mathrm{A}$
lin	Maximum Input Current ($\mathrm{REF}_{\text {in }}$)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {DD }}$ or GND, Device in Reference Mode	± 150	$\mu \mathrm{A}$
IOZ	Maximum Output Leakage Current ($\mathrm{PD}_{\text {out }}$)	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {PD }}-0.5 \mathrm{~V}$ or 0.5 V, MC145190 Output in High-Impedance State MC145191	$\begin{aligned} & \pm 150 \\ & \pm 200 \end{aligned}$	nA
IOZ	Maximum Output Leakage Current (OUTPUT B)	$V_{\text {out }}=V_{\text {PD }}$ or GND, Output in High-Impedance State	± 10	$\mu \mathrm{A}$
IstBy	Maximum Standby Supply Current ($V_{D D}+V_{P D}$ Pins)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {DD }}$ or GND; Outputs Open; Device in Standby Mode, Shut-Down Crystal Mode or REF out-Static-Low $^{\text {L }}$ Reference Mode; OUTPUT B Controlling V_{CC} per Figure 22	30	$\mu \mathrm{A}$
${ }^{\text {IPD }}$	Maximum Phase DetectorQuiescent Current (VPD Pin)	Bit C6 = High Which Selects Phase Detector A, PD ${ }_{\text {out }}=$ Open, $\mathrm{PD}_{\text {out }}=$ Static Low or High, Bit C4 = Low Which is not Standby, $\mathrm{I}_{\mathrm{Rx}}=113 \mu \mathrm{~A}$	600	$\mu \mathrm{A}$
		Bit C6 = Low Which Selects Phase Detector B, ϕ R and $\phi V=$ Open, $\phi \mathrm{R}$ and $\phi \mathrm{V}=$ Static Low or High, Bit C4 = Low Which is not Standby	30	
$I^{\text {T }}$	Total Operating Supply Current ($\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{P D}+\mathrm{V}_{\mathrm{CC}}$ Pins $)$	$\mathrm{f}_{\mathrm{in}}=1.1 \mathrm{GHz} ; \mathrm{REF}_{\mathrm{in}}=13 \mathrm{MHz} @ 1 \mathrm{Vp-p} ;$ OUTPUT A = Inactive and No Connect; $\mathrm{REF}_{\text {out }} \div 8 ; \phi \mathrm{V}, \phi \mathrm{R}, \mathrm{PD}_{\text {out }}, \mathrm{LD}=$ No Connect; $\mathrm{D}_{\text {in }}$, ENB, CLK $=\mathrm{V}_{\text {DD }}$ or GND, Phase Detector B Selected (Bit C6 = Low)	*	mA

* The nominal value $=7 \mathrm{~mA}$. This is not a guaranteed limit.

ANALOG CHARACTERISTICS—CURRENT SOURCE/SINK OUTPUT—PDout
($\mathrm{l}_{\text {out }} \leq 2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{PD}}$. Voltages Referenced to GND)

Parameter	Test Condition	VPD	Guaranteed Limit	Unit
Maximum Source Current Variation (Part-to-Part)	MC145190: $\mathrm{V}_{\text {out }}=0.5 \times \mathrm{V}_{\text {PD }}$	8.0	± 20	\%
		9.5	± 20	
	MC145191: $\mathrm{V}_{\text {out }}=0.5 \times \mathrm{V}_{\text {PD }}$	4.5	± 20	\%
		5.5	± 20	
Maximum Sink-vs-Source Mismatch (Note 3)	MC145190: $\mathrm{V}_{\text {out }}=0.5 \times \mathrm{V}_{\text {PD }}$	8.0	12	\%
		9.5	12	
	MC145191: $\mathrm{V}_{\text {out }}=0.5 \times \mathrm{V}_{\text {PD }}$	4.5	12	\%
		5.5	12	
Output Voltage Range (Note 3)	MC145190: I $_{\text {out }}$ Variation $\leq 20 \%$	8.0	0.5 to 7.5	V
		9.5	0.5 to 9.0	
	MC145191: Iout Variation $\leq 20 \%$	4.5	0.5 to 4.0	V
		5.5	0.5 to 5.0	

NOTES:

1. Percentages calculated using the following formula: (Maximum Value - Minimum Value)/Maximum Value.
2. See Rx Pin Description for external resistor values.
3. This parameter is guaranteed for a given temperature within -40° to $+85^{\circ} \mathrm{C}$.

AC INTERFACE CHARACTERISTICS (VDD $=4.5$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$;
MC145190: $\mathrm{V}_{\mathrm{PD}}=8.0$ to 9.5 V ; MC145191: $\mathrm{V}_{\mathrm{PD}}=4.5$ to 5.5 V with $\left.\mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{PD}}\right)$

Symbol	Parameter	Figure No.	Guaranteed Limit	Unit
${ }_{\mathrm{f}} \mathrm{lk}$	Serial Data Clock Frequency (Note: Refer to Clock t_{w} below)	1	dc to 4.0	MHz
tPLH, tPHL	Maximum Propagation Delay, CLK to OUTPUT A (Selected as Data Out)	1,5	105	ns
tPLH, tPHL	Maximum Propagation Delay, ENB to OUTPUT A (Selected as Port)	2, 5	100	ns
tPZL, tPLZ	Maximum Propagation Delay, ENB to OUTPUT B	2, 6	120	ns
${ }_{\text {t }}$ LH, ${ }^{\text {t }}$ THL	Maximum Output Transition Time, OUTPUT A and OUTPUT B; tTHLONLY, on OUTPUT B	1, 5, 6	100	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance - $\mathrm{Din}_{\text {in }}$, ENB, CLK		10	pF

TIMING REQUIREMENTS

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=4.5\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$ unless otherwise indicated)

Symbol	Parameter	Figure No.	Guaranteed Limit	Unit
$\mathrm{t}_{\text {su }}, \mathrm{t}_{\mathrm{h}}$	Minimum Setup and Hold Times, Din vs CLK	3	20	ns
$\mathrm{t}_{\mathrm{su}}, \mathrm{t}_{\mathrm{h}}, \mathrm{t}_{\mathrm{r} e \mathrm{e}}$	Minimum Setup, Hold and Recovery Times, ENB vs CLK	4	100	ns
t_{w}	Minimum Pulse Width, ENB	4	$*$	cycles
t_{w}	Minimum Pulse Width, CLK	1	125	ns
$\mathrm{t}_{\mathrm{r},}, \mathrm{tf}_{\mathrm{f}}$	Maximum Input Rise and Fall Times - CLK	1	100	$\mu \mathrm{~s}$

*The minimum limit is $3 \mathrm{REF}_{\text {in }}$ cycles or $195 \mathrm{f}_{\text {in }}$ cycles, whichever is greater.

SWITCHING WAVEFORMS

Figure 1.

Figure 3.

*Includes all probe and fixture capacitance.

Figure 5. Test Circuit

Figure 2.

Figure 4.

*Includes all probe and fixture capacitance.

Figure 6. Test Circuit

LOOP SPECIFICATIONS ($\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V unless otherwise indicated, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter		Test Condition	Figure No.	GuaranteedOperating Range		Unit	
			Min		Max			
$\mathrm{V}_{\text {in }}$	Input Voltage Range, fin			$\begin{aligned} & 100 \mathrm{MHz} \leq \mathrm{f}_{\text {in }}<250 \mathrm{MHz} \\ & 250 \mathrm{MHz} \leq \mathrm{f}_{\text {in }} \leq 1100 \mathrm{MHz} \end{aligned}$	7	$\begin{aligned} & 400 \\ & 200 \end{aligned}$	$\begin{aligned} & 1500 \\ & 1500 \end{aligned}$	mV p-p
fref	Input Frequency Range, REFin Externally Driven in Reference Mode	MC145190 MC145191	$\begin{aligned} & V_{\text {in }} \geq 400 \mathrm{mV} \mathrm{p}-\mathrm{p} \\ & \mathrm{~V}_{\text {in }} \geq 1 \mathrm{Vp-p} \\ & V_{\text {in }} \geq 400 \mathrm{mV} \mathrm{p}-\mathrm{p} \\ & \mathrm{~V}_{\text {in }} \geq 1 \mathrm{~V}-\mathrm{p} \end{aligned}$	8	$\begin{gathered} 13 \\ 6^{*} \\ 12 \\ 4.5^{*} \end{gathered}$	$\begin{aligned} & 27 \\ & 27 \\ & 27 \\ & 27 \end{aligned}$	MHz	
${ }^{\text {f XTAL }}$	Crystal Frequency, Crystal Mode		$\mathrm{C} 1 \leq 30 \mathrm{pF}, \mathrm{C} 2 \leq 30 \mathrm{pF}$, Includes Stray Capacitance	9	2	15	MHz	
fout	Output Frequency, REF ${ }_{\text {out }}$		$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	10, 12	dc	10	MHz	
f	Operating Frequency of the Phase Detectors				dc	2	MHz	
t_{w}	Output Pulse Width, $\phi \mathrm{R}$, ¢V, LD	$\begin{aligned} & \hline \text { MC145190 } \\ & \text { MC145191 } \end{aligned}$	f_{R} in Phase with $\mathrm{fV}_{\mathrm{V}}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, $V_{P D}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	11, 12	17	85	ns	
$\begin{aligned} & \hline \text { tTLH, } \\ & \text { tTHL } \end{aligned}$	Output Transition Times, LD, $\phi \mathrm{V}$, фR — MC145191		$\begin{aligned} & C_{L}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{PD}}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{C C}=5.0 \mathrm{~V} \end{aligned}$	11, 12	-	65	ns	
$\mathrm{C}_{\text {in }}$	Input Capacitance, REFin				-	5	pF	

*If lower frequency is desired, use wave shaping or higher amplitude sinusoidal signal.

Figure 7. Test Circuit

Figure 9. Test Circuit - Crystal Mode

Figure 8. Test Circuit — Reference Mode

Figure 10. Switching Waveform

Figure 11. Switching Waveform

Figure 12. Test Circuit

NORMALIZED INPUT IMPEDANCE AT f_{in} - SERIES FORMAT ($\mathrm{R}+\mathrm{j} \mathrm{X}$)
 (100 MHz to 1.1 GHz)

Marker	Frequency $(\mathbf{M H z})$	Resistance (Ω)	Capacitive Reactance (Ω)	Capacitance $(\mathbf{p F})$
1	100	338	-785	2.03
2	500	20.2	-183	1.74
3	800	11.5	-109	1.83
4	1100	8.2	-70.2	2.06

RETURN LOSS AT $\mathbf{f}_{\text {in }}$

STANDING WAVE RATIO AT \mathbf{f}_{in}

Marker	Frequency $(\mathbf{M H z})$	SWR	Return Loss (dB)
1	100	43.7	0.40
2	500	34.7	0.48
3	800	25.3	0.68
4	1100	17.9	0.98

PIN DESCRIPTIONS

DIGITAL INTERFACE PINS

$D_{\text {in }}$
 Serial Data Input (Pin 19)

The bit stream begins with the most significant bit (MSB) and is shifted in on the low-to-high transition of CLK. The bit pattern is 1 byte (8 bits) long to access the C or configuration register, 2 bytes (16 bits) to access the first buffer of the R register, or 3 bytes (24 bits) to access the A register (see Table 1). The values in the C, R, and A registers do not change during shifting because the transfer of data to the registers is controlled by ENB.

CAUTION

The value programmed for the N -counter must be greater than or equal to the value of the A -counter.
The 13 least significant bits (LSBs) of the R register are double-buffered. As indicated above, data is latched into the first buffer on a 16-bit transfer. (The 3 MSBs are not doublebuffered and have an immediate effect after a 16-bit transfer.) The second buffer of the R register contains the 13 bits for the R counter. This second buffer is loaded with the contents of the first buffer when the A register is loaded (a 24-bit transfer). This allows presenting new values to the R, A, and N counters simultaneously. If this is not required, then the 16-bit transfer may be followed by pulsing ENB low with no signal on the CLK pin. This is an alternate method of transferring data to the second buffer of the R register (see Figure 17).

The bit stream needs neither address nor steering bits due to the innovative BitGrabber registers. Therefore, all bits in the stream are available to be data for the three registers. Random access of any register is provided. That is, the registers may be accessed in any sequence. Data is retained in the registers over a supply range of 4.5 to 5.5 V . The formats are shown in Figures 15, 16, and 17.

Din typically switches near 50% of $V_{D D}$ to maximize noise immunity. This input can be directly interfaced to CMOS devices with outputs guaranteed to switch near rail-to-rail. When interfacing to NMOS or TTL devices, either a level shifter (MC74HC14A, MC14504B) or pull-up resistor of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ must be used. Parameters to consider when sizing the resistor are worst-case lol of the driving device, maximum tolerable power consumption, and maximum data rate.

Table 1. Register Access
(MSBs are shifted in first; C0, R0, and A0 are the LSBs)

Number of Clocks	Accessed Register	Bit Nomenclature
8	C Register	$\mathrm{C} 7, \mathrm{C} 6, \mathrm{C} 5, \ldots, \mathrm{C} 0$
16	R Register	R15, R14, R13, ..., R0
24	A Register	A23, A22, A21, .., A0
Other Values ≤ 32	See Figure 13	
Values >32	See Figures	
	$22-25$	

CLK
 Serial Data Clock Input (Pin 18)

Low-to-high transitions on CLK shift bits available at the $D_{\text {in }}$ pin, while high-to-low transitions shift bits from OUTPUT A (when configured as Data Out, see Pin 16).

The 24-1/2-stage shift register is static, allowing clock rates down to dc in a continuous or intermittent mode.

Eight clock cycles are required to access the C register. Sixteen clock cycles are needed for the first buffer of the R register. Twenty-four cycles are used to access the A register. See Table 1 and Figures 15, 16, and 17. The number of clocks required for cascaded devices is shown in Figures 24 through 26.

CLK typically switches near 50% of $V_{D D}$ and has a Schmitt-triggered input buffer. Slow CLK rise and fall times are allowed. See the last paragraph of $\mathbf{D}_{\text {in }}$ for more information.

NOTE

To guarantee proper operation of the power-on reset (POR) circuit, the CLK pin must be held at GND (with ENB being a don't care) or ENB must be held at the potential of the $V+$ pin (with CLK being a don't care) during power-up. As an alternative, the bit sequence of Figure 13 may be used.

ENB

Active Low Enable Input (Pin 17)

This pin is used to activate the serial interface to allow the transfer of data to/from the device. When ENB is in an inactive high state, shifting is inhibited and the port is held in the initialized state. To transfer data to the device, ENB (which must start inactive high) is taken low, a serial transfer is made via $D_{\text {in }}$ and CLK, and ENB is taken back high. The low-to-high transition on ENB transfers data to the C or A registers and first buffer of the R register, depending on the data stream length per Table 1.

> Transitions on ENB must not be attempted while CLK is high. This puts the device out of synchronization with the microcontroller. Resynchronization occurs whenever ENB is high and CLK is low.

This input is also Schmitt-triggered and switches near 50% of VDD, thereby minimizing the chance of loading erroneous data into the registers. See the last paragraph of $\boldsymbol{D}_{\text {in }}$ for more information.

For POR information, see the note for the CLK pin.

OUTPUT A

Configurable Digital Output (Pin 16)

OUTPUT A is selectable as fR , fV , Data Out, or Port. Bits A22 and A23 in the A register control the selection; see Figure 16.

If A23 = A22 = high, OUTPUT A is configured as f_{R}. This signal is the buffered output of the 13-stage R counter. The fR signal appears as normally low and pulses high, and can be used to verify the divide ratio of the R counter. This ratio extends from 5 to 8191 and is determined by the binary value loaded into bits R0-R12 in the R register. Also, direct access to the phase detectors via the REFin pin is allowed by choosing a divide value of 1 (see Figure 17). The maximum frequency at which the phase detectors operate is 2 MHz . Therefore, the frequency of f_{R} should not exceed 2 MHz .

If A23 = high and A22 = low, OUTPUT A is configured as fV . This signal is the buffered output of the 12 -stage N counter. The fV signal appears as normally low and pulses high, and can be used to verify the operation of the prescaler,

A counter, and N counter. The divide ratio between the $f_{i n}$ input and the fV signal is $N \times 64+A$. N is the divide ratio of the N counter and A is the divide ratio of the A counter. These ratios are determined by bits loaded into the A register. See Figure 16. The maximum frequency at which the phase detectors operate is 2 MHz . Therefore, the frequency of $\mathrm{f} V$ should not exceed 2 MHz .

If A23 = low and A22 = high, OUTPUT A is configured as Data Out. This signal is the serial output of the 24-1/2-stage shift register. The bit stream is shifted out on the high-to-low transition of the CLK input. Upon power up, OUTPUT A is automatically configured as Data Out to facilitate cascading devices.

If A23 = A22 = low, OUTPUT A is configured as Port. This signal is a general-purpose digital output which may be used as an MCU port expander. This signal is low when the Port bit (C1) of the C register is low, and high when the Port bit is high.

OUTPUT B

Open-Drain Digital Output (Pin 15)

This signal is a general-purpose digital output which may be used as an MCU port expander. This signal is low when the Out B bit (CO) of the C register is low. When the Out B bit is high, OUTPUT B assumes the high-impedance state. OUTPUT B may be pulled up through an external resistor or active circuitry to any voltage less than or equal to the potential of the VPD pin. Note: the maximum voltage allowed on the VPD pin is 9.5 V for the MC145190 and 5.5 V for the MC145191.

Upon power-up, power-on reset circuitry forces OUTPUT B to a low level.

REFERENCE PINS

REFin and REFout
 Reference Input and Reference Output (Pins 20 and 1)

Configurable pins for a Crystal or an External Reference. This pair of pins can be configured in one of two modes: the crystal mode or the reference mode. Bits R13, R14, and R15 in the R register control the modes as shown in Figure 17.

In crystal mode, these pins form a reference oscillator when connected to terminals of an external parallel-resonant crystal. Frequency-setting capacitors of appropriate values as recommended by the crystal supplier are connected from each of the two pins to ground (up to a maximum of 30 pF each, including stray capacitance). An external resistor of $1 \mathrm{M} \Omega$ to $15 \mathrm{M} \Omega$ is connected directly across the pins to ensure linear operation of the amplifier. The device is designed to operate with crystals up to 15 MHz ; the required connections are shown in Figure 9. To turn on the oscillator, bits R15, R14, and R13 must have an octal value of one (001 in binary, respectively). This is the active-crystal mode shown in Figure 17. In this mode, the crystal oscillator runs and the R Counter divides the crystal frequency, unless the part is in standby. If the part is placed in standby via the C register, the oscillator runs, but the R counter is stopped. However, if bits R15 to R13 have a value of 0, the oscillator is stopped, which saves additional power. This is the shutdown crystal mode (shown in Figure 17) and can be engaged whether in standby or not.

In the reference mode, REFin (Pin 20) accepts a signal up to 27 MHz from an external reference oscillator, such as a TCXO. A signal swinging from at least the V_{IL} to V_{IH} levels
listed in the Electrical Characteristics table may be directly coupled to the pin. If the signal is less than this level, ac coupling must be used as shown in Figure 8. Due to an onboard resistor which is engaged in the reference modes, an external biasing resistor tied between REFin and REF out is $^{\text {in }}$ not required.

With the reference mode, the REF out $^{\text {pin }}$ is configured as the output of a divider. As an example, if bits R15, R14, and R13 have an octal value of seven, the frequency at REF out is $^{\text {is }}$ the REFin frequency divided by 16. In addition, Figure 17 shows how to obtain ratios of eight, four, and two. A ratio of one-to-one can be obtained with an octal value of three. Upon power up, a ratio of eight is automatically initialized. The maximum frequency capability of the $R E F_{\text {out }}$ pin is 10 MHz . Therefore, for REFin frequencies above 10 MHz , the one-to-one ratio may not be used. Likewise, for REFin frequencies above 20 MHz , the ratio must be more than two.

If REF ${ }_{\text {out }}$ is unused, an octal value of two should be used for R15, R14, and R13 and the REF out pin should be floated. A value of two allows REFin to be functional while disabling REF $_{\text {out }}$, which minimizes dynamic power consumption and electromagnetic interference (EMI).

LOOP PINS
 $f_{\text {in }}$ and $\overline{f_{i n}}$
 Frequency Inputs (Pins 11 and 10)

These pins are frequency inputs from the VCO. These pins feed the on-board RF amplifier which drives the 64/65 prescaler. These inputs may be fed differentially. However, they usually are used in a single-ended configuration (shown in Figure 7). Note that $f_{i n}$ is driven while $f_{i n}$ must be tied to ground via a capacitor.

Motorola does not recommend driving fin while terminating $f_{\text {in }}$ because this configuration is not tested for sensitivity. The sensitivity is dependent on the frequency as shown in the Loop Specifications table.

PDout
 Single-Ended Phase/Frequency Detector Output (Pin 6)

This is a three-state current-source/sink output for use as a loop error signal when combined with an external low-pass filter. The phase/frequency detector is characterized by a linear transfer function (no dead zone). The operation of the phase/frequency detector is described below and is shown in Figure 18.

POL bit (C7) in the C register = low (see Figure 15)
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading f_{R} : currentsinking pulses from a floating state
Frequency of $f_{V}<f_{R}$ or Phase of $f V$ Lagging f_{R} : currentsourcing pulses from a floating state
Frequency and Phase of $f V=f_{R}$: essentially a floating state; voltage at pin determined by loop filter
POL bit (C7) = high
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading f_{R} : currentsourcing pulses from a floating state
Frequency of $f V<f_{R}$ or Phase of $f V$ Lagging f_{R} : currentsinking pulses from a floating state
Frequency and Phase of $f_{V}=f_{R}$: essentially a floating state; voltage at pin determined by loop filter
This output can be enabled, disabled, and inverted via the C register. If desired, $\mathrm{PD}_{\text {out }}$ can be forced to the floating state by utilization of the disable feature in the C register (bit C6). This is a patented feature. Similarly, $\mathrm{PD}_{\text {out }}$ is forced to the
floating state when the device is put into standby (STBY bit $\mathrm{C} 4=$ high $)$.

The PD ${ }_{\text {out }}$ circuit is powered by VPD. The phase detector gain is controllable by bits C3, C2, and C1: gain (in amps per radian) $=P D_{\text {out }}$ current divided by 2π.

$\phi \mathbf{R}$ and $\phi \mathbf{V}$ (Pins 3 and 4)

Double-Ended Phase/Frequency Detector Outputs

These outputs can be combined externally to generate a loop error signal. Through use of a Motorola patented technique, the detector's dead zone has been eliminated. Therefore, the phase/frequency detector is characterized by a linear transfer function. The operation of the phase/ frequency detector is described below and is shown in Figure 18.

POL bit (C7) in the C register = low (see Figure 15)
Frequency of $f V>f R$ or Phase of $f V$ Leading $f R: \phi V=$ negative pulses, $\phi \mathrm{R}=$ essentially high
Frequency of $\mathrm{f}_{\mathrm{V}}<\mathrm{f}_{\mathrm{R}}$ or Phase of f_{V} Lagging $\mathrm{f}_{\mathrm{R}}: \phi \mathrm{V}=$ essentially high, $\phi \mathrm{R}=$ negative pulses
Frequency and Phase of $f V=f R$: ϕV and ϕR remain essentially high, except for a small minimum time period when both pulse low in phase
POL bit (C7) = high
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading $f R: \phi R=$ negative pulses, $\phi \mathrm{V}=$ essentially high
Frequency of $f V<f_{R}$ or Phase of $f V$ Lagging f_{R} : $\phi R=$ essentially high, $\phi \mathrm{V}=$ negative pulses
Frequency and Phase of $f V=f R$: ϕV and ϕR remain essentially high, except for a small minimum time period when both pulse low in phase
These outputs can be enabled, disabled, and interchanged via C register bits C 6 or C 4 . This is a patented feature. Note that when disabled or in standby, $\phi \mathrm{R}$ and $\phi \mathrm{V}$ are forced to their rest condition (high state).

The $\phi \mathrm{R}$ and $\phi \mathrm{V}$ output signal swing is approximately from GND to VPD.

LD

Lock Detector Output (Pin 2)

This output is essentially at a high level with narrow low-going pulses when the loop is locked ($f R$ and $f V$ of the same phase and frequency). The output pulses low when f_{V} and f_{R} are out of phase or different frequencies. LD is the logical ANDing of ϕR and ϕV (see Figure 18).

This output can be enabled and disabled via the C register. This is a patented feature. Upon power up, on-chip initialization circuitry disables LD to a static low logic level to prevent a false "lock" signal. If unused, LD should be disabled and left open.

The LD output signal swing is approximately from GND to VDD.
Rx

External Resistor (Pin 8)

A resistor tied between this pin and GND, in conjunction with bits in the C register, determines the amount of current that the $\mathrm{PD}_{\text {out }}$ pin sinks and sources. When bits C2 and C3 are both set high, the maximum current is obtained at $\mathrm{PD}_{\text {out }}$; see Tables 2 and 3 for other values of current. To achieve a maximum current of 2 mA , the resistor should be about $47 \mathrm{k} \Omega$ when $\mathrm{V}_{P D}$ is 9 V or about $18 \mathrm{k} \Omega$ when $\mathrm{V}_{P D}$ is 5.0 V . See Figure 14 if lower maximum current values are desired.

When the $\phi \mathrm{R}$ and ϕV outputs are used, the Rx pin may be floated.

TEST POINT PINS

TEST 1

Modulus Control Signal (Pin 9)

This pin may be used in conjunction with the Test 2 pin for access to the on-board $64 / 65$ prescaler. When Test 1 is low, the prescaler divides by 65. When high, the prescaler divides by 64 .

CAUTION

This pin is an unbuffered output and must be floated in an actual application. This pin must be attached to an isolated pad with no trace.

TEST 2

Prescaler Output (Pin 13)

This pin may be used to access to the on-board $64 / 65$ prescaler output.

CAUTION

This pin is an unbuffered output and must be floated in an actual application. This pin must be attached to an isolated pad with no trace.

POWER SUPPLY PINS

VDD
 Positive Power Supply (Pin 14)

This pin supplies power to the main CMOS digital portion of the device. The voltage range is +4.5 to +5.5 V with respect to the GND pin.

For optimum performance, VDD should be bypassed to GND using a low-inductance capacitor mounted very close to these pins. Lead lengths on the capacitor should be minimized.

VCC
 Positive Power Supply (Pin 12)

This pin supplies power to the RF amp and 64/65 prescaler. The voltage range is +4.5 to +5.5 V with respect to the GND pin. In the standby mode, the VCC pin still draws a few milliamps from the power supply. This current drain can be eliminated with the use of transistor Q1 as shown in Figure 22.

For optimum performance, VCC should be bypassed to GND using a low-inductance capacitor mounted very close to these pins. Lead lengths on the capacitor should be minimized.

VPD
 Positive Power Supply (Pin 5)

This pin supplies power to both phase/frequency detectors A and B. The voltage applied on this pin must be no less than the potential applied to the VDD pin. The maximum voltage can be +9.5 V with respect to the GND pin for the MC145190 and +5.5 V for the MC145191.

For optimum performance, VPD should be bypassed to GND using a low-inductance capacitor mounted very close to these pins. Lead lengths on the capacitor should be minimized.

GND
 Ground (Pin 7)

Common ground.

NOTE: It may not be convenient to control the ENB or CLK pins during power up per the Pin Descriptions. If this is the case, the part may be initialized through the serial port as shown in the figure above. The sequence is similar to accessing the registers except that the CLK must remain high at least 100 ns after ENB is brought high. Note that 3 groups of 5 bits are needed.

Figure 13. Initializing the PLL through the Serial Port

MC145190
Nominal PDout Spurious Current vs f_{R} Frequency
(1 V < PD out < VPD-1 V)

$\mathbf{f R}_{\mathbf{R}}$ $(\mathbf{k H z})$	Current $(\mathbf{R M S} \mathbf{~ n A) ~}$
10	1.6
20	5.3
50	22
100	95
200	320

MC145191
Nominal PDout Spurious Current vs f_{R} Frequency

$\left(\mathbf{1 ~ V}<\mathbf{P D}_{\text {out }}<\mathbf{V P D}_{\mathbf{P D}} \mathbf{1 ~ V)}\right.$	
$\mathbf{f R}_{\mathbf{R}}$ $(\mathbf{k H z})$	Current $(\mathbf{R M S} \mathbf{~ n A)}$
10	3.6
20	4.6
50	17
100	75
200	244

NOTE: For information on spurious current measurement see AN1253/D, "An Improved PLL Design Method Without ω_{n} and ζ ".

Table 2. PDout Current, C1 = Low with OUTPUT A NOT Selected as "Port"; Also, Default Mode When OUTPUT A Selected as "Port"

C3	C2	PD $_{\text {out }}$ Current
0	0	70%
0	1	80%
1	0	90%
1	1	100%

Table 3. PDout Current, C1 = High with OUTPUT A NOT Selected as "Port"

C3	C2	PD $_{\text {out }}$ Current
0	0	25%
0	1	50%
1	0	75%
1	1	100%

Nominal MC145190 PDout Source Current vs Rx Resistance

Nominal MC145191 PDout Source Current vs Rx Resistance
NOTE: The MC145191 is optimized for Rx values in the $18 \mathrm{k} \Omega$ to $40 \mathrm{k} \Omega$ range. For example, to achieve 0.3 mA of output current, it is preferable to use a $30-\mathrm{k} \Omega$ resistor for Rx and bit settings for 25% (as shown in Table 3).

Figure 14.

* At this point, the new byte is transferred to the C register and stored. No other registers are affected.

C7 - POL: Selects the output polarity of the phase/frequency detectors. When set high, this bit inverts the polarity of $P D_{\text {out }}$ and interchanges the $\phi \mathrm{R}$ function with ϕV as depicted in Figure 18. Also see the phase detector output pin descriptions for more information. This bit is cleared low at power up.
C6 - PDA/B: Selects which phase/frequency detector is to be used. When set high, enables the output of phase/ frequency detector A ($\mathrm{PD}_{\text {out }}$) and disables phase/frequency detector B by forcing $\phi \mathrm{R}$ and $\phi \mathrm{V}$ to the static high state. When cleared low, phase/frequency detector B is enabled ($\phi \mathrm{R}$ and $\phi \mathrm{V}$) and phase/ frequency detector A is disabled with $\mathrm{PD}_{\text {out }}$ forced to the high-impedance state. This bit is cleared low at power up.

C5-LDE: Enables the lock detector output (LD) when set high. When the bit is cleared low, the LD output is forced to a static low level. This bit is cleared low at power up.

C4 - STBY: When set high, places the CMOS section of device, which is powered by the $V_{D D}$ and $V_{P D}$ pins, in the standby mode for reduced power consumption: $\mathrm{PD}_{\text {out }}$ is forced to the high-impedance state, $\phi \mathrm{R}$ and $\phi \mathrm{V}$ are forced high, the A, N, and R counters are inhibited from counting, and the Rx current is shut off. In standby, the state of LD is determined by bit C5. C5 low forces LD low (no change). C5 high forces LD static high. During standby, data is retained in the A, R, and C registers. The condition of REF/OSC circuitry is determined by the control bits in the R register: R13, R14, and R15. However, if $R E F_{\text {out }}=$ static low is selected, the internal feedback resistor is disconnected and the input is inhibited when in standby; in addition, the REF in input only presents a capacitive load. NOTE: Standby does not affect the other modes of the REF/OSC circuitry.

When C4 is reset low, the part is taken out of standby in 2 steps. First, the REF in (only in one mode) resistor is reconnected, all counters are enabled, and the Rx current is enabled. Any f_{R} and $f \mathrm{f}$ signals are inhibited from toggling the phase/frequency detectors and lock detector. Second, when the first fV pulse occurs, the R counter is jam loaded, and the phase/frequency and lock detectors are initialized. Immediately after the jam load, the A, N, and R counters begin counting down together. At this point, the f_{R} and f_{V} pulses are enabled to the phase and lock detectors. (Patented feature.)
C3, C2-12, 11: Controls the PD out source/sink current per Tables 2 and 3 . With both bits high, the maximum current (as set by Rx per Figure 14) is available. Also, see C1 bit description.
C1 - Port: When the OUTPUT A pin is selected as "Port" via bits A22 and A23, C1 determines the state of OUTPUT A. When C1 is set high, OUTPUT A is forced high; C1 low forces OUTPUT A low. When OUTPUT A is NOT selected as "Port," C1 controls whether the PD ${ }_{\text {out }}$ step size is 10% or 25%. (See Tables 2 and 3.) When low, steps are 10%. When high, steps are 25%. Default is 10% steps when OUTPUT A is selected as "Port." The Port bit is not affected by the standby mode.

CO - Out B: Determines the state of OUTPUT B. When CO is set high, OUTPUT B is high-impedance; CO low forces OUTPUT B low. The Out B bit is not affected by the standby mode. This bit is cleared low at power up.

Figure 15. C Register Access and Format (8 Clock Cycles are Used)

HEXADECIMAL VALUE FOR A COUNTER

NOTES:

1. A power-on initialize circuit forces the OUTPUT A function to default to Data Out.
2. The values programmed for the N counter must be greater than or equal to the values programmed for the A counter. This results in a total divide value $=N \times 64+A$
3. At this point, the three new bytes are transferred to the A register. In addition, the 13 LSBs in the first buffer of the R register are transferred to the R register's second buffer. Thus, the R, N, and A counters can be presented new divide ratios at the same time. The first buffer of the R register is not affected. The C register is not affected.

Figure 17. R Register Access and Format (16 Clock Cycles Are Used)

$\mathrm{V}_{\mathrm{H}}=$ High voltage level
$\mathrm{V}_{\mathrm{L}}=$ Low voltage level
*At this point, when both f_{R} and $f V$ are in phase, the output source and sink circuits are turned on for a short interval.
NOTE: The $\mathrm{PD}_{\text {out }}$ either sources or sinks current during out-of-lock conditions. When locked in phase and frequency, the output is high impedance and the voltage at that pin is determined by the low-pass filter capacitor. $\mathrm{PD}_{\mathrm{Out}}, \phi \mathrm{R}$, and $\phi \mathrm{V}$ are shown with the polarity bit $(\mathrm{POL})=$ low; see Figure 14 for POL.

Figure 18. Phase/Frequency Detectors and Lock Detector Output Waveforms

DESIGN CONSIDERATIONS

CRYSTAL OSCILLATOR CONSIDERATIONS

The following options may be considered to provide a reference frequency to Motorola's CMOS frequency synthesizers.

Use of a Hybrid Crystal Oscillator

Commercially available temperature-compensated crystal oscillators (TCXOs) or crystal-controlled data clock oscillators provide very stable reference frequencies. An oscillator capable of CMOS logic levels at the output may be direct or dc coupled to REFin. If the oscillator does not have CMOS logic levels on the outputs, capacitive or ac coupling to REFin may be used (see Figure 8).

For additional information about TCXOs and data clock oscillators, please consult the latest version of the eem Electronic Engineers Master Catalog, the Gold Book, or similar publications.

Design an Off-Chip Reference

The user may design an off-chip crystal oscillator using discrete transistors or ICs specifically developed for crystal oscillator applications, such as the MC12061 MECL device. The reference signal from the MECL device is ac coupled to REFin (see Figure 8). For large amplitude signals (standard CMOS logic levels), dc coupling may be used.

Use of the On-Chip Oscillator Circuitry

The on-chip amplifier (a digital inverter) along with an appropriate crystal may be used to provide a reference source frequency. A fundamental mode crystal, parallel resonant at the desired operating frequency, should be connected as shown in Figure 19.

The crystal should be specified for a loading capacitance $\left(C_{L}\right)$ which does not exceed approximately 20 pF when used at the highest operating frequency of 15 MHz . Assuming R1 $=0 \Omega$, the shunt load capacitance $\left(C_{L}\right)$ presented across the crystal can be estimated to be:

$$
C_{L}=\frac{C_{\text {in }} C_{\text {out }}}{C_{\text {in }}+C_{\text {out }}}+C_{a}+C_{\text {stray }}+\frac{C 1 \cdot C_{2}}{C 1+C_{2}}
$$

where

$$
\begin{aligned}
\mathrm{C}_{\mathrm{in}} & =5 \mathrm{pF} \text { (see Figure 20) } \\
\mathrm{C}_{\mathrm{out}} & =6 \mathrm{pF} \text { (see Figure 20) } \\
\mathrm{C}_{\mathrm{a}} & =1 \mathrm{pF} \text { (see Figure 20) }
\end{aligned}
$$

C1 and C2 = external capacitors (see Figure 19)
$\mathrm{C}_{\text {stray }}=$ the total equivalent external circuit stray capaci-
tance appearing across the crystal terminals
The oscillator can be "trimmed" on-frequency by making a portion or all of C1 variable. The crystal and associated components must be located as close as possible to the REFin and REF out pins to minimize distortion, stray capacitance, stray inductance, and startup stabilization time. Circuit stray capacitance can also be handled by adding the appropriate stray value to the values for C_{in} and $\mathrm{C}_{\text {out }}$. For this approach, the term $\mathrm{C}_{\text {stray }}$ becomes 0 in the above expression for C_{L}.

Power is dissipated in the effective series resistance of the crystal, R_{e}, in Figure 21. The maximum drive level specified
by the crystal manufacturer represents the maximum stress that the crystal can withstand without damage or excessive shift in operating frequency. R1 in Figure 19 limits the drive level. The use of R1 is not necessary in most cases.

To verify that the maximum dc supply voltage does not cause the crystal to be overdriven, monitor the output frequency (f R) at OUTPUT A as a function of supply voltage. (REF out is not used because loading impacts the oscillator.) The frequency should increase very slightly as the dc supply voltage is increased. An overdriven crystal decreases in frequency or becomes unstable with an increase in supply voltage. The operating supply voltage must be reduced or R1 must be increased in value if the overdriven condition exists. The user should note that the oscillator start-up time is proportional to the value of R1.

Through the process of supplying crystals for use with CMOS inverters, many crystal manufacturers have developed expertise in CMOS oscillator design with crystals. Discussions with such manufacturers can prove very helpful (see Table 4).

RECOMMENDED READING

Technical Note TN-24, Statek Corp.
Technical Note TN-7, Statek Corp.
E. Hafner, "The Piezoelectric Crystal Unit-Definitions and Method of Measurement", Proc. IEEE, Vol. 57, No. 2, Feb. 1969.
D. Kemper, L. Rosine, "Quartz Crystals for Frequency Control", Electro-Technology, June 1969.
P. J. Ottowitz, "A Guide to Crystal Selection", Electronic Design, May 1966.
D. Babin, "Designing Crystal Oscillators", Machine Design, March 7, 1985.
D. Babin, "Guidelines for Crystal Oscillator Design", Machine Design, April 25, 1985.

Figure 19. Pierce Crystal Oscillator Circuit

Figure 20. Parasitic Capacitances of the Amplifier and $C_{\text {stray }}$

NOTE: Values are supplied by crystal manufacturer (parallel resonant crystal).

Figure 21. Equivalent Crystal Networks

Table 4. Partial List of Crystal Manufacturers

Motorola - Internet Address
http://motorola.com
United States Crystal Corp.
Crystek Crystal
Statek Corp.
Fox Electronics

NOTE: Motorola cannot recommend one supplier over another and in no way suggests that this is a complete listing of crystal manufacturers.
(A) $\mathrm{PD}_{\text {out }} \xrightarrow{\text { L }} \mathrm{VCO}$

$$
\begin{aligned}
\omega_{n} & \sqrt{\frac{K_{\phi} K V C O}{N C}} \\
= & =\frac{R}{2} \sqrt{\frac{K_{\phi} K V C O C}{N}}=\frac{\omega_{n} R C}{2} \\
\zeta & =\frac{1+s R C}{s C}
\end{aligned}
$$

NOTE:
For (A), using K_{ϕ} in amps per radian with the filter's impedance transfer function, $Z(s)$, maintains units of volts per radian for the detector/filter combination. Additional sideband filtering can be accomplished by adding a capacitor C' across R. The corner $\omega_{C}=1 / R C^{\prime}$ should be chosen such that ω_{n} is not significantly affected.
(B)

$$
\begin{aligned}
& \omega_{\mathrm{n}} \sqrt{\frac{\mathrm{~K}_{\phi} \mathrm{K}_{V C O}}{\mathrm{NCR}}{ }_{1}} \\
& = \\
& \zeta=\frac{\omega_{\mathrm{n}} \mathrm{R}_{2} \mathrm{C}}{2}
\end{aligned}
$$

ASSUMING GAIN A IS VERY LARGE, THEN:
$F(s)=\frac{R_{2} s C+1}{R_{1} s C}$
NOTE:
For (B), R_{1} is frequently split into two series resistors; each resistor is equal to R_{1} divided by 2. A capacitor C_{C} is then placed from the midpoint to ground to further filter the error pulses. The value of C_{C} should be such that the corner frequency of this network does not significantly affect ω_{n}.
*The ϕ_{R} and ϕV outputs are fed to an external combiner/loop filter. The ϕ_{R} and ϕV outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode input range of the op amp used in the combiner/loop filter.
DEFINITIONS:
$\mathrm{N}=$ Total Division Ratio in Feedback Loop
K_{ϕ} (Phase Detector Gain) $=$ IPDout $/ 2 \pi$ amps per radian for $\mathrm{PD}_{\text {out }}$
$\mathrm{K}_{\phi}($ Phase Detector Gain $)=\mathrm{V}_{\mathrm{PD}} / 2 \pi$ volts per radian for $\phi \mathrm{V}$ and $\phi \mathrm{R}$
KVCO (VCO Transfer Function) $=\frac{2 \pi \Delta f \mathrm{VCO}}{\Delta \mathrm{V}_{\mathrm{VCO}}}$ radians per volt
For a nominal design starting point, the user might consider a damping factor $\zeta \approx 0.7$ and a natural loop frequency $\omega_{n} \approx\left(2 \pi f_{\mathrm{R}} / 50\right)$ where f_{R} is the frequency at the phase detector input. Larger ω_{n} values result in faster loop lock times and, for similar sideband filtering, higher $\mathrm{f}_{\mathrm{R}}-$ related VCO sidebands.

Either loop filter (A) or (B) is frequently followed by additional sideband filtering to further attenuate f_{R}-related VCO sidebands. This additional filtering may be active or passive.

RECOMMENDED READING:

Gardner, Floyd M., Phaselock Techniques (second edition). New York, Wiley-Interscience, 1979.
Manassewitsch, Vadim, Frequency Synthesizers: Theory and Design (second edition). New York, Wiley-Interscience, 1980.
Blanchard, Alain, Phase-Locked Loops: Application to Coherent Receiver Design. New York, Wiley-Interscience, 1976.
Egan, William F., Frequency Synthesis by Phase Lock. New York, Wiley-Interscience, 1981.
Rohde, Ulrich L., Digital PLL Frequency Synthesizers Theory and Design. Englewood Cliffs, NJ, Prentice-Hall, 1983.
Berlin, Howard M., Design of Phase-Locked Loop Circuits, with Experiments. Indianapolis, Howard W. Sams and Co., 1978.
Kinley, Harold, The PLL Synthesizer Cookbook. Blue Ridge Summit, PA, Tab Books, 1980.
Seidman, Arthur H., Integrated Circuits Applications Handbook, Chapter 17, pp. 538-586. New York, John Wiley \& Sons.
Fadrhons, Jan, "Design and Analyze PLLs on a Programmable Calculator," EDN. March 5, 1980.
AN535, Phase-Locked Loop Design Fundamentals, Motorola Semiconductor Products, Inc., 1970.
AR254, Phase-Locked Loop Design Articles, Motorola Semiconductor Products, Inc., Reprinted with permission from Electronic Design, 1987.
AN1253/D, An Improved PLL Design Method Without ω_{n} and ζ, Motorola Semiconductor Products, Inc., 1995.

NOTES:

1. When used, the $\phi \mathrm{R}$ and $\phi \mathrm{V}$ outputs are fed to an external combiner/loop filter. See the Phase-Locked Loop - Low-Pass Filter Design page for additional information.
2. Transistor Q1 is required only if the standby feature is needed. Q1 permits the bipolar section of the device to be shut down via use of the general-purpose digital pin, OUTPUT B. If the standby feature is not needed, tie Pin 12 directly to the power supply.
3. For optimum performance, bypass the $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{DD}}$, and V_{PD} pins to GND with low-inductance capacitors.
4. The R counter is programmed for a divide value $=R E F_{i n} / f_{R}$. Typically, f_{R} is the tuning resolution required for the VCO. Also, the VCO frequency divided by $f R=N T=N \times 64+A$; this determines the values (N, A) that must be programmed into the N and A counters, respectively.

Figure 22. Example Application

NOTE: See related Figures 24 through 26; these bit streams apply to the MC145190, MC145191, MC145200, and MC145201.

Figure 23. Cascading Two Devices

*At this point, the new bytes are transferred to the C registers of both devices and stored. No other registers are affected.

NOTES APPLICABLE TO EACH DEVICE:

1. At this point, bits R13, R14, and R15 are stored and sent to the "OSC or 4-Stage Divider" block in the Block Diagram. Bits R0 through R12 are loaded into the first buffer in the doublebuffered section of the R register. Therefore, the R counter divide ratio is not altered yet and retains the previous ratio loaded. The C and A registers are not affected.
2. At this point, the bits R0 through R12 are transferred to the second buffer of the R register. The R counter begins dividing by the new ratio after completing the rest of the present count cycle. CLK must be low during the ENB pulse, as shown. Also, see note of Figure 25 for an alternate method of loading the second buffer in the R register. The C and A registers are not affected. The first buffer of the R register is not affected.

Technical Summary MC145190, MC145191, MC145200 and MC145201 Evaluation Boards

INTRODUCTION

The MC145190EVK, '191EVK, '200EVK, and '201EVK are versions of one board with a few component changes. They allow users to exercise features of the four devices and to build PLLs which meet individual performance requirements. The control program works with any board and can be used with other Motorola PLL devices (MC145192, MC145202, MC145220*). (NOTE: The MC145220 is not available with Rev. 3.0 software.) It will select frequency defaults that apply to each. All board functions are controlled through the printer port of an IBM PC. Up to three different EVKs may be controlled at the same time from one printer port. The functional block diagram is given in Figure 1.

This technical summary contains the hardware description for the evaluation board and a summary of the software section. For complete information, consult the manual that is provided in the evaluation kit.

ORDERING INFORMATION

These kits may be ordered through your local Motorola Semiconductor sales office or authorized distributor. Ask your Motorola representative to order the kits from the finished goods warehouse, not the literature distribution center. Request the part numbers shown below.

Part Number
MC145190EVK
MC145191EVK
MC145200EVK
MC145201EVK

Description

Kit with the MC145190 installed. Also includes a MC145191 device and appropriate current-setting resistor.

Kit with the MC145191 installed. Also includes a MC145190 device and appropriate current-setting resistor.

Kit with the MC145200 installed. Also includes a MC145201 device and appropriate current-setting resistor.

Kit with the MC145201 installed. Also includes a MC145200 device and appropriate current-setting resistor.

Figure 1. Evaluation Kit Block Diagram

SECTION 1 - HARDWARE

FEATURES

1. The EVK is a complete working synthesizer, including VCO.
2. Control program is written in Turbo Pascal.
3. Board is controlled by an IBM PC-compatible computer through the printer port.
4. Up to three boards can be operated independently through one printer port.
5. A prototype area and mounting holes are provided for VCOs, mixers, and amplifiers.
6. External reference input can be used.
7. Five element loop filter is included.
8. Frequency range of operation, step size and reference frequency can be changed in the control program.
9. Lock Detect, Out A, and Out B on any single board are accessible through the printer port.

CONTENTS OF EVALUATION KIT

1. Assembled evaluation board.
2. Nine-foot flat cable with four DB-25 male connectors.
3. MC145190/191/200/201 EVK manual.
4. $3.5^{\prime \prime}$ PC-compatible disk containing compiled program.
5. PLL device data sheets.

GETTING STARTED

To perform basic functions, do the following:

1. Plug in 12 volts at J 6 , observing the polarity marked on the board.
2. Short circuit section 1 of the DIP switch (S1) and open circuit all other sections.
3. Connect the supplied flat cable between the computer printer port and the DB-25 connector on the board (J5).
4. Type PLLDEMO at the DOS prompt. Then press enter.
5. Type the number that corresponds with the type of board given in the on-screen menu. Then press Q.

You should now see the main menu displayed. There should be a signal present at J8 on the current output frequency given in the main menu. If the signal is not on the correct frequency, check to see if your printer card address is $\$ 278$ (hexadecimal 278). If not, then select the P menu item and enter the correct address. After returning to the main menu, select the I menu item to send data to the board. You should now be on frequency.

MODIFICATIONS

The user may modify the hardware, such as utilizing a different VCO, by using the prototyping area of the board. After such modifications are made, the default values in the software may need to be changed. This is facilitated from screen \#2 'Select from the available options' screen.

Note that the on-board voltage regulators allow for maximum control voltage to the VCO of approximately 7.8 V for the MC145190EVK and MC145200EVK. The maximum VCO control voltage is approximately 4.3 V for the MC145191EVK and MC145201EVK. The minimum voltage for all four devices is 0.5 V .

TYPICAL PERFORMANCE

Common to all four kits, unless noted.

Supply Voltage (J6)	$11.5-12.5 \mathrm{~V}$
Supply Current (J6) (Note 1)	120 mA
Available Current (Note 2)	60 mA
Frequency Range ('190)	$741-751 \mathrm{MHz}$
Frequency Range ('191)	$733-743 \mathrm{MHz}$
Frequency Range ('200)	$1482-1502 \mathrm{MHz}$
Frequency Range ('201)	$1466-1486 \mathrm{MHz}$
Reference Frequency	14.4 MHz
Temperature Stability (-30C to + 85$\left.{ }^{\circ} \mathrm{C}\right)$	$< \pm 2 \mathrm{ppm}$
TCXO Aging	$< \pm 1 \mathrm{ppm} /$ year
Step Size ('190, '191)	100 kHz
Step Size ('200, '201)	200 kHz
Power Output	$5-8 \mathrm{dBm}$
2nd Harmonic Level ('190, '191)	$<-18 \mathrm{~dB}$
Fundamental Level ('200, '201)	$<-28 \mathrm{~dB}$
3rd Harmonic Level	$<-18 \mathrm{~dB}$
Frequency Accuracy ('190, '191)	$\pm 1.5 \mathrm{kHz}$
Frequency Accuracy ('200, '201)	$\pm 3.0 \mathrm{kHz}$
Reference Sidebands	-70 dB
Phase Noise (100 Hz, '190, '191)	$-69 \mathrm{dBc/Hz}$
Phase Noise (100 Hz, '200, '201)	$-64 \mathrm{dBc/Hz}$
Phase Noise (10 kHz, '190, '191) (Note 3)	$-99 \mathrm{dBc/Hz}$
Phase Noise (10 kHz, '200, '201) (Note 3)	$-92 \mathrm{dBc/Hz}$
Switching Time (Note 4)	2.6 ms

NOTES:

1. Supply current is current the board requires without user modifications.
2. Available current is the sum of currents available to the user (in the prototype area) from the 5 V and 8.5 V supply. The 12 V supply is not regulated. Current at 12 V is limited by the external power supply. If the on-board VCO and amplifier are disconnected from the power bus, more current can be drawn in the prototype area. The current flowing into U3 (the 8.5 V regulator) should not exceed 180 mA . This will limit temperature rise in U3.
3. 10 kHz phase noise is limited by the PLL device noise. For low noise designs, the loop bandwidth is made more narrow and the VCO is relied upon to provide the 10 kHz phase noise. This can be seen on the EVKs since the VCO has much lower noise.
4. 10 MHz step, within $\pm 1 \mathrm{kHz}$ of final frequency ('190, '191).

20 MHz step, within $\pm 2 \mathrm{kHz}$ of final frequency ('200, '201).

SUPPORT MATERIAL

To provide further information, the following documents are included:

1. Schematic diagram of ' $190 / 191 / 200 / 201 E V K$.
2. Separate Bill of Materials for each board.
3. Parts layout diagram.
4. Mechanical drawing of board.
5. MC145190/191 and MC145200/201 data sheets.
6. Printer port diagram.
7. Typical signal plots for each type of EVK.

PRODUCTION TEST

After assembly is complete, the following alignment and test is performed on '190 and '191EVK ('200 and '201EVK):

1. The control program is started in single board '190EVK ('200EVK) mode.
2. L menu item is selected.
3. Power is applied to the board. DIP switch section 1 is closed circuit with all others being open circuit.
4. After attaching computer cable, menu item I is selected.
5. Trim resistor VR1 is adjusted to obtain an output frequency at J8 of $740.999-741.001 \mathrm{MHz}$ (1481.998 - 1482.002 MHz).
6. Voltage at the control voltage test point is measured. It must be $2.8-3.6 \mathrm{~V}$.
7. When testing more than 1 board, steps $3-6$ are repeated.

If in step 5 it isn't possible to obtain a signal on frequency, menu item P should be selected and the correct printer port address entered. Menu item I would then be selected to reload the data.

BOARD OPERATION

A computer is connected to the DB-25 connector J5. Data is output from the printer port. The printer card is in slot 0 using the default address in the control program. Data is sent to the PLL device (U1) through the DIP switch (S1), and 74HCT241 buffer (U5). A '190/191/200/201 PLL has three output lines which are routed through a 74LS126 line driver (U2) to the computer.

U5, the 74HCT241, provides isolation, logic translation and a turn-on delay for PLL input lines. Logic translation is needed from the TTL levels on the printer port to the CMOS levels on the '190/191 inputs. Turn-on delay is used to ensure the power-on reset functions properly. The clock line to the PLL must be held low during power up.

A 12 V power supply should be used to power the board at J6 (Augat 2SV-02 connector). The 2SV-02 will accept 18-24 AWG bare copper power leads. No tools are needed for connection. If power is properly connected, LED D2 will be lit.

Power passes from J 6 to U 3 (78 M 08 regulator) configured as an 8.5 V regulator. D1 increases output voltage of the regulator by 0.6 V . In the ' 190 and ' 200 boards, 8.5 V is routed through J 3 to the charge pump supply, VCO, and RF amplifier. The '191 and '201 boards use 8.5 V to power the VCO and RF amplifier. J 3 is a cut-trace and jumper. If it is desired to power the 8.5 V circuits directly, the trace under J 3 can be cut, J3's shorting plug is removed, and 8.5 V is applied through J7 (2SV03 power connector).

Power for the 5 V logic is provided by U 4 (78 M 05). U4 steps down the 8.5 V from U 3 . Output voltage from U4 passes through J4, the 5 V cut-trace and jumper. To supply separate power to logic, the trace under J 4 is cut, J 4 shorting plug is removed, and 5 V is applied to J 7 . U3 and U 4 are cascaded to lower their individual voltage drops. This lowers the power dissipated in the regulators.

The PLL loop is composed of the PLL device (U1), 733 - 751 MHz VCO (M1), passive loop filter (R11, R12, C4, C5, C6) and second harmonic filter amplifier (U6). A passive loop filter was used to keep the design simple, reduce noise, and reduce the quantity of traces susceptible to stray pickup. About 56 dB rejection of fundamental and 23 dB gain is provided by the harmonic filter amplifier. This allows the '200 or '201 to lock at $1466-1502 \mathrm{MHz}$. The harmonic filter amplifier is bypassed on the '190 and '191.

A single VCO model is used for all boards. It is an internal Motorola part which is not sold for other applications. The '190 and '191 have different frequency ranges. This is due to the lower charge pump supply voltage of the '191. A common 10 MHz tune range allows the same loop filter components to be used. For the same reason, the '200 and '201 tune range is 20 MHz with double the step size of the ' 190 or '191. RF is fed to the PLL chip Fin input through a voltage divider. These two resistors terminate the PLL chip RF input with 50 ohms and provide isolation.

All boards use a phase detector current of 2 mA . J1 and J2 are removable jumpers and cut traces. They are used as connection points for a current measurement of VPD or VCC. J11 and J12 are wire jumpers that select 5 V or 8.5 V for VPD . A potentiometer VR1 is used to set M 2 (14.4 MHz TCXO) on frequency.

COMPONENTS UNIQUE TO EACH EVK

Components that are not the same on all EVKs are given in the following table:

	'190 EVK	'191 EVK	'200 EVK	'201 EVK
U1	MC145190	MC145191	MC145200	MC145201
R2	$47 \mathrm{k} \Omega$	$22 \mathrm{k} \Omega$	$47 \mathrm{k} \Omega$	$22 \mathrm{k} \Omega$
R8	0Ω	0Ω	not used	not used
$\mathbf{C 2 2}$	not used	not used	1.0 pF	1.0 pF
$\mathbf{J 1 1}$	connected	not used	connected	not used
J12	not used	connected	not used	connected

EXTERNAL REFERENCE INPUT

As shipped, all boards are configured for a 14.4 MHz TCXO (supplied). To use an external reference, disconnect J13 and connect J9. Use a reference signal at J10 which complies with data sheet requirements. Then modify the reference frequency in the program main menu to reflect the changes made ([F] menu item).

DATA TRANSFER FROM COMPUTER TO EVK

To control the serial input EVK with the parallel printer port, a conversion is done. Printer cards are designed to output 8 bits through eight lines. A bit mask is used to obtain the bit combination for the three required output lines (Data, Clock, Load). As bytes are sent to the printer card in sequence, it appears to be a serial transfer. The printer port was used because data transfer using the serial port would have been much slower. A standard IBM PC can support a parallel port data rate of 4.77 MHz .

IBM PCs and compatibles can accept up to three printer port cards. These ports are called LPT1, LPT2 and LPT3. Each printer card has jumpers or DIP switches on it to set a unique address. Two sets of addresses are in common use. One set applies to IBM PC XT, AT, and clones. The other is for the PS 2 line. To load data into the EVK, the correct address must be selected. The program default is $\$ 278$, which is LPT1 in a clone. If $\$ 278$ is not the address in use, it must be modified by entering the O menu item in the main menu. All allowed addresses given in hexadecimal are as follows:

Label	IBM PC and Clones	PS 2
LPT1	278	$3 B C$
LPT2	378	378
LPT3	$3 B C$	278

Up to three EVK boards can operate independently from one printer port. All lines on the printer port are connected to every EVK. Even with three boards operating, only three output lines (Clock, Data and Load) from the printer card are used. If two boards are controlled together, data for the second board is received from the Output A of the first. Output A is a configurable output on 190/191/200/201 devices, which in this case is used to shift data through chip 1 into chip 2. Output A and Data are connected using a printer port input line. This was done to avoid connecting extra wires. Fortunately not all port input lines are needed for computer input. Load and Clock are common to both boards.

A three-board cascade is handled similarly to a two-board cascade. Out A on the first board is fed to Data on the second. Out A on the second connects to Data on the third. Instructing the program on the quantity of boards connected together allows it to modify the number of bits sent.

All boards have a DIP switch S1 which gives each a unique address. The configuration menu is used to tell the program what type of board is connected at a board address. Switch positions for all possible addresses are given in Figure 2.

Single Board Operation

Two- or Three-Board Cascade

Board B

Board C

Figure 2. Switch Positions

In Figure 2, DIP switch sections 6, 7, and 8 allow the computer to read Out A, Out B or Lock Detect from the PLL device. Each of the inputs can only be read on one board at a time. But each item could be read on a different board. In a three-board cascade, Out A could be read from the first board, Out B from the second, and Lock Detect from the third. There is no way to determine in software the board address of a particular input. The control program doesn't make use of these inputs. Pin assignment on the printer port connector is:

Label	Pin Number
Out A	12
Out B	13
Lock Detect	15

PRINTER PORT CONFIGURATION

Printer port outputs on an IBM PC or clone use TTL-LS logic levels. Inputs are one TTL-LS load. Signal lines can be used for any purpose. The standard names, direction of data flow, true and inverted data are shown in Figure 3.

Figure 3. Printer Port Data Lines

Pin numbers for the port connector are shown in Figure 4.

Figure 4. DB-25 Male Connector

SECTION 2 - SOFTWARE SUMMARY

The MC145xxx EVK control program is used to program all PLL evaluation kits. It will simultaneoulsy control up to three different boards independently from one printer port. All features of the PLL device may be accessed. Default frequencies can be modified to allow use of different channel spacings and VCOs.

User input errors are detected and appropriate messages are displayed.
To show the format of the program, a sample screen is shown below:

Screen \#2 'Select from the available options’

```
            Welcome to MC145xxx EVK Demonstration Program, rev 3.0
            Select from the available options
Available Boards - Current target board is: A, MC145190 EVK
    Brd [A]!: MC145190 EVK Brd [-]!: N/A Brd [-]!: N/A
MC145xxx Frequency Commands - Current Output Frequency is 746 MHz
    [L]! Set to low freq 741 MHz [W] Change default low freq.
    [M]! Set to med. freq [Y] Change default med. freq.
    [H]! Set to high freq. 751 MHz [Z] Change default high freq.
    [U]! Step frequency up by step size [O] Set PLL output frequency
    [D]! Step frequency down by step size [F] Set REFin freq. & channel spacing
MC145xxx Additional Commands
    [E] Set function of output A [N] Change C register and Prescale
    [R] Set crystal/reference mode - Current mode is Ref. mode, REFout low
Initialization/System Setup Commands:
    [P] Set output port address - Current address is $278
    [G] Change board definitions
    [I] Initialize board(s), Write all registers
[X]! Terminate demonstration program. [?]! View help screen.
```


APPENDIX

MC145190/191/200/201 Power Supply Rev. 3

NOTES:

1. Default unit for capacitance is pF .
2. Default unit for resistance is ohms.
3. Board material is $1 / 16^{\prime \prime}$ thick G10.
4. Test points are 0.04 " diameter plated through holes.
5. U1, R2, R8, C22, J11, J12 are different on each type of EVK. See the manual section titled "Components Unique to Each EVK".

Silkscreen Layer (Top View)

MC145190EVK Signal Plot

MC145191EVK Signal Plot

MC145200EVK Signal Plot

MC145201EVK Signal Plot
ATTEN POQB VAVG $\triangle M K Q-75.34 d B$ คL 10．0の日m 100B／20O．OKHz

口

CENTER 1．47EOOOOGHZ FABW 3．OKHZ VEW 3．OKHZ

SPAN 500．OKHZ SWP 140 ms

Low-Voltage 1.1 GHz PLL Frequency Synthesizer

Includes On-Board 64/65 Prescaler
The MC145192 is a low-voltage single-package synthesizer with serial interface capable of direct usage up to 1.1 GHz . A special architecture makes this PLL very easy to program because a byte-oriented format is utilized. Due to the patented BitGrabber ${ }^{\text {TM }}$ registers, no address/steering bits are required for random access of the three registers. Thus, tuning can be accomplished via a 3-byte serial transfer to the 24-bit A register. The interface is both SPI and MICROWIRE ${ }^{\text {TM }}$ compatible.

The device features a single-ended current source/sink phase detector A output and a double-ended phase detector B output. Both phase detectors have linear transfer functions (no dead zones). The maximum current of the single-ended phase detector output is determined by an external resistor tied from the Rx pin to ground. This current can be varied via the serial port.

The MC145192 phase/frequency detector B $\phi \mathrm{R}$ and $\phi \mathrm{V}$ outputs can be powered from 2.7 to 5.5 V . This is optimized for 3.0 V systems. The phase/frequency detector A PD out output must be powered from 4.5 to 5.5 V , and is optimized for a 5 volt supply.

This part includes a differential RF input which may be operated in a single-ended mode. Also featured are on-board support of an external crystal and a programmable reference output. The R, A, and N counters are fully programmable. The C register (configuration register) allows the part to be configured to meet various applications. A patented feature allows the C register to shut off unused outputs, thereby minimizing system noise and interference.

In order to have consistent lock times and prevent erroneous data from being loaded into the counters, on-board circuitry synchronizes the update of the A register if the A or N counters are loading. Similarly, an update of the R register is synchronized if the R counter is loading.

The double-buffered R register allows new divide ratios to be presented to the three counters (R, A, and N) simultaneously.

- Maximum Operating Frequency: $1100 \mathrm{MHz} @ \mathrm{~V}_{\text {in }}=200 \mathrm{mV}$ p-p
- Operating Supply Current: 6 mA Nominal at 2.7 V
- Operating Supply Voltage Range (VDD and VCC Pins): 2.7 to 5.0 V
- Operating Supply Voltage Range of Phase Frequency Detector A (VPD Pin) $=4.5$ to 5.5 V
- Operating Supply Voltage Range of Phase Detector B (VPD Pin) $=2.7$ to 5.5 V
- Current Source/Sink Phase Detector Output Capability: 2 mA Maximum
- Gain of Current Source/Sink Phase/Frequency Detector Controllable via Serial Port
- Operating Temperature Range: -40° to $85^{\circ} \mathrm{C}$
- R Counter Division Range: (1 and) 5 to 8191
- N Counter Division Range: 5 to 4095
- A Counter Division Range: 0 to 63
- Dual-Modulus Capability Provides Total Division up to 262,143
- High-Speed Serial Interface: 2 Megabits per Second
- Output A Pin, When Configured as Data Out, Permits Cascading of Devices
- Two General-Purpose Digital Outputs - Output A: Totem-Pole (Push-Pull) with Four Output Modes Output B: Open-Drain
- Power-Saving Standby Feature with Patented Orderly Recovery for Minimizing Lock Times, Standby Current: $30 \mu \mathrm{~A}$
- Evaluation Kit Available (Part Number MC145192EVK)
- See Application Note AN1253/D for Low-Pass Filter Design, and AN1277/D for Offset Reference PLLs for Fine Resolution or Fast Hopping

BLOCK DIAGRAM

MAXIMUM RATINGS* (Voltages Referenced to GND, unless otherwise stated)

Symbol	Parameter	Value	Unit
V_{CC}, VDD	DC Supply Voltage (Pins 12 and 14)	-0.5 to +6.0	V
VPD	DC Supply Voltage (Pin 5)	$\mathrm{V}_{\mathrm{DD}}-0.5$ to +6.0	V
$\mathrm{V}_{\text {in }}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$V_{\text {out }}$	DC Output Voltage, except Output B, PD ${ }_{\text {out }}$, $\phi \mathrm{R}$, $\phi \mathrm{V}$ Output B, PD ${ }_{\text {out }}$, QR, $\phi \mathrm{V}$	$\begin{aligned} & -0.5 \text { to } V_{D D}+0.5 \\ & -0.5 \text { to } V_{P D}+0.5 \end{aligned}$	V
$l_{\text {lin }}$ IPD	DC Input Current, per Pin (Includes VPD)	± 10	mA
Iout	DC Output Current, per Pin	± 20	mA
IDD	DC Supply Current, V ${ }_{\text {DD }}$ and GND Pins	± 30	mA
P_{D}	Power Dissipation, per Package	300	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to + 150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit.

ELECTRICAL CHARACTERISTICS ($\mathrm{V} D \mathrm{D}=\mathrm{V}_{\mathrm{CC}}=2.7$ to 5.0 V , Voltages Referenced to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $85^{\circ} \mathrm{C}$, unless otherwise stated; Phase/Frequency Detector $A V_{P D}=4.5$ to 5.5 V with $\mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{PD}}$; Phase/Frequency Detector $\mathrm{B} \mathrm{V}_{\mathrm{PD}}=2.7$ to 5.5 V with $\mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{PD}}$)

Symbol	Parameter	Test Condition	Guaranteed Limit	Unit
VIL	Maximum Low-Level Input Voltage (Data In, Clock, Enable, REFin)	Device in Reference Mode, DC Coupled	$0.2 \times \mathrm{V}_{\text {DD }}$	V
V_{IH}	Minimum High-Level Input Voltage (Data In, Clock, Enable, REFin)	Device in Reference Mode, DC Coupled	$0.8 \times \mathrm{V}_{\text {DD }}$	V
$\mathrm{V}_{\mathrm{Hys}}$	Minimum Hysteresis Voltage (Clock, Enable)	$\begin{array}{\|l} \hline V_{D D}=2.7 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=5.0 \mathrm{~V} \end{array}$	$\begin{aligned} & 100 \\ & 300 \end{aligned}$	mV
VOL	Maximum Low-Level Output Voltage (REF ${ }_{\text {out }}$, Output A)	Iout $=20 \mu \mathrm{~A}$, Device in Reference Mode	0.1	V
V_{OH}	Minimum High-Level Output Voltage (REF ${ }_{\text {out }}$, Output A)	$\mathrm{l}_{\text {out }}=-20 \mu \mathrm{~A}$, Device in Reference Mode	$\mathrm{V}_{\mathrm{DD}}-0.1$	V
${ }^{\text {IOL }}$	Minimum Low-Level Output Current (REF ${ }_{\text {out }}$ LD)	$\mathrm{V}_{\text {out }}=0.4 \mathrm{~V}$	0.25	mA
${ }^{\text {IOL}}$	Minimum Low-Level Output Current ($\phi \mathrm{R}, \phi \mathrm{V}$)	$\begin{aligned} & \hline \mathrm{V}_{\text {out }}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}, \mathrm{~V}_{\mathrm{PD}}=2.7 \mathrm{~V} \end{aligned}$	0.36	mA
${ }^{\text {IOL}}$	Minimum Low-Level Output Current (Output A)	$\mathrm{V}_{\text {out }}=0.4 \mathrm{~V}$	0.6	mA
${ }^{\text {IOL }}$	Minimum Low-Level Output Current (Output B)	$\mathrm{V}_{\text {out }}=0.4 \mathrm{~V}$	1.0	mA
IOH	Minimum High-Level Output Current (REF ${ }_{\text {out }}$ LD)	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DD}}-0.4 \mathrm{~V}$	- 0.25	mA
IOH	Minimum High-Level Output Current ($\phi \mathrm{R}, \phi \mathrm{V}$)	$\begin{aligned} & V_{\text {out }}=V_{P D}-0.4 \mathrm{~V} \\ & V_{D D}, V_{P D}=2.7 \mathrm{~V} \end{aligned}$	- 0.36	mA
${ }^{\mathrm{I}} \mathrm{OH}$	Minimum High-Level Output Current (Output A Only)	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DD}}-0.4 \mathrm{~V}$	-0.35	mA
lin	Maximum Input Leakage Current (Data In, Clock, Enable, REF in)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {DD }}$ or GND , Device in XTAL Mode	± 1.0	$\mu \mathrm{A}$
lin	Maximum Input Current ($\mathrm{REF}_{\text {in }}$)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {DD }}$ or GND, Device in Reference Mode	± 150	$\mu \mathrm{A}$
IOZ	Maximum Output Leakage Current ($\mathrm{PD}_{\text {out }}$)	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{PD}}-0.5 \mathrm{~V}$ or 0.5 V , Output in High-Impedance State	± 200	nA
		Output in High-Impedance State	± 10	$\mu \mathrm{A}$
ISTBY	Maximum Standby Supply Current ($\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{PD}}$ Pins $)$	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {DD }}$ or GND; Outputs Open; Device in Standby Mode, Shut-Down Crystal Mode or REF ${ }_{\text {out }}$ Static-Low Reference Mode; Output B Controlling V_{CC} per Figure 22	30	$\mu \mathrm{A}$
${ }^{\text {IPD }}$	Maximum Phase Detector Quiescent Current (VPD Pin)	Bit C6 = High Which Selects Phase Detector A, PD ${ }_{\text {out }}=$ Open, $\mathrm{PD}_{\text {out }}=$ Static Low or High, Bit C4 = Low Which is NOT Standby, $\mathrm{I}_{\mathrm{R} x}=113 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{PD}}=5.5 \mathrm{~V}$	600	$\mu \mathrm{A}$
		Bit C6 = Low Which Selects Phase Detector B, $\phi \mathrm{R}$ and $\phi V=$ Open, $\phi \mathrm{R}$ and $\phi \mathrm{V}=$ Static Low or High, Bit C4 = Low Which is NOT Standby	30	
$I^{\text {T }}$	Total Operating Supply Current $\left(V_{D D}+V_{P D}+V_{C C}\right.$ Pins $)$	$\mathrm{f}_{\text {in }}=1.1 \mathrm{GHz} ; \mathrm{REF}_{\text {in }}=13 \mathrm{MHz} @ 1 \mathrm{Vp-p} \text {; }$ Output $\mathrm{A}=$ Inactive and No Connect; $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}$, REF out $^{\prime}$, $\phi \mathrm{V}, \phi \mathrm{R}, \mathrm{PD}_{\text {out }}, L D=$ No Connect; Data In, Enable, Clock = VDD or GND, Phase Detector A Off	*	mA

* The nominal values are:

6 mA at $\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{PD}}=2.7 \mathrm{~V}$
9 mA at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{PD}}=5.5 \mathrm{~V}$
These are not guaranteed limits.

ANALOG CHARACTERISTICS - CURRENT SOURCE/SINK OUTPUT - PDout
($\mathrm{l}_{\text {out }} \leq 2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=2.7$ to 5.0 V , Voltages Referenced to $\mathrm{GND}, \mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}} \leq \mathrm{V}_{\mathrm{PD}}$)

Parameter	Test Condition	VPD	Guaranteed Limit	Unit
Maximum Source Current Variation Part-to-Part	$\mathrm{V}_{\text {out }}=0.5 \times \mathrm{V}$ PD	4.5	± 20	\%
		5.5	± 20	
Maximum Sink-versus-Source Mismatch (Note 3)	$\mathrm{V}_{\text {out }}=0.5 \times \mathrm{V}_{\text {PD }}$	4.5	12	\%
		5.5	12	
Output Voltage Range (Note 3)	Iout variation $\leq 20 \%$	4.5	0.5 to 4.0	V
		5.5	0.5 to 5.0	

NOTES:

1. Percentages calculated using the following formula: (Maximum Value - Minimum Value)/Maximum Value.
2. See Rx Pin Description for external resistor values.
3. This parameter is guaranteed for a given temperature within -40° to $85^{\circ} \mathrm{C}$.

AC INTERFACE CHARACTERISTICS
$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=2.7\right.$ to $5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ}$ to $85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}, \mathrm{~V}_{\mathrm{PD}}=2.7$ to 5.5 V with $\left.\mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{PD}}\right)$

Symbol	Parameter	Guaranteed Limit	Unit
${ }^{\text {f clk }}$	Serial Data Clock Frequency (Figure 1) NOTE: Refer to Clock t_{w} below	dc to 2.0	MHz
$\begin{aligned} & \hline \text { tPLH, } \\ & \text { tPHL } \end{aligned}$	Maximum Propagation Delay, Clock to Output A (Selected as Data Out) (Figures 1 and 5)	200	ns
$\begin{aligned} & \hline \text { tPLH, } \\ & \text { tPHL } \end{aligned}$	Maximum Propagation Delay, Enable to Output A (Selected as Port) (Figures 2 and 5)	200	ns
$\begin{aligned} & \hline \text { tPZL, } \\ & \text { tPLZ } \end{aligned}$	Maximum Propagation Delay, Enable to Output B (Figures 2 and 6)	200	ns
$\begin{aligned} & \text { tTLH, } \\ & \text { tTHL } \end{aligned}$	Maximum Output Transition Time, Output A and Output B; t thlonly, on Output B (Figures 1, 5, and 6)	200	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance - Data In, Clock, Enable	10	pF

TIMING REQUIREMENTS ($\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=2.7$ to $5.0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ}$ to $85^{\circ} \mathrm{C}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$ unless otherwise indicated)

Symbol	Parameter	Guaranteed Limit	Unit
$\mathrm{t}_{\text {su }}, \mathrm{th}$	Minimum Setup and Hold Times, Data In versus Clock (Figure 3)	50	ns
$\mathrm{t}_{\mathrm{su}}, \mathrm{t}_{\mathrm{h}}$, $\mathrm{t}_{\mathrm{rec}}$	Minimum Setup, Hold and Recovery Times, Enable versus Clock (Figure 4)	100	ns
t_{w}	Minimum Pulse Width, Enable (Figure 4)	$*$	cycles
t_{w}	Minimum Pulse Width, Clock (Figure 1)	250	ns
$\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times, Clock (Figure 1)	100	$\mu \mathrm{~s}$

*The minimum limit is 3 REF $_{\text {in }}$ cycles or $195 f_{\text {in }}$ cycles, whichever is greater.

SWITCHING WAVEFORMS

Figure 1.

Figure 3.

Figure 2.

Figure 4.

* Includes all probe and fixture capacitance.

Figure 6. Test Circuit

LOOP SPECIFICATIONS ($\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=2.7$ to 5.0 V unless otherwise indicated, $\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $85^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	GuaranteedOperating Range		Unit
			Min	Max	
$\mathrm{V}_{\text {in }}$	Input Voltage Range, $\mathrm{f}_{\text {in }}$ (Figure 7)	$\begin{aligned} & 100 \mathrm{MHz} \leq \mathrm{f}_{\text {in }}<250 \mathrm{MHz} \\ & 250 \mathrm{MHz} \leq \mathrm{f}_{\text {in }} \leq 1100 \mathrm{MHz} \end{aligned}$	$\begin{aligned} & 400 \\ & 200 \end{aligned}$	$\begin{aligned} & \hline 1500 \\ & 1500 \end{aligned}$	mV p-p
${ }^{\text {fref }}$	Input Frequency, REF in Externally Driven in Reference Mode (Figure 8)	$\begin{array}{rr} \hline \mathrm{V}_{\text {in }} \geq 400 \mathrm{mV} \mathrm{p-p} \\ \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=3.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=4.5 \text { to } 5 \mathrm{~V} \end{array}$	$\begin{gathered} 1 \\ 4.5 \\ 5.5 \\ 12 \end{gathered}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 27 \end{aligned}$	MHz
		$\begin{array}{\|r} \hline \mathrm{V}_{\text {in }} \geq 1 \mathrm{Vp-p} \\ \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=3.0 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=3.5 \mathrm{~V} \\ \mathrm{~V}_{\mathrm{DD}}=4.5 \text { to } 5 \mathrm{~V} \\ \hline \end{array}$	$\begin{gathered} 1 \\ 1.5 \\ 2 \\ 4.5 \end{gathered}$	$\begin{aligned} & 20 \\ & 20 \\ & 20 \\ & 27 \end{aligned}$	MHz
${ }^{\text {f XTAL }}$	Crystal Frequency, Crystal Mode (Figure 9)	$\mathrm{C} 1 \leq 30 \mathrm{pF}, \mathrm{C} 2 \leq 30 \mathrm{pF}$, Includes Stray Capacitance	2	10	MHz
fout	Output Frequency, REF ${ }_{\text {out }}$ (Figures 10 and 12)	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	dc	5	MHz
f	Operating Frequency of the Phase Detectors		dc	1	MHz
tw	Output Pulse Width, $\phi \mathrm{R}$, $\phi \mathrm{V}$, and LD (Figures 11 and 12)	${ }_{\mathrm{f}} \mathrm{R}$ in Phase with $\mathrm{f}_{\mathrm{V}}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, $\mathrm{V}_{\mathrm{PD}}=2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	20	140	ns
$\begin{aligned} & \hline \text { tTLH, } \\ & \text { tTHL } \end{aligned}$	Output Transition Times, LD, ϕ V, and $\phi \mathrm{R}$ (Figures 11 and 12)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{~V}_{\mathrm{PD}}=2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \end{aligned}$	-	80	ns
$\mathrm{C}_{\text {in }}$	Input Capacitance, REF in		-	5	pF

Figure 7. Test Circuit

Figure 9. Test Circuit-Crystal Mode

Figure 11. Switching Waveform

Figure 8. Test Circuit-Reference Mode

Figure 10. Switching Waveform

Figure 12. Test Circuit

Figure 13. Normalized Input Impedance at f_{in} - Series Format ($\mathrm{R}+\mathrm{jX}$) (100 MHz to 1100 MHz)

PIN DESCRIPTIONS

DIGITAL INTERFACE PINS

Data In (Pin 19)

Serial Data Input. The bit stream begins with the MSB and is shifted in on the low-to-high transition of Clock. The bit pattern is 1 byte (8 bits) long to access the C or configuration register, 2 bytes (16 bits) to access the first buffer of the R register, or 3 bytes (24 bits) to access the A register (see Table 1). The values in the C, R, and A registers do not change during shifting because the transfer of data to the registers is controlled by Enable.

CAUTION

The value programmed for the N -counter must be greater than or equal to the value of the A counter.
The 13 LSBs of the R register are double-buffered. As indicated above, data is latched into the first buffer on a 16-bit transfer. (The 3 MSBs are not double-buffered and have an immediate effect after a 16-bit transfer.) The second buffer of the R register contains the 13 bits for the R counter. This second buffer is loaded with the contents of the first buffer when the A register is loaded (a 24-bit transfer). This allows presenting new values to the R, A, and N counters simultaneously. If this is not required, then the 16-bit transfer may be followed by pulsing Enable low with no signal on the Clock pin. This is an alternate method of transferring data to the second buffer of the R register. See Figure 17.

The bit stream needs neither address nor steering bits due to the innovative BitGrabber registers. Therefore, all bits in the stream are available to be data for the three registers. Random access of any register is provided. That is, the registers may be accessed in any sequence. Data is retained in the registers over a supply range of 2.7 to 5.0 V . The formats are shown in Figures 15, 16, and 17.

Data In typically switches near 50% of $V_{D D}$ to maximize noise immunity. This input can be directly interfaced to CMOS devices with outputs guaranteed to switch near rail-to-rail. When interfacing to NMOS or TTL devices, either a level shifter (MC74HC14A, MC14504B) or pull-up resistor of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ must be used. Parameters to consider when sizing the resistor are worst-case IOL of the driving device, maximum tolerable power consumption, and maximum data rate.

Table 1. Register Access
(MSBs are shifted in first, C0, R0, and A0 are the LSBs)

Number of Clocks	Accessed Register	Bit Nomenclature
8	C Register	C7, C6, C5, , ., C0
16	R Register	R15, R14, R13, .., R0
24	A Register	A23, A22, A21, .., A0
Other Values ≤ 32 Values >32	Not Allowed See Figures 24 to 27	

Clock (Pin 18)

Serial Data Clock Input. Low-to-high transitions on Clock shift bits available at the Data pin, while high-to-low transitions shift bits from Output A (when configured as Data Out, see Pin 16). The $24-1 / 2-$ stage shift register is static,
allowing clock rates down to dc in a continuous or intermittent mode.

Eight clock cycles are required to access the C register. Sixteen clock cycles are needed for the first buffer of the R register. Twenty-four cycles are used to access the A register. See Table 1 and Figures 15, 16, and 17. The number of clocks required for cascaded devices is shown in Figures 25 through 27.

Clock typically switches near 50% of $V_{D D}$ and has a Schmitt-triggered input buffer. Slow Clock rise and fall times are allowed. See the last paragraph of Data In for more information.

NOTE

To guarantee proper operation of the power-on reset (POR) circuit, the Clock pin must be held at GND (with Enable being a don't care) or Enable must be held at the potential of the $\mathrm{V}+$ pin (with Clock being a don't care) during power-up. As an alternative, the bit sequence of Figure 18 may be used.

$\overline{\text { Enable (Pin 17) }}$

Active-Low Enable Input. This pin is used to activate the serial interface to allow the transfer of data to/from the device. When Enable is in an inactive high state, shifting is inhibited and the port is held in the initialized state. To transfer data to the device, Enable (which must start inactive high) is taken low, a serial transfer is made via Data In and Clock, and Enable is taken back high. The low-to-high transition on Enable transfers data to the C or A registers and first buffer of the R register, depending on the data stream length per Table 1.

NOTE

Transitions on $\overline{\text { Enable }}$ must not be attempted while Clock is high. This will put the device out of synchronization with the microcontroller. Resynchronization occurs when Enable is high and Clock is low.
This input is also Schmitt-triggered and switches near 50% of $V_{D D}$, thereby minimizing the chance of loading erroneous data into the registers. See the last paragraph of Data In for more information.

For POR information, see the note for the Clock pin.

Output A (Pin 16)

Configurable Digital Output. Output A is selectable as f_{R}, fy, Data Out, or Port. Bits A22 and A23 in the A register control the selection; see Figure 16.

If A23 $=$ A22 $=$ high, Output A is configured as $f R$. This signal is the buffered output of the 13-stage R counter. The f_{R} signal appears as normally low and pulses high. The f_{R} signal can be used to verify the divide ratio of the R counter. This ratio extends from 5 to 8191 and is determined by the binary value loaded into bits $R 0$ through $R 12$ in the R register. Also, direct access to the phase detectors via the REFin pin is allowed by choosing a divide value of one. See Figure 17. The maximum frequency at which the phase detectors operate is 1 MHz . Therefore, the frequency of f_{R} should not exceed 1 MHz .

If $\mathrm{A} 23=$ high and $\mathrm{A} 22=$ low, Output A is configured as fV . This signal is the buffered output of the 12-stage N counter.

The fv signal appears as normally low and pulses high. The fV signal can be used to verify the operation of the prescaler, A counter, and N counter. The divide ratio between the f_{in} input and the fV signal is $\mathrm{N} \times 64+\mathrm{A}$. N is the divide ratio of the N counter and A is the divide ratio of the A counter. These ratios are determined by bits loaded into the A register. See Figure 16. The maximum frequency at which the phase detectors operate is 1 MHz . Therefore, the frequency of fV should not exceed 1 MHz .

If A23 = low and A22 = high, Output A is configured as Data Out. This signal is the serial output of the 24-1/2-stage shift register. The bit stream is shifted out on the high-to-low transition of the Clock input. Upon power up, Output A is automatically configured as Data Out to facilitate cascading devices.

If A23 = A22 = low, Output A is configured as Port. This signal is a general-purpose digital output which may be used as an MCU port expander. This signal is low when the Port bit (C1) of the C register is low, and high when the Port bit is high.

Output B (Pin 15)

Open-Drain Digital Output. This signal is a general-purpose digital output which may be used as an MCU port expander. This signal is low when the Out B bit (CO) of the C register is low. When the Out B bit is high, Output B assumes the high-impedance state. Output B may be pulled up through an external resistor or active circuitry to any voltage less than or equal to the potential of the VPD pin. Note: the maximum voltage allowed on the V_{PD} pin is 5.5 V for the MC145192.

Upon power-up, power-on reset circuitry forces Output B to a low level.

REFERENCE PINS

REF $_{\text {in }}$ and REF $_{\text {out }}$ (Pins 20 and 1)

Configurable Pins for a Crystal or an External Reference. This pair of pins can be configured in one of two modes: the crystal mode or the reference mode. Bits R13, R14, and R15 in the R register control the modes as shown in Figure 17.

In crystal mode, these pins form a reference oscillator when connected to terminals of an external parallel-resonant crystal. Frequency-setting capacitors of appropriate values as recommended by the crystal supplier are connected from each of the two pins to ground (up to a maximum of 30 pF each, including stray capacitance). An external resistor of $1 \mathrm{M} \Omega$ to $15 \mathrm{M} \Omega$ is connected directly across the pins to ensure linear operation of the amplifier. The device is designed to operate with crystals up to 10 MHz ; the required connections are shown in Figure 9. To turn on the oscillator, bits R15, R14, and R13 must have an octal value of one (001 in binary). This is the active-crystal mode shown in Figure 17. In this mode, the crystal oscillator runs and the R Counter divides the crystal frequency, unless the part is in standby. If the part is placed in standby via the C register, the oscillator runs, but the R counter is stopped. However, if bits R15 to R13 have a value of 0, the oscillator is stopped, which saves additional power. This is the shut-down crystal mode shown in Figure 17, and can be engaged whether in standby or not.

In the reference mode, REFin (Pin 20) accepts a signal up to 20 MHz from an external reference oscillator, such as a TCXO. A signal swinging from at least the V_{IL} to V_{IH} levels
listed in the Electrical Characteristics table may be directly coupled to the pin. If the signal is less than this level, ac coupling must be used as shown in Figure 8. The ac-coupled signal must be at least $400 \mathrm{mV} \mathrm{p}-\mathrm{p}$. Due to an on-board resistor which is engaged in the reference modes, an external biasing resistor tied between $R E F_{\text {in }}$ and $R E F_{\text {out }}$ is not required.

With the reference mode, the REF out $^{\text {pin is configured as }}$ the output of a divider. As an example, if bits R15, R14, and R13 have an octal value of seven, the frequency at REF out is the $R E F_{i n}$ frequency divided by 16. In addition, Figure 17 shows how to obtain ratios of eight, four, and two. A ratio of one-to-one can be obtained with an octal value of three. Upon power up, a ratio of eight is automatically initialized. The maximum frequency capability of the $R E F_{\text {out }}$ pin is 5 MHz for V_{DD} to V_{SS} swing. Therefore, for REFin frequencies above 5 MHz , the one-to-one ratio may not be used for large signal swing requirements. Likewise, for REFin frequencies above 10 MHz , the ratio must be more than two.

If $R E F_{\text {out }}$ is unused, an octal value of two should be used for R15, R14, and R13 and the REF out pin should be floated. A value of two allows REFin to be functional while disabling REF $_{\text {out }}$, which minimizes dynamic power consumption and electromagnetic interference (EMI).

LOOP PINS

f_{in} and $\overline{\mathrm{f}_{\mathrm{in}}}$ (Pins 11 and 10)

Frequency Input from the VCO. These pins feed the onboard RF amplifier which drives the $64 / 65$ prescaler. These inputs may be fed differentially. However, they are usually used in a single-ended configuration as shown in Figure 7. Note that $f_{i n}$ is driven while $f_{i n}$ must be tied to ground via a capacitor.

Motorola does not recommend driving fin while terminating $f_{i n}$ because this configuration is not tested for sensitivity. The sensitivity is dependent on the frequency as shown in the Loop Specifications table.

PDout (Pin 6)

Single-Ended Phase/Frequency Detector Output. This is a 3-state current-source/sink output for use as a loop error signal when combined with an external low-pass filter. The phase/frequency detector is characterized by a linear transfer function. The operation of the phase/frequency detector is described below and is shown in Figure 19.

POL bit (C7) in the C register = low (see Figure 15)
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading $f R$: currentsinking pulses from a floating state
Frequency of $f \mathrm{~V}<\mathrm{f}_{\mathrm{R}}$ or Phase of f V Lagging f_{R} : currentsourcing pulses from a floating state
Frequency and Phase of $f V=f_{R}$: essentially a floating state; voltage at pin determined by loop filter

POL bit (C7) = high
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading f_{R} : currentsourcing pulses from a floating state
Frequency of $f V<f_{R}$ or Phase of $f V$ Lagging f_{R} : currentsinking pulses from a floating state
Frequency and Phase of $f V=f_{R}$: essentially a floating state; voltage at pin determined by loop filter
This output can be enabled, disabled, and inverted via the C register. If desired, $\mathrm{PD}_{\text {out }}$ can be forced to the floating state by utilization of the disable feature in the C register (bit C 6). This is a patented feature. Similarly, $\mathrm{PD}_{\text {out }}$ is forced to the floating state when the device is put into standby (STBY bit $\mathrm{C} 4=$ high $)$.

The $\mathrm{PD}_{\text {out }}$ circuit is powered by V_{PD}. The phase detector gain is controllable by bits C3, C2, and C1: gain (in amps per radian) $=P D_{\text {out }}$ current divided by 2π.

$\phi \mathbf{R}$ and $\phi \mathrm{V}$ (Pins 3 and 4)

Double-Ended Phase/Frequency Detector Outputs. These outputs can be combined externally to generate a loop error signal. Through use of a Motorola patented technique, the detector's dead zone has been eliminated. Therefore, the phase/frequency detector is characterized by a linear transfer function. The operation of the phase/frequency detector is described below and is shown in Figure 19.

POL bit (C7) in the C register = low (see Figure 15)
Frequency of $f V>f R$ or Phase of $f V$ Leading $f R$: $\phi V=$ negative pulses, $\phi R=$ essentially high
Frequency of $f \mathrm{~V}<\mathrm{f}_{\mathrm{R}}$ or Phase of fV Lagging $\mathrm{f}_{\mathrm{R}}: \phi \mathrm{V}=$ essentially high, $\phi \mathrm{R}=$ negative pulses
Frequency and Phase of $f V=f_{R}: \phi V$ and ϕR remain essentially high, except for a small minimum time period when both pulse low in phase
POL bit (C7) = high
Frequency of $f V>f R$ or Phase of $f V$ Leading $f R$: $\phi R=$ negative pulses, $\phi \mathrm{V}=$ essentially high
Frequency of $f V<f_{R}$ or Phase of $f V$ Lagging $f_{R}: \phi R=$ essentially high, $\phi V=$ negative pulses
Frequency and Phase of $f V=f R$: ϕV and ϕR remain essentially high, except for a small minimum time period when both pulse low in phase
These outputs can be enabled, disabled, and interchanged via C register bits C 6 or C 4 . This is a patented feature. Note that when disabled or in standby, $\phi \mathrm{R}$ and $\phi \mathrm{V}$ are forced to their rest condition (high state).

The $\phi \mathrm{R}$ and $\phi \mathrm{V}$ output signal swing is approximately from GND to VPD.

LD (Pin 2)

Lock Detector Output. This output is essentially at a high level with narrow low-going pulses when the loop is locked ($\mathrm{f} R$ and fV of the same phase and frequency). The output pulses low when fV_{V} and f_{R} are out of phase or different frequencies. LD is the logical ANDing of $\phi \mathrm{R}$ and $\phi \mathrm{V}$. See Figure 19.

This output can be enabled and disabled via the C register. This is a patented feature. Upon power up, on-chip initialization circuitry disables LD to a static low logic level to prevent a false lock signal. If unused, LD should be disabled and left open.

The LD output signal swing is approximately from GND to VDD.

Rx (Pin 8)

External Resistor. A resistor tied between this pin and GND, in conjunction with bits in the C register, determines the amount of current that the $\mathrm{PD}_{\text {out }}$ pin sinks and sources. When bits C 2 and C 3 are both set high, the maximum current is obtained at $\mathrm{PD}_{\text {out }}$; see Figure 15 for other values of current. To achieve a maximum current of 2 mA , the resistor should be about $22 \mathrm{k} \Omega$ when $\mathrm{V}_{P D}$ is 5 V .

When the $\phi \mathrm{R}$ and $\phi \mathrm{V}$ outputs are used, the Rx pin may be floated.

TEST POINT PINS

Test 1 (Pin 9)

Modulus Control Signal. This pin may be used in conjunction with the Test 2 pin for access to the on-board 64/65 prescaler. When Test 1 is low, the prescaler divides by 65. When high, the prescaler divides by 64.

CAUTION

This pin is an unbuffered output and must be floated in an actual application. This pin may be attached to an isolated pad with no trace.

Test 2 (Pin 13)

Prescaler Output. This pin may be used to access to the on-board 64/65 prescaler output.

CAUTION

This pin is an unbuffered output and must be floated in an actual application. This pin may be attached to an isolated pad with no trace.

POWER SUPPLY PINS

VDD (Pin 14)

Positive Supply Potential. This pin supplies power to the main CMOS digital portion of the device. The voltage range is +2.7 to +5.0 V with respect to the GND pin.

For optimum performance, VDD should be bypassed to GND using a low-inductance capacitor mounted very close to these pins. Lead lengths on the capacitor should be minimized.

V_{CC} (Pin 12)

Positive Supply Potential. This pin supplies power to the RF amp and $64 / 65$ prescaler. The voltage range is +2.7 to +5.0 V with respect to the GND pin. In the standby mode, the $V_{C C}$ pin still draws a few milliamps from the power supply. This current drain can be eliminated with the use of transistor Q1 as shown in Figure 23.

For optimum performance, V_{CC} should be bypassed to GND using a low-inductance capacitor mounted very close to these pins. Lead lengths on the capacitor should be minimized.

VPD (Pin 5)

Positive Supply Potential. This pin supplies power to both phase/frequency detectors A and B. The voltage applied on this pin must be $\geq \mathrm{V}_{\mathrm{DD}}$ but not more than 5.5 V . The voltage range for $\mathrm{V}_{P D}$ is 4.5 to 5.5 V with respect to the GND pin when using PDOUT and 2.7 to 5.5 V when using $\phi \mathrm{R}$, $\phi \mathrm{V}$ outputs.

For optimum performance, VPD should be bypassed to GND using a low-inductance capacitor mounted very close to these pins. Lead lengths on the capacitor should be minimized.

GND (Pin 7)

Common ground.

Nominal MC145192 PDout Source Current vs Rx Resistance

NOTE: The MC145192 is optimized for Rx values in the $18 \mathrm{k} \Omega$ to $40 \mathrm{k} \Omega$ range. For example, to achieve 0.3 mA of output current, it is preferable to use a $30-k \Omega$ resistor for $R x$ and bit settings for 25% (as shown in Table 3).

Figure 14.

* At this point, the new byte is transferred to the C register and stored. No other registers are affected.

C7-POL:	Selects the output polarity of the phase/frequency detectors. When set high, this bit inverts $\mathrm{PD}_{\text {out }}$ and interchanges the $\phi \mathrm{R}$ function with $\phi \mathrm{V}$ as depicted in Figure 19. Also see the phase detector output pin descriptions for more information. This bit is cleared low at power up.
C6 - PDA/B:	Selects which phase/frequency detector is to be used. When set high, enables the output of phase/frequency detector $\mathrm{A}\left(\mathrm{PD}_{\text {out }}\right)$ and disables phase/frequency detector B by forcing $\phi \mathrm{R}$ and $\phi \mathrm{V}$ to the static high state. When cleared low, phase/frequency detector B is enabled ($\phi \mathrm{R}$ and $\phi \mathrm{V}$) and phase/frequency detector A is disabled with $\mathrm{PD}_{\text {out }}$ forced to the high-impedance state. This bit is cleared low at power up.
C5-LDE:	Enables the lock detector output when set high. When the bit is cleared low, the LD output is forced to a static low level. This bit is cleared low at power up.
C4 - STBY:	When set high, places the CMOS section of device, which is powered by the $V_{D D}$ and $V_{P D}$ pins, in the standby mode for reduced power consumption: $\mathrm{PD}_{\text {out }}$ is forced to the high-impedance state, ϕR and ϕV are forced high, the A, N, and R counters are inhibited from counting, and the Rx current is shut off. In standby, the state of LD is determined by bit C5. C5 low forces LD low (no change). C5 high forces LD static high. During standby, data is retained in the A, R, and C registers. The condition of REF/OSC circuitry is determined by the control bits in the R register: R13, R14, and R15. However, if $R E F_{\text {out }}=$ static low is selected, the internal feedback resistor is disconnected and the input is inhibited when in standby; in addition, the REF in input only presents a capacitive load. NOTE: Standby does not affect the other modes of the REF/OSC circuitry. When C4 is reset low, the part is taken out of standby in 2 steps. First, the REF in (only in one mode) resistor is reconnected, all counters are enabled, and the $R x$ current is enabled. Any f_{R} and f_{V} signals are inhibited from toggling the phase/frequency detectors and lock detector. Second, when the first fV pulse occurs, the R counter is jam loaded, and the phase/frequency and lock detectors are initialized. Immediately after the jam load, the A, N, and R counters begin counting down together. At this point, the f_{R} and f_{V} pulses are enabled to the phase and lock detectors. This is a patented feature.
C3, C2-12, 11:	Controls the $\mathrm{PD}_{\text {out }}$ source/sink current per Tables 2 and 3 . With both bits high, the maximum current (as set by Rx) is available. Also, see C1 bit description.
C1 - Port:	When the Output A pin is selected as "Port" via bits A22 and A23, C1 determines the state of Output A. When C1 is set high, Output A is forced high; C1 low forces Output A low. When Output A is not selected as "Port," C1 controls whether the $\mathrm{PD}_{\text {out }}$ step size is 10% or 25%. (See Tables 2 and 3.) When low, steps are 10%. When high, steps are 25%. Default is 10% steps when Output A is selected as "Port." The Port bit is not affected by the standby mode.
C0 - Out B:	Determines the state of Output B. When CO is set high, Output B is high-impedance; C0 low forces Output B low. The Out B bit is not affected by the standby mode. This bit is cleared low at power up.

Figure 15. C Register Access and Format (8 Clock Cycles Are Used)

Table 2. $\mathrm{PD}_{\text {out }}$ Current, C1 = Low with Output A NOT Selected as "Port"; Also, Default Mode When Output A Selected as "Port"

C3	C2	PD $_{\text {out }}$ Current
0	0	70%
0	1	80%
1	0	90%
1	1	100%

Table 3. $\mathrm{PD}_{\text {out }}$ Current, $\mathrm{C} 1=$ High with Output A NOT Selected as "Port"

C3	C2	PD out Current
0	0	25%
0	1	50%
1	0	75%
1	1	100%

$0-1$ NOT ALLOWED $0 \quad 1$ ACOUNTER $=\div 1$
02 NOT ALLOWED $0 \quad 0 \quad 2$ ACOUNTER $=\div 2$
$0 \quad 3$ NOTALLOWED $0 \quad 3$ ACOUNTER $=\div 3$
$0 \quad 0 \quad 4$ NOT ALLOWED
$0 \quad 0 \quad 5$ N COUNTER $=\div 5$
06 NCOUNTER $=\div 6$ E ACOUNTER $=\div 62$
$0 \quad 7$ NCOUNTER $=\div 7 \quad 3 \quad F \quad$ ACOUNTER $=\div 63$
$\therefore \quad . \quad 4 \quad 4 \quad 0$ NOT ALLOWED
41 NOT ALLOWED
F F E NCOUNTER $=\div 4094$
F F F NCOUNTER $=\div 4095$

HEXADECIMAL VALUE
FOR N COUNTER

F F NOTALLOWED

HEXADECIMAL VALUE FOR A COUNTER

NOTES:

1. A power-on initialize circuit forces the Output A function to default to Data Out.
2. The values programmed for the N counter must be greater than or equal to the values programmed for the A counter. This results in a total divide value $=N \times 64+A$.
3. At this point, the three new bytes are transferred to the A register. In addition, the 13 LSBs in the first buffer of the R register are transferred to the R register's second buffer. Thus, the R, N, and A counters can be presented new divide ratios at the same time. The first buffer of the R register is not affected. The C register is not affected.

NOTES:

1. Bits R15 through R13 control the configurable "OSC or 4-stage divider" block (see Block Diagram).
2. Bits R12 through R0 control the "13-stage R counter" block (see Block Diagram).
3. A power-on initialize circuit forces a default REF in to $\mathrm{REF}_{\text {out }}$ ratio of eight.
4. At this point, bits R13, R14, and R15 are stored and sent to the "OSC or 4-Stage Divider" block in the Block Diagram. Bits R0 - R12 are loaded into the first buffer in the double-buffered section of the R register. Therefore, the R counter divide ratio is not altered yet and retains the previous ratio loaded. The C and A registers are not affected.
5. At this point, bits R0 through R12 are transferred to the second buffer of the R register. The R counter begins dividing by the new ratio after completing the rest of the present count cycle. Clock must be low during the Enable pulse, as shown. Also, see note 3 of Figure 16 for an alternate method of loading the second buffer in the R register. The C and A registers are not affected. The first buffer of the R register is not affected.
6. Allows direct access to reference input of phase/frequency detectors.

Figure 17. R Register Access and Format (16 Clock Cycles Are Used)

DATA IN

NOTE: It may not be convenient to control the Enable or Clock pins high during power up per the Pin Descriptions. If this is the case, the part may be initialized through the serial port as shown in the figure above. The sequence is similar to accessing the registers except that the Clock must remain high at least 100 ns after Enable is brought high. Note that 3 groups of 5 bits are needed.

Figure 18. Initializing the PLL through the Serial Port

Figure 19. Phase/Frequency Detectors and Lock Detector Output Waveforms

DESIGN CONSIDERATIONS

CRYSTAL OSCILLATOR CONSIDERATIONS

The following options may be considered to provide a reference frequency to Motorola's CMOS frequency synthesizers.

USE OF A HYBRID CRYSTAL OSCILLATOR

Commercially available temperature-compensated crystal oscillators (TCXOs) or crystal-controlled data clock oscillators provide very stable reference frequencies. An oscillator capable of CMOS logic levels at the output may be direct or dc coupled to REFin. If the oscillator does not have CMOS logic levels on the outputs, capacitive or ac coupling to REFin may be used. See Figure 8.

For additional information about TCXOs and data clock oscillators, please consult the latest version of the eem Electronic Engineers Master Catalog, the Gold Book, or similar publications.

DESIGN AN OFF-CHIP REFERENCE

The user may design an off-chip crystal oscillator using discrete transistors or ICs specifically developed for crystal oscillator applications, such as the MC12061 MECL device. The reference signal from the MECL device is ac coupled to REFin. (See Figure 8.) For large amplitude signals (standard CMOS logic levels), dc coupling may be used.

USE OF THE ON-CHIP OSCILLATOR CIRCUITRY

The on-chip amplifier (a digital inverter) along with an appropriate crystal may be used to provide a reference source frequency. A fundamental mode crystal, parallel resonant at the desired operating frequency, should be connected as shown in Figure 20.

The crystal should be specified for a loading capacitance, C_{L}, which does not exceed approximately 20 pF when used at the highest operating frequency of 10 MHz . Assuming R1 $=0 \Omega$, the shunt load capacitance, CL, presented across the crystal can be estimated to be:

$$
C_{L}=\frac{C_{\text {in }} C_{\text {out }}}{C_{\text {in }}+C_{\text {out }}}+C_{a}+C_{\text {stray }}+\frac{C 1 \cdot C 2}{C 1+C 2}
$$

where
$\mathrm{C}_{\mathrm{in}}=5 \mathrm{pF}$ (see Figure 21)
$\mathrm{C}_{\text {out }}=6 \mathrm{pF}$ (see Figure 21)
$\mathrm{C}_{\mathrm{a}}=1 \mathrm{pF}$ (see Figure 21)
C1 and C2 = external capacitors (see Figure 20)
$\mathrm{C}_{\text {Stray }}=$ the total equivalent external circuit stray capacitance appearing across the crystal terminals

The oscillator can be "trimmed" on-frequency by making either a portion or all of C1 variable. The crystal and associated components must be located as close as possible to the $R E F_{\text {in }}$ and $R E F_{\text {out }}$ pins to minimize distortion, stray capacitance, stray inductance, and startup stabilization time. Circuit stray capacitance can also be handled by adding the appropriate stray value to the values for $\mathrm{C}_{\text {in }}$ and $\mathrm{C}_{\text {out }}$. For this approach, the term $\mathrm{C}_{\text {stray }}$ becomes zero in the above expression for CL_{L}.

Power is dissipated in the effective series resistance of the crystal, R_{e}, in Figure 22. The maximum drive level specified by the crystal manufacturer represents the maximum stress that the crystal can withstand without damage or excessive shift in operating frequency. R1 in Figure 20 limits the drive level. The use of R1 is not necessary in most cases.

To verify that the maximum dc supply voltage does not cause the crystal to be overdriven; monitor the output frequency (fR) at Output A as a function of supply voltage. (REF ${ }_{\text {out }}$ is not used because loading impacts the oscillator.) The frequency should increase very slightly as the dc supply voltage is increased. An overdriven crystal decreases in frequency or becomes unstable with an increase in supply voltage. The operating supply voltage must be reduced or R1 must be increased in value if the overdriven condition exists. Note that the oscillator start-up time is proportional to the value of R1.

Through the process of supplying crystals for use with CMOS inverters, many crystal manufacturers have developed expertise in CMOS oscillator design with crystals. Discussions with such manufacturers can prove very helpful. See Table 4.

Figure 20. Pierce Crystal Oscillator Circuit

NOTE: Values are supplied by crystal manufacturer (parallel resonant crystal).

Figure 21. Parasitic Capacitances of the Amplifier and $\mathrm{C}_{\text {stray }}$

RECOMMENDED READING

Technical Note TN-24, Statek Corp
Technical Note TN-7, Statek Corp.
E. Hafner, "The Piezoelectric Crystal Unit-Definitions and

Method of Measurement", Proc. IEEE, Vol. 57, No. 2, Feb. 1969.
D. Kemper, L. Rosine, "Quartz Crystals for Frequency

Control", Electro-Technology, June 1969.
P. J. Ottowitz, "A Guide to Crystal Selection", Electronic Design, May 1966.
D. Babin, "Designing Crystal Oscillators", Machine Design, March 7, 1985.
D. Babin, "Guidelines for Crystal Oscillator Design", Machine Design, April 25, 1985.

Table 4. Partial List of Crystal Manufacturers

Motorola - Internet Address
http://motorola.com
United States Crystal Corp.
Crystek Crystal
Statek Corp.
Fox Electronics

NOTE: Motorola cannot recommend one supplier over another and in no way suggests that this is a complete listing of crystal manufacturers.

PHASE-LOCKED LOOP — LOW-PASS FILTER DESIGN

(A) $\mathrm{PD}_{\text {out }} \mathrm{VCO}$

$$
\begin{aligned}
\omega_{n} & =\sqrt{\frac{K_{\phi} K_{V C O}}{N C}} \\
\zeta & =\frac{R}{2} \sqrt{\frac{K_{\phi} K_{V C O C}}{N}}=\frac{\omega_{n} R C}{2} \\
Z(s) & =\frac{1+s R C}{s C}
\end{aligned}
$$

NOTE:
For (A), using K_{ϕ} in amps per radian with the filter's impedance transfer function, $Z(s)$, maintains units of volts per radian for the detector/ filter combination. Additional sideband filtering can be accomplished by adding a capacitor C^{\prime} across R. The corner $\omega_{C}=1 / R C^{\prime}$ should be chosen such that ω_{n} is not significantly affected.
(B)

$\omega_{n}=\sqrt{\frac{\mathrm{K}_{\phi} \mathrm{K}_{\mathrm{VCO}}}{\mathrm{NCR}_{1}}}$
$\zeta=\frac{\omega_{n} R_{2} C}{2}$
ASSUMING GAIN A IS VERY LARGE, THEN:
$F(s)=\frac{R_{2} s C+1}{R_{1} s C}$

NOTE:
For (B), R_{1} is frequently split into two series resistors; each resistor is equal to R_{1} divided by 2. A capacitor C_{C} is then placed from the midpoint to ground to further filter the error pulses. The value of C_{C} should be such that the corner frequency of this network does not significantly affect ω_{n}.
*The ϕR and $\phi \vee$ outputs are fed to an external combiner/loop filter. The ϕR and $\phi \vee$ outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode input range of the op amp used in the combiner/loop filter.

DEFINITIONS:

$\mathrm{N}=$ Total Division Ratio in Feedback Loop
K_{ϕ} (Phase Detector Gain) $=$ IPDout $/ 2 \pi$ amps per radian for $\mathrm{PD}_{\text {out }}$
$\mathrm{K}_{\phi}\left(\right.$ Phase Detector Gain) $=\mathrm{V}_{\mathrm{PD}} / 2 \pi$ volts per radian for $\phi \mathrm{V}$ and $\phi \mathrm{R}$
$\mathrm{K} \mathrm{VCO}(\mathrm{VCO}$ Transfer Function $)=\frac{2 \pi \Delta \mathrm{f} C \mathrm{CO}}{\Delta \mathrm{V}_{\mathrm{VCO}}}$ radians per volt
For a nominal design starting point, the user might consider a damping factor $\zeta \approx 0.7$ and a natural loop frequency $\omega_{n} \approx\left(2 \pi f_{R} / 50\right)$ where f_{R} is the frequency at the phase detector input. Larger ω_{n} values result in faster loop lock times and, for similar sideband filtering, higher $\mathrm{f}_{\mathrm{R}}-\mathrm{related}$ VCO sidebands.
Either loop filter (A) or (B) is frequently followed by additional sideband filtering to further attenuate f_{R}-related VCO sidebands. This additional filtering may be active or passive.

RECOMMENDED READING:

Gardner, Floyd M., Phaselock Techniques (second edition). New York, Wiley-Interscience, 1979.
Manassewitsch, Vadim, Frequency Synthesizers: Theory and Design (second edition). New York, Wiley-Interscience, 1980.
Blanchard, Alain, Phase-Locked Loops: Application to Coherent Receiver Design. New York, Wiley-Interscience, 1976.
Egan, William F., Frequency Synthesis by Phase Lock. New York, Wiley-Interscience, 1981.
Rohde, Ulrich L., Digital PLL Frequency Synthesizers Theory and Design. Englewood Cliffs, NJ, Prentice-Hall, 1983.
Berlin, Howard M., Design of Phase-Locked Loop Circuits, with Experiments. Indianapolis, Howard W. Sams and Co., 1978.
Kinley, Harold, The PLL Synthesizer Cookbook. Blue Ridge Summit, PA, Tab Books, 1980.
Seidman, Arthur H., Integrated Circuits Applications Handbook, Chapter 17, pp. 538-586. New York, John Wiley \& Sons.
Fadrhons, Jan, "Design and Analyze PLLs on a Programmable Calculator," EDN. March 5, 1980.
AN535, Phase-Locked Loop Design Fundamentals, Motorola Semiconductor Products, Inc., 1970.
AR254, Phase-Locked Loop Design Articles, Motorola Semiconductor Products, Inc., Reprinted with permission from Electronic Design, 1987.

AN1253/D, An Improved PLL Design Method Without ω_{n} and ζ, Motorola Semiconductor Products, Inc., 1995.

NOTES:

1. When used, the $\phi \mathrm{R}$ and $\phi \mathrm{V}$ outputs are fed to an external combiner/loop filter. See the Phase-Locked Loop - Low-Pass Filter Design page for additional information.
2. Transistor Q1 is required only if the standby feature is needed. Q1 permits the bipolar section of the device to be shut down via use of the general-purpose digital pin, Output B. If the standby feature is not needed, tie Pin 12 directly to the power supply.
3. For optimum performance, bypass the $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{DD}}$, and V_{PD} pins to GND with low-inductance capacitors.
4. The R counter is programmed for a divide value $=R E F_{\text {in }} / f_{R}$. Typically, f_{R} is the tuning resolution required for the VCO. Also, the VCO frequency divided by $f_{R}=N T=N \times 64+A$; this determines the values (N, A) that must be programmed into the N and A counters, respectively.

Figure 23. Example Application

NOTE: See related Figures 25, 26, and 27.
Figure 24. Cascading Two Devices

Figure 25. Accessing the C Registers of Two Cascaded Devices

＊At this point，the new bytes are transferred to the A registers of both devices and stored．Additionally，for both devices，the 13 LSBs in each of the first buffers of the R registers are
transferred to the respective R register＇s second buffer．Thus，the R, N ，and A counters can be presented new divide ratios at the same time．The first buffer of each R register is not affected Neither C register is affected．

NOTES APPLICABLE TO EACH DEVICE:

1. At this point, bits R13, R14, and R15 are stored and sent to the "OSC or 4-Stage Divider" block in the Block Diagram. Bits R0 through R12 are loaded into the first buffer in the doublebuffered section of the R register. Therefore, the R counter divide ratio is not altered yet and retains the previous ratio loaded. The C and A registers are not affected.
2. At this point, the bits R0 through R12 are transferred to the second buffer of the R register. The R counter begins dividing by the new ratio after completing the rest of the present count cycle. Clock must be low during the Enable pulse, as shown. Also, see note of Figure 25 for an alternate method of loading the second buffer in the R register. The C and A registers are not affected. The first buffer of the R register is not affected.

Technical Summary MC145192 and MC145202 Evaluation Boards

MC145192EVK MC145202EVK

INTRODUCTION

The MC145192EVK and MC145202EVK are two versions of one board with a few component changes. They allow users to exercise features of both devices and to build PLLs which meet individual performance requirements. The control program works with any board and can be used with other Motorola PLL devices (MC145190, MC145191, MC145200, MC145201, MC145220*). It will select frequency defaults that apply to each. All board functions are controlled through the printer port of an IBM PC. Up to three different EVKs may be controlled at the same time from one printer port. The functional block diagram is given in Figure 1.

This technical summary contains the hardware description for the evaluation board and a summary of the software section. For complete information, consult the manual that is provided in the evaluation kit.

ORDERING INFORMATION

These kits may be ordered through your local Motorola Semiconductor sales office or authorized distributor. Ask your Motorola representative to order the kits from the finished goods warehouse, not the literature distribution center. Request the part numbers shown below.

Part Number
MC145192EVK
MC145202EVK

Description

Kit with the MC145192 installed. Also includes a MC145202 device and appropriate current-setting resistor.

Kit with the MC145202 installed. Also includes a MC145192 device and appropriate current-setting resistor.

[^28]

Figure 1. Evaluation Kit Block Diagram

SECTION 1 - HARDWARE

FEATURES

5. The EVK is a complete working synthesizer, including VCO.
6. Control program is written in Turbo Pascal.
7. Board is controlled by an IBM PC-compatible computer through the printer port.
8. Up to three boards can be operated independently through one printer port.
9. A prototype area and mounting holes are provided for VCOs, mixers, and amplifiers.
10. External reference input can be used.
11. Five element loop filter is included.
12. Frequency range of operation, step size and reference frequency can be changed in the control program.
13. Lock Detect, Out A, and Out B on any single board are accessible through the printer port.

CONTENTS OF EVALUATION KIT

1. Assembled evaluation board.
2. Nine-foot flat cable with four DB-25 male connectors.
3. MC145192/202 EVK manual.
4. 3.5" PC-compatible disk containing compiled program.
5. PLL device data sheets.

GETTING STARTED

To perform basic functions, do the following:

1. Plug in 12 volts at J 6 , observing the polarity marked on the board.
2. Short circuit section 1 of the DIP switch (S1) and open circuit all other sections.
3. Connect the supplied flat cable between the computer printer port and the DB-25 connector on the board (J5).
4. Type PLL at the DOS prompt. Then press enter.
5. Type the number that corresponds with the type of board given in the on-screen menu. Then press Q.

You should now see the main menu displayed. There should be a signal present at J8 on the current output frequency given in the main menu. If the signal is not on the correct frequency, check to see if your printer card address is $\$ 278$ (hexadecimal 278). If not, then select the P menu item and enter the correct address. After returning to the main menu, select the I menu item to send data to the board. You should now be on frequency.

MODIFICATIONS

The user may modify the hardware, such as utilizing a different VCO, by using the prototyping area of the board. After such modifications are made, the default values in the software may need to be changed. This is facilitated from screen \#2 'Select from the available options' screen.

Note that the on-board voltage regulators allow for maximum control voltage range of 0.5 to 4.5 V .

TYPICAL PERFORMANCE

Common to both kits, unless noted. Typical performance applies only to the configuration as shipped. The MC145192EVK is shipped with VCC $=3 \mathrm{~V}$ and VPD $=5 \mathrm{~V}$. The MC145202EVK is shipped with $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$ and $\mathrm{VPD}=5 \mathrm{~V}$.

Supply Voltage (J6)	$11.5-12.5 \mathrm{~V}$
Supply Current (J6) (Note 1)	120 mA
Available Current (Note 2)	60 mA
Frequency Range ('192) (Note 3)	$733-743 \mathrm{MHz}$
Frequency Range ('202) (Note 3)	$1466-1486 \mathrm{MHz}$
Reference Frequency	14.4 MHz
Temperature Stability (- 30${ }^{\circ} \mathrm{C}$ to + 85	
$\left.{ }^{\circ} \mathrm{C}\right)$	$< \pm 2 \mathrm{ppm}$
TCXO Aging	$< \pm 1 \mathrm{ppm} /$ year
Step Size ('192)	100 kHz
Step Size ('202)	200 kHz
Power Output	$4.5-7.5 \mathrm{dBm}$
2nd Harmonic Level ('192)	$<-18 \mathrm{~dB}$
Fundamental Level ('202)	$<-23 \mathrm{~dB}$
3rd Harmonic Level	$<-18 \mathrm{~dB}$
Frequency Accuracy ('192)	$\pm 1.5 \mathrm{kHz}$
Frequency Accuracy ('202)	$\pm 3.0 \mathrm{kHz}$
Reference Sidebands	-70 dB
Phase Noise (100 Hz, '192)	$-70 \mathrm{dBc/Hz}$
Phase Noise (100 Hz, '202)	$-69 \mathrm{dBc/Hz}$
Phase Noise (10 kHz, '192) (Note 4)	$-86 \mathrm{dBc/Hz}$
Phase Noise (10 kHz, '202) (Note 4)	$-90 \mathrm{dBc/Hz}$
Switching Time (Note 5)	2.6 ms

NOTES:

1. Supply current is current the board requires without user modifications.
2. Available current is the sum of currents available to the user (in the prototype area) from the 5 V and 8.5 V supply. The 12 V supply is not regulated. Current at 12 V is limited by the external power supply. If the on-board VCO and amplifier are disconnected from the power bus, more current can be drawn in the prototype area. The current flowing into U3 (the 8.5 V regulator) should not exceed 180 mA . This will limit temperature rise in U3.
3. Frequency ranges require use of the 5 V default charge pump supply voltage.
4. 10 kHz phase noise is limited by the PLL device noise. For low noise designs, the loop bandwidth is made more narrow and the VCO is relied upon to provide the 10 kHz phase noise. This can be seen on the EVKs since the VCO has much lower noise.
5. 10 MHz step, within $\pm 1 \mathrm{kHz}$ of final frequency ('192).

20 MHz step, within $\pm 2 \mathrm{kHz}$ of final frequency ('202).

SUPPORT MATERIAL

To provide further information, the following documents are included:

1. Schematic diagram of '192/202EVK.
2. Separate Bill of Materials for each board.
3. Parts layout diagram.
4. Mechanical drawing of board.
5. MC145192 and MC145202 data sheets.
6. Printer port diagram.
7. Typical signal plots for each type of EVK.

PRODUCTION TEST

After assembly is complete, the following alignment and test is performed on '192EVK (or '202EVK):

1. The control program is started in single board '190EVK ('200EVK) mode.
2. L menu item is selected.
3. Power is applied to the board. DIP switch section 1 is closed circuit with all others being open circuit.
4. After attaching computer cable, menu item I is selected.
5. Trim resistor VR1 is adjusted to obtain an output frequency at J8 of $740.999-741.001 \mathrm{MHz}$ (1481.998 - 1482.002 MHz).
6. Voltage at the control voltage test point is measured. It must be $2.5-3.1 \mathrm{~V}$.
7. When testing more than 1 board, steps $3-6$ are repeated.

If in step 5 it isn't possible to obtain a signal on frequency, menu item P should be selected and the correct printer port address entered. Menu item I would then be selected to reload the data.

BOARD OPERATION

A computer is connected to the DB- 25 connector J5. Data is output from the printer port. The printer card is in slot 0 using the default address in the control program. Data is sent to the PLL device (U1) through the DIP switch (S1), and 74HCT241 buffer (U5). D2, D3, D4, R19, R20, and R21 are in the data path between the 74HCT241 and PLL devices. This limits the high level output voltage of the buffer. Voltage on the PLL device inputs must not be greater than 0.5 V above VCC. A '192/202 PLL has three output lines which are routed through a 74LS126 line driver (U2) to the computer.

U5, the 74HCT241, provides isolation, logic translation and a turn-on delay for PLL input lines. Logic translation is needed from the TTL levels on the printer port to the CMOS levels on the '192/202 inputs. Turn-on delay is used to ensure the power-on reset functions properly. The enable line to the PLL must be held low during power-up.

A 12 V power supply should be used to power the board at J6 (Augat 2SV-02 connector). The 2SV-02 will accept 18-24 AWG bare copper power leads. No tools are needed for connection. If power is properly connected, LED D2 will be lit.

Power passes from J6 to U3 (LM317 regulator) configured as an 8.5 V regulator. Both boards use 8.5 V to power the VCO and RF amplifier. Regulators U 4 and U 7 use the 8.5 V supply to produce 3 V and 5 V . The '192 always uses 3 V to power logic and 5 V to power the charge pump, while the '202 can have either power both the logic and charge pump. J3 and J4 are jumpers which select voltages for the logic and charge pump supplies. U4 and U7 are cascaded with U3 to equalize their individual voltage drops.

The PLL loop is composed of the PLL device (U1), $733-743 \mathrm{MHz}$ VCO (M1), passive loop filter (R11, R12, C4, C5, C6) and second harmonic filter amplifier (U6). A passive loop filter was used to keep the
design simple, reduce noise, and reduce the quantity of traces susceptible to stray pickup. About 56 dB rejection of fundamental and 23 dB gain is provided by the harmonic filter amplifier. This allows the '202 to lock at $1466-1486 \mathrm{MHz}$.

A single VCO model is used for both boards. It is an internal Motorola part which is not sold for other applications. The '192 operates at half the output frequency and step size of the '202. This allows the same loop filter components to be used. RF is fed to the PLL chip Fin input through voltage dividers R14 and R10. These two resistors terminate the PLL chip RF input with 50 ohms and provide isolation.

Both boards use a phase detector current of 2 mA . J 1 and J 2 are removable jumpers and cut traces. They are used as connection points for a current measurement of VPD or VCC. A potentiometer VR1 is used to set M2 (14.4 MHz TCXO) on frequency.

COMPONENTS UNIQUE TO EACH EVK

Components that are not the same on all EVKs are given in the following table:

	'192EVK	'202EVK
U1	MC145192	MC145202
R2	$18 \mathrm{k} \Omega$	$3.9 \mathrm{k} \Omega$
R8	0Ω	Not Used
C22	Not Used	1.0 pF
J3	3 V	5 V

EXTERNAL REFERENCE INPUT

As shipped, all boards are configured for a 14.4 MHz TCXO (supplied). To use an external reference, disconnect J13 and connect J9. Use a reference signal at J10 which complies with data sheet requirements. Then modify the reference frequency in the program main menu to reflect the changes made ([F] menu item).

DATA TRANSFER FROM COMPUTER TO EVK

To control the serial input EVK with the parallel printer port, a conversion is done. Printer cards are designed to output eight bits through eight lines. A bit mask is used to obtain the bit combination for the three required output lines (Data, Clock, Load). As bytes are sent to the printer card in sequence, it appears to be a serial transfer. The printer port is used because data transfer using the serial port is much slower. A standard IBM PC can support a parallel port data rate of 4.77 MHz .

IBM PCs and compatibles can accept up to three printer port cards. These ports are called LPT1, LPT2, and LPT3. Each printer card has jumpers or DIP switches on it to set a unique address. Two sets of addresses are in common use. One set applies to IBM PC XT, AT, and clones. The other is for the PS 2 line. To load data into the EVK, the correct address must be selected. The program default is $\$ 278$, which is LPT1 in a clone. If $\$ 278$ is not the address in use, it must be modified by entering the O menu item in the main menu. All allowed addresses given in hexadecimal are as follows:

Label	IBM PC and Clones	PS 2
LPT1	278	$3 B C$
LPT2	378	378
LPT3	$3 B C$	278

Up to three EVK boards can operate independently from one printer port. All lines on the printer port are connected to every EVK. Even with three boards operating, only three output lines (Clock, Data and Load) from the printer card are used. If two boards are controlled together, data for the second board is received from the Output A of the first. Output A is a configurable output on '192/202 devices, which in this case is used to shift data through chip 1 into chip 2. Output A and Data are connected using a printer port input line. This was done to avoid connecting extra wires. Fortunately not all port input lines are needed for computer input. Load and Clock are common to both boards.

A three-board cascade is handled similarly to a two-board cascade. Out A on the first board is fed to Data on the second. Out A on the second connects to Data on the third. Instructing the program on the quantity of boards connected together allows it to modify the number of bits sent.

All boards have a DIP switch S1 which gives each a unique address. The configuration menu is used to tell the program what type of board is connected at a board address. Switch positions for all possible addresses are given in Figure 2.

Single Board Operation

Two- or Three-Board Cascade

Figure 2. Switch Positions

In Figure 2, DIP switch sections 6, 7, and 8 allow the computer to read Out A, Out B or Lock Detect from the PLL device. Each of the inputs can only be read on one board at a time, but each item could be read on a different board. In a three-board cascade, Out A could be read from the first board, Out B from the second, and Lock Detect from the third. There is no way to determine in software the board address of a particular input. The control program does not make use of these inputs. Pin assignment on the printer port connector is:

Label	Pin Number
Out A	12
Out B	13
Lock Detect	15

PRINTER PORT CONFIGURATION

Printer port outputs on an IBM PC or clone use TTL-LS logic levels. Inputs are one TTL-LS load. Signal lines can be used for any purpose. The standard names, direction of data flow, true and inverted data are shown in Figure 3.

Figure 3. Printer Port Data Lines

Pin numbers for the port connector are shown in Figure 4.

Figure 4. DB-25 Male Connector

SECTION 2 - SOFTWARE SUMMARY

INTRODUCTION

The MC145xxx EVK control program is used to program all PLL evaluation kits. It will simultaneoulsy control up to three different boards independently from one printer port. All features of the PLL device may be accessed. Default frequencies can be modified to allow use of different channel spacings and VCOs.

User input errors are detected and appropriate messages are displayed.
To show the format of the program, a sample screen is shown below:

Screen \#2 'Select from the available options'

```
Welcome to MC145xxx EVK Demonstration Program, rev 2.5
    Select from the available options
Available Boards - Current target board is: A, Mc145190
    Brd [A]!: MC145190 Brd [-]!: N/A Brd [-]!: N/A
MC145xxx Frequency Commands - Current Output Frequency is 746 MHz
    [L]! Set to low freq [W] Change default low freq.
    [M]! Set to med. freq [Y] Change default med. freq.
    [H]! Set to high freq. 751 MHz [Z] Change default high freq.
    [U]! Step frequency up by step size [O] Set PLL output frequency
    [D]! Step frequency down by step size [F] Set REFin freq. & channel spacing
MC145xxx Additional Commands
    [E] Set function of output A [N] Change C Register
    [R] Set crystal/reference mode - Current mode is Ref. mode, REFout low
Initialization/System Setup Commands:
    [P] Set output port address - Current address is $278
    [G] Change board definitions
    [I] Initialize board(s), Write all registers
                            [X]! Terminate demonstration program. [?]! View help screen.
```


APPENDIX

MC145192/202 EVK PLL and BUS Interface Rev. 2

NOTES：
1．Default unit for capacitance is pF ．
2．Default unit for resistance is ohms
3．Board material is $1 / 16^{\prime \prime}$ thick G10．
4．Test points are 0.04 ＂diameter plated through holes．
5．U1，R2，R8，C22，J3，and J4 are different on each type of EVK．
See the manual section titled＂Components Unique to Each EVK＂．

Silkscreen Layer (Top View)

MC145192EVK Signal Plot

MC145202EVK Signal Plot

RL $10.0 \mathrm{dBm} \quad 10 \mathrm{~dB} /$ Div.

2.0 GHz PLL Frequency Synthesizers

Include On-Board 64/65 Prescalers

The MC145200 and MC145201 are single-package synthesizers with serial interfaces capable of direct usage up to 2.0 GHz . A special architecture makes these PLLs very easy to program because a byte-oriented format is utilized. Due to the patented BitGrabber ${ }^{T M}$ registers, no address/steering bits are required for random access of the three registers. Thus, tuning can be accomplished via a 3-byte serial transfer to the 24-bit A register. The interface is both SPI and MICROWIRE ${ }^{\text {TM }}$ compatible.

Each device features a single-ended current source/sink phase detector output and a double-ended phase detector output. Both phase detectors have linear transfer functions (no dead zones). The maximum current of the single-ended phase detector output is determined by an external resistor tied from the Rx pin to ground. This current can be varied via the serial port.

The MC145200 features logic-level converters and high-voltage phase/ frequency detectors; the detector supply may range up to 9.5 V . The MC145201 has lower-voltage phase/frequency detectors optimized for single-supply systems of $5 \mathrm{~V} \pm 10 \%$.

Each part includes a differential RF input which may be operated in a single-ended mode. Also featured are on-board support of an external crystal and a programmable reference output. The R, A, and N counters are fully programmable. The C register (configuration register) allows the parts to be configured to meet various applications. A patented feature allows the C register to shut off unused outputs, thereby minimizing system noise and interference.

In order to have consistent lock times and prevent erroneous data from being loaded into the counters, on-board circuitry synchronizes the update of the A register if the A or N counters are loading. Similarly, an update of the R register is synchronized if the R counter is loading.

The double-buffered R register allows new divide ratios to be presented to the three counters (R, A, and N) simultaneously.

- Maximum Operating Frequency: $2000 \mathrm{MHz} @ \mathrm{~V}_{\text {in }}=200 \mathrm{mV}$ p-p
- Operating Supply Current: 12 mA Nominal
- Operating Supply Voltage Range (VDD and $V_{C C}$ Pins): 4.5 to 5.5 V
- Operating Supply Voltage Range of Phase Detectors (VPD Pin) MC145200: 8.0 to 9.5 V MC145201: 4.5 to 5.5 V
- Current Source/Sink Phase Detector Output Capability: 2 mA Maximum
- Gain of Current Source/Sink Phase/Frequency Detector Controllable via Serial Port
- Operating Temperature Range: -40 to $+85^{\circ} \mathrm{C}$
- R Counter Division Range: (1 and) 5 to 8191
- Dual-Modulus Capability Provides Total Division up to 262,143
- High-Speed Serial Interface: 4 Mbps
- OUTPUT A Pin, When Configured as Data Out, Permits Cascading of Devices
- Two General-Purpose Digital Outputs - OUTPUT A: Totem-Pole (Push-Pull) OUTPUT B: Open-Drain
- Power-Saving Standby Feature with Orderly Recovery for Minimizing Lock Times, Standby Current: $30 \mu \mathrm{~A}$
- Evaluation Kit Available (Part Numbers MC145200EVK and MC145201EVK)
- See Application Note AN1253/D for Low-Pass Filter Design, and AN1277/D for Offset Reference PLLs for Fine Resolution or Fast Hopping

BLOCK DIAGRAM

MAXIMUM RATINGS* (Voltages Referenced to GND, unless otherwise stated)

Symbol	Parameter	Value	Unit
V_{CC}, VDD	DC Supply Voltage (Pins 12 and 14)	-0.5 to +6.0	V
$V_{P D}$	$\begin{array}{ll}\text { DC Supply Voltage (Pin 5) } & \text { MC145200 } \\ & \text { MC145201 }\end{array}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{DD}}-0.5 \text { to }+9.5 \\ & \mathrm{~V}_{\mathrm{DD}}-0.5 \text { to }+6.0 \end{aligned}$	V
$\mathrm{V}_{\text {in }}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$\mathrm{V}_{\text {out }}$	DC Output Voltage (except OUTPUT B, PD ${ }_{\text {out }}$, $\phi \mathrm{R}$, $\phi \mathrm{V}$)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$V_{\text {out }}$	DC Output Voltage (OUTPUT B, PD ${ }_{\text {out }}$, ϕ, , $\phi \mathrm{V}$)	-0.5 to $\mathrm{V}_{\mathrm{PD}}+0.5$	V
lin, IPD	DC Input Current, per Pin (Includes VPD)	± 10	mA
Iout	DC Output Current, per Pin	± 20	mA
IDD	DC Supply Current, V_{DD} and GND Pins	± 30	mA
PD	Power Dissipation, per Package	300	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature, 1 mm from Case for 10 seconds	260	${ }^{\circ} \mathrm{C}$

[^29]This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V , Voltages Referenced to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, unless otherwise stated;
MC145200: $\mathrm{V}_{\mathrm{PD}}=8.0$ to 9.5 V ; MC145201: $\mathrm{V}_{\mathrm{PD}}=4.5$ to 5.5 V with $\mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{PD}}$.)

Symbol	Parameter	Test Condition	Guaranteed Limit	Unit
V_{IL}	Maximum Low-Level Input Voltage ($\mathrm{D}_{\mathrm{in}}, \mathrm{CLK}, \mathrm{ENB}, \mathrm{REF}_{\text {in }}$)	Device in Reference Mode, DC Coupled	$0.3 \times \mathrm{V}_{\text {D }}$	V
V_{IH}	Minimum High-Level Input Voltage ($\mathrm{D}_{\mathrm{in}}, \mathrm{CLK}, \mathrm{ENB}, \mathrm{REF}_{\mathrm{in}}$)	Device in Reference Mode, DC Coupled	$0.7 \times \mathrm{V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\text {hys }}$	Minimum Hysteresis Voltage (CLK, ENB)		300	mV
VOL	Maximum Low-Level Output Voltage (REF ${ }_{\text {out }}$, OUTPUT A)	Iout $=20 \mu \mathrm{~A}$, Device in Reference Mode	0.1	V
V_{OH}	Minimum High-Level Output Voltage (REF $_{\text {out }}$, OUTPUT A)	Iout $=-20 \mu \mathrm{~A}$, Device in Reference Mode	$\mathrm{V}_{\mathrm{DD}}-0.1$	V
${ }^{\text {IOL }}$	Minimum Low-Level Output Current (REF ${ }_{\text {out }}, \mathrm{LD}, \phi \mathrm{R}, \phi \mathrm{V}$)	$\mathrm{V}_{\text {out }}=0.4 \mathrm{~V}$	0.36	mA
${ }^{\mathrm{I}} \mathrm{OH}$	Minimum High-Level Output Current (REF ${ }_{\text {out }}, \mathrm{LD}, \phi \mathrm{R}, \phi \mathrm{V}$)	$\begin{aligned} & V_{\text {out }}=V_{D D}-0.4 \mathrm{~V} \text { for } R E F_{\text {out }}, L D \\ & V_{\text {out }}=V_{P D}-0.4 \mathrm{~V} \text { for } \phi \mathrm{R}, \phi \mathrm{~V} \end{aligned}$	-0.36	mA
${ }^{\text {IOL }}$	Minimum Low-Level Output Current (OUTPUT A, OUTPUT B)	$\mathrm{V}_{\text {out }}=0.4 \mathrm{~V}$	1.0	mA
${ }^{\mathrm{I}} \mathrm{OH}$	Minimum High-Level Output Current (OUTPUT A Only)	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DD}}-0.4 \mathrm{~V}$	-0.6	mA
lin	Maximum Input Leakage Current ($\mathrm{D}_{\mathrm{in}}, \mathrm{CLK}, \mathrm{ENB}, \mathrm{REF}_{\mathrm{in}}$)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {DD }}$ or GND, Device in XTAL Mode	± 1.0	$\mu \mathrm{A}$
lin	Maximum Input Current ($\mathrm{REF}_{\mathrm{in}}$)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {DD }}$ or GND, Device in Reference Mode	± 150	$\mu \mathrm{A}$
Ioz	Maximum Output Leakage Current ($\mathrm{PD}_{\text {out }}$)	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{PD}}-0.5$ or 0.5 V MC145200 Output in High-Impedance State MC145201	$\begin{aligned} & \pm 150 \\ & \pm 200 \end{aligned}$	nA
IOZ	Maximum Output Leakage Current (OUTPUT B)	$V_{\text {out }}=V_{\text {PD }}$ or GND, Output in High-Impedance State	± 10	$\mu \mathrm{A}$
IstBY	Maximum Standby Supply Current ($\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{PD}}$ Pins)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{DD}}$ or GND; Outputs Open; Device in Standby Mode, Shut-Down Crystal Mode or REF out-Static-Low Reference Mode; OUTPUT B Controlling V_{CC} per Figure 22	30	$\mu \mathrm{A}$
IPD	$\begin{aligned} & \text { Maximum Phase Detector } \\ & \text { Quiescent Current (VPD Pin) } \end{aligned}$	Bit C6 = High Which Selects Phase Detector A, PD out $=$ Open, $\mathrm{PD}_{\text {out }}=$ Static Low or High, Bit C4 = Low Which is not Standby, $\mathrm{I}_{\mathrm{Rx}}=113 \mu \mathrm{~A}$	600	$\mu \mathrm{A}$
		Bit C6 = Low Which Selects Phase Detector B, ϕ R and $\phi \mathrm{V}=$ Open, $\phi \mathrm{R}$ and $\phi \mathrm{V}=$ Static Low or High, Bit C4 = Low Which is not Standby	30	
${ }^{1} \mathrm{~T}$	Total Operating Supply Current $\left(V_{D D}+V_{P D}+V_{C C} \text { Pins }\right)$	$\mathrm{f}_{\text {in }}=2.0 \mathrm{GHz} ; \mathrm{REF}_{\text {in }}=13 \mathrm{MHz} @ 1 \mathrm{Vp-p} \text {; }$ OUTPUT A = Inactive and No Connect; REF ${ }_{\text {out }}, \phi V, \phi R, P D_{\text {out }}, L D=$ No Connect; $D_{\text {in }}$, ENB, CLK $=V_{D D}$ or GND, Phase Detector B Enabled (Bit C6 = Low)	*	mA

* The nominal value $=12 \mathrm{~mA}$. This is not a guaranteed limit.

ANALOG CHARACTERISTICS—CURRENT SOURCE/SINK OUTPUT—PDout
($\mathrm{l}_{\text {out }} \leq 2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{PD}}$. Voltages Referenced to GND)

Parameter	Test Condition	VPD	Guaranteed Limit	Unit
Maximum Source Current Variation	MC145200: $\mathrm{V}_{\text {out }}=0.5 \times \mathrm{V}_{\text {PD }}$	8.0	± 20	\%
		9.5	± 20	
	MC145201: $\mathrm{V}_{\text {out }}=0.5 \times \mathrm{V}_{\text {PD }}$	4.5	± 20	\%
		5.5	± 20	
Maximum Sink-vs-Source Mismatch (Note 3)	MC145200: $\mathrm{V}_{\text {out }}=0.5 \times \mathrm{V}_{\text {PD }}$	8.0	12	\%
		9.5	12	
	MC145201: $\mathrm{V}_{\text {out }}=0.5 \times \mathrm{V}_{\text {PD }}$	4.5	12	\%
		5.5	12	
Output Voltage Range (Note 3)	MC145200: $\mathrm{I}_{\text {out }}$ variation $\leq 20 \%$	8.0	0.5 to 7.5	V
		9.5	0.5 to 9.0	
	MC145201: Iout variation $\leq 20 \%$	4.5	0.5 to 4.0	V
		5.5	0.5 to 5.0	

NOTES:

1. Percentages calculated using the following formula: (Maximum Value - Minimum Value)/Maximum Value.
2. See Rx Pin Description for external resistor values.
3. This parameter is guaranteed for a given temperature within -40 to $+85^{\circ} \mathrm{C}$.

AC INTERFACE CHARACTERISTICS (VDD $=4.5$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$;
MC145200: $\mathrm{V}_{\mathrm{PD}}=8.0$ to 9.5 V ; MC145201: $\mathrm{V}_{\mathrm{PD}}=4.5$ to 5.5 V with $\mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{PD}}$)

Symbol	Parameter	Figure No.	Guaranteed Limit	Unit
${ }_{\mathrm{f}} \mathrm{ll}$	Serial Data Clock Frequency (Note: Refer to Clock t_{w} below)	1	dc to 4.0	MHz
tPLH, tPHL	Maximum Propagation Delay, CLK to OUTPUT A (Selected as Data Out)	1,5	105	ns
tPLH, tPHL	Maximum Propagation Delay, ENB to OUTPUT A (Selected as Port)	2, 5	100	ns
tPZL, tPLZ	Maximum Propagation Delay, ENB to OUTPUT B	2, 6	120	ns
${ }^{\text {t }}$ LLH, ${ }^{\text {t }}$ ¢HL	Maximum Output Transition Time, OUTPUT A and OUTPUT B; tTHLonly, on OUTPUT B	1,5,6	100	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance - $\mathrm{D}_{\text {in }}$, ENB, CLK,		10	pF

TIMING REQUIREMENTS

($\mathrm{V}_{\mathrm{DD}}=4.5$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$ unless otherwise indicated)

Symbol	Parameter	Figure No.	Guaranteed Limit	Unit
$\mathrm{t}_{\text {su }}, \mathrm{t}_{\mathrm{h}}$	Minimum Setup and Hold Times, Din vs CLK	3	20	ns
$\mathrm{t}_{\mathrm{su}}, \mathrm{t}_{\mathrm{h}}, \mathrm{t}_{\mathrm{rec}}$	Minimum Setup, Hold and Recovery Times, ENB vs CLK	4	100	ns
t_{w}	Minimum Pulse Width, ENB	4	$*$	cycles
t_{w}	Minimum Pulse Width, CLK	1	125	ns
$\mathrm{t}_{\mathrm{r},}, \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times, CLK	1	100	$\mu \mathrm{~s}$

*The minimum limit is 3 REF $_{\text {in }}$ cycles or $195 f_{\text {in }}$ cycles, whichever is greater.

SWITCHING WAVEFORMS

Figure 1.

Figure 3.

*Includes all probe and fixture capacitance.

Figure 5. Test Circuit

Figure 2.

Figure 4.

*Includes all probe and fixture capacitance.

Figure 6. Test Circuit

LOOP SPECIFICATIONS ($\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V unless otherwise indicated, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Figure No.	GuaranteedOperating Range		Unit
				Min	Max	
$\mathrm{V}_{\text {in }}$	Input Voltage Range, $\mathrm{f}_{\text {in }}$	$500 \mathrm{MHz} \leq \mathrm{f}_{\text {in }} \leq 2000 \mathrm{MHz}$	7	200	1500	$\mathrm{mV} \mathrm{p}-\mathrm{p}$
${ }^{\text {fref }}$	Input Frequency, REFin MC145200 Externally Driven in Reference Mode MC145201	$\begin{aligned} & V_{\text {in }} \geq 400 \mathrm{mV} \mathrm{p}-\mathrm{p} \\ & V_{\text {in }} \geq 1 \mathrm{Vp-p} \\ & V_{\text {in }} \geq 400 \mathrm{mV} \mathrm{p}-\mathrm{p} \\ & V_{\text {in }} \geq 1 \mathrm{Vp-p} \end{aligned}$	8	$\begin{gathered} \hline 13 \\ 6^{*} \\ 12 \\ 4.5^{*} \end{gathered}$	$\begin{aligned} & 27 \\ & 27 \\ & 27 \\ & 27 \end{aligned}$	MHz
${ }^{\text {fXTAL }}$	Crystal Frequency, Crystal Mode	C1 $\leq 30 \mathrm{pF}$, C2 $\leq 30 \mathrm{pF}$, Includes Stray Capacitance	9	2	15	MHz
$\mathrm{f}_{\text {out }}$	Output Frequency, REF ${ }_{\text {out }}$	$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$	10, 12	dc	10	MHz
f	Operating Frequency of the Phase Detectors			dc	2	MHz
t_{w}	Output Pulse Width, LD, ϕ R, and $\phi \mathrm{V}$, — MC145200, MC145201	f_{R} in Phase with $\mathrm{fV}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, $V_{P D}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	11, 12	17	85	ns
$\begin{aligned} & \hline \text { tTLH, } \\ & \text { tTHL } \end{aligned}$	Output Transition Times, LD, ϕ V, and ϕ R — MC145201	$\begin{aligned} & C_{L}=50 \mathrm{pF}, \mathrm{~V}_{P D}=5.5 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{C C}=5.0 \mathrm{~V} \end{aligned}$	11, 12	-	65	ns
$\mathrm{C}_{\text {in }}$	Input Capacitance$f_{\text {in }}$ $R E F_{\text {in }}$			-	$\begin{gathered} \hline \text { TBD } \\ 5 \end{gathered}$	pF

*If lower frequency is desired, use wave shaping or higher amplitude sinusoidal signal.

Figure 7. Test Circuit

Figure 9. Test Circuit-Crystal Mode

Figure 8. Test Circuit-Reference Mode

Figure 10. Switching Waveform

Figure 11. Switching Waveform

MC145200/MC145201
 NORMALIZED INPUT IMPEDANCE AT f in - SERIES FORMAT ($\mathrm{R}+\mathrm{jX}$)
 (500 MHz to 2 GHz)

Marker	Frequency $(\mathbf{G H z})$	Resistance (Ω)	Capacitive Reactance (Ω)	Capacitance (pF)
1	0.5	59.0	-240	1.33
2	1	34.7	-118	1.35
3	1.5	28.3	-68.7	1.54
4	2	37.4	-45.7	1.74

PIN DESCRIPTIONS

DIGITAL INTERFACE PINS

$D_{\text {in }}$
 Serial Data Input (Pin 19)

The bit stream begins with the most significant bit (MSB) and is shifted in on the low-to-high transition of CLK. The bit pattern is 1 byte (8 bits) long to access the C or configuration register, 2 bytes (16 bits) to access the first buffer of the R register, or 3 bytes (24 bits) to access the A register (see Table 1). The values in the C, R, and A registers do not change during shifting because the transfer of data to the registers is controlled by ENB.

CAUTION

The value programmed for the N -counter must be greater than or equal to the value of the A -counter.

The 13 least significant bits (LSBs) of the R register are double-buffered. As indicated above, data is latched into the first buffer on a 16-bit transfer. (The 3 MSBs are not doublebuffered and have an immediate effect after a 16-bit transfer.) The second buffer of the R register contains the 13 bits for the R counter. This second buffer is loaded with the contents of the first buffer when the A register is loaded (a 24-bit transfer). This allows presenting new values to the R, A, and N counters simultaneously. If this is not required, then the 16-bit transfer may be followed by pulsing ENB low with no signal on the CLK pin. This is an alternate method of transferring data to the second buffer of the R register (see Figure 17).

The bit stream needs neither address nor steering bits due to the innovative BitGrabber registers. Therefore, all bits in the stream are available to be data for the three registers. Random access of any register is provided. That is, the registers may be accessed in any sequence. Data is retained in the registers over a supply range of 4.5 to 5.5 V . The formats are shown in Figures 15, 16, and 17.

Din typically switches near 50% of $V_{D D}$ to maximize noise immunity. This input can be directly interfaced to CMOS devices with outputs guaranteed to switch near rail-to-rail. When interfacing to NMOS or TTL devices, either a level shifter (MC74HC14A, MC14504B) or pull-up resistor of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ must be used. Parameters to consider when sizing the resistor are worst-case IOL of the driving device, maximum tolerable power consumption, and maximum data rate.

Table 1. Register Access
(MSBs are shifted in first; C0, RO, and A0 are the LSBs)

Number of Clocks	Accessed Register	Bit Nomenclature
8	C Register	$\mathrm{C} 7, \mathrm{C} 6, \mathrm{C} 5, \ldots, \mathrm{C} 0$
16	R Register	R15, R14, R13, ..., R0
24	A Register	A23, A22, A21, ..., A0
Other Values ≤ 32	See Figure 13	
Values >32	See Figures	
$22-25$		

CLK
 Serial Data Clock Input (Pin 18)

Low-to-high transitions on CLK shift bits available at the Din pin, while high-to-low transitions shift bits from OUTPUT A (when configured as Data Out, see Pin 16). The $24-1 / 2-$ stage shift register is static, allowing clock rates down to dc in a continuous or intermittent mode.

Eight clock cycles are required to access the C register. Sixteen clock cycles are needed for the first buffer of the R register. Twenty-four cycles are used to access the A register. See Table 1 and Figures 15, 16, and 17. The number of clocks required for cascaded devices is shown in Figures 24 through 26.

CLK typically switches near 50% of VDD and has a Schmitt-triggered input buffer. Slow CLK rise and fall times are allowed. See the last paragraph of $\mathbf{D}_{\text {in }}$ for more information.

NOTE

To guarantee proper operation of the power-on reset (POR) circuit, the CLK pin must be held at GND (with ENB being a don't care) or ENB must be held at the potential of the $V+\mathrm{pin}$ (with CLK being a don't care) during power-up. As an alternative, the bit sequence of Figure 13 may be used.

ENB

Active Low Enable Input (Pin 17)

This pin is used to activate the serial interface to allow the transfer of data to/from the device. When ENB is in an inactive high state, shifting is inhibited and the port is held in the initialized state. To transfer data to the device, ENB (which must start inactive high) is taken low, a serial transfer is made via $D_{\text {in }}$ and CLK, and ENB is taken back high. The low-to-high transition on ENB transfers data to the C or A registers and first buffer of the R register, depending on the data stream length per Table 1.

NOTE

Transitions on ENB must not be attempted while CLK is high. This puts the device out of synchronization with the microcontroller. Resynchronization occurs when ENB is high and CLK is low.
This input is also Schmitt-triggered and switches near 50% of VDD, thereby minimizing the chance of loading erroneous data into the registers. See the last paragraph of $\mathrm{D}_{\text {in }}$ for more information.

For POR information, see the note for the CLK pin.

OUTPUT A

Configurable Digital Output (Pin 16)

OUTPUT A is selectable as $\mathrm{f}_{\mathrm{R}}, \mathrm{fV}$, Data Out, or Port. Bits A22 and A23 in the A register control the selection; see Figure 16.

If A23 = A22 = high, OUTPUT A is configured as f_{R}. This signal is the buffered output of the $13-$ stage R counter. The f_{R} signal appears as normally low and pulses high, and can be used to verify the divide ratio of the R counter. This ratio extends from 5 to 8191 and is determined by the binary value loaded into bits R0 through R12 in the R register. Also, direct access to the phase detectors via the REFin pin is allowed by choosing a divide value of 1 (see Figure 17). The maximum frequency at which the phase detectors operate is 2 MHz . Therefore, the frequency of f_{R} should not exceed 2 MHz .

If A23 = high and A22 = low, OUTPUT A is configured as fV . This signal is the buffered output of the 12-stage N counter. The fv signal appears as normally low and pulses high, and can be used to verify the operation of the prescaler, A counter, and N counter. The divide ratio between the fin input and the fV signal is $N \times 64+A$. N is the divide ratio of the N counter and A is the divide ratio of the A counter. These ratios are determined by bits loaded into the A register. See Figure 16. The maximum frequency at which the phase detectors operate is 2 MHz . Therefore, the frequency of $\mathrm{f} V$ should not exceed 2 MHz .

If A23 = low and A22 = high, OUTPUT A is configured as Data Out. This signal is the serial output of the 24-1/2-stage shift register. The bit stream is shifted out on the high-to-low transition of the CLK input. Upon power up, OUTPUT A is automatically configured as Data Out to facilitate cascading devices.

If A23 = A22 = low, OUTPUT A is configured as Port. This signal is a general-purpose digital output which may be used as an MCU port expander. This signal is low when the Port bit (C1) of the C register is low, and high when the Port bit is high.

OUTPUT B

Open-Drain Digital Output (Pin 15)

This signal is a general-purpose digital output which may be used as an MCU port expander. This signal is low when the Out B bit (C0) of the C register is low. When the Out B bit is high, OUTPUT B assumes the high-impedance state. OUTPUT B may be pulled up through an external resistor or active circuitry to any voltage less than or equal to the potential of the VPD pin. Note: the maximum voltage allowed on the VPD pin is 9.5 V for the MC145200 and 5.5 V for the MC145201.

Upon power-up, power-on reset circuitry forces OUTPUT B to a low level.

REFERENCE PINS

REFin and REF ${ }_{\text {out }}$ Reference Input and Reference Output (Pins 20 and 1)

Configurable pins for a Crystal or an External Reference. This pair of pins can be configured in one of two modes: the crystal mode or the reference mode. Bits R13, R14, and R15 in the R register control the modes as shown in Figure 17.

In crystal mode, these pins form a reference oscillator when connected to terminals of an external parallel-resonant crystal. Frequency-setting capacitors of appropriate values as recommended by the crystal supplier are connected from each of the two pins to ground (up to a maximum of 30 pF each, including stray capacitance). An external resistor of $1 \mathrm{M} \Omega$ to $15 \mathrm{M} \Omega$ is connected directly across the pins to ensure linear operation of the amplifier. The device is designed to operate with crystals up to 15 MHz ; the required connections are shown in Figure 8. To turn on the oscillator, bits R15, R14, and R13 must have an octal value of one (001 in binary, respectively). This is the active-crystal mode shown in Figure 17. In this mode, the crystal oscillator runs and the R Counter divides the crystal frequency, unless the part is in standby. If the part is placed in standby via the C register, the oscillator runs, but the R counter is stopped. However, if bits R15 to R13 have a value of 0, the oscillator is stopped, which saves additional power. This is the shut-
down crystal mode (shown in Figure 17) and can be engaged whether in standby or not.

In the reference mode, REFin (Pin 20) accepts a signal up to 27 MHz from an external reference oscillator, such as a TCXO. A signal swinging from at least the V_{IL} to V_{IH} levels listed in the Electrical Characteristics table may be directly coupled to the pin. If the signal is less than this level, ac coupling must be used as shown in Figure 8. Due to an onboard resistor which is engaged in the reference modes, an external biasing resistor tied between REF in and $R E F_{\text {out }}$ is not required.

With the reference mode, the REF out $^{\text {pin }}$ is configured as the output of a divider. As an example, if bits R15, R14, and R13 have an octal value of seven, the frequency at REF out is $^{\text {is }}$ the REFin frequency divided by 16. In addition, Figure 17 shows how to obtain ratios of eight, four, and two. A ratio of one-to-one can be obtained with an octal value of three. Upon power up, a ratio of eight is automatically initialized. The maximum frequency capability of the REF out pin is 10 MHz . Therefore, for REFin frequencies above 10 MHz , the one-to-one ratio may not be used. Likewise, for REFin frequencies above 20 MHz , the ratio must be more than two.

If REF ${ }_{\text {out }}$ is unused, an octal value of two should be used for R15, R14, and R13 and the REF out pin should be floated. A value of two allows REFin to be functional while disabling REF $_{\text {out }}$, which minimizes dynamic power consumption and electromagnetic interference (EMI).

LOOP PINS

$f_{i n}$ and $f_{i n}$
 Frequency Inputs (Pins 11 and 10)

These pins are frequency inputs from the VCO. These pins feed the on-board RF amplifier which drives the 64/65 prescaler. These inputs may be fed differentially. However, they usually are used in a single-ended configuration (shown in Figure 7). Note that $f_{i n}$ is driven while $\mathrm{f}_{\text {in }}$ must be tied to ground via a capacitor.

Motorola does not recommend driving fin while terminating $f_{\text {in }}$ because this configuration is not tested for sensitivity. The sensitivity is dependent on the frequency as shown in the Loop Specifications table.

PDout

Single-Ended Phase/Freq. Detector Output (Pin 6)
This is a three-state current-source/sink output for use as a loop error signal when combined with an external low-pass filter. The phase/frequency detector is characterized by a linear transfer function (no dead zone). The operation of the phase/ frequency detector is described below and is shown in Figure 18.

POL bit (C7) in the C register = low (see Figure 15)
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading $f R$: currentsinking pulses from a floating state
Frequency of $f_{V}<f_{R}$ or Phase of $f V$ Lagging f_{R} : currentsourcing pulses from a floating state
Frequency and Phase of $f V=f_{R}$: essentially a floating state; voltage at pin determined by loop filter
POL bit (C7) = high
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading f_{R} : currentsourcing pulses from a floating state
Frequency of $\mathrm{f}_{\mathrm{V}}<\mathrm{f}_{\mathrm{R}}$ or Phase of f V Lagging f_{R} : currentsinking pulses from a floating state

Frequency and Phase of $\mathrm{fV}_{\mathrm{V}}=\mathrm{f}_{\mathrm{R}}$: essentially a floating state; voltage at pin determined by loop filter
This output can be enabled, disabled, and inverted via the C register. If desired, $\mathrm{PD}_{\text {out }}$ can be forced to a floating state by utilization of the disable feature in the C register (bit C 6). This is a patented feature. Similarly, $\mathrm{PD}_{\text {out }}$ is forced to the floating state when the device is put into standby (STBY bit $\mathrm{C} 4=$ high $)$.

The $\mathrm{PD}_{\text {out }}$ circuit is powered by VPD. The phase detector gain is controllable by bits C3, C2, and C1: gain (in amps per radian $=P D_{\text {out }}$ current divided by 2π.

$\phi \mathbf{R}$ and $\phi \mathbf{V}$ (Pins 3 and 4)
 Double-Ended Phase/Frequency Detector Outputs

These outputs can be combined externally to generate a loop error signal. Through use of a Motorola patented technique, the detector's dead zone has been eliminated. Therefore, the phase/frequency detector is characterized by a linear transfer function. The operation of the phase/frequency detector is described below and is shown in Figure 18.

POL bit (C7) in the C register = low (see Figure 15)
Frequency of $f V>f R$ or Phase of $f V$ Leading $f R: \phi V=$ negative pulses, $\phi \mathrm{R}=$ essentially high
Frequency of $\mathrm{f}_{\mathrm{V}}<\mathrm{f}_{\mathrm{R}}$ or Phase of f_{V} Lagging f_{R} : $\phi \mathrm{V}=$ essentially high, $\phi \mathrm{R}=$ negative pulses
Frequency and Phase of $f V=f R: \phi V$ and ϕR remain essentially high, except for a small minimum time period when both pulse low in phase
POL bit (C7) = high
Frequency of $f V>f R$ or Phase of $f V$ Leading $f R$: $\phi R=$ negative pulses, $\phi V=$ essentially high
Frequency of $f_{V}<f_{R}$ or Phase of f_{V} Lagging $f_{R}: \phi R=$ essentially high, $\phi \mathrm{V}=$ negative pulses
Frequency and Phase of $f V=f_{R}: \phi V$ and ϕR remain essentially high, except for a small minimum time period when both pulse low in phase
These outputs can be enabled, disabled, and interchanged via C register bits C6 or C4. This is a patented feature. Note that when disabled or in standby, $\phi \mathrm{R}$ and $\phi \mathrm{V}$ are forced to their rest condition (high state).

The $\phi \mathrm{R}$ and $\phi \vee$ output signal swing is approximately from GND to VPD.

LD
 Lock Detector Output (Pin 2)

This output is essentially at a high level with narrow lowgoing pulses when the loop is locked (f_{R} and $f V$ of the same phase and frequency). The output pulses low when fV and fR are out of phase or different frequencies. LD is the logical ANDing of ϕR and ϕV (see Figure 18).

This output can be enabled and disabled via the C register. This is a patented feature. Upon power up, on-chip initialization circuitry disables LD to a static low logic level to prevent a false "lock" signal. If unused, LD should be disabled and left open.

The LD output signal swing is approximately from GND to VDD.

Rx

External Resistor (Pin 8)

A resistor tied between this pin and GND, in conjunction with bits in the C register, determines the amount of current that the $\mathrm{PD}_{\text {out }}$ pin sinks and sources. When bits C 2 and C3 are both set high, the maximum current is obtained at $P D_{\text {out }}$; see Tables 2 and 3 for other values of current. To achieve a maximum current of 2 mA , the resistor should be about $47 \mathrm{k} \Omega$ when V_{PD} is 9 V or about $18 \mathrm{k} \Omega$ when V_{PD} is 5.0 V . See Figure 14 if lower maximum current values are desired.

When the ϕR and ϕV outputs are used, the Rx pin may be floated.

TEST POINT PINS

TEST 1

Modulus Control Signal (Pin 9)

This pin may be used in conjunction with the Test 2 pin for access to the on-board 64/65 prescaler. When Test 1 is low, the prescaler divides by 65 . When high, the prescaler divides by 64 .

CAUTION

This pin is an unbuffered output and must be floated in an actual application. This pin must be attached to an isolated pad with no trace.

TEST 2

Prescaler Output (Pin 13)

This pin may be used to access to the on-board 64/65 prescaler output.

CAUTION

This pin is an unbuffered output and must be floated in an actual application. This pin must be attached to an isolated pad with no trace.

POWER SUPPLY PINS

VDD
 Positive Power Supply (Pin 14)

This pin supplies power to the main CMOS digital portion of the device. The voltage range is +4.5 to +5.5 V with respect to the GND pin.

For optimum performance, V_{DD} should be bypassed to GND using a low-inductance capacitor mounted very close to these pins. Lead lengths on the capacitor should be minimized.

VCC
 Positive Power Supply (Pin 12)

This pin supplies power to the RF amp and 64/65 prescaler. The voltage range is +4.5 to +5.5 V with respect to the GND pin. In the standby mode, the V_{CC} pin still draws a few milliamps from the power supply. This current drain can be eliminated with the use of transistor Q1 as shown in Figure 22.

For optimum performance, V_{CC} should be bypassed to GND using a low-inductance capacitor mounted very close to these pins. Lead lengths on the capacitor should be minimized.

VPD

Positive Power Supply (Pin 5)

This pin supplies power to both phase/frequency detectors A and B. The voltage applied on this pin must be no less than the potential applied to the VDD pin. The maximum voltage can be +9.5 V with respect to the GND pin for the MC145200 and +5.5 V for the MC145201.

For optimum performance, VPD should be bypassed to GND using a low-inductance capacitor mounted very close to these pins. Lead lengths on the capacitor should be minimized.

GND

Ground (Pin 7)
Common ground.

NOTE: It may not be convenient to control the ENB or CLK pins during power up per the Pin Descriptions. If this is the case, the part may be initialized through the serial port as shown in the figure above. The sequence is similar to accessing the registers except that the CLK must remain high at least 100 ns after ENB is brought high. Note that 3 groups of 5 bits are needed.

Figure 13. Initializing the PLL through the Serial Port

MC145200
Nominal $\mathrm{PD}_{\text {out }}$ Spurious Current vs f_{R} Frequency (1 V < PD out $<\mathrm{V}_{\text {PD }}-1 \mathrm{~V}$)

$\mathbf{f}_{\mathbf{R}}$ $(\mathbf{k H z})$	Current $(\mathbf{R M S}$ nA)
10	1.6
20	5.3
50	22
100	95
200	320

MC145201
Nominal PDout Spurious Current vs f_{R} Frequency (1 V < PD ${ }_{\text {out }}<\mathrm{V}_{\mathrm{PD}}-1 \mathrm{~V}$)

$\mathbf{f}_{\mathbf{R}}$ $(\mathbf{k H z})$	Current $(\mathbf{R M S} \mathbf{n A})$
10	3.6
20	4.6
50	17
100	75
200	244

NOTE: For information on spurious current measurement see AN1253/D, "An Improved PLL Design Method Without ω_{n} and ζ ".

Table 2. PD ${ }_{\text {out }}$ Current, C1 = Low with OUTPUT A NOT Selected as "Port"; Also, Default Mode When OUTPUT A Selected as "Port"

C3	C2	PD $_{\text {out }}$ Current
0	0	70%
0	1	80%
1	0	90%
1	1	100%

Table 3. PD out Current, C1 = High with OUTPUT A NOT Selected as "Port"

C3	C2	PD $_{\text {out }}$ Current
0	0	25%
0	1	50%
1	0	75%
1	1	100%

Nominal MC145200 PDout Source Current vs Rx Resistance

Nominal MC145201 PDout Source Current vs Rx Resistance

NOTE: The MC145201 is optimized for Rx values in the $18 \mathrm{k} \Omega$ to $40 \mathrm{k} \Omega$ range. For example, to achieve 0.3 mA of output current, it is preferable to use a $30-\mathrm{k} \Omega$ resistor for $R x$ and bit settings for 25% (as shown in Table 3).

Figure 14.

* At this point, the new byte is transferred to the C register and stored. No other registers are affected.

C7-POL: Selects the output polarity of the phase/frequency detectors. When set high, this bit inverts the polarity of $P D_{\text {out }}$ and interchanges the $\phi \mathrm{R}$ function with $\phi \mathrm{V}$ as depicted in Figure 18. Also see the phase detector output pin descriptions for more information. This bit is cleared low at power up.

C6 - PDA/B: Selects which phase/frequency detector is to be used. When set high, enables the output of phase/ frequency detector A ($\mathrm{PD}_{\text {out }}$) and disables phase/frequency detector B by forcing $\phi \mathrm{R}$ and $\phi \mathrm{V}$ to the static high state. When cleared low, phase/frequency detector B is enabled ($\phi \mathrm{R}$ and $\phi \mathrm{V}$) and phase/frequency detector A is disabled with $\mathrm{PD}_{\text {out }}$ forced to the high-impedance state. This bit is cleared low at power up.

C5 - LDE: Enables the lock detector output (LD) when set high. When the bit is cleared low, the LD output is forced to a static low level. This bit is cleared low at power up.

C4 - STBY: When set high, places the CMOS section of device, which is powered by the $V_{D D}$ and $V_{P D}$ pins, in the standby mode for reduced power consumption: $\mathrm{PD}_{\text {out }}$ is forced to the high-impedance state, ϕR and ϕV are forced high, the A, N, and R counters are inhibited from counting, and the Rx current is shut off. In standby, the state of LD is determined by bit C5. C5 low forces LD low (no change). C5 high forces LD static high. During standby, data is retained in the A, R, and C registers. The condition of REF/OSC circuitry is determined by the control bits in the R register: R13, R14, and R15. However, if REF the input is inhibited when in standby; in addition, the REF in input only presents a capacitive load. NOTE: Standby does not affect the other modes of the REF/OSC circuitry.

When C4 is reset low, the part is taken out of standby in 2 steps. First, the REFin (only in one mode) resistor is reconnected, all counters are enabled, and the $R x$ current is enabled. Any f_{R} and $f V$ signals are inhibited from toggling the phase/frequency detectors and lock detector. Second, when the first fV pulse occurs, the R counter is jam loaded, and the phase/frequency and lock detectors are initialized. Immediately after the jam load, the A, N, and R counters begin counting down together. At this point, the f_{R} and f_{V} pulses are enabled to the phase and lock detectors. (Patented feature.)

C3, C2-12, 11: Controls the PD ${ }_{\text {out }}$ source/sink current per Tables 2 and 3 . With both bits high, the maximum current (as set by Rx per Figure 14) is available. Also, see C1 bit description.

C1 - Port: When the OUTPUT A pin is selected as "Port" via bits A22 and A23, C1 determines the state of OUTPUT A. When C1 is set high, OUTPUT A is forced high; C1 low forces OUTPUT A low. When OUTPUT A is NOT selected as "Port," C1 controls whether the PDout step size is 10% or 25%. (See Tables 2 and 3.) When low, steps are 10%. When high, steps are 25%. Default is 10% steps when OUTPUT A is selected as "Port." The Port bit is not affected by the standby mode.

C0 - Out B: Determines the state of OUTPUT B. When C0 is set high, OUTPUT B is high-impedance; C0 low forces OUTPUT B low. The Out B bit is not affected by the standby mode. This bit is cleared low at power up.

Figure 15. C Register Access and Format (8 Clock Cycles are Used)

HEXADECIMAL VALUE
FOR N COUNTER

HEXADECIMAL VALUE FOR A COUNTER

NOTES:

1. A power-on initialize circuit forces the OUTPUT A function to default to Data Out
2. The values programmed for the N counter must be greater than or equal to the values programmed for the A counter. This results in a total divide value $=N \times 64+A$.
3. At this point, the three new bytes are transferred to the A register. In addition, the 13 LSBs in the first buffer of the R register are transferred to the R register's second buffer. Thus, the R, N, and A counters can be presented new divide ratios at the same time. The first buffer of the R register is not affected. The C register is not affected.

NOTES:

1. Bits R15 through R13 control the configurable "OSC or 4-stage divider" block (see Block Diagram).
2. Bits R12 through R0 control the "13-stage R counter" block (see Block Diagram).
3. A power-on initialize circuit forces a default REF in to $R E F_{\text {out }}$ ratio of eight.
4. At this point, bits R13, R14, and R15 are stored and sent to the "OSC or 4-Stage Divider" block in the Block Diagram. Bits R0 through R12 are loaded into the first buffer in the double-buffered section of the R register. Therefore, the R counter divide ratio is not altered yet and retains the previous ratio loaded. The C and A registers are not affected.
5. At this point, bits R0 through R12 are transferred to the second buffer of the R register. The R counter begins dividing by the new ratio after completing the rest of the present count cycle. CLK must be low during the ENB pulse, as shown. Also, see note 3 of Figure 16 for an alternate method of loading the second buffer in the R register. The C and A registers are not affected. The first buffer of the R register is not affected.
6. Allows direct access to reference input of phase/frequency detectors.

Figure 17. R Register Access and Format (16 Clock Cycles Are Used)

Figure 18. Phase/Frequency Detectors and Lock Detector Output Waveforms

DESIGN CONSIDERATIONS

CRYSTAL OSCILLATOR CONSIDERATIONS

The following options may be considered to provide a reference frequency to Motorola's CMOS frequency synthesizers.

Use of a Hybrid Crystal Oscillator

Commercially available temperature-compensated crystal oscillators (TCXOs) or crystal-controlled data clock oscillators provide very stable reference frequencies. An oscillator capable of CMOS logic levels at the output may be direct or dc coupled to REFin. If the oscillator does not have CMOS logic levels on the outputs, capacitive or ac coupling to REFin may be used (see Figure 8).

For additional information about TCXOs and data clock oscillators, please consult the latest version of the eem Electronic Engineers Master Catalog, the Gold Book, or similar publications.

Design an Off-Chip Reference

The user may design an off-chip crystal oscillator using discrete transistors or ICs specifically developed for crystal oscillator applications, such as the MC12061 MECL device. The reference signal from the MECL device is ac coupled to REFin (see Figure 8). For large amplitude signals (standard CMOS logic levels), dc coupling may be used.

Use of the On-Chip Oscillator Circuitry

The on-chip amplifier (a digital inverter) along with an appropriate crystal may be used to provide a reference source
frequency. A fundamental mode crystal, parallel resonant at the desired operating frequency, should be connected as shown in Figure 19.

The crystal should be specified for a loading capacitance $\left(C_{L}\right)$ which does not exceed approximately 20 pF when used at the highest operating frequency of 15 MHz . Assuming R1 $=0 \Omega$, the shunt load capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)$ presented across the crystal can be estimated to be:

$$
C_{L}=\frac{C_{\text {in }} C_{\text {out }}}{C_{\text {in }}+C_{\text {out }}}+C_{a}+C_{\text {stray }}+\frac{C 1 \cdot C_{2}}{C 1+C 2}
$$

where

$$
\begin{aligned}
\mathrm{C}_{\mathrm{in}} & =5 \mathrm{pF}(\text { see Figure 20) } \\
\mathrm{C}_{\mathrm{out}} & =6 \mathrm{pF} \text { (see Figure 20) } \\
\mathrm{C}_{\mathrm{a}} & =1 \mathrm{pF}(\text { see Figure 20) }
\end{aligned}
$$

C1 and C2 = external capacitors (see Figure 19) $\mathrm{C}_{\text {stray }}=$ the total equivalent external circuit stray capacitance appearing across the crystal terminals

The oscillator can be "trimmed" on-frequency by making a portion or all of C1 variable. The crystal and associated components must be located as close as possible to the REF in and REF out pins to minimize distortion, stray capacitance, stray inductance, and startup stabilization time. Circuit stray capacitance can also be handled by adding the appropriate stray value to the values for C_{in} and $\mathrm{C}_{\text {out }}$. For this approach, the term $\mathrm{C}_{\text {stray }}$ becomes 0 in the above expression for C_{L}.

Power is dissipated in the effective series resistance of the crystal, R_{e}, in Figure 21. The maximum drive level specified by the crystal manufacturer represents the maximum stress that the crystal can withstand without damage or excessive shift in operating frequency. R1 in Figure 19 limits the drive level. The use of R1 is not necessary in most cases.

To verify that the maximum dc supply voltage does not cause the crystal to be overdriven, monitor the output frequency (fR) at OUTPUT A as a function of supply voltage. (REF ${ }_{\text {out }}$ is not used because loading impacts the oscillator.) The frequency should increase very slightly as the dc supply voltage is increased. An overdriven crystal decreases in frequency or becomes unstable with an increase in supply voltage. The operating supply voltage must be reduced or R1 must be increased in value if the overdriven condition exists. The user should note that the oscillator start-up time is proportional to the value of R1.

Through the process of supplying crystals for use with CMOS inverters, many crystal manufacturers have developed expertise in CMOS oscillator design with crystals. Discussions with such manufacturers can prove very helpful (see Table 4).

RECOMMENDED READING

Technical Note TN-24, Statek Corp.
Technical Note TN-7, Statek Corp.
E. Hafner, "The Piezoelectric Crystal Unit-Definitions and Method of Measurement", Proc. IEEE, Vol. 57, No. 2, Feb. 1969.
D. Kemper, L. Rosine, "Quartz Crystals for Frequency Control", Electro-Technology, June 1969.
P. J. Ottowitz, "A Guide to Crystal Selection", Electronic Design, May 1966.
D. Babin, "Designing Crystal Oscillators", Machine Design, March 7, 1985.
D. Babin, "Guidelines for Crystal Oscillator Design", Machine Design, April 25, 1985.

Figure 19. Pierce Crystal Oscillator Circuit

Figure 20. Parasitic Capacitances of the Amplifier and $\mathrm{C}_{\text {stray }}$

NOTE: Values are supplied by crystal manufacturer (parallel resonant crystal).

Figure 21. Equivalent Crystal Networks

Table 4. Partial List of Crystal Manufacturers

Motorola - Internet Address
http://motorola.com \quad (Search for resonators)
United States Crystal Corp.
Crystek Crystal
Statek Corp.
Fox Electronics

NOTE: Motorola cannot recommend one supplier over another and in no way suggests that this is a complete listing of crystal manufacturers.
(A)

$\omega_{\mathrm{n}} \sqrt{\frac{\mathrm{K}_{\phi} \mathrm{K}_{\mathrm{VCO}}}{\mathrm{NC}}}$
$\zeta=\frac{R}{2} \sqrt{\frac{K_{\phi} K_{V C O C}}{N}}=\frac{\omega_{n} R C}{2}$
$Z(s)=\frac{1+s R C}{s C}$

NOTE:
For (A), using K_{ϕ} in amps per radian with the filter's impedance transfer function, $Z(s)$, maintains units of volts per radian for the detector/ filter combination. Additional sideband filtering can be accomplished by adding a capacitor C^{\prime} across R. The corner $\omega_{C}=1 / R C^{\prime}$ should be chosen such that ω_{n} is not significantly affected.

ASSUMING GAIN A IS VERY LARGE, THEN:

$$
F(s)=\frac{R_{2} s C+1}{R_{1} s C}
$$

NOTE:
For (B), R_{1} is frequently split into two series resistors; each resistor is equal to R_{1} divided by 2 . A capacitor C_{C} is then placed from the midpoint to ground to further filter the error pulses. The value of C_{C} should be such that the corner frequency of this network does not significantly affect ω_{n}.

* The ϕ_{R} and $\phi \vee$ outputs are fed to an external combiner/loop filter. The ϕR and $\phi \vee$ outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode input range of the op amp used in the combiner/loop filter.

DEFINITIONS:

$\mathrm{N}=$ Total Division Ratio in Feedback Loop
K_{ϕ} (Phase Detector Gain) I IPDout $/ 2 \pi$ amps per radian for $\mathrm{PD}_{\text {out }}$
$\mathrm{K}_{\phi}\left(\right.$ Phase Detector Gain) $=\mathrm{V}_{\mathrm{PD}} / 2 \pi$ volts per radian for $\phi \mathrm{V}$ and $\phi \mathrm{R}$
$\mathrm{KVCO}\left(\mathrm{VCO}\right.$ Transfer Function) $=\frac{2 \pi \Delta \mathrm{f} \mathrm{VCO}}{\Delta \mathrm{V} C O}$ radians per volt
For a nominal design starting point, the user might consider a damping factor $\zeta \approx 0.7$ and a natural loop frequency $\omega_{n} \approx\left(2 \pi f_{\mathrm{R}} / 50\right)$ where f_{R} is the frequency at the phase detector input. Larger ω_{n} values result in faster loop lock times and, for similar sideband filtering, higher f_{R}-related VCO sidebands.

Either loop filter (A) or (B) is frequently followed by additional sideband filtering to further attenuate f_{R}-related VCO sidebands. This additional filtering may be active or passive.

RECOMMENDED READING:

Gardner, Floyd M., Phaselock Techniques (second edition). New York, Wiley-Interscience, 1979.
Manassewitsch, Vadim, Frequency Synthesizers: Theory and Design (second edition). New York, Wiley-Interscience, 1980.
Blanchard, Alain, Phase-Locked Loops: Application to Coherent Receiver Design. New York, Wiley-Interscience, 1976.
Egan, William F., Frequency Synthesis by Phase Lock. New York, Wiley-Interscience, 1981.
Rohde, Ulrich L., Digital PLL Frequency Synthesizers Theory and Design. Englewood Cliffs, NJ, Prentice-Hall, 1983.
Berlin, Howard M., Design of Phase-Locked Loop Circuits, with Experiments. Indianapolis, Howard W. Sams and Co., 1978.
Kinley, Harold, The PLL Synthesizer Cookbook. Blue Ridge Summit, PA, Tab Books, 1980.
Seidman, Arthur H., Integrated Circuits Applications Handbook, Chapter 17, pp. 538-586. New York, John Wiley \& Sons.
Fadrhons, Jan, "Design and Analyze PLLs on a Programmable Calculator," EDN. March 5, 1980.
AN535, Phase-Locked Loop Design Fundamentals, Motorola Semiconductor Products, Inc., 1970.
AR254, Phase-Locked Loop Design Articles, Motorola Semiconductor Products, Inc., Reprinted with permission from Electronic Design, 1987.

AN1253/D, An Improved PLL Design Method Without ω_{n} and ζ, Motorola Semiconductor Products, Inc., 1995.

NOTES:

1. When used, the $\phi \mathrm{R}$ and $\phi \mathrm{V}$ outputs are fed to an external combiner/loop filter. See the PhaseLocked Loop - Low-Pass Filter Design page for additional information.
2. Transistor Q1 is required only if the standby feature is needed. Q1 permits the bipolar section of the device to be shut down via use of the general-purpose digital pin, OUTPUT B. If the standby feature is not needed, tie Pin 12 directly to the power supply.
3. For optimum performance, bypass the $\mathrm{V}_{\mathrm{C}}, \mathrm{V}_{\mathrm{DD}}$, and V_{PD} pins to GND with low-inductance capacitors.
4. The R counter is programmed for a divide value $=R E F_{i n} / f_{R}$. Typically, f_{R} is the tuning resolution required for the VCO. Also, the VCO frequency divided by $f_{R}=N_{T}=N \times 64+A$; this determines the values (N, A) that must be programmed into the N and A counters, respectively.

Figure 22. Example Application

NOTE: See related Figures 24 through 26; these bit streams apply to the MC145190, MC145191, MC145200, and MC145201.

Figure 23. Cascading Two Devices

*At this point, the new bytes are transferred to the C registers of both devices and stored. No other registers are affected.

NOTES APPLICABLE TO EACH DEVICE:

1. At this point, bits R13, R14, and R15 are stored and sent to the "OSC or 4-Stage Divider" block in the Block Diagram. Bits R0 through R12 are loaded into the first buffer in the doublebuffered section of the R register. Therefore, the R counter divide ratio is not altered yet and retains the previous ratio loaded. The C and A registers are not affected.
2. At this point, the bits R0 through R12 are transferred to the second buffer of the R register. The R counter begins dividing by the new ratio after completing the rest of the present count cycle. CLK must be low during the ENB pulse, as shown. Also, see note of Figure 25 for an alternate method of loading the second buffer in the R register. The C and A registers are not affected. The first buffer of the R register is not affected.

Low-Voltage 2.0 GHz PLL Frequency Synthesizer

Includes On-Board 64/65 Prescaler
The MC145202 is a low-voltage single-package synthesizer with serial interface capable of direct usage up to 2.0 GHz .

The counters are programmed via a synchronous serial port which is SPI compatible. The serial port is byte-oriented to facilitate control via an MCU. Due to the innovative BitGrabber Plus ${ }^{\text {TM }}$ registers, the MC145202 may be cascaded with other peripherals featuring BitGrabber Plus without requiring leading dummy bits or address bits in the serial data stream. In addition, BitGrabber Plus peripherals may be cascaded with existing BitGrabber ${ }^{\text {TM }}$ peripherals.

The device features a single-ended current source/sink phase detector A output and a double-ended phase detector B output. Both phase detectors have linear transfer functions (no dead zones). The maximum current of the single-ended phase detector output is determined by an external resistor tied from the Rx pin to ground. This current can be varied via the serial port.

Slew-rate control is provided by a special driver designed for the $R E F_{\text {out }}$ pin. This minimizes interference caused by REFout-

This part includes a differential RF input that may be operated in a single-ended mode. Also featured are on-board support of an external crystal and a programmable reference output. The R, A, and N counters are fully programmable. The C register (configuration register) allows the part to be configured to meet various applications. A patented feature allows the C register to shut off unused outputs, thereby minimizing system noise and interference.

In order to have consistent lock times and prevent erroneous data from being loaded into the counters, on-board circuitry synchronizes the update of the A register if the A or N counters are loading. Similarly, an update of the R register is synchronized if the R counter is loading.

The double-buffered R register allows new divide ratios to be presented to the three counters (R, A, and N) simultaneously.

- Maximum Operating Frequency: $2000 \mathrm{MHz} @-10 \mathrm{dBm}$
- Operating Supply Current: 4 mA Nominal at 3.0 V
- Operating Supply Voltage Range (VDD and VCC Pins): 2.7 to 5.5 V
- Operating Supply Voltage Range of Phase Detectors (VPD Pin): 2.7 to 5.5 V
- Current Source/Sink Phase Detector Output Capability: $1.7 \mathrm{~mA} @ 5.0 \mathrm{~V}$ $1.0 \mathrm{~mA} @ 3.0 \mathrm{~V}$
- Gain of Current Source/Sink Phase/Frequency Detector Controllable via Serial Port
- Operating Temperature Range: -40 to $+85^{\circ} \mathrm{C}$
- R Counter Division Range: 1 and 5 to 8191
- Dual-Modulus Capability Provides Total Division up to 262,143
- High-Speed Serial Interface: 4 Mbps
- OUTPUT A Pin, When Configured as Data Out, Permits Cascading of Devices
- Two General-Purpose Digital Outputs - OUTPUT A: Totem-Pole (Push-Pull) with Four Output Modes
OUTPUT B: Open-Drain
- Patented Power-Saving Standby Feature with Orderly Recovery for Minimizing Lock Times, Standby Current: $30 \mu \mathrm{~A}$
- Evaluation Kit Available (Part Number MC145202EVK)
- See Application Note AN1253/D for Low-Pass Filter Design, and AN1277/D for Offset Reference PLLs for Fine Resolution or Fast Hopping

BLOCK DIAGRAM


```
SUPPLY CONNECTIONS:
    PIN 12 = VCC (V+ TO INPUT AMP AND 64/65 PRESCALER)
    PIN 5 = VPD (V+ TO PHASE/FREQUENCY DETECTORS A AND B)
    PIN 14 = VDD (V+ TO BALANCE OF CIRCUIT)
    PIN 7 = GND (COMMON GROUND)
```

MAXIMUM RATINGS* (Voltages Referenced to GND, unless otherwise stated)

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{DD}}$	DC Supply Voltage (Pins 12 and 14)	-0.5 to +6.0	V
VPD	DC Supply Voltage (Pin 5)	$\mathrm{V}_{\mathrm{DD}}-0.5$ to +6.0	V
$V_{\text {in }}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$V_{\text {out }}$	DC Output Voltage (except OUTPUT B, PDout, $\phi \mathrm{R}, \phi \mathrm{V}$)	-0.5 to $\mathrm{V}_{\mathrm{DD}}+0.5$	V
$V_{\text {out }}$	DC Output Voltage (OUTPUT B, PD ${ }_{\text {out }}$, фR, фV)	-0.5 to $\mathrm{V}_{\mathrm{PD}}+0.5$	V
${ }^{\text {l }}$ in, IPD	DC Input Current, per Pin (Includes VPD)	± 10	mA
Iout	DC Output Current, per Pin	± 20	mA
IDD	DC Supply Current, V ${ }_{\text {DD }}$ and GND Pins	± 30	mA
PD	Power Dissipation, per Package	300	mW
$\mathrm{T}_{\text {stg }}$	Storage Temperature	-65 to + 150	${ }^{\circ} \mathrm{C}$
TL	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit.

ELECTRICAL CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=2.7\right.$ to 5.5 V , Voltages Referenced to GND , unless otherwise stated; $\mathrm{V}_{\mathrm{PD}}=2.7$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $\left.85^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Test Condition	Guaranteed Limit	Unit
VIL	Maximum Low-Level Input Voltage ($\mathrm{D}_{\mathrm{in}}, \mathrm{CLK}, \mathrm{ENB}$)		$0.3 \times \mathrm{V}_{\mathrm{DD}}$	V
V_{IH}	Minimum High-Level Input Voltage (Din, CLK, ENB)		$0.7 \times \mathrm{V}_{\mathrm{DD}}$	V
$\mathrm{V}_{\mathrm{Hys}}$	Minimum Hysteresis Voltage (CLK, ENB)	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 100 \\ & 250 \end{aligned}$	mV
VOL	Maximum Low-Level Output Voltage (REF $_{\text {out }}$, OUTPUT A)	$\mathrm{l}_{\text {out }}=20 \mu \mathrm{~A}$, Device in Reference Mode	0.1	V
V_{OH}	Minimum High-Level Output Voltage (REF ${ }_{\text {out }}$, OUTPUT A)	$\mathrm{I}_{\text {out }}=-20 \mu \mathrm{~A}$, Device in Reference Mode	$\mathrm{V}_{\mathrm{DD}}-0.1$	V
${ }^{\text {IOL }}$	Minimum Low-Level Output Current (REF ${ }_{\text {out }}$, LD)	$\mathrm{V}_{\text {out }}=0.3 \mathrm{~V}$	0.36	mA
IOL	Minimum Low-Level Output Current ($\phi \mathrm{R}, \phi \mathrm{V}$)	$\mathrm{V}_{\text {out }}=0.3 \mathrm{~V}$	0.36	mA
${ }^{\text {IOL }}$	Minimum Low-Level Output Current (OUTPUT A)	$\begin{aligned} & V_{\text {out }}=0.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=4.5 \mathrm{~V} \end{aligned}$	1.0	mA
${ }^{\text {IOL }}$	Minimum Low-Level Output Current (OUTPUT B)	$\mathrm{V}_{\text {out }}=0.4 \mathrm{~V}$	1.0	mA
${ }^{\mathrm{IOH}}$	Minimum High-Level Output Current (REF $_{\text {out }}$, LD)	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\mathrm{DD}}-0.3 \mathrm{~V}$	-0.36	mA
${ }^{\mathrm{I} O H}$	Minimum High-Level Output Current ($\phi \mathrm{R}, \phi \mathrm{V}$)	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {PD }}-0.3 \mathrm{~V}$	-0.36	mA
${ }^{\mathrm{I}} \mathrm{OH}$	Minimum High-Level Output Current (OUTPUT A Only)	$\begin{aligned} & V_{\text {out }}=V_{D D}-0.4 \mathrm{~V} \\ & V_{D D}=4.5 \mathrm{~V} \end{aligned}$	-0.6	mA

(continued)

ELECTRICAL CHARACTERISTICS
(continued)

Symbol	Parameter	Test Condition	Guaranteed Limit	Unit
lin	Maximum Input Leakage Current ($\mathrm{D}_{\text {in }}, \mathrm{CLK}, \mathrm{ENB}$, REF $_{\text {in }}$)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {DD }}$ or GND, Device in XTAL Mode	± 1.0	$\mu \mathrm{A}$
1 in	Maximum Input Current ($\mathrm{REF}_{\text {in }}$)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\text {DD }}$ or GND, Device in Reference Mode	± 100	$\mu \mathrm{A}$
IOZ	Maximum Output Leakage Current ($\mathrm{PD}_{\text {out }}$) (OUTPUT B)	$\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {PD }}$ or GND, Output in Floating State	± 130	nA
		$\mathrm{V}_{\text {out }}=\mathrm{V}_{\text {PD }}$ or GND, Output in High-Impedance State	± 1	$\mu \mathrm{A}$
ISTBY	Maximum Standby Supply Current ($\mathrm{V}_{\mathrm{DD}}+\mathrm{V}_{\mathrm{PD}}$ Pins)	$\mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{DD}}$ or GND; Outputs Open; Device in Standby Mode, Shut-Down Crystal Mode or REF ${ }_{\text {out }}$ Static-Low Reference Mode; OUTPUT B Controlling V_{CC} per Figure 21	30	$\mu \mathrm{A}$
IPD	Maximum Phase Detector Quiescent Current (VPD Pin)	Bit C6 = High Which Selects Phase Detector A, $P D_{\text {out }}=$ Open, $\mathrm{PD}_{\text {out }}=$ Static State, Bit C4 $=$ Low Which is not Standby, $\mathrm{I}_{\mathrm{Rx}}=170 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{PD}}=5.5 \mathrm{~V}$	750	$\mu \mathrm{A}$
		Bit C6 = Low Which Selects Phase Detector B, ϕ R and $\phi \mathrm{V}=$ Open, $\phi \mathrm{R}$ and $\phi \mathrm{V}=$ Static Low or High, Bit C4 = Low Which is not Standby	30	
${ }^{1} \mathrm{~T}$	Total Operating Supply Current ($V_{D D}+V_{P D}+V_{C C}$ Pins $)$	$\mathrm{f}_{\text {in }}=2.0 \mathrm{GHz} ; \text { REF }_{\text {in }}=13 \mathrm{MHz} @ 1 \mathrm{Vp}-\mathrm{p} \text {; }$ OUTPUT A = Inactive and No Connect; $\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}$, REF ${ }_{\text {out. }}$. $\phi \mathrm{V}, \phi \mathrm{R}, \mathrm{PD}_{\text {out }}, \mathrm{LD}=$ No Connect; $\mathrm{D}_{\mathrm{in}}, \mathrm{ENB}, \mathrm{CLK}=\mathrm{V}_{\mathrm{DD}}$ or GND, Phase Detector B Selected (Bit C6 = Low)	*	mA

* The nominal values are:

4 mA at $\mathrm{V}_{\mathrm{DD}}=3.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{PD}}=3.0 \mathrm{~V}$
6 mA at $\mathrm{V}_{\mathrm{DD}}=5.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{PD}}=5.0 \mathrm{~V}$
These are not guaranteed limits.
ANALOG CHARACTERISTICS - CURRENT SOURCE/SINK OUTPUT - PD out
($\mathrm{I}_{\text {out }} \leq 1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ and $\mathrm{I}_{\text {out }} \leq 1.7 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{DD}} \geq 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 V , Voltages Referenced to GND)

Parameter	Test Condition	VPD	Guaranteed Limit	Unit
Maximum Source Current Variation (Part-to-Part)	$\mathrm{V}_{\text {out }}=0.5 \times \mathrm{V}_{\text {PD }}$	2.7	± 15	\%
		4.5	± 15	
		5.5	± 15	
Maximum Sink-vs-Source Mismatch (Note 3)	$\mathrm{V}_{\text {out }}=0.5 \times \mathrm{V}_{\text {PD }}$	2.7	11	\%
		4.5	11	
		5.5	11	
Output Voltage Range (Note 3)	Iout Variation $\leq 15 \%$ Iout Variation $\leq 20 \%$ lout Variation $\leq 22 \%$	2.7	0.5 to 2.2	V
		4.5	0.5 to 3.7	
		5.5	0.5 to 4.7	

NOTES:

1. Percentages calculated using the following formula: (Maximum Value - Minimum Value)/Maximum Value.
2. See Rx Pin Description for external resistor values.
3. This parameter is guaranteed for a given temperature within -40 to $+85^{\circ} \mathrm{C}$.

AC INTERFACE CHARACTERISTICS

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns} ; \mathrm{V}_{\mathrm{PD}}=2.7$ to 5.5 V)

Symbol	Parameter	Figure No.	Guaranteed Limit	Unit
${ }_{\text {f }}$ lk	Serial Data Clock Frequency (Note: Refer to Clock $\mathrm{t}_{\text {w }}$ below)	1	dc to 4.0	MHz
tPLH, tPHL	Maximum Propagation Delay, CLK to OUTPUT A (Selected as Data Out)	1,5	100	ns
tPLH, tPHL	Maximum Propagation Delay, ENB to OUTPUT A (Selected as Port)	2, 5	150	ns
tPZL, tplZ	Maximum Propagation Delay, ENB to OUTPUT B	2, 6	150	ns
${ }^{\text {tTLH, }}$, tTHL	Maximum Output Transition Time, OUTPUT A and OUTPUT B; tTHLonly, on OUTPUT B	1, 5, 6	50	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance - Din, ENB, CLK		10	pF

TIMING REQUIREMENTS

$\left(\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$, unless otherwise indicated)

Symbol	Parameter	Figure No.	Guaranteed Limit	Unit
$\mathrm{t}_{\text {su }}, \mathrm{t}_{\mathrm{h}}$	Minimum Setup and Hold Times, D_{in} vs CLK	3	50	ns
$\mathrm{t}_{\text {su }}, \mathrm{t}_{\mathrm{h}}, \mathrm{t}_{\mathrm{rec}}$	Minimum Setup, Hold and Recovery Times, ENB vs CLK	4	100	ns
t_{w}	Minimum Pulse Width, ENB	4	$*$	cycles
t_{w}	Minimum Pulse Width, CLK	1	125	ns
$\mathrm{t}_{\mathrm{r}, \mathrm{t}_{\mathrm{f}}}$	Maximum Input Rise and Fall Times, CLK	1	100	$\mu \mathrm{~s}$

* The minimum limit is 3 REF $_{\text {in }}$ cycles or $195 \mathrm{f}_{\text {in }}$ cycles, whichever is greater.

SWITCHING WAVEFORMS

Figure 1.

Figure 3.

Figure 2.

Figure 4.

Figure 6.

LOOP SPECIFICATIONS ($\mathrm{V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=2.7$ to 5.5 V unless otherwise indicated, $\mathrm{T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition		Fig. No.	Guaranteed Operating Range		Unit	
				Min	Max			
Pin	Input Sensitivity Range, $\mathrm{fin}^{\text {in }}$	$500 \mathrm{MHz} \leq \mathrm{f}_{\text {in }} \leq 2000 \mathrm{MHz}$			7	-10	4	dBm*
${ }^{\text {fref }}$	Input Frequency, REF in Externally Driven in Reference Mode	$\mathrm{V}_{\text {in }} \geq 400 \mathrm{mV} \mathrm{p}-\mathrm{p}$ $2.7 \leq \mathrm{V}_{\mathrm{DD}}<4.5 \mathrm{~V}$ $4.5 \leq \mathrm{V}_{\mathrm{DD}} \leq 5.5 \mathrm{~V}$		8	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 20 \\ & 30 \end{aligned}$	MHz	
${ }^{\text {f }}$ TTAL	Crystal Frequency, Crystal Mode	C1 $\leq 30 \mathrm{pF}$, C2 $\leq 30 \mathrm{pF}$, Includes Stray Capacitance		9	2	15	MHz	
fout	Output Frequency, REF ${ }_{\text {out }}$	$C_{L}=20 \mathrm{pF}, \mathrm{V}_{\text {out }} \geq 1 \mathrm{Vp}-\mathrm{p}$		10, 12	dc	10	MHz	
f	Operating Frequency of the Phase Detectors				dc	2	MHz	
t_{w}	Output Pulse Width ($\phi \mathrm{R}$, $\phi \mathrm{V}$, and LD)	f_{R} in Phase with $\mathrm{f}, \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \phi \mathrm{R}$ and $\phi \mathrm{V}$ active for LD measurement, ** $\mathrm{V}_{\mathrm{PD}}=2.7$ to 5.5 V $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V} \\ & \mathrm{~V} D \mathrm{FD}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{DD}}=5.5 \mathrm{~V} \end{aligned}$		11, 12	$\begin{aligned} & 40 \\ & 18 \\ & 14 \end{aligned}$	$\begin{aligned} & 120 \\ & 60 \\ & 50 \end{aligned}$	ns	
$\begin{aligned} & \text { tTLH, } \\ & \text { tTHL } \end{aligned}$	Output Transition Times (LD, $\phi \mathrm{V}$, and $\phi \mathrm{R}$)	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}, \mathrm{~V}_{\mathrm{PD}}=2.7 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{DD}}=\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} \end{aligned}$		11, 12	-	80	ns	
$\mathrm{C}_{\text {in }}$	Input Capacitance, REFin				-	7	pF	

*Power level at the input to the dc block.
${ }^{* *}$ When $\mathrm{PD}_{\text {out }}$ is active, LD minimum pulse width is approximately 5 ns .

NOTE: Alternately, the 50Ω pad may be a T network.
Figure 7. Test Circuit

Figure 9. Test Circuit - Crystal Mode

Figure 11. Switching Waveform

Figure 8. Test Circuit — Reference Mode

Figure 10. Switching Waveform

Figure 12. Test Circuit

Figure 13. Normalized Input Impedance at f_{in} — Series Format ($\mathrm{R}+\mathrm{jx}$)

Table 1. Input Impedence at f_{in} — Series Format ($\mathrm{R}+\mathrm{jx}$), $\mathrm{V}_{\mathrm{C}} \mathrm{C}=3 \mathrm{~V}$

Marker	Frequency (GHz)	Resistance (Ω)	Reactance (Ω)	Capacitance/ Inductance
1	0.5	11.4	-168	1.9 pF
2	1	12.4	-59.4	2.68 pF
3	1.5	19.8	-34.9	3.04 pF
4	2	18.1	9.43	751 pH

Table 2. Input Impedence at f_{in} - Series Format ($\mathrm{R}+\mathrm{jx}$), $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$

Marker	Frequency (GHz)	Resistance (Ω)	Reactance (Ω)	Capacitance/ Inductance
1	0.5	11.8	-175	1.82 pF
2	1	11.5	-64.4	2.47 pF
3	1.5	22.2	-36.5	2.91 pF
4	2	18.4	1.14	90.4 pH

PIN DESCRIPTIONS

DIGITAL INTERFACE PINS

$D_{\text {in }}$
 Serial Data Input (Pin 19)

The bit stream begins with the most significant bit (MSB) and is shifted in on the low-to-high transition of CLK. The bit pattern is 1 byte (8 bits) long to access the C or configuration register, 2 bytes (16 bits) to access the first buffer of the R register, or 3 bytes (24 bits) to access the A register (see Table 3). The values in the C, R, and A registers do not change during shifting because the transfer of data to the registers is controlled by ENB.

CAUTION

The value programmed for the N counter must be greater than or equal to the value of the A counter.

The 13 least significant bits (LSBs) of the R register are double-buffered. As indicated above, data is latched into the first buffer on a 16-bit transfer. (The 3 MSBs are not doublebuffered and have an immediate effect after a 16-bit transfer.) The second buffer of the R register contains the 13 bits for the R counter. This second buffer is loaded with the contents of the first buffer when the A register is loaded (a $24-$ bit transfer). This allows presenting new values to the R, A , and N counters simultaneously. If this is not required, then the 16-bit transfer may be followed by pulsing ENB low with no signal on the CLK pin. This is an alternate method of transferring data to the second buffer of the R register (see Figure 16).

The bit stream needs neither address nor steering bits due to the innovative BitGrabber Plus registers. Therefore, all bits in the stream are available to be data for the three registers. Random access of any register is provided (i.e., the registers may be accessed in any sequence). Data is retained in the registers over a supply range of 2.7 to 5.5 V . The formats are shown in Figures 14, 15, and 16.

Din typically switches near 50% of $V_{D D}$ to maximize noise immunity. This input can be directly interfaced to CMOS devices with outputs guaranteed to switch near rail-to-rail. When interfacing to NMOS or TTL devices, either a level shifter (MC74HC14A, MC14504B) or pull-up resistor of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ must be used. Parameters to consider when sizing the resistor are worst-case IOL of the driving device, maximum tolerable power consumption, and maximum data rate.

Table 3. Register Access
(MSBs are shifted in first; C0, RO, and A0 are the LSBs)

Number of Clocks	Accessed Register	Bit Nomenclature
8	C Register	$\mathrm{C} 7, \mathrm{C} 6, \mathrm{C} 5, \ldots, \mathrm{C} 0$
16	R Register	R15, R14, R13, .., R0
24	A Register	A23, A22, A21, .., A0
Other Values ≤ 32	Not Allowed Values >32	See Figures $22-25$

CLK
 Serial Data Clock Input (Pin 18)

Low-to-high transitions on CLK shift bits available at the Din pin, while high-to-low transitions shift bits from OUTPUT A (when configured as Data Out, see Pin 16). The 24-1/2-stage shift register is static, allowing clock rates down to dc in a continuous or intermittent mode.

Eight clock cycles are required to access the C register. Sixteen clock cycles are needed for the first buffer of the R register. Twenty-four cycles are used to access the A register. See Table 3 and Figures 14, 15, and 16. The number of clocks required for cascaded devices is shown in Figures 23 through 25.

CLK typically switches near 50% of $V_{D D}$ and has a Schmitt-triggered input buffer. Slow CLK rise and fall times are allowed. See the last paragraph of $\mathbf{D}_{\mathbf{i n}}$ for more information.

NOTE

To guarantee proper operation of the power-on reset (POR) circuit, the CLK pin must be held at GND (with ENB being a don't care) or ENB must be held at the potential of the $\mathrm{V}+\mathrm{pin}$ (with CLK being a don't care) during power-up. Floating, toggling, or having these pins in the wrong state during power-up does not harm the chip, but causes two potentially undesirable effects. First, the outputs of the device power up in an unknown state. Second, if two devices are cascaded, the A Registers must be written twice after power up. After these two accesses, the two cascaded chips perform normally.

ENB

Active Low Enable Input (Pin 17)

This pin is used to activate the serial interface to allow the transfer of data to/from the device. When ENB is in an inactive high state, shifting is inhibited and the port is held in the initialized state. To transfer data to the device, ENB (which must start inactive high) is taken low, a serial transfer is made via $D_{\text {in }}$ and CLK, and ENB is taken back high. The low-to-high transition on ENB transfers data to the C or A registers and first buffer of the R register, depending on the data stream length per Table 3.

Transitions on ENB must not be attempted while CLK is high. This puts the device out of synchronization with the microcontroller. Resynchronization occurs when ENB is high and CLK is low.

This input is also Schmitt-triggered and switches near 50% of VDD, thereby minimizing the chance of loading erroneous data into the registers. See the last paragraph of $\boldsymbol{D}_{\text {in }}$ for more information.

For POR information, see the note for the CLK pin.

OUTPUT A

Configurable Digital Output (Pin 16)

OUTPUT A is selectable as $\mathrm{f}_{\mathrm{R}}, \mathrm{fV}$, Data Out, or Port. Bits A22 and A23 in the A register control the selection; see Figure 15.

If A23 = A22 = high, OUTPUT A is configured as f_{R}. This signal is the buffered output of the $13-$ stage R counter. The f_{R} signal appears as normally low and pulses high. The f_{R} signal can be used to verify the divide ratio of the R counter. This ratio extends from 5 to 8191 and is determined by the binary value loaded into bits R0-R12 in the R register. Also, direct access to the phase detectors via the REF in pin is allowed by choosing a divide value of 1 (see Figure 16). The maximum frequency at which the phase detectors operate is 2 MHz . Therefore, the frequency of f_{R} should not exceed 2 MHz .

If A23 = high and A22 = low, OUTPUT A is configured as fV . This signal is the buffered output of the 12-stage N counter. The fv signal appears as normally low and pulses high. The fV signal can be used to verify the operation of the prescaler, A counter, and N counter. The divide ratio between the $f_{i n}$ input and the $f V$ signal is $N \times 64+A$. N is the divide ratio of the N counter and A is the divide ratio of the A counter. These ratios are determined by bits loaded into the A register. See Figure 15. The maximum frequency at which the phase detectors operate is 2 MHz . Therefore, the frequency of fV should not exceed 2 MHz .

If A23 = low and A22 = high, OUTPUT A is configured as Data Out. This signal is the serial output of the 24-1/2-stage shift register. The bit stream is shifted out on the high-to-low transition of the CLK input. Upon power up, OUTPUT A is automatically configured as Data Out to facilitate cascading devices.

If A23 = A22 = low, OUTPUT A is configured as Port. This signal is a general-purpose digital output which may be used as an MCU port expander. This signal is low when the Port bit (C1) of the C register is low, and high when the Port bit is high.

OUTPUT B

Open-Drain Digital Output (Pin 15)

This signal is a general-purpose digital output which may be used as an MCU port expander. This signal is low when the Out B bit (CO) of the C register is low. When the Out B bit is high, OUTPUT B assumes the high-impedance state. OUTPUT B may be pulled up through an external resistor or active circuitry to any voltage less than or equal to the potential of the VPD pin. Note: the maximum voltage allowed on the $V_{P D}$ pin is 5.5 V .

Upon power-up, power-on reset circuitry forces OUTPUT B to a low level.

REFERENCE PINS

REF in and REF $_{\text {out }}$

Reference Input and Reference Output (Pins 20 and 1)
Configurable pins for a Crystal or an External Reference. This pair of pins can be configured in one of two modes: the crystal mode or the reference mode. Bits R13, R14, and R15 in the R register control the modes as shown in Figure 16.

In crystal mode, these pins form a reference oscillator when connected to terminals of an external parallel-reso-
nant crystal. Frequency-setting capacitors of appropriate values, as recommended by the crystal supplier, are connected from each of the two pins to ground (up to a maximum of 30 pF each, including stray capacitance). An external resistor of $1 \mathrm{M} \Omega$ to $15 \mathrm{M} \Omega$ is connected directly across the pins to ensure linear operation of the amplifier. The required connections for the components are shown in Figure 9.

To turn on the oscillator, bits R15, R14, and R13 must have an octal value of one (001 in binary, respectively). This is the active-crystal mode shown in Figure 16. In this mode, the crystal oscillator runs and the R Counter divides the crystal frequency, unless the part is in standby. If the part is placed in standby via the C register, the oscillator runs, but the R counter is stopped. However, if bits R15 to R13 have a value of 0 , the oscillator is stopped, which saves additional power. This is the shut-down crystal mode (shown in Figure 16) and can be engaged whether in standby or not.

In the reference mode, REFin (Pin 20) accepts a signal from an external reference oscillator, such as a TCXO. A signal swinging from at least the V_{IL} to V_{IH} levels listed in the Electrical Characteristics table may be directly coupled to the pin. If the signal is less than this level, ac coupling must be used as shown in Figure 8. Due to an on-board resistor which is engaged in the reference modes, an external biasing resistor tied between $R E F_{\text {in }}$ and $R E F_{\text {out }}$ is not required.

With the reference mode, the REF $_{\text {out }}$ pin is configured as the output of a divider. As an example, if bits R15, R14, and R13 have an octal value of seven, the frequency at REF the REFin frequency divided by 16. In addition, Figure 16 shows how to obtain ratios of eight, four, and two. A ratio of one-to-one can be obtained with an octal value of three. Upon power up, a ratio of eight is automatically initialized. The maximum frequency capability of the REF out pin is listed in the Loop Specifications table for an output swing of $1 \mathrm{Vp-p}$ and 20 pF loads. Therefore, for higher $R E F_{\text {in }}$ frequencies, the one-to-one ratio may not be used for this magnitude of signal swing and loading requirements. Likewise, for REFin frequencies above two times the highest rated frequency, the ratio must be more than two.

The output has a special on-board driver that has slewrate control. This feature minimizes interference in the application.

If $R E F_{\text {out }}$ is unused, an octal value of two should be used for R15, R14, and R13 and the REF out $^{\text {pin should be floated. }}$ A value of two allows REFin to be functional while disabling REF ${ }_{\text {out }}$, which minimizes dynamic power consumption.

LOOP PINS

f_{in} and $\overline{\mathrm{f}} \mathrm{in}$ Frequency Inputs (Pins 11 and 10)

These pins are frequency inputs from the VCO. These pins feed the on-board RF amplifier which drives the 64/65 prescaler. These inputs may be fed differentially. However, they are usually used in a single-ended configuration (shown in Figure 7). Note that $f_{i n}$ is driven while $f_{i n}$ must be tied to ground via a capacitor.

Motorola does not recommend driving fin while terminating $f_{\text {in }}$ because this configuration is not tested for sensitivity. The sensitivity is dependent on the frequency as shown in the Loop Specifications table.

```
PDout
Single-Ended Phase/Frequency Detector Output (Pin 6)
```

This is a three-state current-source/sink output for use as a loop error signal when combined with an external low-pass filter. The phase/frequency detector is characterized by a linear transfer function. The operation of the phase/frequency detector is described below and is shown in Figure 17.

POL bit (C7) in the C register = low (see Figure 14)
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading f_{R} : currentsinking pulses from a floating state
Frequency of $f V<f_{R}$ or Phase of $f V$ Lagging f_{R} : currentsourcing pulses from a floating state
Frequency and Phase of $f_{V}=f_{R}$: essentially a floating state; voltage at pin determined by loop filter
POL bit (C7) = high
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading f_{R} : currentsourcing pulses from a floating state
Frequency of $\mathrm{f}_{\mathrm{V}}<\mathrm{f}_{\mathrm{R}}$ or Phase of f_{V} Lagging f_{R} : currentsinking pulses from a floating state
Frequency and Phase of $\mathrm{fV}_{\mathrm{V}}=\mathrm{f}_{\mathrm{R}}$: essentially a floating state; voltage at pin determined by loop filter
This output can be enabled, disabled, and inverted via the C register. If desired, $\mathrm{PD}_{\text {out }}$ can be forced to the high-impedance state by utilization of the disable feature in the C register (bit C6). This is a patented feature. Similarly, $\mathrm{PD}_{\text {out }}$ is forced to the high-impedance state when the device is put into standby (STBY bit C4 = high).

The $\mathrm{PD}_{\text {out }}$ circuit is powered by V_{PD}. The phase detector gain is controllable by bits C3, C2, and C1: gain (in amps per radian) $=P D_{\text {out }}$ current divided by 2π.

$\phi \mathbf{R}$ and $\phi \mathbf{V}$ (Pins 3 and 4)
 Double-Ended Phase/Frequency Detector Outputs

These outputs can be combined externally to generate a loop error signal. Through use of a Motorola patented technique, the detector's dead zone has been eliminated. Therefore, the phase/frequency detector is characterized by a linear transfer function. The operation of the phase/frequency detector is described below and is shown in Figure 17.

POL bit (C7) in the C register = low (see Figure 14)
Frequency of $f \mathrm{~V}>\mathrm{ff}_{\mathrm{R}}$ or Phase of fv Leading $\mathrm{f} R: \phi \mathrm{V}=$ negative pulses, $\phi \mathrm{R}=$ essentially high
Frequency of $f \mathrm{~V}<\mathrm{f}_{\mathrm{R}}$ or Phase of f V Lagging $\mathrm{f} \mathrm{R}: \phi \mathrm{V}=$ essentially high, $\phi \mathrm{R}=$ negative pulses
Frequency and Phase of $f V=f R$: ϕV and ϕR remain essentially high, except for a small minimum time period when both pulse low in phase
POL bit (C7) = high
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading f_{R} : $\phi R=$ negative pulses, $\phi \vee=$ essentially high
Frequency of $f \mathrm{~V}<\mathrm{f}_{\mathrm{R}}$ or Phase of f V Lagging $\mathrm{f}_{\mathrm{R}}: \phi \mathrm{R}=$ essentially high, $\phi \mathrm{V}=$ negative pulses
Frequency and Phase of $f V=f R$: ϕV and ϕR remain essentially high, except for a small minimum time period when both pulse low in phase
These outputs can be enabled, disabled, and interchanged via C register bits C6 or C4. This is a patented fea-
ture. Note that when disabled or in standby, $\phi \mathrm{R}$ and $\phi \mathrm{V}$ are forced to their rest condition (high state).

The $\phi \mathrm{R}$ and $\phi \mathrm{V}$ output signal swing is approximately from GND to VPD.

LD

Lock Detector Output (Pin 2)

This output is essentially at a high level with narrow lowgoing pulses when the loop is locked ($\mathrm{f} R$ and fV of the same phase and frequency). The output pulses low when $f V$ and f_{R} are out of phase or different frequencies. LD is the logical ANDing of $\phi \mathrm{R}$ and $\phi \mathrm{V}$ (see Figure 17).

This output can be enabled and disabled via the C register. This is a patented feature. Upon power up, on-chip initialization circuitry disables LD to a static low logic level to prevent a false "lock" signal. If unused, LD should be disabled and left open.

The LD output signal swing is approximately from GND to VDD.

Rx

External Resistor (Pin 8)

A resistor tied between this pin and GND, in conjunction with bits in the C register, determines the amount of current that the $\mathrm{PD}_{\text {out }}$ pin sinks and sources. When bits C 2 and C 3 are both set high, the maximum current is obtained at $\mathrm{PD}_{\text {out }}$; see Tables 4 and 5 for other current values. The recommended value for $R x$ is $3.9 \mathrm{k} \Omega$. A value of $3.9 \mathrm{k} \Omega$ provides current at the $\mathrm{PD}_{\text {out }}$ pin of approximately $1 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{DD}}=3 \mathrm{~V}$ and approximately $1.7 \mathrm{~mA} @ \mathrm{~V}_{\mathrm{DD}}=5 \mathrm{~V}$ in the 100% current mode. Note that $V_{D D}$, not $V_{P D}$, is a factor in determining the current.

When the $\phi \mathrm{R}$ and $\phi \mathrm{V}$ outputs are used, the Rx pin may be floated.

Table 4. PDout Current ${ }^{\star}$, C1 = Low with OUTPUT A not Selected as "Port"; Also, Default Mode When OUTPUT A Selected as "Port"

Bit C3	Bit C2	PD $_{\text {out }}$ Current *
0	0	70%
0	1	80%
1	0	90%
1	1	100%

* At the time the data sheet was printed, only the 100\% current mode was guaranteed. The reduced current modes were for experimentation only.

Table 5. PDout Current ${ }^{*}$, C1 = High with OUTPUT A not Selected as "Port"

Bit C3	Bit C2	PD $_{\text {out }}$ Current *
0	0	25%
0	1	50%
1	0	75%
1	1	100%

[^30]
TEST POINT PINS

TEST 1

Modulus Control Signal (Pin 9)
This pin may be used in conjunction with the Test 2 pin for access to the on-board 64/65 prescaler. When Test 1 is low, the prescaler divides by 65 . When high, the prescaler divides by 64 .

CAUTION

This pin is an unbuffered output and must be floated in an actual application. This pin must be attached to an isolated pad with no trace.

TEST 2

Prescaler Output (Pin 13)

This pin may be used to access the on-board 64/65 prescaler output.

CAUTION

This pin is an unbuffered output and must be floated in an actual application. This pin must be attached to an isolated pad with no trace.

POWER SUPPLY PINS

VDD
Positive Power Supply (Pin 14)
This pin supplies power to the main CMOS digital portion of the device. Also, this pin, in conjunction with the Rx resistor, determines the internal reference current for the $\mathrm{PD}_{\text {out }}$ pin. The voltage range is +2.7 to +5.5 V with respect to the GND pin.

For optimum performance, VDD should be bypassed to GND using a low-inductance capacitor mounted very close to these pins. Lead lengths on the capacitor should be minimized.

VCC
 Positive Power Supply (Pin 12)

This pin supplies power to the RF amp and 64/65 prescaler. The voltage range is +2.7 to +5.5 V with respect to the GND pin. In standby mode, the V_{CC} pin still draws a few milliamps from the power supply. This current drain can be eliminated with the use of transistor Q1 as shown in Figure 21.

For optimum performance, VCC should be bypassed to GND using a low-inductance capacitor mounted very close to these pins. Lead lengths on the capacitor should be minimized.

VPD
 Positive Power Supply (Pin 5)

This pin supplies power to both phase/frequency detectors A and B. The voltage applied on this pin may be more or less than the potential applied to the $\mathrm{V}_{D D}$ and V_{CC} pins. The voltage range for $V_{P D}$ is 2.7 to 5.5 V with respect to the GND pin.

For optimum performance, VPD should be bypassed to GND using a low-inductance capacitor mounted very close to these pins. Lead lengths on the capacitor should be minimized.

GND

Ground (Pin 7)
Common ground.

* At this point, the new byte is transferred to the C register and stored. No other registers are affected.

C7 - POL: Selects the output polarity of the phase/frequency detectors. When set high, this bit inverts $\mathrm{PD}_{\text {out }}$ and interchanges the $\phi \mathrm{R}$ function with $\phi \mathrm{V}$ as depicted in Figure 17. Also see the phase detector output pin descriptions for more information. This bit is cleared low at power up.

C6 - PDA/B: Selects which phase/frequency detector is to be used. When set high, enables the output of phase/frequency detector $\mathrm{A}\left(\mathrm{PD}_{\mathrm{out}}\right)$ and disables phase/frequency detector B by forcing $\phi \mathrm{R}$ and $\phi \mathrm{V}$ to the static high state. When cleared low, phase/frequency detector B is enabled ($\phi \mathrm{R}$ and $\phi \mathrm{V}$) and phase/frequency detector A is disabled with PD out forced to the high-impedance state. This bit is cleared low at power up.

C5 - LDE: Enables the lock detector output when set high. When the bit is cleared low, the LD output is forced to a static low level. This bit is cleared low at power up.

C4 - STBY: When set, places the CMOS section of device, which is powered by the $V_{D D}$ and $V_{P D}$ pins, in the standby mode for reduced power consumption: $P D_{\text {out }}$ is forced to the high-impedance state, $\phi \mathrm{R}$ and $\phi \mathrm{V}$ are forced high, the A, N, and R counters are inhibited from counting, and the Rx current is shut off. In standby, the state of LD is determined by bit C5. C5 low forces LD low (no change). C5 high forces LD static high. During standby, data is retained in the A, R, and C registers. The condition of REF/OSC circuitry is determined by the control bits in the R register: R13, R14, and R15. However, if $R E F_{\text {out }}=$ static low is selected, the internal feedback resistor is disconnected and the input is inhibited when in standby; in addition, the REF in input only presents a capacitive load. NOTE: Standby does not affect the other modes of the REF/OSC circuitry.

When C4 is reset low, the part is taken out of standby in two steps. First, the REFin (only in one mode) resistor is reconnected, all counters are enabled, and the $R x$ current is enabled. Any f_{R} and fV signals are inhibited from toggling the phase/frequency detectors and lock detector. Second, when the first fV pulse occurs, the R counter is jam loaded, and the phase/frequency and lock detectors are initialized. Immediately after the jam load, the A, N, and R counters begin counting down together. At this point, the f_{R} and f_{V} pulses are enabled to the phase and lock detectors. (Patented feature.)

C3, C2-I2, I1: Controls the PDout source/sink current per Tables 4 and 5 . With both bits high, the maximum current is available. Also, see C1 bit description.

C1 - Port: When the OUTPUT A pin is selected as "Port" via bits A22 and A23, C1 determines the state of OUTPUT A. When C1 is set high, OUTPUT A is forced high; C1 low forces OUTPUT A low. When OUTPUT A is not selected as "Port," C1 controls whether the PD out step size is 10% or 25%. (See Tables 4 and 5 .) When low, steps are 10%. When high, steps are 25%. Default is 10% steps when OUTPUT A is selected as "Port." The Port bit is not affected by the standby mode.

C0 - Out B: Determines the state of OUTPUT B. When C0 is set high, OUTPUT B is high-impedance; C0 low forces OUTPUT B low. The Out B bit is not affected by the standby mode. This bit is cleared low at power up.

Figure 14. C Register Access and Format (8 Clock Cycles are Used)

$D_{\text {in }}$
 FOR A COUNTER

NOTES:

1. A power-on initialize circuit forces the OUTPUT A function to default to Data Out.
2. The values programmed for the N counter must be greater than or equal to the values programmed for the A counter. This results in a total divide value $=N \times 64+A$
3. At this point, the three new bytes are transferred to the A register. In addition, the 13 LSBs in the first buffer of the R register are transferred to the R register's second buffer. Thus, the R, N, and A counters can be presented new divide ratios at the same time. The first buffer of the R register is not affected. The C register is not affected.

Figure 16. R Register Access and Format (16 Clock Cycles are Used)

$\mathrm{V}_{\mathrm{H}}=$ High voltage level
$\mathrm{V}_{\mathrm{L}}=$ Low voltage level
*At this point, when both f_{R} and $f V$ are in phase, the output source and sink circuits are turned on for a short interval.
NOTE: The $P_{\text {out }}$ either sources or sinks current during out-of-lock conditions. When locked in phase and frequency, the output is in the floating condition and the voltage at that pin is determined by the low-pass filter capacitor. $\mathrm{PD}_{\mathrm{out}}, \phi R$, and $\phi \mathrm{V}$ are shown with the polarity bit (POL) = low; see Figure 14 for POL.

Figure 17. Phase/Frequency Detectors and Lock Detector Output Waveforms

DESIGN CONSIDERATIONS

CRYSTAL OSCILLATOR CONSIDERATIONS

The following options may be considered to provide a reference frequency to Motorola's CMOS frequency synthesizers.

Use of a Hybrid Crystal Oscillator

Commercially available temperature-compensated crystal oscillators (TCXOs) or crystal-controlled data clock oscillators provide very stable reference frequencies. An oscillator capable of CMOS logic levels at the output may be direct or dc coupled to REFin. If the oscillator does not have CMOS logic levels on the outputs, capacitive or ac coupling to REFin may be used (see Figure 8).

For additional information about TCXOs and data clock oscillators, please consult the latest version of the eem Electronic Engineers Master Catalog, the Gold Book, or similar publications.

Design an Off-Chip Reference

The user may design an off-chip crystal oscillator using discrete transistors or ICs specifically developed for crystal oscillator applications, such as the MC12061 MECL device. The reference signal from the MECL device is ac coupled to REFin (see Figure 8). For large amplitude signals (standard CMOS logic levels), dc coupling may be used.

Use of the On-Chip Oscillator Circuitry

The on-chip amplifier (a digital inverter) along with an appropriate crystal may be used to provide a reference source frequency. A fundamental mode crystal, parallel resonant at the desired operating frequency, should be connected as shown in Figure 18.

The crystal should be specified for a loading capacitance (CL_{L}) which does not exceed approximately 20 pF when used at the highest operating frequencies listed in the Loop Specifications table. Assuming R1 $=0 \Omega$, the shunt load capacitance $\left(C_{L}\right)$ presented across the crystal can be estimated to be:

$$
C_{L}=\frac{C_{\text {in }} C_{\text {out }}}{C_{\text {in }}+C_{\text {out }}}+C_{a}+C_{\text {stray }}+\frac{C_{1} \cdot C_{2}}{C 1+C_{2}}
$$

where

$$
\begin{aligned}
\mathrm{C}_{\text {in }} & =5 \mathrm{pF} \text { (see Figure 19) } \\
\mathrm{C}_{\text {out }} & =6 \mathrm{pF} \text { (see Figure 19) } \\
\mathrm{C}_{\mathrm{a}} & =1 \mathrm{pF} \text { (see Figure 19) } \\
\mathrm{C}_{1} \text { and } \mathrm{C} 2= & \text { external capacitors (see Figure 18) } \\
\mathrm{C}_{\text {stray }}= & \text { the total equivalent external circuit stray } \\
& \text { capacitance appearing across the crystal } \\
& \text { terminals }
\end{aligned}
$$

The oscillator can be "trimmed" on-frequency by making a portion or all of C1 variable. The crystal and associated components must be located as close as possible to the REFin and REF out pins to minimize distortion, stray capacitance, stray inductance, and startup stabilization time. Circuit stray capacitance can also be handled by adding the appropriate stray value to the values for C_{in} and $\mathrm{C}_{\text {out }}$. For this approach, the term $\mathrm{C}_{\text {stray }}$ becomes 0 in the above expression for C_{L}.

Power is dissipated in the effective series resistance of the crystal, R_{e}, in Figure 20. The maximum drive level specified
by the crystal manufacturer represents the maximum stress that the crystal can withstand without damage or excessive shift in operating frequency. R1 in Figure 18 limits the drive level. The use of R1 is not necessary in most cases.

To verify that the maximum dc supply voltage does not cause the crystal to be overdriven, monitor the output frequency (fR) at OUTPUT A as a function of supply voltage. (REF out $^{\text {is not used because loading impacts the oscillator.) }}$ The frequency should increase very slightly as the dc supply voltage is increased. An overdriven crystal decreases in frequency or becomes unstable with an increase in supply voltage. The operating supply voltage must be reduced or R1 must be increased in value if the overdriven condition exists. The user should note that the oscillator start-up time is proportional to the value of R1.

Through the process of supplying crystals for use with CMOS inverters, many crystal manufacturers have developed expertise in CMOS oscillator design with crystals. Discussions with such manufacturers can prove very helpful (see Table 6).

*May be needed in certain cases. See text.
Figure 18. Pierce Crystal Oscillator Circuit

Figure 19. Parasitic Capacitances of the Amplifier and $\mathrm{C}_{\text {stray }}$

NOTE: Values are supplied by crystal manufacturer (parallel resonant crystal).

Figure 20. Equivalent Crystal Networks

RECOMMENDED READING

Technical Note TN-24, Statek Corp
Technical Note TN-7, Statek Corp.
E. Hafner, "The Piezoelectric Crystal Unit-Definitions and

Method of Measurement", Proc. IEEE, Vol. 57, No. 2, Feb. 1969.
D. Kemper, L. Rosine, "Quartz Crystals for Frequency

Control", Electro-Technology, June 1969.
P. J. Ottowitz, "A Guide to Crystal Selection", Electronic Design, May 1966.
D. Babin, "Designing Crystal Oscillators", Machine Design, March 7, 1985.
D. Babin, "Guidelines for Crystal Oscillator Design", Machine Design, April 25, 1985.

Table 6. Partial List of Crystal Manufacturers

Motorola - Internet Address	http://motorola.com
(Search for resonators)	
United States Crystal Corp.	
Crystek Crystal	
Statek Corp.	
Fox Electronics	

NOTE: Motorola cannot recommend one supplier over another and in no way suggests that this is a complete listing of crystal manufacturers.

PHASE-LOCKED LOOP — LOW-PASS FILTER DESIGN

(A)

$$
\begin{aligned}
\omega_{n} & =\sqrt{\frac{K_{\phi} K V C O}{N C}} \\
\zeta & =\frac{R}{2} \sqrt{\frac{K_{\phi} K_{V C O C}}{N}}=\frac{\omega_{n} R C}{2} \\
Z(s) & =\frac{1+s R C}{s C}
\end{aligned}
$$

NOTE:
For (A), using K_{ϕ} in amps per radian with the filter's impedance transfer function, $\mathrm{Z}(\mathrm{s})$, maintains units of volts per radian for the detector/filter combination. Additional sideband filtering can be accomplished by adding a capacitor C^{\prime} across R. The corner $\omega_{C}=1 / R C^{\prime}$ should be chosen such that ω_{n} is not significantly affected.
(B)

$$
\begin{aligned}
\omega_{n} & =\sqrt{\frac{\mathrm{K}_{\phi} \mathrm{K}_{\mathrm{VCO}}}{\mathrm{NCR}_{1}}} \\
\zeta & =\frac{\omega_{\mathrm{n}} R_{2} \mathrm{C}}{2}
\end{aligned}
$$

ASSUMING GAIN A IS VERY LARGE, THEN:
$F(\mathrm{~s})=\frac{\mathrm{R}_{2} \mathrm{sC}+1}{\mathrm{R}_{1} \mathrm{sC}}$
NOTE:
For (B), R_{1} is frequently split into two series resistors; each resistor is equal to R_{1} divided by 2 . A capacitor C_{C} is then placed from the midpoint to ground to further filter the error pulses. The value of C_{C} should be such that the corner frequency of this network does not significantly affect ω_{n}.
DEFINITIONS:
$\mathrm{N}=$ Total Division Ratio in Feedback Loop
K_{ϕ} (Phase Detector Gain) $=\mathrm{I}_{\mathrm{PD}}$ Dout $/ 2 \pi \mathrm{amps}$ per radian for $\mathrm{PD}_{\text {out }}$
$\mathrm{K}_{\phi}\left(\right.$ Phase Detector Gain) $=\mathrm{V}_{\mathrm{PD}} / 2 \pi$ volts per radian for $\phi \mathrm{V}$ and $\phi \mathrm{R}$
$\mathrm{K} \mathrm{VCO}\left(\mathrm{VCO}\right.$ Transfer Function) $=\frac{2 \pi \Delta f \mathrm{VCO}}{\Delta \mathrm{V}_{\mathrm{VCO}}}$ radians per volt
For a nominal design starting point, the user might consider a damping factor $\zeta \approx 0.7$ and a natural loop frequency $\omega_{\mathrm{n}} \approx\left(2 \pi f_{\mathrm{R}} / 50\right)$ where f_{R} is the frequency at the phase detector input. Larger ω_{n} values result in faster loop lock times and, for similar sideband filtering, higher f_{R}-related VCO sidebands.
Either loop filter (A) or (B) is frequently followed by additional sideband filtering to further attenuate f_{R}-related VCO sidebands. This additional filtering may be active or passive.

RECOMMENDED READING:

Gardner, Floyd M., Phaselock Techniques (second edition). New York, Wiley-Interscience, 1979.
Manassewitsch, Vadim, Frequency Synthesizers: Theory and Design (second edition). New York, Wiley-Interscience, 1980.
Blanchard, Alain, Phase-Locked Loops: Application to Coherent Receiver Design. New York, Wiley-Interscience, 1976.
Egan, William F., Frequency Synthesis by Phase Lock. New York, Wiley-Interscience, 1981.
Rohde, Ulrich L., Digital PLL Frequency Synthesizers Theory and Design. Englewood Cliffs, NJ, Prentice-Hall, 1983.
Berlin, Howard M., Design of Phase-Locked Loop Circuits, with Experiments. Indianapolis, Howard W. Sams and Co., 1978.
Kinley, Harold, The PLL Synthesizer Cookbook. Blue Ridge Summit, PA, Tab Books, 1980.
Seidman, Arthur H., Integrated Circuits Applications Handbook, Chapter 17, pp. 538-586. New York, John Wiley \& Sons.
Fadrhons, Jan, "Design and Analyze PLLs on a Programmable Calculator," EDN. March 5, 1980.
AN535, Phase-Locked Loop Design Fundamentals, Motorola Semiconductor Products, Inc., 1970.
AR254, Phase-Locked Loop Design Articles, Motorola Semiconductor Products, Inc., Reprinted with permission from Electronic Design, 1987.

AN1253, An Improved PLL Design Method Without ω_{n} and ζ, Motorola Semiconductor Products, Inc., 1995.

NOTES:

1. When used, the ϕ R and $\phi \mathrm{V}$ outputs are fed to an external combiner/loop filter. See the PhaseLocked Loop - Low-Pass Filter Design page for additional information.
2. Transistor Q1 is required only if the standby feature is needed. Q1 permits the bipolar section of the device to be shut down via use of the general-purpose digital pin, OUTPUT B. If the standby feature is not needed, tie Pin 12 directly to the power supply.
3. For optimum performance, bypass the $\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{DD}}$, and V_{PD} pins to GND with low-inductance capacitors.
4. The R counter is programmed for a divide value $=R E F_{\text {in }} / f_{R}$. Typically, f_{R} is the tuning resolution required for the VCO. Also, the VCO frequency divided by $f_{R}=N_{T}=N \times 64+A$; this determines the values (N, A) that must be programmed into the N and A counters, respectively.

Figure 21. Example Application

NOTE: See related Figures 23, 24, and 25.

Figure 22. Cascading Two Devices

A REGISTER BITS OF DEVICE \＃2 IN FIGURE 22
＊At this point，the new bytes are transferred to the A registers of both devices and stored．Additionally，for both devices，the
13 LSBs in each of the first buffers of the R registers are transferred to the respective R register＇s second buffer．Thus，the R ，N ，and A counter can be presented new divide ratios at the same time．The first buffer of each R register is not affected．
Neither C register is affected．

Dual 1.1 GHz PLL Frequency Synthesizer
 BiCMOS

The MC145220 is a low-voltage, single-chip frequency synthesizer with serial interface capable of direct usage up to 1.1 GHz . The device simultaneously supports two loops. The two on-chip dual-modulus prescalers may be independently programmed to divide by either $32 / 33$ or 64/65.

The device consists of two dual-modulus prescalers, two 6-stage A counters, two 12-stage N counters, two fully programmable 13-stage R (reference) counters, and two lock detectors. Four phase/frequency detectors are included: two with current source/sink outputs and two with double-ended outputs.

The counters are programmed via a synchronous serial port which is SPI compatible. The serial port is byte-oriented to facilitate control via an MCU. Due to the innovative BitGrabber Plus ${ }^{T M}$ registers, the MC145220 may be cascaded with other peripherals featuring BitGrabber Plus without requiring leading dummy bits or multiple address bits in the serial data stream. In addition, BitGrabber Plus peripherals may be cascaded with existing BitGrabber ${ }^{\text {TM }}$ peripherals. Because this device is a dual synthesizer, a single steering bit is used in the serial data stream to direct the data to either side of the chip.

The phase/frequency detectors have linear transfer functions (no dead zones). The current delivered by the current source/sink outputs is controllable via the serial port.

Also featured are low-power standby for either one or both loops and on-board support of an external crystal. In addition, the part may be configured such that the REFin pin accepts an external reference signal. In this configuration, the REF ${ }_{\text {out }}$ pin may be programmed to output the $R E F_{\text {in }}$ frequency divided by 1, 2, 4, 8, or 16.

- Operating Frequency: 40 to 1100 MHz
- Operating Supply Voltage Range: 2.7 to 5.5 V
- Supply Current: Both PLLs Operating - 12 mA Nominal One PLL Operating, One on Standby - 6.5 mA Nominal Both PLLs on Standby - $30 \mu \mathrm{~A}$ Maximum
- Phase Detector Output Current: Up to 2 mA @ 5 V Up to $1 \mathrm{~mA} @ 3 \mathrm{~V}$
- Operating Temperature Range: - 40 to $85^{\circ} \mathrm{C}$
- Independent R Counters Allow Use of Different Step Sizes for Each Loop
- Double-Buffered R Register - Reference and Loop Divide Ratios Updated Simultaneously
- R Counter Division Range: 1 and 10 to 8,191
- Dual-Modulus Capability Provides Total Division of the VCO Frequency up to 262,143
- Direct Interface to Motorola SPI Data Port
- Evaluation Kit Available (Part Number MC145220EVK)
- See Application Note AN1253/D for Low-Pass Filter Design, and AN1277/D for Offset Reference PLLs for Fine Resolution or Fast Hopping

NOTE: This product has been evaluated for operation over a wider range than 40 MHz to 1.1 GHz . If your design requires a wider frequency range, contact your local Motorola representative for further information.

PIN $9=\mathrm{V}+$ (Positive Power to the main PLL, Reference Circuit, and a portion of the Serial Port)
PIN $6=$ GND (Ground to the main PLL, Reference Circuit, and a portion of the Serial Port)
PIN $12=$ V $^{\prime}$ (Positive Power to PLL' and a portion of the Serial Port)
PIN $15=$ GND $^{\prime}$ (Ground to PLL' and a portion of the Serial Port)

MAXIMUM RATINGS* (Voltages Referenced to GND, unless otherwise stated)

Symbol	Parameter	Value	Unit
$\mathrm{V}_{+}, \mathrm{V}^{\prime}{ }^{\prime}$	DC Supply Voltage	-0.5 to +6.0	V
$\mathrm{~V}_{\text {in }}$	DC Input Voltage	-0.5 to $\mathrm{V}++0.5$	V
$\mathrm{~V}_{\text {out }}$	DC Output Voltage	-0.5 to $\mathrm{V}++0.5$	V
$\mathrm{I}_{\text {in }}$	DC Input Current, per Pin	± 10	mA
$\mathrm{I}_{\text {out }}$	DC Output Current, per Pin	± 20	mA
I	DC Supply Current, $\mathrm{V}_{+}, \mathrm{V}^{\prime}{ }^{\prime}, \mathrm{GND}$, and GND' Pins	30	mA
P_{D}	Power Dissipation, per Package	300	mW
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$

* Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section.

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high-impedance circuit.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{+}=\mathrm{V}_{+}{ }^{\prime}=2.7$ to $5.5 \mathrm{~V}, \mathrm{GND}=\mathrm{GND}^{\prime}$, Voltages Referenced to $\mathrm{GND}, \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, unless otherwise stated)

Symbol	Parameter	Test Condition	Guaranteed Limit	Unit
V_{IL}	$\begin{array}{\|l\|} \hline \text { Maximum Low-Level Input Voltage } \\ \left(\mathrm{D}_{\mathrm{in}}, \mathrm{CLK}, \overline{\mathrm{ENB}}, R E F_{\text {in }}\right) \end{array}$	Device in Reference Mode, dc Coupled	$0.3 \times \mathrm{V}+$	V
V_{IH}	Minimum High-Level Input Voltage ($\mathrm{D}_{\text {in }}, \mathrm{CLK}, \overline{\mathrm{ENB}}$, REFin $)$	Device in Reference Mode, dc Coupled	$0.7 \times \mathrm{V}+$	V
$\mathrm{V}_{\mathrm{Hys}}$	Minimum Hysteresis Voltage (CLK, ENB)		100	mV
V_{OL}	Maximum Low-Level Output Voltage (LD, LD', REF ${ }_{\text {out }}$, Output A)	$I_{\text {out }}=20 \mu \mathrm{~A}$, Device in Reference Mode; Output A Not Selected as Port	0.1	V
V_{OH}	Minimum High-Level Output Voltage (REF ${ }_{\text {out }}$, Output A)	$\mathrm{I}_{\text {out }}=-20 \mu \mathrm{~A}$, Device in Reference Mode; Output A Not Selected as Port	$\mathrm{V}+-0.1$	V
${ }^{\text {IOL}}$	Minimum Low-Level Output Current ($\mathrm{REF}_{\text {out }}$)	$\mathrm{V}_{\text {out }}=0.3 \mathrm{~V}$	0.5	mA
${ }^{\text {IOL}}$	Minimum Low-Level Output Current ($\mathrm{PD}_{\text {out }} / \phi R, \mathrm{PD}_{\text {out }} / \phi R^{\prime}, R \mathrm{R} / \phi \mathrm{V}, \mathrm{Rx}^{\prime} / \phi \mathrm{V}^{\prime}$)	$\mathrm{V}_{\text {out }}=0.3 \mathrm{~V}$; Phase/Frequency Detectors Configured with $\phi \mathrm{R}, \phi \mathrm{V}$ Outputs	0.5	mA
${ }^{\text {IOL}}$	Minimum Low-Level Output Current (Output A)	$\mathrm{V}_{\text {out }}=0.3 \mathrm{~V}$	0.5	mA
IOL	Minimum Low-Level Output Current (LD, LD')	$V_{\text {out }}=0.3 \mathrm{~V}$	0.5	mA
IOH	Minimum High-Level Output Current (REF ${ }_{\text {out }}$)	$\mathrm{V}_{\text {out }}=\mathrm{V}+-0.3 \mathrm{~V}$	-0.4	mA
${ }^{\mathrm{I}} \mathrm{OH}$	Minimum High-Level Output Current ($\mathrm{PD}_{\text {out }} / \phi R, \mathrm{PD}_{\text {out }} / / \phi \mathrm{R}^{\prime}, \mathrm{Rx} / \phi \mathrm{V}, \mathrm{Rx}^{\prime} / \phi \mathrm{V}^{\prime}$)	$\mathrm{V}_{\text {out }}=\mathrm{V}+-0.3 \mathrm{~V}$; Phase/Frequency Detectors Configured with $\phi \mathrm{R}, \phi \mathrm{V}$ Outputs	-0.4	mA
IOH	Minimum High-Level Output Current (Output A)	$\mathrm{V}_{\text {out }}=\mathrm{V}+-0.3 \mathrm{~V}$; Output A Not Selected as Port	-0.4	mA
in	$\begin{array}{\|l\|} \hline \text { Maximum Input Leakage Current } \\ \\ \left(\mathrm{D}_{\text {in }}, \mathrm{CLK}, \overline{\mathrm{ENB}}, \mathrm{REF}_{\text {in }}\right) \end{array}$	$\mathrm{V}_{\text {in }}=\mathrm{V}+$ or GND; Device in XTAL Mode	± 1.0	$\mu \mathrm{A}$
lin	Maximum Input Current (REFin)	$\mathrm{V}_{\text {in }}=\mathrm{V}+$ or GND; Device in Reference Mode	± 150	$\mu \mathrm{A}$
Ioz	$\begin{array}{\|l\|} \hline \text { Maximum Output Leakage Current } \\ \qquad\left(\mathrm{PD}_{\text {out }} / \phi \mathrm{R}, \mathrm{PD}_{\text {out }} / / \phi \mathrm{R}^{\prime}\right) \end{array}$	$\mathrm{V}_{\text {out }}=\mathrm{V}+$ or GND; Phase/Frequency Detectors Configured with $\mathrm{PD}_{\text {out }}$ Output, Output in HighImpedance State	± 150	nA
Ioz	$\begin{array}{\|l\|} \hline \text { Maximum Output Leakage Current } \\ \text { (Output A, LD, LD') } \end{array}$	$\mathrm{V}_{\text {out }}=\mathrm{V}+$ or GND; Output A Selected as Port; Output in High-Impedance State	± 5	$\mu \mathrm{A}$
ISTBY	Maximum Standby Supply Current	$\mathrm{V}_{\text {in }}=\mathrm{V}+$ or GND; Outputs Open; Both PLLs in Standby Mode, Shut-Down Crystal Mode or REF ${ }_{\text {out }}$ Static-Low Reference Mode	30	$\mu \mathrm{A}$
${ }^{1} \mathrm{~T}$	Total Operating Supply Current	$\mathrm{f}_{\text {in }}=\mathrm{f}_{\text {in }}{ }^{\prime}=1.1 \mathrm{GHz}$; both loops active; $\mathrm{REF}_{\mathrm{in}}=13 \mathrm{MHz}$ @ $1 \mathrm{Vp-p}$; Output A $=$ Inactive; All Outputs $=$ No Connect; $\mathrm{D}_{\mathrm{in}}, \mathrm{ENB}, \mathrm{CLK}=\mathrm{V}+$ or GND; Phase/Frequency Detectors Configured with $\phi \mathrm{R}, \phi \mathrm{V}$ Outputs	*	mA

* The nominal value is 12 mA . This is not a guaranteed limit.

ANALOG CHARACTERISTICS — CURRENT SOURCE/SINK OUTPUTS — PDout $/ \phi$ R AND PDout $/ \phi \mathbf{R}^{\prime}$

(Phase/Frequency Detectors Configured with $\mathrm{PD}_{\text {out }}$ Outputs, $\mathrm{I}_{\mathrm{out}} \leq 2 \mathrm{~mA} @ \mathrm{~V}+=\mathrm{V}_{+}{ }^{\prime}=4.5$ to $5.5 \mathrm{~V}, \mathrm{I}_{\text {out }} \leq 1 \mathrm{~mA} @ \mathrm{~V}+=\mathrm{V}_{+}{ }^{\prime}=2.7$ to 4.4 V , GND = GND', Voltages Referenced to GND)

Parameter		Test Condition	Guaranteed Limit	Unit
Maximum Source Current Variation Part-to-Part	(Notes 3 and 4)	$\mathrm{V}_{\text {out }}=0.5 \times \mathrm{V}_{+}$	± 20	\%
Maximum Sink-versus-Source Mismatch	(Note 3)	$V_{\text {out }}=0.5 \times V_{+}$	12	\%
Output Voltage Range	(Note 3)	$\mathrm{I}_{\text {out }}$ variation $\leq 20 \%$	0.5 to $\mathrm{V}+-0.5 \mathrm{~V}$	V

NOTES:
5. Percentages calculated using the following formula: (Maximum Value - Minimum Value)/Maximum Value.
6. See Rx Pin Description for external resistor values.
7. This parameter is guaranteed for a given temperature within - 40 to $85^{\circ} \mathrm{C}$ and given supply voltage within 2.7 to 5.5 V .
8. Applicable for the $R x / \phi V$ or $R x^{\prime} / \phi V^{\prime}$ reference pin tied to the GND or GND' pin through a resistor. See Pin Descriptions for suggested resistor values.

AC INTERFACE CHARACTERISTICS

$\left(\mathrm{V}+=\mathrm{V}^{\prime}{ }^{\prime}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{GND}=\mathrm{GND}^{\prime}, \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$)

Symbol	Parameter	Guaranteed Limit	Unit
${ }^{\text {f clk }}$	Serial Data CLK Frequency	dc to 2.0	MHz
tPLH, tPHL	Maximum Propagation Delay, CLK to Output A (Selected as Data Out) (Figures 1 and 5)	200	ns
tpZL, tpLZ	Maximum Propagation Delay, ENB to Output A (Selected as Port) (Figures 2 and 6)	200	ns
${ }^{\text {t }}$ L LH , t ${ }_{\text {THL }}$	Maximum Output Transition Time, Output A; tTHLonly, on Output A when Selected as Port (Figures 1, 5, and 6)	200	ns
$\mathrm{C}_{\text {in }}$	Maximum Input Capacitance - $\mathrm{Din}_{\text {in }}$, CLK, ENB	10	pF

TIMING REQUIREMENTS $\left(\mathrm{V}_{+}=\mathrm{V}_{+}{ }^{\prime}=2.7\right.$ to $5.5 \mathrm{~V}, \mathrm{GND}=\mathrm{GND}^{\prime}, \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$, Input $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=10 \mathrm{~ns}$ unless otherwise indicated)

Symbol	Parameter	Guaranteed Limit	Unit
$\mathrm{t}_{\text {su }}, \mathrm{t}_{\mathrm{h}}$	Minimum Setup and Hold Times, Din versus CLK	(Figure 3)	50
$\mathrm{t}_{\mathrm{su}}, \mathrm{t}_{\mathrm{h}}, \mathrm{t}_{\mathrm{rec}}$	Minimum Setup, Hold, and Recovery Times, ENB versus CLK	(Figure 4)	100
t_{w}	Minimum Pulse Width, ENB	(Figure 4)	$*$
t_{w}	Minimum Pulse Width, CLK	(Figure 1)	250
$\mathrm{t}_{\mathrm{r},} \mathrm{t}_{\mathrm{f}}$	Maximum Input Rise and Fall Times — CLK	(Figure 1)	100

* The minimum limit is 3 REF in cycles or $195 \mathrm{fin}_{\mathrm{in}}$ or $\mathrm{f}_{\mathrm{in}}{ }^{\prime}$ cycles with selection of a $64 / 65$ prescale ratio or 99 fin or fin' cycles with selection of a $32 / 33$ prescale ratio, whichever is greater.

Figure 1.

Figure 3.

Figure 5.

Figure 2.

Figure 4.

Figure 6.

LOOP SPECIFICATIONS $\left(\mathrm{V}_{+}=\mathrm{V}_{+}{ }^{\prime}=2.7\right.$ to 5.5 V unless otherwise indicated, $\mathrm{GND}=\mathrm{GND}^{\prime}, \mathrm{T}_{\mathrm{A}}=-40$ to $85^{\circ} \mathrm{C}$)

Symbol	Parameter	Test Condition	Guaranteed Operating Range		Unit
			Min	Max	
Pin	Input Sensitivity Range, fin or fin' (Figure 7)	$\begin{aligned} & 40 \mathrm{MHz} \leq \text { frequency }<300 \mathrm{MHz} \\ & 300 \mathrm{MHz} \leq \text { frequency }<700 \mathrm{MHz} \\ & 700 \mathrm{MHz} \leq \text { frequency }<1100 \mathrm{MHz} \end{aligned}$	$\begin{gathered} \hline-2 \\ -5 \\ -16 \end{gathered}$	$\begin{aligned} & 8 \\ & 6 \\ & 4 \end{aligned}$	dBm*
$\Delta \mathrm{P}_{\text {in }}$	Difference Allowed Between $\mathrm{fin}_{\text {in }}$ and fin^{\prime}			10	dB
-	Isolation Between $\mathrm{fin}_{\text {in }}$ and fin^{\prime}		15		dB
${ }^{\text {fref }}$	Input Frequency, REF in Externally Driven in Reference Mode (Figure 8)	$\mathrm{V}_{\text {in }} \geq 400 \mathrm{mV} \mathrm{p}-\mathrm{p}$, R Counter set to divide ratio such that $f_{R} \leq 1 \mathrm{MHz}$, REF Counter set to divide ratio such that $\mathrm{REF}_{\text {out }} \leq 5 \mathrm{MHz}$	4	27	MHz
${ }^{\text {f X }}$ AL	Crystal Frequency, Crystal Mode (Figure 9)	C1 $\leq 30 \mathrm{pF}$, C2 $\leq 30 \mathrm{pF}$, Includes Stray Capacitance; R Counter and REF Counter same as above $\begin{aligned} & \mathrm{V}_{+}=2.7 \mathrm{~V} \\ & \mathrm{~V}_{+}=3.5 \mathrm{~V} \\ & \mathrm{~V}_{+}=4.5 \mathrm{~V} \\ & \mathrm{~V}_{+}=5.5 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 2 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 10 \\ & 13 \\ & 15 \\ & 15 \end{aligned}$	MHz
$\mathrm{f}_{\text {out }}$	Output Frequency, REF ${ }_{\text {out }}$ (Figures 10 and 12)	$C_{L}=25 \mathrm{pF}$	dc	5	MHz
f	Operating Frequency of the Phase Detectors		dc	1	MHz
$t_{\text {w }}$	Output Pulse Width, $\phi \mathrm{R}, \phi \mathrm{V}, \phi \mathrm{R}^{\prime}, \phi \mathrm{V}^{\prime}$ (Figures 11 and 12)	f_{R} in Phase with $\mathrm{fV}^{\prime}, \mathrm{C}_{\mathrm{L}}=25 \mathrm{pF}$	16	125	ns
$\mathrm{C}_{\text {in }}$	Input Capacitance, REF in		-	5	pF

[^31]

NOTE: Alternately, the 50Ω pad may be a T network.
Figure 7. Test Circuit

Figure 8. Test Circuit - Reference Mode

Figure 9. Test Circuit — Crystal Mode

Figure 11. Switching Waveform

Figure 10. Switching Waveform

* Includes all probe and fixture capacitance.

Figure 12. Test Circuit

Figure 13. Nominal Input Impedance of f_{in} and $\mathrm{f}_{\mathrm{in}}{ }^{\prime}$ - Series Format ($\mathrm{R}+\mathrm{jX}$)
($50-1100 \mathrm{MHz}$)

PIN DESCRIPTIONS

DIGITAL INTERFACE PINS

$D_{\text {in }}$
 Serial Data Input (Pin 20)

The bit stream begins with the MSB and is shifted in on the low-to-high transition of CLK. The bit pattern is 1 byte (8 bits) long to access the C or configuration registers, 2 bytes (16 bits) to access the first buffer of the R registers, or 3 bytes (24 bits) to access the A registers (see Table 1). The values in the registers do not change during shifting_because the transfer of data to the registers is controlled by ENB.

NOTE

The value programmed for the N counter must be greater than or equal to the value of the A counter.
The 13 LSBs of the R registers are double-buffered. As indicated above, data is latched into the first buffer on a 16-bit transfer. (The 3 MSBs are not double-buffered and have an immediate effect after a 16-bit transfer.) The two second buffers of the R register contain the two 13-bit divide ratios for the R counters. These second buffers are loaded with the contents of the first buffer as follows. Whenever the A register is loaded, the Rs (second) buffer is loaded from the R (first) buffer. Similarly, whenever the A^{\prime} register is loaded, the Rs' (second) buffer is updated from the R (first) buffer. This allows presenting new values to the R, A, and N counters simultaneously. Note that two different R counter divide ratios may be established: one for the main PLL and another for PLL'.

The bit stream does not need address bits due to the innovative BitGrabber Plus registers. A steering bit is used to direct data to either the main PLL or PLL' section of the chip. Data is retained in the registers over a supply range of 2.7 to 5.5 V . The formats are shown in Figures 14, 15, and 16.

Din typically switches near 50% of $\mathrm{V}+$ to maximize noise immunity. This input can be directly interfaced to CMOS devices with outputs guaranteed to switch near rail-to-rail. When interfacing to NMOS or TTL devices, either a level shifter (MC74HC14A, MC14504B) or pull-up resistor of $1 \mathrm{k} \Omega$ to $10 \mathrm{k} \Omega$ must be used. Parameters to consider when sizing the resistor are worst-case lol of the driving device, maximum tolerable power consumption, and maximum data rate.

Table 1. Register Access
(MSBs are shifted in first; C0, R0, and A0 are the LSBs)

Number of Clocks	Accessed Register	Bit Nomenclature
8	C Registers R Register,	$\mathrm{C} 7, \mathrm{C} 6, \mathrm{C} 5, \ldots, \mathrm{C} 15, \mathrm{R} 13, \ldots, \mathrm{RO}$
16	First Buffer 24	A Registers
Other Values ≤ 32	Not Allowed Values >32	See Figures 24 to 27

CLK
 Serial Data Clock Input (Pin 19)

Low-to-high transitions on CLK shift bits available at the $\mathrm{D}_{\text {in }}$ pin, while high-to-low transitions shift bits from Output A (when configured as Data Out, see Pin 10). The 24-1/2 stage shift register is static, allowing clock rates down to dc in a continuous or intermittent mode.

Eight clock cycles are required to access the C registers. Sixteen clock cycles are needed for the first buffer of the R register. Twenty-four cycles are used to access the A registers. See Table 1 and Figures 14, 15, and 16. The number of clocks required for cascaded devices is shown in Figures 25 through 27.

CLK typically switches near 50% of $\mathrm{V}+$ and has a Schmitttriggered input buffer. Slow CLK rise and fall times are allowed. See the last paragraph of $\boldsymbol{D}_{\text {in }}$ for more information.

NOTE

To guarantee proper operation of the power-on reset (POR) circuit, the CLK pin must be held at GND (with ENB being a don't care) or ENB must be held at the potential of the $\mathrm{V}+\mathrm{pin}$ (with CLK being a don't care) during power-up. Floating, toggling, or having these pins in the wrong state during power-up does not harm the chip, but causes two potentially undesirable effects. First, the outputs of the device power up in an unknown state. Second, if two devices are cascaded, the A Registers must be written twice after power up. After these two accesses, the two cascaded chips perform normally.

ENB

Active-Low Enable Input (Pin 11)

This pin is used to activate the serial interface to allow the transfer of data to/from the device. When ENB is in an inactive high state, shifting is inhibited and the port is held in the initialized state. To transfer data to the device, ENB (which must start inactive high) is taken low, a serial transfer is made via $D_{\text {in }}$ and CLK, and ENB is taken back high. The low-to-high transition on ENB transfers data to the C or A registers and first buffer of the R register, depending on the data stream length per Table 1.

NOTE

Transitions on ENB must not be attempted while CLK is high. This puts the device out of synchronization with the microcontroller. Resynchronization occurs whenever ENB is high and CLK is low.
This input is Schmitt-triggered and switches near 50\% of $\mathrm{V}+$, thereby minimizing the chance of loading erroneous data into the registers. See the last paragraph of $\mathbf{D}_{\text {in }}$ for more information.

For POR information, see the note for the CLK pin.

OUTPUT A

Configurable Digital Output (Pin 10)

Output A is selectable as $f_{R}, f \mathrm{f}, \mathrm{f}_{\mathrm{R}}{ }^{\prime}, \mathrm{fV}^{\prime}$, Data Out, or Port. Bits A21 and A22 and the steering bit (A23) control the selection; see Figure 15. When selected as Port, the pin becomes an open-drain N -channel MOSFET output. As such, a pullup device is needed for pin 10. With all other selections, the pin is a totem-pole (push-pull) output.

If A22 $=A 21=$ high, Output A is configured as $f R$ when the steering bit is low and $f^{\prime}{ }^{\prime}$ when the bit is high. These signals are the buffered outputs of the 13-stage R counters. The signals appear as normally low and pulse high. The signals can be used to verify the divide ratios of the R counters. These ratios extend from 10 to 8191 and are determined by the binary value loaded into bits R0 - R12 in the R register. Also, direct access to the phase detectors via the REF in pin is allowed by choosing a divide value of one. See Figure 16. The maximum frequency at which the phase detectors operate is 1 MHz . Therefore, the frequency of f_{R} and $f_{R}{ }^{\prime}$ should not exceed 1 MHz .

If $\mathrm{A} 22=$ high and $\mathrm{A} 21=$ low, Output A is configured as fV when the steering bit is low and $f V^{\prime}$ when the bit is high. These signals are the buffered outputs of the 12-stage N counters. The signals appear as normally low and pulse high. The signals can be used to verify the operation of the prescalers, A counters, and N counters. The divide ratio between the $f_{i n}$ or $f_{\text {in }}$ input and the $f v$ or fv^{\prime} signal is $\mathrm{N} \times \mathrm{P}+\mathrm{A}$. N is the divide ratio of the N counter, P is 32 with a $32 / 33$ prescale ratio or 64 with a $64 / 65$ prescale ratio, and A is the divide ratio of the A counter. These ratios are determined by bits loaded into the A registers. See Figure 15. The maximum frequency at which the phase detectors operate is 1 MHz . Therefore, the frequency of fV and fV^{\prime} should not exceed 1 MHz .

If A22 = low and A21 = high, Output A is configured as Data Out. This signal is the serial output of the $24-1 / 2$ stage shift register. The bit stream is shifted out on the high-to-low transition of the CLK input. Upon power up, Output A is automatically configured as Data Out to facilitate cascading devices.

If A22 = A21 = low, Output A is configured as Port. This signal is a general-purpose digital output which may be used as an MCU port expander. This signal is low when the Port bit (C1) of the C register is low, and high impedance when the Port bit is high. See Figure 14.

REFERENCE PINS

REF $_{\text {in }}$ and REF $_{\text {out }}$
 Reference Oscillator Input and Output (Pins 1 and 2)

Configurable Pins for a Crystal or an External Reference. This pair of pins can be configured in one of two modes: the crystal mode or the reference mode. Bits R13, R14, and R15 in the R register control the modes as shown in Figure 16.

In the crystal mode, these pins form a reference oscillator when connected to terminals of an external parallel-resonant crystal. Frequency-setting capacitors of appropriate
values, as recommended by the crystal supplier, are connected from each of the two pins to ground (up to a maximum of 30 pF each, including stray capacitance). An external resistor of $1 \mathrm{M} \Omega$ to $15 \mathrm{M} \Omega$ is connected directly across the pins to ensure linear operation of the amplifier. The required connections for the crystal are shown in Figure 9. To turn on the oscillator, bits R15, R14, and R13 must have an octal value of one (001 in binary). This is the active-crystal mode shown in Figure 16. In this mode, the crystal oscillator runs and the R Counter divides the crystal frequency, unless the part is in standby. If the part is placed in standby via the C or C^{\prime} register, the oscillator runs, but the R or R^{\prime} counter is stopped, respectively. However, if bits R15 to R13 have a value of 0, the oscillator is stopped, which saves additional power. This is the shut-down crystal mode shown in Figure 16, and can be engaged whether in standby or not.

In the reference mode, REFin (pin 1) accepts a signal from an external reference oscillator, such as a TCXO. A signal swinging from at least the V_{IL} to V_{IH} levels listed in the Electrical Characteristics table may be directly coupled to the pin. If the signal is less than this level, ac coupling must be used as shown in Figure 8. The ac-coupled signal must be at least $400 \mathrm{mV} \mathrm{p-p}$. Due to an on-board resistor which is engaged in the reference modes, an external biasing resistor tied between REF in and REF out is not required.

With the reference mode, the REF ${ }_{\text {out }}$ pin is configured as the output of a divider. As an example, if bits R15, R14, and R13 have an octal value of seven, the frequency at $R E F_{\text {out }}$ is the $R E F_{\text {in }}$ frequency divided by 16. In addition, Figure 16 shows how to obtain ratios of eight, four, and two. A ratio of one-to-one can be obtained with an octal value of three. Upon power up, a ratio of eight is automatically initialized. The maximum frequency capability of the REFout pin is 5 MHz for large output swings (V_{OH} to V_{OL}) and 25 pF loads. Therefore, for $R E F_{i n}$ frequencies above 5 MHz , the one-to-one ratio may not be used for these large signal swing and large C_{L} requirements. Likewise, for REFin frequencies above 10 MHz , the ratio must be more than two.

If $R E F_{\text {out }}$ is unused, an octal value of two should be used for R15, R14, and R13 and the REF out pin should be floated. A value of two allows REFin to be functional while disabling REF ${ }_{\text {out }}$, which minimizes dynamic power consumption and electromagnetic interference (EMI).

LOOP PINS

$f_{i n}, \overline{f_{i n}}$ and $f_{i n}, \overline{f_{i n}}$ Frequency Inputs (Pins 8, 7 and 13, 14)

These pins feed the onboard RF amplifiers which drive the prescalers. These inputs may be fed differentially. However, they usually are used in single-ended configurations (shown in Figure 7). Note that f_{in} is driven while f_{in} must be tied to ac ground (via capacitor). The signal sources driving these pins originate from external VCOs.

Motorola does not recommend driving $\overline{f_{i n}}$ while terminating f_{i} because this configuration is not tested for sensitivity. The sensitivity is dependent on the frequency as shown in the Loop Specifications table.
$\mathrm{PD}_{\text {out }} / \phi_{\mathbf{R}}, \mathrm{PD}_{\text {out }}{ }^{\prime} / \phi_{\mathbf{R}}{ }^{\prime}$
Single-Ended Phase/Frequency Detector Outputs (Pins 4 and 17)

When the C 2 bits in the C or C^{\prime} registers are low, these pins are independently configured as single-ended outputs $P D_{\text {out }}$ or $P D_{\text {out }}$ ', respectively. As such, each pin is a threestate current-source/sink output for use as a loop error signal when combined with an external low-pass filter. The phase/frequency detector is characterized by a linear transfer function. The operation of the phase/frequency detector is described below and is shown in Figure 17.

POL bit (C0) in the C register = low (see Figure 14)
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading f_{R} : currentsinking pulses from a floating state
Frequency of $\mathrm{f}_{\mathrm{V}}<\mathrm{f}_{\mathrm{R}}$ or Phase of $\mathrm{f} V$ Lagging f_{R} : currentsourcing pulses from a floating state
Frequency and Phase of $\mathrm{fV}_{\mathrm{V}}=\mathrm{f}_{\mathrm{R}}$: essentially a floating state; voltage at pin determined by loop filter
POL bit (CO) = high
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading f_{R} : currentsourcing pulses from a floating state
Frequency of $\mathrm{f}_{\mathrm{V}}<\mathrm{f}_{\mathrm{R}}$ or Phase of f_{V} Lagging f_{R} : currentsinking pulses from a floating state
Frequency and Phase of $f V=f_{R}$: essentially a floating state; voltage at pin determined by loop filter
These outputs can be enabled, disabled, and inverted via the C and C^{\prime} registers. If desired, these pins can be forced to the floating state by utilization of the standby feature in the C or C^{\prime} registers (bit C6). This is a patented feature.

The phase detector gain is controllable by bits C4 and C5: gain (in amps per radian) $=P D_{\text {out }}$ current in amps divided by 2π.

$\mathbf{P D}_{\text {out }} / \phi \mathbf{R}, \mathbf{R x} / \varepsilon \phi \mathbf{V}$ and $\mathbf{P D}_{\text {out }} / / \phi \mathbf{R}^{\prime}, \mathbf{R x}^{\prime} / \phi \mathbf{V}^{\prime}$ Double-Ended Phase/Frequency Detector Outputs (Pins 4, 5 and 17, 16)

When the C 2 bits in the C or C^{\prime} registers are high, these two pairs of pins are independently configured as doubleended outputs $\phi \mathrm{R}, \phi \mathrm{V}$ or $\phi \mathrm{R}^{\prime}, \phi \mathrm{V}^{\prime}$, respectively. As such, these outputs can be combined externally to generate a loop error signal. Through use of a Motorola patented technique, the detector's dead zone has been eliminated. Therefore, the phase/frequency detector is characterized by a linear transfer function. The operation of the phase/frequency detectors are described below and are shown in Figure 17.

POL bit (C0) in the C register = low (see Figure 14)
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading $f_{R}: \phi V=$ negative pulses, $\phi \mathrm{R}=$ essentially high
Frequency of $\mathrm{f}_{\mathrm{V}}<\mathrm{f}_{\mathrm{R}}$ or Phase of f_{V} Lagging $\mathrm{f}_{\mathrm{R}}: \phi \mathrm{V}=$ essentially high, $\phi \mathrm{R}=$ negative pulses
Frequency and Phase of $f V=f_{R}: \phi V$ and ϕR remain essentially high, except for a small minimum time period when both pulse low in phase
POL bit (CO) = high
Frequency of $f V>f_{R}$ or Phase of $f V$ Leading $f R: \phi R=$ negative pulses, $\phi \mathrm{V}=$ essentially high
Frequency of $f V<f_{R}$ or Phase of $f V$ Lagging $f R: \phi R=$ essentially high, $\phi \mathrm{V}=$ negative pulses
Frequency and Phase of $f V=f_{R}: \phi V$ and ϕR remain essentially high, except for a small minimum time period when both pulse low in phase

These outputs can be enabled, disabled, or interchanged via C register bits C6 or C0. This is a patented feature. Note that when disabled in standby, these outputs are forced to their rest condition (high state). See Figure 14.

The ϕR and ϕV output signals swing from approximately GND to V_{+}.

LD and LD'
 Lock Detector Outputs (Pins 3 and 18)

Each output is essentially at a high-impedance state with very narrow low-going pulses of a few nanoseconds when the respective loop is locked (f_{R} and fV of the same phase and frequency). The output pulses low when f_{V} and f_{R} are out of phase or different frequencies. LD is the logical ANDing of ϕR and ϕV, while LD' is the logical ANDing of ϕR^{\prime} and ϕV^{\prime}. See Figure 17.

Upon power up, on-chip initialization circuitry forces LD and LD' to the high-impedance state. These pins are low during standby. If unused, LD should be tied to GND and LD' should be tied to GND'.

These outputs have open-drain N-channel MOSFET drivers. This facilitates a wired-OR function. See Figure 21.

$\mathbf{R x} / \phi \mathbf{V}$ and $\mathbf{R x}^{\prime} / \phi \mathbf{V}^{\prime}$

External Current Setting Resistors (Pins 5 and 16)

When the C 2 bits in the C or C^{\prime} registers are low, these two pins are independently configured as current setting pins Rx or Rx', respectively. As such, resistors tied between each of these pins and GND and GND', in conjunction with bits C4 and C 5 in the C and C^{\prime} registers, determine the amount of current that the $\mathrm{PD}_{\text {out }}$ pins sink and source. When bits C 4 and C 5 are both set high, the maximum current is obtained; see Table 2 for other values of current.

Table 2. PD out or PDout' Current

C5	C4	Current
0	0	5%
0	1	50%
1	0	80%
1	1	100%

The formula for determining the value of $R x$ or $R x^{\prime}$ is as follows.

$$
R x=\frac{V 1-V 2}{I}
$$

where Rx is the value of external resistor in ohms, V 1 is the supply voltage, V2 is 1.5 V for a reference current through Rx of $100 \mu \mathrm{~A}$ or 1.745 V for a reference current of $200 \mu \mathrm{~A}$, and I is the reference current flowing through Rx or Rx^{\prime}.

The reference current flowing through $R x$ or $R x^{\prime}$ is multiplied by a factor of approximately 10 (in the 100% current mode) and delivered by the $\mathrm{PD}_{\text {out }}$ or $\mathrm{PD}_{\text {out }}$ pin, respectively. To achieve a maximum phase detector output current of 1 mA , the resistor should be about $15 \mathrm{k} \Omega$ when a 3 V supply is employed. See Table 3.

Table 3. Rx Values

Supply Voltage	$\mathbf{R x}$	PD $_{\text {out or PD out }}{ }^{\prime}$ Current in $\mathbf{1 0 0 \%}$ Mode
3 V	$15 \mathrm{k} \Omega$	1 mA
5 V	$16 \mathrm{k} \Omega$	2 mA

Do not use a decoupling capacitor on the $R x$ or $R x^{\prime}$ pin. Use of a capacitor causes undesirable current spikes to appear on the phase detector output when invoking the standby mode.

POWER SUPPLY PINS

V+ and $\mathrm{V}^{\prime}{ }^{\prime}$

Positive Supply Potentials (Pins 9 and 12)

V+ supplies power to the main PLL, reference circuit, and a portion of the serial port. V^{\prime} ' supplies power to PLL^{\prime} and a portion of the serial port. Both $\mathrm{V}+$ and $\mathrm{V}+{ }^{\prime}$ must be at the same voltage level and may range from 2.7 V to 5.5 V with respect to the GND and GND' pins.

For optimum performance, V_{+}should be bypassed to GND and V^{\prime} ' bypassed to GND' using separate low-inductance capacitors mounted very close to the MC145220. Lead lengths and printed circuit board traces to the capacitors should be minimized. (The very fast switching speed of the device can cause excessive current spikes on the power leads if they are improperly bypassed.)

GND and GND

Grounds (Pins 6 and 15)

The GND pin is the ground for the main PLL and GND' is the ground for PLL'.

*At this point, the new byte is transferred to the C or C' register and stored. No other registers are affected.
C7 - Steer: Used to direct the data to either the C or C^{\prime} register. A low level directs data to the C register; a high level is for the C^{\prime} register.
C6 - Standby: When set high, places both the main PLL and PLL' (when C6 is set in the C register) or PLL' only (when C6 is set in the C' register) in the standby mode for reduced power consumption. The associated $P D_{\text {out }}$ is forced to the floating state, the associated counters (A, N, and R) are inhibited from counting, the associated Rx current is shut off, and the associated prescaler stops counting and is placed in a low current mode. The associated double-ended phase/frequency detector outputs are forced to a high level. In standby, the associated LD output is placed in the low-state, thus indicating "not locked" (open loop). During standby, data is retained in all registers and any register may be accessed.
In standby, the condition of the REF/OSC circuitry is determined by bits R13, R14, and R15 in the R register per Figure 16. However, if REF $_{\text {out }}=$ static low is selected, the internal feedback resistor is disconnected and the $R E F_{\text {in }}$ is inhibited when both PLL and PLL' are placed in standby via the C register. Thus, the REF in only presents a capacitive load. Note: PLL/PLL' standby does not affect the other modes of the REF/OSC circuitry as determined by bits R13, R14, and R15 in the R register. The PLL' standby mode (controlled from the C' register) has no effect on the REF/OSC circuit.

When C6 is reset low, the associated PLL (or PLLs) is (are) taken out of standby in two steps. First, the REF in (only in 1 mode, PLL/PLL' in standby) resistor is reconnected, $\mathrm{REF}_{\text {in }}$ (only 1 mode) is gated on, all counters are enabled, and the $R x$ current is enabled. Any f_{R} and f_{V} signals are inhibited from toggling the phase/frequency detectors and lock detectors. Second, when the appropriate f_{R} pulse occurs, the A and N counters are jam loaded, the prescaler is gated on, and the phase/frequency and lock detectors are initialized. Immediately after the jam load, the A, N, and R counters begin counting down together. At this point, the f_{R} and f_{V} pulses are enabled to the phase and lock detectors. (Patented feature.)
C5, C4-I2, I1: Independently controls the PD out or PD out' source/sink current per Table 2. With both bits high, the maximum current (as set by Rx or Rx') is available. POR forces C5 and C4 to high levels.

C3 - Spare: Unused
C2 - PDA/B: Independently selects which phase/frequency detector is to be used. When set high, the double-ended detector is selected with outputs $\phi \mathrm{R}$ and $\phi \mathrm{V}$ or $\phi \mathrm{R}^{\prime}$ and $\phi \mathrm{V}^{\prime}$. When reset low, the current source/sink detector is selected with outputs $\mathrm{PD}_{\text {out }}$ or $\mathrm{PD}_{\text {out }}{ }^{\prime}$. In the second case, the appropriate Rx or Rx^{\prime} pin is tied to an external resistor. POR forces C 2 low.

C1 - Port: When the Output A pin is selected as "Port" via bits A22 and A21, C1 of the C register determines the state of Output A . When C 1 is set high, Output A is forced to the high-impedance state; C 1 low forces Output A low. The Port bit is not affected by the standby mode. Note: C1 of the C' register is not used in any mode.

C0 - POL: Selects the output polarity of the associated phase/frequency detectors. When set high, this bit inverts the associated current source/sink output and interchanges the associated double-ended output relative to the waveforms in Figure 17. Also, see the phase detector output pin descriptions for more information. This bit is cleared low at power up.

Figure 14. C and C' Register Accesses and Format (8 Clock Cycles are Used)
$\overline{\mathrm{ENB}}$

$D_{\text {in }}$

0 MAIN PLL, A REGISTER
1 PLL', A' REGISTER
(NOTE 4)
$F \quad F \quad E \quad$ NCOUNTER $=\div 409$
$F \quad F \quad F \quad$ N COUNTER $=\div 4095$

HEXADECIMAL VALUE
FOR N COUNTER

HEXADECIMALVALUE FOR ACOUNTER AND BITS A7 AND A6

NOTES:

1. A power-on initialize circuit forces the Output A function to default to Data Out.
2. The values programmed for the N counter must be greater than or equal to the values programmed for the A counter. This results in a total divide value $=\mathrm{N} \times \mathrm{P}+\mathrm{A}$ where N is the value programmed for the N counter, P is 32 if bit A 20 is low or 64 if A 20 is high, and A is the value programmed for the A counter.
3. At this point, the three new bytes are transferred to the A register if bit A23 is a " 0 " or A^{\prime} ' register if A23 is a " 1 ". In addition, the 13 LSBs in the first buffer of the R register are transferred to the R register's relative second buffer, Rs or Rs'. Thus, the R, N, and A (or R', N', and A) counters can be presented new divide ratios at the same time. The first buffer of the R register is not affected. The C or C registers are not affected.
4. A " 0 " for the Steering bit allows selection of f_{R}, f_{V}, Data Out, or Port by bits A21 and A22. A " 1 " for the Steering bit allows selection of f_{R}, f_{V} ', Data Out, or Port.

NOTES:

1. Bits R15-R13 control the configurable "Buffer and Control" block (see Block Diagram).
2. Bits R12 - R0 control the "13-stage R counter" blocks (see Block Diagram).
3. A power-on initialize circuit forces a default $R E F_{\text {in }}$ to $R E F_{\text {out }}$ ratio of eight.
4. At this point, bits R13, R14, and R15 are stored and sent to the "Buffer and Control" block in the Block Diagram. Bits R0 - R12 are loaded into the first buffer in the double-buffered section of the R register. Therefore, the R or R^{\prime} counter divide ratio is not altered yet and retains the previous ratio loaded. The $\mathrm{C}, \mathrm{C}^{\prime}, \mathrm{A}$, and A^{\prime} registers are not affected.
5. Bits R0 - R12 are transferred to the second buffer of the R register (Rs in the Block Diagram) on a subsequent 24-bit write to the A register. The bits are transferred to Rs^{\prime} on a subsequent 24 -bit write to the A^{\prime} register. The respective R counter begins dividing by the new ratio after completing the rest of its present count cycle.
6. Allows direct access to reference input of phase/frequency detectors.

Figure 16. R Register Access and Format (16 Clock Cycles are Used)

NOTES:

1. At this point, when both f_{R} and f_{V} are in phase, the output source and sink circuits are turned on for a short interval.
2. The $P D_{\text {out }}$ either sources or sinks current during out-of-lock conditions. When locked in phase and frequency, the output is mostly in a floating condition and the voltage at that pin is determined by the low-pass filter capacitor. $\mathrm{PD}_{\mathrm{out}}, \phi \mathrm{R}$, and $\phi \mathrm{V}$ are shown with the polarity bit $(\mathrm{POL})=$ low; see Figure 14 for POL.
3. $\mathrm{V}_{\mathrm{H}}=$ High voltage level, $\mathrm{V}_{\mathrm{L}}=$ Low voltage level.
4. The waveforms are applicable to both the main PLL and PLL'.

Figure 17. Phase/Frequency Detectors and Lock Detector Output Waveforms

DESIGN CONSIDERATIONS

CRYSTAL OSCILLATOR CONSIDERATIONS

The following options may be considered to provide a reference frequency to Motorola's CMOS frequency synthesizers.

Use of a Hybrid Crystal Oscillator

Commercially available temperature-compensated crystal oscillators (TCXOs) or crystal-controlled data clock oscillators provide very stable reference frequencies. An oscillator capable of CMOS logic levels at the output may be direct or dc coupled to REFin. If the oscillator does not have CMOS logic levels on the outputs, capacitive or ac coupling to REFin must be used. See Figure 8.

For additional information about TCXOs and data clock oscillators, please consult the latest version of the eem Electronic Engineers Master Catalog, the Gold Book, or similar publications.

Design an Off-Chip Reference

The user may design an off-chip crystal oscillator using discrete transistors or ICs specifically developed for crystal oscillator applications, such as the MC12061 MECL device. The reference signal from the MECL device is ac coupled to REFin. (See Figure 8.) For large amplitude signals (standard CMOS logic levels), dc coupling may be used.

Use of the On-Chip Oscillator Circuitry

The on-chip amplifier (a digital inverter) along with an appropriate crystal may be used to provide a reference source frequency. A fundamental mode crystal, parallel resonant at the desired operating frequency, should be connected as shown in Figure 18.

The crystal should be specified for a loading capacitance, C_{L}, which does not exceed approximately 20 pF when used near the highest operating frequency of the MC145220. Assuming R1 $=0 \Omega$, the shunt load capacitance, C_{L}, presented across the crystal can be estimated to be:

$$
\mathrm{C}_{\mathrm{L}}=\frac{\mathrm{C}_{\text {in }} \mathrm{C}_{\text {out }}}{\mathrm{C}_{\text {in }}+\mathrm{C}_{\text {out }}}+\mathrm{C}_{\mathrm{a}}+\mathrm{C}_{\text {stray }}+\frac{\mathrm{C} 1 \cdot \mathrm{C} 2}{\mathrm{C} 1+\mathrm{C} 2}
$$

where
$\mathrm{C}_{\mathrm{in}}=5 \mathrm{pF}$ (see Figure 19)
$C_{\text {out }}=6 \mathrm{pF}$ (see Figure 19)
$\mathrm{C}_{\mathrm{a}}=1 \mathrm{pF}$ (see Figure 19)
C1 and C2 = external capacitors (see Figure 18)
$\mathrm{C}_{\text {stray }}=$ the total equivalent external circuit stray capacitance appearing across the crystal terminals
The oscillator can be "trimmed" on-frequency by making either a portion or all of C1 variable. The crystal and associated components must be located as close as possible to the $R E F_{\text {in }}$ and REF out pins to minimize distortion, stray capacitance, stray inductance, and startup stabilization time. Circuit stray capacitance can also be handled by adding the appropriate stray value to the values for $\mathrm{C}_{\text {in }}$ and $\mathrm{C}_{\text {out }}$. For this approach, the term $\mathrm{C}_{\text {Stray }}$ becomes zero in the above expression for C_{L}.

Power is dissipated in the effective series resistance of the crystal, R_{e}, in Figure 20. The maximum drive level specified by the crystal manufacturer represents the maximum stress that the crystal can withstand without damage or excessive shift in operating frequency. R1 in Figure 18 limits the drive level. The use of R1 is not necessary in most cases.

To verify that the maximum dc supply voltage does not cause the crystal to be overdriven, monitor the output frequency (${ }^{\mathrm{f} R}$) at Output A as a function of supply voltage. (REF ${ }_{\text {out }}$ is not used because loading impacts the oscillator.) The frequency should increase very slightly as the dc supply voltage is increased. An overdriven crystal decreases in frequency or becomes unstable with an increase in supply voltage. The operating supply voltage must be reduced or R1 must be increased in value if the overdriven condition exists. Note that the oscillator start-up time is proportional to the value of R1.

Through the process of supplying crystals for use with CMOS inverters, many crystal manufacturers have developed expertise in CMOS oscillator design with crystals. Discussions with such manufacturers can prove very helpful. See Table 4.

* May be needed in certain cases. See text.

Figure 18. Pierce Crystal Oscillator Circuit

Figure 19. Parasitic Capacitances of the Amplifier and $\mathrm{C}_{\text {stray }}$

NOTE: Values are supplied by crystal manufacturer (parallel resonant crystal).

Figure 20. Equivalent Crystal Networks

RECOMMENDED READING

Technical Note TN-24, Statek Corp.
Technical Note TN-7, Statek Corp.
E. Hafner, "The Piezoelectric Crystal Unit - Definitions and Method of Measurement", Proc. IEEE, Vol. 57, No. 2, Feb. 1969.
D. Kemper, L. Rosine, "Quartz Crystals for Frequency Control", Electro-Technology, June 1969.
P. J. Ottowitz, "A Guide to Crystal Selection", Electronic Design, May 1966.
D. Babin, "Designing Crystal Oscillators", Machine Design, March 7, 1985.
D. Babin, "Guidelines for Crystal Oscillator Design", Machine Design, April 25, 1985.

Table 4. Partial List of Crystal Manufacturers

Motorola - Internet Address
http://motorola.com
United States Crystal Corp.
Crystek Crystal
Statek Corp.
Fox Electronics

NOTE: Motorola cannot recommend one supplier over another and in no way suggests that this is a complete listing of crystal manufacturers.
(A)

$$
\begin{aligned}
\omega_{n} & =\sqrt{\frac{K_{\phi} K_{V C O}}{N C}} \\
\zeta & =\frac{R}{2} \sqrt{\frac{K_{\phi} K_{V C O C}}{N}}=\frac{\omega_{n} R C}{2} \\
Z(s) & =\frac{1+s R C}{s C}
\end{aligned}
$$

NOTE:
For (A), using K_{ϕ} in amps per radian with the filter's impedance transfer function, $\mathrm{Z}(\mathrm{s})$, maintains units of volts per radian for the detector/ filter combination. Additional sideband filtering can be accomplished by adding a capacitor C^{\prime} across R. The corner $\omega_{C}=1 / R C^{\prime}$ should be chosen such that ω_{n} is not significantly affected.
(B)

$$
\begin{aligned}
\omega_{n} & =\sqrt{\frac{\mathrm{K}_{\phi} \mathrm{K}_{\mathrm{VCO}}}{\mathrm{NCR}_{1}}} \\
\zeta & =\frac{\omega_{n} \mathrm{R}_{2} \mathrm{C}}{2}
\end{aligned}
$$

ASSUMING GAIN A IS VERY LARGE, THEN:

$$
Z(s)=\frac{R_{2} s C+1}{R_{1} s C}
$$

NOTE:
For (B), R_{1} is frequently split into two series resistors; each resistor is equal to R_{1} divided by 2 . A capacitor C_{C} is then placed from the midpoint to ground to further filter the error pulses. The value of C_{C} should be such that the corner frequency of this network does not significantly affect ω_{n}.
DEFINITIONS:
$\mathrm{N}=$ Total Division Ratio in Feedback Loop
K_{ϕ} (Phase Detector Gain) I IPDout $/ 2 \pi$ amps per radian for $\mathrm{PD}_{\text {out }}$
K_{ϕ} (Phase Detector Gain) $=\mathrm{V}+/ 2 \pi$ volts per radian for $\phi \mathrm{V}$ and $\phi \mathrm{R}$
$\mathrm{K}_{\mathrm{VCO}}\left(\mathrm{VCO}\right.$ Transfer Function) $=\frac{2 \pi \Delta f \mathrm{VCO}}{\Delta \mathrm{V} \mathrm{VCO}}$ radians per volt
For a nominal design starting point, the user might consider a damping factor $\zeta \approx 0.7$ and a natural loop frequency $\omega_{\mathrm{n}} \approx\left(2 \pi \mathrm{ff}_{\mathrm{R}} / 50\right)$ where f_{R} is the frequency at the phase detector input. Larger ω_{n} values result in faster loop lock times and, for similar sideband filtering, higher f_{R}-related VCO sidebands.

Either loop filter (A) or (B) is frequently followed by additional sideband filtering to further attenuate f_{R}-related VCO sidebands. This additional filtering may be active or passive.

RECOMMENDED READING:

Gardner, Floyd M., Phaselock Techniques (second edition). New York, Wiley-Interscience, 1979.
Manassewitsch, Vadim, Frequency Synthesizers: Theory and Design (second edition). New York, Wiley-Interscience, 1980.
Blanchard, Alain, Phase-Locked Loops: Application to Coherent Receiver Design. New York, Wiley-Interscience, 1976.
Egan, William F., Frequency Synthesis by Phase Lock. New York, Wiley-Interscience, 1981.
Rohde, Ulrich L., Digital PLL Frequency Synthesizers Theory and Design. Englewood Cliffs, NJ, Prentice-Hall, 1983.
Berlin, Howard M., Design of Phase-Locked Loop Circuits, with Experiments. Indianapolis, Howard W. Sams and Co., 1978.
Kinley, Harold, The PLL Synthesizer Cookbook. Blue Ridge Summit, PA, Tab Books, 1980.
Seidman, Arthur H., Integrated Circuits Applications Handbook, Chapter 17, pp. 538-586. New York, John Wiley \& Sons.
Fadrhons, Jan, "Design and Analyze PLLs on a Programmable Calculator," EDN. March 5, 1980.
AN535, Phase-Locked Loop Design Fundamentals, Motorola Semiconductor Products, Inc., 1970.
AR254, Phase-Locked Loop Design Articles, Motorola Semiconductor Products, Inc., Reprinted with permission from Electronic Design, 1987.

AN1253, An Improved PLL Design Method Without ω_{n} and ζ, Motorola Semiconductor Products, Inc., 1995.

NOTES:

1. The $P_{\text {out }}$ output is fed to an external loop filter. See the Phase-Locked Loop — Low-Pass Filter Design page for additional information.
2. For optimum performance, bypass the V_{+}and V_{+}' pins to GND and GND' with low-inductance capacitors.
3. The R counter is programmed for a divide value $=R E F_{\text {in }} / f_{R}$. Typically, f_{R} is the tuning resolution required for the VCO. Also, the VCO frequency divided by $f_{R}=N T=N \cdot P+A$; this determines the values (N, A) that must be programmed into the N and A counters, respectively. P is the lower divide ratio of the dual-modulus prescaler (i.e., 32 or 64).
4. Pull-up voltage must be at the same potential as the V+ pin or less. Pull-up device other than a resistor may be used. (Pull-up device not required when Output A is configured as $\mathrm{f}_{\mathrm{R}}, \mathrm{f}_{\mathrm{R}}, \mathrm{f}_{\mathrm{V}}, \mathrm{fV}^{\prime}$, DATA OUT.)
5. LD and LD' are open-drain outputs. This allows the wired-OR configuration shown. Note that R1 and Q1 form the "pull-up device".
6. Use of Q1 is optional and depends on loading.

Figure 21. Application Showing Use of the Two Single-Ended Phase/Frequency Detectors

NOTES:

1. The ϕR and ϕV outputs are fed to an external combiner/loop filter. See the Phase-Locked Loop - Low-Pass Filter Design page for additional information. The $\phi \mathrm{R}$ and ϕ v outputs swing rail-to-rail. Therefore, the user should be careful not to exceed the common mode input range of the op amp used in the combiner/loop filter.
2. For optimum performance, bypass the $\mathrm{V}+$ and $\mathrm{V}+{ }^{\prime}$ pins to $G N D$ and GND' with low-inductance capacitors.
3. The R counter is programmed for a divide value $=R E F_{i n} / f_{R}$. Typically, f_{R} is the tuning resolution required for the VCO. Also, the VCO frequency divided by $f_{R}=N_{T}=N \cdot P+A$; this determines the values (N, A) that must be programmed into the N and A counters, respectively. P is the lower divide ratio of the dual-modulus prescaler (i.e., 32 or 64).
4. Pull-up voltage must be at the same potential as the $\mathrm{V}+$ pin or less. Pull-up device other than a resistor may be used. (Pull-up device not required when Output A is configured as $f R$, $\mathrm{f}_{\mathrm{R}}{ }^{\prime}, \mathrm{f} \mathrm{V}, \mathrm{f} \mathrm{V}^{\prime}$, DATA OUT.)
5. LD and LD' are open-drain outputs. This allows the wired-OR configuration shown. Note that R1 and Q1 form the "pull-up device".
6. Use of Q1 is optional and depends on loading.

Figure 22. Application Showing Use of the Two Double-Ended Phase/Frequency Detectors

NOTES:

1. See the Phase-Locked Loop - Low-Pass Filter Design page for additional information.
2. For optimum performance, bypass the $\mathrm{V}+$ and $\mathrm{V}+{ }^{\prime}$ pins to $G N D$ and GND' with low-inductance capacitors.
3. The R counter is programmed for a divide value $=R E F_{i n} / f_{R}$. Typically, f_{R} is the tuning resolution required for the VCO. Also, the VCO frequency divided by $f_{R}=N T=N \cdot P+A$; this determines the values (N, A) that must be programmed into the N and A counters, respectively. P is the lower divide ratio of the dual-modulus prescaler (i.e., 32 or 64).
4. Pull-up voltage must be at the same potential as the V+ pin or less. Pull-up device other than a resistor may be used. (Pull-up device not required when Output A is configured as $f_{R}, f_{R}{ }^{\prime}, f \vee, f V^{\prime}$, DATA OUT.)
5. LD and LD' are open-drain outputs. This allows the wired-OR configuration shown. Note that R1 and Q1 form the "pull-up device".
6. Use of Q1 is optional and depends on loading.

Figure 23. Application Showing Use of Both the Single- and Double-Ended Phase/Frequency Detectors

NOTE: See related Figures 25, 26, and 27.
Figure 24. Cascading Two Devices

Figure 25. Accessing the C or C' Registers of Two Cascaded MC145220 Devices (32 Clock Cycles are Used)

＊At this point，the new bytes are transferred to the A or A^{\prime} registers of both devices and stored．Additionally，for both devices，the 13 LSBs in each of the first buffers of the R Registers are transferred to the respective R register＇s second buffer．Thus，the R, N ，and $A\left(R\right.$＇，N^{\prime} ，and A^{\prime} ）counters can be presented new divide ratios at the same time．The first buffer of each R register is not affected．None of the C or C^{\prime} registers are affected．

Technical Summary MC145220 Evaluation Board

INTRODUCTION

The MC145220EVK makes it easy to exercise features of the MC145220 and build PLLs which meet individual performance requirements. The EVK is controlled through menu driven software operating on an IBM PC or compatible. Other Motorola PLL EVKs (MC145190, MC145191, MC145192, MC145200, MC145201, MC145202) in up to three-board cascades can use the same program. Frequency defaults that apply to each are automatically selected. All board functions are controlled through the printer port of an IBM PC. Up to three different EVKs may be controlled at the same time from one printer port. The functional block diagram is given in Figure 1.

This technical summary contains the hardware description for the evaluation board and a summary of the software section. For complete information, consult the manual that is provided in the evaluation kit.

ORDERING INFORMATION

These kits may be ordered through your local Motorola Semiconductor sales office or authorized distributor. Ask your Motorola representative to order the kits from the finished goods warehouse, not the literature distribution center. Request the part number shown below.

Part Number	Description
MC145220EVK	Kit with the MC145220 installed.

This document contains information on a new product. Specifications and information herein are subject to change without notice.

SECTION 1 - HARDWARE

FEATURES

1. The EVK is a complete working synthesizer, including VCOs.
2. Board is controlled by an IBM PC-compatible computer through the printer port.
3. Up to three boards can be operated independently through one printer port.
4. A prototype area and mounting holes are provided for VCOs, mixers, and amplifiers.
5. External reference input can be used.
6. Five element loop filter is included.
7. Frequency range of operation, step size and reference frequency can be changed in the control program.
8. Lock Detect, Out A, and Out B on any single board are accessible through the printer port.

CONTENTS OF EVALUATION KIT

1. Assembled evaluation board.
2. Nine-foot flat cable with four DB-25 male connectors.
3. MC145220EVK manual.
4. $3.5^{\prime \prime}$ PC-compatible disk containing compiled program.
5. PLL device data sheets.

GETTING STARTED

To perform basic functions, do the following:

1. Plug in 12 volts at J 8 , observing the polarity marked on the board.
2. Short circuit section 1 of the DIP switch (S1) and open circuit all other sections.
3. Connect the supplied flat cable between the computer printer port and the DB-25 connector on the board (J9).
4. Type PLL at the DOS prompt. Then press enter.
5. Type the number that corresponds with the type of board given in the on-screen menu. The MC145220 may operate in single loop or dual loop mode. Then press Q.

You should now see the main menu displayed. There should be a signal present at J5 if single loop, or J 12 if dual loop. The frequency will be the current output frequency given in the main menu. If the signal is not on the correct frequency, check to see if your printer port address is $\$ 278$ (hexadecimal 278). If not, then select the P menu item and enter the correct address. After returning to the main menu, select the I menu item to send data to the board. You should now be on frequency.

MODIFICATIONS

The user may modify the hardware, such as utilizing a different VCO, by using the prototyping area of the board. After such modifications are made, the default values in the software may need to be changed. This is facilitated from the 'Select from the available options' screen.

Note that the on-board voltage regulators allow for a maximum VCO control voltage range of 0.5 - 4.5 volts.

Figure 1. Evaluation Kit Block Diagram

TYPICAL PERFORMANCE

Typical performance applies only to the configuration as shipped. The MC145220EVK is shipped with $\mathrm{V}_{+}=5 \mathrm{~V}$. For lowest phase noise in single or dual loop mode, a 50Ω load must be connected to J 12 .

	Single Loop PLL	Single Loop PLL'	Dual Loop PLL
Supply Voltage (J8)	11.5-12.5 V		
Supply Current (J8) (Note 1)	177 mA		
Available Current (Note 2)	45 mA		
Frequency Range (Note 3)	$733-743 \mathrm{MHz}$	$790-820 \mathrm{MHz}$	$60-80 \mathrm{MHz}$
Reference Frequency (M1)	10.01 MHz		
Temperature Stability (M1, $-30^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$)	< $\pm 2.5 \mathrm{ppm}$		
Reference Frequency (M5)	14.4 MHz		N/A
Temperature Stability (M5, $-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)	< $\pm 2 \mathrm{ppm}$		N/A
TCXO Aging (M1, M5)	< $\pm 1 \mathrm{ppm} / \mathrm{year}$		
Step Size	10 kHz		10 Hz
Power Output	$-3.0 \mathrm{dBm}$	$-5.0 \mathrm{dBm}$	$4.5-7.5 \mathrm{dBm}$
Frequency Accuracy	$\pm 1.5 \mathrm{kHz}$	$\pm 1.5 \mathrm{kHz}$	$\pm 50 \mathrm{~Hz}$
Reference Sidebands (Note 4)	$-57 \mathrm{~dB}$	$-74 \mathrm{~dB}$	$-57 \mathrm{~dB}$
Phase Noise (100 Hz)	$-65 \mathrm{dBc} / \mathrm{Hz}$	$-56 \mathrm{dBc} / \mathrm{Hz}$	$-50 \mathrm{dBc} / \mathrm{Hz}$
Phase Noise (10 kHz) (Note 5)	- $104 \mathrm{dBc} / \mathrm{Hz}$	$-90 \mathrm{dBc} / \mathrm{Hz}$	$-89 \mathrm{dBc} / \mathrm{Hz}$
Switching Time (Note 6)	24 ms	40 ms	45 ms

NOTES:

1. Supply current is current the board requires without user modifications.
2. Available current is the sum of currents available to the user (in the prototype area) from the 5 V and 8.5 V supply. The 12 V supply is not regulated. Current at 12 V is limited by the external power supply. If the on-board VCO and amplifier are disconnected from the power bus, more current can be drawn in the prototype area. The current flowing into U5 (the 8.5 V regulator) should not exceed 180 mA . This will limit temperature rise in U5.
3. Frequency ranges require use of the 5 V default charge pump supply voltage.
4. VCO sidebands on PLL at low step sizes (10 kHz) are limited by control line leakage of the VCO. Up to 24 nA of leakage has been seen. At higher step sizes (100 kHz and above), this effect is much less noticable. This did not affect PLL' because its VCO leakage was less than 10 pA .
5. 10 kHz phase noise is limited by the PLL device noise. For low noise designs, the loop bandwidth is made narrower and the VCO is relied upon to provide the 10 kHz phase noise. This can be seen on the EVKs since the VCOs have much lower noise.
6. 10 MHz step, within $\pm 1 \mathrm{kHz}$ of final frequency ('220).

Due to the software architecture, when the user is measuring the switching time of a single board in dual loop mode, it takes 20 ms to load the data as compared to single loop mode, which takes 8 ms to load the data. This is a limitation of the software, not the IC. To find the actual PLL switching time, subtract 8 or 20 ms from the switching time stated in the table.

SUPPORT MATERIAL

The following documents are included in the appendix:

1. Schematic diagram of MC145220EVK.
2. Bill of materials.
3. Parts layout diagram.
4. Mechanical drawing of board.
5. MC145220 data sheet.
6. Typical signal plots.

PRODUCTION TEST

After assembly is complete, the following alignment and test is performed:

1. The control program is started in ' 220 single loop mode.
2. [L]! is selected to set PLL frequency to 733 MHz .
3. Power is applied to the board. DIP switch section 1 is closed circuit with all others being open circuit.
4. After attaching computer cable, [I]! is selected.
5. Trim resistor VR1 is adjusted to obtain an output frequency at J 5 of $733 \mathrm{MHz} \pm 500 \mathrm{~Hz}$.
6. Voltage at the control voltage test point (TP2) is measured. It must be $>0.5 \mathrm{~V}$.
7. $[H]$! is selected.
8. Voltage at the control voltage test point (TP2) is measured. It must be $<4.4 \mathrm{~V}$.
9. [T]! is selected to toggle to PLL'.
10. [L]! is selected to set PLL' frequency to 790 MHz .
11. Voltage at the control voltage test point (TP9) is measured. It must be $>0.5 \mathrm{~V}$.
12. $[H]$! is selected to set PLL' frequency to 820 MHz .
13. Voltage at the control voltage test point (TP9) is measured. It must be $<4.4 \mathrm{~V}$.
14. [G] is selected and the board type is changed to ' 220 dual loop mode.
15. [Q]!, then [I]!, is selected to initialize the dual mode output (J12) to 70 MHz . The frequency should be $70 \mathrm{MHz} \pm 50 \mathrm{~Hz}$.

If in step 5 it isn't possible to obtain a signal on frequency, the adjustment screw in M1 may be turned for further frequency adjustment range. If neither adjustment works, [P] should be selected and the correct printer port address entered. [I]! is then selected to reload the data.

BOARD OPERATION

A computer is connected to the DB- 25 connector J9. Data is output from the printer port. The printer card is in slot 0 using the default address in the control program. Data is sent to the PLL device (U1) through the DIP switch (S1), and 74HCT241 buffer (U2). D1, D2, D3, R7, R8, and R12 are in the data path between the 'HCT241 and PLL device. This limits the high level output voltage of the buffer. Voltage on PLL device inputs must be no greater than 0.5 V above $\mathrm{V}+$. A '220 PLL has three output lines which are routed through a 74LS126 line driver (U3) back to the computer.

U2, the 74HCT241, provides isolation and logic translation for PLL input lines. Logic translation is needed from the TTL levels on the printer port to the CMOS levels on the '220 inputs.

A 12 V power supply should be used to power the board at J8 (Augat 2SV-02 connector). The 2SV-02 will accept 18-24 AWG bare copper power leads. No tools are needed for connection. If power is properly connected, LED D4 will be lit.

Power passes from J8 to U5 (LM317 regulator) configured as an 8.5 V regulator. 8.5 V powers the VCOs. Regulators U6 and U7 use the 8.5 V supply to produce 3 V and 5 V . The '220 board can use either to power the logic and charge pump. V+ voltage is selected by J 11 . U6 and U7 are cascaded with U5 to equalize their individual voltage drops.

The '220 operates in both a single loop and dual loop mode. There are no component changes between the two modes. The differences are in the programming of the counters and the SMA connector that is used.

The PLL loop is composed of the MC145220 (U1), $733-743 \mathrm{MHz}$ VCO (M2), and a passive loop filter (R4, R5, C6, C7, C8). In single loop mode, output is taken from J5. A passive loop filter was used to keep the design simple, reduce noise, and reduce the quantity of traces susceptible to stray pickup. The PLL' loop is composed of the MC145220 (U1), 790-820 MHz VCO (M3), and a passive loop filter (R22, R25, C24, C26, C30). In single loop mode, output is taken from J 10 .

Dual mode output is the ($\left.f^{\prime}-\mathrm{f}\right)$ frequency output from the mixer. It is low pass filtered (L1, L2, C15, C21, C 22) then amplified (U4). The output is available at J 12 .

Phase detector current is $2 \mathrm{~mA} . \mathrm{J} 1$ is a removable jumper used for current measurement of $\mathrm{V}+$.
Two TCXOs, a Motorola Saber 14.4 MHz (M5), and Raltron 10.01 MHz (M1) are supplied. As shipped from the factory, the 10.01 MHz TCXO is in use. This allows both the 10 kHz and 10 Hz step sizes to be used with one TCXO. 10.01 MHz cannot be divided for larger step sizes such as 100 kHz . For larger step sizes use the Saber. Jumpers J3, J4, J13, and J14 determine which TCXO or the external reference input is in use.

DUAL MODE OUTPUT

The dual mode output (J12) is the difference frequency from mixing PLL and PLL'. By using a reference frequency of 10.01 MHz , PLL can be operated with a 10.01 kHz step size and PLL' with a 10 kHz step size. If both PLL and PLL' step down in frequency, the mixed output will step up by 10 Hz . More information on the offset reference technique is in AN1277/D, Offset Reference PLLs for Fine Resolution or Fast Hopping. The block diagram, formulas, and an example are shown in Figure 2.

Figure 2. Dual Mode Block Diagram

PLL	PLL'
$\mathrm{f}=\mathrm{N}(10.01 \mathrm{kHz})$	$\mathrm{f}^{\prime}=\mathrm{N}^{\prime}(10 \mathrm{kHz})$
$f=10.01 \mathrm{kHz}\left[74,000-\frac{r\left(f^{\prime}-f\right)}{10 \mathrm{~Hz}}\right]$	$f^{\prime}=10 \mathrm{kHz}\left[\frac{\mathrm{w}\left(\mathrm{f}^{\prime}-\mathrm{f}\right)+740 \mathrm{kHz}}{10 \mathrm{kHz}}+\mathrm{N}\right]$
$N=74,000-\frac{r\left(f^{\prime}-f\right)}{10 \mathrm{~Hz}}$	$N^{\prime}=N+74+\frac{w\left(f^{\prime}-f\right)}{10 \mathrm{kHz}}$
$\left(f^{\prime}-\mathrm{f}\right)=\mathrm{w}\left(\mathrm{f}^{\prime}-\mathrm{f}\right)+\mathrm{r}\left(\mathrm{f}^{\prime}-\mathrm{f}\right)$	
$\left(f^{\prime}-f\right)=$ Desired Output Frequency	
$w\left(f^{\prime}-f\right)=$ Output Frequency Portion that Divides Evenly by 10 kHz	
$r\left(f^{\prime}-f\right)=$ Remainder from Output Frequency Division by 10 kHz	

Dual Mode Formulas

Example: Synthesize 76.849 930 MHz

$$
\begin{array}{ll}
r\left(f^{\prime}-f\right)=9.930 \mathrm{kHz}, & \mathrm{w}\left(\mathrm{f}^{\prime}-\mathrm{f}\right)=76.840 \mathrm{MHz} \\
\mathrm{~N}=74,000-\frac{9.930 \mathrm{kHz}}{10 \mathrm{~Hz}}=73,007 & \mathrm{f}=73,007(10.01 \mathrm{kHz})=730.800070 \mathrm{MHz} \\
\mathrm{~N}^{\prime}=73,007+74+\frac{76.840 \mathrm{MHz}}{10 \mathrm{kHz}}=80,765 & f^{\prime}=80,765(10 \mathrm{kHz})=807.650000 \mathrm{MHz} \\
\left(f^{\prime}-f\right)=807.650000 \mathrm{MHz}-730.800070 \mathrm{MHz}=76.849930 \mathrm{MHz}
\end{array}
$$

EXTERNAL REFERENCE INPUT

To use an external reference, disconnect J3, J4, J13, and J14. Use a reference signal at J2 which complies with data sheet requirements. Then modify the reference frequency in the program main menu to reflect the changes made (F menu item).

DATA TRANSFER FROM COMPUTER TO EVK

To control the serial input EVK with the parallel printer port, a conversion is done. Printer cards are designed to output eight bits through eight lines. A bit mask is used to obtain the bit combination for the three required output lines (Data, Clock, Load). As bytes are sent to the printer card in sequence, it appears to be a serial transfer. The printer port is used because data transfer using the serial port would be much slower. A standard IBM PC can support a parallel port data rate of 4.77 MHz .

IBM PCs and compatibles can accept up to three printer port configurations. These ports are called LPT1, LPT2, and LPT3. Each printer port has a unique address. Two sets of addresses are in common use. One set applies to IBM PC XT, AT, and clones. The other is for the PS 2 line. To load data into the EVK, the correct address must be selected. The program default is $\$ 278$. If $\$ 278$ is not the address in use, it must be modified by entering the P menu item in the main menu. All allowed addresses given in hexadecimal are as follows:

Label	IBM PC and Clones	PS 2
LPT1	278	$3 B C$
LPT2	378	378
LPT3	$3 B C$	278

Up to three EVK boards can operate independently from one printer port. All lines on the printer port are connected to every EVK. Even with three boards operating, only three output lines (Clock, Data, and Load) from the printer card are used. If two boards are controlled together, data for the second board is received from the Output A of the first. Output A is a configurable output on '220 devices, which in this case is used to shift data through chip 1 into chip 2. Output A and Data are connected using a printer port input line. This was done to avoid connecting extra wires. Fortunately not all port input lines are needed for computer input. Load and Clock are common to both boards.

A three-board cascade is handled similarly to a two-board cascade. Out A on the first board is fed to Data on the second. Out A on the second connects to Data on the third. Instructing the program on the quantity of boards connected together allows it to modify the number of bits sent.

All boards have a DIP switch S1 which gives each a unique address. The configuration menu is used to tell the program what type of board is connected at a board address. Switch positions for all possible addresses are given in Figure 2.

Single Board Operation

Two- or Three-Board Cascade

Board B

Board C

Figure 3. Switch Positions

In Figure 2, DIP switch sections 6, 7, and 8 allow the computer to read Out A, Lock Detect', or Lock Detect from the PLL device. Each of the inputs can only be read on one board at a time, but each item could be read on a different board. In a three-board cascade, Out A could be read from the first board, Out B from the second, and Lock Detect from the third. There is no way to determine the board address of a particular input with software. The control program does not make use of these inputs; however, source code could be modified as required. Pin assignment on the printer port connector is:

Label	Pin Number
Out A	12
Out B	13
Lock Detect	15

PRINTER PORT CONFIGURATION

Printer port outputs on an IBM PC or clone use TTL-LS logic levels. Inputs are one TTL-LS load. Signal lines can be used for any purpose. The standard names, direction of data flow, true and inverted data are shown in Figure 3.

Figure 4. Printer Port Data Lines

Pin numbers for the port connector are shown in Figure 4.

Figure 5. DB-25 Male Connector

SECTION 2 - SOFTWARE DESCRIPTIONS SUMMARY

INTRODUCTION

The MC145xxx EVK control program is used to program all PLL evaluation kits. It will simultaneoulsy control up to three different boards independently from one printer port. All features of the PLL device may be accessed. Default frequencies can be modified to allow use of different channel spacings and VCOs.

User input errors are detected and appropriate messages are displayed.
To show the format of the program, a sample screen is shown below:

'Select from the available options'

```
            Welcome to MC145xxx EVK Demonstration Program, rev 4.0
            Select from the available options
Available Boards - Current target board is: A, MC145220 Dual
    Brd [A]!: MC145220 Dual Brd [-]!: N/A Brd [-]!: N/A
MC145xxx Frequency Commands - Current Output Frequency is 70 MHz
    [L]! Set to low freq. 60 MHz [W] Change default low freq.
    [M]! Set to med. freq. 70 MHz [Y] Change default med. freq.
    [H]! Set to high freq. 80 MHz [Z] Change default high freq.
    [U]! Step frequency up by step size [O] Set PLL output frequency
    [D]! Step frequency down by step size [F] REFin freq. & channel spacing
MC145xxx Additional Commands
    [E] Set function of output A [N] Change C register and Prescale
    [R] Set crystal/reference mode - Current mode is Ref. mode, REFout low
Initialization/System Setup Commands:
    [P] Set output port address - Current address is $278
    [G] Change board definitions
    [I] Initialize board(s), Write all registers
    [X]! Terminate demonstration program. [?]! View help screen.
```


APPENDIX

MC145220 PLL Evaluation Board

MC145220EVK Signal Plot — Dual Loop Mode Output at 70 MHz

MC145220EVK Signal Plot - Single Loop Mode PLL on 805 MHz

MC145220EVK Signal Plot — Single Loop Mode PLL on 738 MHz

Phase-Frequency Detector

The MCH/K12140 is a phase frequency-detector intended for phaselocked loop applications which require a minimum amount of phase and frequency difference at lock. When used in conjunction with the MC12147, MC12148 or MC12149 VCO, a high bandwidth PLL can be realized. The device is functionally compatible with the MC12040 phase-frequency detector, however the MOSAICTM III process is used to push the maximum frequency to 800 MHz and significantly reduce the dead zone of the detector. When the Reference (R) and VCO (V) inputs are unequal in frequency and/or phase, the differential UP (U) and DOWN (D) outputs will provide pulse streams which when subtracted and integrated provide an error voltage for control of a VCO.

The device is packaged in a small outline, surface mount 8 -lead SOIC package. There are two versions of the device to provide I/O compatibility to the two existing ECL standards. The MCH12140 is compatible with MECL10H ${ }^{\text {™ }}$ logic levels while the MCK12140 is compatible to 100 K ECL logic levels. This device can also be used in +5.0 V systems. Please refer to Motorola Application Note AN1406/D, "Designing with PECL (ECL at +5.0 V)" for more information.

- 800 MHz Typical Bandwidth
- Small Outline 8-Lead SOIC Package
- $75 \mathrm{k} \Omega$ Internal Input Pulldown Resistors
- >1000 V ESD Protection

For proper operation, the input edge rate of the R and V inputs should be less than 5ns.

MOSAIC III and MECL 10H are trademarks of Motorola

PHASE-FREQUENCY

 DETECTOR
SEMICONDUCTOR TECHNICAL DATA

PIN CONNECTIONS

(Top View)

ORDERING INFORMATION

Device	Operating Temperature Range	Package
MCH1214OD	$\mathrm{T}_{\mathrm{A}}=-40^{\circ}$ to $+70^{\circ} \mathrm{C}$	SO-8
MCK12140D		

TRUTH TABLE*

Input		Output				Input		Output			
R	V	U	D	$\overline{\mathbf{u}}$	$\overline{\text { D }}$	R	V	U	D	$\overline{\text { u }}$	$\overline{\text { D }}$
0 0 1 0	0 1 1 1	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & x \\ & x \\ & x \\ & x \\ & x \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	1 0 1 0	0 0 0 0	0 0 1 1	1 1 1 1	1 1 0 0
0 1 1	1 1 1 0	1 1 1 1	0 0 0 0	0 0 0 0	1 1 1 1	1 0 1	1 1 1	0 0 0	1 1 0	1 1 1	0 0 1

NOTE: * This is not strictly a functional table; i.e., it does not cover all possible modes of operation. However, it gives a sufficient number of tests to ensure that the device will function properly.

H-SERIES DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{EE}}(\min)-\mathrm{V}_{\mathrm{EE}}(\max) ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}\right.$ 1, unless otherwise noted. $)$

Characteristic	Symbol	$-40^{\circ} \mathrm{C}$		$0^{\circ} \mathrm{C}$		$25^{\circ} \mathrm{C}$		$70^{\circ} \mathrm{C}$		Unit
		Min	Max	Min	Max	Min	Max	Min	Max	
Output HIGH Voltage	V_{OH}	-1080	-890	-1020	-840	-980	-810	-910	-720	mV
Output LOW Voltage	V_{OL}	-1950	-1650	-1950	-1630	-1950	-1630	-1950	-1595	mV
Input HIGH Voltage	V_{IH}	-1230	-890	-1170	-840	-1130	-810	-1060	-720	mV
Input LOW Voltge	VIL	-1950	-1500	-1950	-1480	-1950	-1480	-1950	-1445	mV
Input LOW Current	IIL	0.5	-	0.5	-	0.5	-	0.3	-	$\mu \mathrm{A}$

NOTE: 1.10 H circuits are designed to meet the DC specifications shown in the table after thermal equilibrium has been established. The circuit is in a test socket or mounted on a printed circuit board and transverse airflow greater than 500 lfpm is maintained. Outputs are terminated through a 50Ω resistor to -2.0 V except where otherwise specified on the individual data sheets.
K-SERIES DC CHARACTERISTICS $\left(\mathrm{V}_{E E}=\mathrm{V}_{\mathrm{EE}}(\min)-\mathrm{V}_{\mathrm{EE}}(\max) ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}{ }^{1}\right.$, unless otherwise noted. $)$

Characteristic	Symbol	$-40^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$			Unit	Condition
		Min	Typ	Max	Min	Typ	Max		
Output HIGH Voltage	V_{OH}	-1085	-1005	-880	-1025	-955	-880	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\max)$
Output LOW Voltage	V OL	-1830	-1695	-1555	-1810	-1705	-1620	mV	or $\mathrm{V}_{\text {IL }}(\min)$
Output HIGH Voltage	$\mathrm{V}_{\mathrm{OHA}}$	-1095	-	-	-1035	-	-	mV	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}(\mathrm{min})$
Output LOW Voltage	V OLA	-	-	-1555	-	-	-1610	mV	or $\mathrm{V}_{\text {IL }}(\mathrm{max})$
Input HIGH Voltage	$\mathrm{V}_{\text {IH }}$	-1165	-	-880	-1165	-	-880	mV	
Input LOW Voltge	VIL	-1810	-	-1475	-1810	-	-1475	mV	
Input LOW Current	IIL	0.5	-	-	0.5	-	-	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}(\mathrm{max})$

NOTE: 1. This table replaces the three tables traditionally seen in ECL 100 K data books. The same DC parameter values at $\mathrm{V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$ now apply across the full V_{EE} range of -4.2 V to -5.5 V . Outputs are terminated through a 50Ω resistor to -2.0 V except where otherwise specified on the individual data sheets.
ABSOLUTE MAXIMUM RATINGS (Note 1)

Characteristic	Symbol	Rating	Unit
Power Supply ($\left.\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$	V_{EE}	-8.0 to 0	VDC
Input Voltage $\left(\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$	V_{I}	0 to -6.0	VDC
Output Current \quadContinuous Surge	$\mathrm{I}_{\mathrm{out}}$	50	mA
Operating Temperature Range	T_{A}	-40 to +70	${ }^{\circ} \mathrm{C}$
Operating Range $\mathbf{1 , 2}$	V_{EE}	-5.7 to -4.2	V

NOTES: 1. Absolute maximum rating, beyond which, device life may be impaired, unless otherwise specified on an individual data sheet.

$$
\begin{aligned}
& \text { 2. Parametric values specified at: } \begin{array}{l}
\text { H-Series: }-4.20 \mathrm{~V} \text { to }-5.50 \mathrm{~V} \\
\text { K-Series: }-4.94 \mathrm{~V} \text { to }-5.50 \mathrm{~V} \\
\text { 3. ESD data available upon request. }
\end{array}
\end{aligned}
$$

DC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{EE}}(\min)-\mathrm{V}_{\mathrm{EE}}(\max) ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}\right.$, unless otherwise noted. $)$

Characteristic		Symbol	$-40^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$70^{\circ} \mathrm{C}$			Unit
			Min	Typ	Max										
Power Supply Current	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~K} \end{aligned}$	IEE		$\begin{aligned} & 45 \\ & 45 \end{aligned}$		$\begin{aligned} & 38 \\ & 38 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 52 \\ & 52 \end{aligned}$	$\begin{aligned} & 38 \\ & 38 \end{aligned}$	$\begin{aligned} & 45 \\ & 45 \end{aligned}$	$\begin{aligned} & 52 \\ & 52 \end{aligned}$	$\begin{aligned} & 38 \\ & 42 \end{aligned}$	$\begin{aligned} & 45 \\ & 50 \end{aligned}$	$\begin{aligned} & 52 \\ & 58 \end{aligned}$	mA
Power Supply Voltage	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~K} \end{aligned}$	V_{EE}	$\begin{aligned} & -4.75 \\ & -4.20 \end{aligned}$	$\begin{aligned} & -5.2 \\ & -4.5 \end{aligned}$	$\begin{aligned} & -5.5 \\ & -5.5 \end{aligned}$	$\begin{aligned} & -4.75 \\ & -4.20 \end{aligned}$	$\begin{aligned} & -5.2 \\ & -4.5 \end{aligned}$	$\begin{aligned} & -5.5 \\ & -5.5 \end{aligned}$	$\begin{aligned} & -4.75 \\ & -4.20 \end{aligned}$	$\begin{aligned} & -5.2 \\ & -4.5 \end{aligned}$	$\begin{aligned} & -5.5 \\ & -5.5 \end{aligned}$	$\begin{aligned} & -4.75 \\ & -4.20 \end{aligned}$	$\begin{aligned} & -5.2 \\ & -4.5 \end{aligned}$	$\begin{aligned} & -5.5 \\ & -5.5 \end{aligned}$	V
Input HIGH Current		IIH			150			150			150			150	$\mu \mathrm{A}$

AC CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{EE}}=\mathrm{V}_{\mathrm{EE}}(\min)-\mathrm{V}_{\mathrm{EE}}(\max) ; \mathrm{V}_{\mathrm{CC}}=\mathrm{GND}\right.$, unless otherwise noted. $)$

Characteristic		Symbol	$-40^{\circ} \mathrm{C}$			$0^{\circ} \mathrm{C}$			$25^{\circ} \mathrm{C}$			$70^{\circ} \mathrm{C}$			Unit	
		Min	Typ	Max												
Maximum Toggle Frequency			$F_{\text {MAX }}$		800		650	800		650	800		650	800		
Propagation Delay to Output	R to D R to U V to D V to U	$\begin{aligned} & \text { tpLH } \\ & \text { tpHL } \end{aligned}$		$\begin{aligned} & 440 \\ & 330 \\ & 330 \\ & 440 \end{aligned}$		$\begin{aligned} & 320 \\ & 210 \\ & 210 \\ & 320 \end{aligned}$	$\begin{aligned} & 440 \\ & 330 \\ & 330 \\ & 440 \end{aligned}$	$\begin{aligned} & 580 \\ & 470 \\ & 470 \\ & 580 \end{aligned}$	$\begin{aligned} & 320 \\ & 210 \\ & 210 \\ & 320 \end{aligned}$	$\begin{aligned} & 440 \\ & 330 \\ & 330 \\ & 440 \end{aligned}$	$\begin{aligned} & 580 \\ & 470 \\ & 470 \\ & 580 \end{aligned}$	$\begin{aligned} & 360 \\ & 240 \\ & 240 \\ & 360 \end{aligned}$	$\begin{aligned} & 480 \\ & 360 \\ & 360 \\ & 480 \end{aligned}$	$\begin{aligned} & 620 \\ & 500 \\ & 500 \\ & 620 \end{aligned}$	ps	
Output Rise/Fall Times Q (20 to 80\%)		$\begin{aligned} & \mathrm{tr}_{\mathrm{r}} \\ & \mathrm{t}_{\mathrm{f}} \end{aligned}$		225		100	225	350	100	225	350	100	225	350	ps	

APPLICATIONS INFORMATION

The 12140 is a high speed digital circuit used as a phase comparator in an analog phase-locked loop. The device determines the "lead" or "lag" phase relationship and time difference between the leading edges of a VCO (V) signal and a Reference (R) input. Since these edges occur only once per cycle, the detector has a range of $\pm 2 \pi$ radians.

The operation of the 12140 can best be described using the plots of Figure 1. Figure 1 plots the average value of U, D and the difference between U and D versus the phase difference between the V and R inputs.

There are four potential relationships between V and R: R lags or leads V and the frequency of R is less than or greater than the frequency of V . Under these four conditions the 12140 will function as follows:

Figure 1. Average Output Voltage versus Phase Difference

R lags V in phase

When the R and V inputs are equal in frequency and the phase of R lags that of V the U output will stay HIGH while the D output will pulse from HIGH to LOW. The magnitude of the pulse will be proportional to the phase difference between the V and R inputs reaching a minimum 50% duty cycle under a 180° out of phase condition. The signal on D indicates to the VCO to decrease in frequency to bring the loop into lock.

V frequency > R frequency

When the frequency of V is greater than that of R the 12140 behaves in a simlar fashion as above. Again the signal on D indicates that the VCO frequency must be decreased to bring the loop into lock.

R leads \mathbf{V} in phase

When the R and V inputs are equal in frequency and the phase of R leads that of V the D output will stay HIGH while the U output pulses from HIGH to LOW. The magnitude of the pulse will be proportional to the phase difference between the V and R inputs reaching a minimum 50% duty cycle under a 180° out of phase condition. The signal on U indicates to the VCO to increase in frequency to bring the loop into lock.

V frequency < R frequency

When the frequency of V is less than that of R the 12140 behaves in a simlar fashion as above. Again the signal on U indicates that the VCO frequency must be decreased to bring the loop into lock.

From Figure 1 when V and R are at the same frequency and in phase the value of $U-D$ is zero thus providing a zero error voltage to the VCO. This situation indicates the loop is in lock and the 12140 action will maintain the loop in its locked state.

Chapter Four RF Discrete Transistors

Section One
4.1-0
RF Discrete Transistors - Selector Guide
Section Two 4.2-0
RF Discrete Transistors - Data Sheets

Section One Selector Guide

Motorola RF Discrete Transistors

Motorola offers the most extensive group of RF Discrete Transistors offered by any semiconductor manufacturer anywhere in the world today.
From Bipolar to FET, from Low Power to High Power, the user can choose from a variety of packages. They include plastic, metal can and ceramic that are microstrip circuit compatible or surface mountable. Many are designed for automated assembly equipment.
Major sub-headings are Small Signal, Medium Power, Power MOSFETs and Bipolar Transistors.

Table of Contents
RF Discrete Transistors Page
RF Small Signal Transistors 4.1-2
Selection by Package 4.1-2
Plastic 4.1-2
Ceramic SOE Case 4.1-4
Selection by Application 4.1-5
Low Noise 4.1-5
CATV, MATV and Class A Linear 4.1-6
RF Medium Power Transistors 4.1-7
Discrete Wireless Transmitter Devices 4.1-7
RF High Power Transistors 4.1-8
RF Power MOSFETs 4.1-8
RF Power Bipolar Transistors 4.1-11
HF Transistors 4.1-11
VHF Transistors 4.1-11
UHF Transistors 4.1-12
900 MHz Transistors 4.1-13
1.5 GHz Transistors 4.1-14
Microwave Transistors 4.1-14
Linear Transistors 4.1-15

Motorola RF Small Signal Transistors

Motorola's broad line of RF Small Signal Transistors includes NPN and PNP Silicon Bipolar Transistors characterized for low noise amplifiers, mixers, oscillators, multipliers, non-saturated switches and low-power drivers.
These devices are available in a wide variety of package types: plastic Macro-X, ceramic and surface mounted. Most of these transistors are fully characterized with s-parameters.

RF Small Signal Transistor Gain Characteristics

Curve numbers apply to transistors listed in the subsequent tables.

Selection by Package

In small-signal RF applications, the package style is often determined by the end application or circuit construction technique. To aid the circuit designer in device selection, the Motorola broad range of RF small-signal amplifier transistors is organized by package. Devices for other applications such as oscillators or switches are shown in the appropriate preceding tables. These devices are NPN polarity unless otherwise designated.

Plastic Packages

Table 1. Plastic

Case 317/2 - MACRO-X

MRF571	8	50	12	1.5	1000	12	1000	10	70
MRF559	3	100	10	-	-	13	512	18	150
MRF581	5	75	11	2	500	15.5	500	18	200

Case 317D/2

MRF553	-	-	-	-	-	13	175	16	500
MRF555	-	-	-	-	-	12.5	470	16	400
MRF557	-	-	-	-	-	9	870	16	400

Selection by Package (continued)

Table 1. Plastic (continued)

Case 318-08/6 - SOT-23

MMBR521LT1(17,18c)	3.4	-35	-	1.5	500	15	500	-10	-70
MMBR5031LT1(18c)	1	5	-	2.5	450	17	450	10	20
BFS17LT1(18c)	1.3	25	-	-	-	-	-	15	-
BFR92ALT1(18c)	4.5	14	-	-	-	15	-	15	25
MMBR901LT1(18c)	4	15	7	1.9	1000	12	1000	15	30
MMBR901LT3(18d)	4	15	7	1.9	1000	12	1000	15	30
BFR93ALT1(18c)	3.4	30	-	2.5	30	-	-	12	35
MMBR5179LT1(18c)	1.4	5	4	-	-	15	200	12	50
MMBR941LT1(18c)	8	15	15	2.1	2000	8.5	2000	10	50
MMBR941LT3(18d)	8	15	15	2.1	2000	8.5	2000	10	50
MMBR941BLT1(18c)	8	15	15	2.1	2000	8.5	2000	10	50
MMBR911LT1(18c)	6	30	8	2	500	17	500	12	60
MMBR571LT1(18c)	8	50	12	2	500	16.5	500	10	80
MMBR951LT1(18c)	8	30	16	2.1	2000	7.5	2000	10	100
MMBR951ALT1(18c)	8	30	16	2.1	2000	7.5	2000	10	100

Case 318A/1 - SOT-143

MRF5711LT1(18c)	8	50	12	1.6	1000	13.5	1000	10	70
MRF5211LT1(17,18c)	4.2	-50	-	2.8	1000	11	1000	-10	-70
MRF9411LT1(18c)	8	15	15	2.1	2000	9.5	2000	10	50
MRF5811LT1 18 c$)$	5	75	11	2.0	500	18.4	500	18	200
MRF9511LT1(18c)	8	30	16	2.1	2000	9	2000	10	100

Case 419/3 - SC-70/SOT-323

MRF917T1 ${ }^{(18 c)} \star$	6	20	8	2.3	1000	10	1000	12	60
MRF577T1(18c) \star	7	40	12	1.5	1000	10	1000	10	80
MRF927T1(18c)	8	5	14	1.7	1000	9.8	1000	10	10
MRF927T3(18d)	8	5	14	1.7	1000	9.8	1000	10	10
MRF947T1(18c,d)	8	15	15	2.1	2000	10.5	1500	10	50
MRF947T3(18d)	8	15	15	2.1	2000	10.5	1500	10	50
MRF947AT1(18c)	8	15	15	2.1	2000	10.5	1500	10	50
MRF947BT1(18c,d)	8	15	15	2.1	2000	10.5	1500	10	50
MRF957T1(18c)	9	30	16	2.0	2000	9	1500	10	100

Case 419B/16, 17 - SC-70ML/SOT-363

MRF2947AT1 $(10,18 \mathrm{c}) \star$	9	15	15	1.5	1000	14	1000	10	50	
MRF2947RAT1 $(10,18 \mathrm{c}) \star$	9	15	15	1.5	1000	14	1000	10	50	

Case 463/1 - SC-90/SC-75

MRF579T1 ${ }^{\text {(18c) }}$ ネ	8	40	12	1.5	1000	12	1000	-	80		
MRF949T1 ${ }_{\text {(18c) }}$ „	9	15	15	1.5	1000	14	1000	-	50		
MRF959T1 ${ }^{(18 \mathrm{C}}$ ¢ $_{\star}$	9	30	15	1.6	1000	8	1000	-	100		

(10)Package contains two transistors.
${ }^{(17)}$ PNP
(18) Tape and Reel Packaging Option Available by adding suffix: a) $R 1=500$ units; b) $R 2=2,500$ units; c) $T 1=3,000$ units; d) $T 3=10,000$ units; e) $R 2=1,500$ units; f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.

*New Product

Selection by Package (continued)

Table 1. Plastic (continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Device} \& \multicolumn{2}{|l|}{\begin{tabular}{l}
Gain-Bandwidth \\
@
\end{tabular}} \& \multirow[b]{2}{*}{Curve No. Page 4.1-2} \& \multicolumn{2}{|l|}{NF \({ }_{\text {min }}\) @ f} \& \multicolumn{2}{|l|}{} \& \multicolumn{2}{|l|}{Maximum Ratings} \& \multirow[b]{2}{*}{Package} \\
\hline \& \begin{tabular}{l}
\({ }^{\mathrm{f}}{ }^{\mathbf{T}}\) \\
Typ \\
GHz
\end{tabular} \& \[
\begin{gathered}
\mathrm{IC} \\
\mathrm{~mA}
\end{gathered}
\] \& \& NFmi

Typ

dB \& MHz \& $$
\begin{aligned}
& \text { Typ } \\
& \text { dB }
\end{aligned}
$$ \& MHz \& \[

\underset{\substack{(BR)CEO
 Volts}}{ }

\] \& \[

$$
\begin{gathered}
\mathrm{Ic} \\
\mathrm{~mA}
\end{gathered}
$$
\] \&

\hline
\end{tabular}

Case 751/1 - SO-8

MRF3866R2(18b)	0.8	50	1	-	-	10.5	400	30	400	
MRF5812R1,R2(18a,b)	5.5	75	11	2	500	15.5	500	15	200	
MRF8372R1,R2(18a,b)	5	75	11	-	-	10	870	16	200	

Ceramic SOE Case

Table 2. Ceramic SOE Case

Device	Gain-Bandwidth @		Curve No. Page 4.1-2	$$		Gain @ f Typ dB MHz		Maximum Ratings		Package
	${ }^{\mathrm{f}} \mathrm{T}$ Typ GHz	IC mA				$\begin{gathered} \text { V(BR)CEO } \\ \text { Volts } \end{gathered}$	$\underset{\mathrm{mA}}{\mathrm{IC}}$			

Case 244A/1

MRF587	5.5	90	11	3	500	13	500	15	200

[^32] f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.

Selection by Application

Table 3. Low Noise

The Small-Signal devices listed are designed for low noise and high gain amplifier mixer, and multiplier applications. Each transistor type is available in various packages. Polarity is NPN unless otherwise noted.

Package	Name	Case Number	Curve Number (See figure below)					
			1	$2{ }^{(17)}$	3	4	5	6
	MACRO-X	317/2	-	-	MRF571	MRF581	-	-
N	SOT-23	318-08/6	MMBR941LT1 MMBR941LT3 MMBR941BLT1 MMBR951LT1 (20)	MMBR521LT1	MMBR571LT1	-	MMBR901LT1 MMBR901LT3	MMBR911LT1
Δ	$\begin{gathered} \text { SC-70/ } \\ \text { SOT-323 } \end{gathered}$	419/3	MRF917T1 MRF577T1 MRF927T1 MRF927T3 MRF947AT1 MRF947T1 MRF947T3 MRF947BT1 MRF957T1(20)	-	-	-	-	-
\hat{N}	$\begin{aligned} & \text { SC-70ML/ } \\ & \text { SOT-363 } \end{aligned}$	$\begin{aligned} & 419 \mathrm{~B} / \\ & 16,17 \end{aligned}$	$\begin{aligned} & \text { MRF2947AT1 } \\ & \text { MRF2947RAT1 } \end{aligned}$	-	-	-	-	-
Fnc	$\begin{aligned} & \text { SC-90/ } \\ & \text { SC-75 } \end{aligned}$	463/1	MRF579T1 MRF949T1 MRF959T1	-	-	-	-	-
$\Delta+$	SOT-143	318A/1	$\begin{array}{\|c} \text { MRF9411LT1 } \\ \text { MRF9511LT1 } 20) \end{array}$	MRF5211LT1	MRF5711LT1	MRF5811LT1	-	-
	SO-8	751/1	-	-	-	MRF5812R1,R2	-	-

(17)PNP
(20)Higher Current Version

Gain and Noise Figure versus Frequency

Selection by Application (continued)

Table 4. CATV, MATV and Class A Linear
For Class A linear CATV/MATV applications. Listed according to increasing gain bandwidth (f f).

Device	Nominal Test Conditions $\mathrm{V}_{\mathrm{CE}} / \mathrm{l} \mathrm{C}$ Volts/mA	$\begin{gathered} \mathrm{f} \mathbf{T} \\ \mathrm{Typ} \\ \mathrm{MHz} \end{gathered}$	Noise Figure	Distortion Specifications		$\underset{V}{V_{(B R) C E O}}$	Package/ Style
			Typ/Freq. $\mathrm{dB} / \mathrm{MHz}$	3rd Order IMD dBc	Output Level dBmV		
MMBR5179LT1 ${ }^{\text {(18c) }}$	6/5	1500	4/450			12	318-08/6
MMBR5031LT1(18c,d)	6/5	2000	1.9/450			10	318-08/6
MRF5812R1,R2(18a,b)	10/75	5000	1.8/500	-65	+50	15	751/1
MRF581	10/75	5000	2.7/300	-65	+50	18	317/2
MRF587	15/90	5500	3/500	-72	+50	17	244A/1

${ }^{(18)}$ Tape and Reel Packaging Option Available by adding suffix: a) $R 1=500$ units; b) $R 2=2,500$ units; c) $T 1=3,000$ units; d) $T 3=10,000$ units; e) $R 2=1,500$ units; f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.

RF Small Signal Transistors Packages

Motorola RF Medium Power Transistors

RF Medium Power Transistors are used in portable transmitter applications and low voltage drivers for higher power devices. They can be used for analog cellular, GSM and the newer digital handheld cellular phones. GaAs, LDMOS and Bipolar devices are available. RF Medium Power Transistors are supplied in industry standard SOT packages as well as Motorola's high performance PLD line of surface mount power RF packages. Other applications include talkback pagers, wireless modems and LANs, cable modems, highspeed drivers and instrumentation.

Discrete Wireless Transmitter Devices

Device	Freq. MHz	VDD V	Typical Output Power dBm	Typical Drain Eff. $\%$	Typical Gain dB	Semiconductor Technology	Package
3.5 V Applications							
MRF9822T1(18f) \star 850 3.5 31.0 70 11 GaAs PHEMT PLD-1							
4.8 V Applications							
$\left.\begin{array}{\|l\|c\|c\|c\|c\|c\|}\hline \text { MRF9242T1(18f,46a) } & 900 & 4.8 & 31.5 & 65 & 9.5 \\ \text { MRF9282T1(18f,46a) } & 900 & 4.8 & 34.0 & 60 & 8\end{array}\right)$ LDMOS	PLD-1						

5.8 V Applications

MXR9745T1(18f) \star	850	5.8	31.5	60	8.5	LDMOS	SOT-89
MXR9745RT1(18f) \star	850	5.8	31.5	60	8.5	LDMOS	SOT-89
MRF9251T1(18c,46a)	900	5.8	23.5	60	10.5	LDMOS	SOT-143
MRF9811T1(18c) \star	900	5.8	22	60	15	GaAs MESFET	SOT-143
MRF9745T1(18f) \star	900	5.8	30	55	10	LDMOS	PLD-1

${ }^{(18)}$ Tape and Reel Packaging Option Available by adding suffix: a) $R 1=500$ units; b) $R 2=2,500$ units; c) $T 1=3,000$ units; d) $T 3=10,000$ units; e) $R 2=1,500$ units; f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.
(46) To be introduced: a) 1Q98; b) 2Q98
*New Product

RF Medium Power Transistors Packages

Motorola RF High Power Transistors

RF Power MOSFETs

Motorola RF Power MOSFETs are constructed using a planar process to enhance manufacturing repeatability. They are N -channel field effect transistors with an oxide insulated gate which controls vertical current flow.
Compared with bipolar transistors, RF Power FETs exhibit higher gain, higher input impedance, enhanced thermal stability and lower noise. The FETs listed in this section are specified for operation in RF Power Amplifiers and are grouped by frequency range of operation and type of application. Arrangement within each group is first by order of voltage then by increasing output power.

Table 1. To 54 MHz - Vertical MOSFETs
Designed for broadband HF/SSB commercial and industrial applications. The high gain, broadband performance and linear characterization of this device makes it ideal for large-signal, common-source amplifier applications in 12.5 volt mobile and amateur radio transmitters.

	Pout Output Power Watts	Pin Input Power Typical Watts	$\begin{gathered} \mathrm{G}_{\mathrm{ps}} \text { (Typ)/Freq. } \\ \mathrm{dB} / \mathrm{MHz} \end{gathered}$	$\stackrel{\eta}{\text { Eff., Typ }}$\%	Typical IMD		$\theta_{\mathrm{JC}}$${ }^{\circ} \mathrm{C} / \mathrm{W}$	Package/Style
Device					$\begin{aligned} & d_{3} \\ & d B \end{aligned}$	$\begin{aligned} & \mathrm{d}_{5} \\ & \mathrm{~dB} \end{aligned}$		

$V_{C C}=12.5$ Volts, Class AB

MRF255	55	0.8	$16 / 54$	45	-30	-30	1.0	$211-11 / 2$

Table 2. To 150 MHz HF/SSB - Vertical MOSFETs
For military and commercial HF/SSB fixed, mobile and marine transmitters.

Device	Pout Output Power Watts	Pin Input Power Typical Watts	$\begin{aligned} & \mathrm{G}_{\text {ps }} \\ & \text { Typical } \\ & \text { Gain dB @ } \\ & 30 \mathrm{MHz} \end{aligned}$	Typical IMD		$\begin{gathered} \theta_{\mathrm{JC}}^{\mathrm{C}} \\ { }^{\mathbf{C} / \mathbf{W}} \end{gathered}$	Package/Style
				$\begin{aligned} & d_{3} \\ & d B \end{aligned}$	$\begin{aligned} & \mathrm{d}_{11} \\ & \mathrm{~dB} \end{aligned}$		

VDD = 28 Volts, Class AB

MRF140	150	4.7	15	-30	-60	0.6	$211-11 / 2$
MRF171A(46a)	30	0.45	19	-32	-	1.52	$211-07 / 2$

VDD $=50$ Volts, Class AB

MRF148	30	0.5	18	-35	-60	1.5	$211-07 / 2$
MRF150	150	3	17	-32	-60	0.6	$211-11 / 2$
MRF154	600	12	17	-25	-	0.13	$368 / 2$
MRF157	600	6	20	-25	-	0.13	$368 / 2$

(46)To be introduced: a) 1Q98; b) 2Q98

RF Power MOSFETs (continued)

Table 3. To 225 MHz VHF AM/FM - Vertical MOSFETs
For VHF military and commercial aircraft radio transmitters.

Device	Pout Output Power Watts	$P_{\text {in }}$ Input Power Typical Watts	$\begin{aligned} & \mathrm{G}_{\mathrm{ps}} \text { (Typ)/Freq. } \\ & \mathrm{dB} / \mathrm{MHz} \end{aligned}$	η Efficiency Typical \%	$\begin{gathered} { }^{\theta} \mathrm{J} \mathbf{C} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	Package/Style

VDD = 28 Volts, Class AB

MRF134	5	0.2	$14 / 150$	55	10	$211-07 / 2$
MRF136	15	0.38	$16 / 150$	60	3.2	$211-07 / 2$
MRF136Y	30	1.2	$14 / 150$	54	1.8	$319 B / 1$
MRF137	30	0.75	$16 / 150$	60	1.8	$211-07 / 2$
MRF171A(46a)	45	0.56	$19 / 150$	65	1.52	$211-07 / 2$
MRF173	80	4	$13 / 150$	65	0.8	$211-11 / 2$
MRF175LV	100	4	$14 / 225$	65	0.65	$333 / 1$
MRF174	125	8.3	$118 / 150$	60	0.65	$211-11 / 2$
MRF141	150	15	$10 / 175$	55	0.6	$211-11 / 2$
MRF175GV	200	8	$14 / 225$	65	0.44	$375 / 2$
MRF141G	300	30	$10 / 175$	55	0.35	$375 / 2$

VDD = 50 Volts, Class AB

MRF151	150	7.5	$13 / 175$	45	0.6	$211-11 / 2$
MRF176GV	200	4	$17 / 225$	55	0.44	$375 / 2$
MRF151G	300	7.5	$16 / 175$	55	0.35	$375 / 2$

Table 4. To 500 MHz VHF/UHF AM/FM
For VHF/UHF military and commercial aircraft radio transmitters.

	Pout Output Power Watts	Pin Input Power Typical Watts	Gps (Typ)/Freq. dB/MHz	η Eff., Typ $\%$	$\eta \mathrm{JC}$ ${ }^{\circ} \mathbf{C} / \mathrm{W}$	Package/Style

VDD = $\mathbf{2 8}$ Volts, Class AB - Vertical MOSFETs

MRF158	2	0.035	$17.5 / 500$	52	13.2	$305 \mathrm{~A} / 2$
MRF160	4	0.08	$17 / 500$	55	7.2	$249 / 3$
MRF166C	20	0.62	$15 / 500$	54	2.5	$319 / 3$
MRF166W	40	1	$13 / 500$	50	1.0	$412 / 1$
MRF175LU	100	10	$10 / 400$	55	0.65	$333 / 1$
MRF177	100	9.4	$12 / 400$	50	0.65	$744 \mathrm{~A} / 2$
MRF175GU	150	12.5	95	0.44	$375 / 2$	
MRF275L(46a)	100	13.5	10.500	55	0.65	$333 / 2$
MRF275G \star	150			55	0.44	$375 / 2$

VDD $=50$ Volts, Class $A B$

MRF176GU	150	6	$14 / 400$	50	0.44	$375 / 2$

(46)To be introduced: a) 1Q98; b) 2Q98
*New Product

RF Power MOSFETs (continued)

Table 5. To 520 MHz
Designed for broadband VHF \& UHF commercial and industrial applications. The high gain and broadband performance of these devices make them ideal for large-signal, common-source amplifier applications in 12.5/7.5 volt mobile, portable and base station operation.

Device	Pout Output Power Watts	$P_{\text {in }}$ Input Power Typical Watts	$\begin{gathered} \mathrm{G}_{\mathrm{ps}} \text { (Typ)/Freq. } \\ \mathrm{dB} / \mathrm{MHz} \end{gathered}$	$\begin{gathered} \eta \\ \text { Eff., Typ } \\ \% \end{gathered}$	$\begin{aligned} & { }^{\theta} \mathbf{J C} \\ & { }^{\circ} \mathbf{C} / \mathbf{W} \end{aligned}$	Package/Style

VCC = 7.5 Volts, Class AB - Lateral MOSFET

MRF1507(18f) ${ }_{\star}$	8	0.6	$11 / 520$	65	2.0	$466 / 1$

$V_{C C}=12.5$ Volts, Class AB - Lateral MOSFET

MRF1508(18f,46a)	8	0.3	$15 / 520$	65	2.0	$466 / 1$

VCC = 12.5 Volts, Class AB - Vertical MOSFETs

MRF5015	15	1.1	$11.5 / 512$	55	3.5	$319 / 3$
MRF5035	35	6.3	$7.5 / 512$	55	1.8	$316-01 / 3$

Table 6. To 1.0 GHz - Lateral MOSFETs

	Pout Output Power Watts	Pin Input Power Typical Watts	$\mathrm{G}_{\text {ps }}$ (Typ)/Freq. $\mathrm{dB} / \mathrm{MHz}$	η Eff., Typ $\%$	θ_{JC} ${ }^{\circ} \mathbf{C} / \mathrm{W}$	Package/Style

$1.0 \mathrm{GHz}, \mathrm{V}_{\mathrm{DD}}=26$ Volts, Class AB - LDMOS Die

MRF6522-5(18a,46a)	5	0.06	$19 / 960$	55	15	$458 \mathrm{~A} / 1$
MRF6522-10(18a,46a)	10	0.16	$18 / 960$	55	6.0	$458 \mathrm{~A} / 1$

800 - 1.0 GHz, VDD $=28$ Volts, Class AB - LDMOS Die

MRF181S(46a)	4	0.16	$14 / 1000$	40	3.6	$458 / 1$
MRF181Z(46a)	4	0.16	$14 / 1000$	40	3.6	$458 \mathrm{~A} / 1$
MRF182	30	1.2	$14 / 1000$	60	1.75	$360 \mathrm{~B} / 1$
MRF182S	30	1.2	$14 / 1000$	60	1.75	$360 \mathrm{C} / 1$
MRF183(25)	45	2.3	$13 / 945$	36	1.5	$360 \mathrm{~B} / 1$
MRF183S(25)	45	2.3	$13 / 945$	36	1.5	$360 \mathrm{C} / 1$
MRF184	60	1.9	$15 / 1000$	60	1.1	$360 \mathrm{~B} / 1$
MRF184S	60	1.9	$15 / 1000$	60	1.1	$360 \mathrm{C} / 1$
MRF185 (3)	85	3.4	$14 / 1000$	55	0.7	$375 \mathrm{~B} / 2$
MRF186(3,46a)	120	7.6	$12 / 1000$	55	0.6	$375 \mathrm{~B} / 2$

[^33]
RF Power Bipolar Transistors

Motorola's broad line of bipolar RF power transistors are characterized for operation in RF power amplifiers. Typical applications are in base stations, military and commercial landmobile, avionics and marine radio transmitters. Groupings are by frequency band and type of application. Within each group, the arrangement of devices is by major supply voltage rating, then in the order of increasing output power. All devices are NPN polarity except where otherwise noted.

HF Transistors

Table 1. 1.5 - $\mathbf{3 0} \mathrm{MHz}$, HF/SSB
Designed for broadband operation, these devices feature specified Intermodulation Distortion at rated power output.
Applications include mobile, marine, fixed station, and amateur HF/SSB equipment, operating from 12.5, 13.6, 28, or 50 volt supplies.

	Pout Output Power Watts	Pin (Max) Input Power Watts	GPE (Min) Gain @ 30 MHz Device	${ }^{\ominus} \mathrm{JC}$ ${ }^{\circ} \mathbf{C} / \mathrm{W}$	Package/Style

VCC = 12.5 or 13.6 Volts, Class AB

MRF421	100 PEP/CW	10	10	0.6	$211-11 / 1$

$V_{C C}=28$ Volts, Class AB

MRF426	25 PEP/CW	0.16	22	2.5	$211-07 / 1$
MRF422	150 PEP/CW	15	10	0.6	$211-11 / 1$

MRF429 $=50$ Volts, Class AB				
MRF448	150 PEP/CW	7.5	13	0.8
$211-11 / 1$				

Table 2. 14 - 30 MHz , CB/Amateur Band
These HF transistors are designed for economical, high-volume use in CW, AM and SSB applications.
$V_{C C}=12.5$ or 13.6 Volts, Class AB

MRF455	60	3	13	1	$211-07 / 1$
MRF454	80	5	12	0.7	$211-11 / 1$

Table 3. 27 - 50 MHz , Low-Band FM Band
For use in the FM "Low-Band," for Mobile communications.

	Pout Output Power Watts	Pin (Max) Input Power Watts	GPE (Min) Gain @ 50 MHz Device	$\theta \mathrm{JC}$ ${ }^{\circ} \mathbf{C} / \mathrm{W}$	Package/Style

$V_{C C}=12.5$ or 13.6 Volts, Class AB

MRF492	70	5.6	11	0.7	$211-11 / 1$

VHF Transistors

Table 4. $30-200 \mathrm{MHz}$ Band
Designed for Military Radio and Commercial Aircraft VHF bands, these 28-volt devices include the all-gold metallized MRF314/16/17 high-reliability series.

Device	Pout Output Power Watts	$P_{\text {in }}$ (Max) Input Power Watts	GPE (Min)/Freq. Power Gain dB/MHz	$\begin{gathered} { }^{\theta} \mathrm{J} \mathbf{C} / \mathrm{W} \end{gathered}$	Package/Style
VCC = 28 Volts, Class AB					
MRF314	30	3	10/150	2.2	211-07/1
MRF316(2)	80	8	10/150	0.8	316-01/1
MRF317(2)	100	12.5	9/150	0.65	316-01/1

[^34]
VHF Transistors (continued)

Table 5. 136-174 MHz High Band
The "workhorse" VHF FM High-Band is served by Motorola with the broadest range of devices and package combinations in the industry.

	Pout Output Power Watts	Pin (Max) Input Power Watts	GPE (Min) Gain @ 175 MHz Device	$\theta_{\text {JC }}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	Package/Style

$V_{C C}=12.5$ Volts, Class C

MRF4427R2(18b)	1	0.016	$18(19)$	$125(1)$	$751 / 1$
MRF553	1.5	0.11	11.5	25	$317 \mathrm{D} / 2$
MRF2628	15	0.95	12	$244 / 1$	
MRF1946	30	3	10	1.6	1.8
MRF1946A	30	3	10	$211-07 / 1$	
MRF240	40	5	9	$145 A-09 / 1$	
MRF247(2)	75	15	0.2	$145 A-09 / 1$	

UHF Transistors

Table 6. 100 - 400 MHz Band

Stringent requirements of the UHF Military band are met by MRF325, 326, 327, 329 and 2N6439 types, with all-gold metal systems, specified ruggedness and programmed wirebond construction, to assure consistent input impedances for internally matched parts.

Device	Pout Output Power Watts	$P_{\text {in }}$ (Max) Input Power Watts	$\begin{gathered} \text { Gpe (Min) } \\ \text { Gain @ } 400 \mathrm{MHz} \\ \text { dB } \end{gathered}$	$\begin{aligned} & { }^{\theta \mathrm{JCC}} \\ & { }^{\circ} \mathbf{C} / \mathbf{W} \end{aligned}$	Package/Style
V $\mathrm{CC}=28$ Volts, Class C					
MRF325(2)	30	4.3	8.5	2.2	316-01/1
MRF326(2)	40	5	9	1.6	316-01/1
2N6439(2)	60	10	7.8	1.2	316-01/1
MRF327(2)	80	14.9	7.3	0.7	316-01/1
MRF329(2)	100	20	7	0.7	333/1
MRF392(3)	125	19.8	8	0.7	744A/1

Table 7. 400 - 500 MHz Band

Similar to the $100-400 \mathrm{MHz}$ transistors, these devices have bandwidth capabilities operating up to 500 MHz . All have nitride passivated die, gold metal systems, specified ruggedness and controlled wirebond construction to meet the stringent requirements of military space applications.

Device	Pout Output Power Watts	$P_{\text {in }}$ (Max) Input Power Watts	GPE (Min)/Freq. Power Gain $\mathrm{dB} / \mathrm{MHz}$	$\begin{gathered} { }^{\theta} \mathrm{JC} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	Package/Style
VCC $=28$ Volts, Class C					
MRF313	1	0.03	15/400	28.5	305A/1
MRF321	10	0.62	12/400	6.4	244/1
MRF323	20	2	10/400	3.2	244/1
MRF338(2)	80	15	7.3/470	0.7	333/1
MRF393(3)	100	18	7.5/500	0.7	744A/1

${ }^{(1)} \mathrm{R}_{\theta J \mathrm{JA}}$. Thermal Resistance Junction to Ambient.
(2) Internal Impedance Matched
(3) Internal Impedance Matched Push-Pull Transistors
(18) Tape and Reel Packaging Option Available by adding suffix: a) $R 1=500$ units; b) $R 2=2,500$ units; c) $T 1=3,000$ units; d) $T 3=10,000$ units; e) $R 2=1,500$ units; f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.
(19)Typical

UHF Transistors (continued)

Table 8. 470 - 512 MHz Band
Higher power output devices in this UHF power transistor series feature internally input-matched construction, are designed for broadband operation, and have guaranteed ruggedness under output mismatch and RF overdrive conditions. Devices are specified for handheld, mobile and base station operation.

	Pout Output Power Watts	Pin (Max) Input Power Watts	GPE (Min)/Freq. Power Gain dB/MHz	${ }^{\circ} \mathrm{Jc}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	Package/Style

VCC = 12.5 Volts, Class C

MRF581(4)	0.6	0.03	$13 / 500$	40	$317 / 2$
MRF555	1.5	0.15	$10 / 470$	25	$317 D / 2$
MRF652	5	0.5	$10 / 512$	7	$244 / 1$
MRF652S	5	0.5	$10 / 512$	$249 / 1$	
MRF653	10	2	$7 / 512$	$244 / 1$	
MRF641(2)	15	2.5	$4.8 / 470$	4	$316-01 / 1$
MRF654(2)	15	2.5	$7.8 / 512$	$244 / 1$	
MRF644(2)	25	5.9	$6.2 / 470$	1.7	$316-01 / 1$
MRF650(2)	50	$5.0 / 512$	1.3	$316-01 / 1$	
MRF658(2)	65	25	1	$316-01 / 1$	

900 MHz Transistors

Table 9. 870 - 960 MHz Band

Designed specifically for the 900 MHz mobile radio band, these devices offer superior gain, ruggedness, stability and broadband operation. Devices are for mobile and base station applications.

Device	Pout Output Power Watts	$P_{\text {in }}$ (Max) Input Power Watts	GPE (Min)/Freq. Power Gain dB/MHz	$\begin{gathered} { }^{\theta} \mathrm{JC} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	Package/Style
$\mathrm{V}_{\text {CC }}=12.5$ Volts - Class C - Si Bipolar					
MRF559(5)	0.5	0.08	8/870	50	317/2
MRF581(5)	0.6	0.06	10(19)/870	40	317/2
MRF8372R1,R2(5,18a,b)	0.75	0.11	8/870	45	751/1
MRF557(5)	1.5	0.23	8/870	25	317D/2
MRF842(2,6)	20	5	6/870	1.5	319/1
MRF847(2,6)	45	16	4.5/870	1	319/1

(2) Internal Impedance Matched
${ }^{(4)}$ Small signal gain. P_{0} is Typ.
${ }^{(5)}$ Common Emitter Configuration
${ }^{(6)}$ Common Base Configuration
(18) Tape and Reel Packaging Option Available by adding suffix: a) $R 1=500$ units; b) $R 2=2,500$ units; c) $T 1=3,000$ units; d) $T 3=10,000$ units; e) $R 2=1,500$ units; f) $T 1=1,000$ units; g) $R 2=4,000$ units; h) $R 1=1,000$ units.
${ }^{(19)}$ Typical

900 MHz Transistors (continued)

Table 9. 870 - 960 MHz Band (continued)

	Pout Output Power Watts	Class	Pin (Max) Input Power Watts	Gp (Min)/Freq. Power Gain dB/MHz	${ }^{\theta} \mathbf{J C}$ ${ }^{\circ} \mathbf{C} / W$	Package/Style

VCC = 24 Volts - Si Bipolar

MRF857S	2.1 (CW)	A	0.4	$12.5 / 900$	8.4	$305 \mathrm{D} / 1$
MRF858	3.6 (CW)	A	0.29	$11 / 900$	6.9	$319 / 2$
MRF858S	3.6 (CW)	A	0.29	$11 / 900$	6.9	$319 \mathrm{~A} / 2$
MRF891	5	AB	0.63	$9 / 900$	7	$319 / 2$
MRF891S	5	AB	0.63	$9 / 900$	7	$319 \mathrm{~A} / 2$
MRF859S	$6.5 \mathrm{~W}(\mathrm{CW})$	A	0.46	$11.5 / 900$	3.9	$319 \mathrm{~A} / 2$
MRF894(2)	30	C	6	$7 / 900$	1.5	$319 / 1$
MRF897(3)	30	AB	3	$10 / 900$	1.7	$395 \mathrm{~B} / 1$
MRF897R(3)	30	AB	3	$10.5 / 900$	1.7	$395 \mathrm{~B} / 1$
MRF898(2)	60	C	12	$7 / 900$	1	$333 A / 1$

VCC = 26 Volts - Si Bipolar

MRF6409	20	$A B$	$26 / 50$	$10 / 960$	3.8	$319 / 2$
MRF6414	50	$A B$	$26 / 200$	$8.5 / 960$	1.3	$333 A / 2$
MRF899(3)	150	$A B$	24	$8 / 900$	0.8	$375 A / 1$

1.5 GHz Transistors

Table 10. 1600 - 1640 MHz Band

Device	Pout Output Power Watts	Class	η Eff. (Min) $\%$	Gp (Min)/Freq. Power Gain dB/MHz	$\theta \mathbf{~ J C ~}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	Package/Style
MRA1600-2	2	C	40	$8.4 / 1600$	15	$394 / 1$
MRF16006	6	C	40	$7.4 / 1600$	6.8	$395 C / 2$
MRF3010	10	AB	45	$9.5 / 1600$	3.6	$360 B / 1$ (LDMOS)
MRF16030	30	C	40	$7.5 / 1600$	1.7	$395 C / 2$

Microwave Transistors

Table 11. L-Band Pulse Power

These products are designed to operate in short pulse width, $10 \mu \mathrm{~s}$, low duty cycle, 1%, power amplifiers operating in the $960-1215 \mathrm{MHz}$ band. All devices have internal impedance matching. The prime application is avionics equipment for distance measuring (DME), area navigation (TACAN) and interrogation (IFF).

Device	Pout Output Power Watts	$P_{\text {in }}($ Max) Input Power Watts	$\begin{gathered} \text { Gp }^{(M i n)} \\ \text { Gain @ } 1090 \mathrm{MHz} \\ \text { dB } \end{gathered}$	$\begin{gathered} { }^{\theta} \mathrm{JC} \\ { }^{\circ} \mathrm{C} / \mathrm{W} \end{gathered}$	Package/Style

VCC = 18 Volts - Class A \& AB Common Emitter

MRF1000MB	0.2	0.02	10	25	$332 \mathrm{~A} / 2$

VCC = $\mathbf{3 5}$ Volts - Class B \& C Common Base

MRF1004MB	4	0.4	10	25	$332 A / 1$

(2) Internal Impedance Matched
(3)Internal Impedance Matched Push-Pull Transistors
^New Product

Microwave Transistors (continued)

Table 11. L-Band Pulse Power (continued)

	Pout Output Power Watts	Pin (Max) Input Power Watts	GP (Min) Gain @ 1090 MHz Device	$\theta \mathbf{J C}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	Package/Style

VCC = 50 Volts - Class C Common Base

MRF1015MB	15	1.5	10	10	$532 A / 1$
MRF1035MB	35	3.5	10	5	$332 A / 1$
MRF1090MA	90	9	10	0.6	$332-04 / 1$
MRF1090MB	90	9	10	$332 A / 1$	
MRF1150MA	150	25	7.8	0.3	$332-04 / 1$
MRF1150MB	150	25	7.8	$332 A / 1$	

Table 12. L-Band Long Pulse Power
These products are designed for pulse power amplifier applications in the $960-1215 \mathrm{MHz}$ frequency range. They are capable of handling up to 10μ s pulses in long pulse trains resulting in up to a 50% duty cycle over a 3.5 millisecond interval. Overall duty cycle is limited to 25% maximum. The primary applications for devices of this type are military systems, specifically JTIDS and commercial systems, specifically Mode S. Package types are hermetic.

	Pout Output Power Watts	Pin $($ Max Input Power Watts	GPB (Min) Gain @ 1215 MHz DB	${ }^{\circ} \mathrm{JC}$ ${ }^{\circ} \mathbf{C} / \mathrm{W}$	Package/Style

VCC = 28 Volts - Class C Common Base

MRF10005	5	0.71	8.5	8	$336 \mathrm{E} / 1$

VCC = 36 Volts - Class C Common Base

MRF10031	30	3	10	3	$376 \mathrm{~B} / 1$
MRF10120	120	19	8	0.6	$355 \mathrm{C} / 1$

$V_{C C}=50$ Volts

MRF10150	150	15	$10(7)$	0.25	$376 B / 1$
MRF10350	350	44	$9(7)$	0.11	$355 \mathrm{~F} / 1$
MRF10500	500	63	$9(7)$	0.12	$355 \mathrm{D} / 1$
MRF10501	500	63	$9(7)$	0.12	

Linear Transistors

The following sections describe a wide variety of devices specifically characterized for linear amplification. Included are medium power and high power parts covering frequencies from $100 \mathrm{MHz}-4 \mathrm{GHz}$.
Table 13. To 1 GHz, Class A
These devices offer a selection of performance and price for linear amplification to 1 GHz . The "MRA" prefix parts are input matched and feature high overdrive and extreme ruggedness capability.

| | Po @ 1 dB
 Comp. Point
 Watts | GSS (Min)/Freq.
 Small Signal Gain
 dB/MHz | Bias
 Point
 (Vdc/A) |
 Device | ${ }^{\circ} \mathbf{C J} / \mathbf{W}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |\quad Package/Style | |
| :--- |

VCC $=19$ Volts

MRA1000-7L MRA1000-14L	$\begin{gathered} 7 \\ 14 \end{gathered}$	$\begin{aligned} & 9 / 1000 \\ & 8 / 1000 \end{aligned}$	$\begin{aligned} & \hline 19 / 1.2 \\ & 19 / 2.4 \end{aligned}$	$\begin{array}{r} 4 \\ 2.1 \end{array}$	$\begin{aligned} & 145 \mathrm{D}-02 / 1 \\ & 145 \mathrm{D}-02 / 1 \end{aligned}$
Device	Pout Output Power Watts	Gp (Min)/Freq. Power Gain $\mathrm{dB} / \mathrm{MHz}$	Bias Point Per Side (Vdc/MA)	$\begin{gathered} { }^{\theta} \mathrm{JC} \\ { }^{\circ} \mathbf{C} / \mathrm{W} \end{gathered}$	Package/Style

VCC $=\mathbf{2 8}$ Volts

MRA0510-50H	50	$7 / 1000$	$28 / 120$	1.4	$391-01 / 1$

${ }^{(7)}$ Typical @ 1090 MHz

Linear Transistors (continued)

Table 14. To 2 GHz, Class A
These parts offer low cost alternatives to matched devices used primarily as pre-drivers to 2 GHz .

Device	Po @ 1 dB Comp. Point Watts	Gss (Min)/Freq. Small Signal Gain dB/MHz	Bias Point (Vdc/A)	$\begin{aligned} & { }^{\theta} \mathbf{J C} \mathbf{C} \\ & { }^{\circ} \mathbf{C} / \mathbf{W} \end{aligned}$	Package/Style
VCC = 20 Volts					
MRF3095(9)	0.8	9/2000	20/0.12	35	328A/2

Table 15. UHF Ultra Linear For TV Applications
The following device has been characterized for ultra-linear applications such as low-power TV transmitters in Band IV and Band V and features diffused ballast resistors and an all-gold metal system to provide enhanced reliability and ruggedness.

	Pref (Min) Watts	Gp (Min)/Freq. Small Signal Gain dB/MHz	3 Tone IMD (8) dB	${ }^{\theta} \mathrm{JC}$ ${ }^{\circ} \mathbf{C} / \mathbf{W}$	Package/Style

VCC = $\mathbf{2 8}$ Volts, Class AB

TPV8100B	$100(11)$	$8.5 / 860$	-	0.7	$398 / 1$

${ }^{(8)}$ Vision Carrier: - 8 dB ; Sound Carrier: -7 dB ; Sideband Carrier: - 16 dB
${ }^{(9)}$ Former Prefix was "RF"
(11)Output power at 1 dB compression in Class $A B$

Linear Transistors (continued)

Table 16. Microwave Linear for PCN Applications
The following devices have been developed for linear amplifiers in the $1.5-2 \mathrm{GHz}$ region and have characteristics particularly suitable for PDC, PCS or DCS1800 base station applications.

			Bias Pout	Class	Point Vdc/mA	Gain (Typ)/Freq dB/MHz
Device	${ }^{\ominus} \mathrm{JC}$ ${ }^{\circ} \mathrm{C} / \mathrm{W}$	Package/Style				

VCC = 20 Volts-Bipolar Die

MRF6401(12)	0.5	A	$20 / 80$	$10 / 1880$	30	$305 \mathrm{C} / 1$

VCC $=\mathbf{2 6}$ Volts-Bipolar Die

MRF6402(13)	4.5	$A B$	26/40	10/1880	5	319/2
MRF6404(16)	30	$A B$	26/150	8.5/1880	1.4	395C/1
MRF6404K	30	$A B$	26/150	8.5/1880	1.4	395C/1
MRF6408	12	$A B$	26/100	8.8/1880	2.8	395C/1
MRF15030	30	A, AB	26/125	9/1490	1.4	395C/1
MRF15060	60	$A, A B$	26/200	10/1490	0.7	451/1
MRF15060S	60	$A, A B$	26/200	10/1490	0.7	451A/1
MRF15090	90	$A, A B$	26/250	7.5/1490	0.7	375A/1
MRF20030 ${ }^{\text {* }}$	30	$A, A B$	26/120	10.5/2000	1.4	395D/1
MRF20060*	60	$A, A B$	26/200	9.4/2000	0.7	451/1
MRF20060S \star	60	$A, A B$	26/200	9.4/2000	0.7	451A/1

VDD = $\mathbf{2 6}$ Volts-LDMOS Die - Lateral MOSFETs

MRF281S(46a)	4	A, AB	$26 / 25$	$13.6 / 2000$	8.75	$458 / 1$
MRF281Z(46a)	4	A, AB	$26 / 25$	$13.6 / 2000$	8.75	$458 \mathrm{~A} / 1$
MRF6525-5(18a,46a)	5	AB	$26 / 70$	$11.5 / 2000$	15	$458 \mathrm{~A} / 1$
MRF6525-10(18a,46a)	10	AB	$26 / 130$	$10 / 2000$	6.0	$458 \mathrm{~A} / 1$
MRF282S \star	10	A, AB	$26 / 75$	$13 / 2000$	2.9	$458 / 1$
MRF282Z \star	10	A, AB	$26 / 75$	$13 / 2000$	2.9	$458 \mathrm{~A} / 1$
MRF284 \star	30	A, AB	$26 / 200$	$10.5 / 2000$	2.0	$360 \mathrm{~B} / 1$
MRF284S \star	A, AB	$26 / 200$	$10.5 / 2000$	2.0	$360 \mathrm{C} / 1$	
MRF286(46b)	30	A, AB	$26 / 500$	$11 / 2000$.73	$465 / 1$
MRF286S(46b)	60	A, AB	$26 / 500$	$11 / 2000$.73	$465 \mathrm{~A} / 1$

(12)Formerly known as "TP4001S"
(13) Formerly known as "TP4004"
(16)Formerly known as "TP4035"
(18) Tape and Reel Packaging Option Available by adding suffix: a) $R 1=500$ units; b) $R 2=2,500$ units; c) $T 1=3,000$ units; d) $T 3=10,000$ units; e) $R 2=1,500$ units; f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.
(46) To be introduced: a) 1Q98; b) 2Q98
\star New Product

RF Power MOSFETs and Bipolar Transistors Packages

(

Section Two

Motorola RF Discrete Transistors Data Sheets

Device Number	Page Number	Device Number	Page Number
2N6439	4.2-3	MRF177	4.2-210
BFR92ALT1	4.2-8	MRF182	4.2-215
BFR93ALT1	4.2-10	MRF182S	4.2-215
BFS17LT1	4.2-12	MRF183	4.2-221
MMBR521LT1	4.2-13	MRF183S	4.2-221
MMBR571LT1	. 4.2-20	MRF184	4.2-230
MMBR901LT1, T3	4.2-33	MRF184S	4.2-230
MMBR911LT1	4.2-35	MRF185	4.2-238
MMBR941LT1, T3	4.2-39	MRF240	4.2-240
MMBR941BLT1	4.2-39	MRF247	4.2-244
MMBR951LT1	4.2-54	MRF255	4.2-247
MMBR951ALT1	4.2-54	MRF275G	4.2-255
MRF9511LT1	4.2-54	MRF282S	4.2-266
MRF957T1	4.2-54	MRF282Z	4.2-266
MMBR5031LT1	4.2-68	MRF284	4.2-275
MMBR5179LT1	4.2-69	MRF284S	4.2-275
MRA0510-50H	4.2-70	MRF313	4.2-284
MRA1000-7L	4.2-72	MRF314	4.2-286
MRA1000-14L	4.2-73	MRF316	4.2-290
MRA1600-2	4.2-75	MRF317	4.2-294
MRF134	4.2-77	MRF321	4.2-298
MRF136	4.2-86	MRF323	4.2-302
MRF136Y	4.2-86	MRF325	4.2-306
MRF137	4.2-96	MRF326	4.2-310
MRF140	4.2-104	MRF327	4.2-314
MRF141	4.2-109	MRF329	4.2-318
MRF141G	4.2-115	MRF338	4.2-322
MRF148	4.2-120	MRF392	4.2-326
MRF150	4.2-125	MRF393	4.2-329
MRF151	4.2-130	MRF421	4.2-332
MRF151G	4.2-136	MRF422	4.2-336
MRF154	4.2-141	MRF426	4.2-340
MRF157	4.2-147	MRF429	4.2-344
MRF158	4.2-153	MRF448	4.2-348
MRF160	4.2-157	MRF454	4.2-352
MRF166C	4.2-163	MRF455	4.2-354
MRF166W	4.2-167	MRF492	4.2-356
MRF173	4.2-172	MRF553	4.2-359
MRF174	4.2-177	MRF555	4.2-363
MRF175GU	4.2-185	MRF557	4.2-367
MRF175GV	. 4.2-185	MRF559	4.2-371
MRF175LU	. 4.2-195	MRF571	4.2-20
MRF175LV	. 4.2-195	MRF577T1	4.2-377
MRF176GU	4.2-202	MRF579T1	4.2-387
MRF176GV	. 4.2-202	MRF581	4.2-398

Device Number	Page Number	Device Number	Page Number
MRF587	4.2-407	MRF2947AT1,T2	4.2-565
MRF641	4.2-414	MRF2947RAT1,T2	4.2-565
MRF644	4.2-417	MRF3010	4.2-575
MRF650	4.2-420	MRF3095	4.2-582
MRF652	4.2-424	MRF3866R2	4.2-585
MRF652S	4.2-424	MRF4427R2	4.2-587
MRF653	4.2-427	MRF5015	4.2-591
MRF654	4.2-431	MRF5035	4.2-598
MRF658	4.2-434	MRF5211LT1	4.2-13
MRF842	4.2-438	MRF5711LT1	4.2-20
MRF847	4.2-438	MRF5811LT1	4.2-605
MRF857S	4.2-442	MRF5812R1, R2	4.2-398
MRF858	$4.2-445$ $4.2-450$	MRF6401	4.2-612
MRF858S	4.2-450	MRF6402	4.2-616
MRF858S	4.2-450	MRF6404	4.2-620
MRF859S	4.2-455	MRF6404K	4.2-620
MRF891	4.2-460	MRF6408	4.2-629
MRF891S	4.2-460	MRF6409	4.2-636
MRF894	4.2-463	MRF6414	4.2-641
MRF897	4.2-467	MRF8372R1, R2	4.2-646
MRF897R	4.2-471	MRF9411LT1	4.2-39
MRF898	4.2-476	MRF9511LT1	4.2-54
MRF899	4.2-479	MRF9745T1	4.2-651
MRF917T1	4.2-484	MRF9811T1	4.2-653
MRF927T1	4.2-494	MRF9820T1	4.2-655
MRF927T3	4.2-494	MRF9822T1	4.2-658
MRF947AT1	4.2-39	MRF10005	4.2-660
MRF947BT1	4.2-39	MRF10031	4.2-663
MRF947T1, T3	4.2-39	MRF10120	4.2-666
MRF949T1	4.2-505	MRF10150	4.2-669
MRF957T1	4.2-54	MRF10350	4.2-672
MRF959T1	4.2-517	MRF10500	4.2-675
MRF1000MB	4.2-528	MRF10501	4.2-675
MRF1004MB	4.2-531	MRF15030	4.2-678
MRF1015MB	4.2-535	MRF15060	4.2-684
MRF1035MB	4.2-538	MRF15060S	4.2-684
MRF1090MA	4.2-541	MRF15090	4.2-691
MRF1090MB	4.2-541	MRF16030	$4.2-698$ $4.2-702$
MRF1150MA	4.2-544	MRF20030	4.2-706
MRF1150MB	4.2-544	MRF20060	4.2-714
MRF1507	4.2-547	MRF20060S	4.2-714
MRF1507T1	4.2-547	MRW54001	4.2-722
MRF1946	4.2-557	MXR9745T1	4.2-725
MRF1946A	4.2-557	MXR9745RT1	4.2-725
MRF2628	4.2-561	TPV8100B	4.2-727

The RF Line
 NPN Silicon
 RF Power Transistor

. . . designed primarily for wideband large-signal output amplifier stages in the 225 to 400 MHz frequency range.

- Guaranteed Performance in 225 to 400 MHz Broadband Amplifier @ 28 Vdc Output Power $=60$ Watts over 225 to 400 MHz Band Minimum Gain = $7.8 \mathrm{~dB} @ 400 \mathrm{MHz}$
- Built-In Matching Network for Broadband Operation Using Double Match Technique
- 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR
- Gold Metallization System for High Reliability Applications

2N6439

$60 \mathrm{~W}, 225$ to 400 MHz

CONTROLLED "Q" BROADBAND RF POWER TRANSISTOR NPN SILICON

CASE 316-01, STYLE 1

MAXIMUM RATINGS*

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	33	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	4.0	Vdc
Total Device Dissipation $@ \mathrm{~T} \mathrm{C}=25^{\circ} \mathrm{C}(1)$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	146	Watts
Storage Temperature Range		$\mathrm{T}_{\text {stg }}$	-65 to +200
$\mathrm{~W} /{ }^{\circ} \mathrm{C}$			

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{OC}}$	1.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS* ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($\mathrm{I} \mathrm{C}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0$)	$V_{\text {(BR)CEO }}$	33	-	-	Vdc
Collector-Emitter Breakdown Voltage ($\mathrm{I} \mathrm{C}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$)	$V_{\text {(BR)CES }}$	60	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I} \mathrm{E}=5.0 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	2.0	mAdc

NOTE:
(continued)

1. These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as RF amplifiers.
*Indicates JEDEC Registered Data.

ELECTRICAL CHARACTERISTICS* - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	h_{FE}	10	-	100	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	67	75	pF

BROADBAND FUNCTIONAL TESTS (Figure 6)

Common-Emitter Amplifier Power Gain $\left(V_{C C}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{f}=225-400 \mathrm{MHz}\right)$	GPE	7.8	8.5	-	dB
Electrical Ruggedness $\left(P_{\text {out }}=60 \mathrm{~W}, \mathrm{~V}\right.$ CC $=28 \mathrm{Vdc}, \mathrm{f}=400 \mathrm{MHz}$, VSWR 30:1 all phase angles)	ψ	No Degradation in Output Power	-		

NARROW BAND FUNCTIONAL TESTS (Figure 1)

Common-Emitter Amplifier Power Gain $\left(V_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right)$	GPE	7.8	10	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right)$	η	55	-	-	$\%$

* Indicates JEDEC Registered Data.

Figure 1. 400 MHz Test Amplifier (Narrow Band)

NARROW BAND DATA

Figure 2. Pout versus Frequency

Figure 4. Power Gain versus Frequency

Figure 3. Output Power versus Input Power

Figure 5. Output Power versus Supply Voltage

Figure 6. Output Power versus Supply Voltage

Figure 7. 225 to 400 MHz Broadband Test Circuit Schematic

BROADBAND DATA (Circuit, Figure 7)

Figure 8. Power Gain versus Frequency

Figure 9. Efficiency versus Frequency

Figure 10. Input VSWR versus Frequency

Figure 11. Series Equivalent Input-Output Impedance

The RF Line

High-Frequency Transistors
Designed primarily for use in high-gain, low-noise, small-signal UHF and microwave amplifiers constructed with thick and thin-film circuits using surface mount components.

- T1 suffix indicates tape and reel packaging of 3,000 units per reel.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	15	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	20	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	2.0	Vdc
Collector Current - Continuous	I C	25	mAdc
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{Jmax}}$	150	${ }^{\circ} \mathrm{C}$
Power Dissipation, $\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}(\max)}$	0.273	W
Derate linearly above $\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C} @$		3.64	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	275	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DEVICE MARKING

```
BFR92ALT1 = P2
```


BFR92ALT1

RF TRANSISTORS NPN SILICON

CASE 318-08, STYLE 6 SOT-23 LOW PROFILE

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage (1) $(\mathrm{IC}=10 \mathrm{~mA})$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	15	-	Vdc
Collector-Base Breakdown Voltage $(\mathrm{IC}=100 \mu \mathrm{~A})$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	20	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{IC}=100 \mu \mathrm{~A})$	$\mathrm{V}(\mathrm{BR}) \mathrm{EBO}$	2.0	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}\right)$	ICBO	-	50	nA

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=14 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}\right)$	h FE	40	-	-
Collector-Emitter Saturation Voltage (1) $\left(\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5.0 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{CE}}($ sat $)$	-	0.5	Vdc
Base-Emitter Saturation Voltage (1) $\left(\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=5.0 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{BE}}($ sat $)$	-	1.2	Vdc

NOTE:
(continued)

1. Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Typ	Unit

SMALL-SIGNAL CHARACTERISTICS

Current-Gain ——Bandwidth Product $\left(\mathrm{IC}=14 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{f}=500 \mathrm{MHz}\right)$	f_{T}	4.5	GHz
Noise Figure $\left(\mathrm{V}_{\mathrm{CE}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=3.0 \mathrm{~mA}, \mathrm{R}_{\mathrm{S}}=50 \Omega, \mathrm{f}=500 \mathrm{MHz}\right)$	NF	3.0	dB
Capacitance-Collector to Base $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{cb}	0.7	pF

The RF Line
 NPN Silicon
 High-Frequency Transistors

Designed primarily for use in high-gain, low-noise, small-signal UHF and microwave amplifiers constructed with thick and thin-film circuits using surface mount components.

- T1 Suffix Indicates Tape and Reel Packaging of 3,000 Units per Reel.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	12	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	15	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	2.0	Vdc
Collector Current - Continuous	I C	35	mAdc
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{Jmax}}$	150	${ }^{\circ} \mathrm{C}$
Power Dissipation, $\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C}(2)$			
Derate linearly above $\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C} @$	$\mathrm{P}_{\mathrm{D}(\max)}$	0.306 4.08	$\mathrm{~W} / \mathrm{mW} /{ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	245	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DEVICE MARKING

RF TRANSISTORS NPN SILICON

CASE 318-08, STYLE 6 SOT-23 LOW PROFILE

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage (1) $(\mathrm{IC}=10 \mathrm{~mA})$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	12	-	Vdc
Collector-Base Breakdown Voltage $(\mathrm{IC}=10 \mu \mathrm{~A})$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	15	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{IC}=100 \mu \mathrm{~A})$	$V_{\text {(BR) }}$ EBO	2.0	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}$)	ICEO	-	50	nA
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}$)	ICBO	-	50	nA

ON CHARACTERISTICS

DC Current Gain (1) $\left(\mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}\right)$	$\mathrm{h}_{\text {FE }}$	40	-	-
Collector-Emitter Saturation Voltage (1) $(\mathrm{IC}=35 \mathrm{~mA}, \mathrm{IB}=7.0 \mathrm{~mA})$	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	0.5	Vdc
Base-Emitter Saturation Voltage (1) $(\mathrm{IC}=35 \mathrm{~mA}, \mathrm{IB}=7.0 \mathrm{~mA})$	V_{BE} (sat)	-	1.2	Vdc

NOTE:

1. Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.
2. Case temperature measured on collector lead immediately adjacent to body of package.

REV 7

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
SMALL-SIGNAL CHARACTERISTICS				
Current-Gain - Bandwidth Product $\left(\mathrm{IC}=30 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{f}=500 \mathrm{MHz}\right)$	${ }^{\text {T }}$	3.0	-	GHz
Noise Figure $\left(\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I} \mathrm{C}=2.0 \mathrm{~mA}, \mathrm{RS}_{\mathrm{S}}=50 \Omega, \mathrm{f}=30 \mathrm{MHz}\right.$)	NF	-	3.0	dB

The RF Line

NPN Silicon
High-Frequency Transistor
Designed primarily for use in high-gain, low-noise amplifier, oscillator and mixer applications. Packaged for thick or thin film circuits using surface mount components.

- T1 suffix indicates tape and reel packaging of 3,000 units per reel.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	15	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	25	Vdc
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{Jmax}}$	150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Total Device Dissipation, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	350	mW
Derate above $25^{\circ} \mathrm{C}(1)$		2.8	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction to Ambient (1)	$\mathrm{R}_{\theta \mathrm{JA}}$	357	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DEVICE MARKING

BFS17LT1 = E1

BFS17LT1

RF TRANSISTOR NPN SILICON

CASE 318-08, STYLE 6 SOT-23 LOW PROFILE (TO-236AA/AB)

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage ($\left.\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	15	-	-	Vdc
Collector-Base Breakdown Voltage $(\mathrm{IC}=100 \mu \mathrm{~A})$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	25	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}\right)$	$\mathrm{I}_{\mathrm{CEO}}$	-	-	25	nA
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}\right)$	$\mathrm{I}_{\mathrm{CBO}}$	-	-	25	nA
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=4 \mathrm{~V}\right)$	$\mathrm{I}_{\mathrm{EBO}}$	-	-	100	$\mu \mathrm{~A}$

ON CHARACTERISTICS

$\begin{aligned} & \text { DC Current Gain } \\ & \left(I_{C}=2 \mathrm{~mA}, \mathrm{~V}_{C E}=1 \mathrm{~V}\right) \\ & \left(\mathrm{IC}_{\mathrm{C}}=25 \mathrm{~mA}, \mathrm{~V}_{C E}=1 \mathrm{~V}\right) \end{aligned}$	$h_{\text {he }}$	$\begin{aligned} & 20 \\ & 20 \end{aligned}$	-	150	-
Collector-Emitter Saturation Voltage $\left(\mathrm{I} \mathrm{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{CE} \text { (sat) }}$	-	-	0.4	V
Base-Emitter Saturation Voltage $\left(\mathrm{I} \mathrm{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=1 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{BE} \text { (sat) }}$	-	-	1	V

SMALL-SIGNAL CHARACTERISTICS

$\begin{aligned} & \text { Current-Gain — Bandwidth Product } \\ & \text { (IC } \left.=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{f}=500 \mathrm{MHz}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{f}=500 \mathrm{MHz}\right) \end{aligned}$	${ }_{\text {f }}$		$\begin{gathered} 1 \\ 1.3 \end{gathered}$		GHz
Output Capacitance ($\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$)	CCB	-	1	-	pF
Noise Figure ($\mathrm{I} \mathrm{C}=2 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{RS}=50 \Omega, \mathrm{f}=30 \mathrm{MHz}$)	NF	-	5	-	dB

NOTE:

1. Package mounted on 99.5% alumina $10 \times 8 \times 0.6 \mathrm{~mm}$.

The RF Line PNP Silicon High-Frequency Transistor

Designed primarily for use in the high-gain, low-noise small-signal amplifiers for operation up to 3.5 GHz . Also usable in applications requiring fast switching times.

- High Current Gain-Bandwidth Product -
f T $=3.4 \mathrm{GHz}$ (Typ) @ $\mathrm{I} \mathrm{C}=-35 \mathrm{mAdc}$ (MMBR521LT1)
$\mathrm{f} \mathrm{T}=4.2 \mathrm{GHz}$ (Typ) @ $\mathrm{I} \mathrm{C}=-50 \mathrm{mAdc}(\mathrm{MRF} 5211 \mathrm{LT} 1)$
- Low Noise Figure @ f=1.0 GHz -

NF (matched) $=2.5 \mathrm{~dB}$ (Typ) $($ MMBR521LT1 $)$
$\mathrm{NF}_{(\text {matched })}=2.8 \mathrm{~dB}($ Typ $)($ MRF5211LT1 $)$

- High Power Gain — Gpe (matched) $=11 \mathrm{~dB}$ (Typ)
- Guaranteed RF Parameters
- Surface Mounted SOT-23 (MMBR521LT1) \& SOT-143 (MRF5211LT1)

Offer Improved RF Performance
Lower Package Parasitics
Higher Gain

- Available in tape and reel packaging options:

T1 suffix $=3,000$ units per reel

MAXIMUM RATINGS

Ratings		Symbol	Value	Unit
Collector-Emitter Voltage		$\mathrm{V}_{\text {CEO }}$	-10	Vdc
Collector-Base Voltage		$\mathrm{V}_{\text {CBO }}$	-20	Vdc
Emitter-Base Voltage		VEBO	-2.5	Vdc
Power Dissipation (1) $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$, Derate linearly above $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$ @	All	$\mathrm{P}_{\mathrm{D}(\text { max })}$	$\begin{gathered} 0.333 \\ 4.44 \end{gathered}$	$\begin{gathered} \mathrm{W} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Collector Current - Continuous		IC	-70	mA
Maximum Junction Temperature		TJmax	150	${ }^{\circ} \mathrm{C}$
Storage Temperature	All	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Ratings	Symbol	Value	Unit
Thermal Resistance, Junction to Case (MMBR521LT1, MRF5211LT1)	$R_{\text {日JC }}$	225	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DEVICE MARKING

MMBR521LT1 $=7 \mathrm{M} \quad$ MRF5211LT1 $=04$
NOTE:

1. Case Temperature is measured on the collector lead closest to the package. For case temperatures above $+75^{\circ} \mathrm{C}$: $\mathrm{PDISP}(\max)=\left(\mathrm{T} \mathrm{Jmax}^{-\mathrm{T}}\right) / \mathrm{R}_{\theta \mathrm{JC}}$

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=-1.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0$)	$V_{\text {(}}$ (RR)CEO	-10	-12	-	Vdc
Collector-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=-0.1 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0$)	$V_{\text {(}}$ (RR) CBO	-20	-	-	Vdc
Emitter-Base Breakdown Voltage (${ }^{\text {I }} \mathrm{E}=-50 \mu \mathrm{Adc}$, $\mathrm{IC}=0$)	$V_{\text {(BR) }}$ EBO	-2.5	-	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=-8.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0$)	${ }^{\text {ICBO }}$	-	-	-10	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

DC Current Gain (IC $\left.=-30 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=-5.0 \mathrm{Vdc}\right)$	h_{FE}	25	-	125	-

DYNAMIC CHARACTERISTICS

Collector-Base Capacitance $\left(\mathrm{V} \mathrm{CB}=-6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{cb}	-	1.0	1.5	pF	
Current Gain — Bandwidth Product		T				GHz
$\left(\mathrm{V}_{\mathrm{CE}}=-8.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-35 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right)$	MMBR521LT1		-	3.4	-	
$\left(\mathrm{V}_{\mathrm{CE}}=-8.0 \mathrm{~V}, \mathrm{I} \mathrm{C}=-50 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right)$	MRF5211LT1		-	4.2	-	

FUNCTIONAL TESTS

Power Gain at Minimum Noise Figure $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=-6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5.0 \mathrm{~mA}, \mathrm{f}=500 \mathrm{MHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=-6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=-6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right) \end{aligned}$	MMBR521LT1 MMBR521LT1 MRF5211LT1	GNFmin	$\begin{aligned} & 13 \\ & 8.0 \\ & 10 \\ & \hline \end{aligned}$	$\begin{aligned} & 15 \\ & 10 \\ & 11 \end{aligned}$	-	dB
$\begin{aligned} & \text { Noise Figure }- \text { Minimum } \\ & \left(\mathrm{V}_{C E}=-6.0 \mathrm{~V}, \mathrm{I} \mathrm{C}=-5.0 \mathrm{~mA}, \mathrm{f}=500 \mathrm{MHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=-6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=-6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=-5.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right) \end{aligned}$	MMBR521LT1 MMBR521LT1 MRF5211LT1	$N F_{\text {min }}$	-	1.5 2.5 2.8	$\begin{aligned} & 2.5 \\ & 3.5 \\ & 3.5 \end{aligned}$	dB

TYPICAL CHARACTERISTICS

Figure 1. Junction Capacitance versus Voltage

VBE, BASE-EMITTER VOLTAGE (VOLTS)
Figure 2. Input Capacitance versus Voltage

TYPICAL CHARACTERISTICS
 MMBR521LT1

Figure 4. Current Gain Bandwidth Product versus Collector Current

Figure 6. Minimum Noise Figure \& Gain @ Noise Figure versus Collector Current

Figure 5. Minimum Noise Figure \& Gain @ Noise Figure versus Frequency

Figure 7. Minimum Noise Figure \& Gain @ Noise Figure versus Collector Current

TYPICAL CHARACTERISTICS MRF5211LT1

Figure 8. Gain-Bandwidth Product versus Current
GAIN AND NOISE FIGURE versus FREQUENCY

Figure 9. 50 Ohm Noise Figure

Figure 10. Tuned Circuit

GAIN AND NOISE FIGURE versus CURRENT

Figure 11. Tuned Circuit - Frequency 500 MHz

Figure 12. Tuned Circuit - Frequency 1.0 GHz

Figure 13. GUmax versus Current

Figure 14. Insertion Gain versus Frequency

$V_{\text {CE }}$ (Vdc)	$\underset{(\mathrm{mA})}{\mathrm{I} \mathrm{C}}$	$\begin{gathered} f \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}	
			$\left\|S_{11}\right\|$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	$\left\|S_{22}\right\|$	$\angle \phi$
6	5	$\begin{gathered} 100 \\ 300 \\ 500 \\ 700 \\ 900 \\ 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \end{gathered}$	$\begin{aligned} & \hline 0.754 \\ & 0.683 \\ & 0.667 \\ & 0.660 \\ & 0.656 \\ & 0.654 \\ & 0.641 \\ & 0.672 \\ & 0.681 \\ & 0.681 \\ & 0.686 \\ & 0.683 \\ & 0.678 \\ & 0.669 \end{aligned}$	$\begin{array}{r} r-67 \\ -132 \\ -157 \\ -171 \\ 179 \\ 175 \\ 158 \\ 140 \\ 124 \\ 110 \\ 96 \\ 84 \\ 73 \\ 64 \end{array}$	$\begin{array}{r} \hline 11.453 \\ 6.106 \\ 3.954 \\ 2.890 \\ 2.294 \\ 2.086 \\ 1.442 \\ 1.108 \\ 0.917 \\ 0.793 \\ 0.716 \\ 0.674 \\ 0.653 \\ 0.653 \end{array}$	141 105 89 78 69 65 48 36 26 18 13 9 6 3	$\begin{aligned} & 0.040 \\ & 0.065 \\ & 0.071 \\ & 0.078 \\ & 0.085 \\ & 0.091 \\ & 0.130 \\ & 0.188 \\ & 0.261 \\ & 0.343 \\ & 0.426 \\ & 0.503 \\ & 0.568 \\ & 0.620 \end{aligned}$	$\begin{aligned} & 59 \\ & 39 \\ & 39 \\ & 44 \\ & 50 \\ & 53 \\ & 64 \\ & 69 \\ & 66 \\ & 60 \\ & 52 \\ & 43 \\ & 34 \\ & 24 \end{aligned}$	0.818 0.549 0.472 0.452 0.449 0.451 0.480 0.466 0.483 0.493 0.500 0.502 0.503 0.507	$\begin{aligned} & \hline-24 \\ & -37 \\ & -40 \\ & -44 \\ & -49 \\ & -52 \\ & -66 \\ & -79 \\ & -94 \\ & -110 \\ & -126 \\ & -143 \\ & -160 \\ & -176 \end{aligned}$
	10	$\begin{gathered} \hline 100 \\ 300 \\ 500 \\ 700 \\ 900 \\ 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \end{gathered}$	0.632 0.618 0.618 0.616 0.615 0.613 0.601 0.633 0.642 0.646 0.656 0.662 0.664 0.664	$\begin{array}{r} \hline-92 \\ -149 \\ -168 \\ -178 \\ 173 \\ 170 \\ 155 \\ 138 \\ 124 \\ 110 \\ 98 \\ 86 \\ 75 \\ 66 \end{array}$	$\begin{array}{r} \hline 16.621 \\ 7.460 \\ 4.671 \\ 3.392 \\ 2.672 \\ 2.429 \\ 1.677 \\ 1.294 \\ 1.078 \\ 0.929 \\ 0.827 \\ 0.756 \\ 0.709 \\ 0.683 \end{array}$	131 98 85 76 68 64 48 36 25 16 10 4 1 -3	$\begin{aligned} & 0.032 \\ & 0.050 \\ & 0.061 \\ & 0.076 \\ & 0.092 \\ & 0.100 \\ & 0.150 \\ & 0.208 \\ & 0.273 \\ & 0.346 \\ & 0.422 \\ & 0.494 \\ & 0.554 \\ & 0.609 \end{aligned}$	55 47 53 58 62 63 66 66 62 56 49 41 32 24	0.694 0.417 0.358 0.346 0.347 0.352 0.382 0.371 0.391 0.408 0.421 0.431 0.442 0.455	$\begin{aligned} & -33 \\ & -41 \\ & -44 \\ & -47 \\ & -52 \\ & -55 \\ & -68 \\ & -80 \\ & -94 \\ & -109 \\ & -124 \\ & -141 \\ & -158 \\ & -174 \end{aligned}$
	50	$\begin{gathered} \hline 100 \\ 300 \\ 500 \\ 700 \\ 900 \\ 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \end{gathered}$	0.547 0.606 0.616 0.616 0.616 0.615 0.606 0.643 0.654 0.662 0.672 0.680 0.682 0.679	$\begin{array}{r} \hline-149 \\ -174 \\ 177 \\ 171 \\ 165 \\ 163 \\ 150 \\ 135 \\ 122 \\ 108 \\ 96 \\ 84 \\ 74 \\ 64 \end{array}$	$\begin{array}{r} \hline 21.107 \\ 7.891 \\ 4.811 \\ 3.480 \\ 2.746 \\ 2.479 \\ 1.717 \\ 1.327 \\ 1.097 \\ 0.940 \\ 0.825 \\ 0.743 \\ 0.688 \\ 0.658 \end{array}$	115 90 80 72 65 61 46 33 22 13 6 1 -2 -5	$\begin{aligned} & \hline 0.017 \\ & 0.037 \\ & 0.058 \\ & 0.080 \\ & 0.102 \\ & 0.113 \\ & 0.169 \\ & 0.229 \\ & 0.292 \\ & 0.359 \\ & 0.427 \\ & 0.493 \\ & 0.551 \\ & 0.601 \end{aligned}$	63 68 73 73 73 72 69 65 60 54 47 39 31 22	0.441 0.260 0.239 0.242 0.248 0.255 0.293 0.289 0.315 0.337 0.356 0.373 0.391 0.409	$\begin{aligned} & -43 \\ & -42 \\ & -44 \\ & -48 \\ & -54 \\ & -57 \\ & -71 \\ & -82 \\ & -96 \\ & -110 \\ & -126 \\ & -142 \\ & -159 \\ & -175 \end{aligned}$
10	5	$\begin{gathered} \hline 100 \\ 300 \\ 500 \\ 700 \\ 900 \\ 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \end{gathered}$	$\begin{aligned} & \hline 0.792 \\ & 0.681 \\ & 0.652 \\ & 0.639 \\ & 0.631 \\ & 0.628 \\ & 0.616 \\ & 0.644 \\ & 0.654 \\ & 0.661 \\ & 0.670 \\ & 0.672 \\ & 0.671 \\ & 0.665 \end{aligned}$	$\begin{array}{r} \hline-59 \\ -123 \\ -150 \\ -166 \\ -177 \\ 179 \\ 161 \\ 142 \\ 126 \\ 111 \\ 98 \\ 85 \\ 73 \\ 63 \end{array}$	11.498 6.513 4.278 3.142 2.491 2.264 1.560 1.199 0.985 0.843 0.749 0.690 0.656 0.649	144 108 91 80 71 67 50 37 26 18 12 8 5 3	$\begin{aligned} & 0.036 \\ & 0.061 \\ & 0.068 \\ & 0.073 \\ & 0.081 \\ & 0.086 \\ & 0.120 \\ & 0.171 \\ & 0.238 \\ & 0.314 \\ & 0.399 \\ & 0.479 \\ & 0.549 \\ & 0.609 \end{aligned}$	$\begin{aligned} & 62 \\ & 41 \\ & 40 \\ & 44 \\ & 49 \\ & 53 \\ & 64 \\ & 69 \\ & 68 \\ & 63 \\ & 56 \\ & 47 \\ & 38 \\ & 28 \end{aligned}$	0.848 0.598 0.518 0.496 0.489 0.492 0.514 0.500 0.516 0.523 0.529 0.528 0.524 0.523	$\begin{aligned} & -21 \\ & -32 \\ & -36 \\ & -39 \\ & -44 \\ & -46 \\ & -58 \\ & -70 \\ & -83 \\ & -98 \\ & -113 \\ & -129 \\ & -146 \\ & -162 \end{aligned}$
10	10	$\begin{gathered} \hline 100 \\ 300 \\ 500 \\ 700 \\ 900 \\ 1000 \\ 1500 \\ 2000 \\ 2500 \\ 3000 \\ 3500 \\ 4000 \\ 4500 \\ 5000 \end{gathered}$	0.666 0.596 0.587 0.581 0.578 0.577 0.565 0.596 0.608 0.619 0.632 0.644 0.652 0.654	$\begin{array}{r} -80 \\ -141 \\ -162 \\ -174 \\ 177 \\ 174 \\ 158 \\ 140 \\ 126 \\ 112 \\ 99 \\ 87 \\ 75 \\ 65 \end{array}$	$\begin{array}{r} \hline 17.255 \\ 8.143 \\ 5.139 \\ 3.741 \\ 2.947 \\ 2.670 \\ 1.856 \\ 1.431 \\ 1.177 \\ 1.008 \\ 0.886 \\ 0.797 \\ 0.732 \\ 0.694 \end{array}$	135 101 87 78 70 66 50 38 26 17 9 3 -1 -4	0.030 0.047 0.059 0.072 0.086 0.095 0.139 0.191 0.253 0.319 0.393 0.465 0.532 0.589	$\begin{aligned} & 58 \\ & 48 \\ & 53 \\ & 58 \\ & 61 \\ & 63 \\ & 66 \\ & 66 \\ & 64 \\ & 59 \\ & 52 \\ & 44 \\ & 36 \\ & 28 \end{aligned}$	0.738 0.465 0.404 0.388 0.387 0.389 0.413 0.402 0.420 0.434 0.444 0.453 0.457 0.465	$\begin{aligned} & -28 \\ & -37 \\ & -38 \\ & -41 \\ & -45 \\ & -48 \\ & -60 \\ & -70 \\ & -82 \\ & -96 \\ & -110 \\ & -126 \\ & -143 \\ & -159 \end{aligned}$

Table 1. MMBR521LT1 Common Emitter S-Parameters

$\begin{aligned} & \mathrm{V}_{\mathrm{CE}} \\ & \text { (Vdc) } \end{aligned}$	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathbf{f} \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}	
			$\left\|S_{11}\right\|$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	${ }^{(S 22} \mid$	$\angle \phi$
-6.0	-5.0	$\begin{gathered} \hline 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.82 \\ & 0.81 \\ & 0.79 \\ & 0.76 \\ & 0.74 \end{aligned}$	$\begin{array}{r} -114 \\ -158 \\ 175 \\ 158 \\ 143 \end{array}$	$\begin{aligned} & 7.9 \\ & 4.0 \\ & 2.0 \\ & 1.3 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 118 \\ & 88 \\ & 67 \\ & 50 \\ & 38 \end{aligned}$	$\begin{aligned} & \hline 0.07 \\ & 0.08 \\ & 0.08 \\ & 0.07 \\ & 0.08 \end{aligned}$	$\begin{aligned} & 35 \\ & 21 \\ & 21 \\ & 30 \\ & 47 \end{aligned}$	$\begin{aligned} & \hline 0.59 \\ & 0.40 \\ & 0.37 \\ & 0.43 \\ & 0.47 \end{aligned}$	$\begin{aligned} & -46 \\ & -54 \\ & -68 \\ & -82 \\ & -95 \end{aligned}$
	-10	$\begin{gathered} \hline 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \end{gathered}$	$\begin{aligned} & \hline 0.78 \\ & 0.79 \\ & 0.77 \\ & 0.74 \\ & 0.71 \end{aligned}$	$\begin{array}{r} \hline-137 \\ -168 \\ 169 \\ 155 \\ 140 \end{array}$	$\begin{gathered} \hline 10.6 \\ 4.9 \\ 2.5 \\ 1.6 \\ 1.2 \end{gathered}$	$\begin{gathered} 109 \\ 84 \\ 66 \\ 50 \\ 39 \end{gathered}$	$\begin{aligned} & 0.05 \\ & 0.06 \\ & 0.06 \\ & 0.08 \\ & 0.10 \end{aligned}$	$\begin{aligned} & \hline 32 \\ & 28 \\ & 39 \\ & 49 \\ & 55 \end{aligned}$	$\begin{aligned} & 0.43 \\ & 0.26 \\ & 0.24 \\ & 0.29 \\ & 0.32 \end{aligned}$	$\begin{aligned} & -63 \\ & -75 \\ & -87 \\ & -97 \\ & -106 \end{aligned}$
	-50	$\begin{gathered} 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \end{gathered}$	$\begin{aligned} & \hline 0.77 \\ & 0.77 \\ & 0.76 \\ & 0.73 \\ & 0.70 \end{aligned}$	$\begin{array}{r} \hline-167 \\ 176 \\ 161 \\ 149 \\ 136 \end{array}$	$\begin{gathered} 13.1 \\ 5.7 \\ 2.8 \\ 1.9 \\ 1.4 \end{gathered}$	$\begin{aligned} & 99 \\ & 80 \\ & 65 \\ & 51 \\ & 40 \end{aligned}$	$\begin{aligned} & \hline 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 45 \\ & 57 \\ & 65 \\ & 67 \\ & 65 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.18 \\ & 0.17 \\ & 0.19 \\ & 0.20 \end{aligned}$	$\begin{aligned} & \hline-108 \\ & -132 \\ & -142 \\ & -137 \\ & -137 \end{aligned}$
-8.0	-5.0	$\begin{gathered} 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \end{gathered}$	$\begin{aligned} & 0.82 \\ & 0.80 \\ & 0.78 \\ & 0.75 \\ & 0.72 \end{aligned}$	$\begin{array}{r} -109 \\ -154 \\ 175 \\ 159 \\ 143 \end{array}$	$\begin{aligned} & \hline 8.1 \\ & 4.2 \\ & 2.2 \\ & 1.4 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 119 \\ & 90 \\ & 67 \\ & 50 \\ & 37 \end{aligned}$	$\begin{aligned} & 0.07 \\ & 0.08 \\ & 0.08 \\ & 0.07 \\ & 0.09 \end{aligned}$	$\begin{aligned} & \hline 36 \\ & 22 \\ & 22 \\ & 31 \\ & 43 \end{aligned}$	$\begin{aligned} & \hline 0.62 \\ & 0.42 \\ & 0.38 \\ & 0.43 \\ & 0.46 \end{aligned}$	$\begin{aligned} & -43 \\ & -52 \\ & -65 \\ & -78 \\ & -89 \end{aligned}$
	-10	$\begin{gathered} 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \end{gathered}$	$\begin{aligned} & \hline 0.77 \\ & 0.77 \\ & 0.76 \\ & 0.73 \\ & 0.70 \end{aligned}$	$\begin{array}{r} -132 \\ -167 \\ 169 \\ 155 \\ 140 \end{array}$	$\begin{gathered} \hline 11.2 \\ 5.2 \\ 2.6 \\ 1.7 \\ 1.3 \end{gathered}$	$\begin{aligned} & \hline 110 \\ & 86 \\ & 67 \\ & 51 \\ & 39 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.06 \\ & 0.06 \\ & 0.07 \\ & 0.10 \end{aligned}$	$\begin{aligned} & 33 \\ & 29 \\ & 39 \\ & 49 \\ & 54 \end{aligned}$	$\begin{aligned} & \hline 0.45 \\ & 0.27 \\ & 0.25 \\ & 0.29 \\ & 0.31 \end{aligned}$	$\begin{aligned} & -61 \\ & -70 \\ & -81 \\ & -90 \\ & -98 \end{aligned}$
	-50	$\begin{gathered} \hline 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \end{gathered}$	$\begin{aligned} & 0.75 \\ & 0.76 \\ & 0.75 \\ & 0.72 \\ & 0.70 \end{aligned}$	$\begin{array}{r} \hline-164 \\ 178 \\ 163 \\ 151 \\ 139 \end{array}$	$\begin{aligned} & 14.2 \\ & 6.1 \\ & 3.1 \\ & 2.0 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 100 \\ & 82 \\ & 67 \\ & 53 \\ & 42 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.11 \end{aligned}$	$\begin{aligned} & 43 \\ & 55 \\ & 64 \\ & 67 \\ & 68 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.17 \\ & 0.15 \\ & 0.18 \\ & 0.19 \end{aligned}$	$\begin{aligned} & -101 \\ & -121 \\ & -131 \\ & -126 \\ & -127 \end{aligned}$

Table 2. MRF5211LT1 Common Emitter S-Parameters

The RF Line

High-Frequency Transistors

Designed for low noise, wide dynamic range front-end amplifiers and low-noise VCO's. Available in a surface-mountable plastic packages. This Motorola series of small-signal plastic transistors offers superior quality and performance at low cost.

- High Gain-Bandwidth Product
$\mathrm{f} \mathrm{T}=8.0 \mathrm{GHz}$ (Typ) @ 50 mA
- Low Noise Figure
$N F_{\text {min }}=1.6 \mathrm{~dB}$ (Typ) @ $\mathrm{f}=1.0 \mathrm{GHz}$ (MRF5711LT1, MRF571)
- High Gain
$\mathrm{G}_{\mathrm{NF}}=17 \mathrm{~dB}$ (Typ) @ $30 \mathrm{~mA} / 500 \mathrm{MHz}$ (MMBR571LT1)
- High Power Gain

Gpe (matched) $=13.5 \mathrm{~dB}($ Typ $)($ MRF5711LT1 $)$

- State-of-the-Art Technology

Fine Line Geometry
Ion-Implanted Arsenic Emitters
Gold Top Metallization and Wires
Silicon Nitride Passivation

- Available in tape and reel packaging options:

T1 suffix $=3,000$ units per reel

MMBR571LT1
MRF571
MRF5711LT1
mA
LOW NOISE
HIGH-FREQUENCY TRANSISTORS

CASE 318-08, STYLE 6 SOT-23 LOW PROFILE MMBR571LT1

CASE 317-01, STYLE 2 MACRO-X MRF571

CASE 318A-05, STYLE 1
SOT-143
LOW PROFILE
MRF5711LT1

THERMAL CHARACTERISTICS

Rating	Symbol	Max	Unit
Thermal Resistance, Junction to Case MRF5711LT1, MMBR571LT1	$\mathrm{R}_{\theta \mathrm{JJC}}$	225	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Case			
Maximum Junction Temperature	$\mathrm{R}_{\theta \mathrm{JC}}$	130	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DEVICE MARKING

MMBR571LT1 $=7 \mathrm{X} \quad$ MRF5711LT1 $=02$

NOTE:

1. Case temperature measured on collector lead immediately adjacent to body of package.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$)	$V_{\text {(BR)CEO }}$	10	12	-	Vdc
Collector-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0$)	$\mathrm{V}_{\text {(RR) }} \mathrm{CBO}$	20	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{E}}=50 \mu \mathrm{Adc}$, $\mathrm{I} \mathrm{C}=0$)	$\mathrm{V}_{\text {(BR) } \mathrm{EBO}}$	2.5	-	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=8.0 \mathrm{Vdc}$, $\mathrm{I}_{\mathrm{E}}=0$)	ICBO	-	-	10	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

DC Current Gain (IC $\left.=30 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	h_{FE}	50	-	300	-

DYNAMIC CHARACTERISTICS

Collector-Base Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	MMBR571LT1	C_{cb}				pF
$\left(\mathrm{V}_{\mathrm{CB}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	MRF5711LT1, MRF571		-	0.7	1.0	
Current Gain-Bandwidth Produc		-	0.75	1.0		
$\left(\mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{f}=1.0 \mathrm{GHz}\right)$	MMBR571LT1	f_{T}				GHz
$\left(\mathrm{V}_{\mathrm{CE}}=8.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{f}=1.0 \mathrm{GHz}\right)$	MRF5711LT1, MRF571		-	8.0	-	

FUNCTIONAL TESTS

Gain @ Noise Figure $\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}\right)$	MRF571 MRF571	$\begin{aligned} & \mathrm{f}=0.5 \mathrm{GHz} \\ & \mathrm{f}=1.0 \mathrm{GHz} \end{aligned}$	G_{NF}	10	$\begin{gathered} 16.5 \\ 12 \end{gathered}$		dB
Noise Figure $\left(\mathrm{IC}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}\right)$	MRF571 MRF571	$\begin{aligned} & \mathrm{f}=0.5 \mathrm{GHz} \\ & \mathrm{f}=1.0 \mathrm{GHz} \\ & \mathrm{f}=2.0 \mathrm{GHz} \end{aligned}$	NF	-	$\begin{aligned} & 1.0 \\ & 1.5 \\ & 2.8 \end{aligned}$	- 2.0 -	dB
$\begin{aligned} & \text { Gain @ Noise Figure } \\ & \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}\right) \end{aligned}$	MMBR571LT1 MRF5711LT1	$\begin{aligned} & \mathrm{f}=0.5 \mathrm{GHz} \\ & \mathrm{f}=1.0 \mathrm{GHz} \\ & \mathrm{f}=1.0 \mathrm{GHz} \end{aligned}$	$G_{N F}$	-	$\begin{aligned} & 16.5 \\ & 10.5 \\ & 13.5 \end{aligned}$	-	dB
Noise Figure $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}\right) \end{aligned}$	MMBR571LT1 MRF5711LT1	$\begin{aligned} & \mathrm{f}=0.5 \mathrm{GHz} \\ & \mathrm{f}=1.0 \mathrm{GHz} \\ & \mathrm{f}=1.0 \mathrm{GHz} \end{aligned}$	NF	-	$\begin{aligned} & 2.0 \\ & 2.6 \\ & 2.2 \end{aligned}$	-	dB
Noise Figure $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right)$	MRF5711LT1		$N F_{\text {min }}$	-	1.6	-	dB
Power Gain in 50Ω System ($\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}$) MRF5711LT1			$\left\|S_{21}\right\|^{2}$	9.0	10	-	dB

TYPICAL CHARACTERISTICS MMBR571LT1

Figure 1. Maximum Available Gain versus Frequency

Figure 2. Current Gain-Bandwidth versus Collector Current @ 1.0 GHz

TYPICAL CHARACTERISTICS MMBR571LT1

Figure 3. Input Capacitance versus Emitter Base Voltage

Figure 5. Gain at Noise Figure versus Collector Current

Figure 7. Gain at Noise Figure and Noise Figure versus Frequency

Figure 4. Output Capacitances versus Collector-Base Voltage

SOT-23 MMBR571LT1

Figure 6. Noise Figure versus Collector Current

Figure 8. Maximum Unilateral Gain and Insertion Gain versus Frequency

Figure 9. Collector-Base Capacitance versus Collector-Base Voltage

Figure 10. 50Ω Noise Figure versus Frequency

Figure 11. Functional Circuit Schematic

TYPICAL CHARACTERISTICS
 MRF5711LT1

Figure 12. Gain and Noise Figure versus Frequency

Figure 13. Gain and Noise Figure versus Collector Current

Figure 15. Gain Bandwidth Product versus Collector Current

Figure 17. Insertion Gain versus Collector Current

MMBR571LT1

Figure 18. Input/Output Reflection Coefficients versus Frequency
$\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}$, $\mathrm{IC}=30 \mathrm{~mA}$

Figure 19. Forward/Reverse Transmission Coefficients versus Frequency
$\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}$, $\mathrm{IC}_{\mathrm{C}}=30 \mathrm{~mA}$

V_{CE}(Volts)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\stackrel{f}{(\mathrm{MHz})}$	S_{11}		S_{21}		S_{12}		S_{22}		
			${ }^{\text {S }} 11$ \|	$\angle \phi$	\|S21		$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	${ }^{\text {S }} 22$ \|	$\angle \phi$
5.0	5.0	200	0.68	-82	8.41	126	0.07	53	0.61	-45	
		500	0.52	-142	4.62	93	0.10	46	0.35	-60	
		1000	0.50	179	2.57	72	0.14	53	0.26	-71	
		1500	0.51	161	1.82	57	0.19	58	0.24	-77	
		2000	0.52	143	1.48	45	0.24	59	0.22	-86	
	15	200	0.46	-125	13.65	108	0.05	60	0.35	-73	
		500	0.43	-169	6.03	86	0.09	66	0.17	-94	
		1000	0.44	168	3.20	72	0.16	67	0.14	-111	
		1500	0.45	152	2.21	58	0.22	64	0.11	-118	
		2000	0.46	137	1.80	48	0.29	59	0.10	-131	
	30	200	0.42	-148	14.79	102	0.04	68	0.26	-87	
		500	0.41	-177	6.31	84	0.09	72	0.14	-115	
		1000	0.42	165	3.35	71	0.16	70	0.12	-135	
		1500	0.44	151	2.29	59	0.23	65	0.11	-144	
		2000	0.44	135	1.84	48	0.30	60	0.10	-157	
	50	200	0.41	-159	15.14	98	0.04	73	0.21	-96	
		500	0.42	179	6.38	83	0.09	75	0.13	-124	
		1000	0.43	163	3.35	70	0.16	71	0.12	-143	
		1500	0.44	148	2.32	58	0.23	66	0.10	-151	
		2000	0.45	134	1.84	48	0.30	60	0.09	-163	

Table 1. MMBR571LT1 Common Emitter S-Parameters

$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
$\mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}$
$\square=$ Area of Instability

$\mathrm{f}(\mathrm{GHz})$	NF OPT	$\Gamma \mathrm{MS}$ NF OPT	Rn	K
0.5	1.20 dB	$0.36 \angle 104^{\circ}$	7	0.63

Figure 20. MRF5711LT1 Constant Gain and Noise Figure Contours

> (f = 0.5 GHz)

$\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}$
${ }^{I} C=10 \mathrm{~mA}$
$\square=$ Area of Instability

$\mathrm{f}(\mathrm{GHz})$	NF OPT	Γ MS NF OPT	Rn	K
1.0	1.70 dB	$0.20 \angle 162^{\circ}$	8	0.94

Figure 21. MRF5711LT1 Constant Gain and noise Figure Contours
($\mathrm{f}=1.0 \mathrm{GHz}$)

v_{CE}(Vdc)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}	
			$\left\|S_{11}\right\|$	$\angle \phi$	${ }^{\text {S }} 21$ \|	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	${ }^{\text {S }} \mathbf{2 2}$ \|	$\angle \phi$
6.0	5.0	$\begin{gathered} 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \end{gathered}$	$\begin{aligned} & \hline 0.79 \\ & 0.72 \\ & 0.69 \\ & 0.66 \\ & 0.65 \end{aligned}$	$\begin{array}{r} -90 \\ -144 \\ -177 \\ 164 \\ 147 \end{array}$	$\begin{gathered} \hline 10.9 \\ 5.7 \\ 3.0 \\ 2.0 \\ 1.6 \end{gathered}$	$\begin{gathered} 128 \\ 96 \\ 75 \\ 59 \\ 47 \end{gathered}$	$\begin{aligned} & 0.06 \\ & 0.08 \\ & 0.09 \\ & 0.10 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 46 \\ & 28 \\ & 28 \\ & 32 \\ & 38 \end{aligned}$	$\begin{aligned} & 0.70 \\ & 0.42 \\ & 0.31 \\ & 0.34 \\ & 0.32 \end{aligned}$	$\begin{aligned} & \hline-45 \\ & -66 \\ & -77 \\ & -89 \\ & -94 \end{aligned}$
	10	$\begin{gathered} 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \end{gathered}$	$\begin{aligned} & \hline 0.72 \\ & 0.69 \\ & 0.67 \\ & 0.64 \\ & 0.64 \end{aligned}$	$\begin{array}{r} -115 \\ -160 \\ 174 \\ 159 \\ 143 \end{array}$	$\begin{gathered} \hline 15.2 \\ 6.9 \\ 3.6 \\ 2.4 \\ 1.8 \end{gathered}$	$\begin{gathered} \hline 118 \\ 92 \\ 74 \\ 60 \\ 49 \end{gathered}$	$\begin{aligned} & \hline 0.05 \\ & 0.06 \\ & 0.08 \\ & 0.10 \\ & 0.12 \end{aligned}$	$\begin{aligned} & \hline 41 \\ & 34 \\ & 42 \\ & 46 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.55 \\ & 0.30 \\ & 0.21 \\ & 0.23 \\ & 0.20 \end{aligned}$	$\begin{aligned} & \hline-66 \\ & -92 \\ & -108 \\ & -114 \\ & -116 \end{aligned}$
	50	$\begin{gathered} 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \end{gathered}$	$\begin{aligned} & \hline 0.67 \\ & 0.67 \\ & 0.66 \\ & 0.63 \\ & 0.58 \end{aligned}$	$\begin{array}{r} \hline-159 \\ 179 \\ 174 \\ 151 \\ 138 \end{array}$	$\begin{aligned} & 20 \\ & 8.2 \\ & 3.8 \\ & 2.7 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 102 \\ & 85 \\ & 72 \\ & 61 \\ & 51 \end{aligned}$	$\begin{aligned} & \hline 0.02 \\ & 0.04 \\ & 0.07 \\ & 0.10 \\ & 0.14 \end{aligned}$	$\begin{aligned} & 48 \\ & 58 \\ & 65 \\ & 64 \\ & 62 \end{aligned}$	$\begin{aligned} & \hline 0.33 \\ & 0.33 \\ & 0.21 \\ & 0.22 \\ & 0.17 \end{aligned}$	$\begin{aligned} & -111 \\ & -142 \\ & -158 \\ & -158 \\ & -165 \end{aligned}$
8.0	5.0	$\begin{gathered} 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \end{gathered}$	$\begin{aligned} & 0.80 \\ & 0.72 \\ & 0.70 \\ & 0.66 \\ & 0.61 \end{aligned}$	$\begin{aligned} & -87 \\ & -141 \\ & -177 \\ & 166 \\ & 149 \end{aligned}$	$\begin{gathered} 11.1 \\ 5.9 \\ 3.1 \\ 2.1 \\ 1.6 \end{gathered}$	$\begin{gathered} 130 \\ 97 \\ 75 \\ 60 \\ 47 \end{gathered}$	$\begin{aligned} & \hline 0.06 \\ & 0.08 \\ & 0.09 \\ & 0.10 \\ & 0.12 \end{aligned}$	$\begin{aligned} & 47 \\ & 30 \\ & 28 \\ & 32 \\ & 39 \end{aligned}$	$\begin{aligned} & \hline 0.71 \\ & 0.44 \\ & 0.33 \\ & 0.35 \\ & 0.35 \end{aligned}$	$\begin{aligned} & -42 \\ & -60 \\ & -68 \\ & -80 \\ & -85 \end{aligned}$
	10	$\begin{gathered} 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \end{gathered}$	$\begin{aligned} & 0.72 \\ & 0.68 \\ & 0.66 \\ & 0.64 \\ & 0.60 \end{aligned}$	$\begin{array}{r} -113 \\ -159 \\ 175 \\ 160 \\ 144 \end{array}$	$\begin{gathered} 15.6 \\ 7.2 \\ 3.7 \\ 2.5 \\ 2.0 \end{gathered}$	$\begin{gathered} \hline 119 \\ 92 \\ 74 \\ 61 \\ 49 \end{gathered}$	$\begin{aligned} & 0.05 \\ & 0.06 \\ & 0.08 \\ & 0.09 \\ & 0.13 \end{aligned}$	$\begin{aligned} & \hline 42 \\ & 34 \\ & 41 \\ & 47 \\ & 50 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.31 \\ & 0.21 \\ & 0.23 \\ & 0.21 \end{aligned}$	$\begin{aligned} & -61 \\ & -82 \\ & -92 \\ & -101 \\ & -103 \end{aligned}$
	50	$\begin{gathered} \hline 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \end{gathered}$	$\begin{aligned} & \hline 0.66 \\ & 0.65 \\ & 0.64 \\ & 0.61 \\ & 0.58 \end{aligned}$	$\begin{array}{r} -156 \\ -179 \\ 164 \\ 153 \\ 137 \end{array}$	$\begin{gathered} \hline 20.9 \\ 8.6 \\ 4.3 \\ 2.9 \\ 2.3 \end{gathered}$	$\begin{aligned} & \hline 103 \\ & 85 \\ & 72 \\ & 61 \\ & 51 \end{aligned}$	$\begin{aligned} & \hline 0.02 \\ & 0.04 \\ & 0.07 \\ & 0.10 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 48 \\ & 58 \\ & 65 \\ & 65 \\ & 64 \end{aligned}$	$\begin{aligned} & \hline 0.31 \\ & 0.19 \\ & 0.16 \\ & 0.17 \\ & 0.14 \end{aligned}$	$\begin{aligned} & -101 \\ & -128 \\ & -144 \\ & -142 \\ & -145 \end{aligned}$

Table 2. MRF5711LT1 Common Emitter S-Parameters

TYPICAL CHARACTERISTICS
 MRF571

Figure 22. C_{cb}, Collector-Base Capacitance versus Voltage

Figure 24. Gain at Noise Figure and Noise Figure versus Frequency

Figure 23. C_{ib}, Input Capacitance versus Emitter Base Voltage

Figure 25. Gain at Noise Figure and Noise Figure versus Collector Current

Figure 26. f , Current Gain-Bandwidth Product versus Collector Current

Figure 28. 1.0 dB Compression Point and Third Order Intercept

Figure 27. GAmax, Maximum Available Gain versus Frequency

Figure 29. Gumax and $\left|S_{21}\right|^{2}$ versus Frequency

Figure 30. Input/Output Reflection Coefficients versus Frequency (GHz) $\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I} \mathrm{C}=5.0 \mathrm{~mA}$

Figure 31. Forward/Reverse Transmission Coefficients versus Frequency (GHz) $\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{IC}=5.0 \mathrm{~mA}$

$\begin{gathered} \mathrm{V}_{\mathrm{CE}} \\ \text { (Volts) } \end{gathered}$	$\underset{(\mathrm{mA})}{\mathrm{IC}_{2}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}			
			$\left\|S_{11}\right\|$	$\angle \phi$	\|S21		$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
6.0	5	$\begin{gathered} 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \end{gathered}$	$\begin{aligned} & 0.74 \\ & 0.62 \\ & 0.61 \\ & 0.65 \\ & 0.70 \end{aligned}$	$\begin{array}{r} -86 \\ -143 \\ 178 \\ 158 \\ 140 \end{array}$	$\begin{aligned} & 10.5 \\ & 5.5 \\ & 3.0 \\ & 2.0 \\ & 1.6 \end{aligned}$	$\begin{gathered} 129 \\ 97 \\ 78 \\ 62 \\ 51 \end{gathered}$	$\begin{aligned} & 0.06 \\ & 0.08 \\ & 0.09 \\ & 0.11 \\ & 0.14 \end{aligned}$	$\begin{aligned} & 48 \\ & 33 \\ & 37 \\ & 44 \\ & 51 \end{aligned}$	$\begin{aligned} & 0.69 \\ & 0.41 \\ & 0.28 \\ & 0.26 \\ & 0.27 \end{aligned}$	$\begin{aligned} & -42 \\ & -59 \\ & -69 \\ & -88 \\ & -99 \end{aligned}$		
	10	$\begin{gathered} 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \end{gathered}$	$\begin{aligned} & 0.64 \\ & 0.58 \\ & 0.59 \\ & 0.63 \\ & 0.67 \end{aligned}$	$\begin{array}{r} -111 \\ -160 \\ 168 \\ 151 \\ 134 \end{array}$	$\begin{aligned} & 15 \\ & 6.9 \\ & 3.7 \\ & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 118 \\ & 93 \\ & 77 \\ & 64 \\ & 53 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.06 \\ & 0.09 \\ & 0.12 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 44 \\ & 42 \\ & 52 \\ & 56 \\ & 57 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.27 \\ & 0.16 \\ & 0.16 \\ & 0.16 \end{aligned}$	$\begin{aligned} & -59 \\ & -77 \\ & -91 \\ & -113 \\ & -118 \end{aligned}$		
	50	$\begin{gathered} 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \end{gathered}$	$\begin{aligned} & 0.56 \\ & 0.57 \\ & 0.60 \\ & 0.62 \\ & 0.66 \end{aligned}$	$\begin{array}{r} -160 \\ 176 \\ 156 \\ 152 \\ 127 \end{array}$	$\begin{gathered} 20.4 \\ 8.4 \\ 4.4 \\ 2.9 \\ 2.4 \end{gathered}$	$\begin{aligned} & 102 \\ & 86 \\ & 75 \\ & 64 \\ & 53 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.05 \\ & 0.09 \\ & 0.13 \\ & 0.18 \end{aligned}$	$\begin{aligned} & 57 \\ & 67 \\ & 70 \\ & 68 \\ & 62 \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.14 \\ & 0.11 \\ & 0.13 \\ & 0.11 \end{aligned}$	$\begin{aligned} & -98 \\ & -130 \\ & -164 \\ & -175 \\ & -178 \end{aligned}$		
8.0	5	$\begin{gathered} 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \end{gathered}$	$\begin{aligned} & 0.75 \\ & 0.62 \\ & 0.60 \\ & 0.64 \\ & 0.69 \end{aligned}$	$\begin{array}{r} \hline-83 \\ -140 \\ -179 \\ 159 \\ 141 \end{array}$	$\begin{gathered} 10.7 \\ 5.1 \\ 3.7 \\ 2.1 \\ 1.7 \end{gathered}$	$\begin{gathered} 129 \\ 98 \\ 78 \\ 62 \\ 52 \end{gathered}$	$\begin{aligned} & 0.06 \\ & 0.08 \\ & 0.09 \\ & 0.10 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 49 \\ & 34 \\ & 38 \\ & 45 \\ & 52 \end{aligned}$	$\begin{aligned} & 0.71 \\ & 0.43 \\ & 0.31 \\ & 0.29 \\ & 0.29 \end{aligned}$	$\begin{aligned} & \hline-39 \\ & -54 \\ & -62 \\ & -80 \\ & -91 \end{aligned}$		
	10	$\begin{gathered} 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \end{gathered}$	$\begin{aligned} & 0.64 \\ & 0.52 \\ & 0.52 \\ & 0.52 \\ & 0.57 \end{aligned}$	$\begin{array}{r} \hline-99 \\ -152 \\ 170 \\ 150 \\ 133 \end{array}$	$\begin{aligned} & 15.1 \\ & 7.1 \\ & 3.7 \\ & 2.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 120 \\ 94 \\ 76 \\ 62 \\ 51 \end{gathered}$	$\begin{aligned} & 0.05 \\ & 0.07 \\ & 0.10 \\ & 0.13 \\ & 0.18 \end{aligned}$	$\begin{aligned} & 46 \\ & 45 \\ & 54 \\ & 56 \\ & 55 \end{aligned}$	$\begin{aligned} & 0.54 \\ & 0.32 \\ & 0.15 \\ & 0.16 \\ & 0.16 \end{aligned}$	$\begin{aligned} & \hline-60 \\ & -75 \\ & -82 \\ & -108 \\ & -107 \end{aligned}$		
	50	$\begin{gathered} 200 \\ 500 \\ 1000 \\ 1500 \\ 2000 \end{gathered}$	$\begin{aligned} & 0.52 \\ & 0.52 \\ & 0.56 \\ & 0.54 \\ & 0.59 \end{aligned}$	$\begin{array}{r} -153 \\ 178 \\ 157 \\ 139 \\ 126 \\ \hline \end{array}$	$\begin{gathered} 19.6 \\ 8.1 \\ 4.1 \\ 2.8 \\ 2.2 \end{gathered}$	$\begin{gathered} 102 \\ 86 \\ 73 \\ 62 \\ 52 \end{gathered}$	$\begin{aligned} & 0.03 \\ & 0.05 \\ & 0.10 \\ & 0.13 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 56 \\ & 67 \\ & 70 \\ & 68 \\ & 63 \end{aligned}$	$\begin{aligned} & \hline 0.28 \\ & 0.16 \\ & 0.06 \\ & 0.11 \\ & 0.10 \\ & \hline \end{aligned}$	$\begin{aligned} & -92 \\ & -98 \\ & -130 \\ & -146 \\ & -137 \end{aligned}$		

Table 3. MRF571 Common Emitter S-Parameters

$\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I} \mathrm{C}=5.0 \mathrm{~mA}$
$\mathrm{f}=1.0 \mathrm{GHz}$

$\mathrm{f}(\mathrm{GHz})$	NF OPT (dB)	Rn (Ω)	NF50 $\Omega(\mathrm{dB})$	ГMS NF OPT
1.0	1.5	7.5	2.2	$0.48 \angle 134^{\circ}$

Figure 32. MRF571 Constant Gain and Noise Figure Contours

Figure 33. MRF571 Test Circuit Schematic

The RF Line NPN Silicon High-Frequency Transistor

Designed primarily for use in high-gain, low-noise small-signal amplifiers for operation up to 2.5 GHz . Also usable in applications requiring fast switching times.

- High Current-Gain — Bandwidth Product
- Low Noise Figure @ f=1.0 GHz -
$\mathrm{NF}($ matched $)=1.9 \mathrm{~dB}($ Typ $)$
- High Power Gain -
$G_{p e}($ matched $)=12.0 \mathrm{~dB}(\mathrm{Typ}) @ \mathrm{f}=1.0 \mathrm{GHz}$
- Surface Mounted SOT-23 Offers Improved RF Performance,

Lower Package Parasitics and High Gain

- Available in tape and reel packaging options:

T1 suffix $=3,000$ units per reel
T3 suffix $=10,000$ units per reel

MMBR901LT1, T3
$\mathrm{IC}=30 \mathrm{~mA}$ SURFACE MOUNTED HIGH-FREQUENCY TRANSISTOR NPN SILICON

CASE 318-08, STYLE 6 SOT-23

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	15	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	25	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	2.0	Vdc
Collector Current - Continuous	I_{C}	30	mAdc
Power Dissipation @ $\mathrm{T}^{\circ} \mathrm{C}=75^{\circ} \mathrm{C}(1)$ Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}(\max)}$	0.300	Watt $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{J}(\max)}$	150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Storage Temperature	$\mathrm{T}_{\text {stg }}$	150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DEVICE MARKING

MMBR901LT1, T3 = 7A
NOTE:

1. Case temperature measured on collector lead immediately adjacent to body of package.

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I} \mathrm{C}=1.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\left.\mathrm{V}_{(} \mathrm{BR}\right) \mathrm{CEO}$	15	-	-	Vdc
Collector-Base Breakdown Voltage $(\mathrm{I} \mathrm{C}=0.1 \mathrm{mAdc}, \mathrm{I} \mathrm{E}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	25	-	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=0.1 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	2.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	50	nAdc

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=5.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	hFE	50	-	200	-

FUNCTIONAL TESTS

Minimum Noise Figure $\left(V_{C E}=6.0 \mathrm{Vdc}, \mathrm{I}=5.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right)$ $\left(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{I}=5.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right)$	$\mathrm{NF} \min$	-	1.9	-

SMALL-SIGNAL CHARACTERISTICS

Output Capacitance $\left(V_{C B}=10 \mathrm{Vdc}, \mathrm{IC}=5.0 \mathrm{mAdc}, \mathrm{f}=1.0 \mathrm{GHz}\right)$	$\mathrm{C}_{\mathrm{obo}}$	-	-	1.0	pF
Common-Emitter Amplifier Gain $\left(\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{mAdc}, \mathrm{f}=1.0 \mathrm{GHz}\right)$	G_{pe}	-	12	-	dB

The RF Line NPN Silicon High-Frequency Transistor

Designed for low noise, wide dynamic range front-end amplifiers and low-noise VCO's. Available in a surface-mountable plastic package. This Motorola small-signal plastic transistor offers superior quality and performance at low cost.

- High Gain-Bandwidth Product $\mathrm{f} \mathrm{T}=7.0 \mathrm{GHz}$ (Typ) @ 30 mA
- Low Noise Figure
$\mathrm{NF}=1.7 \mathrm{~dB}$ (Typ) @ 500 MHz
- High Gain $G_{N F}=17 \mathrm{~dB}$ (Typ) @ $10 \mathrm{~mA} / 500 \mathrm{MHz}$
- State-of-the-Art Technology Fine Line Geometry Ion-Implanted Arsenic Emitters Gold Top Metallization and Wires Silicon Nitride Passivation
- Available in tape and reel packaging options:

MMBR911LT1

CASE 318-08, STYLE 6 SOT-23
LOW PROFILE

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	12	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	20	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	2.0	Vdc
Collector Current - Continuous	IC	60	mA
Power Dissipation @ $\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C}(1)$ Derate linearly above $\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}(\max)}$	333	mW
Storage Temperature		4.44	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	225	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DEVICE MARKING

MMBR911LT1 $=7 \mathrm{P}$
NOTE:

1. Case temperature measured on collector lead immediately adjacent to body of package.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(I_{C}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	12	-	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{IC}_{\mathrm{C}}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	20	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=0.1 \mathrm{~mA}, \mathrm{IC}_{\mathrm{C}}=0\right)$	$\mathrm{V}(\mathrm{BR}) \mathrm{EBO}$	2.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=15\right.$ Vdc, $\left.\mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	50	nAdc

ON CHARACTERISTICS

DC Current Gain $\left(l_{C}=30 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}\right)$	hFE	30	-	200

DYNAMIC CHARACTERISTICS

Collector-Base Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{cb}	-	-	1.0	pF
Current Gain-Bandwidth Product $\left(\mathrm{V}_{\mathrm{CE}}=10\right.$ Vdc, $\mathrm{I}_{\mathrm{C}}=30$ mAdc, $\left.\mathrm{f}=1.0 \mathrm{GHz}\right)$	f T	-	6.0	-	GHz

FUNCTIONAL TESTS

Gain @ Noise Figure $\left(\mathrm{IC}=10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}\right)$	$\mathrm{f}=0.5 \mathrm{GHz}$ $\mathrm{f}=1.0 \mathrm{GHz}$	GNF	-	17	-	dB
Noise Figure		-	11	-		
$\left(\mathrm{IC}=10 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}\right)$	$\mathrm{f}=0.5 \mathrm{GHz}$	NF				

Figure 1. Current Gain-Bandwidth versus Collector Current @ 1.0 GHz

$V_{B E}$, BASE-EMITTER VOLTAGE (Vdc)
Figure 2. Input Capacitance versus
Base-Emitter Voltage

Figure 4. Gain at Noise Figure versus Collector Current

Figure 3. Output Capacitances versus Collector-Base Voltage

Figure 5. Noise Figure versus Collector Current

Figure 6. Gain at Noise Figure and Noise Figure versus Frequency

Figure 7. Maximum Unilateral Gain and Insertion Gain versus Frequency

Figure 8. Input and Output Reflection Coefficients versus Frequency

VCE = 10 V , $\mathrm{IC}=30 \mathrm{~mA}$

Figure 9. Forward and Reverse Transmission Coefficients versus Frequency
$V_{C E}=10 \mathrm{~V}, \mathrm{IC}=30 \mathrm{~mA}$

$V_{\text {CE }}$ (Volts)	$\begin{gathered} \mathrm{I} \mathrm{C} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathbf{f} \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}	
			$\left\|S_{11}\right\|$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	$\left\|S_{22}\right\|$	$\angle \phi$
10	2.0	200	0.82	-45	4.14	145	0.06	66	0.88	-16
		500	0.60	-96	3.23	112	0.09	49	0.71	-27
		1000	0.47	-149	2.16	85	0.11	49	0.62	-34
		1500	0.46	-179	1.59	71	0.13	55	0.58	-43
		2000	0.47	162	1.35	57	0.16	62	0.56	-51
	5.0	200	0.66	-63	8.63	134	0.05	64	0.75	-25
		500	0.43	-117	5.29	100	0.07	58	0.55	-31
		1000	0.37	-163	3.05	82	0.11	63	0.48	-36
		1500	0.38	176	2.17	70	0.15	65	0.45	-44
		2000	0.40	160	1.81	57	0.19	65	0.43	-51
	10	200	0.49	-83	12.70	124	0.04	65	0.62	-30
		500	0.33	-134	6.42	94	0.07	66	0.44	-32
		1000	0.32	-171	3.53	80	0.12	70	0.41	-36
		1500	0.35	173	2.46	69	0.16	69	0.38	-45
		2000	0.37	159	2.04	58	0.20	66	0.35	-52
	20	200	0.36	-103	15.25	114	0.03	69	0.52	-32
		500	0.28	-149	6.95	90	0.06	72	0.39	-30
		1000	0.29	-176	3.73	78	0.12	73	0.37	-35
		1500	0.33	172	2.60	68	0.17	71	0.34	-43
		2000	0.36	158	2.14	58	0.21	67	0.32	-52
	30	200	0.32	-114	15.64	109	0.03	71	0.48	-29
		500	0.27	-156	6.92	88	0.06	73	0.38	-27
		1000	0.29	-178	3.71	78	0.12	74	0.37	-33
		1500	0.34	170	2.58	68	0.16	72	0.34	-44
		2000	0.37	156	2.13	57	0.21	68	0.32	-51

Table 1. Common Emitter S-Parameters

The RF Line
 NPN Silicon
 Low Noise, High-Frequency Transistors

Designed for use in high gain, low noise small-signal amplifiers. This series features excellent broadband linearity and is offered in a variety of packages.

- Fully Implanted Base and Emitter Structure
- 9 Finger, 1.25 Micron Geometry with Gold Top Metal
- Gold Sintered Back Metal
- Available in tape and reel packaging options:

T1 suffix $=3,000$ units per reel
T3 suffix $=10,000$ units per reel

MMBR941
MRF947
MRF9411 SERIES
${ }^{\prime} \mathrm{C}=50 \mathrm{~mA}$
LOW NOISE
HIGH-FREQUENCY TRANSISTORS

CASE 318-08, STYLE 6 SOT-23
LOW PROFILE MMBR941LT1, T3, MMBR941BLT1

CASE 419-02, STYLE 3 MRF947AT1, MRF947BT1, MRF947T1, T3

CASE 318A-05, STYLE 1 SOT-143
LOW PROFILE
MRF9411LT1

MAXIMUM RATINGS

Rating	Symbol	MMBR941LT1, T3	MRF9411LT1	MRF947 Series	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	10	10	10	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	20	20	20	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	1.5	1.5	1.5	Vdc
Power Dissipation $(1) \mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$ Derate linearly above $\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C} @$	$\mathrm{P}_{\text {Dmax }}$	0.25	0.25	0.188	
Collector Current - Continuous (2)	3.33	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$			
Maximum Junction Temperature	I C	50	50	50	mA
Storage Temperature	$\mathrm{T}_{\mathrm{Jmax}}$	150	150	150	${ }^{\circ} \mathrm{C}$
Thermal Junction to Case	$\mathrm{T}_{\text {stg }}$	-55 to +150	-55 to +150	-55 to +150	${ }^{\circ}{ }^{\circ} \mathrm{C}$

DEVICE MARKING

MMBR941LT1 $=7 \mathrm{Y}$	MMBR941BLT1 $=7 \mathrm{~N}$	MRF947T1, T3 $=\mathrm{A}$	MRF947BT1 $=\mathrm{H}$
MRF9411LT1 $=10$	MRF947AT1 $=\mathrm{G}$		

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS (3)

Collector-Emitter Breakdown Voltage $\left(I_{C}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	All	$V_{\text {(BR)CEO }}$	10	12	-	Vdc
Collector-Base Breakdown Voltage $(\mathrm{I} \mathrm{C}=0.1 \mathrm{~mA}, \mathrm{I} \mathrm{E}=0)$	All	$\mathrm{V}_{\text {(RR) }} \mathrm{CBO}$	20	23	-	Vdc
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\right)$	All	IEBO	-	-	0.1	$\mu \mathrm{Adc}$
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\right)$	All	ICBO	-	-	0.1	$\mu \mathrm{Adc}$

ON CHARACTERISTICS (3)

DC Current Gain $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}\right) \quad(\mathrm{MMBR} 941 \mathrm{~L}$ (MMBR941B	(MMBR941LT1, MRF9411LT1) (MMBR941BLT1)	$\mathrm{h}_{\text {FE }}$	$\begin{gathered} 50 \\ 100 \end{gathered}$		$\begin{aligned} & 200 \\ & 200 \end{aligned}$	-
DC Current Gain ($\mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{~V}$, $\mathrm{IC}=500 \mu \mathrm{~A}$)	MRF947T1, MRF947BT1	$\mathrm{h}_{\mathrm{FE}}^{1}$	50	-	-	-
DC Current Gain $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}\right)$	MRF947T1, T3 MRF947AT1 MRF947BT1	$\begin{aligned} & \mathrm{h}_{\mathrm{hFE}_{2}} \\ & \mathrm{~h}_{\mathrm{FE}}^{3} \end{aligned}$	$\begin{gathered} 50 \\ 75 \\ 100 \end{gathered}$	-	$\begin{aligned} & \overline{-} \\ & 150 \\ & 200 \end{aligned}$	-

DYNAMIC CHARACTERISTICS

$\begin{aligned} & \text { Collector-Base Capacitance } \\ & \qquad\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right) \end{aligned}$	All	$\mathrm{C}_{\text {cb }}$	-	0.35	-	pF
Current Gain - Bandwidth Product $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I} \mathrm{C}=15 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right)$	All	${ }_{\mathrm{f}}$	-	8.0	-	GHz

NOTE:

1. To calculate the junction temperature use $T_{J}=P_{D} \times R_{\theta J C}+T_{C A S E}$. Case temperature measured on collector lead immediately adjacent to body of package.
2. IC - Continuous (MTBF ≈ 10 years).
3. Pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$ pulsed.

PERFORMANCE CHARACTERISTICS

Conditions	Symbol	MRF9411LT1			MMBR941LT1, T3			MRF947 Series			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Insertion Gain } \\ & \left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I} \mathrm{C}=15 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right) \\ & (\mathrm{V} \mathrm{CE}=6.0 \mathrm{~V}, \mathrm{I} \mathrm{C}=15 \mathrm{~mA}, \mathrm{f}=2.0 \mathrm{GHz}) \end{aligned}$	$\left\|S_{21}\right\|^{2}$	-	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	-	-	$\begin{aligned} & 14 \\ & 8.0 \end{aligned}$		-	$\begin{gathered} 14 \\ 10.8 \end{gathered}$	-	dB
$\begin{array}{\|l\|} \hline \text { Maximum Unilateral Gain (1) } \\ \left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I} \mathrm{C}=15 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right) \\ (\mathrm{V} \mathrm{CE}=6.0 \mathrm{~V}, \mathrm{I}=15 \mathrm{~mA}, \mathrm{f}=2.0 \mathrm{GHz}) \end{array}$	Gu max	-	$\begin{aligned} & 18 \\ & 12 \end{aligned}$	-	-	$\begin{aligned} & 16 \\ & 10 \end{aligned}$	-	-	$\begin{aligned} & 14.8 \\ & 11.6 \end{aligned}$	-	dB
$\begin{array}{\|l} \hline \text { Noise Figure-Minimum (Figure 9) } \\ \left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right) \\ \left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}, \mathrm{f}=2.0 \mathrm{GHz}\right) \end{array}$	$\mathrm{NF}_{\text {MIN }}$	-	$\begin{aligned} & 1.5 \\ & 2.1 \end{aligned}$	-	-	$\begin{aligned} & 1.5 \\ & 2.1 \end{aligned}$	-	-	$\begin{aligned} & 1.5 \\ & 2.1 \end{aligned}$		dB
Associated Gain at Minimum NF (Figure 9) $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right)$ $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I} \mathrm{C}=5.0 \mathrm{~mA}, \mathrm{f}=2.0 \mathrm{GHz}\right)$	$G_{N F}$	-	$\begin{aligned} & 15 \\ & 9.5 \end{aligned}$	-	-	$\begin{aligned} & 14 \\ & 8.5 \end{aligned}$		-	$\begin{aligned} & 14 \\ & 10 \end{aligned}$	-	dB
$\begin{aligned} & \text { Noise Figure - } 50 \text { ohm Source } \\ & \quad\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right) \end{aligned}$	$\mathrm{NF}_{50} \Omega$	-	1.9	2.8	-	1.9	2.8	-	1.9	2.8	dB

NOTE:

$$
\frac{\left|S_{21}\right|^{2}}{\left.{ }_{\left.1\right|^{2}}\right)\left(1-\left|S_{22}\right|^{2}\right)}
$$

TYPICAL CHARACTERISTICS
MMBR941LT1, T3; MMBR941BLT1; MRF9411LT1; MRF9411BLT1

Figure 1. Collector-Base Capacitance versus Voltage

Figure 3. Gain Bandwidth Product versus Collector Current

Figure 2. DC Current Gain versus Collector Current

Figure 4. Insertion Gain versus Collector Current

Figure 5. MMBR941LT1, Т3

Figure 6. MRF9411LT1

Figure 7. Noise Figure and Associated Gain versus Frequency

Figure 8. Minimum Noise Figure versus Collector Current

Figure 9. Functional Circuit Schematic (all devices)

TYPICAL CHARACTERISTICS

MRF947 SERIES

Figure 10. Capacitance versus Voltage

Figure 12. Gain-Bandwidth Product versus Collector Current

Figure 11. DC Current Gain versus Collector Current

Figure 13. Associated Gain and Minimum Noise Figure versus Collector Current

Figure 14. Forward Insertion Gain and Maximum Stable/Available Power Gain versus Frequency

$\begin{gathered} \mathrm{V}_{\mathrm{CE}} \\ \text { (Volts) } \end{gathered}$	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}	
			Mag	$\angle \phi$						
1.0	0.5	100	0.97	-11	1.78	170	0.03	83	0.99	-4.7
		200	0.96	-22	1.74	161	0.06	76	0.99	-9.1
		500	0.90	-53	1.60	133	0.13	56	0.93	-21
		900	0.75	-89	1.37	105	0.18	37	0.83	-33
		1000	0.72	-98	1.32	100	0.18	33	0.82	-36
		1500	0.63	-132	1.07	74	0.19	20	0.75	-47
		2000	0.57	-163	0.89	55	0.16	15	0.72	-57
		3000	0.55	144	0.67	30	0.15	40	0.71	-76
	1.0	100	0.95	-13	3.37	169	0.03	81	0.99	-6.2
		200	0.93	-27	3.27	158	0.06	73	0.98	-12
		500	0.81	-62	2.85	128	0.12	52	0.86	-26
		900	0.63	-101	2.21	101	0.15	37	0.73	-38
		1000	0.60	-110	2.08	96	0.15	34	0.71	-40
		1500	0.51	-144	1.59	73	0.16	27	0.64	-49
		2000	0.46	-173	1.28	56	0.16	29	0.61	-58
		3000	0.46	138	0.95	30	0.19	44	0.60	-75
6.0	5.0	100	0.82	-25	14.6	159	0.02	77	0.94	-13
		200	0.75	-47	12.6	142	0.04	68	0.85	-22
		400	0.55	-79	9.2	120	0.05	61	0.69	-31
		600	0.42	-98	6.9	106	0.07	60	0.60	-32
		800	0.33	-114	5.3	97	0.08	61	0.56	-33
		1000	0.28	-129	4.5	90	0.09	62	0.52	-33
		1500	0.25	-155	3.1	77	0.13	67	0.51	-37
		2000	0.16	176	2.4	66	0.16	68	0.51	-36
		2500	0.21	151	2.0	57	0.20	69	0.48	-40
		3000	0.18	122	1.7	50	0.23	68	0.48	-44
		3500	0.30	108	1.5	42	0.27	66	0.45	-46
		4000	0.29	91	1.4	37	0.32	64	0.42	-53
	10	100	0.67	-37	23.5	149	0.02	74	0.88	-18
		200	0.54	-64	18.1	129	0.03	68	0.73	-28
		400	0.37	-96	11.3	108	0.05	67	0.56	-31
		600	0.26	-114	8.0	98	0.06	67	0.50	-30
		800	0.21	-130	6.0	91	0.08	70	0.47	-30
		1000	0.18	-147	5.1	85	0.09	70	0.45	-30
		1500	0.18	-167	3.4	74	0.13	72	0.46	-34
		2000	0.11	159	2.6	64	0.17	71	0.46	-34
		2500	0.17	140	2.2	56	0.21	69	0.44	-38
		3000	0.15	107	1.8	59	0.25	67	0.45	-41
		3500	0.27	100	1.7	42	0.28	65	0.42	-42
		4000	0.26	85	1.5	37	0.33	61	0.39	-49
	15	100	0.56	-46	28.6	143	0.02	73	0.83	-22
		200	0.43	-75	20.2	122	0.03	67	0.65	-30
		400	0.29	-107	11.8	104	0.04	70	0.50	-30
		600	0.22	-125	8.2	95	0.06	74	0.46	-28
		800	0.18	-141	6.2	88	0.08	74	0.45	-27
		1000	0.16	-158	5.1	83	0.09	74	0.43	-28
		1500	0.17	-174	3.4	72	0.13	73	0.44	-32
		2000	0.11	150	2.6	63	0.17	72	0.45	-33
		2500	0.17	138	2.2	55	0.21	70	0.43	-37
		3000	0.15	102	1.9	49	0.25	67	0.44	-39
		3500	0.28	98	1.7	42	0.29	65	0.40	-41
		4000	0.25	82	1.5	37	0.32	61	0.38	-47

Table 1. MMBR941LT1, T3 Common Emitter S-Parameters

$\begin{aligned} & \mathrm{V}_{\mathrm{CE}} \\ & \text { (Volts) } \end{aligned}$	$\begin{gathered} \mathrm{IC} \\ (\mathrm{~mA}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}	
			Mag	$\angle \phi$						
6.0	20	100	0.49	-52	31.5	139	0.01	70	0.79	-23
		200	0.36	-84	21.1	118	0.02	69	0.60	-29
		400	0.25	-115	12.1	101	0.04	73	0.48	-29
		600	0.20	-134	8.3	93	0.06	74	0.45	-26
		800	0.16	-150	6.2	87	0.07	75	0.44	-26
		1000	0.15	-166	5.1	82	0.09	75	0.42	-26
		1500	0.16	-176	3.5	75	0.14	74	0.44	-31
		2000	0.12	144	2.6	63	0.17	73	0.45	-32
		2500	0.17	133	2.2	55	0.22	70	0.43	-36
		3000	0.16	101	1.9	49	0.25	68	0.44	-39
		3500	0.28	98	1.6	41	0.29	65	0.41	-40
		4000	0.26	82	1.5	36	0.33	61	0.39	-47
	30	100	0.41	-65	34.3	134	0.01	70	0.74	-25
		200	0.30	-99	21.6	113	0.02	70	0.56	-28
		400	0.23	-131	11.9	98	0.04	76	0.47	-25
		600	0.20	-147	8.1	91	0.06	76	0.45	-24
		800	0.18	-163	6.1	84	0.07	78	0.44	-23
		1000	0.17	-177	5.0	80	0.09	78	0.43	-24
		1500	0.18	174	3.4	70	0.13	76	0.45	-30
		2000	0.14	141	2.5	61	0.17	74	0.47	-31
		2500	0.20	131	2.1	54	0.21	71	0.45	-36
		3000	0.18	104	1.8	47	0.25	69	0.46	-39
		3500	0.31	100	1.6	40	0.29	65	0.42	-42
		4000	0.29	84	1.5	35	0.33	62	0.40	-48

Table 1. MMBR941LT1, T3 Common Emitter S-Parameters (continued)

$V_{C E}$ (Volts)	$\begin{gathered} \mathrm{IC} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}	
			Mag	$\angle \phi$						
1.0	0.5	100	0.97	-10	1.78	171	0.03	83	100	-4.7
		200	0.97	-20	1.75	163	0.05	77	100	-9.2
		500	0.93	-49	1.62	137	0.12	57	0.94	-21
		900	0.81	-84	1.43	110	0.18	36	0.86	-35
		1000	0.79	-92	1.38	104	0.19	32	0.84	-38
		1500	0.72	-125	1.12	78	0.20	14	0.77	-50
		2000	0.68	-152	0.92	57	0.20	1	0.74	-61
		3000	0.66	169	0.68	27	0.16	-11	0.73	-82
	1.0	100	0.95	-13	3.37	170	0.03	82	0.99	-6.2
		200	0.94	-25	3.30	161	0.05	74	0.98	-12
		500	0.88	-59	2.96	133	0.16	53	0.89	-27
		1000	0.70	-107	2.26	101	0.16	29	0.74	-44
		1500	0.64	-139	1.72	78	0.17	15	0.66	-55
		2000	0.61	-165	1.36	59	0.17	6.7	0.62	-65
		3000	0.61	160	0.97	32	0.14	3.0	0.61	-84

Table 2. MRF9411LT1 Common Emitter S-Parameters

$\mathrm{V}_{\text {CE }}$ (Volts)	$\begin{gathered} \text { IC } \\ (\mathrm{mA}) \end{gathered}$	$\begin{gathered} f \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}	
			Mag	$\angle \phi$						
6.0	5.0	100	0.73	-24	14	164	0.02	92	0.96	-11
		200	0.74	-47	12.9	150	0.03	65	0.90	-20
		400	0.66	-83	10.4	129	0.05	56	0.75	-32
		600	0.62	-108	8.4	115	0.06	45	0.65	-40
		800	0.56	-127	6.7	105	0.07	46	0.60	-43
		1000	0.54	-141	5.6	96	0.07	51	0.57	-46
		1500	0.46	-166	3.9	82	0.08	55	0.52	-50
		2000	0.43	172	2.9	70	0.09	56	0.50	-54
		2500	0.41	151	2.3	62	0.11	61	0.48	-60
		3000	0.44	128	1.9	55	0.14	62	0.49	-65
		3500	0.49	117	1.6	47	0.15	61	0.46	-74
		4000	0.57	101	1.4	42	0.16	62	0.47	-81
		5000	0.60	92	1.2	32	0.21	60	0.46	-105
		6000	0.58	88	1.0	20	0.25	61	0.51	-137
	10	100	0.64	-39	23.6	157	0.01	59	0.91	-16
		200	0.60	-71	20	139	0.02	70	0.80	-27
		400	0.54	-112	13.9	117	0.03	57	0.61	-39
		600	0.52	-135	10.3	104	0.04	50	0.51	-43
		800	0.49	-151	8.0	96	0.05	54	0.46	-44
		1000	0.47	-161	6.5	89	0.06	60	0.46	-46
		1500	0.41	177	4.4	77	0.08	62	0.44	-47
		2000	0.40	158	3.2	67	0.09	65	0.43	-52
		2500	0.39	139	2.6	60	0.11	68	0.41	-56
		3000	0.44	118	2.1	53	0.13	69	0.43	-62
		3500	0.49	110	1.8	47	0.15	67	0.39	-72
		4000	0.54	96	1.6	42	0.18	65	0.41	-78
		5000	0.63	88	1.3	32	0.23	61	0.40	-101
		6000	0.58	86	1.1	20	0.26	62	0.44	-136
	15	100	0.56	-51	29.5	152	0.01	78		-20
		200	0.53	-88	23.5	131	0.02	63	0.73	-31
		400	0.51	-128	15.1	111	0.03	63	0.54	-40
		600	0.49	-148	11.8	99	0.04	56	0.46	-42
		800	0.48	-161	8.3	92	0.04	59	0.42	-41
		1000	0.46	-170	6.7	86	0.05	59	0.41	-44
		1500	0.41	-171	4.4	75	0.07	70	0.42	-45
		2000	0.40	152	3.3	66	0.09	71	0.41	-50
		2500	0.39	135	2.6	59	0.11	71	0.41	-55
		3000	0.45	116	2.2	53	0.14	73	0.42	-61
		3500	0.50	108	1.9	46	0.17	70	0.39	-70
		4000	0.55	94	1.6	41	0.19	67	0.41	-76
		5000	0.61	87	1.3	32	0.22	62	0.34	-114
		6000	0.58	85	1.1	21	0.27	63	0.43	-135
	30	100	0.45	-82	36.3	142	0.01	62	0.79	-23
		200	0.48	-121	25.5	121	0.01	48	0.62	-31
		400	0.49	-152	14.6	103	0.02	58	0.47	-33
		600	0.50	-166	10.2	93	0.03	60	0.44	-34
		800	0.49	-175	7.7	87	0.04	65	0.42	-34
		1000	0.48	177	6.1	81	0.05	76	0.43	-37
		1500	0.45	162	4.1	71	0.07	75	0.45	-39
		2000	0.45	145	3.0	62	0.09	78	0.44	-46
		2500	0.44	130	2.4	56	0.11	79	0.44	-53
		3000	0.50	113	1.9	50	0.13	79	0.45	-58
		3500	0.55	105	1.6	43	0.15	75	0.44	-70
		4000	0.61	92	1.5	39	0.19	73	0.45	-76
		5000	0.65	84	1.2	30	0.24	68	0.43	-100
		6000	0.61	82	1.0	19	0.28	64	0.48	-135

Table 2. MRF9411LT1 Common Emitter S-Parameters (continued)

$\mathbf{V}_{\mathbf{C E}}$ $(\mathbf{V d c})$	$\mathbf{I} \mathbf{C}$ $(\mathbf{m A})$	\mathbf{f} $(\mathbf{M H z})$	$\mathbf{N F}_{\text {min }}$ $(\mathbf{d B})$	$\Gamma_{\mathbf{0}}$ (MAG, ANGLE)	$\mathbf{r}_{\mathbf{N}}$
6	5	1000	1.5	$0.33 \angle 77$	0.28
		1500	1.75	$0.26 \angle 141$	0.3

Table 3. MRF947 Series Typical Noise Parameters

$\begin{gathered} \mathrm{V}_{\mathrm{CE}} \\ \text { (Volts) } \end{gathered}$	$\underset{(\mathrm{mA})}{\mathrm{Ic}}$	$\stackrel{\mathrm{f}}{(\mathrm{MHz})}$	S_{11}		S_{21}		S_{12}		S_{22}	
			Mag	$\angle \phi$						
1.0	0.5	100	0.966	-11	1.776	170	0.031	83	0.998	-5
		200	0.956	-23	1.735	161	0.061	75	0.991	-9
		500	0.892	-55	1.587	132	0.135	55	0.923	-21
		900	0.749	-91	1.355	104	0.185	35	0.827	-34
		1000	0.720	-100	1.300	98	0.190	32	0.808	-36
		1500	0.637	-134	1.057	73	0.196	18	0.743	-47
		2000	0.587	-164	0.883	53	0.176	12	0.708	-58
		3000	0.572	149	0.672	27	0.149	33	0.680	-82
	1.0	100	0.941	-14	3.391	168	0.031	81	0.991	-6
		200	0.921	-28	3.285	158	0.060	73	0.974	-12
		500	0.806	-65	2.844	128	0.123	51	0.852	-27
		900	0.638	-104	2.196	101	0.158	35	0.717	-39
		1500	0.533	-146	1.580	72	0.168	25	0.619	-50
		2000	0.495	-174	1.281	55	0.164	25	0.581	-60
		3000	0.494	144	0.956	29	0.187	39	0.554	-81
2.0	0.5	100	0.979	-9	1.827	173	0.030	85	0.996	-4
		200	0.960	-18	1.909	165	0.060	80	0.991	-9
		500	0.920	-43	1.652	144	0.132	65	0.940	-19
		1000	0.749	-77	1.451	116	0.196	47	0.842	-32
		1500	0.674	-105	1.190	94	0.214	36	0.774	-39
		2000	0.548	-128	1.077	79	0.189	33	0.692	-43
		3000	0.480	-178	0.808	60	0.153	55	0.625	-52
	2.0	100	0.907	-16	6.640	167	0.029	81	0.977	-9
		200	0.846	-32	6.419	156	0.054	73	0.944	-17
		500	0.711	-68	4.874	128	0.104	57	0.770	-32
		1000	0.495	-106	3.178	103	0.138	50	0.603	-41
		1500	0.405	-131	2.358	86	0.157	52	0.542	-45
		2000	0.314	-155	1.910	75	0.173	58	0.490	-44
		3000	0.296	158	1.394	59	0.228	68	0.454	-47
	5.0	100	0.780	-28	14.100	159	0.027	78	0.932	-15
		200	0.676	-51	12.219	142	0.046	67	0.831	-27
		500	0.470	-95	7.373	113	0.078	59	0.568	-40
		1000	0.327	-132	4.148	92	0.114	62	0.436	-43
		1500	0.271	-153	2.921	81	0.151	66	0.413	-44
		2000	0.218	-177	2.295	72	0.188	69	0.394	-41
		3000	0.237	138	1.661	58	0.265	70	0.372	-43

Table 4. MRF947 Series Common Emitter S-Parameters

V_{CE}(Volts)	$\underset{(\mathrm{mA})}{\mathrm{IC}_{2}}$	$\begin{gathered} \mathbf{f} \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}	
			Mag	$\angle \phi$						
2.0	10	100	0.608	-43	21.812	149	0.022	72	0.859	-23
		200	0.488	-73	16.618	129	0.038	65	0.689	-35
		500	0.330	-119	8.427	103	0.065	66	0.438	-41
		1000	0.262	-152	4.484	87	0.109	71	0.354	-40
		1500	0.227	-169	3.114	77	0.155	73	0.358	-42
		2000	0.197	166	2.423	69	0.198	73	0.355	-38
		3000	0.233	128	1.755	57	0.281	71	0.338	-40
	30	100	0.353	-100	25.543	131	0.018	70	0.653	-29
		200	0.353	-135	15.823	112	0.026	68	0.484	-34
		500	0.346	-163	6.979	93	0.054	76	0.367	-29
		1000	0.337	177	3.637	80	0.103	79	0.351	-30
		1500	0.324	166	2.518	71	0.150	79	0.372	-36
		2000	0.319	148	1.975	63	0.197	78	0.378	-35
		3000	0.374	122	1.441	51	0.290	75	0.363	-42
6.0	0.5	100	0.978	-9	1.791	173	0.024	86	0.995	-4
		200	0.964	-17	1.889	166	0.049	80	0.994	-7
		500	0.932	-40	1.643	146	0.110	67	0.953	-16
		1000	0.765	-73	1.473	121	0.165	50	0.869	-28
		1500	0.688	-100	1.206	98	0.184	39	0.812	-35
		2000	0.554	-123	1.099	84	0.162	38	0.735	-38
		3000	0.463	-174	0.823	64	0.136	63	0.671	-46
	2.0	100	0.918	-15	6.614	168	0.023	84	0.983	-7
		200	0.862	-29	6.456	157	0.045	75	0.956	-14
		500	0.729	-62	5.010	131	0.089	60	0.809	-27
		1000	0.504	-99	3.344	106	0.121	53	0.654	-35
		1500	0.397	-123	2.485	90	0.137	55	0.599	-38
		2000	0.295	-146	2.013	78	0.152	62	0.553	-37
		3000	0.257	162	1.452	62	0.202	73	0.523	-40
	5.0	100	0.806	-24	14.025	161	0.022	78	0.947	-13
		200	0.704	-45	12.425	144	0.040	70	0.861	-23
		500	0.487	-85	7.751	116	0.068	62	0.627	-33
		1000	0.316	-120	4.399	95	0.101	65	0.505	-35
		1500	0.245	-141	3.112	83	0.134	69	0.488	-36
		2000	0.177	-166	2.447	74	0.167	72	0.473	-33
		3000	0.185	140	1.743	61	0.237	74	0.457	-36
	10	100	0.657	-37	22.098	151	0.019	75	0.888	-18
		200	0.526	-64	17.304	132	0.033	68	0.741	-29
		500	0.328	-105	9.028	106	0.056	67	0.509	-33
		1000	0.228	-138	4.844	89	0.096	73	0.438	-31
		1500	0.184	-156	3.359	80	0.138	75	0.440	-34
		2000	0.140	175	2.591	72	0.175	76	0.441	-31
		3000	0.172	126	1.852	60	0.249	75	0.430	-33
	20	100	0.492	-53	28.934	142	0.017	72	0.808	-23
		200	0.372	-85	19.971	121	0.028	70	0.630	-31
		500	0.249	-127	9.335	100	0.053	74	0.454	-28
		1000	0.201	-156	4.878	86	0.094	78	0.418	-27
		1500	0.174	-171	3.358	77	0.138	79	0.432	-30
		2000	0.149	161	2.580	70	0.177	78	0.444	-28
		3000	0.193	121	1.852	58	0.253	76	0.435	-32

Table 4. MRF947 Series Common Emitter S-Parameters (continued)

$\mathrm{f}(\mathrm{GHz})$	NF OPT (dB)	ГMS NF OPT	R_{N}	K
0.5	1.54	$0.71 \angle 39^{\circ}$	38	0.28

Figure 15. MMBR941LT1, T3 Constant Gain and Noise Figure Contours
(f = 1.0 GHz)

$\mathrm{f}(\mathrm{GHz})$	NF OPT (dB)	ГMS NF OPT	R_{N}	K
1.0	1.95	$0.55 \angle 76^{\circ}$	28	0.51

Figure 16. MMBR941LT1, T3 Constant Gain and Noise Figure Contours
(f = 0.5 GHz)

VCE $=6.0 \mathrm{~V}$
IC $=5.0 \mathrm{~mA}$
\square - AREA OF INSTABILITY

$\mathrm{f}(\mathrm{GHz})$	NF OPT (dB)	ГMS NF OPT	R_{N}	K
0.5	1.0	$0.43 \angle 30^{\circ}$	18	0.58

Figure 17. MMBR941LT1, T3 Constant Gain and Noise Figure Contours
(f = 0.5 GHz)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V} \\
& \mathrm{I} \mathrm{C}=5.0 \mathrm{~mA} \\
& \square-\text { AREA OF INSTABILITY }
\end{aligned}
$$

$\mathrm{f}(\mathrm{GHz})$	NF OPT (dB)	ГMS NF OPT	R_{N}	K
1.0	1.5	$0.22 \angle 64^{\circ}$	13	0.93

Figure 18. MMBR941LT1, T3 Constant Gain and Noise Figure Contours

$$
(\mathrm{f}=1.0 \mathrm{GHz})
$$

VCE $=1.0 \mathrm{~V}$
IC $=0.5 \mathrm{~mA}$
\square - AREA OF INSTABILITY

$\mathrm{f}(\mathrm{GHz})$	NF OPT (dB)	$\Gamma \mathrm{MS} \mathrm{NF} \mathrm{OPT}$	R_{N}	K
0.5	1.60	$0.70 \angle 35^{\circ}$	40	0.22

Figure 19. MRF9411LT1 Constant Gain and Noise Figure Contours

$$
\text { (f = } 0.5 \mathrm{GHz})
$$

$\mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{~V}$
$\mathrm{I} C=0.5 \mathrm{~mA}$
\square - AREA OF INSTABILITY

$\mathrm{f}(\mathrm{GHz})$	NF OPT (dB)	ГMS NF OPT	R_{N}	K
1.0	1.95	$0.55 \angle 69^{\circ}$	30	0.39

Figure 20. MRF9411LT1 Constant Gain and Noise Figure Contours
($\mathrm{f}=1.0 \mathrm{GHz}$)

$\mathrm{f}(\mathrm{GHz})$	NF OPT (dB)	ГMS NF OPT	R_{N}	K
0.5	1.0	$0.40 \angle 28^{\circ}$	17	0.29

Figure 21. MRF9411LT1 Constant Gain and Noise Figure Contours

$$
(\mathrm{f}=0.5 \mathrm{GHz})
$$

$\mathrm{f}(\mathrm{GHz})$	NF OPT (dB)	ГMS NF OPT	R_{N}	K
1.0	1.5	$0.17 \angle 60^{\circ}$	13	0.53

Figure 22. MRF9411LT1 Constant Gain and Noise Figure Contours ($\mathrm{f}=1.0 \mathrm{GHz}$)

Figure 23. MRF947 Series Constant Gain and Noise Figure Contours

Figure 25. MRF947 Series Constant Gain and Noise Figure Contours

The RF Line
 NPN Silicon
 Low Noise, High-Frequency Transistors

Designed for use in high gain, low noise small-signal amplifiers. This series features excellent broadband linearity and is offered in a variety of packages.

- Fully Implanted Base and Emitter Structure
- 18 Finger, 1.25 Micron Geometry with Gold Top Metal
- Gold Sintered Back Metal
- Available in tape and reel packaging options:

T1 suffix $=3,000$ units per reel

MMBR951 MRF957
MRF9511 SERIES

IC $=100 \mathrm{~mA}$ LOW NOISE HIGH-FREQUENCY TRANSISTORS

CASE 318-08, STYLE 6 SOT-23 LOW PROFILE MMBR951LT1, MMBR951ALT1

CASE 419-02, STYLE 3 MRF957T1

CASE 318A-05, STYLE 1 SOT-143 LOW PROFILE MRF9511LT1

MAXIMUM RATINGS

Rating	Symbol	MMBR951LT1 MMBR951ALT1	MRF9511LT1	MRF957T1	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	10	10	10	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	20	20	20	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	1.5	1.5	15	Vdc
$\begin{aligned} & \hline \text { Power Dissipation (1) } \mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C} \\ & \text { Derate linearly above } \mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C} @ \end{aligned}$	$\mathrm{P}_{\mathrm{D}(\text { max })}$	$\begin{gathered} 0.322 \\ 4.29 \end{gathered}$	$\begin{gathered} 0.322 \\ 4.29 \end{gathered}$	$\begin{gathered} 0.227 \\ 3.03 \end{gathered}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Collector Current - Continuous (2)	I^{\prime}	100	100	100	mA
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{Jmax}}$	150	150	150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	-55 to +150	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Case	$\mathrm{R}_{\text {өJC }}$	233	233	330	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DEVICE MARKING
MRF9511LT1 = $11 \quad$ MMBR951ALT1 = AAG \quad MMBR951LT1 $=7 Z \quad$ MRF957T1 $=\mathrm{B}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

	Characteristic	Symbol	Min	Typ	Max
OFF CHARACTERISTICS (3)					

Collector-Emitter Breakdown Voltage $\left(I_{C}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR})} \mathrm{CED}$	10	13	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{I} \mathrm{C}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	20	25	-	Vdc
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=1.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\right)$	lebo	-	-	0.1	$\mu \mathrm{Adc}$
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	0.1	$\mu \mathrm{Adc}$

ON CHARACTERISTICS (3)

DC Current Gain	hFE			
$\left(V_{C E}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}\right)$	All		50	-
$\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}\right)$	MMBR951ALT1		75	-

DYNAMIC CHARACTERISTICS

| Collector-Base Capacitance
 $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$ | C_{cb} | - | 0.45 | 1.0 | pF |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Current Gain — Bandwidth Product
 $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I} \mathrm{I}=30 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right)$ MRF9511LT1, MMBR951LT1, MMBR951ALT1
 f_{T} | | - | 8.0 | - | GHz |

NOTES:

1. To calculate the junction temperature use $T_{J}=\left(P_{D} \times R_{\theta J A}\right)+T_{C A S E}$. Case temperature measured on collector lead immediately adjacent to body of package.
2. IC - Continuous (MTBF ≈ 10 years).
3. Pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$ pulsed.

Conditions	Symbol	MRF9511LT1			MMBR951LT1 MMBR951ALT1			MRF957T1			Unit
		Min	Typ	Max	Min	Typ	Max	Min	Typ	Max	
$\begin{aligned} & \text { Insertion Gain } \\ & \left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{f}=2.0 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{f}=1.5 \mathrm{GHz}\right) \end{aligned}$	$\left\|S_{21}\right\|^{2}$	-	$\begin{gathered} 14.5 \\ 9.0 \end{gathered}$	-	-	$\begin{gathered} 12.5 \\ 7.0 \end{gathered}$	-	-	$\begin{gathered} \frac{13.3}{-} \\ 10.1 \end{gathered}$	-	dB
$\begin{array}{\|l} \hline \text { Maximum Unilateral Gain (1) } \\ \left(V_{C E}=8.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=30 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right) \\ \left(\mathrm{V}_{\mathrm{CE}}=8.0 \mathrm{~V}, \mathrm{I} \mathrm{C}=30 \mathrm{~mA}, \mathrm{f}=2.0 \mathrm{GHz}\right) \\ \left(\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I} \mathrm{C}=30 \mathrm{~mA}, \mathrm{f}=1.5 \mathrm{GHz}\right) \end{array}$	Gu max	-	$\begin{gathered} 17 \\ 10.5 \end{gathered}$	-	-	$\begin{aligned} & 14 \\ & 8.0 \end{aligned}$	-	-	$\frac{14}{-}$	-	dB
$\begin{array}{\|l\|} \hline \text { Noise Figure - Minimum (Figure 9) } \\ (\mathrm{V} C E=6.0 \mathrm{~V}, \mathrm{I} \mathrm{C}=5.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}) \\ (\mathrm{V} C E=6.0 \mathrm{~V}, \mathrm{I}=5.0 \mathrm{~mA}, \mathrm{f}=2.0 \mathrm{GHz}) \\ (\mathrm{V} \mathrm{CE}=6.0 \mathrm{~V}, \mathrm{I}=5.0 \mathrm{~mA}, \mathrm{f}=1.5 \mathrm{GHz}) \end{array}$	NFMIN	-	$\begin{aligned} & 1.3 \\ & 2.1 \end{aligned}$	-	-	$\begin{aligned} & 1.3 \\ & 2.1 \end{aligned}$	-	-	$\frac{1.5}{2.0}$	-	dB
$\begin{array}{r} \hline \text { Associated Gain at Minimum NF (Figure 9) } \\ \left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I} \mathrm{I}=5.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right) \\ \left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I} \mathrm{C}=5.0 \mathrm{~mA}, \mathrm{f}=2.0 \mathrm{GHz}\right) \\ \left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}, \mathrm{f}=1.5 \mathrm{GHz}\right) \end{array}$	G_{NF}	-	$\begin{aligned} & 14 \\ & 9.0 \end{aligned}$	-	-	$\begin{aligned} & 13 \\ & 7.5 \end{aligned}$	-	-	$\frac{11.8}{-}$	-	dB
$\begin{array}{\|l\|} \hline \text { Noise Figure - } 50 \text { ohm Source } \\ \quad(\mathrm{V} C E=6.0 \mathrm{~V}, \mathrm{IC}=5.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}) \end{array}$	$\mathrm{NF}_{50} \Omega$	-	1.9	2.8	-	1.9	2.8	-	1.9	2.8	dB

NOTE:
$\left|S_{21}\right|^{2}$

1. Maximum Unilateral Gain is $\mathrm{GU}_{\max }=\frac{\left|\mathrm{S}_{21}\right|^{2}}{\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)}$

Figure 1. Collector-Base Capacitance versus Voltage

Figure 3. Gain Bandwidth Product versus Collector Current

Figure 2. DC Current Gain versus Collector Current

Figure 4. Insertion Gain versus Collector Current

Figure 5. MRF9511LT1

Figure 7. Typical Noise Figure and Associated Gain versus Frequency

Figure 6. MMBR951LT1

Figure 8. Typical Noise Figure versus Collector Current

Figure 9. Functional Circuit Schematic (All Devices)

$\begin{gathered} \mathrm{V}_{\mathrm{CE}} \\ \text { (Volts) } \end{gathered}$	$\begin{gathered} \mathrm{IC} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}	
			$\left\|\mathrm{S}_{11}\right\|$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	${ }^{\text {S }} 12 \mid$	$\angle \phi$	${ }^{\text {S }} \mathbf{2 2}$ \|	$\angle \phi$
6.0	5.0	$\begin{gathered} \hline 100 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & \hline 0.82 \\ & 0.50 \\ & 0.39 \\ & 0.32 \\ & 0.36 \end{aligned}$	$\begin{array}{r} -36.6 \\ -119 \\ -162 \\ 150 \\ 110 \end{array}$	$\begin{gathered} \hline 14.0 \\ 6.6 \\ 3.5 \\ 1.9 \\ 1.4 \end{gathered}$	$\begin{gathered} \hline 153 \\ 104 \\ 81 \\ 57 \\ 40 \end{gathered}$	$\begin{aligned} & \hline 0.04 \\ & 0.07 \\ & 0.11 \\ & 0.21 \\ & 0.31 \end{aligned}$	$\begin{gathered} \hline 44.7 \\ 48.2 \\ 55 \\ 66 \\ 66 \end{gathered}$	$\begin{aligned} & \hline 0.88 \\ & 0.52 \\ & 0.43 \\ & 0.42 \\ & 0.40 \end{aligned}$	$\begin{aligned} & \hline-18.2 \\ & -40 \\ & -43 \\ & -50 \\ & -67 \end{aligned}$
	10	$\begin{gathered} 100 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & \hline 0.66 \\ & 0.38 \\ & 0.32 \\ & 0.26 \\ & 0.31 \end{aligned}$	$\begin{array}{r} \hline-54 \\ -138 \\ -176 \\ 142 \\ 105 \end{array}$	$\begin{gathered} 22.6 \\ 7.8 \\ 4.0 \\ 2.2 \\ 1.6 \end{gathered}$	$\begin{gathered} 142 \\ 96 \\ 78 \\ 57 \\ 41 \end{gathered}$	$\begin{aligned} & 0.03 \\ & 0.07 \\ & 0.13 \\ & 0.22 \\ & 0.32 \end{aligned}$	$\begin{aligned} & 60 \\ & 55 \\ & 71 \\ & 70 \\ & 64 \end{aligned}$	$\begin{aligned} & 0.78 \\ & 0.40 \\ & 0.34 \\ & 0.36 \\ & 0.33 \end{aligned}$	$\begin{aligned} & \hline-29 \\ & -42 \\ & -47 \\ & -46 \\ & -62 \end{aligned}$
	20	$\begin{aligned} & \hline 100 \\ & 500 \\ & 1000 \\ & 2000 \\ & 3000 \end{aligned}$	$\begin{aligned} & \hline 0.49 \\ & 0.32 \\ & 0.29 \\ & 0.24 \\ & 0.28 \end{aligned}$	$\begin{aligned} & -76 \\ & -153 \\ & 175 \\ & 137 \\ & 102 \end{aligned}$	$\begin{aligned} & \hline 30 \\ & 8.3 \\ & 4.3 \\ & 2.3 \\ & 1.6 \end{aligned}$	$\begin{gathered} \hline 131 \\ 92 \\ 77 \\ 57 \\ 42 \end{gathered}$	$\begin{aligned} & \hline 0.01 \\ & 0.08 \\ & 0.11 \\ & 0.24 \\ & 0.34 \end{aligned}$	85 76 67 71 63	$\begin{aligned} & 0.67 \\ & 0.34 \\ & 0.29 \\ & 0.32 \\ & 0.29 \end{aligned}$	$\begin{aligned} & -37 \\ & -39 \\ & -44 \\ & -48 \\ & -60 \end{aligned}$
	30	$\begin{gathered} 100 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & 0.40 \\ & 0.30 \\ & 0.29 \\ & 0.24 \\ & 0.30 \end{aligned}$	$\begin{array}{r} \hline-94 \\ -162 \\ 170 \\ 134 \\ 101 \end{array}$	$\begin{aligned} & 33 \\ & 8.4 \\ & 4.3 \\ & 2.3 \\ & 1.6 \end{aligned}$	$\begin{gathered} 125 \\ 90 \\ 76 \\ 56 \\ 41 \end{gathered}$	$\begin{aligned} & 0.03 \\ & 0.07 \\ & 0.12 \\ & 0.23 \\ & 0.35 \end{aligned}$	$\begin{aligned} & 87 \\ & 84 \\ & 80 \\ & 71 \\ & 66 \end{aligned}$	$\begin{aligned} & \hline 0.58 \\ & 0.31 \\ & 0.27 \\ & 0.33 \\ & 0.30 \end{aligned}$	$\begin{aligned} & \hline-42 \\ & -35 \\ & -39 \\ & -48 \\ & -60 \end{aligned}$
	60	$\begin{gathered} \hline 100 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & 0.38 \\ & 0.37 \\ & 0.36 \\ & 0.33 \\ & 0.38 \end{aligned}$	$\begin{array}{r} \hline-126 \\ -176 \\ 163 \\ 130 \\ 98 \end{array}$	$\begin{aligned} & \hline 31 \\ & 7.3 \\ & 3.7 \\ & 2.0 \\ & 1.4 \end{aligned}$	$\begin{gathered} \hline 116 \\ 77.6 \\ 73.4 \\ 52 \\ 37 \end{gathered}$	$\begin{aligned} & \hline 0.03 \\ & 0.05 \\ & 0.12 \\ & 0.22 \\ & 0.34 \end{aligned}$	$\begin{aligned} & 74 \\ & 84 \\ & 84 \\ & 78 \\ & 69 \end{aligned}$	$\begin{aligned} & 0.49 \\ & 0.34 \\ & 0.34 \\ & 0.37 \\ & 0.34 \end{aligned}$	$\begin{aligned} & \hline-37 \\ & -26 \\ & -37 \\ & -48 \\ & -62 \end{aligned}$
8.0	5.0	$\begin{gathered} 100 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & \hline 0.83 \\ & 0.51 \\ & 0.38 \\ & 0.31 \\ & 0.35 \end{aligned}$	$\begin{aligned} & \hline-35 \\ & -117 \\ & -160 \\ & 151 \\ & 110 \end{aligned}$	$\begin{gathered} \hline 13.9 \\ 6.7 \\ 3.6 \\ 1.9 \\ 1.4 \end{gathered}$	$\begin{gathered} 154 \\ 104 \\ 82 \\ 58 \\ 41 \end{gathered}$	$\begin{aligned} & 0.04 \\ & 0.08 \\ & 0.10 \\ & 0.20 \\ & 0.32 \end{aligned}$	$\begin{aligned} & 92 \\ & 51 \\ & 72 \\ & 73 \\ & 71 \end{aligned}$	$\begin{aligned} & 0.90 \\ & 0.55 \\ & 0.44 \\ & 0.46 \\ & 0.43 \end{aligned}$	$\begin{aligned} & \hline-19 \\ & -38 \\ & -42 \\ & -47 \\ & -63 \end{aligned}$
	10	$\begin{gathered} 100 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & \hline 0.67 \\ & 0.37 \\ & 0.30 \\ & 0.25 \\ & 0.30 \end{aligned}$	$\begin{aligned} & -52 \\ & -135 \\ & -173 \\ & 143 \\ & 105 \end{aligned}$	$\begin{aligned} & 23 \\ & 7.9 \\ & 4.1 \\ & 2.2 \\ & 1.6 \end{aligned}$	$\begin{gathered} \hline 143 \\ 97 \\ 80 \\ 57 \\ 42 \end{gathered}$	$\begin{aligned} & 0.02 \\ & 0.07 \\ & 0.11 \\ & 0.21 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 96 \\ & 64 \\ & 78 \\ & 74 \\ & 67 \end{aligned}$	$\begin{aligned} & \hline 0.81 \\ & 0.43 \\ & 0.37 \\ & 0.38 \\ & 0.34 \end{aligned}$	$\begin{aligned} & \hline-28 \\ & -38 \\ & -41 \\ & -47 \\ & -60 \end{aligned}$
	20	$\begin{aligned} & 100 \\ & 500 \\ & 1000 \\ & 2000 \\ & 3000 \end{aligned}$	$\begin{aligned} & \hline 0.51 \\ & 0.31 \\ & 0.28 \\ & 0.23 \\ & 0.27 \end{aligned}$	$\begin{aligned} & \hline-72 \\ & -150 \\ & 177 \\ & 138 \\ & 103 \end{aligned}$	$\begin{aligned} & 30 \\ & 8.5 \\ & 4.3 \\ & 2.3 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 131 \\ & 92 \\ & 77 \\ & 57 \\ & 42 \end{aligned}$	$\begin{aligned} & 0.02 \\ & 0.07 \\ & 0.13 \\ & 0.22 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 68 \\ & 75 \\ & 76 \\ & 72 \\ & 64 \end{aligned}$	$\begin{aligned} & \hline 0.68 \\ & 0.36 \\ & 0.32 \\ & 0.35 \\ & 0.31 \end{aligned}$	$\begin{aligned} & -35 \\ & -36 \\ & -39 \\ & -45 \\ & -58 \end{aligned}$
	30	$\begin{gathered} 100 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & 0.42 \\ & 0.31 \\ & 0.27 \\ & 0.23 \\ & 0.28 \end{aligned}$	$\begin{array}{r} -87 \\ -159 \\ 172 \\ 135 \\ 102 \end{array}$	$\begin{aligned} & 33 \\ & 8.6 \\ & 4.4 \\ & 2.3 \\ & 1.6 \end{aligned}$	$\begin{gathered} \hline 125 \\ 90 \\ 76 \\ 57 \\ 41 \end{gathered}$	$\begin{aligned} & \hline 0.02 \\ & 0.07 \\ & 0.11 \\ & 0.22 \\ & 0.31 \end{aligned}$	$\begin{aligned} & 71 \\ & 71 \\ & 74 \\ & 73 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline 0.61 \\ & 0.33 \\ & 0.32 \\ & 0.34 \\ & 0.33 \end{aligned}$	$\begin{aligned} & -38 \\ & -33 \\ & -39 \\ & -42 \\ & -55 \end{aligned}$
	60	$\begin{aligned} & \hline 100 \\ & 500 \\ & 1000 \\ & 2000 \\ & 3000 \end{aligned}$	$\begin{aligned} & \hline 0.39 \\ & 0.36 \\ & 0.35 \\ & 0.32 \\ & 0.37 \end{aligned}$	$\begin{array}{r} \hline-119 \\ -174 \\ 164 \\ 131 \\ 100 \end{array}$	$\begin{aligned} & \hline 32 \\ & 7.4 \\ & 3.8 \\ & 2.0 \\ & 1.4 \end{aligned}$	$\begin{aligned} & \hline 117 \\ & 87 \\ & 74 \\ & 53 \\ & 38 \end{aligned}$	$\begin{aligned} & \hline 0.02 \\ & 0.06 \\ & 0.11 \\ & 0.22 \\ & 0.33 \end{aligned}$	$\begin{aligned} & 31 \\ & 84 \\ & 78 \\ & 81 \\ & 70 \end{aligned}$	$\begin{aligned} & 0.52 \\ & 0.37 \\ & 0.35 \\ & 0.42 \\ & 0.40 \end{aligned}$	$\begin{aligned} & -31 \\ & -25 \\ & -33 \\ & -41 \\ & -62 \end{aligned}$

Table 1. MMBR951LT1 Common Emitter S-Parameters

$V_{C E}$ (Vdc)	$\underset{(\mathrm{mA})}{\mathrm{IC}_{2}}$	$\begin{gathered} f \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}			
			$\left\|S_{11}\right\|$	$\angle \phi$	\|S21		$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
6.0	5.0	100	0.81	-48	13.69	152	0.04	66	0.88	-22		
		500	0.67	-122	7.58	92	0.07	41	0.57	-50		
		1000	0.61	-157	4.65	76	0.09	40	0.45	-62		
		1500	0.57	86	2.87	70	0.10	44	0.42	-71		
		2000	0.54	156	2.14	60	0.12	52	0.42	-75		
		2500	0.55	121	1.72	51	0.14	57	0.40	-86		
		3000	0.57	121	1.48	44	0.17	59	0.39	-97		
		3500	0.65	110	1.28	38	0.21	60	0.37	-112		
		4000	0.67	100	1.14	33	0.24	54	0.38	-130		
	10	100	0.71	-56	24.07	149	0.03	66	0.86	-28		
		500	0.60	-143	9.47	101	0.05	46	0.41	-62		
		1000	0.56	-176	4.97	81	0.07	51	0.30	-73		
		1500	0.53	167	3.35	69	0.10	57	0.31	-78		
		2000	0.50	148	2.54	60	0.13	63	0.30	-78		
		2500	0.52	132	2.02	52	0.16	63	0.29	-89		
		3000	0.54	116	1.75	45	0.19	61	0.29	-78		
		3500	0.60	106	1.53	39	0.22	60	0.26	-115		
		4000	0.64	97	1.35	34	0.26	57	0.28	-133		
	20	100	0.59	-80	33.51	138	0.02	61	0.75	-38		
		500	0.56	-159	10.39	95	0.04	54	0.31	-69		
		1000	0.54	175	5.36	79	0.07	62	0.23	-79		
		1500	0.51	161	3.58	68	0.10	66	0.25	-82		
		2000	0.49	142	2.75	60	0.13	68	0.25	-80		
		2500	0.52	128	2.18	52	0.16	66	0.23	-91		
		3000	0.53	112	1.88	45	0.20	63	0.23	-99		
		3500	0.60	103	1.65	39	0.24	62	0.21	-117		
		4000	0.63	95	1.46	34	0.27	57	0.22	-137		
	30	100	0.54	-97	37.48	133	0.02	57	0.67	-43		
		500	0.56	-166	10.60	93	0.04	59	0.27	-70		
		1000	0.54	171	5.45	78	0.07	68	0.21	-80		
		1500	0.51	158	3.62	67	0.10	69	0.24	-81		
		2000	0.50	140	2.73	60	0.13	70	0.23	-79		
		2500	0.52	126	2.19	51	0.17	68	0.23	-90		
		3000	0.53	111	1.89	45	0.20	64	0.23	-97		
		3500	0.60	102	1.65	38	0.24	62	0.20	-115		
		4000	0.63	94	1.47	33	0.27	58	0.22	-136		
	60	100	0.54	-128	36.66	123	0.01	57	0.56	-43		
		500	0.60	-177	8.97	89	0.03	67	0.27	-50		
		1000	0.59	166	4.62	75	0.06	73	0.25	-59		
		1500	0.56	153	3.05	64	0.09	75	0.29	-68		
		2000	0.55	136	2.29	56	0.13	76	0.30	-71		
		2500	0.57	125	1.85	48	0.16	74	0.29	-83		
		3000	0.59	110	1.59	42	0.20	69	0.30	-92		
		3500	0.65	102	1.41	36	0.23	67	0.27	-108		
		4000	0.69	93	1.22	31	0.27	62	0.29	-130		

Table 2. MRF9511LT1 Common Emitter S-Parameters

VCE (Vdc)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}		
			$\left\|S_{11}\right\|$	$\angle \phi$	$\left\|\mathrm{S}_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
8.0	5.0	100	0.84	-36	14.65	158	0.03	72	0.94	-18	
		500	0.68	-120	7.79	110	0.07	42	0.58	-48	
		1000	0.60	-161	4.32	86	0.08	41	0.44	-60	
		1500	0.56	88	2.95	71	0.10	45	0.44	-68	
		2000	0.53	157	2.19	60	0.11	53	0.44	-71	
		2500	0.55	140	1.76	51	0.14	58	0.42	-82	
		3000	0.56	122	1.50	44	0.17	60	0.42	-92	
		3500	0.63	112	1.33	39	0.18	62	0.38	-107	
		4000	0.68	105	1.18	33	0.21	63	0.36	-125	
	10	100	0.73	-53	24.04	150	0.02	68	0.87	-26	
		500	0.60	-140	9.68	101	0.05	46	0.43	-58	
		1000	0.55	-174	5.10	82	0.07	52	0.32	-66	
		1500	0.52	169	3.42	69	0.09	58	0.33	-72	
		2000	0.49	149	2.59	61	0.12	63	0.33	-73	
		2500	0.51	133	2.06	52	0.15	63	0.32	-83	
		3000	0.53	116	1.78	45	0.19	63	0.32	-91	
		3500	0.64	109	1.60	38	0.20	62	0.28	-108	
		4000	0.67	101	1.39	34	0.23	60	0.29	-131	
	20	100	0.61	-76	33.76	139	0.02	60	0.76	-36	
		500	0.56	-157	10.72	96	0.04	54	0.32	-63	
		1000	0.53	176	5.53	79	0.07	62	0.29	-70	
		1500	0.50	162	3.69	68	0.10	66	0.27	-75	
		2000	0.48	143	2.79	60	0.13	68	0.27	-74	
		2500	0.51	129	2.22	52	0.16	68	0.26	-84	
		3000	0.52	112	1.92	46	0.19	65	0.26	-91	
		3500	0.59	104	1.75	40	0.21	64	0.24	-109	
		4000	0.63	98	1.54	35	0.24	59	0.25	-131	
	30	100	0.57	-89	37.35	134	0.02	58	0.71	-40	
		500	0.55	-163	10.82	94	0.04	57	0.29	-63	
		1000	0.53	128	5.54	78	0.07	65	0.24	-69	
		1500	0.50	159	3.69	67	0.10	69	0.26	-73	
		2000	0.49	141	2.77	59	0.13	70	0.27	-71	
		2500	0.51	127	2.23	51	0.16	69	0.26	-82	
		3000	0.52	112	1.93	45	0.19	66	0.26	-89	
		3500	0.61	106	1.68	40	0.21	64	0.21	-110	
		4000	0.66	97	1.51	34	0.24	60	0.23	-130	
	60	100	0.55	-122	34.92	126	0.01	52	0.59	-37	
		500	0.59	-175	8.71	91	0.03	65	0.33	-42	
		1000	0.58	167	4.52	76	0.06	73	0.30	-53	
		1500	0.55	154	3.04	65	0.09	75	0.34	-62	
		2000	0.54	138	2.28	56	0.12	77	0.35	-66	
		2500	0.57	125	1.82	48	0.16	76	0.34	-78	
		3000	0.59	110	1.56	42	0.19	72	0.35	-88	
		3500	0.66	104	1.28	36	0.22	70	0.32	-105	
		4000	0.70	95	1.14	32	0.26	66	0.32	-132	

Table 2. MRF9511LT1 Common Emitter S-Parameters (continued)

Figure 10. MMBR951LT1 Constant Gain and Noise Figure Contours
($\mathrm{f}=0.5 \mathrm{GHz}$)

$\mathrm{f}(\mathrm{GHz})$	NF OPT (dB)	ГMS NF OPT	Rn	K
1.0	1.45	$0.16 \angle 124^{\circ}$	8	0.97

Figure 11. MMBR951LT1 Constant Gain and Noise Figure Contours

$$
(\mathrm{f}=1.0 \mathrm{GHz})
$$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V} \\
& \mathrm{IC}=5.0 \mathrm{~mA} \\
& \square-\text { AREA OF INSTABILITY }
\end{aligned}
$$

$\mathrm{f}(\mathrm{GHz})$	NF OPT (dB)	ГMS NF OPT	Rn	K
0.5	1.20	$0.37 \angle 69^{\circ}$	10	0.42

Figure 12. MRF9511LT1 Constant Gain and Noise Figure Contours
(f = 0.5 GHz)

$\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}$
$\mathrm{I} \mathrm{C}=5.0 \mathrm{~mA}$
\square - AREA OF INSTABILITY

$\mathrm{f}(\mathrm{GHz})$	NF OPT (dB)	ГMS NF OPT	Rn	K
1.0	1.50	$0.19 \angle 120^{\circ}$	9	0.74

Figure 13. MRF9511LT1 Constant Gain and Noise Figure Contours (f = 1.0 GHz)

$\begin{aligned} & \mathrm{V}_{\mathrm{CE}} \\ & \text { (Vdc) } \end{aligned}$	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\underset{(\mathrm{MHz})}{\mathrm{f}}$	$\underset{(\mathrm{dB})}{\mathrm{NF}_{\min }}$	$\begin{gathered} \Gamma_{0} \\ \text { (MAG, ANG) } \end{gathered}$	$\begin{gathered} \mathrm{r}_{\mathrm{N}} \\ \text { (ohms) } \end{gathered}$
6.0	5.0	$\begin{aligned} & 1000 \\ & 1500 \end{aligned}$	$\begin{aligned} & 1.7 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 0.27 \angle 97 \\ & 0.21 \angle 54 \end{aligned}$	$\begin{gathered} \hline 0.2 \\ 0.28 \end{gathered}$

Table 3. MRF957T1 Typical Noise Parameters

TYPICAL CHARACTERISTICS MRF957T1

Figure 14. Capacitance versus Voltage

Figure 15. DC Current Gain versus Collector Current

TYPICAL CHARACTERISTICS
 MRF957T1

Figure 16. Gain-Bandwidth Product versus Collector Current

Figure 18. Insertion Gain and Maximum Stable Power Gain versus Frequency

Figure 17. Associated Gain versus Collector Current

Figure 19. Noise Figure and Associated Gain versus Frequency

Figure 20. Constant Gain and Noise Figure Contours $\mathrm{f}=1.0 \mathrm{GHz}$

Figure 21. Constant Gain and Noise Figure Contours $\mathrm{f}=1.5 \mathrm{GHz}$

$V_{C E}$ (Vdc)	$\underset{(\mathrm{mA})}{\mathrm{IC}_{2}}$	$\begin{gathered} f \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}		
			\| S_{11} \|	$\angle \phi$	$\left\|\mathrm{S}_{21}\right\|$	$\angle \phi$	\| S_{12} \|	$\angle \phi$	\|S22		$\angle \phi$
2.0	1.0	100	0.959	-19.22	3.518	166.25	0.044	78.43	0.986	-8.12	
		200	0.922	-38.32	3.482	153.75	0.079	69.06	0.948	-15.98	
		500	0.825	-81.94	2.614	122.98	0.146	44.99	0.803	-30.02	
		1000	0.690	-125.83	1.737	93.40	0.167	30.15	0.662	-41.41	
		2000	0.600	-174.02	1.079	63.65	0.131	44.93	0.576	-51.42	
		3000	0.640	147.15	0.791	50.62	0.196	80.39	0.517	-64.42	
	2.0	100	0.922	-24.97	6.598	162.54	0.042	75.55	0.967	-12.35	
		200	0.862	-48.55	6.177	147.47	0.075	64.60	0.893	-23.28	
		500	0.713	-96.45	4.140	116.09	0.123	43.92	0.671	-38.55	
		1000	0.586	-137.24	2.483	90.37	0.140	38.71	0.524	-46.93	
		2000	0.506	179.54	1.462	64.47	0.158	57.00	0.456	-51.97	
		3000	0.546	144.80	1.079	49.98	0.232	74.13	0.416	-61.22	
	5.0	100	0.815	-39.45	14.163	153.09	0.038	70.19	0.895	-22.63	
		200	0.708	-71.89	11.635	133.50	0.061	58.57	0.739	-38.46	
		500	0.541	-121.43	6.284	104.78	0.090	49.12	0.454	-52.31	
		1000	0.461	-155.05	3.428	85.44	0.123	54.90	0.337	-56.38	
		2000	0.406	169.75	1.921	65.04	0.198	65.80	0.304	-54.16	
		3000	0.438	139.42	1.424	51.41	0.282	69.61	0.276	-57.77	
	10	100	0.667	-57.75	22.121	142.36	0.032	64.38	0.788	-34.26	
		200	0.559	-95.89	15.709	121.54	0.048	57.27	0.574	-52.06	
		500	0.447	-140.52	7.417	98.06	0.075	58.00	0.317	-63.32	
		1000	0.405	-166.70	3.921	82.59	0.123	66.07	0.235	-65.49	
		2000	0.360	162.90	2.155	65.25	0.222	69.45	0.220	-57.93	
		3000	0.390	134.95	1.597	52.60	0.311	68.14	0.196	-57.79	
	30	100	0.435	-99.80	31.662	125.82	0.023	62.49	0.570	-51.69	
		200	0.421	-135.04	18.696	108.07	0.034	64.74	0.360	-68.74	
		500	0.398	-162.97	8.025	91.81	0.069	71.43	0.192	-75.85	
		1000	0.382	-179.33	4.163	79.67	0.127	74.17	0.151	-77.73	
		2000	0.347	155.68	2.269	64.55	0.240	72.04	0.155	-63.30	
		3000	0.379	130.21	1.686	52.60	0.336	67.80	0.132	-60.40	
	60	100	0.442	-131.87	26.755	118.52	0.021	62.60	0.422	-56.23	
		200	0.483	-155.78	15.086	103.17	0.032	66.87	0.261	-70.51	
		500	0.484	-173.89	6.390	88.79	0.067	74.30	0.154	-73.64	
		1000	0.472	172.69	3.317	76.81	0.127	76.73	0.140	-74.96	
		2000	0.452	149.80	1.834	60.68	0.243	72.97	0.155	-66.57	
		3000	0.496	126.23	1.393	48.59	0.345	68.81	0.131	-71.10	

Table 4. MRF957T1 Typical Common Emitter S-Parameters

MRF957T1

$V_{C E}$ (Vdc)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} f \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}		
			\|S ${ }_{11}$ \|	$\angle \phi$	$\left\|\mathrm{S}_{21}\right\|$	$\angle \phi$	\| $\mathrm{S}_{12} \mid$	$\angle \phi$	\|S22		$\angle \phi$
5.0	1.0	100	0.965	-17.73	3.508	167.36	0.035	78.18	0.990	-6.80	
		200	0.931	-35.39	3.495	155.78	0.065	71.66	0.958	-13.35	
		500	0.835	-77.08	2.680	126.50	0.122	48.12	0.839	-25.23	
		1000	0.694	-120.78	1.820	97.22	0.143	33.67	0.713	-35.51	
		2000	0.583	-170.80	1.133	67.35	0.115	50.88	0.629	-44.48	
		3000	0.615	148.45	0.813	53.19	0.182	85.71	0.565	-55.47	
	2.0	100	0.932	-22.38	6.532	164.05	0.034	77.81	0.975	-9.92	
		200	0.875	-44.00	6.217	150.00	0.061	67.15	0.914	-18.98	
		500	0.726	-89.77	4.314	119.58	0.106	47.42	0.724	-31.79	
		1000	0.582	-131.10	2.638	93.76	0.122	41.23	0.586	-39.20	
		2000	0.483	-176.30	1.544	67.35	0.140	60.85	0.521	-43.55	
		3000	0.515	146.92	1.117	52.27	0.208	78.88	0.479	-51.26	
	5.0	100	0.836	-34.35	14.112	155.49	0.031	71.72	0.920	-18.06	
		200	0.731	-63.59	11.971	137.05	0.052	61.40	0.785	-31.06	
		500	0.539	-112.00	6.737	107.93	0.080	51.32	0.522	-41.63	
		1000	0.438	-147.18	3.710	88.06	0.110	57.59	0.408	-43.94	
		2000	0.364	175.10	2.050	67.58	0.175	68.31	0.383	-42.49	
		3000	0.392	142.26	1.501	53.59	0.251			-45.46	
	10	100	0.704	-49.02	22.526	145.79	0.027	67.46	0.831	-27.03	
		200	0.577	-83.93	16.647	125.23	0.042	59.78	0.634	-41.45	
		500	0.421	-129.59	8.120	100.71	0.069	60.52	0.385	-47.31	
		1000	0.361	-158.62	4.290	84.82	0.109	67.54	0.305	-46.57	
		2000	0.307	168.57	2.330	67.52	0.196	71.46	0.305	-42.00	
		3000	0.332	137.50	1.706	54.85	0.277	71.05	0.288	-42.21	
	20	100	0.559	-66.34	30.018	136.00	0.023	64.88	0.720	-35.45	
		200	0.453	-103.91	19.598	116.12	0.036	61.80	0.501	-48.64	
		500	0.358	-143.87	8.835	96.19	0.064	68.23	0.298	-49.15	
		1000	0.324	-167.05	4.595	83.08	0.112	72.95	0.247	-47.12	
		2000	0.278	163.88	2.462	67.27	0.208	72.96	0.263	-41.09	
		3000	0.306	133.94	1.809	55.45	0.291	70.31	0.249	-39.38	
	30	100	0.492	-73.65	32.055	131.68	0.022	64.17	0.669	-37.70	
		200	0.412	-110.53	20.121	113.25	0.033	64.60	0.459	-49.28	
		500	0.345	-147.89	8.900	94.88	0.062	69.52	0.278	-48.58	
		1000	0.319	-169.39	4.646	82.13	0.113	74.20	0.234	-46.64	
		2000	0.277	162.38	2.492	67.55	0.210	73.10	0.255	-40.63	
		3000	0.305	133.57	1.821	55.24	0.295	70.42	0.239	-38.73	

Table 4. MRF957T1 Typical Common Emitter S-Parameters (continued)

The RF Line

NPN Silicon

High-Frequency Transistor
Designed for thick and thin-film circuits using surface mount components and requiring low-noise, high-gain signal amplification at frequencies to 1.0 GHz .

- High Gain — Gpe $=17 \mathrm{~dB}$ Typ @ $\mathrm{f}=450 \mathrm{MHz}$
- Low Noise - NF = 2.5 dB Typ @ f $=450 \mathrm{MHz}$
- Available in tape and reel packaging options:

T1 suffix $=3,000$ units per reel

maximum ratings

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	10	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	15	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	3.0	Vdc
Collector Current - Continuous	IC	20	mAdc
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{Jmax}}$	150	${ }^{\circ} \mathrm{C}$
Power Dissipation, $\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C}(1)$ Derate linearly above $\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C} @$	$\mathrm{P}_{\mathrm{D}(\text { max }}$	0.300	W
$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$			

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	250	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DEVICE MARKING

```
MMBR5031LT1 = 7G
```


ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage ($\left.\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	10	-	-	Vdc
Collector-Base Breakdown Voltage ($\left.\mathrm{I}_{\mathrm{C}}=0.01 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	15	-	-	Vdc
Emitter-Base Breakdown Voltage ($\left.\mathrm{I}_{\mathrm{E}}=0.01 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	3.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\mathrm{CBO}}$	-	-	10	nAdc

ON CHARACTERISTICS

DC Current Gain (IC $\left.=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}\right)$	h_{FE}	25	-	300	-

SMALL-SIGNAL CHARACTERISTICS

Current-Gain — Bandwidth Product $\left(\mathrm{I} \mathrm{C}=5.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{MHz}\right)$	${ }^{\text {T }}$	-	1,000	-	MHz
Collector-Base Capacitance $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=0.1 \mathrm{MHz}\right)$	C_{cb}	-	-	1.5	pF
Minimum Noise Figure (l C $=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{f}=450 \mathrm{MHz}$)	$\mathrm{NF}_{\text {min }}$	-	2.5	-	dB
Common-Emitter Amplifier Power Gain $\left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{f}=450 \mathrm{MHz}\right.$)	$G_{p e}$	-	17	25	dB

NOTE:

1. Case temperature measured on collector lead immediately adjacent to body of package.

REV 7

The RF Line

NPN Silicon
High-Frequency Transistor
Designed for small-signal amplification at frequencies to 500 MHz . Specifically packaged for use in thick and thin-film circuits using surface mount components.

- High Gain - Gpe $=15 \mathrm{~dB}$ Typ @ $\mathrm{f}=200 \mathrm{MHz}$
- Low Noise - NF = 4.5 dB Typ @ f $=200 \mathrm{MHz}$
- Available in tape and reel packaging options:

T1 suffix $=3,000$ units per reel

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	15	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	30	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	3.0	Vdc
Collector Current - Continuous	I_{C}	50	mAdc
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{Jmax}}$	150	${ }^{\circ} \mathrm{C}$
Power Dissipation, $\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C}(1)$	$\mathrm{P}_{\mathrm{D}(\max)}$	0.375	W
Derate linearly above $\mathrm{T}_{\text {case }}=75^{\circ} \mathrm{C} @$		5.00	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	200	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DEVICE MARKING

MMBR5179LT1 $=7 \mathrm{H}$

RF AMPLIFIER
TRANSISTOR
NPN SILICON

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=3.0 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{\text {(BR) }}$ CEO	15	-	-	Vdc
Collector-Base Breakdown Voltage ($\mathrm{IC}=0.001 \mathrm{mAdc}$, $\mathrm{I}=0$)	$V_{\text {(BR) }}$ CBO	30	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{E}}=0.01 \mathrm{mAdc}, \mathrm{I}_{\text {C }}=0$)	$V_{\text {(BR) } \mathrm{EBO}}$	3.0	-	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=15 \mathrm{Vdc}$, $\mathrm{IE}_{\mathrm{E}}=0$)	ICBO	-	-	0.02	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

DC Current Gain (IC $\left.=3.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}\right)$	h_{FE}	30	-	250	-
Collector-Emitter Saturation Voltage $\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{CE}}(\mathrm{sat})$	-	-	0.4	Vdc
Base-Emitter Saturation Voltage $\left(\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=1.0 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{BE}}(\mathrm{sat})$	-	-	1.0	Vdc

SMALL-SIGNAL CHARACTERISTICS

Current-Gain — Bandwidth Product $\left(\mathrm{I} \mathrm{C}=5.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{f}=100 \mathrm{MHz}\right)$	${ }_{\mathrm{f}}$	-	1,400	-	MHz
Collector-Base Capacitance ($\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}$, $\mathrm{IE}=0, \mathrm{f}=0.1$ to 1.0 MHz)	C_{cb}	-	-	1.0	pF
50 ohm Noise Figure ($\mathrm{I}_{\mathrm{C}}=1.5 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{R}_{\mathrm{S}}=50 \Omega$, $\mathrm{f}=200 \mathrm{MHz}$)	NF	-	4.5	-	dB
Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{mAdc}, \mathrm{f}=200 \mathrm{MHz}\right)$	G_{pe}	-	15	-	dB

NOTE:

1. Case temperature measured on collector lead immediately adjacent to body of package.

REV 8

The RF Line UHF Power Transistor

Designed primarily for wideband, large-signal output and driver amplifier stages in the 500 to 1000 MHz frequency range.

- Designed for Class AB Linear Power Amplifiers
- Specified 28 Volt, 1000 MHz Characteristics:

Output Power - 50 Watts
Power Gain - 7 dB (Min), Class AB

- Built-In Matching Network for Broadband Operation
- Gold Metallization for Improved Reliability
- Diffused Ballast Resistors
- Hermetic Package for Military/Space Applications

$7.0 \mathrm{~dB}, 500-1000 \mathrm{MHz}$ 50 W
BROADBAND UHF POWER TRANSISTOR

CASE 391-03, STYLE 1 (HLP-42)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	30	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	4	Vdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}} \mathrm{C}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	125	Watts
Operating Junction Temperature	T_{J}	0.715	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, RF, Junction to Case $\left(T_{C}=70^{\circ} \mathrm{C}\right)$	$R_{\theta J C}$	1.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS (1)

Collector-Emitter Breakdown Voltage ($\left.\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	60	-	-	Vdc
Collector-Base Breakdown Voltage ($\left.\mathrm{I} \mathrm{C}=25 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	60	-	-	Vdc
Emitter-Base Breakdown Voltage ($\left.\mathrm{I}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}, \mathrm{R}_{\mathrm{BE}}=1 \Omega\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CER}}$	50	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\right)$	I CBO	-	-	25	mAdc

(1) Each transistor chip measured separately.
(continued)

ELECTRICAL CHARACTERISTICS - continued

Characteristic	Symbol	Min	Typ	Max	Unit

ON CHARACTERISTICS (1)

DC Current Gain (IC $\left.=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\right)$	h_{FE}	20	-	80	-

DYNAMIC CHARACTERISTICS (1)

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	C_{ob}	-	-	24	pF

FUNCTIONAL TESTS (2)

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}, \mathrm{f}=1 \mathrm{GHz}, \mathrm{I} \mathrm{CQ}=2 \times 120 \mathrm{~mA}\right)$	GPE1	7	-	-	dB
Load Mismatch $\begin{aligned} & \left(\mathrm{V} \mathrm{CE}=28 \mathrm{~V}, \mathrm{I} \mathrm{ICQ}=2 \times 120 \mathrm{~mA}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}, \mathrm{f}=1 \mathrm{GHz},\right. \\ & \text { Load VSWR }=5: 1 \text {, All Phase Angles) } \end{aligned}$	ψ	No Degradation in Output Power			
$\begin{aligned} & \text { Broadband Power Gain } \\ & \left(\mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V}, \mathrm{P}_{\mathrm{out}}=45 \mathrm{~W}, \mathrm{f}=500 \mathrm{mHz} \text { and } 1 \mathrm{GHz},\right. \\ & \left.\mathrm{I}_{\mathrm{CQ}}=2 \times 120 \mathrm{~mA}\right) \end{aligned}$	GPE2	6.5	-	-	dB

(1) Each transistor chip measured separately.
(2) Both transistor chips operating in push-pull amplifier.

TYPICAL CHARACTERISTICS

Figure 1. Input Impedance versus Frequency

Figure 2. Output Impedance versus Frequency

The RF Line UHF Power Transistor

designed primarily for wideband, large-signal output and driver amplifier stages to 1000 MHz .

- Designed for Class A Linear Power Amplifiers
- Specified 19 Volt, 1000 MHz Characteristics:

Output Power - 7.0 Watts
Power Gain - 9.0 dB Min, Small-Signal

- Built-In Matching Network for Broadband Operation
- Gold Metallization for Improved Reliability
- Diffused Ballast Resistors
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	28	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	50	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	3.5	Vdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}} \mathrm{C}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	42	Watts
Operating Junction Temperature	T_{J}	200	$\mathrm{~W}^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$			

MRA1000-7L

9.0 dB, TO 1000 MHz 7.0 WATTS BROADBAND UHF POWER TRANSISTOR

CASE 145D-02, STYLE 1 (. 380 SOE)

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case $\left(\mathrm{T}_{\mathrm{C}}=70^{\circ} \mathrm{C}\right)$	$\mathrm{R}_{\theta \mathrm{JC}}$	4.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (I C $=20 \mathrm{~mA}, \mathrm{I}$, $=0$)	$V_{\text {(BR)CEO }}$	28	-	-	Vdc
Collector-Emitter Breakdown Voltage ($\mathrm{I} \mathrm{C}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE}}=0$)	$\mathrm{V}_{\text {(BR) }}$ CES	50	-	-	Vdc
Collector-Base Breakdown Voltage (${ }^{\text {l }}$ C $=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0$)	$V_{\text {(BR) }}{ }^{\text {cbo }}$	50	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{E}}=5.0 \mathrm{~mA}, \mathrm{I} \mathrm{C}=0$)	$\mathrm{V}_{\text {(BR) } \mathrm{EBO}}$	3.5	-	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$)	ICBO	-	-	15	mAdc

ON CHARACTERISTICS

| DC Current Gain ($\mathrm{I} \mathrm{C}=1.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}$) | h_{FE} | 20 | - | 90 | - |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| DYNAMIC CHARACTERISTICS | | | | | |
| Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$ C_{ob} - - 22 pF | | | | | |$.$

FUNCTIONAL TESTS

Common-Emitter Amplifier Small-Signal Gain $\left(\mathrm{V}_{\mathrm{CE}}=19 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{GHz}, \mathrm{I} \mathrm{C}=1.2 \mathrm{~A}\right)$	GSS	9.0	10	-	dB
Load Mismatch $\left(\mathrm{V}_{\mathrm{CE}}=19 \mathrm{~V}, \mathrm{I} \mathrm{C}=1.2 \mathrm{~A}, \mathrm{P}_{\text {out }}=7.0 \mathrm{~W}, \mathrm{f}=1.0 \mathrm{GHz},\right.$ $\text { Load VSWR = } \infty: 1 \text {, All Phase Angles) }$	ψ	No Degradation in Output Power			
Overdrive ($\mathrm{V}_{\mathrm{CE}}=19 \mathrm{~V}, \mathrm{I} \mathrm{C}=1.2 \mathrm{~A}, \mathrm{f}=1.0 \mathrm{GHz}$) (No degradation)	$\mathrm{P}_{\text {in }}^{\text {over }}$	-	-	3.5	W
Output Power, 1.0 dB Compression Point $\left(\mathrm{V}_{\mathrm{CE}}=19 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{GHz}, \mathrm{I}_{\mathrm{C}}=1.2 \mathrm{~A}\right)$	Po1dB	7.0	-	-	W

The RF Line UHF Power Transistor

... designed primarily for wideband, large-signal output and driver amplifier stages to 1000 MHz .

- Designed for Class A Linear Power Amplifiers
- Specified 19 Volt, 1000 MHz Characteristics:

Output Power - 14 Watts
Power Gain - 8.0 dB , Small-Signal

- Built-In Matching Network for Broadband Operation
- Gold Metallization for Improved Reliability
- Diffused Ballast Resistors
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

8.0 dB , TO 1000 MHz 14 WATTS BROADBAND UHF POWER TRANSISTOR

CASE 145D-02, STYLE 1 (. 380 SOE)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	28	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	50	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	3.5	Vdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	83	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$ Operating Junction Temperature Storage Temperature Range T_{J}
0.48	200	${ }^{\circ} \mathrm{C}$	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case $\left(\mathrm{T}_{\mathrm{C}}=70^{\circ} \mathrm{C}\right)$	$\mathrm{R}_{\theta \mathrm{JC}}$	2.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage (${ }^{\text {I }}$ ($=25 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	28	-	-	Vdc
Collector-Emitter Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE}}=0$)	$V_{\text {(BR) }}$ CES	50	-	-	Vdc
Collector-Base Breakdown Voltage (${ }^{\text {l }} \mathrm{C}=25 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	50	-	-	Vdc
Emitter-Base Breakdown Voltage (${ }^{\text {I }} \mathrm{E}=5.0 \mathrm{~mA}, \mathrm{I} \mathrm{C}=0$)	$\mathrm{V}_{\text {(BR) } \mathrm{EBO}}$	3.5	-	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$)	ICBO	-	-	20	mAdc

ON CHARACTERISTICS

DC Current Gain (IC $\left.=1.0 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}\right)$	h_{FE}	20	-	90	-

(continued)

REV 6

ELECTRICAL CHARACTERISTICS - continued

Characteristic

| | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| DYNAMIC CHARACTERISTICS | | | | | |
| Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$ | C_{ob} | - | - | 40 | pF |

FUNCTIONAL TESTS

Common-Emitter Amplifier Small-Signal Gain $\left(\mathrm{V}_{\mathrm{CE}}=19 \mathrm{~V}, \mathrm{P}_{\text {in }}=1.0 \mathrm{~mW}, \mathrm{f}=1.0 \mathrm{GHz}, \mathrm{I} \mathrm{C}=2.4 \mathrm{~A}\right)$	Gss	8.0	-	-	dB
Load Mismatch $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=19 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=2.4 \mathrm{~A}, \mathrm{P}_{\text {out }}=14 \mathrm{~W}, \mathrm{f}=1.0 \mathrm{GHz},\right. \\ & \text { Load VSWR }=\infty: 1 \text {, All Phase Angles) } \end{aligned}$	ψ	No Degradation in Output Power			
$\begin{aligned} & \text { Overdrive }(\mathrm{VCE}=19 \mathrm{~V}, \mathrm{IC}=2.4 \mathrm{~A}, \mathrm{f}=1.0 \mathrm{GHz}) \\ & \text { (No degradation) } \end{aligned}$	$\mathrm{P}_{\text {in }}$ over	-	-	7.0	W
Output Power, 1.0 dB Compression Point $\left(\mathrm{V}_{\mathrm{CE}}=19 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{GHz}, \mathrm{I} \mathrm{C}=2.4 \mathrm{~A}\right)$	Po1dB	14	-	-	W

The RF Line Microwave Power Transistor

Designed primarily for large-signal output and driver amplifier stages for mobile satellite up links.

- Designed for Class C, Common Base Power Amplifiers
- Specified 28 Volt, 1640 MHz Characteristics:

Output Power = 2.0 to 30 Watts
Power Gain $=7.0$ to 8.4 dB (Min)
Collector Efficiency $=39 \%$ to $45 \% ~(M i n)$

- Internally Compensated
- Gold Metallization for Improved Reliability
- Diffused Ballast Resistors

MRA1600-2
8.4 dB
$1600-1660 \mathrm{MHz}$ $2.0-30 \mathrm{~W}$
NARROWBAND MICROWAVE POWER TRANSISTOR

CASE 394-03, STYLE 1
(MRA .25)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CES}}$	50	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	3.5	Vdc
Collector Current - Continuous	I_{C}	0.5	Adc
Operating Junction Temperature	TJ_{J}	200	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, RF, Junction to Case (Rated Pout)	$R_{\theta J C}$	15	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($\mathrm{IC}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE}}=0$)	$\mathrm{V}_{\text {(BR) }}$ CES	50	-	-	Vdc
Emitter-Base Breakdown Voltage (${ }^{\text {E }}$ = $=0.25 \mathrm{~mA}, \mathrm{I} \mathrm{C}=0$)	$\mathrm{V}_{\text {(BR)EBO }}$	3.5	-	-	Vdc
Collector Cutoff Current ($\left.\mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	0.5	-	-	mAdc

ON CHARACTERISTICS

DC Current Gain (IC $\left.=0.1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}\right)$	h_{FE}	10	-	100	-

ELECTRICAL CHARACTERISTICS - continued
Characteristic

	Symbol	Min	Typ	Max	Unit
DYNAMIC CHARACTERISTICS					
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	-	4.5	pF

FUNCTIONAL TESTS

Common-Base Amplifier Power Gain $\left(V_{C E}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=2.2 \mathrm{~W}, \mathrm{f}=1.60\right.$ and 1.64 GHz$)$	GPB	8.4	-	-
Collector Efficiency $\left(V_{\text {CE }}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=2.2 \mathrm{~W}, \mathrm{f}=1.60\right.$ and 1.64 GHz$)$	η_{C}	39	-	-

TYPICAL CHARACTERISTICS

Figure 1. Output Power versus Frequency

Figure 2. Efficiency versus Frequency

Table 1. Input/Output Impedances $\left(\mathrm{P}_{\mathrm{O}}=2.2 \mathrm{~W}, \mathrm{~V}_{\mathrm{CE}}=28 \mathrm{~V}\right)$

$\begin{gathered} \mathrm{f} \\ (\mathrm{GHz}) \end{gathered}$	RIN	JX ${ }_{\text {IN }}$	$\mathrm{R}_{0}{ }^{(1)}$	$\mathrm{JXO}^{(1)}$
1.500	17.662	10.579	8.813	-17.216
1.525	17.146	10.661	8.001	-17.786
1.550	16.608	10.328	7.240	-18.350
1.575	16.087	9.986	6.728	-19.386
1.600	15.596	9.635	6.408	-20.420
1.625	15.149	9.273	6.164	-20.950
1.650	14.643	8.913	5.793	-21.495
1.675	14.214	8.541	5.416	-22.565
1.700	13.823	8.581	5.027	-23.122

(1) $\mathrm{Z}_{\mathrm{OL}}{ }^{*}=\mathrm{R}_{\mathrm{O}}+\mathrm{J} \mathrm{X}_{\mathrm{O}}$ is the conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

The RF MOSFET Line RF Power Field-Effect Transistor N-Channel Enhancement-Mode

. . . designed for wideband large-signal amplifier and oscillator applications up to 400 MHz range.

- Guaranteed 28 Volt, 150 MHz Performance

Output Power = 5.0 Watts
Minimum Gain $=11 \mathrm{~dB}$
Efficiency - 55\% (Typical)

- Small-Signal and Large-Signal Characterization
- Typical Performance at $400 \mathrm{MHz}, 28 \mathrm{Vdc}, 5.0 \mathrm{~W}$ Output $=10.6 \mathrm{~dB}$ Gain
- 100\% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR
- Low Noise Figure - 2.0 dB (Typ) at $200 \mathrm{~mA}, 150 \mathrm{MHz}$
- Excellent Thermal Stability, Ideally Suited For Class A Operation

MRF134

5.0 W , to 400 MHz

N-CHANNEL MOS BROADBAND RF POWER FET

CASE 211-07, STYLE 2

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V ${ }_{\text {DSS }}$	65	Vdc
Drain-Gate Voltage $\left(\mathrm{R}_{\mathrm{GS}}=1.0 \mathrm{M} \Omega\right)$	V ${ }_{\text {DGR }}$	65	Vdc
Gate-Source Voltage	V_{GS}	± 40	Vdc
Drain Current - Continuous	ID	0.9	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 17.5 \\ 0.1 \end{gathered}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Handling and Packaging - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS ($\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage ($\mathrm{V}_{\mathrm{GS}}=0, \mathrm{l}$ D $=5.0 \mathrm{~mA}$)	$\mathrm{V}_{\text {(BR) }{ }^{\text {DSS }}}$	65	-	-	Vdc
Zero Gate Voltage Drain Current ($\left.\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	1.0	mAdc
Gate-Source Leakage Current ($\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$)	IGSS	-	-	1.0	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

Gate Threshold Voltage $\left(I_{\mathrm{D}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	1.0	3.5	6.0	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	g_{s}	80	110	-	mmhos

DYNAMIC CHARACTERISTICS

Input Capacitance $\left(V_{D S}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	7.0	-	pF
Output Capacitance $\left(V_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {oss }}$	-	9.7	-	pF
Reverse Transfer Capacitance $\left(V_{\text {DS }}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {rss }}$	-	2.3	-	pF

FUNCTIONAL CHARACTERISTICS

Noise Figure $\left(V_{D S}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=200 \mathrm{~mA}, \mathrm{f}=150 \mathrm{MHz}\right)$	NF	-	2.0	-	dB
Common Source Power Gain $\begin{aligned} &\left(\mathrm{V} D \mathrm{DD}=28 \mathrm{Vdc}, P_{\text {out }}=5.0 \mathrm{~W}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}\right) \\ & f=150 \mathrm{MHz} \text { (Fig. 1) } \\ & \mathrm{f}=400 \mathrm{MHz} \text { (Fig. 14) } \end{aligned}$	G_{ps}	11	$\begin{gathered} 14 \\ 10.6 \end{gathered}$	-	dB
$\begin{aligned} & \text { Drain Efficiency (Fig. 1) } \\ & \quad\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=5.0 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}\right) \end{aligned}$	η	50	55	-	\%
```Electrical Ruggedness (Fig. 1) \(\left(V_{D D}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=5.0 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}\right.\), VSWR 30:1 at all Phase Angles)```	$\psi$	No Degradation in Output Power			



Figure 1. 150 MHz Test Circuit


Figure 2. Output Power versus Input Power


Figure 4. Output Power versus Supply Voltage


Figure 6. Output Power versus Supply Voltage


Figure 3. Output Power versus Input Power


Figure 5. Output Power versus Supply Voltage


Figure 7. Output Power versus Supply Voltage


Figure 8. Output Power versus Gate Voltage


Figure 9. Drain Current versus Gate Voltage (Transfer Characteristics)


Figure 10. Gate-Source Voltage versus Case Temperature


Figure 12. Capacitance versus Voltage


Figure 13. Maximum Rated Forward Biased Safe Operating Area


Figure 14. 400 MHz Test Circuit


Figure 15. Large-Signal Series Equivalent Input/Output Impedances, $\mathbf{Z}_{\mathbf{i n}}{ }^{\dagger}$, $\mathrm{ZOL}^{*}$

$\stackrel{f}{(\mathrm{MHz})}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
	\| $\mathrm{S}_{11}$ \|	$\angle \phi$	$\left\|\mathbf{S}_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\| $\mathrm{S}_{22}$ \|	$\angle \phi$
1.0	0.989	-1.0	11.27	179	0.0014	89	0.954	-1.0
2.0	0.989	-2.0	11.27	179	0.0028	89	0.954	-2.0
5.0	0.988	-5.0	11.26	176	0.0069	86	0.954	-4.0
10	0.985	-10	11.20	173	0.014	83	0.951	-9.0
20	0.977	-20	10.99	166	0.027	76	0.938	-18
30	0.965	-30	10.66	159	0.039	69	0.918	-26
40	0.950	-39	10.25	153	0.051	63	0.895	-34
50	0.931	-47	9.777	147	0.060	57	0.867	-42
60	0.912	-53	9.359	142	0.069	53	0.846	-49
70	0.892	-58	8.960	138	0.077	49	0.828	-56
80	0.874	-62	8.583	135	0.085	46	0.815	-62
90	0.855	-66	8.190	131	0.091	43	0.801	-68
100	0.833	-70	7.808	128	0.096	40	0.785	-74
110	0.827	-73	7.661	125	0.101	38	0.784	-77
120	0.821	-76	7.515	122	0.107	36	0.784	-82
130	0.814	-79	7.368	119	0.113	34	0.784	-85
140	0.808	-82	7.222	116	0.119	32	0.783	-88
150	0.802	-86	7.075	114	0.125	31	0.783	-90
160	0.788	-89	6.810	112	0.127	30	0.780	-92
170	0.774	-92	6.540	110	0.128	28	0.774	-94
180	0.763	-94	6.220	108	0.130	26	0.762	-98
190	0.751	-97	5.903	106	0.132	24	0.760	-100
200	0.740	-100	5.784	104	0.134	23	0.758	-103
225	0.719	-104	5.334	100	0.136	20	0.757	-107
250	0.704	-108	4.904	97	0.139	19	0.758	-110
275	0.687	-113	4.551	92	0.141	16	0.757	-114
300	0.673	-117	4.219	89	0.141	14	0.750	-117
325	0.668	-120	3.978	86	0.142	12	0.757	-120
350	0.669	-123	3.737	83	0.142	10	0.766	-121
375	0.662	-125	3.519	80	0.143	9.0	0.768	-123
400	0.654	-127	3.325	77	0.142	8.0	0.772	-124
425	0.650	-129	3.170	75	0.140	7.0	0.772	-125
450	0.638	-131	3.048	72	0.141	6.0	0.783	-125
475	0.614	-132	2.898	71	0.136	6.0	0.786	-126
500	0.641	-133	2.833	68	0.136	5.0	0.795	-127
525	0.638	-135	2.709	66	0.135	5.0	0.801	-127
550	0.633	-137	2.574	64	0.133	4.0	0.802	-128
575	0.628	-138	2.481	62	0.131	5.0	0.805	-128
600	0.625	-140	2.408	60	0.129	5.0	0.814	-128

The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port.
The scattering parameters were measured on the MRF134 device alone with no external components.
Table 1. Common Source Scattering Parameters
$V_{D S}=28 \mathrm{~V}, I_{D}=100 \mathrm{~mA}$

$\underset{(\mathrm{MHz})}{\mathrm{f}}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
	\| $\mathrm{S}_{11} \mid$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\| $\mathbf{S}_{22}$ \|	$\angle \phi$
625	0.619	-142	2.334	58	0.128	5.0	0.818	-129
650	0.617	-144	2.259	56	0.125	6.0	0.824	-130
675	0.618	-146	2.192	55	0.123	7.0	0.834	-130
700	0.619	-147	2.124	53	0.122	8.0	0.851	-131
725	0.618	-150	2.061	51	0.120	9.0	0.859	-132
750	0.614	-152	1.983	49	0.118	11	0.857	-133
775	0.609	-154	1.908	48	0.119	13	0.865	-133
800	0.562	-155	1.877	49	0.118	15	0.872	-133
825	0.587	-156	1.869	46	0.119	16	0.869	-134
850	0.593	-158	1.794	44	0.118	18	0.875	-135
875	0.597	-160	1.749	43	0.119	18	0.881	-135
900	0.598	-162	1.700	41	0.118	18	0.889	-136
925	0.592	-164	1.641	40	0.115	18	0.888	-138
950	0.588	-166	1.590	39	0.112	20	0.877	-138
975	0.586	-168	1.572	39	0.108	23	0.864	-137
1000	0.590	-171	1.551	37	0.107	28	0.863	-137

The Power RF characterization data were measured with a 68 ohm resistor shunting the MRF134 input port. The scattering parameters were measurd on the MRF134 device alone with no external components.

Table 1. Common Source Scattering Parameters (continued) VDS = 28 V , $\mathrm{ID}=100 \mathrm{~mA}$


Figure 16. $\mathrm{S}_{11}$, Input Reflection Coefficient versus Frequency VDS $=28 \mathrm{~V}$ ID $=100 \mathrm{~mA}$


Figure 18. $\mathbf{S}_{\mathbf{2 1}}$, Forward Transmission Coefficient versus Frequency VDS $=28 \mathrm{~V}$ ID $=100 \mathrm{~mA}$


Figure 17. $\mathrm{S}_{12}$, Reverse Transmission Coefficient versus Frequency $V_{D S}=28 \mathrm{~V} \quad \mathrm{ID}=100 \mathrm{~mA}$


Figure 19. $\mathbf{S}_{22}$, Output Reflection Coefficient versus Frequency
VDS $=28 \mathrm{~V}$ ID $=100 \mathrm{~mA}$

## DESIGN CONSIDERATIONS

The MRF134 is a RF power N-Channel enhancement mode field-effect transistor (FET) designed especially for VHF power amplifier and oscillator applications. Motorola RF MOS FETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V-groove vertical power FETs.

Motorola Application Note AN-211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation.

## DC BIAS

The MRF134 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 9 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (lDQ) is not critical for many applications. The MRF134 was characterized at $\operatorname{IDQ}=$ 50 mA , which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system.

## GAIN CONTROL

Power output of the MRF134 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (See Figure 8.)

## AMPLIFIER DESIGN

Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF134. See Motorola Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOS FETs helps ease the task of broadband network design. Both small signal scattering parameters and large signal impedances are provided. While the s-parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs.

RF power FETs are triode devices and, therefore, not unilateral. This, coupled with the very high gain of the MRF134, yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. The MRF134 was characterized with a 68-ohm input shunt loading resistor. Two port parameter stability analysis with the MRF134 s-parameters provides a useful-tool for selection of loading or feedback circuitry to assure stable operation. See Motorola Application Note AN215A for a discussion of two port network theory and stability.

Input resistive loading is not feasible in low noise applications. The MRF134 noise figure data was generated in a circuit with drain loading and a low loss input network.

## The RF MOSFET Line

## RF Power

Field-Effect Transistors N-Channel Enhancement-Mode MOSFETs
. . . designed for wideband large-signal amplifier and oscillator applications up to 400 MHz range, in either single ended or push-pull configuration.

- Guaranteed 28 Volt, 150 MHz Performance

MRF136
Output Power = 15 Watts
Narrowband Gain = 16 dB (Typ)
Efficiency $=60 \%$ (Typical)

- Small-Signal and Large-Signal Characterization
- $100 \%$ Tested For Load Mismatch At All Phase Angles With 30:1 VSWR
- Space Saving Package For Push-Pull Circuit Applications - MRF136Y
- Excellent Thermal Stability, Ideally Suited For Class A Operation
- Facilitates Manual Gain Control, ALC and Modulation Techniques

MRF136Y
Output Power = 30 Watts
Broadband Gain = 14 dB (Typ)
Efficiency $=54 \%$ (Typical)


MRF136 MRF136Y
$15 \mathrm{~W}, 30 \mathrm{~W}$, to 400 MHz N-CHANNEL MOS BROADBAND RF POWER FETs


CASE 211-07, STYLE 2 MRF136


CASE 319B-02, STYLE 1 MRF136Y

## MAXIMUM RATINGS

Rating	Symbol	Value		Unit
		MRF136	MRF136Y	
Drain-Source Voltage	VDSS	65	65	Vdc
Drain-Gate Voltage (RGS = 1.0 M 2 )	$V_{\text {DGR }}$	65	65	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 40$		Vdc
Drain Current - Continuous	ID	2.5	5.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$\mathrm{PD}_{\mathrm{D}}$	$\begin{gathered} \hline 55 \\ 0.314 \end{gathered}$	$\begin{gathered} \hline 100 \\ 0.571 \end{gathered}$	Watts W/ ${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150		${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200		${ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS

Characteristic	Symbol	Max		Unit
		MRF136	MRF136Y	
Thermal Resistance, Junction to Case	$R_{\theta J C}$	3.2	1.75	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Handling and Packaging - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (1)					
Drain-Source Breakdown Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~mA}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	Vdc
Zero-Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	2.0	mAdc
Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\right)$	IGSS	-	-	1.0	$\mu \mathrm{Adc}$

ON CHARACTERISTICS (1)

Gate Threshold Voltage   $\left(V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=25 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	1.0	3.0	6.0	Vdc
Forward Transconductance   $\left(V_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=250 \mathrm{~mA}\right)$	gfs	250	400	-	mmhos

DYNAMIC CHARACTERISTICS (1)

Input Capacitance   $\left(V_{D S}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	24	-	pF
Output Capacitance   $\left(V_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {oss }}$	-	27	-	pF
Reverse Transfer Capacitance   $\left(V_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	5.5	-	pF

FUNCTIONAL CHARACTERISTICS (2)

Noise Figure $\left(V_{D S}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA}, \mathrm{f}=150 \mathrm{MHz}\right)$	NF	-	1.0	-	dB
Common Source Power Gain (Figure 1)   MRF136 $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=15 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=25 \mathrm{~mA}\right)$	$\mathrm{G}_{\mathrm{ps}}$	13	16	-	dB
Common Source Power Gain (Figure 2) $\left(V_{D D}=28 \mathrm{Vdc}, P_{\text {out }}=30 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right)$	$\mathrm{G}_{\mathrm{ps}}$	12	14	-	dB
Drain Efficiency (Figure 1) $\quad$ MRF136 $\left(\mathrm{V} D \mathrm{CD}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=15 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{I} \mathrm{DQ}=25 \mathrm{~mA}\right)$	$\eta$	50	60	-	\%
Drain Efficiency (Figure 2) $\quad$ MRF136 $\left(V_{D D}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right)$	$\eta$	50	54	-	\%
Electrical Ruggedness (Figure 1) $\left(V_{D D}=28 \mathrm{Vdc}, P_{\text {out }}=15 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=25 \mathrm{~mA}\right.$, VSWR 30:1 at all Phase Angles)	$\psi$	No Degradation in Output Power			
Electrical Ruggedness (Figure 2) MRF136 (VDD $=28$ Vdc, $P_{\text {out }}=30 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}$, VSWR 30:1 at all Phase Angles)	$\psi$	No Degradation in Output Power			

NOTES:

1. For MRF136Y, each side measured separately.
2. For MRF136Y measured in push-pull configuration.


Figure 1. 150 MHz Test Circuit (MRF136)


Figure 2. 30-150 MHz Test Circuit (MRF136Y)


Figure 3. Output Power versus Input Power


Figure 5. Output Power versus Input Power


Figure 7. Output Power versus Supply Voltage


Figure 4. Output Power versus Input Power


Figure 6. Output Power versus Supply Voltage


Figure 8. Output Power versus Supply Voltage


Figure 9. Output Power versus Supply Voltage MRF136


Figure 11. Drain Current versus Gate Voltage (Transfer Characteristics)* MRF136/MRF136Y


Figure 13. Capacitance versus Drain-Source Voltage* MRF136/MRF136Y


Figure 10. Output Power versus Gate Voltage MRF136


Figure 12. Gate-Source Voltage versus Case Temperature* MRF136/MRF136Y


Figure 14. DC Safe Operating Area MRF136/MRF136Y

[^35]MRF136Y
TYPICAL PERFORMANCE IN BROADBAND TEST CIRCUIT (Refer to Figure 2)


Figure 15. Output Power versus Input Power


Figure 17. Drain Efficiency versus Frequency


Figure 16. Power Gain versus Frequency


Figure 18. Output Power versus Gate Voltage

TYPICAL 400 MHz PERFORMANCE


Figure 19. Output Power versus Input Power


Figure 20. Output Power versus Gate Voltage


Figure 21. Large-Signal Series Equivalent Input Impedance, $\mathrm{Z}_{\text {in }} \dagger$ MRF136


Figure 22. Large-Signal Series Equivalent Output Impedance, $\mathrm{ZOL}^{*}$ MRF136


Figure 23. Input and Outut Impedance
MRF136Y

f	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
(MHz)	\| $\mathrm{S}_{11} \mid$	$\angle \phi$	\| $\mathrm{S}_{21}$ \|	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
2.0	0.988	-11	41.19	173	0.006	67	0.729	-12	
5.0	0.970	-27	40.07	164	0.014	62	0.720	-31	
10	0.923	-52	35.94	149	0.026	54	0.714	-58	
20	0.837	-88	27.23	129	0.040	36	0.690	-96	
30	0.784	-111	20.75	117	0.046	27	0.684	-118	
40	0.751	-125	16.49	108	0.048	22	0.680	-131	
50	0.733	-135	13.41	103	0.050	19	0.679	-139	
60	0.720	-142	11.43	99	0.050	16	0.678	-145	
70	0.709	-147	9.871	96	0.050	14	0.679	-149	
80	0.707	-152	8.663	93	0.051	13	0.683	-153	
90	0.706	-155	7.784	91	0.051	13	0.682	-155	
100	0.708	-157	7.008	88	0.051	13	0.680	-157	
110	0.711	-159	6.435	86	0.051	14	0.681	-158	
120	0.714	-161	5.899	85	0.051	15	0.682	-159	
130	0.717	-163	5.439	82	0.052	16	0.684	-160	
140	0.720	-164	5.068	80	0.052	17	0.684	-161	
150	0.723	-165	4.709	80	0.052	18	0.686	-161	
160	0.727	-166	4.455	78	0.052	18	0.690	-161	
170	0.732	-167	4.200	77	0.052	18	0.694	-162	
180	0.735	-168	3.967	75	0.052	19	0.699	-162	
190	0.738	-169	3.756	74	0.052	19	0.703	-163	
200	0.740	-170	3.545	73	0.052	20	0.706	-163	
225	0.746	-171	3.140	69	0.053	22	0.717	-163	
250	0.742	-172	2.783	67	0.053	25	0.724	-163	
275	0.744	-173	2.540	64	0.054	27	0.724	-163	
300	0.751	-174	2.323	60	0.055	29	0.736	-163	
325	0.757	-175	2.140	58	0.058	32	0.749	-163	
350	0.760	-176	1.963	54	0.059	35	0.758	-163	
375	0.762	-177	1.838	52	0.062	38	0.768	-163	
400	0.774	-179	1.696	50	0.065	41	0.783	-163	
425	0.775	-179	1.590	48	0.068	43	0.793	-163	
450	0.781	+179	1.493	46	0.071	46	0.805	-163	
475	0.787	+177	1.415	43	0.074	47	0.813	-164	
500	0.792	+176	1.332	40	0.079	48	0.825	-164	
525	0.797	+175	1.259	38	0.083	50	0.831	-164	
550	0.801	+175	1.185	37	0.088	51	0.843	-164	
575	0.810	+174	1.145	36	0.094	52	0.855	-164	
600	0.816	+173	1.091	34	0.101	52	0.869	-165	
625	0.818	+171	1.041	32	0.106	53	0.871	-165	
650	0.825	+170	0.994	30	0.112	53	0.884	-165	
675	0.834	+169	0.962	29	0.119	53	0.890	-165	
700	0.837	+168	0.922	27	0.127	53	0.906	-166	
725	0.836	+167	0.879	25	0.133	52	0.909	-167	
750	0.841	+166	0.838	25	0.140	53	0.917	-167	
775	0.844	+165	0.824	24	0.148	52	0.933	-167	
800	0.846	+163	0.785	21	0.154	50	0.941	-168	

Table 1. Common Source Scattering Parameters
VDS $=28 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{~A}$


Figure 24. $\mathbf{S}_{11}$, Input Reflection Coefficient versus Frequency
$V_{D S}=28 \mathrm{~V} \quad I_{D}=0.5 \mathrm{~A}$


Figure 26. $\mathbf{S 2 1}_{\mathbf{2 1}}$, Forward Transmission Coefficient versus Frequency
$V_{D S}=28 \mathrm{~V} \quad I_{D}=0.5 \mathrm{~A}$


Figure 25. $\mathrm{S}_{12}$, Reverse Transmission Coefficient versus Frequency
VDS $=28 \mathrm{~V} \quad \mathrm{ID}=0.5 \mathrm{~A}$


Figure 27. S22, Output Reflection Coefficient versus Frequency $V_{D S}=28 \mathrm{~V} \quad \mathrm{I}=0.5 \mathrm{~A}$

## DESIGN CONSIDERATIONS

The MRF136 and MRF136Y are RF power N-Channel enhancement mode field-effect transistors (FETs) designed especially for HF and VHF power amplifier applications. Motorola RF MOS FETs feature planar design for optimum manufacturability.

Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.
The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation.

## DC BIAS

The MRF136 and MRF136Y are enhancement mode FETs and, therefore, do not conduct when drain voltage is applied without gate bias. A positive gate voltage causes drain current to flow (see Figure 11). RF power FETs require forward bias for optimum gain and power output. A Class AB condition with quiescent drain current (IDQ) in the $25-100 \mathrm{~mA}$ range is sufficient for many applications. For special requirements such as linear amplification, IDQ may have to be adjusted to optimize the critical parameters.

The MOS gate is a dc open circuit. Since the gate bias circuit does not have to deliver any current to the FET, a simple resistive divider arrangement may sometimes suffice for this function. Special applications may require more elaborate gate bias systems.

## GAIN CONTROL

Power output of the MRF136 and MRF136Y may be controlled from rated values down to the milliwatt region (>20 dB reduction in power output with constant input power) by varying the dc gate voltage. This feature, not available in
bipolar RF power devices, facilitates the incorporation of manual gain control, AGC/ALC and modulation schemes into system designs. A full range of power output control may require dc gate voltage excursions into the negative region.

## AMPLIFIER DESIGN

Impedance matching networks similar to those used with bipolar transistors are suitable for MRF136 and MRF136Y. See Motorola Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. Both small signal scattering parameters (MRF136 only) and large signal impedance parameters are provided. Large signal impedances should be used for network designs wherever possible. While the s parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is particularly useful at frequencies outside those presented in the large signal impedance plots.

RF power FETs are triode devices and are therefore not unilateral. This, coupled with the very high gain, yields a device capable of self oscillation. Stability may be achieved using techniques such as drain loading, input shunt resistive loading, or feedback. S parameter stability analysis can provide useful information in the selection of loading and/or feedback to insure stable operation. The MRF136 was characterized with a 27 ohm input shunt loading resistor, while the MRF136Y was characterized with a resistive feedback loop around each of its two active devices.

For further discussion of RF amplifier stability and the use of two port parameters in RF amplifier design, see Motorola Application Note AN215A.

## LOW NOISE OPERATION

Input resistive loading will degrade noise performance, and noise figure may vary significantly with gate driving impedance. A low loss input matching network with its gate impedance optimized for lowest noise is recommended.

## The RF MOSFET Line RF Power Field-Effect Transistor N-Channel Enhancement-Mode

. . . designed for wideband large-signal output and driver stages up to 400 MHz range.

- Guaranteed 28 Volt, 150 MHz Performance

Output Power = 30 Watts
Minimum Gain $=13 \mathrm{~dB}$
Efficiency - 60\% (Typical)

- Small-Signal and Large-Signal Characterization
- Typical Performance at $400 \mathrm{MHz}, 28 \mathrm{Vdc}, 30 \mathrm{~W}$ Output $=7.7 \mathrm{~dB}$ Gain
- $100 \%$ Tested For Load Mismatch At All Phase Angles With 30:1 VSWR
- Low Noise Figure - 1.5 dB (Typ) at $1.0 \mathrm{~A}, 150 \mathrm{MHz}$
- Excellent Thermal Stability, Ideally Suited For Class A Operation
- Facilitates Manual Gain Control, ALC and Modulation Techniques


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDSS	65	Vdc
Drain-Gate Voltage $\left(R_{G S}=1.0 \mathrm{M} \Omega\right)$	V ${ }_{\text {DGR }}$	65	Vdc
Gate-Source Voltage	VGS	$\pm 40$	Vdc
Drain Current - Continuous	ID	5.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{gathered} \hline 100 \\ 0.571 \end{gathered}$	Watts W/ ${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	1.75	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Handling and Packaging - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage ( $\left.\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {(BR) }{ }^{\text {DSS }}}$	65	-	-	Vdc
Zero Gate Voltage Drain Current ( $\left.\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	4.0	mAdc
Gate-Source Leakage Current ( $\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ )	IGSS	-	-	1.0	$\mu \mathrm{Adc}$

## ON CHARACTERISTICS

Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=25 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	1.0	3.0	6.0	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mathrm{~mA}\right)$	$\mathrm{g}_{\mathrm{fs}}$	500	750	-	mmhos

DYNAMIC CHARACTERISTICS

Input Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	48	-	pF
Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {oss }}$	-	54	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	11	-	pF

FUNCTIONAL CHARACTERISTICS

Noise Figure $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}, \mathrm{f}=150 \mathrm{MHz}\right)$	NF	-	1.5	-	dB
Common Source Power Gain $\begin{array}{ll} \left(V_{D D}=28 \mathrm{Vdc}, P_{\text {out }}=30 \mathrm{~W},\right. & f=150 \mathrm{MHz} \text { (Figure 1) } \\ \left.\mathrm{I}_{\mathrm{DQ}}=25 \mathrm{~mA}\right) & \mathrm{f}=400 \mathrm{MHz} \text { (Figure 14) } \end{array}$	$\mathrm{G}_{\mathrm{ps}}$	13	$\begin{aligned} & 16 \\ & 7.7 \end{aligned}$		dB
Drain Efficiency (Figure 1) $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=25 \mathrm{~mA}\right)$	$\eta$	50	60	-	\%
Electrical Ruggedness (Figure 1)   $\left(V_{D D}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=25 \mathrm{~mA}\right.$,   VSWR 30:1 at All Phase Angles)	$\psi$	No Degradation in Output Power			



C1 - Arco 403, 3.0-35 pF, or equivalent
C2 - Arco 406, 15-115 pF, or equivalent
C3 - 56 pF Mini-Unelco, or equivalent
C4 - Arco 404, 8.0-60 pF, or equivalent
C5 - 680 pF, 100 Mils Chip
C6 - $0.01 \mu \mathrm{~F}, 100 \mathrm{~V}$, Disc Ceramic
C7-100 $\mu \mathrm{F}, 40 \mathrm{~V}$
C8-0.1 $\mu$ F, 50 V, Disc Ceramic
C9, C10 - 680 pF Feedthru
D1 - 1N5925A Motorola Zener

L1 - 2 Turns, 0.29" ID, \#18 AWG Enamel, Closewound
L2 - 1-1/4 Turns, 0.2" ID, \#18 AWG Enamel, Closewound
L3 - 2 Turns, $0.2^{\prime \prime}$ ID, \#18 AWG Enamel, Closewound
RFC1 - 20 Turns, 0.30" ID, \#20 AWG Enamel, Closewound
RFC2 - Ferroxcube VK-200 - 19/4B
R1 - $10 \mathrm{k} \Omega$, $1 / 2 \mathrm{~W}$ Thin Film
R2 - $10 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$
R3 - 10 Turns, $10 \mathrm{k} \Omega$
$\mathrm{R} 4-1.8 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$
Board - G10, 62 Mils

Figure 1. 150 MHz Test Circuit


Figure 2. Output Power versus Input Power


Figure 4. Output Power versus Input Power


Figure 6. Output Power versus Supply Voltage


Figure 3. Output Power versus Input Power


Figure 5. Output Power versus Supply Voltage


Figure 7. Output Power versus Supply Voltage


Figure 8. Output Power versus Supply Voltage


Figure 9. Output Power versus Gate Voltage


Figure 10. Drain Current versus Gate Voltage (Transfer Characteristics)


Figure 12. Capacitance versus Drain-Source Voltage


Figure 11. Gate Source Voltage versus Case Temperature

Figure 13. DC Safe Operating Area


Figure 14. 400 MHz Test Circuit


Figure 15. Large-Signal Series Equivalent Input and Output Impedance, $\mathbf{Z}_{\mathbf{i n}}, \mathbf{Z}_{\mathbf{O L}}{ }^{*}$

$\underset{(\mathrm{MHz})}{\mathrm{f}}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
	${ }^{\text {S }} \mathbf{1 1}$ \|	$\angle \phi$	${ }^{\text {S }}$ 21\|	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\| $\mathrm{S}_{22}$ \|	$\angle \phi$
2.0	0.977	-32	59.48	163	0.011	67	0.661	-36
5.0	0.919	-70	48.67	142	0.024	44	0.692	-78
10	0.852	-109	33.50	122	0.032	29	0.747	-117
20	0.817	-140	19.05	106	0.037	16	0.768	-146
30	0.814	-153	13.11	99	0.038	14	0.774	-157
40	0.811	-159	9.88	95	0.038	13	0.782	-162
50	0.812	-164	7.98	92	0.038	12	0.787	-165
60	0.813	-166	6.66	89	0.038	12	0.787	-168
70	0.815	-168	5.708	86	0.038	11	0.787	-169
80	0.816	-170	5.003	84	0.038	11	0.787	-170
90	0.817	-171	4.560	83	0.038	12	0.787	-171
100	0.817	-172	4.170	81	0.039	13	0.787	-172
110	0.818	-173	3.670	80	0.039	13	0.788	-172
120	0.820	-173	3.420	79	0.039	13	0.788	-173
130	0.821	-173	3.170	79	0.039	13	0.788	-173
140	0.822	-174	2.980	78	0.039	13	0.788	-173
150	0.823	-175	2.826	77	0.039	14	0.788	-173
160	0.824	-175	2.650	76	0.039	14	0.790	-174
170	0.825	-176	2.438	75	0.039	14	0.792	-174
180	0.827	-176	2.325	73	0.039	15	0.793	-174
190	0.829	-177	2.175	72	0.039	16	0.796	-174
200	0.831	-177	2.084	71	0.039	16	0.799	-174
225	0.836	-178	1.824	69	0.039	18	0.805	-174
250	0.846	-178	1.621	66	0.039	21	0.816	-174
275	0.853	-179	1.462	64	0.039	23	0.822	-174
300	0.853	-179	1.319	61	0.040	25	0.833	-174
325	0.856	-179	1.194	59	0.040	27	0.828	-174
350	0.857	+179	1.089	56	0.040	30	0.842	-174
375	0.861	+179	1.014	54	0.042	32	0.849	-174
400	0.865	+178	0.927	51	0.043	35	0.856	-174
425	0.875	+178	0.876	49	0.045	37	0.866	-174
450	0.881	+178	0.810	46	0.046	40	0.870	-174
475	0.886	+177	0.755	44	0.046	43	0.875	-174
500	0.887	+177	0.694	41	0.051	43	0.888	-174
525	0.888	+176	0.677	39	0.052	43	0.890	-174
550	0.896	+176	0.625	36	0.055	45	0.898	-174
575	0.907	+175	0.603	34	0.058	45	0.913	-174
600	0.910	+175	0.585	32	0.061	45	0.918	-174
625	0.910	+174	0.563	30	0.065	45	0.945	-174
650	0.920	+174	0.543	28	0.069	46	0.952	-174
675	0.938	+173	0.533	26	0.074	47	0.974	-174
700	0.943	+171	0.515	24	0.078	47	0.958	-176
725	0.934	+170	0.491	22	0.079	46	0.953	-177
750	0.940	+170	0.475	22	0.084	48	0.943	-177
775	0.953	+169	0.477	21	0.090	48	0.957	-177
800	0.959	+168	0.467	17	0.093	48	0.957	-179

Table 1. Common Source Scattering Parameters
$50 \Omega$ System
$V_{D S}=28 \mathrm{~V}, \mathrm{ID}=0.75 \mathrm{~A}$


Figure 16. $\mathrm{S}_{11}$, Input Reflection Coefficient versus Frequency

$$
V_{D S}=28 \mathrm{~V} \quad I_{D}=0.75 \mathrm{~A}
$$



Figure 18. $\mathrm{S}_{\mathbf{2 1}}$, Forward Transmission Coefficient versus Frequency
VDS $=28 \mathrm{~V}$ ID $=0.75 \mathrm{~A}$


Figure 17. $\mathrm{S}_{12}$, Reverse Transmission Coefficient versus Frequency
VDS $=28 \mathrm{~V}$ ID $=0.75 \mathrm{~A}$


Figure 19. S22, Output Reflection Coefficient versus Frequency
VDS $=28 \mathrm{~V}$ ID $=0.75 \mathrm{~A}$

## DESIGN CONSIDERATIONS

The MRF137 is a RF power N-Channel enhancement mode field-effect transistor (FET) designed especially for VHF power amplifier applications. Motorola RF MOS FETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V-groove vertical power FETs.

Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation.

## DC BIAS

The MRF137 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 10 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance. The value of quiescent drain current ( $\mathrm{I}_{\mathrm{DQ}}$ ) is not critical for many applications. The MRF137 was characterized at IDQ = 25 mA , which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple
resistive divider network. Some special applications may require a more elaborate bias system.

## GAIN CONTROL

Power output of the MRF137 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (See Figure 9.)

## AMPLIFIER DESIGN

Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF137. See Motorola Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOS FETs helps ease the task of broadband network design. Both small signal scattering parameters and large signal impedances are provided. While the s-parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs.

RF power FETs are triode devices and, therefore, not unilateral. This, coupled with the very high gain of the MRF137, yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. Two port parameter stability analysis with the MRF137 s-parameters provides a useful tool for selection of loading or feedback circuitry to assure stable operation. See Motorola Application Note AN215A for a discussion of two port network theory and stability.

## The RF MOSFET Line RF Power Field-Effect Transistor N-Channel Enhancement-Mode

Designed primarily for linear large-signal output stages up to 150 MHz frequency range.

- Specified 28 Volts, 30 MHz Characteristics

Output Power = 150 Watts
Power Gain = 15 dB (Typ)
Efficiency $=40 \%$ (Typ)

- Superior High Order IMD
- $\mathrm{IMD}_{(\mathrm{d} 3)}(150 \mathrm{~W}$ PEP) - -30 dB (Typ)
- $\mathrm{IMD}_{(\mathrm{d} 11)}$ (150 W PEP) - 60 dB (Typ)
- $100 \%$ Tested For Load Mismatch At All Phase Angles With 30:1 VSWR


150 W , to 150 MHz
N-CHANNEL MOS
LINEAR RF POWER FET


CASE 211-11, STYLE 2

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	Vdc
Drain-Gate Voltage	$\mathrm{V}_{\mathrm{DGO}}$	65	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 40$	Vdc
Drain Current - Continuous	$\mathrm{I}_{\mathrm{D}}$	16	Adc
Total Device Dissipation @ $\mathrm{T}^{\mathrm{C}}=25^{\circ} \mathrm{C}$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	300	Watts   Storage Temperature Range
Operating Junction Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	0.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Handling and Packaging - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)
Characteristic

|  | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |


OFF CHARACTERISTICS	$\mathrm{V}_{(\mathrm{BR})} \mathrm{DSS}$	65	-	-	Vdc
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0\right)$	$I_{\mathrm{DSS}}$	-	-	5.0	mAdc
Gate-Body Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0\right)$	$I_{\mathrm{GSS}}$	-	-	1.0	$\mu$ Adc

ON CHARACTERISTICS

Gate Threshold Voltage ( $\left.\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	1.0	3.0	5.0	Vdc
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{Adc}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	0.1	0.9	1.5	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A}\right)$	$\mathrm{g}_{\mathrm{f}}$	4.0	7.0	-	mhos

DYNAMIC CHARACTERISTICS

Input Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	450	-	pF
Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{oss}}$	-	400	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {rss }}$	-	75	-	pF

FUNCTIONAL TESTS (SSB)

Common Source Amplifier Power Gain $(30 \mathrm{MHz})$   $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP})\right.$, IDQ $\left.=250 \mathrm{~mA}\right)$ $(150 \mathrm{MHz})$	$\mathrm{G}_{\mathrm{ps}}$		$\begin{aligned} & 15 \\ & 6.0 \end{aligned}$		dB
Drain Efficiency $\begin{aligned} & \left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{f}=30 ; 30.001 \mathrm{MHz},\right. \\ & \left.\mathrm{I}_{\mathrm{D}}(\mathrm{Max})=6.5 \mathrm{~A}\right) \end{aligned}$	$\eta$	-	40	-	\%
$\begin{aligned} & \text { Intermodulation Distortion (1) } \\ & \left(V_{D D}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{f} 1=30 \mathrm{MHz}\right. \text {, } \\ & \left.\mathrm{f} 2=30.001 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=250 \mathrm{~mA}\right) \end{aligned}$	$\begin{gathered} \operatorname{IMD}_{(\mathrm{d} 3)} \\ \mathrm{IMD}_{(\mathrm{d} 11)} \end{gathered}$	-	$\begin{aligned} & -30 \\ & -60 \end{aligned}$	-	dB
Load Mismatch $\begin{aligned} & \left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{f}=30 ; 30.001 \mathrm{MHz},\right. \\ & \text { IDQ }=250 \mathrm{~mA}, \text { VSWR } 30: 1 \text { at all Phase Angles }) \end{aligned}$	$\psi$	No Degradation in Output Power			

NOTE:

1. To MIL-STD-1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone.


C2, C5, C6, C7, C8, C9-0.1 $\mu$ F Ceramic Chip or Monolythic with Short Leads
C3 - Arco 469
C4 - 820 pF Unencapsulated Mica or Dipped Mica with Short Leads
C10 - $10 \mu \mathrm{~F} / 100 \mathrm{~V}$ Electrolytic
C11-1 $\mu \mathrm{F}, 50 \mathrm{~V}$, Tantalum C12 - 330 pF , Dipped Mica (Short leads)

L1 - VK200/4B Ferrite Choke or Equivalent, $3.0 \mu \mathrm{H}$
L2 - Ferrite Bead(s), $2.0 \mu \mathrm{H}$
R1, R2-51 $\Omega / 1.0 \mathrm{~W}$ Carbon
R3 - $1.0 \Omega / 1.0$ W Carbon or Parallel Two $2 \Omega, 1 / 2 \mathrm{~W}$ Resistors
R4-1k $\Omega / 1 / 2 \mathrm{~W}$ Carbon
T1 - 16:1 Broadband Transformer
T2 - 1:25 Broadband Transformer

Figure 1. 30 MHz Test Circuit (Class AB)


Figure 2. Power Gain versus Frequency


Figure 3. Output Power versus Input Power


Figure 4. IMD versus Pout


Figure 5. Common Source Unity Gain Frequency versus Drain Current


Figure 6. Gate Voltage versus Drain Current


NOTE: Gate Shunted by 25 Ohms.
Figure 7. Series Equivalent Impedance


Figure 8. 150 MHz Test Circuit (Class AB)

## RF POWER MOSFET CONSIDERATIONS

## MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain $\left(\mathrm{C}_{\mathrm{gd}}\right)$, and gate-to-source ( $\mathrm{C}_{\mathrm{gs}}$ ). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain-to-source ( $\mathrm{C}_{\mathrm{ds}}$ ).

These capacitances are characterized as input ( $\mathrm{C}_{\text {iss }}$ ), output (Coss) and reverse transfer ( $\mathrm{C}_{\mathrm{rss}}$ ) capacitances ondata sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The $\mathrm{C}_{\text {iss }}$ can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

$\mathrm{C}_{\text {iss }}=\mathrm{C}_{\mathrm{gd}}+\mathrm{C}_{\text {gs }}$
$\mathrm{C}_{\mathrm{oss}}=\mathrm{Cgd}_{\mathrm{gd}}+\mathrm{Cds}^{2}$
$\mathrm{C}_{\text {rss }}=\mathrm{C}_{\text {gd }}$

## LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to $\mathrm{f} \top$ for bipolar transistors.

Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

## DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$, occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, $\mathrm{V}_{\mathrm{DS}}$ (on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

## GATE CHARACTERISTICS

The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high - on the order of $10^{9}$ ohms resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, $V_{G S}(t h)$.

Gate Voltage Rating - Never exceed the gate voltage rating. Exceeding the rated $\mathrm{V}_{\mathrm{GS}}$ can result in permanent damage to the oxide layer in the gate region.

Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection - These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.

EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY

Collector	Drain	
Emitter	Source	
Base	Gate	
$V_{\text {(BR) }}$ CES	$V_{(B R) D S S}$	
$\mathrm{V}_{\mathrm{CBO}}$	VDGO	
IC		
ICES	IDSS	
IEBO	IGSS	
$V_{B E}$ (on)	$\mathrm{V}_{\text {GS }}$ (th)	
$V_{\text {CE (sat) }}$	$V_{\text {DS }}(0 n)$	
$\mathrm{C}_{\mathrm{ib}}$	Ciss	
Cob	Coss	
$\mathrm{h}_{\text {fe }}$	gfs	
$\mathrm{V}_{\mathrm{CE}}$ (sat)		$\mathrm{V}_{\mathrm{DS} \text { (on) }}$
$\mathrm{R}_{\mathrm{CE}}($ sat) $)=\frac{\mathrm{l}}{\mathrm{l}}$ (sat)	DS(on) $=$	ID

# The RF MOSFET Line RF Power Field-Effect Transistor N-Channel Enhancement-Mode MOSFET 

Designed for broadband commercial and military applications at frequencies to 175 MHz . The high power, high gain and broadband performance of this device makes possible solid state transmitters for FM broadcast or TV channel frequency bands.

- Guaranteed Performance at $30 \mathrm{MHz}, 28 \mathrm{~V}$ :

Output Power - 150 W
Gain - 18 dB (22 dB Typ)
Efficiency - 40\%

- Typical Performance at $175 \mathrm{MHz}, 50 \mathrm{~V}$ :

Output Power - 150 W
Gain - 13 dB

- Low Thermal Resistance
- Ruggedness Tested at Rated Output Power
- Nitride Passivated Die for Enhanced Reliability



## MRF141



CASE 211-11, STYLE 2

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDSS	65	Vdc
Drain-Gate Voltage	VDGO	65	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 40$	Vdc
Drain Current - Continuous	ID	16	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$\mathrm{PD}^{\text {D }}$	$\begin{aligned} & 300 \\ & 1.71 \end{aligned}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R $_{\theta \mathrm{JC}}$	0.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS
( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic
Symbol Min Typ Max Unit
OFF CHARACTERISTICS $(1)$ $\left.\mathrm{V}_{(\mathrm{BR}}\right) \mathrm{DSS}$ 65 - -   Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$ $\mathrm{I}_{\mathrm{DSS}}$ - - 5.0   Gate-Body Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\right)$ $\mathrm{I}_{\mathrm{GSS}}$ - - 1.0

ON CHARACTERISTICS (1)

Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	1.0	3.0	5.0	Vdc
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	0.1	0.9	1.5	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A}\right)$	$\mathrm{g}_{\mathrm{fs}}$	5.0	7.0	-	mhos

DYNAMIC CHARACTERISTICS (1)

Input Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{iss}}$	-	350	-	pF
Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{Oss}}$	-	420	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	35	-	pF

FUNCTIONAL TESTS

Common Source Amplifier Power Gain, $f=30 ; 30.001 \mathrm{MHz}$ $\left(V_{D D}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{I} \mathrm{DQ}=250 \mathrm{~mA}\right) \mathrm{f}=175 \mathrm{MHz}$	$\mathrm{G}_{\mathrm{ps}}$	16	20 10		dB
$\begin{aligned} & \text { Drain Efficiency } \\ & \left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{f}=30 ; 30.001 \mathrm{MHz},\right. \\ & \left.\mathrm{I}_{\mathrm{DQ}}=250 \mathrm{~mA}, \mathrm{I}_{\mathrm{D}}(\mathrm{Max})=5.95 \mathrm{~A}\right) \end{aligned}$	$\eta$	40	45	-	\%
$\begin{aligned} & \text { Intermodulation Distortion (1) } \\ & \left(\mathrm{V} \mathrm{DD}=28 \mathrm{~V}, \mathrm{P}_{\mathrm{out}}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{f}=30 \mathrm{MHz},\right. \\ & \mathrm{f} 2=30.001 \mathrm{MHz}, \mathrm{IDQ}=250 \mathrm{~mA}) \end{aligned}$	$\begin{array}{r} \mathrm{IMD}(\mathrm{~d} 3) \\ \mathrm{IMD}_{(\mathrm{d} 11)} \\ \hline \end{array}$	-	$\begin{aligned} & -30 \\ & -60 \end{aligned}$	$-28$	dB
$\begin{aligned} & \text { Load Mismatch } \\ & \left(V_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{f} 1=30 ; 30.001 \mathrm{MHz}\right. \text {, } \\ & \text { I DQ } \left.^{2} 250 \mathrm{~mA}, \text { VSWR } 30: 1 \text { at all Phase Angles }\right) \end{aligned}$	$\psi$	No Degradation in Output Power			

CLASS A PERFORMANCE

Intermodulation Distortion (1) and Power Gain	$\mathrm{GPS}_{2}$	-	23	-
$(\mathrm{VDD}=28 \mathrm{~V}, \mathrm{Pout}=50 \mathrm{~W}(\mathrm{PEP}), \mathrm{f} 1=30 \mathrm{MHz}$,	$\mathrm{IMD}_{(\mathrm{d} 3)}$	-	-50	-
$\mathrm{f} 2=30.001 \mathrm{MHz}, \mathrm{IDQ}=4.0 \mathrm{~A})$	$\mathrm{IMD}_{(\mathrm{d} 9-13)}$	-	-75	-

NOTE:

1. To MIL-STD-1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone.


C2, C5, C6, C7, C8, C9-0.1 $\mu$ F Ceramic Chip or Monolythic with Short Leads
C3 - Arco 469
C4 - 820 pF Unencapsulated Mica or Dipped Mica with Short Leads
C10 - $10 \mu \mathrm{~F} / 100 \mathrm{~V}$ Electrolytic
C11-1 $\mu \mathrm{F}, 50 \mathrm{~V}$, Tantalum
C12 - 330 pF, Dipped Mica (Short leads)

L1 - VK200/4B Ferrite Choke or Equivalent, $3.0 \mu \mathrm{H}$
L2 - Ferrite Bead(s), $2.0 \mu \mathrm{H}$
R1, R2-51 $\Omega / 1.0 \mathrm{~W}$ Carbon
R3 - $1.0 \Omega / 1.0$ W Carbon or Parallel Two $2 \Omega, 1 / 2 \mathrm{~W}$ Resistors
R4-1 $\mathrm{k} \Omega / 1 / 2 \mathrm{~W}$ Carbon
T1 - 16:1 Broadband Transformer
T2 - 1:25 Broadband Transformer
Board Material - 0.062" Fiberglass (G10),
1 oz. Copper Clad, 2 Sides, $\varepsilon_{r}=5$

Figure 1. 30 MHz Test Circuit (Class AB)


VDS, DRAIN-TO-SOURCE VOLTAGE (VOLTS)
Figure 2. DC Safe Operating Area


Figure 4. Common Source Unity Gain Frequency versus Drain Current


Figure 6. Power Gain versus Frequency


Figure 3. Gate-Source Voltage versus Case Temperature


Figure 5. Capacitance versus
Drain-Source Voltage


Figure 7. Output Power versus Input Power

TYPICAL CHARACTERISTICS


Figure 8. Output Power versus Supply Voltage


Figure 9. Output Power versus Supply Voltage


Figure 10. IMD versus Pout (PEP)


Figure 11. Input and Output Impedances


Figure 12. 175 MHz Test Circuit (Class AB)

## RF POWER MOSFET CONSIDERATIONS

## MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal anode gate structure determines the capacitors from gate-to-drain ( $\mathrm{C}_{\mathrm{gd}}$ ), and gate-to-source ( $\mathrm{Cgs}_{\mathrm{g}}$ ). The PN junction formed during the fabrication of the MOSFET results in a junction capacitance from drain-to-source ( $\mathrm{C}_{\mathrm{ds}}$ ).

These capacitances are characterized as input ( $\mathrm{C}_{\text {iss }}$ ), output ( $\mathrm{C}_{\mathrm{Oss}}$ ) and reverse transfer ( $\mathrm{C}_{\mathrm{rss}}$ ) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The $\mathrm{C}_{\text {iss }}$ can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.


## LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain data presented, Figure 4 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to $\mathrm{f}_{\mathrm{T}}$ for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

## DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $\mathrm{V}_{\mathrm{DS}}(o n)$, occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, VDS(on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

## GATE CHARACTERISTICS

The gate of the MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high - on the order of $10^{9}$ ohms resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$.

Gate Voltage Rating - Never exceed the gate voltage rating. Exceeding the rated $\mathrm{V}_{\mathrm{GS}}$ can result in permanent damage to the oxide layer in the gate region.
Gate Termination - The gate of this device is essentially capacitor. Circuits that leave the gate open-circuited or float-
ing should be avoided. These conditions can result in turnon of the device due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection - This device does not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.

Using a resistor to keep the gate-to-source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on.

## HANDLING CONSIDERATIONS

When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear grounding straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with a grounded iron.

## DESIGN CONSIDERATIONS

The MRF141 is an RF Power, MOS, N-channel enhancement mode field-effect transistor (FET) designed for HF and VHF power amplifier applications.

Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power MOSFETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal.

## DC BIAS

The MRF141 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF141 was characterized at I $D Q=250 \mathrm{~mA}$, each side, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate bias sytem.

## GAIN CONTROL

Power output of the MRF141 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems.

## The RF MOSFET Line RF Power Field-Effect Transistor N-Channel Enhancement-Mode MOSFET

Designed for broadband commercial and military applications at frequencies to 175 MHz . The high power, high gain and broadband performance of this device makes possible solid state transmitters for FM broadcast or TV channel frequency bands.

- Guaranteed Performance at $175 \mathrm{MHz}, 28 \mathrm{~V}$ :

Output Power - 300 W
Gain - 12 dB (14 dB Typ)
Efficiency - 50\%

- Low Thermal Resistance - $0.35^{\circ} \mathrm{C} / \mathrm{W}$
- Ruggedness Tested at Rated Output Power
- Nitride Passivated Die for Enhanced Reliability


MRF141G
$300 \mathrm{~W}, 28 \mathrm{~V}, 175 \mathrm{MHz}$ N-CHANNEL
BROADBAND
RF POWER MOSFET


CASE 375-04, STYLE 2

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	Vdc
Drain-Gate Voltage	$\mathrm{V}_{\mathrm{DGO}}$	65	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 40$	Vdc
Drain Current - Continuous	$\mathrm{I}_{\mathrm{D}}$	32	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	500	Watts   Storage Temperature Range
Operating Junction Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ}{ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R $_{\theta \mathrm{JC}}$	0.35	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (1)					
Drain-Source Breakdown Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I} \mathrm{D}=100 \mathrm{~mA}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	Vdc
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	5.0	mAdc
Gate-Body Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\right)$	IGSS	-	-	1.0	$\mu \mathrm{Adc}$

ON CHARACTERISTICS (1)

Gate Threshold Voltage   $\left(V_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	1.0	3.0	5.0	Vdc
Drain-Source On-Voltage   $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	0.1	0.9	1.5	Vdc
Forward Transconductance   $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A}\right)$	gfs	5.0	7.0	-	mhos

DYNAMIC CHARACTERISTICS (1)

Input Capacitance   $\left(V_{D S}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	350	-	pF
Output Capacitance   $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {oss }}$	-	420	-	pF
Reverse Transfer Capacitance   $\left(V_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {rss }}$	-	35	-	pF

FUNCTIONAL TESTS (2)

Common Source Amplifier Power Gain $\left(\mathrm{V} D \mathrm{DD}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=300 \mathrm{~W}, \mathrm{IDQ}=500 \mathrm{~mA}, \mathrm{f}=175 \mathrm{MHz}\right)$	$\mathrm{G}_{\mathrm{ps}}$	12	14	-	dB
Drain Efficiency $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=300 \mathrm{~W}, \mathrm{f}=175 \mathrm{MHz}, \mathrm{I}_{\mathrm{D}}(\mathrm{Max})=21.4 \mathrm{~A}\right)$	$\eta$	45	55	-	\%
Load Mismatch $\left(\mathrm{V} D \mathrm{D}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=300 \mathrm{~W}, \mathrm{IDQ}=500 \mathrm{~mA}, \mathrm{f}=175 \mathrm{MHz},\right.$   VSWR 5:1 at all Phase Angles)	$\psi$	No Degradation in Output Power			

NOTES:

1. Each side measured separately.
2. Measured in push-pull configuration.


C1 - Arco 402, 1.5-20 pF
C2 - Arco 406, 15-115 pF
C3, C4, C8, C9, C10 - 1000 pF Chip
C5, C11 - $0.1 \mu \mathrm{~F}$ Chip
C6-330 pF Chip
C7 - 200 pF and 180 pF Chips in Parallel
C12-0.47 $\mu$ F Ceramic Chip, Kemet 1215 or Equivalent
C13 - Arco 403, 3.0-35 pF
L1 - 10 Turns AWG \#16 Enameled Wire, Close Wound, 1/4" I.D.
L2 - Ferrite Beads of Suitable Material for $1.5-2.0 \mu \mathrm{H}$ Total Inductance
R1 - 100 Ohms, $1 / 2 \mathrm{~W}$
R2 - 1.0 kOhm, 1/2 W

T1 - 9:1 RF Transformer. Can be made of 15-18 Ohms Semirigid Co-Ax, 62-90 Mils O.D.
T2 - 1:9 RF Transformer. Can be made of 15-18 Ohms Semirigid Co-Ax, 70-90 Mils O.D.

Board Material - $0.062^{\prime \prime}$ Fiberglass (G10),
1 oz. Copper Clad, 2 Sides, $\varepsilon_{r}=5$
NOTE: For stability, the input transformer T1 must be loaded with ferrite toroids or beads to increase the common mode inductance. For operation below 100 MHz . The same is required for the output transformer.
See pictures for construction details.

Unless Otherwise Noted, All Chip Capacitors are ATC Type 100 or Equivalent.

Figure 1. 175 MHz Test Circuit

## TYPICAL CHARACTERISTICS



Figure 2. DC Safe Operating Area


Figure 3. Gate-Source Voltage versus Case Temperature

TYPICAL CHARACTERISTICS


NOTE: Data shown applies to each half of MRF141G.
Figure 4. Common Source Unity Gain Frequency versus Drain Current


Figure 6. Power Gain versus Frequency


NOTE: Data shown applies to each half of MRF141G.
Figure 5. Capacitance versus Drain-Source Voltage


Figure 7. Output Power versus Supply Voltage


Figure 8. Input and Output Impedances

## RF POWER MOSFET CONSIDERATIONS

## MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal anode gate structure determines the capacitors from gate-to-drain ( $\mathrm{C}_{\mathrm{gd}}$ ), and gate-to-source ( $\mathrm{C}_{\mathrm{gs}}$ ). The PN junction formed during the fabrication of the MOSFET results in a junction capacitance from drain-to-source ( $\mathrm{C}_{\mathrm{ds}}$ ).

These capacitances are characterized as input ( $\mathrm{C}_{\text {iss }}$ ), output ( $\mathrm{C}_{\mathrm{oss}}$ ) and reverse transfer ( $\mathrm{C}_{\mathrm{rss}}$ ) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The $\mathrm{C}_{\text {iss }}$ can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.


## LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain data presented, Figure 4 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to $\mathrm{f}_{\mathrm{T}}$ for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

## DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$, occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, $\mathrm{V}_{\mathrm{DS}}$ (on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

## GATE CHARACTERISTICS

The gate of the MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high - on the order of $10^{9}$ ohms resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$.

Gate Voltage Rating - Never exceed the gate voltage rating. Exceeding the rated $\mathrm{V}_{\mathrm{GS}}$ can result in permanent damage to the oxide layer in the gate region.

Gate Termination - The gate of this device is essentially capacitor. Circuits that leave the gate open-circuited or float-
ing should be avoided. These conditions can result in turnon of the device due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection - This device does not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.

Using a resistor to keep the gate-to-source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on.

## HANDLING CONSIDERATIONS

When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear grounding straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with a grounded iron.

## DESIGN CONSIDERATIONS

The MRF141G is an RF Power, MOS, N-channel enhancement mode field-effect transistor (FET) designed for HF and VHF power amplifier applications.

Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power MOSFETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal.

## DC BIAS

The MRF141G is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF141G was characterized at $\operatorname{IDQ}=250 \mathrm{~mA}$, each side, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate bias sytem.

## GAIN CONTROL

Power output of the MRF141G may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems.

## The RF MOSFET Line RF Power Field-Effect Transistor N-Channel Enhancement-Mode

Designed for power amplifier applications in industrial, commercial and amateur radio equipment to 175 MHz .

- Superior High Order IMD
- Specified 50 Volts, 30 MHz Characteristics

Output Power = 30 Watts
Power Gain $=18 \mathrm{~dB}$ (Typ)
Efficiency $=40 \%$ (Typ)

- $\operatorname{IMD}(\mathrm{d} 3)$ (30 W PEP) - -35 dB (Typ)
- $\mathrm{IMD}_{(\mathrm{d} 11)}$ (30 W PEP) - -60 dB (Typ)
- $100 \%$ Tested For Load Mismatch At All Phase Angles With 30:1 VSWR


CASE 211-07, STYLE 2

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V ${ }_{\text {DSS }}$	120	Vdc
Drain-Gate Voltage	VDGO	120	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 40$	Vdc
Drain Current - Continuous	ID	6.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & \hline 115 \\ & 0.66 \end{aligned}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	1.52	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Handling and Packaging - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage ( $\left.\mathrm{V}_{\mathrm{GS}}=0, \mathrm{ID}=10 \mathrm{~mA}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	125	-	-	Vdc
Zero Gate Voltage Drain Current (VDS $=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ )	IDSS	-	-	1.0	mAdc
Gate-Body Leakage Current ( $\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ )	IGSS	-	-	100	nAdc

## ON CHARACTERISTICS

Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	1.0	3.0	5.0	Vdc
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	1.0	3.0	5.0	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}\right)$	$\mathrm{gfs}_{\mathrm{s}}$	0.8	1.2	-	mhos

DYNAMIC CHARACTERISTICS

Input Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	50	-	pF
Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{oss}}$	-	35	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	8.0	-	pF

FUNCTIONAL TESTS (SSB)

Common Source Amplifier Power Gain    $\left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}(\mathrm{PEP}), \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right)$ $(30 \mathrm{MHz})$   $(175 \mathrm{MHz})$	$\mathrm{G}_{\mathrm{ps}}$	-	$\begin{aligned} & 18 \\ & 15 \end{aligned}$		dB
Drain Efficiency $(30 \mathrm{WPEP})$   $\left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{f}=30 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right)$ $(30 \mathrm{WCW})$	$\eta$	-	$\begin{aligned} & 40 \\ & 50 \end{aligned}$	-	\%
$\begin{aligned} & \text { Intermodulation Distortion } \\ & \left(V_{D D}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}(\mathrm{PEP}),\right. \\ & \left.\mathrm{f}=30 ; 30.001 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right) \end{aligned}$	$\begin{gathered} \mathrm{IMD}_{(\mathrm{d} 3)} \\ \mathrm{IMD}_{(\mathrm{d} 11)} \end{gathered}$		$\begin{aligned} & -35 \\ & -60 \end{aligned}$	-	dB
Load Mismatch $\begin{aligned} & \left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}(\mathrm{PEP}), \mathrm{f}=30 ; 30.001 \mathrm{MHz},\right. \\ & \text { IDQ }=100 \mathrm{~mA}, \mathrm{~V} \text {, } \mathrm{FR} 30: 1 \text { at all Phase Angles) } \end{aligned}$	$\psi$	No Degradation in Output Power			

## CLASS A PERFORMANCE

Intermodulation Distortion (1) and Power Gain	GPS	-	20	-	$d B$
$\left(V_{D D}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}(\mathrm{PEP}), \mathrm{f1}=30 \mathrm{MHz}\right.$,	$\mathrm{IMD}(\mathrm{d} 3)$	-	-50	-	
$\mathrm{f} 2=30.001 \mathrm{MHz}, \mathrm{IDQ}=1.0 \mathrm{~A})$	$\mathrm{IMD}_{(\mathrm{d} 9-13)}$	-	-70	-	

NOTE:

1. To MIL-STD-1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone.

[^36]R1, R2-200 $\Omega$, 1/2 W Carbon
R3-4.7 $\Omega$, 1/2 W Carbon
R4-470 $\Omega$, 1.0 W Carbon
T1 - 4:1 Impedance Transformer
T2 - 1:2 Impedance Transformer

Figure 1. 2.0 to 50 MHz Broadband Test Circuit


Figure 2. Power Gain versus Frequency


Figure 4. IMD versus Pout


Figure 3. Output Power versus Input Power


Figure 5. Common Source Unity Gain Frequency versus Drain Current


Figure 6. 150 MHz Test Circuit


Figure 7. Gate Voltage versus Drain Current


Figure 8. DC Safe Operating Area (SOA)


Figure 9. Impedance Coordinates - 50 Ohm Characteristic Impedance

## RF POWER MOSFET CONSIDERATIONS

## MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain $\left(\mathrm{C}_{\mathrm{gd}}\right)$, and gate-to-source ( $\mathrm{C}_{\mathrm{gs}}$ ). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain-to-source ( $\mathrm{C}_{\mathrm{ds}}$ ).

These capacitances are characterized as input ( $\mathrm{C}_{\text {iss }}$ ), output (Coss) and reverse transfer ( $\mathrm{C}_{\mathrm{rss}}$ ) capacitances ondata sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The $\mathrm{C}_{\text {iss }}$ can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.


$$
\begin{aligned}
& \mathrm{C}_{i s s}=\mathrm{C}_{\mathrm{gd}}+\mathrm{C}_{\mathrm{gs}} \\
& \mathrm{C}_{\mathrm{oss}}=\mathrm{C}_{\mathrm{gd}}+\mathrm{C}_{\mathrm{ds}} \\
& \mathrm{C}_{\mathrm{rss}}=\mathrm{C}_{\mathrm{gd}}
\end{aligned}
$$

## LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to $\mathrm{f} \top$ for bipolar transistors.

Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

## DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, VDS(on), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, $\mathrm{V}_{\mathrm{DS}}$ (on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

## GATE CHARACTERISTICS

The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high - on the order of $10^{9}$ ohms resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$.

Gate Voltage Rating - Never exceed the gate voltage rating. Exceeding the rated $\mathrm{V}_{\mathrm{GS}}$ can result in permanent damage to the oxide layer in the gate region.

Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection - These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.

```
EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY
```



```
 Emitter ...
 Base ...
```




```
 IC ..
```



```
 IEBO ..
```





```
 CobCoss
```




## The RF MOSFET Line RF Power Field-Effect Transistor N-Channel Enhancement-Mode

Designed primarily for linear large-signal output stages up to 150 MHz frequency range.

- Specified 50 Volts, 30 MHz Characteristics

Output Power = 150 Watts
Power Gain = 17 dB (Typ)
Efficiency $=45 \%$ (Typ)

- Superior High Order IMD
- $\mathrm{IMD}_{(\mathrm{d} 3)}$ (150 W PEP) — - 32 dB (Typ)
- $\mathrm{IMD}_{(\mathrm{d} 11)}$ (150 W PEP) - -60 dB (Typ)
- $100 \%$ Tested For Load Mismatch At All Phase Angles With 30:1 VSWR



## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	125	Vdc
Drain-Gate Voltage	$\mathrm{V}_{\text {DGO }}$	125	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 40$	Vdc
Drain Current - Continuous	$\mathrm{I}_{\mathrm{D}}$	16	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ $\mathrm{P}_{\mathrm{D}}$ 300   Derate above $25^{\circ} \mathrm{C}$  1.71   Storage Temperature Range $\mathrm{T}_{\text {stg }}$ -65 to +150   Operating Junction Temperature TJ 200   $\mathrm{~W} /{ }^{\circ} \mathrm{C}$  ${ }^{\circ} \mathrm{C}$			

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	0.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Handling and Packaging - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS ( $\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage ( $\left.\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {(BR) }}$ DSS	125	-	-	Vdc
Zero Gate Voltage Drain Current ( $\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ )	IDSS	-	-	5.0	mAdc
Gate-Body Leakage Current ( $\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ )	IGSS	-	-	1.0	$\mu \mathrm{Adc}$

## ON CHARACTERISTICS

Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	1.0	3.0	5.0	Vdc
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=10 \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	1.0	3.0	5.0	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A}\right)$	$\mathrm{g}_{\mathrm{fs}}$	4.0	7.0	-	mhos

DYNAMIC CHARACTERISTICS

Input Capacitance ( $\left.\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	400	-	pF
Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{oss}}$	-	240	-	pF
Reverse Transfer Capacitance ( $\left.\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	40	-	pF

FUNCTIONAL TESTS (SSB)

Common Source Amplifier Power Gain $f=30 \mathrm{MHz}$   $\left(V_{D D}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\right.$ PEP $)$, IDQ $\left.=250 \mathrm{~mA}\right)$ $f=150 \mathrm{MHz}$	$\mathrm{G}_{\mathrm{ps}}$		$\begin{aligned} & \hline 17 \\ & 8.0 \end{aligned}$		dB
$\begin{aligned} & \text { Drain Efficiency } \\ & \left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{f}=30 ; 30.001 \mathrm{MHz},\right. \\ & \left.\mathrm{I}_{\mathrm{D}}(\mathrm{Max})=3.75 \mathrm{~A}\right) \end{aligned}$	$\eta$	-	45	-	\%
$\begin{aligned} & \text { Intermodulation Distortion (1) } \\ & \left(V_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}),\right. \\ & \left.\mathrm{f} 1=30 \mathrm{MHz}, \mathrm{f} 2=30.001 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=250 \mathrm{~mA}\right) \end{aligned}$	$\begin{gathered} \operatorname{IMD}(\mathrm{d} 3) \\ \mathrm{IMD}(\mathrm{~d} 11) \end{gathered}$	-	$\begin{aligned} & -32 \\ & -60 \end{aligned}$	-	dB
Load Mismatch $\begin{aligned} & \left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{f}=30 ; 30.001 \mathrm{MHz},\right. \\ & \text { IDQ }=250 \mathrm{~mA}, \text { VSWR } 30: 1 \text { at all Phase Angles }) \end{aligned}$	$\psi$	No Degradation in Output Power			

## CLASS A PERFORMANCE

Intermodulation Distortion (1) and Power Gain	$\mathrm{GPS}_{1}$	-	20	-
$\left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}(P E P), \mathrm{f} 1=30 \mathrm{MHz}\right.$,	$\mathrm{IMD}_{(\mathrm{d} 3)}$	-	-50	-
$\mathrm{f} 2=30.001 \mathrm{MHz}, \mathrm{IDQ}=3.0 \mathrm{~A})$	$\mathrm{IMD}_{(\mathrm{d} 9-13)}$	-	-75	-

NOTE:

1. To MIL-STD-1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone.


Figure 1. 30 MHz Test Circuit (Class AB)


Figure 2. Power Gain versus Frequency


Figure 4. IMD versus Pout


Figure 3. Output Power versus Input Power


Figure 5. Common Source Unity Gain Frequency versus Drain Current


Figure 6. Gate Voltage versus Drain Current


Figure 7. Series Equivalent Impedance


Figure 8. 150 MHz Test Circuit (Class AB)

## RF POWER MOSFET CONSIDERATIONS

## MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain $\left(\mathrm{C}_{\mathrm{gd}}\right)$, and gate-to-source ( $\mathrm{C}_{\mathrm{gs}}$ ). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain-to-source ( $\mathrm{C}_{\mathrm{ds}}$ ).
These capacitances are characterized as input ( $\mathrm{C}_{\mathrm{iss}}$ ), output (Coss) and reverse transfer ( $\mathrm{C}_{\text {rss }}$ ) capacitances ondata sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The $\mathrm{C}_{\text {iss }}$ can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

$\mathrm{C}_{\text {iss }}=\mathrm{C}_{\mathrm{gd}}+\mathrm{C}_{\mathrm{gs}}$
$C_{\text {oss }}=C_{g d}+C_{d s}$
$C_{\text {rss }}=C_{\text {gd }}$

## LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to $\mathrm{f}^{\mathrm{T}}$ for bipolar transistors.

Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

## DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$, occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, $\mathrm{V}_{\mathrm{DS}}$ (on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

## GATE CHARACTERISTICS

The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high - on the order of $10^{9}$ ohms resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, $V_{G S}(\mathrm{th})$.

Gate Voltage Rating - Never exceed the gate voltage rating. Exceeding the rated $\mathrm{V}_{\mathrm{GS}}$ can result in permanent damage to the oxide layer in the gate region.

Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection - These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.

## EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY

$$
\begin{aligned}
& \text { Collector ...................................... Drain } \\
& \text { Emitter ....................................... Source } \\
& \text { Base ..................................... Gate }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ICES ...................................... IDSS } \\
& \text { IEBO .......................................... IGSS }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{ib}} \ldots \ldots \ldots \ldots \ldots \ldots . . . . . . . . . . . .
\end{aligned}
$$

$$
\begin{aligned}
& h_{f e} \ldots \ldots \ldots \ldots \ldots \ldots \text {........................................ }
\end{aligned}
$$

## The RF MOSFET Line RF Power Field-Effect Transistor N-Channel Enhancement-Mode MOSFET

Designed for broadband commercial and military applications at frequencies to 175 MHz . The high power, high gain and broadband performance of this device makes possible solid state transmitters for FM broadcast or TV channel frequency bands.

- Guaranteed Performance at $30 \mathrm{MHz}, 50 \mathrm{~V}$ :

Output Power - 150 W
Gain - 18 dB (22 dB Typ)
Efficiency - 40\%

- Typical Performance at $175 \mathrm{MHz}, 50 \mathrm{~V}$ :

Output Power - 150 W
Gain - 13 dB

- Low Thermal Resistance
- Ruggedness Tested at Rated Output Power
- Nitride Passivated Die for Enhanced Reliability


CASE 211-11, STYLE 2

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V ${ }_{\text {DSS }}$	125	Vdc
Drain-Gate Voltage	V ${ }_{\text {DGO }}$	125	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 40$	Vdc
Drain Current - Continuous	ID	16	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{aligned} & 300 \\ & 1.71 \end{aligned}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	0.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage ( $\left.\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {(BR) }}$ DSS	125	-	-	Vdc
Zero Gate Voltage Drain Current ( $\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$ )	IDSS	-	-	5.0	mAdc
Gate-Body Leakage Current ( $\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ )	IGSS	-	-	1.0	$\mu \mathrm{Adc}$

## ON CHARACTERISTICS

Gate Threshold Voltage ( $\left.\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	1.0	3.0	5.0	Vdc
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	1.0	3.0	5.0	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A}\right)$	$\mathrm{g}_{\mathrm{fs}}$	5.0	7.0	-	mhos

DYNAMIC CHARACTERISTICS

Input Capacitance (VDS $\left.=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{iss}}$	-	350	-pF	
Output Capacitance (VDS $\left.=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{Oss}}$	-	220	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	15	-	pF

FUNCTIONAL TESTS

Common Source Amplifier Power Gain, $f=30 ; 30.001 \mathrm{MHz}$ $\left(V_{D D}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{IDQ}=250 \mathrm{~mA}\right) \mathrm{f}=175 \mathrm{MHz}$	$\mathrm{G}_{\mathrm{ps}}$	$18$	$\begin{aligned} & 22 \\ & 13 \end{aligned}$	-	dB
```Drain Efficiency \(\left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{f}=30 ; 30.001 \mathrm{MHz}\right.\), \(\left.l_{D}(\mathrm{Max})=3.75 \mathrm{~A}\right)\)```	$\eta$	40	45	-	\%
$\begin{aligned} & \text { Intermodulation Distortion (1) } \\ & \left(V_{D D}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{f}=30 \mathrm{MHz}\right. \text {, } \\ & \mathrm{f} 2=30.001 \mathrm{MHz}, \mathrm{IDQ}=250 \mathrm{~mA}) \end{aligned}$	$\begin{aligned} & \mathrm{IMD}_{(\mathrm{d} 3)} \\ & \mathrm{IMD}_{(\mathrm{d} 11)} \end{aligned}$	-	$\begin{aligned} & -32 \\ & -60 \end{aligned}$	$\begin{gathered} -30 \\ \hline \end{gathered}$	dB
Load Mismatch $\left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{f} 1=30 ; 30.001 \mathrm{MHz},\right.$ $\text { IDQ = } 250 \mathrm{~mA} \text {, VSWR 30:1 at all Phase Angles) }$	ψ	No Degradation in Output Power			

CLASS A PERFORMANCE

Intermodulation Distortion (1) and Power Gain	GPS_{2}	-	23	-
$\left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}(P E P), \mathrm{f} 1=30 \mathrm{MHz}\right.$,	$\mathrm{IMD}_{(\mathrm{d} 3)}$	-	-50	-
$\mathrm{f} 2=30.001 \mathrm{MHz}, \mathrm{IDQ}=3.0 \mathrm{~A})$	$\mathrm{IMD}_{(\mathrm{d} 9-13)}$	-	-75	-

NOTE:

1. To MIL-STD-1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone.

C1 - 470 pF Dipped Mica
C2, C5, C6, C7, C8, C9 - $0.1 \mu \mathrm{~F}$ Ceramic Chip or Monolythic with Short Leads
C3 - 200 pF Unencapsulated Mica or Dipped Mica with Short Leads
C4-15 pF Unencapsulated Mica or Dipped Mica with Short Leads
C10 - $10 \mu \mathrm{~F} / 100 \mathrm{~V}$ Electrolytic

L1 - VK200/4B Ferrite Choke or Equivalent, $3.0 \mu \mathrm{H}$
L2 - Ferrite Bead(s), $2.0 \mu \mathrm{H}$
R1, R2 - 51 ת/1.0 W Carbon
R3 - $3.3 \Omega / 1.0$ W Carbon (or $2.0 \times 6.8 \Omega / 1 / 2 \mathrm{~W}$ in Parallel)
T1 - 9:1 Broadband Transformer
T2 - 1:9 Broadband Transformer
Board Material - 0.062" Fiberglass (G10),
1 oz. Copper Clad, 2 Sides, $\varepsilon_{r}=5$

Figure 1. 30 MHz Test Circuit

Figure 2. 175 MHz Test Circuit

TYPICAL CHARACTERISTICS

Figure 3. Capacitance versus Drain-Source Voltage

Figure 4. Gate-Source Voltage versus Case Temperature

Figure 5. DC Safe Operating Area

Figure 7. Power Gain versus Frequency

Figure 6. Common Source Unity Gain Frequency versus Drain Current

Figure 8. Output Power versus Input Power

Figure 9. IMD versus $P_{\text {out }}$

Figure 10. Series Equivalent Impedance

RF POWER MOSFET CONSIDERATIONS

MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal anode gate structure determines the capacitors from gate-to-drain (C_{gd}), and gate-to-source (C_{gs}). The PN junction formed during the fabrication of the MOSFET results in a junction capacitance from drain-to-source (C_{ds}).

These capacitances are characterized as input ($\mathrm{C}_{\text {iss }}$), output ($\mathrm{C}_{\mathrm{oss}}$) and reverse transfer ($\mathrm{Crss}^{\text {}}$) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The $\mathrm{C}_{\text {iss }}$ can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

$$
\mathrm{C}_{\mathrm{iss}}=\mathrm{C}_{\mathrm{gd}}=\mathrm{C}_{\mathrm{gs}}
$$

$\mathrm{C}_{\text {oss }}=\mathrm{C}_{\mathrm{gd}}=\mathrm{C}_{\mathrm{ds}}$
$C_{\text {rss }}=C_{g d}$

LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain data presented, Figure 6 may give the designer additional information on the capabilities of this device. The graph represents the
small signal unity current gain frequency at a given drain current level. This is equivalent to $\mathrm{f} \top$ for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$, occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, V_{DS} (on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

GATE CHARACTERISTICS

The gate of the MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high - on the order of 10^{9} ohms resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, $V_{G S}(\mathrm{th})$.

Gate Voltage Rating - Never exceed the gate voltage rating. Exceeding the rated V_{GS} can result in permanent damage to the oxide layer in the gate region.

Gate Termination - The gate of this device is essentially capacitor. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turnon of the device due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection - This device does not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.

Using a resistor to keep the gate-to-source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on.

HANDLING CONSIDERATIONS

When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear grounding straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with a grounded iron.

DESIGN CONSIDERATIONS

The MRF151 is an RF Power, MOS, N-channel enhancement mode field-effect transistor (FET) designed for HF and VHF power amplifier applications.

Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power MOSFETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal.

DC BIAS

The MRF151 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF151 was characterized at IDQ $=250 \mathrm{~mA}$, each side, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate bias sytem.

GAIN CONTROL

Power output of the MRF151 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems.

The RF MOSFET Line RF Power Field-Effect Transistor N-Channel Enhancement-Mode MOSFET

Designed for broadband commercial and military applications at frequencies to 175 MHz . The high power, high gain and broadband performance of this device makes possible solid state transmitters for FM broadcast or TV channel frequency bands.

- Guaranteed Performance at $175 \mathrm{MHz}, 50 \mathrm{~V}$:

Output Power - 300 W
Gain - 14 dB (16 dB Typ)
Efficiency - 50\%

- Low Thermal Resistance - $0.35^{\circ} \mathrm{C} / \mathrm{W}$
- Ruggedness Tested at Rated Output Power
- Nitride Passivated Die for Enhanced Reliability

MRF151G
$300 \mathrm{~W}, 50 \mathrm{~V}, 175 \mathrm{MHz}$ N -CHANNEL BROADBAND RF POWER MOSFET

CASE 375-04, STYLE 2

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V ${ }_{\text {DSS }}$	125	Vdc
Drain-Gate Voltage	VDGO	125	Vdc
Gate-Source Voltage	V_{GS}	± 40	Vdc
Drain Current - Continuous	ID	40	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD_{D}	$\begin{aligned} & \hline 500 \\ & 2.85 \end{aligned}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	0.35	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (Each Side)					
Drain-Source Breakdown Voltage ($\left.\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {(BR) }{ }^{\text {DSS }}}$	125	-	-	Vdc
Zero Gate Voltage Drain Current ($\left.\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	5.0	mAdc
Gate-Body Leakage Current ($\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$)	IGSS	-	-	1.0	$\mu \mathrm{Adc}$

ON CHARACTERISTICS (Each Side)

Gate Threshold Voltage ($\left.\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	1.0	3.0	5.0	Vdc
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	1.0	3.0	5.0	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A}\right)$	g_{fs}	5.0	7.0	-	mhos

DYNAMIC CHARACTERISTICS (Each Side)

Input Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	350	-	pF
Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{oss}}$	-	220	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	15	-	pF

FUNCTIONAL TESTS

Common Source Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=300 \mathrm{~W}, \mathrm{I}_{\mathrm{DQ}}=500 \mathrm{~mA}, \mathrm{f}=175 \mathrm{MHz}\right)$	G_{ps}	14	16	-	dB
Drain Efficiency $\left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=300 \mathrm{~W}, \mathrm{f}=175 \mathrm{MHz}, \mathrm{ID}(\mathrm{Max})=11 \mathrm{~A}\right)$	η	50	55	-	\%
Load Mismatch $\left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=300 \mathrm{~W}, \mathrm{I}_{\mathrm{DQ}}=500 \mathrm{~mA},\right.$ VSWR 5:1 at all Phase Angles)	ψ	No Degradation in Output Power			

C2 - Arco 404
C3, C4, C7, C8, C9 - 1000 pF Chip
C5, C10-0.1 $\mu \mathrm{F}$ Chip
C6 - 330 pF Chip
C11 - $0.47 \mu \mathrm{~F}$ Ceramic Chip, Kemet 1215 or
Equivalent (100 V)
C12-Arco 422
L1 - 10 Turns AWG \#18 Enameled Wire, Close Wound, 1/4" I.D.
L2 - Ferrite Beads of Suitable Material for $1.5-2.0 \mu \mathrm{H}$ Total Inductance
Unless Otherwise Noted, All Chip Capacitors are ATC Type 100 or Equivalent.

Figure 1. 175 MHz Test Circuit

TYPICAL CHARACTERISTICS

Figure 2. Capacitance versus
Drain-Source Voltage*
*Data shown applies to each half of MRF151G.

Figure 4. Gate-Source Voltage versus Case Temperature*

Figure 3. Common Source Unity Gain Frequency versus Drain Current*

Figure 5. DC Safe Operating Area

Figure 6. RF Transformer

TYPICAL CHARACTERISTICS

Figure 7. Output Power versus Input Power

Figure 8. Power Gain versus Frequency

Figure 9. Input and Output Impedance

RF POWER MOSFET CONSIDERATIONS

MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal anode gate structure determines the capacitors from gate-to-drain (C_{gd}), and gate-to-source ($\mathrm{Cgs}_{\mathrm{g}}$). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain-to-source (C_{ds}).

These capacitances are characterized as input ($\mathrm{C}_{\text {iss }}$), output ($\mathrm{C}_{\mathrm{Oss}}$) and reverse transfer ($\mathrm{C}_{\mathrm{rss}}$) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The $\mathrm{C}_{\text {iss }}$ can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

$$
\begin{aligned}
& \mathrm{C}_{\text {iss }}=\mathrm{C}_{\mathrm{gd}}=\mathrm{C}_{\mathrm{gs}} \\
& \mathrm{C}_{\text {oss }}=\mathrm{C}_{\mathrm{gd}}=\mathrm{C}_{\mathrm{ds}} \\
& \mathrm{C}_{\text {rss }}=\mathrm{C}_{\mathrm{g}}
\end{aligned}
$$

LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain data presented, Figure 3 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to f_{T} for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$, occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, V_{DS} (on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

GATE CHARACTERISTICS

The gate of the MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high - on the order of 10^{9} ohms resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$.

Gate Voltage Rating - Never exceed the gate voltage rating. Exceeding the rated V_{GS} can result in permanent damage to the oxide layer in the gate region.

Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-cir-
cuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection - These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.

Using a resistor to keep the gate-to-source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on.

HANDLING CONSIDERATIONS

When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear grounding straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with a grounded iron.

DESIGN CONSIDERATIONS

The MRF151G is an RF Power, MOS, N-channel enhancement mode field-effect transistor (FET) designed for HF and VHF power amplifier applications.

Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power MOSFETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal.

DC BIAS

The MRF151G is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF151G was characterized at $I_{D Q}=250 \mathrm{~mA}$, each side, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate bias sytem.

GAIN CONTROL

Power output of the MRF151G may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems.

The RF MOSFET Line RF Power Field Effect Transistor N-Channel Enhancement-Mode MOSFET

Designed primarily for linear large-signal output stages in the $2.0-100 \mathrm{MHz}$ frequency range.

- Specified 50 Volts, 30 MHz Characteristics

Output Power = 600 Watts
Power Gain = 17 dB (Typ)
Efficiency $=45 \%$ (Typ)

$600 \mathrm{~W}, 50 \mathrm{~V}, 80 \mathrm{MHz}$ N -CHANNEL BROADBAND RF POWER MOSFET

CASE 368-03, STYLE 2 (HOG PAC)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDSS	125	Vdc
Drain-Gate Voltage	V ${ }_{\text {dGO }}$	125	Vdc
Gate-Source Voltage	V_{GS}	± 40	Vdc
Drain Current - Continuous	ID	60	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{gathered} 1350 \\ 7.7 \end{gathered}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	0.13	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Handling and Packaging - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS ($T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage ($\left.\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {(BR) }}$ DSS	125	-	-	Vdc
Zero Gate Voltage Drain Current ($\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0$)	IDSS	-	-	20	mAdc
Gate-Body Leakage Current ($\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$)	IGSS	-	-	5.0	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	1.0	3.0	5.0	Vdc
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=40 \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{DS}(\mathrm{on})}$	1.0	3.0	5.0	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=20 \mathrm{~A}\right)$	g_{fs}	16	20	-	mhos

DYNAMIC CHARACTERISTICS

Input Capacitance (VDS $\left.=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{iss}}$	-	1600	-pF	
Output Capacitance (VDS $\left.=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{OSS}}$	-	950	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	175	-	pF

FUNCTIONAL TESTS

Common Source Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=600 \mathrm{~W}, \mathrm{I}_{\mathrm{DQ}}=800 \mathrm{~mA}, \mathrm{f}=30 \mathrm{MHz}\right)$	G_{ps}	-	17	-	dB
Drain Efficiency $\left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=600 \mathrm{~W}, \mathrm{I}_{\mathrm{DQ}}=800 \mathrm{~mA}, \mathrm{f}=30 \mathrm{MHz}\right)$	η	-	45	-	\%
$\begin{aligned} & \text { Intermodulation Distortion } \\ & \left(\mathrm{V} \text { DD }=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=600 \mathrm{~W}(\mathrm{PEP})\right. \text {, } \\ & \mathrm{f} 1=30 \mathrm{MHz}, \mathrm{f} 2=30.001 \mathrm{MHz}, \mathrm{I} \mathrm{DQ}=800 \mathrm{~mA}) \end{aligned}$	$\mathrm{IMD}_{(\mathrm{d} 3)}$	-	-25	-	dB

Figure 1. 30 MHz Test Circuit

Figure 2. Power Gain versus Frequency

Figure 3. Output Power versus Input Power

Figure 4. DC Safe Operating Area

Figure 6. Gate Voltage versus Drain Current

Figure 7. Common Source Unity Gain Frequency versus Drain Current

Figure 8. Series Equivalent Impedance

Figure 9. 20-80 MHz 1.0 kW Broadband Amplifier

RF POWER MOSFET CONSIDERATIONS

MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (C_{gd}), and gate-tosource (C_{gs}). The PN junction formed during the fabrication of the RF MOSFET results in a junction capacitance from drain-to-source (C_{ds}).

These capacitances are characterized as input ($\mathrm{C}_{\mathrm{iss}}$), output ($\mathrm{C}_{\mathrm{oss}}$) and reverse transfer ($\mathrm{C}_{\mathrm{rss}}$) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The $\mathrm{C}_{\text {iss }}$ can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to f_{T} for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$, occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, V_{DS} (on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

GATE CHARACTERISTICS

The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high - on the order of 10^{9} ohms - resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, VGS(th).

Gate Voltage Rating - Never exceed the gate voltage rating. Exceeding the rated V_{GS} can result in permanent damage to the oxide layer in the gate region.

Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection - These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.

MOUNTING OF HIGH POWER RF POWER TRANSISTORS

The package of this device is designed for conduction cooling. It is extremely important to minimize the thermal resistance between the device flange and the heat dissipator.

Since the device mounting flange is made of soft copper, it may be deformed during various stages of handling or during transportation. It is recommended that the user makes a final inspection on this before the device installation. $\pm 0.0005^{\prime \prime}$ is considered sufficient for the flange bottom.

The same applies to the heat dissipator in the device mounting area. If copper heatsink is not used, a copper head spreader is strongly recommended between the device mounting surfaces and the main heatsink. It should be at least $1 / 4^{\prime \prime}$ thick and extend at least one inch from the flange edges. A thin layer of thermal compound in all interfaces is, of course, essential. The recommended torque on the 4-40 mounting screws should be in the area of $4-5 \mathrm{lbs}$.-inch, and spring type lock washers along with flat washers are recommended.

For die temperature calculations, the Δ temperature from a corner mounting screw area to the bottom center of the flange is approximately $5^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$ under normal operating conditions (dissipation 150 W and 300 W respectively).

The main heat dissipator must be sufficiently large and have low R_{θ} for moderate air velocity, unless liquid cooling is employed.

CIRCUIT CONSIDERATIONS

At high power levels (500 W and up), the circuit layout becomes critical due to the low impedance levels and high RF currents associated with the output matching. Some of the components, such as capacitors and inductors must also withstand these currents. The component losses are directly proportional to the operating frequency. The manufacturers
specifications on capacitor ratings should be consulted on these aspects prior to design.

Push-pull circuits are less critical in general, since the ground referenced RF loops are practically eliminated, and the impedance levels are higher for a given power output. High power broadband transformers are also easier to design than comparable LC matching networks.

EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY

Collector	Drain	
Emitter	Source	
Base	Gate	
$V_{\text {(BR)CES }}$	$V_{(B R)}$ DSS	
$V_{\text {CBO }}$	VDGO	
IC	ID	
ICES	IDSS	
IEBO	IGSS	
$V_{B E}$ (on)	$\mathrm{V}_{\text {GS }}$ (th)	
$\mathrm{V}_{\text {CE }}$ (sat)	VDS(on)	
$\mathrm{C}_{\text {ib }}$	Ciss	
$\mathrm{C}_{\text {ob }}$	$\mathrm{C}_{\text {oss }}$	
h_{fe}	gfs	
$\mathrm{R}_{\mathrm{CE} \text { (sat) }}=\frac{\mathrm{V}_{\text {CE }} \text { (sat) }}{}$		$\mathrm{V}_{\mathrm{DS} \text { (on) }}$
$\mathrm{R}_{\mathrm{CE}}($ sat $)=\frac{\mathrm{I}_{\text {c }}}{}$	DS(on)	ID

The RF Power MOS Line Power Field Effect Transistor N-Channel Enhancement Mode

Designed primarily for linear large-signal output stages to 80 MHz .

- Specified 50 Volts, 30 MHz Characteristics

MRF157

Output Power = 600 Watts
Power Gain = 21 dB (Typ)
Efficiency $=45 \%$ (Typ)

CASE 368-03, STYLE 2

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDSS	125	Vdc
Drain-Gate Voltage	V ${ }_{\text {DGO }}$	125	Vdc
Gate-Source Voltage	V_{GS}	± 40	Vdc
Drain Current - Continuous	ID	60	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{gathered} 1350 \\ 7.7 \end{gathered}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	0.13	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE - CAUTION — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS ($T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic
Symbol Min Typ Max Unit
OFF CHARACTERISTICS $\mathrm{V}_{(\mathrm{BR})} \mathrm{DSS}$ 125 - - Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$ $\mathrm{I}_{\mathrm{DSS}}$ - - 20 Gate-Body Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\right)$ $\mathrm{I}_{\mathrm{GSS}}$ - - 5.0

ON CHARACTERISTICS

Gate Threshold Voltage (VDS $\left.=10 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	1.0	3.0	5.0	Vdc
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=40 \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	1.0	3.0	5.0	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=20 \mathrm{~A}\right)$	g_{fs}	16	24	-mhos	

DYNAMIC CHARACTERISTICS

Input Capacitance $\left(V_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	1800	-	pF
Output Capacitance $\left(V_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {Oss }}$	-	750	-	pF
Reverse Transfer Capacitance $\left(V_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	75	-	pF

FUNCTIONAL TESTS

Common Source Amplifier Power Gain $\left(V_{D D}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=600 \mathrm{~W}, \mathrm{IDQ}=800 \mathrm{~mA}, \mathrm{f}=30 \mathrm{MHz}\right)$	G_{ps}	15	21	-	dB
Drain Efficiency $\left(V_{D D}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=600 \mathrm{~W}, \mathrm{f}=30 \mathrm{MHz}, \mathrm{IDQ}=800 \mathrm{~mA}\right)$	h	40	45	-	$\%$
Intermodulation Distortion $\left(V_{\mathrm{DD}}=50 \mathrm{~V}, \mathrm{P}_{\text {out }}=600 \mathrm{~W}(P E P), \mathrm{f} 1=30 \mathrm{MHz}\right.$, $\mathrm{f} 2=30.001 \mathrm{MHz}, \mathrm{IDQ}=800 \mathrm{~mA})$	$\mathrm{IMD}(\mathrm{d} 3)$	-	-25	-	dB

C2 -330 pF
C4-680 pF
C5, C19, C20 - $0.47 \mu \mathrm{~F}$, RMC Type 2225C
C6, C7, C14, C15, C16 - $0.1 \mu \mathrm{~F}$
C9, C10, C11 - 470 pF
C12-1000 pF
C13 - Two Unencapsulated 1000 pF Mica, in Series
C17, C18-0.039 $\mu \mathrm{F}$
C21 - $10 \mu \mathrm{~F} / 100 \mathrm{~V}$ Electrolytic
L1 - 2 Turns \#16 AWG, 1/2"ID, 3/8" Long
L2, L3 - Ferrite Beads, Fair-Rite Products Corp. \#2673000801
R1, R2 - 10 Ohms/2W Carbon
T1 - RF Transformer, 1:25 Impedance Ratio. See Motorola Application Note AN749, Figure 4 for details. Ferrite Material: 2 Each, Fair-Rite Products Corp. \#2667540001

All capacitors ATC type 100/200 chips or equivalent unless otherwise noted.
Figure 1. 30 MHz Test Circuit

Figure 2. Power Gain versus Frequency

VDS, DRAIN-SOURCE VOLTAGE (VOLTS)
Figure 4. DC Safe Operating Area

Figure 6. Gate Voltage versus Drain Current

Figure 3. Output Power versus Input Power

Figure 5. Capacitance versus Drain Voltage

Figure 7. Gate-Source Voltage versus Case Temperature

Figure 8. Output Power versus Input Power Under Pulse Conditions (2 x MRF157)

Figure 9. Thermal Response versus Pulse Width

Note: Pulse data for this graph was taken in a push-pull circuit similar to the one shown. However, the output matching network was modified for the higher level of peak power.

Figure 10. Series Equivalent Impedance

Unless otherwise noted, all resistors are $1 / 2$ watt metal film type. All chip capacitors except C13 are ATC type 100/200B or Dielectric Laboratories type C17.
Figure 11. 2.0 to $50 \mathrm{MHz}, 1.0 \mathrm{~kW}$ Wideband Amplifier

RF POWER MOSFET CONSIDERATIONS

MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (C_{gd}), and gate-tosource (C_{gs}). The PN junction formed during the fabrication of the TMOS ${ }^{\circledR}$ FET results in a junction capacitance from drain-to-source (C_{ds}).

These capacitances are characterized as input ($\mathrm{C}_{\mathrm{iss}}$), output ($\mathrm{C}_{\mathrm{oss}}$) and reverse transfer ($\mathrm{C}_{\mathrm{rss}}$) capacitances on data sheets. The relationships between the interterminal capacitances and those given on data sheets are shown below. The Ciss can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain data presented, Figure 5 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to $\mathrm{f} T$ for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$, occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, $\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$ has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

GATE CHARACTERISTICS

The gate of the TMOS FET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high - on the order of 10^{9} ohms resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$.

Gate Voltage Rating - Never exceed the gate voltage rating. Exceeding the rated V_{GS} can result in permanent damage to the oxide layer in the gate region.

Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection - These devices do not have an internal monolithic zener diode from gate-to-source. The addition of an internal zener diode may result in detrimental effects on the reliability of a power MOSFET. If gate protection is required, an external zener diode is recommended.

IMPEDANCE CHARACTERISTICS

Device input and output impedances are normally obtained by measuring their conjugates in an optimized narrow band test circuit. These test circuits are designed and constructed for a number of frequency points depending on the frequency coverage of characterization. For low frequencies the circuits consist of standard LC matching networks including variable capacitors for peak tuning. At increasing power levels the output impedance decreases, resulting in higher RF currents in the matching network. This makes the practicality of output impedance measurements in the manner described questionable at power levels higher than 200-300 W for devices operated at 50 V and $150-200 \mathrm{~W}$ for devices operated at 28 V . The physical sizes and values required for the components to withstand the RF currents increase to a point where physical construction of the output matching network gets difficult if not impossible. For this reason the output impedances are not given for high power devices such as the MRF154 and MRF157. However, formulas like $\frac{\left(V_{D S}-V_{\text {Sat }}\right)^{2}}{2 P_{\text {out }}}$ for a single ended design or $\frac{2\left(\left(V_{D S}-V_{\text {sat }}\right)^{2}\right)}{P_{\text {out }}}$ for a push-pull design can be used to obtain reasonably close approximations to actual values.

MOUNTING OF HIGH POWER RF POWER TRANSISTORS

The package of this device is designed for conduction cooling. It is extremely important to minimize the thermal resistance between the device flange and the heat dissipator.

If a copper heatsink is not used, a copper head spreader is strongly recommended between the device mounting surfaces and the main heatsink. It should be at least $1 / 4^{\prime \prime}$ thick and extend at least one inch from the flange edges. A thin layer of thermal compound in all interfaces is, of course, essential. The recommended torque on the $4-40$ mounting screws should be in the area of $4-5$ lbs.-inch, and spring type lock washers along with flat washers are recommended.

For die temperature calculations, the Δ temperature from a corner mounting screw area to the bottom center of the flange is approximately $5^{\circ} \mathrm{C}$ and $10^{\circ} \mathrm{C}$ under normal operating conditions (dissipation 150 W and 300 W respectively).

The main heat dissipator must be sufficiently large and have low R_{θ} for moderate air velocity, unless liquid cooling is employed.

CIRCUIT CONSIDERATIONS

At high power levels (500 W and up), the circuit layout becomes critical due to the low impedance levels and high RF currents associated with the output matching. Some of the components, such as capacitors and inductors must also withstand these currents. The component losses are directly proportional to the operating frequency. The manufacturers specifications on capacitor ratings should be consulted on these aspects prior to design.

Push-pull circuits are less critical in general, since the ground referenced RF loops are practically eliminated, and the impedance levels are higher for a given power output. High power broadband transformers are also easier to design than comparable LC matching networks.

EQUIVALENT TRANSISTOR PARAMETER TERMINOLOGY

$$
\begin{aligned}
& \text { Collector Drain } \\
& \text { Emitter Source } \\
& \text { Base Gate } \\
& \mathrm{V}_{(\text {BR }) \text { CES }} \ldots \ldots \ldots \ldots \ldots . . . V_{(\text {BR }) \text { DSS }} \\
& \text { VCBO } \text { VDGO }_{\text {DG }} \\
& \text { IC ID } \\
& \text { ICES IDSS } \\
& \text { IEBO IGSS }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{C}_{\mathrm{ib}} \ldots \ldots \text { C }_{\text {iss }} \\
& \text { Cob Coss }
\end{aligned}
$$

$$
\begin{aligned}
& R_{C E}(\text { sat })=\frac{V_{C E}(\text { sat })}{I_{C}} \cdots \cdots \cdots \cdots \cdots \cdot R_{D S(o n)}=\frac{V_{D S(o n)}}{I_{D}}
\end{aligned}
$$

The RF TMOS ${ }^{\circledR}$ Line Power Field Effect Transistor N-Channel Enhancement Mode

Designed for wideband large-signal amplifier and oscillator applications to 500 MHz .

- Guaranteed 28 Volt, 400 MHz Performance

Output Power = 2.0 Watts
Minimum Gain $=16 \mathrm{~dB}$
Efficiency $=55 \%$ (Typical)

- Grounded Source Package for High Gain and Excellent Heat Dissipation (MRF158R)
- Facilitates Manual Gain Control, ALC and Modulation Techniques
- 100\% Tested for Load Mismatch at All Phase Angles with 30:1 VSWR
- Excellent Thermal Stability, Ideally Suited for Class A Operation
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MRF158

```
2.0 W, to 500 MHz
    TMOS
    BROADBAND
    RF POWER FET
```


CASE 305A-01, STYLE 2
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDSS	65	Vdc
Drain-Gate Voltage (RGS = 1.0 M 2)	$V_{\text {DGR }}$	65	Vdc
Gate-Source Voltage	V_{GS}	± 40	Vdc
Drain Current - Continuous	ID	0.5	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 8.0 \\ & 45 \end{aligned}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	13.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage ($\left.\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~mA}\right)$	$V_{\text {(BR) }}$ DSS	65	-	-	Vdc
Zero Gate Voltage Drain Current ($\left.\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	0.5	mAdc
Gate-Source Leakage Current ($\mathrm{V}_{\mathrm{GS}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$)	IGSS	-	-	1.0	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

Gate Threshold Voltage $\left(\mathrm{I}_{\mathrm{D}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{DS}}=10 \mathrm{~V}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	1.0	4.0	6.0	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	g_{fs}	50	85	-	mmhos

DYNAMIC CHARACTERISTICS

Input Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{iss}}$	-	3.0	-	pF
Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{oss}}$	-	4.2	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathfrak{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	0.45	-	pF

FUNCTIONAL CHARACTERISTICS (Figure 1)

Common Source Power Gain $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=2.0 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right)$	G_{ps}	16	20	-	dB
Drain Efficiency (Figure 1) $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=2.0 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right)$	η	45	55	-	\%
```Electrical Ruggedness (Figure 1) (VDD = 28 Vdc, Pout =2.0 W, f= 400 MHz, IDQ = 100 mA, VSWR 30:1 at all Phase Angles)```	$\psi$	No Degradation in Output Power			
Series Equivalent Input Impedance $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=2.0 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right)$	$\mathrm{Z}_{\text {in }}$	-	8.8 - j27.37	-	Ohms
Series Equivalent Output Impedance $\left(V_{D D}=28 \mathrm{~V}, P_{\text {out }}=2.0 \mathrm{~W}, f=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right)$	$\mathrm{Z}_{\text {out }}$	-	16.96 - j62	-	Ohms



Figure 1. 400 MHz Test Circuit


Figure 2. Capacitance versus Drain-Source Voltage


Figure 4. Output Power versus Input Power


Figure 3. DC Safe Operating Area


Figure 5. Output Power versus Voltage

Table 1. Typical Common Emitter S-Parameters

VDS   (Volts)	$\begin{gathered} \text { ID } \\ (m A) \end{gathered}$	$\begin{gathered} f \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
			$\left\|S_{11}\right\|$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
28	100	5	1.00	-2.0	3.84	-179	0.003	73	0.97	-2.0	
		10	1.00	-2.0	3.81	179	0.004	83	0.97	-2.0	
		30	1.00	-7.0	3.74	174	0.011	81	0.97	-6.0	
		50	1.00	-11	3.72	170	0.018	78	0.96	-9.0	
		100	0.98	-21	3.62	159	0.034	70	0.95	-19	
		200	0.93	-41	3.28	137	0.061	52	0.90	-35	
		300	0.88	-58	2.88	120	0.077	39	0.86	-50	
		400	0.83	-75	2.57	104	0.088	27	0.81	-63	
		500	0.79	-87	2.24	91	0.090	17	0.78	-74	
		600	0.75	-99	1.94	78	0.084	8.0	0.75	-84	
		700	0.73	-110	1.72	68	0.077	2.0	0.75	-93	
		800	0.72	-120	1.52	58	0.067	-3.0	0.75	-99	
		900	0.71	-130	1.35	48	0.055	-6.0	0.74	-108	
		1000	0.71	-139	1.18	40	0.043	-4.0	0.73	-114	

## The RF MOSFET Line Power Field Effect Transistor N-Channel Enhancement-Mode MOSFET

Designed primarily for wideband large-signal output and driver from $30-500 \mathrm{MHz}$.

- Typical Performance at $400 \mathrm{MHz}, 28 \mathrm{Vdc}$

Output Power = 4.0 Watts
Gain = 17 dB
Efficiency $=50 \%$

- Excellent Thermal Stability, Ideally Suited for Class A Operation
- Facilitates Manual Gain Control, ALC and Modulation Techniques
- $100 \%$ Tested for Load Mismatch at All Phase Angles with 30:1 VSWR
- Low Crss -0.8 pF Typical at $\mathrm{V}_{\mathrm{DS}}=28$ Volts


## MRF160

4.0 W, to 400 MHz MOSFET BROADBAND RF POWER FET


CASE 249-06, STYLE 3


MAXIMUM RATINGS ( $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-Gate Voltage	VDSS	65	Vdc
Drain-Gate Voltage ( $\mathrm{R}_{\mathrm{GS}}=1.0 \mathrm{M} \Omega$ )	V ${ }_{\text {DGR }}$	65	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 40$	Vdc
Drain Current-Continuous	ID	1.0	ADC
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate Above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	$\begin{gathered} 24 \\ 0.14 \end{gathered}$	Watts W/ ${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Thermal Resistance - Junction to Case	$R_{\theta J C}$	7.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE: Handling and Packaging - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

REV 2

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $\left(V_{D S}=0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~mA}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	Vdc
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}\right)$	IDSS	-	-	0.8	mA
Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=40 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0 \mathrm{Vdc}\right)$	IGSS	-	-	1.0	$\mu \mathrm{A}$

## ON CHARACTERISTICS

Gate Threshold Voltage   $\left(V_{D S}=10\right.$ Vdc, $\left.I_{D}=10 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	1.0	3.0	6.0	Vdc
Drain Source On-Voltage   $\left(V_{D S}(o n), V_{G S}=10 \mathrm{Vdc}, \mathrm{ID}=500 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	-	3.8	-	Vdc
Forward Transconductance   $\left(V_{D S}=10\right.$ Vdc, $\left.\mathrm{I}=250 \mathrm{~mA}\right)$	gfs	110	160	-	mS

DYNAMIC CHARACTERISTICS

Input Capacitance   $\left(V_{D S}=28 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{iss}}$	-	6.0	-
Output Capacitance   $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {oss }}$	-	pF	
Reverse Transfer Capacitance   $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {rss }}$	-	8.0	-

FUNCTIONAL CHARACTERISTICS

Common Source Power Gain $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=4.0 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}\right)$	$\mathrm{G}_{\mathrm{ps}}$	15	17	-	dB
Drain Efficiency $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=4.0 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}\right)$	$\eta$	45	50	-	\%
Electrical Ruggedness $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=4.0 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}\right)$   Load VSWR = 30:1 at All Phase Angles at Frequency of Test	$\psi$	No Degradation in Output Power			
Series Equivalent Input Impedance $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=4.0 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}\right)$	$\mathrm{z}_{\text {in }}$	-	5.23-j 27.2	-	Ohms
Series Equivalent Output Impedance $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=4.0 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}\right)$	$\mathrm{Z}_{\text {out }}$	-	14.7-j 31.2	-	Ohms



Board Material $0.060^{\prime \prime}$ Glass Teflon ${ }^{\circledR} 2$ oz. Copper clad both sides $\varepsilon_{r}=2.55$

Figure 1. 400 MHz Test Circuit

## Typical Characteristics



Figure 2. Output Power versus Input Power


Figure 4. Output Power versus Gate Voltage


Figure 3. Output Power versus Voltage


Figure 5. Output Power versus Gate Voltage


Figure 6. Capacitance versus Drain-Source Voltage


Figure 7. DC Safe Operating Area

f	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
(MHz)	\|S $\mathbf{S}_{11} \mid$	$\angle \phi$	${ }^{\text {S }} \mathbf{2 1}$ \|	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	${ }^{\text {S }} 22$ \|	$\angle \phi$
10	0.96	-2.0	14.47	177	0.01	96	1.11	-5.0
30	0.99	-16	13.34	169	0.02	79	0.92	-11
50	0.97	-28	12.96	159	0.03	70	0.90	-22
75	0.94	-40	12.24	148	0.04	60	0.87	-35
100	0.90	-52	11.40	139	0.05	51	0.84	-45
120	0.87	-61	10.70	132	0.05	45	0.81	-53
150	0.83	-72	9.66	123	0.06	37	0.77	-63
170	0.81	-79	9.05	118	0.06	33	0.75	-69
200	0.78	-88	8.21	110	0.06	26	0.72	-77
220	0.77	-93	7.67	106	0.07	23	0.71	-81
250	0.75	-100	7.00	100	0.07	18	0.69	-87
300	0.72	-110	6.00	92	0.07	12	0.67	-96
350	0.71	-118	5.24	84	0.07	6.0	0.66	-103
390	0.71	-124	4.73	79	0.07	1.0	0.66	-108
400	0.70	-125	4.63	77	0.07	0	0.67	-109
410	0.70	-127	4.52	76	0.07	-1.0	0.66	-110
450	0.70	-131	4.10	71	0.07	-5.0	0.66	-114
470	0.70	-133	3.93	69	0.06	-6.0	0.67	-116
500	0.70	-137	3.68	65	0.06	-8.0	0.67	-118
600	0.71	-145	3.01	55	0.06	-14	0.69	-126
700	0.72	-153	2.51	46	0.05	-18	0.71	-132
800	0.73	-160	2.13	37	0.04	-21	0.73	-137
900	0.75	-166	1.83	30	0.03	-19	0.75	-142
1000	0.76	-171	1.60	23	0.03	-10	0.77	-146
1100	0.77	-177	1.40	16	0.02	3.0	0.79	-151
1200	0.78	177	1.25	10	0.02	18	0.80	-155
1300	0.79	172	1.11	4.0	0.03	29	0.82	-159
1400	0.81	166	1.00	-1.0	0.03	35	0.83	-163
1500	0.81	161	0.90	-6.0	0.03	48	0.85	-166

Table 1. Common Source Scattering Parameters (VDS $=28 \mathrm{Vdc}, \mathrm{ID}=200 \mathrm{~mA}, 50 \Omega$ System)

f	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
(MHz)	$\left\|S_{11}\right\|$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
10	0.96	-4.0	16.09	176	0.01	85	1.08	-8.0	
20	1.00	-15	14.82	171	0.02	82	0.88	-10	
30	0.98	$-23$	14.64	164	0.03	73	0.89	$-20$	
50	0.94	-39	13.76	152	0.04	63	0.86	-38	
85	0.86	-61	11.81	134	0.06	47	0.79	-61	
150	0.73	-91	8.63	112	0.08	27	0.70	-91	
170	0.71	-97	7.90	107	0.09	23	0.68	-98	
200	0.68	-106	6.97	101	0.09	17	0.67	-106	
210	0.68	-109	6.68	99	0.09	15	0.66	-108	
250	0.66	-117	5.75	92	0.09	10	0.65	-116	
300	0.64	-126	4.85	84	0.09	4.0	0.64	-124	
350	0.64	-133	4.18	78	0.09	-1.0	0.64	-129	
390	0.64	-137	3.75	73	0.09	$-5.0$	0.65	-133	
400	0.64	-138	3.66	71	0.09	-6.0	0.65	-134	
410	0.64	-140	3.57	70	0.09	-7.0	0.65	-135	
450	0.64	-143	3.23	66	0.08	-10	0.66	-138	
470	0.65	-145	3.08	64	0.08	-11	0.66	-139	
500	0.65	-147	2.88	61	0.08	-13	0.67	-141	
550	0.66	-151	2.59	56	0.08	-16	0.67	-144	
600	0.67	-154	2.35	52	0.07	-18	0.68	-146	
700	0.69	-160	1.96	43	0.07	-22	0.71	-150	
800	0.70	-166	1.67	35	0.06	-25	0.73	-154	
900	0.72	-171	1.43	28	0.05	-24	0.75	-158	
1000	0.74	-177	1.26	22	0.04	-21	0.77	-161	
1100	0.74	178	1.11	16	0.04	-14	0.78	-164	
1200	0.76	173	0.99	10	0.04	-6.0	0.80	-168	
1300	0.78	168	0.88	5.0	0.04	2.0	0.81	-171	
1400	0.79	163	0.80	0	0.03	8.0	0.83	-174	
1500	0.80	158	0.72	$-5.0$	0.03	19	0.84	-177	

Table 2. Common Source Scattering Parameters (VDS = 12.5 Vdc, ID = $200 \mathrm{~mA}, 50 \Omega$ System)

## The RF MOSFET Line <br> RF Power <br> Field Effect Transistors <br> N-Channel Enhancement Mode MOSFETs

Designed primarily for wideband large-signal output and driver from 30-500 MHz.

- Low $\mathrm{C}_{\mathrm{rss}}-4.5 \mathrm{pF} @ \mathrm{~V}_{\mathrm{DS}}=28 \mathrm{~V}$
- MRF166C - Typical Performance at 400 MHz , 28 Vdc

Output Power $=20 \mathrm{~W}$
Gain $=17 \mathrm{~dB}$
Efficiency = 55\%

- Replacement for Industry Standards such as MRF136, DV2820, BLF244, SD1902, and ST1001
- 100\% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR
- Facilitates Manual Gain Control, ALC and Modulation Techniques
- Excellent Thermal Stability, Ideally Suited for Class A Operation
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.


```
20 W, 500 MHz
 MOSFET
BROADBAND
RF POWER FETs
```



CASE 319-07, STYLE 3

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Gate Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	Vdc
Drain-Gate Voltage   $\left(\mathrm{R}_{\mathrm{GS}}=1.0 \mathrm{M} \Omega\right)$	$\mathrm{V}_{\mathrm{DGR}}$	65	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 40$	Adc
Drain Current - Continuous	$\mathrm{I}_{\mathrm{D}}$	4.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$   Derate Above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	70	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	0.4	$\mathrm{~W}^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	-65 to 150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	2.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE - CAUTION —MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~mA}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	V
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}\right)$	IDSS	-	-	1.0	mA
Gate-Source Leakage Current $\left(\mathrm{V}_{G S}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\right)$	IGSS	-	-	1.0	$\mu \mathrm{A}$

ON CHARACTERISTICS

Gate Threshold Voltage   $\left(V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=25 \mathrm{~mA}\right)$	$\mathrm{VGS}(\mathrm{th})$	1.0	3.0	6.0	V
Forward Transconductance   $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~A}\right)$	gfs	600	800	-	mhos

DYNAMIC CHARACTERISTICS

Input Capacitance   $\left(V_{\text {DS }}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	30	-	pF
Output Capacitance   $\left(V_{\text {DS }}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {oss }}$	-	35	-	pF
Reverse Transfer Capacitance   $\left(V_{\text {DS }}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	4.5	-	pF

FUNCTIONAL CHARACTERISTICS

Noise Figure $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{f}=30 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}\right)$	NF	-	2.5	-	dB
Common Source Power Gain $\left(V_{D D}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=20 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right)$	$\mathrm{G}_{\mathrm{ps}}$	14	17	-	dB
Drain Efficiency $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=20 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right)$	$\eta$	50	55	-	\%
$\begin{aligned} & \text { Electrical Ruggedness } \\ & \text { (VDD }=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=20 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I} \mathrm{DQ}=100 \mathrm{~mA}, \\ & \text { Load VSWR } 30: 1 \text { at All Phase Angles) } \end{aligned}$	$\psi$	No Degradation in Output Power			



Figure 1. MRF166C 400 MHz Test Circuit

TYPICAL CHARACTERISTICS


Figure 2. Capacitance versus Drain-Source Voltage


Figure 3. DC Safe Operating Area

TYPICAL CHARACTERISTICS


Figure 4. Output Power versus Input Power


Figure 5. Output Power versus Input Power


Figure 6. Output Power versus Voltage


Figure 7. Series Equivalent Input and Output Impedance

## The RF MOSFET Line Power Field Effect Transistor N-Channel Enhancement-Mode MOSFET

Designed primarily for wideband large-signal output and driver stages to 500 MHz .

- Push-Pull Configuration Reduces Even Numbered Harmonics
- Typical Performance at $400 \mathrm{MHz}, 28 \mathrm{Vdc}$

Output Power = 40 Watts
Gain $=13 \mathrm{~dB}$
Efficiency =50\%

- Typical Performance at $175 \mathrm{MHz}, 28 \mathrm{Vdc}$

Output Power $=40$ Watts
Gain $=17 \mathrm{~dB}$
Efficiency = 60\%

- Excellent Thermal Stability, Ideally Suited for Class A Operation
- Facilitates Manual Gain Control, ALC and Modulation Techniques
- $100 \%$ Tested for Load Mismatch at All Phase Angles with 30:1 VSWR
- Low Crss - 4.5 pF @ $\mathrm{V}_{\mathrm{DS}}=28$ Volts
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MRF166W


CASE 412-01, Style 1


MAXIMUM RATINGS ( $\mathrm{T} J=25^{\circ} \mathrm{C}$ unless otherwise noted)

Rating	Symbol	Value	Unit
Drain-Gate Voltage	$\mathrm{V}_{\text {DSS }}$	65	Vdc
Drain-Gate Voltage ( $\mathrm{R}_{\mathrm{GS}}=1.0 \mathrm{M} \Omega$ )	V ${ }_{\text {DGR }}$	65	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 40$	Adc
Drain Current - Continuous	ID	8.0	ADC
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	$\begin{aligned} & 175 \\ & 1.0 \end{aligned}$	Watts ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

| ${ }^{\circ} \mathrm{C} / \mathrm{W}$ |
| :--- | :---: | :---: | :---: |

NOTE: Handling and Packaging — MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (1)					
Drain-Source Breakdown Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~mA}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	Vdc
Zero Gate Voltage Drain Current $\left(V_{D S}=28 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0 \mathrm{Vdc}\right)$	IDSS	-	-	1.0	mA
Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=40 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0 \mathrm{Vdc}\right)$	IGSS	-	-	1.0	$\mu \mathrm{A}$

ON CHARACTERISTICS (1)

Gate Threshold Voltage   $\left(V_{D S}=10\right.$ Vdc, $\left.I_{D}=25 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	1.0	3.0	6.0	Vdc
Forward Transconductance   $\left(V_{D S}=10\right.$ Vdc, $\left.I_{D}=1.5 \mathrm{~A}\right)$	$\mathrm{g}_{\mathrm{fs}}$	600	800	-	mS

DYNAMIC CHARACTERISTICS (1)

Input Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	Ciss	-	30	-	pF
Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	Coss	-	35	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	Crss	-	4.5	-	pF

## FUNCTIONAL CHARACTERISTICS (2)

Common Source Power Gain $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=40 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I} \mathrm{DG}=100 \mathrm{~mA}\right)$	$\mathrm{G}_{\mathrm{ps}}$	11	13	-	dB
Drain Efficiency $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=40 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I} \mathrm{DG}=100 \mathrm{~mA}\right)$	$\eta$	45	50	-	\%
Electrical Ruggedness   ( $\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=40 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DG}}=100 \mathrm{~mA}$ )   Load VSWR $=30: 1$, All phase angles at frequency of test	$\Psi$	No Degradation in Output Power			

(1) Each transistor chip measured separately.
(2) Both transistor chips operating in a push-pull amplifier.


Figure 1. MRF166 400 MHz Test Circuit Schematic


Figure 2. Output Power versus Input Power


Figure 4. Output Power versus Gate Voltage


Figure 3. Output Power versus Voltage


Figure 5. Capacitance versus Voltage


$V_{D D}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}, \mathrm{P}_{\text {out }}=40 \mathrm{~W}$		
$\mathbf{f}$   $\mathbf{M H z}$	$\mathbf{Z i n}_{\text {in }}$   Ohms	$\mathbf{Z O L}_{\text {OL }}$   Ohms
175	$3.7-\mathrm{j} 22.4$	$15.2-\mathrm{j} 16.6$
400	$3.6-\mathrm{j} 10.99$	$10.3-\mathrm{j} 7.99$
500	$2.6-\mathrm{j} 3.2$	$10.2+\mathrm{j} 0.5$

$Z_{O L}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

NOTE: Input and output impedance values given are measured from gate to gate and drain to drain respectively.

Table 1. Input and Output Impedances
Figure 6. Series Equivalent Input/Output Impedance

## The RF MOSFET Line

## RF Power

## Field Effect Transistor N-Channel Enhancement Mode MOSFET

Designed for broadband commercial and military applications up to 200 MHz frequency range. The high-power, high-gain and broadband performance of this device make possible solid state transmitters for FM broadcast or TV channel frequency bands.

## MRF173

- Guaranteed Performance at $150 \mathrm{MHz}, 28 \mathrm{~V}$ :

Output Power = 80 W Gain $=11 \mathrm{~dB}(13 \mathrm{~dB}$ Typ) Efficiency $=55 \%$ Min. (60\% Typ)

- Low Thermal Resistance
- Ruggedness Tested at Rated Output Power
- Nitride Passivated Die for Enhanced Reliability
- Low Noise Figure - 1.5 dB Typ at $2.0 \mathrm{~A}, 150 \mathrm{MHz}$
- Excellent Thermal Stability; Suited for Class A Operation


80 W, 28 V, 175 MHz N-CHANNEL BROADBAND RF POWER MOSFET

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	Vdc
Drain-Gate Voltage	$\mathrm{V}_{\mathrm{DGO}}$	65	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 40$	Vdc
Drain Current - Continuous	$\mathrm{I}_{\mathrm{D}}$	9.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	220	Watts
Derate above $25^{\circ} \mathrm{C}$		1.26	$\mathrm{~W}^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	$\mathrm{TJ}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	0.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( ${ }^{\circ} \mathrm{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

## OFF CHARACTERISTICS

Drain-Source Breakdown Voltage $\left(\mathrm{V}_{\mathrm{DS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}\right) \quad \mathrm{I}=50 \mathrm{~mA}$	$\mathrm{~V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	V
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}\right)$	I DSS	-	-	2.0	mA
Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\right)$	I GSS	-	-	1.0	$\mu \mathrm{~A}$

## ON CHARACTERISTICS

Gate Threshold Voltage ( $\left.\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	1.0	3.0	6.0	V
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{DS}}(\mathrm{on}), \mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{DS}(\mathrm{on})}$	-	-	1.4	V
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~A}\right)$	$\mathrm{g}_{\mathrm{f}}$	1.8	2.2	-	mhos

(continued)
NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS - continued ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic
Symbol Min Typ Max Unit
DYNAMIC CHARACTERISTICS  $C_{\text {iss }}$ - 110   Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}\right)$ $\mathrm{C}_{\mathrm{oss}}$ - 105 -   Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}\right)$ $\mathrm{C}_{\mathrm{rss}}$ - 10 -

FUNCTIONAL CHARACTERISTICS

Noise Figure ( $\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{f}=150 \mathrm{MHz}$, $\mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}$ )	NF	-	1.5	-	dB
Common Source Power Gain $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}\right)$	$\mathrm{G}_{\mathrm{ps}}$	11	13	-	dB
Drain Efficiency ( $\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{l}$ DQ $=50 \mathrm{~mA}$ )	$\eta$	55	60	-	\%
Electrical Ruggedness $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}\right)$   Load VSWR 30:1 at all phase angles	$\psi$	No Degradation in Output Power			
Series Equivalent Input Impedance $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}\right)$	$\mathrm{Z}_{\text {in }}$	-	2.99-j4.5	-	Ohms
Series Equivalent Output Impedance $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}\right)$	$\mathrm{Z}_{\text {out }}$	-	2.68-j1.3	-	Ohms



Figure 1. 150 MHz Test Circuit

## TYPICAL CHARACTERISTICS



Figure 2. Output Power versus Input Power


Figure 4. Output Power versus Supply Voltage


Figure 6. Output Power versus Supply Voltage


Figure 3. Output Power versus Input Power


Figure 5. Output Power versus Supply Voltage


Figure 7. Power Gain versus Frequency


Figure 8. Output Power versus Gate Voltage


Figure 10. Gate-Source Voltage versus Case Temperature


Figure 9. Drain Current versus Gate Voltage

Figure 11. Capacitance versus Drain Voltage


Figure 12. DC Safe Operating Area

## DESIGN CONSIDERATIONS

The MRF173 is a RF MOSFET power N-channel enhancement mode field-effect transistor (FET) designed for VHF power amplifier applications. Motorola's RF MOSFETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V -groove power FETs.
Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation.

## DC BIAS

The MRF173 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 9 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The

MRF173 was characterized at $\operatorname{IDQ}=50 \mathrm{~mA}$, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system.

## GAIN CONTROL

Power output of the MRF173 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (see Figure 8.)

## AMPLIFIER DESIGN

Impedance matching networks similar to those used with bipolar VHF transistors are suitable for MRF173. See Motorola Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOSFETs helps ease the task of broadband network design. Both small-signal scattering parameters and large-signal impedances are provided. While the s-parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs.

## The RF MOSFET Line RF Power Field Effect Transistor N-Channel Enhancement-Mode

. . . designed primarily for wideband large-signal output and driver stages up to 200 MHz frequency range.

- Guaranteed Performance at $150 \mathrm{MHz}, 28 \mathrm{Vdc}$

Output Power = 125 Watts
Minimum Gain $=9.0 \mathrm{~dB}$
Efficiency $=50 \%$ (Min)

- Excellent Thermal Stability, Ideally Suited For Class A Operation
- Facilitates Manual Gain Control, ALC and Modulation Techniques
- 100\% Tested For Load Mismatch At All Phase Angles With 30:1 VSWR
- Low Noise Figure - 3.0 dB Typ at $2.0 \mathrm{~A}, 150 \mathrm{MHz}$



CASE 211-11, STYLE 2

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	Vdc
Drain-Gate Voltage   $\left(\mathrm{R}_{\mathrm{GS}}=1.0 \mathrm{M} \Omega\right)$	$\mathrm{V}_{\mathrm{DGR}}$	65	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 40$	Vdc
Drain Current - Continuous	$\mathrm{I}_{\mathrm{D}}$	13	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	270	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	0.65	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Handling and Packaging - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic
Symbol Min Typ Max Unit
OFF CHARACTERISTICS $\mathrm{V}_{(\mathrm{BR})} \mathrm{DSS}$ 65 - - Vdc   Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$ $\mathrm{I}_{\mathrm{DSS}}$ - - 10 mAdc   Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\right)$ $\mathrm{I}_{\mathrm{GSS}}$ - - 1.0 $\mu$ Adc

## ON CHARACTERISTICS

Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{ID}=100 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	1.0	3.0	6.0	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{~A}\right)$	$\mathrm{g}_{\mathrm{s}}$	1.75	2.5	-	mhos

DYNAMIC CHARACTERISTICS

Input Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	175	-	pF
Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {oss }}$	-	190	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	40	-	pF

FUNCTIONAL CHARACTERISTICS (Figure 1)

Noise Figure $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{ID}=2.0 \mathrm{~A}, \mathrm{f}=150 \mathrm{MHz}\right)$	NF	-	3.0	-	dB
Common Source Power Gain $\left(V_{D D}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=125 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right)$	$\mathrm{G}_{\mathrm{ps}}$	9.0	11.8	-	dB
Drain Efficiency $\left(V_{D D}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=125 \mathrm{~W}, f=150 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right)$	$\eta$	50	60	-	\%
$\begin{aligned} & \text { Electrical Ruggedness } \\ & \text { (VDD }=28 \text { Vdc, Pout }=125 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA} \text {, } \\ & \text { VSWR } 30: 1 \text { at all Phase Angles) } \end{aligned}$	$\psi$	No Degradation in Output Power			



C1-15 pF Unelco
C2 - Arco 462, 5.0-80 pF
C3-100 pF Unelco
C4-25 pF Unelco
C6 - 40 pF Unelco
C7 - Arco 461, 2.7-30 pF
C5, C8 - Arco 463, 9.0-180 pF
C9, C11, C14 - $0.1 \mu$ F Erie Redcap
C10-50 $\mu \mathrm{F}, 50 \mathrm{~V}$
C12, C13-680 pF Feedthru
D1 - 1N5925A Motorola Zener

L1 - \#16 AWG, 1-1/4 Turns, $0.213^{\prime \prime}$ ID
L2 - \#16 AWG, Hairpin $\Longrightarrow \bigcap_{0.062^{\prime \prime}}$
L3 — \#14 AWG, Hairpin $\qquad$ $10.47^{\prime \prime}$
L4 - 10 Turns \#16 AWG Enameled Wire on R1
RFC1 - 18 Turns \#16 AWG Enameled Wire, $0.3^{\prime \prime}$ ID
R1 - $10 \Omega$, 2.0 W
$\mathrm{R} 2-1.8 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$
R3 - $10 \mathrm{k} \Omega$, 10 Turn Bourns
$R 4-10 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$

Figure 1. 150 MHz Test Circuit


Figure 2. Output Power versus Input Power


Figure 4. Output Power versus Supply Voltage


Figure 6. Output Power versus Supply Voltage


Figure 3. Output Power versus Input Power


Figure 5. Output Power versus Supply Voltage


Figure 7. Power Gain versus Frequency


Figure 8. Output Power versus Gate Voltage


Figure 10. Gate-Source Voltage versus Case Temperature


Figure 9. Drain Current versus Gate Voltage (Transfer Characteristics)


Figure 11. Capacitance versus Drain Voltage


Figure 12. DC Safe Operating Area

$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
	$\left\|S_{11}\right\|$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
2.0	0.932	-133	74.0	112	0.011	23	0.835	-151	
5.0	0.923	-160	31.6	98	0.011	12	0.886	-168	
10	0.921	-170	16.0	93	0.011	10	0.896	-174	
20	0.921	-175	8.00	88	0.011	12	0.899	-177	
30	0.921	-177	5.32	86	0.011	16	0.900	-178	
40	0.921	-177	3.98	83	0.012	21	0.901	-178	
50	0.922	-178	3.17	81	0.012	26	0.902	-178	
60	0.923	-178	2.63	79	0.012	30	0.903	-178	
70	0.924	-178	2.24	77	0.013	34	0.904	-178	
80	0.925	-178	1.95	75	0.013	39	0.906	-178	
90	0.927	-178	1.72	73	0.014	43	0.907	-178	
100	0.930	-178	1.50	71	0.016	45	0.910	-178	
110	0.930	-178	1.31	70	0.018	46	0.912	-178	
120	0.931	-178	1.19	68	0.019	47	0.914	-178	
130	0.942	-178	1.10	67	0.019	49	0.919	-178	
140	0.936	-178	1.01	66	0.021	50	0.921	-178	
150	0.938	-178	0.936	65	0.021	53	0.922	-178	
160	0.938	-178	0.879	64	0.022	53	0.923	-178	
170	0.940	-178	0.830	63	0.023	54	0.923	-177	
180	0.942	-178	0.780	61	0.024	56	0.924	-177	
190	0.942	-178	0.737	60	0.026	59	0.928	-177	
200	0.952	-178	0.705	59	0.027	58	0.929	-177	
210	0.950	-178	0.668	57	0.029	61	0.934	-177	
220	0.942	-178	0.626	56	0.030	61	0.933	-177	
230	0.943	-178	0.592	56	0.032	62	0.939	-177	
240	0.946	-177	0.566	55	0.033	64	0.941	-177	
250	0.952	-177	0.545	54	0.035	64	0.943	-177	
260	0.958	-177	0.523	53	0.036	65	0.946	-177	
270	0.956	-177	0.500	52	0.038	67	0.943	-177	
280	0.960	-177	0.481	52	0.039	68	0.946	-177	
290	0.956	-178	0.460	51	0.042	68	0.944	-177	
300	0.955	-178	0.443	50	0.043	68	0.947	-177	

Table 1. Common Source Scattering Parameters
VDS $=28 \mathrm{~V}, \mathrm{ID}=3.0 \mathrm{~A}$


Figure 13. $\mathrm{S}_{11}$, Input Reflection Coefficient versus Frequency
VDS $=28 \mathrm{~V}$, $\mathrm{ID}=3.0 \mathrm{~A}$


Figure 15. $\mathbf{S}_{21}$, Forward Transmission Coefficient versus Frequency
$V_{D S}=28 \mathrm{~V}, \mathrm{ID}=3.0 \mathrm{~A}$


Figure 14. $\mathrm{S}_{12}$, Reverse Transmission Coefficient versus Frequency VDS = $28 \mathrm{~V}, \mathrm{ID}=3.0 \mathrm{~A}$


Figure 16. $\mathbf{S}_{22}$, Output Reflection Coefficient versus Frequency
VDS $=28 \mathrm{~V}, \mathrm{ID}=3.0 \mathrm{~A}$


Figure 17. Series Equivalent Input/Output Impedance, $\mathrm{Z}_{\mathbf{i n}}, \mathrm{Z}_{\mathbf{O L}}$ *

## DESIGN CONSIDERATIONS

The MRF174 is a RF power N-Channel enhancement mode field-effect transistor (FET) designed especially for UHF power amplifier and oscillator applications. Motorola RF MOSFETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with Vgroove vertical power FETs.

Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation.

## DC BIAS

The MRF174 is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. See Figure 9 for a typical plot of drain current versus gate voltage. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF174 was charac-
terized at $I_{D Q}=100 \mathrm{~mA}$, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system.

## GAIN CONTROL

Power output of the MRF174 may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems. (See Figure 8.)

## AMPLIFIER DESIGN

Impedance matching networks similar to those used with bipolar UHF transistors are suitable for MRF174. See Motorola Application Note AN721, Impedance Matching Networks Applied to RF Power Transistors. The higher input impedance of RF MOSFETs helps ease the task of broadband network design. Both small signal scattering parameters and large signal impedances are provided. While the s-parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF MOS power FETs.

## The RF MOSFET Line

## RF Power

Field-Effect Transistors
N-Channel Enhancement-Mode
Designed for broadband commercial and military applications using push pull circuits at frequencies to 500 MHz . The high power, high gain and broadband performance of these devices makes possible solid state transmitters for FM broadcast or TV channel frequency bands.

- Guaranteed Performance

MRF175GV @ 28 V, 225 MHz ("V" Suffix)
Output Power - 200 Watts
Power Gain - 14 dB Typ
Efficiency - 65\% Typ
MRF175GU @ 28 V, 400 MHz ("U" Suffix)
Output Power - 150 Watts
Power Gain - 12 dB Typ
Efficiency - 55\% Typ

- $100 \%$ Ruggedness Tested At Rated Output Power
- Low Thermal Resistance
- Low Crss - 20 pF Typ @ VDS $=28 \mathrm{~V}$



## MRF175GU MRF175GV

200/150 WATTS, 28 V, 500 MHz
N -CHANNEL MOS
BROADBAND RF POWER FETs


CASE 375-04, STYLE 2

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDSS	65	Vdc
Drain-Gate Voltage $\left(R_{G S}=1.0 \mathrm{M} \Omega\right)$	V ${ }_{\text {DGR }}$	65	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 40$	Vdc
Drain Current - Continuous	ID	26	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & \hline 400 \\ & 2.27 \end{aligned}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	0.44	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS (1)

Drain-Source Breakdown Voltage   $\left(V_{G S}=0, I_{D}=50 \mathrm{~mA}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	Vdc
Zero Gate Voltage Drain Current   $\left(V_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	2.5	mAdc
Gate-Source Leakage Current   $\left(V_{G S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\right)$	IGSS	-	-	1.0	$\mu \mathrm{Adc}$

(continued)
Handling and Packaging - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

REV 8

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Characteristic

|  | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |


ON CHARACTERISTICS $(1)$	$V_{G S}(t h)$	1.0	3.0	6.0	$V d c$
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	0.1	0.9	1.5	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}\right)$	$\mathrm{g}_{\mathrm{fs}}$	2.0	3.0	-	mhos

DYNAMIC CHARACTERISTICS (1)

Input Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	180	-	pF
Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{oss}}$	-	200	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	20	-	pF

FUNCTIONAL CHARACTERISTICS — MRF175GV (2) (Figure 1)

Common Source Power Gain $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=200 \mathrm{~W}, \mathrm{f}=225 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=2.0 \times 100 \mathrm{~mA}\right)$	$\mathrm{G}_{\mathrm{ps}}$	12	14	-	dB
Drain Efficiency $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=200 \mathrm{~W}, \mathrm{f}=225 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=2.0 \times 100 \mathrm{~mA}\right)$	$\eta$	55	65	-	\%
Electrical Ruggedness $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=200 \mathrm{~W}, \mathrm{f}=225 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=2.0 \times 100 \mathrm{~mA}\right. \text {, }$   VSWR 10:1 at all Phase Angles)	$\psi$	No Degradation in Output Power			

NOTES:

1. Each side of device measured separately.
2. Measured in push-pull configuration.


Figure 1. 225 MHz Test Circuit
Unless otherwise noted, all chip capacitors are ATC Type 100 or Equivalent.

ELECTRICAL CHARACTERISTICS ( $\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
FUNCTIONAL CHARACTERISTICS - MRF175GU (1) (Figure 2)					
Common Source Power Gain $\left(V_{D D}=28 \mathrm{Vdc}, P_{\text {out }}=150 \mathrm{~W}, f=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=2.0 \times 100 \mathrm{~mA}\right)$	$\mathrm{G}_{\mathrm{ps}}$	10	12	-	dB
Drain Efficiency $\left(V_{D D}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=2.0 \times 100 \mathrm{~mA}\right)$	$\eta$	50	55	-	\%
Electrical Ruggedness $\left(V_{D D}=28 \mathrm{Vdc}, P_{\text {out }}=150 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=2.0 \times 100 \mathrm{~mA}\right. \text {, }$   VSWR 10:1 at all Phase Angles)	$\psi$	No Degradation in Output Power			

NOTE:

1. Measured in push-pull configuration.


Figure 2. 400 MHz Test Circuit

## TYPICAL CHARACTERISTICS



Figure 3. Common Source Unity Current Gain Frequency versus Drain Current


Figure 5. Drain Current versus Gate Voltage (Transfer Characteristics)


Figure 4. DC Safe Operating Area


Figure 6. Gate-Source Voltage versus Case Temperature


Figure 7. Capacitance versus Drain-Source Voltage*

* Data shown applies to each half of MRF175GU/GV.


## TYPICAL CHARACTERISTICS <br> MRF175GV



Figure 8. Power Input versus Power Output


Figure 9. Output Power versus Supply Voltage


Figure 11. Output Power versus Input Power


Figure 12. Power Gain versus Frequency

$\begin{gathered} \mathrm{f} \\ \mathrm{MHz} \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$			
	\|S ${ }_{11}$ \|	$\angle \phi$	\|S21		$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
50	0.926	-174	5.43	81	0.009	12	0.861	-177		
70	0.924	-176	3.85	76	0.009	6	0.869	-178		
80	0.923	-176	3.35	73	0.008	18	0.864	-178		
90	0.921	-177	2.94	70	0.008	17	0.871	-178		
100	0.918	-178	2.57	68	0.008	17	0.875	-178		
103	0.920	-178	2.52	67	0.007	23	0.871	-178		
105	0.920	-178	2.47	67	0.008	20	0.875	-179		
110	0.921	-178	2.32	65	0.008	21	0.877	-178		
120	0.923	-179	2.08	63	0.005	27	0.862	-178		
130	0.928	-179	1.93	61	0.008	34	0.883	-178		
135	0.929	-180	1.86	60	0.007	22	0.887	-178		
140	0.929	-180	1.77	59	0.009	27	0.887	-178		
145	0.931	180	1.68	58	0.008	30	0.890	-178		
150	0.931	180	1.63	57	0.007	39	0.894	-178		
155	0.934	180	1.55	56	0.008	29	0.891	-178		
160	0.936	180	1.48	55	0.007	35	0.889	-178		
165	0.934	180	1.44	54	0.009	36	0.888	-178		
170	0.936	179	1.40	53	0.008	38	0.891	-178		
175	0.937	179	1.34	52	0.009	35	0.893	-178		
180	0.941	179	1.29	51	0.009	40	0.894	-178		
185	0.941	179	1.25	50	0.010	39	0.897	-178		
190	0.939	179	1.20	49	0.009	49	0.901	-178		
192	0.937	179	1.18	49	0.010	44	0.904	-178		
195	0.935	179	1.15	48	0.010	44	0.903	-178		
200	0.933	179	1.12	47	0.011	49	0.903	-179		
205	0.923	178	1.09	47	0.012	46	0.906	-179		
210	0.907	180	1.04	46	0.013	22	0.911	-179		
215	0.930	-180	1.01	45	0.008	27	0.910	-179		
220	0.933	180	0.99	45	0.008	39	0.912	-179		
225	0.935	179	0.96	43	0.009	37	0.913	-179		
230	0.932	179	0.92	43	0.009	39	0.915	-179		
235	0.933	178	0.90	42	0.009	43	0.917	-180		
240	0.935	178	0.87	41	0.009	46	0.918	-180		
245	0.936	178	0.85	40	0.009	56	0.920	-180		
250	0.935	178	0.82	39	0.010	47	0.921	180		
275	0.948	176	0.72	36	0.009	55	0.928	180		
300	0.966	175	0.64	33	0.010	59	0.932	179		
325	0.969	175	0.57	30	0.012	66	0.935	178		
350	0.957	175	0.51	27	0.013	60	0.939	178		
375	0.939	174	0.45	25	0.015	80	0.941	177		

Table 1. Common Source S-Parameters (VDS = $28 \mathrm{~V}, \mathrm{ID}=4.5 \mathrm{~A}$ ) (continued)

$\begin{gathered} \text { f } \\ \mathbf{M H z} \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
	$\left\|S_{11}\right\|$	$\angle \phi$	$\left\|\mathrm{S}_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
400	0.943	172	0.41	23	0.017	75	0.946	176	
405	0.945	172	0.40	22	0.016	71	0.946	176	
410	0.948	171	0.40	22	0.016	68	0.944	176	
415	0.956	171	0.39	21	0.017	74	0.949	176	
420	0.963	171	0.38	21	0.018	72	0.946	176	
425	0.966	171	0.37	20	0.018	70	0.947	176	
430	0.968	170	0.37	20	0.019	72	0.948	176	
435	0.970	170	0.36	19	0.019	75	0.949	175	
440	0.971	170	0.36	19	0.019	73	0.952	175	
445	0.978	169	0.32	17	0.017	71	0.965	177	
450	0.978	169	0.31	17	0.019	70	0.964	177	
455	0.977	170	0.31	17	0.019	73	0.965	177	
460	0.978	170	0.31	16	0.019	70	0.967	177	
465	0.977	169	0.30	16	0.020	73	0.963	177	
470	0.973	169	0.29	15	0.021	71	0.966	177	
475	0.973	169	0.29	15	0.021	72	0.967	177	
480	0.970	169	0.28	15	0.022	71	0.967	177	
485	0.964	169	0.28	14	0.022	74	0.963	176	
490	0.960	169	0.28	14	0.022	73	0.965	176	
495	0.957	169	0.27	14	0.023	71	0.963	176	
500	0.957	169	0.27	13	0.023	71	0.963	176	
505	0.951	168	0.26	13	0.023	70	0.966	176	
510	0.948	168	0.26	13	0.022	68	0.965	176	
515	0.943	167	0.25	13	0.022	72	0.966	175	

Table 1. Common Source S-Parameters (VDS = $28 \mathrm{~V}, I_{D}=4.5 \mathrm{~A}$ ) (continued)

$\mathbf{f}$   $\mathbf{M H z}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
520	0.940	167	0.25	12	0.021	68	0.966	175
525	0.940	167	0.25	12	0.022	74	0.968	175
530	0.943	166	0.24	11	0.022	67	0.965	175
535	0.944	166	0.24	11	0.022	69	0.964	174
540	0.945	165	0.23	11	0.022	69	0.965	174
545	0.951	165	0.23	11	0.023	70	0.969	174
550	0.952	164	0.23	10	0.023	72	0.969	174
555	0.956	164	0.23	10	0.023	70	0.969	174
560	0.958	164	0.22	10	0.025	70	0.968	174
565	0.962	164	0.22	9	0.024	70	0.969	174
570	0.963	164	0.22	9	0.024	71	0.972	174
575	0.970	164	0.21	9	0.024	70	0.972	174
600	0.973	164	0.20	8	0.029	71	0.973	173
625	0.955	164	0.19	8	0.030	69	0.970	172
650	0.933	162	0.17	7	0.031	69	0.966	171
675	0.928	160	0.16	6	0.034	69	0.969	170
700	0.946	158	0.15	6	0.034	67	0.973	169
750	0.952	158	0.14	4	0.040	67	0.969	168
800	0.907	155	0.13	5	0.044	65	0.962	166
850	0.928	151	0.12	5	0.049	55	0.963	164
900	0.915	152	0.11	4	0.049	52	0.955	163
950	0.869	148	0.11	4	0.053	49	0.941	161
1000	0.902	146	0.11	4	0.055	44	0.943	159

Table 1. Common Source S-Parameters (VDS = $28 \mathrm{~V}, \mathrm{ID}=4.5 \mathrm{~A}$ ) (continued)

## INPUT AND OUTPUT IMPEDANCE



NOTE: Input and output impedance values given are measured from gate to gate and drain to drain respectively.

Figure 13. Series Equivalent Input/Output Impedance

## RF POWER MOSFET CONSIDERATIONS

## MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain ( $\mathrm{C}_{\mathrm{gd}}$ ), and gate-tosource ( $\mathrm{C}_{\mathrm{gs}}$ ). The PN junction formed during the fabrication of the MOSFET results in a junction capacitance from drain-to-source ( $\mathrm{C}_{\mathrm{ds}}$ ).

These capacitances are characterized as input ( $\mathrm{C}_{\text {iss }}$ ), output ( $\mathrm{C}_{\mathrm{oss}}$ ) and reverse transfer ( $\mathrm{C}_{\mathrm{rss}}$ ) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The $\mathrm{C}_{\text {iss }}$ can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

$C_{\text {oss }}=C_{g d}+C_{d s}$
$\mathrm{C}_{\text {rss }}=\mathrm{C}_{\mathrm{gd}}$

The $\mathrm{C}_{\text {iss }}$ given in the electrical characteristics table was measured using method 2 above. It should be noted that $\mathrm{C}_{\text {iss }}, \mathrm{C}_{\mathrm{oss}}, \mathrm{C}_{\mathrm{rss}}$ are measured at zero drain current and are
provided for general information about the device. They are not RF design parameters and no attempt should be made to use them as such.

## LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain, data presented in Figure 3 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to $\mathrm{f} \uparrow$ for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

## DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$, occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, VDS(on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

## GATE CHARACTERISTICS

The gate of the MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high - on the order of $10^{9}$ ohms resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, $V_{G S}($ th).

Gate Voltage Rating - Never exceed the gate voltage rating (or any of the maximum ratings on the front page). Exceeding the rated $\mathrm{V}_{\mathrm{GS}}$ can result in permanent damage to the oxide layer in the gate region.

Gate Termination - The gates of this device are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection - These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.

Using a resistor to keep the gate-to-source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on.

## HANDLING CONSIDERATIONS

When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear grounding straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with grounded equipment.

## DESIGN CONSIDERATIONS

The MRF175G is a RF power N-channel enhancement mode field-effect transistor (FETs) designed for HF, VHF and UHF power amplifier applications. Motorola RF MOSFETs feature a vertical structure with a planar design.

Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal.

## DC BIAS

The MRF175G is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF175G was characterized at $\operatorname{IDQ}=100 \mathrm{~mA}$, each side, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate bias sytem.

## GAIN CONTROL

Power output of the MRF175G may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems.

## The RF MOSFET Line <br> RF Power <br> Field-Effect Transistors <br> N-Channel Enhancement-Mode

Designed for broadband commercial and military applications using single ended circuits at frequencies to 400 MHz . The high power, high gain and broadband performance of each device makes possible solid state transmitters for FM broadcast or TV channel frequency bands.

- Guaranteed Performance

MRF175LU @ 28 V, 400 MHz ("U" Suffix)
Output Power - 100 Watts
Power Gain - 10 dB Typ
Efficiency - 55\% Typ
MRF175LV @ 28 V, 225 MHz ("V" Suffix)
Output Power - 100 Watts
Power Gain - 14 dB Typ
Efficiency - 65\% Typ

- $100 \%$ Ruggedness Tested At Rated Output Power
- Low Thermal Resistance
- Low Crss - 20 pF Typ @ VDS $=28 \mathrm{~V}$



## MRF175LU MRF175LV

 N -CHANNELBROADBAND
RF POWER FETs


CASE 333-04, STYLE 2

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 40$	Vdc
Drain Current - Continuous	$\mathrm{I}_{\mathrm{D}}$	13	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}} \mathrm{C}=25^{\circ} \mathrm{C}$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	270	Watts
Storage Temperature Range		$\mathrm{T}_{\text {stg }}$	-65 to +150
Operating Junction Temperature	$\mathrm{T} J$	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	0.65	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $\left(V_{G S}=0, I_{D}=50 \mathrm{~mA}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	Vdc
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	2.5	mAdc
Gate-Body Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\right)$	IGSS	-	-	1.0	$\mu \mathrm{Adc}$

(continued)
Handling and Packaging - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

REV 8

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Characteristic

|  | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | | ON CHARACTERISTICS | $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | 1.0 | 3.0 | 6.0 | Vdc |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$ | $\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$ | 0.1 | 0.9 | 1.5 | Vdc |
| Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A}\right)$ | $\mathrm{g}_{\mathrm{fs}}$ | 2.0 | 3.0 | - | mhos |
| Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}\right)$ |  |  |  |  |  |

DYNAMIC CHARACTERISTICS

Input Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{iss}}$	-	180	-	pF
Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{oss}}$	-	200	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	20	-	pF

FUNCTIONAL CHARACTERISTICS — MRF175LV (Figure 1)

Common Source Power Gain $\left(V_{D D}=28 \mathrm{Vdc}, P_{\text {out }}=100 \mathrm{~W}, f=225 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right)$	Gps	12	14	-	dB
$\begin{aligned} & \text { Drain Efficiency } \\ & \quad\left(V_{D D}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=100 \mathrm{~W}, \mathrm{f}=225 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right) \end{aligned}$	$\eta$	55	65	-	\%
$\begin{aligned} & \text { Electrical Ruggedness } \\ & \text { (VDD }=28 \text { Vdc, } P \text { out }=100 \mathrm{~W}, \mathrm{f}=225 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA} \text {, } \\ & \text { VSWR } 30: 1 \text { at all Phase Angles) } \end{aligned}$	$\psi$	No Degradation in Output Power			

## FUNCTIONAL CHARACTERISTICS — MRF175LU (Figure 2)

Common Source Power Gain $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=100 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right)$	$\mathrm{G}_{\mathrm{ps}}$	8.0	10	-	dB
Drain Efficiency $\left(V_{D D}=28 \mathrm{Vdc}, P_{\text {out }}=100 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right)$	$\eta$	50	55	-	\%
Electrical Ruggedness $\left(V_{D D}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=100 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right. \text {, }$   VSWR 30:1 at all Phase Angles)	$\psi$	No Degradation in Output Power			



Figure 1. 225 MHz Test Circuit


Figure 2. 400 MHz Test Circuit

## TYPICAL CHARACTERISTICS



Figure 3. Common Source Unity Current Gain Frequency versus Drain Current


Figure 4. DC Safe Operating Area


Figure 5. Drain Current versus Gate Voltage (Transfer Characteristics)


Figure 6. Gate-Source Voltage versus Case Temperature


Figure 7. Capacitance versus Drain-Source Voltage

MRF175LV


Figure 8. Output Power versus Supply Voltage

MRF175LU


Figure 9. Output Power versus Supply Voltage


Figure 10. Power Gain versus Frequency


Figure 11. Output Power versus Input Power


Figure 12.

## RF POWER MOSFET CONSIDERATIONS

## MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain ( $\mathrm{C}_{\mathrm{gd}}$ ), and gate-tosource ( $\mathrm{C}_{\mathrm{gs}}$ ). The PN junction formed during the fabrication of the FET results in a junction capacitance from drain-tosource ( $\mathrm{C}_{\mathrm{ds}}$ ).

These capacitances are characterized as input ( $\mathrm{C}_{\text {iss }}$ ), output ( $\mathrm{C}_{\mathrm{oss}}$ ) and reverse transfer ( $\mathrm{C}_{\mathrm{rss}}$ ) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The $\mathrm{C}_{\text {iss }}$ can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.


## LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain data presented, Figure 3 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain cur-
rent level. This is equivalent to fT for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

## DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$, occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, $\mathrm{V}_{\mathrm{DS}}$ (on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

## GATE CHARACTERISTICS

The gate of the FET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high - on the order of $10^{9}$ ohms - resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$.

Gate Voltage Rating - Never exceed the gate voltage rating. Exceeding the rated $\mathrm{V}_{\mathrm{GS}}$ can result in permanent damage to the oxide layer in the gate region.

Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection - These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.

Using a resistor to keep the gate-to-source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on.

## HANDLING CONSIDERATIONS

When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear grounding straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with a grounded iron.

## DESIGN CONSIDERATIONS

The MRF175L is a RF power N-channel enhancement mode field-effect transistor (FETs) designed for HF, VHF and UHF power amplifier applications. Motorola FETs feature a vertical structure with a planar design.

Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal.

## DC BIAS

The MRF175L is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF175L was characterized at $\operatorname{IDQ}=100 \mathrm{~mA}$, each side, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate bias sytem.

## GAIN CONTROL

Power output of the MRF175L may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems.

## The RF MOSFET Line

## RF Power

Field-Effect Transistors
N-Channel Enhancement-Mode
Designed for broadband commercial and military applications using push pull circuits at frequencies to 500 MHz . The high power, high gain and broadband performance of these devices makes possible solid state transmitters for FM broadcast or TV channel frequency bands.

- Electrical Performance

MRF176GU @ 50 V, 400 MHz ("U" Suffix)
Output Power - 150 Watts
Power Gain - 14 dB Typ
Efficiency - 50\% Typ
MRF176GV @ 50 V, 225 MHz ("V" Suffix)
Output Power - 200 Watts
Power Gain - 17 dB Typ
Efficiency - 55\% Typ

- $100 \%$ Ruggedness Tested At Rated Output Power
- Low Thermal Resistance
- Low Crss - 7.0 pF Typ @ VDS $=50 \mathrm{~V}$



## MRF176GU MRF176GV



CASE 375-04, STYLE 2
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDSS	125	Vdc
Gate-Source Voltage	$V_{G S}$	$\pm 40$	Vdc
Drain Current - Continuous	ID	16	Adc
Total Device Dissipation @ TC $=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & \hline 400 \\ & 2.27 \end{aligned}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	0.44	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Handling and Packaging - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (1)					
Drain-Source Breakdown Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I} \mathrm{D}=100 \mathrm{~mA}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	125	-	-	Vdc
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	2.5	mAdc
Gate-Body Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\right)$	IGSS	-	-	1.0	$\mu \mathrm{Adc}$

NOTE:

1. Each side of device measured separately.

ELECTRICAL CHARACTERISTICS - continued ( $T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Characteristic

|  | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | | ON CHARACTERISTICS (1) | $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$ | 1.0 | 3.0 | 6.0 | Vdc |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Gate Threshold Voltage (VSS $\left.=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$ | $\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$ | 1.0 | 3.0 | 5.0 | Vdc |
| Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5.0 \mathrm{~A}\right)$ | $\mathrm{g}_{\mathrm{fs}}$ | 2.0 | 3.0 | - | mhos |
| Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}\right)$ |  |  |  |  |  |

DYNAMIC CHARACTERISTICS (1)

Input Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	180	-	pF
Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{oss}}$	-	100	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=50 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	6.0	-	pF

FUNCTIONAL CHARACTERISTICS — MRF176GV (2) (Figure 1)

Common Source Power Gain $\left(V_{D D}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=200 \mathrm{~W}, \mathrm{f}=225 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=2.0 \times 100 \mathrm{~mA}\right)$	$\mathrm{G}_{\mathrm{ps}}$	15	17	-	dB
Drain Efficiency $\left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=200 \mathrm{~W}, \mathrm{f}=225 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=2.0 \times 100 \mathrm{~mA}\right)$	$\eta$	50	55	-	\%
Electrical Ruggedness   $\left(\mathrm{V}_{\mathrm{DD}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=200 \mathrm{~W}, \mathrm{f}=225 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=2.0 \times 100 \mathrm{~mA}\right.$, VSWR 10:1 at all Phase Angles)	$\psi$	No Degradation in Output Power			

NOTES:

1. Each side of device measured separately.
2. Measured in push-pull configuration.


C1 - Arco 404, 8.0-60 pF
C2, C3, C6, C8 - 1000 pF Chip
C4, C9-0.1 $\mu$ F Chip
C5-180 pF Chip
C7 - Arco 403, 3.0-35 pF
C10-0.47 $\mu$ F Chip, Kemet 1215 or Equivalent
L1 - 10 Turns AWG \#16 Enameled Wire, Close Wound, 1/4" I.D.
Board material - .062" fiberglass (G10),
Two sided, 1 oz. copper, $\varepsilon_{r} \cong 5$
Unless otherwise noted, all chip capacitors are ATC Type 100 or Equivalent

L2 - Ferrite Beads of Suitable Material
for $1.5-2.0 \mu \mathrm{H}$, Total Inductance
R1 - 100 Ohms, $1 / 2 \mathrm{~W}$
R2 - 1.0 kOhms, $1 / 2 \mathrm{~W}$
T1 - 4:1 Impedance Ratio RF Transformer. Can Be Made of 25 Ohm Semirigid Co-Ax, 47-62 Mils O.D.
T2 - 1:4 Impedance Ratio RF Transformer. Can Be Made of 25 Ohm Semirigid Co-Ax, 62-90 Mils O.D.
NOTE: For stability, the input transformer T1 should be loaded with ferrite toroids or beads to increase the common mode inductance. For operation below 100 MHz . The same is required for the output transformer.

Figure 1. 225 MHz Test Circuit

ELECTRICAL CHARACTERISTICS ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
FUNCTIONAL CHARACTERISTICS - MRF176GU (1) (Figure 2)					
$\begin{aligned} & \text { Common Source Power Gain } \\ & \left(V_{D D}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I} \mathrm{DQ}=2.0 \times 100 \mathrm{~mA}\right) \end{aligned}$	$G_{p s}$	12	14	-	dB
Drain Efficiency $\left(V_{D D}=50 \mathrm{Vdc}, P_{\text {out }}=150 \mathrm{~W}, f=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=2.0 \times 100 \mathrm{~mA}\right)$	$\eta$	45	50	-	\%
Electrical Ruggedness   $\left(V_{D D}=50 \mathrm{Vdc}, P_{\text {out }}=150 \mathrm{~W}, f=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=2.0 \times 100 \mathrm{~mA}\right.$,   VSWR 10:1 at all Phase Angles)	$\psi$	No Degradation in Output Power			

NOTE:

1. Measured in push-pull configuration.


Ckt Board Material - .060" teflon-fiberglass, copper clad both sides, 2 oz. copper, $\varepsilon_{r}=2.55$

Figure 2. 400 MHz Test Circuit


Figure 3. Common Source Unity Current Gain* Gain-Frequency versus Drain Current


Figure 4. DC Safe Operating Area


Figure 5. Series Equivalent Input/Output Impedance

## TYPICAL CHARACTERISTICS



Figure 6. Capacitance versus Drain-Source Voltage*

* Data shown applies to each half of MRF176GU/GV


Figure 7. Power Gain versus Frequency

MRF176GV


Figure 8. Power Input versus Power Output


Figure 9. Output Power versus Supply Voltage

## TYPICAL CHARACTERISTICS <br> MRF176GU



Figure 10. Output Power versus Input Power


Figure 11. Output Power versus Input Power


Figure 12. Output Power versus Supply Voltage

## RF POWER MOSFET CONSIDERATIONS

## MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain ( $\mathrm{C}_{\mathrm{gd}}$ ), and gate-tosource ( $\mathrm{C}_{\mathrm{gs}}$ ). The PN junction formed during the fabrication of the MOSFET results in a junction capacitance from drain-to-source ( $\mathrm{C}_{\mathrm{ds}}$ ).
These capacitances are characterized as input ( $\mathrm{C}_{\mathrm{iss}}$ ), output ( $\mathrm{C}_{\mathrm{oss}}$ ) and reverse transfer ( Crss ) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The $\mathrm{C}_{\text {iss }}$ can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.


The $\mathrm{C}_{\text {iss }}$ given in the electrical characteristics table was measured using method 2 above. It should be noted that $\mathrm{C}_{\text {iss }}, \mathrm{C}_{\text {oss }}, \mathrm{C}_{\text {rss }}$ are measured at zero drain current and are provided for general information about the device. They are not RF design parameters and no attempt should be made to use them as such.

## LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain, data presented in Figure 3 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to $\mathrm{f} T$ for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

## DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$, occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, $\mathrm{V}_{\mathrm{DS}}$ (on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

## GATE CHARACTERISTICS

The gate of the MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high - on the order of $10^{9}$ ohms resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$.

Gate Voltage Rating - Never exceed the gate voltage rating (or any of the maximum ratings on the front page). Exceeding the rated $V_{G S}$ can result in permanent damage to the oxide layer in the gate region.

Gate Termination - The gates of this device are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection - This device does not have an internal monolithic zener diode from gate-to-source. The addition of an internal zener diode may result in detrimental effects on the reliability of a power MOSFET. If gate protection is required, an external zener diode is recommended.

## handling considerations

The gate of the MOSFET, which is electrically isolated from the rest of the die by a very thin layer of $\mathrm{SiO}_{2}$, may be damaged if the power MOSFET is handled or installed improperly. Exceeding the 40 V maximum gate-to-source voltage rating, $\mathrm{V}_{\mathrm{GS}}(\max )$, can rupture the gate insulation and destroy the FET. RF Power MOSFETs are not nearly as susceptible as CMOS devices to damage due to static discharge because the input capacitances of power MOSFETs are much larger and absorb more energy before being charged to the gate breakdown voltage. However, once breakdown begins, there is enough energy stored in the gate-source capacitance to ensure the complete perforation of the gate oxide. To avoid the possibility of device failure caused by static discharge, precautions similar to those taken with small-signal MOSFET and CMOS devices apply to power MOSFETs.

When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear grounding straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with grounded equipment.

The gate of the power MOSFET could still be in danger after the device is placed in the intended circuit. If the gate may see voltage transients which exceed $\mathrm{V}_{\mathrm{GS}}(\max )$, the circuit designer should place a 40 V zener across the gate and source terminals to clamp any potentially destructive spikes. Using a resistor to keep the gate-to-source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on.

## DESIGN CONSIDERATIONS

The MRF176G is a RF power N-channel enhancement mode field-effect transistor (FETs) designed for VHF and

UHF power amplifier applications. Motorola RF MOSFETs feature a vertical structure with a planar design, thus avoiding the processing difficulties associated with V-groove MOS power FETs.
Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal, thus facilitating manual gain control, ALC and modulation.

## DC BIAS

The MRF176G is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain
current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF176G was characterized at $\operatorname{IDQ}=100 \mathrm{~mA}$, each side, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate bias sytem.

## GAIN CONTROL

Power output of the MRF176G may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems.

## The RF MOSFET Line

## RF Power

## Field Effect Transistors <br> N-Channel Enhancement Mode MOSFET

Designed for broadband commercial and military applications up to 400 MHz frequency range. Primarily used as a driver or output amplifier in push-pull configurations. Can be used in manual gain control, ALC and modulation circuits.

- Typical Performance at $400 \mathrm{MHz}, 28 \mathrm{~V}$ :

Output Power - 100 W
Gain - 12 dB
Efficiency - 60\%

- Low Thermal Resistance
- Low Crss - 10 pF Typ @ VDS = 28 Volts
- Ruggedness Tested at Rated Output Power
- Nitride Passivated Die for Enhanced Reliability
- Excellent Thermal Stability; Suited for Class A Operation
- Circuit board photomaster available upon request by
 contacting RF Tactical Marketing in Phoenix, AZ.



## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	Vdc
Drain-Gate Voltage $\left(\mathrm{R}_{\mathrm{GS}}=1.0 \mathrm{M} \Omega\right)$	$\mathrm{V}_{\mathrm{DGR}}$	65	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 40$	Vdc
Drain Current - Continuous	$\mathrm{I}_{\mathrm{D}}$	16	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1)$	$\mathrm{P}_{\mathrm{D}}$	270	Watts
Derate above $25^{\circ} \mathrm{C}$		1.54	$\mathrm{~W}^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	$\mathrm{T}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\theta \mathrm{JC}}$	0.65	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) Total device dissipation rating applies only when the device is operated as an RF push-pull amplifier.

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic (1)	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $\left(V_{G S}=0, I_{D}=50 \mathrm{~mA}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	Vdc
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	2.0	mAdc
Gate-Source Leakage Current ( $\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0$ )	IGSS	-	-	1.0	$\mu \mathrm{Adc}$

ON CHARACTERISTICS (1)

Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}\right)$	VGS(th)	1.0	3.0	6.0	Vdc
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I} \mathrm{D}=3.0 \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	-	-	1.4	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.0 \mathrm{~A}\right)$	gfs	1.8	2.2	-	mhos

DYNAMIC CHARACTERISTICS (1)

Input Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	Ciss	-	100	-	pF
Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	Coss	-	105	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	Crss	-	10	-	pF

FUNCTIONAL CHARACTERISTICS (Figure 8) (2)

$\begin{aligned} & \text { Common Source Power Gain } \\ & \left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=100 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=200 \mathrm{~mA}\right) \end{aligned}$	Gps	10	12	-	dB
Drain Efficiency $\left(V_{D D}=28 \mathrm{Vdc}, P_{\text {out }}=100 \mathrm{~W}, f=400 \mathrm{MHz}, I_{D Q}=200 \mathrm{~mA}\right)$	$\eta$	55	60	-	\%
Electrical Ruggedness $\left(V_{D D}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=100 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=200 \mathrm{~mA}\right.$, Load VSWR = 30:1, All Phase Angles At Frequency of Test)	$\psi$		No Degradation in Output Power Before \& After Test		

(1) Note each transistor chip measured separately
(2) Both transistor chips operating in push-pull amplifier


Figure 1. Output Power versus Input Power


Figure 3. Output Power versus Supply Voltage


Figure 5. Capacitance versus Drain Voltage


Figure 2. Output Power versus Input Power


Figure 4. Output Power versus Gate Voltage


Figure 6. DC Safe Operating Area


NOTE: Input and Output Impedance values given are measured gate-to-gate and drain-to-drain respectively.

$V_{D D}=28 \mathrm{~V}$		$I_{D Q}=200 \mathrm{~mA}$
f   $(\mathrm{MHz})$	$Z_{\text {in }}$   Ohms	$Z_{\text {OL }}{ }^{*}$   Ohms
100	$2.0-\mathrm{j} 11.5$	$3.5-\mathrm{j} 6$
150	$2.05-\mathrm{j} 9.45$	$3.35-\mathrm{j} 5.34$
200	$2.1-\mathrm{j} 7.5$	$3.3-\mathrm{j} 4.4$
400	$2.35+\mathrm{j} 0.4$	$3.2-\mathrm{j} 1.38$

$Z_{\mathrm{OL}}{ }^{*}$ : Conjugate of optimum load impedance into which the device operates at a given output power, voltage, current and frequency.

Figure 7. Impedance or Admittance Coordinates


C1, C12	$1-10 \mathrm{pF}$ JOHANSON OR EQUIVALENT D1	1N5347B, 20 Vdc
C2, C3, C5, C6, C10, C11	270 pF ATC 100 MIL CHIP CAP L1	1-TURN NO. 18, 0.25", 2-HOLE FERRITE BEAD
C4, C9	$1-20 \mathrm{pF}$ L2	8-1/2 TURNS NO. 18, CLOSE WOUND .375" DIA.
C7	36 pF CHIP CAP $\quad$ R1, R4, R5	$10 \mathrm{k} \Omega$ @ 1/2 W RESISTOR
C8	$10 \mathrm{pFCHIP} \mathrm{CAP} \mathrm{R2}$	$10 \mathrm{k} \Omega$, 10 TURN RESISTOR
C13, C14	$0.1 \mu \mathrm{FD}$ @ 50 Vdc R3	$2.0 \mathrm{k} \Omega$ @ 1/2 W RESISTOR
C15, C18	$10 \mu \mathrm{FD}$ @ 50 Vdc T1	1-1/2 T, $50 \Omega$ COAX, .034" DIA. ON DUAL 0.5" FERRITE CORE
C16	500 pF BUTTON T2	2.0 " $25 \Omega$ COAX, . $075^{\prime \prime}$ DIA.
C17	1000 pF UNCASED MICA T3	2.1" $10 \Omega$ COAX, . $075^{\prime \prime}$ DIA.
	T4	4.0" $50 \Omega$ COAX, . $0865{ }^{\prime \prime}$ DIA.
	BOARD	Dielectric Thickness $=0.060 \prime 2$ zoz Copper, Cu-Clad, Teflon Fiberglass, $\varepsilon_{r}=2.55$

Figure 8. Test Circuit Electrical Schematic

## The RF MOSFET Line <br> RF Power <br> Field Effect Transistors <br> N-Channel Enhancement-Mode Lateral MOSFETs

- High Gain, Rugged Device
- Broadband Performance from HF to 1 GHz
- Bottom Side Source Eliminates DC Isolators, Reducing Common Mode Inductances


## MRF182 MRF182S

$30 \mathrm{~W}, 1.0 \mathrm{GHz}$ LATERAL N-CHANNEL


S

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 20$	Vdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=70^{\circ} \mathrm{C}$   Derate above $70^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	74	W
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	1.75	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Drain-Source Breakdown Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=1.0 \mu \mathrm{Adc}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	Vdc
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	1	$\mu \mathrm{Adc}$
Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\right)$	IGSS	-	-	1	$\mu \mathrm{Adc}$

[^37]ELECTRICAL CHARACTERISTICS - continued ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
Gate Threshold Voltage $\left(V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	2	3	4	Vdc
Gate Quiescent Voltage $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{Q})$	3	4	5	Vdc
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=3 \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	-	0.9	1.2	Vdc
Forward Transconductance $\left(V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}\right)$	Gfs	1.6	1.8	-	S

## DYNAMIC CHARACTERISTICS

Input Capacitance   $\left(V_{D S}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	56	-	pF
Output Capacitance   $\left(V_{\text {DS }}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {oss }}$	-	28	-	pF
Reverse Transfer Capacitance   $\left(V_{\text {DS }}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	2.5	-	pF

## FUNCTIONAL CHARACTERISTICS

$\begin{aligned} & \text { Common Source Power Gain } \\ & \left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{I} \mathrm{DQ}=50 \mathrm{~mA}, \mathrm{f}=945 \mathrm{MHz}\right) \end{aligned}$	$\mathrm{G}_{\mathrm{ps}}$	11	14	-	dB
Drain Efficiency $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}, \mathrm{f}=945 \mathrm{MHz}\right)$	$\eta$	50	60	-	\%
Load Mismatch $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}, \mathrm{f}=945 \mathrm{MHz},\right.$ Load VSWR 5:1 at All Phase Angles)	$\Psi$	No Degradation in Output Power			
Series Equivalent Input Impedance $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{IDQ}=50 \mathrm{~mA}, \mathrm{f}=960 \mathrm{MHz}\right)$	$\mathrm{Z}_{\text {in }}$	-	0.81 + j1.6	-	ohms
Series Equivalent Output Impedance $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{I} \mathrm{DQ}=50 \mathrm{~mA}, \mathrm{f}=960 \mathrm{MHz}\right)$	$\mathrm{Z}_{\text {out }}$	-	2.15 - j1.7	-	ohms



Figure 1. MRF182 Schematic

TYPICAL CHARACTERISTICS


Figure 2. Output Power versus Input Power at 1 GHz


Figure 4. Drain Efficiency versus Output Power at $1 \mathbf{~ G H z}$


Figure 6. Output Power versus Input Power


Figure 3. Power Gain versus Output Power at 1 GHz


Figure 5. Output Power versus Supply Voltage


Figure 7. Capacitance versus Drain Source Voltage

Table 1. Typical Common Source S-Parameters ( $\mathrm{V}_{\mathrm{DS}}=13.5 \mathrm{~V}$ )
$\mathrm{l}=1.0 \mathrm{~A}$

$\stackrel{\mathrm{mHz}}{\stackrel{1}{2}}$	$\mathrm{s}_{11}$		$\mathrm{S}_{21}$		$\mathrm{s}_{12}$		$\mathrm{S}_{22}$	
	${ }^{\text {\| }}{ }_{11} \mid$	$\angle \phi$	${ }^{\text {S }}$ 21 ${ }^{\text {l }}$	$\angle \phi$	${ }^{\text {S }}$ 12 ${ }^{\text {\| }}$	$\angle \phi$	${ }^{\text {S }}$ 22 ${ }^{\text {a }}$	$\angle \phi$
20	0.933	-131	40.81	112	0.021	22	0.664	-138
30	0.922	-148	29.31	104	0.022	15	0.700	-151
40	0.892	-156	22.19	99	0.022	10	0.718	-158
50	0.877	-161	17.91	95	0.023	7	0.725	-162
60	0.870	-164	14.67	92	0.023	4	0.732	-164
70	0.863	-166	12.57	90	0.022	2	0.735	-166
80	0.860	-168	11.00	89	0.022	1	0.738	-168
90	0.860	-169	9.79	87	0.022	0	0.740	-169
100	0.859	-170	8.79	86	0.022	-1	0.741	-169
150	0.859	-173	5.78	80	0.022	-7	0.750	-172
200	0.862	-175	4.29	74	0.022	-11	0.759	-172
250	0.868	-176	3.38	69	0.021	-14	0.770	-173
300	0.880	-177	2.77	65	0.020	-17	0.780	-173
350	0.877	-177	2.32	61	0.020	-19	0.793	-173
400	0.882	-178	1.98	56	0.019	-22	0.808	-173
450	0.892	-179	1.72	52	0.018	-24	0.816	-173
500	0.899	-180	1.51	49	0.017	-26	0.828	-174
550	0.898	180	1.33	45	0.017	-27	0.838	-174
600	0.907	179	1.19	42	0.016	-28	0.849	-175
650	0.914	179	1.07	38	0.015	-28	0.859	-175
700	0.916	177	0.95	35	0.014	-25	0.867	-176
750	0.920	177	0.88	34	0.015	-26	0.874	-176
800	0.924	176	0.80	30	0.015	-27	0.884	-177
850	0.929	175	0.74	27	0.015	-33	0.891	-178
900	0.929	174	0.68	25	0.013	-38	0.897	-178
950	0.933	173	0.63	22	0.011	-39	0.905	-179
1000	0.934	173	0.58	20	0.010	-37	0.912	-180
1050	0.930	172	0.54	17	0.009	-33	0.918	180
1100	0.938	171	0.52	15	0.009	-29	0.924	179
1150	0.933	170	0.48	13	0.008	-28	0.929	178
1200	0.930	169	0.45	10	0.008	-25	0.930	177
1250	0.939	168	0.42	8	0.007	-23	0.935	177
1300	0.936	168	0.40	6	0.007	-21	0.934	176
1350	0.933	167	0.38	4	0.006	-19	0.936	175
1400	0.937	166	0.35	2	0.005	-14	0.939	174
1450	0.937	165	0.33	0	0.005	-5	0.934	174
1500	0.927	164	0.32	-2	0.004	0	0.930	173

Table 2. Typical Common Emitter S-Parameters (VDS = 28 V)

$$
\mathrm{I}_{\mathrm{D}}=1.0 \mathrm{~A}
$$

$\begin{gathered} \mathrm{f} \\ \mathrm{MHz} \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
	\|S ${ }_{11} \mid$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	\| $\mathrm{S}_{12} \mid$	$\angle \phi$	\|S $\mathbf{S}_{22} \mid$	$\angle \phi$
20	0.964	-99	54.39	129	0.014	39	0.429	-108
30	0.949	-121	43.46	118	0.017	28	0.478	-125
40	0.909	-134	34.35	109	0.018	20	0.520	-137
50	0.884	-142	28.27	103	0.018	15	0.540	-144
60	0.875	-148	23.38	98	0.019	11	0.553	-149
70	0.862	-152	20.10	95	0.019	8	0.562	-152
80	0.861	-156	17.64	92	0.019	5	0.569	-154
90	0.858	-158	15.72	90	0.019	3	0.575	-156
100	0.858	-160	14.11	88	0.019	1	0.580	-157
150	0.856	-166	9.26	79	0.018	-7	0.606	-160
200	0.862	-169	6.80	71	0.018	-12	0.633	-161
250	0.871	-171	5.29	65	0.017	-16	0.661	-161
300	0.882	-173	4.27	59	0.016	-21	0.690	-162
350	0.883	-174	3.52	54	0.015	-23	0.718	-162
400	0.895	-175	2.97	49	0.014	-26	0.747	-163
450	0.904	-176	2.54	45	0.013	-28	0.767	-164
500	0.911	-177	2.20	41	0.012	-30	0.789	-165
550	0.911	-178	1.90	37	0.011	-30	0.807	-166
600	0.923	-179	1.69	33	0.010	-30	0.825	-167
650	0.929	-180	1.50	30	0.009	-29	0.841	-168
700	0.929	179	1.32	26	0.009	-22	0.855	-169
750	0.933	178	1.21	24	0.010	-22	0.865	-170
800	0.938	177	1.09	21	0.009	-20	0.877	-171
850	0.942	176	1.00	18	0.010	-31	0.886	-172
900	0.942	175	0.92	16	0.008	-37	0.894	-173
950	0.947	174	0.84	13	0.006	-38	0.904	-174
1000	0.946	173	0.77	11	0.005	-28	0.912	-175
1050	0.943	172	0.72	8	0.005	-18	0.919	-176
1100	0.948	171	0.67	6	0.004	-9	0.926	-177
1150	0.945	171	0.62	4	0.005	0	0.932	-178
1200	0.939	170	0.59	1	0.004	3	0.934	-179
1250	0.949	169	0.54	0	0.005	12	0.940	-180
1300	0.947	168	0.51	-3	0.005	18	0.939	180
1350	0.944	167	0.48	-4	0.005	22	0.941	179
1400	0.945	166	0.44	-7	0.004	34	0.943	178
1450	0.944	165	0.42	-9	0.005	45	0.940	177
1500	0.933	164	0.40	-10	0.005	55	0.936	176

## The RF MOSFET Line RF Power Field Effect Transistors <br> N-Channel Enhancement-Mode Lateral MOSFETs

Designed for broadband commercial and industrial applications at frequencies to 1.0 GHz . The high gain and broadband performance of these devices makes them ideal for large-signal, common source amplifier applications in 28 volt base station equipment.

- Guaranteed Performance at $945 \mathrm{MHz}, 28$ Volts

Output Power - 45 Watts PEP
Power Gain - 11.5 dB
Efficiency - 33\%
IMD - 28 dBc

- Characterized with Series Equivalent Large-Signal Impedance Parameters
- S-Parameter Characterization at High Bias Levels
- Excellent Thermal Stability
- $100 \%$ Tested for Load Mismatch Stress at all Phase Angles with 5:1 VSWR @ 28 Vdc, 945 MHz , 45 Watts CW



## MRF183 <br> MRF183S

$45 \mathrm{~W}, 1.0 \mathrm{GHz}$
LATERAL N-CHANNEL
BROADBAND
RF POWER MOSFETs

CASE 360B-01, STYLE 1
(MRF183)


CASE 360C-03, STYLE 1 (MRF183S)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	Vdc
Drain-Gate Voltage (RGS $=1 \mathrm{Meg}$ Ohm)	$\mathrm{V}_{\mathrm{DGR}}$	65	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 20$	Vdc
Drain Current - Continuous	$\mathrm{I}_{\mathrm{D}}$	5	Adc
Total Device Dissipation @ $\mathrm{T}^{\mathrm{C}}=70^{\circ} \mathrm{C}$   Derate above $70^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	86	W   Storage Temperature Range
Operating Junction Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JJC}}$	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS
( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0, \mathrm{ID}=50 \mu \mathrm{Adc}\right)$	BV ${ }_{\text {DSS }}$	65	-	-	Vdc
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	1	$\mu \mathrm{Adc}$
Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\right)$	IGSS	-	-	1	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

Gate Quiescent Voltage ( $\left.\mathrm{V}_{\mathrm{DS}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=250 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{Q})$	3	-	5	Vdc
Drain-Source On-Voltage $\left(V_{G S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	-	0.7	-	Vdc
Forward Transconductance $\left(V_{D S}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{Adc}\right)$	gfs	-	2	-	S

DYNAMIC CHARACTERISTICS

Input Capacitance   $\left(V_{\text {DS }}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	82	-	pF
Output Capacitance   $\left(V_{\text {DS }}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {oss }}$	-	38	-	pF
Reverse Transfer Capacitance   $\left(V_{\text {DS }}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {rss }}$	-	4.5	-	pF

FUNCTIONAL TESTS (In Motorola Test Fixture)
$\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=45\right.$ Watts PEP, $\left.\mathrm{f} 1=945.0, \mathrm{f} 2=945.1 \mathrm{MHz}, \mathrm{I} \mathrm{DQ}=250 \mathrm{~mA}\right)$

Two-Tone Common Source Amplifier Power Gain	Gps	11.5	13	-	dB
Two-Tone Drain Efficiency	$\eta$	33	36	-	$\%$
3rd Order Intermodulation Distortion	IMD	-	-32	-28	dBc
Input Return Loss	IRL	9	14	-	dB

$\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=45\right.$ Watts PEP, $\mathrm{f} 1=930.0, \mathrm{f} 2=930.1 \mathrm{MHz}$, and $\left.\mathrm{f} 1=960.0, \mathrm{f} 2=960.1 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=250 \mathrm{~mA}\right)$



Figure 1. MRF183S Two Tone Test Circuit Schematic

## TYPICAL CHARACTERISTICS



Figure 2. Intermodulation Distortion versus Output Power


Figure 4. Power Gain versus Output Power


Figure 6. Output Power versus Drain Bias Supply Voltage


Figure 3. Intermodulation Distortion versus Output Power


Figure 5. Output Power versus Input Power


Figure 7. Output Power versus Gate Bias Supply Voltage


Figure 8. Output Power versus Frequency


Figure 10. Capacitance versus Voltage


Figure 9. Drain Current versus Gate Voltage


Figure 11. Class A Safe Operating Region


Figure 12. Class A Third Order Intercept Point

## TYPICAL CHARACTERISTICS



Figure 13. Broadband Power Performance of MRF183S


Figure 14. MRF183S Two Tone Test Circuit Component Parts Layout

$V_{D D}=28 \mathrm{~V}, I_{D Q}=250 \mathrm{~mA}$, Pout $=45 \mathrm{~W}$ (PEP)

$\mathbf{f}$   $\mathbf{M H z}$	$\mathbf{Z}_{\text {in }}$   Ohms	$\mathbf{Z O L}_{\mathbf{O L}}{ }^{\text {Ohms }}$
930	$1.10+\mathrm{j} 0.93$	$2.60-\mathrm{j} 0.13$
945	$1.10+\mathrm{j} 0.78$	$2.70-\mathrm{j} 0.28$
960	$1.10+\mathrm{j} 0.60$	$2.80-\mathrm{j} 0.42$

$Z_{\text {in }}=$ Conjugate of source impedance.
$\mathrm{Z}_{\mathrm{OL}}=$ Conjugate of the load impedance at given output
power, voltage and current conditions.
Note: $Z_{O L}{ }^{*}$ was chosen based on tradeoffs between gain, output power, drain efficiency and intermodulation distortion.

Figure 15. Series Equivalent Input and Output Impedance

Table 1. Typical Common Source S-Parameters (VDS = 13.5 V)
ID $=1.5 \mathrm{~A}$

$\begin{gathered} \mathbf{f} \\ \mathbf{M H z} \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$			
	\|S $\mathrm{S}_{11} \mid$	$\angle \phi$	\|S21		$\angle \phi$	\|S ${ }_{12} \mid$	$\angle \phi$	\|S22		$\angle \phi$
20	0.954	-157	29.58	100	0.017	11	0.778	-161		
30	0.941	-164	19.73	96	0.017	8	0.796	-168		
40	0.922	-168	14.84	93	0.017	4	0.804	-170		
50	0.907	-171	11.94	91	0.017	3	0.808	-172		
60	0.903	-172	9.75	89	0.017	2	0.812	-173		
70	0.899	-173	8.34	88	0.017	0	0.814	-174		
80	0.898	-174	7.29	86	0.017	-1	0.816	-175		
90	0.896	-175	6.49	85	0.017	-2	0.816	-175		
100	0.897	-175	5.83	84	0.017	-2	0.817	-175		
150	0.895	-177	3.82	79	0.017	-6	0.822	-176		
200	0.898	-178	2.84	74	0.016	-9	0.828	-176		
250	0.902	-178	2.24	70	0.016	-11	0.835	-176		
300	0.908	-179	1.84	66	0.015	-14	0.842	-176		
350	0.905	-179	1.55	62	0.015	-16	0.850	-176		
400	0.913	-180	1.32	58	0.014	-18	0.861	-176		
450	0.920	180	1.15	54	0.014	-18	0.865	-176		
500	0.924	179	1.01	51	0.013	-20	0.874	-177		
550	0.922	179	0.89	47	0.013	-21	0.881	-177		
600	0.931	178	0.80	44	0.012	-21	0.889	-177		
650	0.935	178	0.72	41	0.011	-20	0.895	-177		
700	0.935	177	0.64	38	0.011	-17	0.901	-178		
750	0.937	177	0.59	37	0.012	-18	0.905	-178		
800	0.940	176	0.54	33	0.012	-20	0.913	-178		
850	0.943	176	0.50	30	0.012	-29	0.919	-179		
900	0.945	175	0.46	28	0.010	-33	0.924	-179		
950	0.947	174	0.43	26	0.009	-34	0.930	-180		
1000	0.947	174	0.40	24	0.008	-29	0.935	180		
1050	0.947	173	0.37	21	0.007	-24	0.939	179		
1100	0.952	172	0.35	19	0.007	-19	0.944	179		
1150	0.949	172	0.32	17	0.007	-17	0.948	178		
1200	0.946	171	0.30	14	0.006	-16	0.948	177		
1250	0.954	170	0.28	12	0.006	-13	0.953	177		
1300	0.952	170	0.27	9	0.006	-12	0.950	176		
1350	0.949	169	0.26	9	0.006	-10	0.951	176		
1400	0.948	168	0.23	8	0.005	-7	0.953	175		
1450	0.948	168	0.22	6	0.004	4	0.948	174		
1500	0.940	167	0.21	4	0.004	19	0.944	174		

Table 2. Typical Common Source S-Parameters (VDS = 28 V )
$\mathrm{ID}=1.5 \mathrm{~A}$

f   MHz	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
	\|S ${ }_{11} \mid$	$\angle \phi$	${ }^{\text {\| }} \mathbf{2 1}$ \|	$\angle \phi$	${ }^{\text {S }}$ 12\|	$\angle \phi$	\|S22		$\angle \phi$
20	0.968	-132	45.79	113	0.014	24	0.579	-145	
30	0.953	-145	31.75	106	0.015	17	0.623	-157	
40	0.921	-154	24.33	99	0.015	12	0.648	-161	
50	0.904	-159	19.68	95	0.015	7	0.661	-164	
60	0.898	-163	16.11	92	0.015	5	0.670	-166	
70	0.890	-165	13.79	90	0.015	2	0.677	-167	
80	0.886	-167	12.06	87	0.015	1	0.681	-168	
90	0.886	-168	10.71	86	0.015	-1	0.684	-169	
100	0.887	-169	9.61	84	0.015	-3	0.688	-169	
150	0.886	-172	6.26	76	0.015	-9	0.706	-170	
200	0.890	-174	4.59	69	0.014	-13	0.724	-170	
250	0.898	-175	3.57	64	0.014	-17	0.744	-169	
300	0.906	-176	2.88	59	0.013	-19	0.764	-169	
350	0.908	-177	2.37	54	0.012	-23	0.785	-169	
400	0.915	-178	2.00	49	0.011	-24	0.807	-170	
450	0.924	-178	1.71	45	0.010	-25	0.821	-170	
500	0.930	-179	1.48	41	0.010	-26	0.838	-171	
550	0.928	-180	1.28	37	0.009	-26	0.851	-171	
600	0.937	180	1.13	33	0.008	-25	0.865	-172	
650	0.944	179	1.00	30	0.007	-22	0.878	-172	
700	0.943	178	0.88	27	0.008	-14	0.888	-173	
750	0.946	178	0.81	25	0.008	-15	0.895	-173	
800	0.949	177	0.73	22	0.009	-17	0.906	-174	
850	0.954	177	0.67	20	0.009	-28	0.912	-175	
900	0.953	175	0.61	18	0.007	-34	0.919	-175	
950	0.957	175	0.56	15	0.005	-32	0.927	-176	
1000	0.957	174	0.51	13	0.004	-22	0.934	-177	
1050	0.957	174	0.48	10	0.004	-11	0.939	-178	
1100	0.962	173	0.45	8	0.004	-2	0.945	-178	
1150	0.959	172	0.41	7	0.004	3	0.950	-179	
1200	0.955	171	0.39	4	0.004	9	0.950	-180	
1250	0.962	170	0.36	2	0.004	13	0.955	180	
1300	0.959	170	0.33	0	0.004	17	0.953	179	
1350	0.956	169	0.31	-1	0.004	25	0.954	178	
1400	0.954	168	0.29	-4	0.004	32	0.957	177	
1450	0.955	168	0.28	-6	0.004	46	0.952	177	
1500	0.948	167	0.26	-7	0.004	56	0.948	176	

## The RF MOSFET Line <br> RF POWER Field-Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

## MRF184 <br> MRF184S

Designed for broadband commercial and industrial applications at frequencies to 1.0 GHz . The high gain and broadband performance of these devices makes them ideal for large-signal, common source amplifier applications in 28 volt base station equipment.

- Guaranteed Performance @ $945 \mathrm{MHz}, 28$ Volts

Output Power $=60$ Watts
Power Gain $=11.5 \mathrm{~dB}$
Efficiency $=53 \%$

- Characterized with Series Equivalent Large-Signal Impedance Parameters
- S-Parameter Characterization at High Bias Levels
- Excellent Thermal Stability
- $100 \%$ Tested for Load Mismatch Stress at all Phase Angles with 5:1 VSWR @ 28 Vdc, $945 \mathrm{MHz}, 60$ Watts CW

$60 \mathrm{~W}, 1.0 \mathrm{GHz}$ LATERAL N-CHANNEL BROADBAND RF POWER MOSFETs



## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 20$	Vdc
Drain Current - Continuous	$\mathrm{I}_{\mathrm{D}}$	7	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=70^{\circ} \mathrm{C}$   Derate above $70^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	118	Watts
Storage Temperature Range		$\mathrm{T}_{\text {stg }}$	-65 to +150
Operating Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	1.1	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Drain-Source Breakdown Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{Adc}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	Vdc
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}\right)$	IDSS	-	-	1	$\mu \mathrm{Adc}$
Gate-Source Leakage Current $\left(\mathrm{V}_{G S}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\right)$	IGSS	-	-	1	$\mu \mathrm{Adc}$

[^38]ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
Gate Threshold Voltage $\left(V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mu \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{GS}}$ (th)	2	3	4	Vdc
Gate Quiescent Voltage $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{Q})$	3	4	5	Vdc
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	-	0.65	0.8	Vdc
Forward Transconductance $(\mathrm{V} D S=10 \mathrm{~V}, \mathrm{ID}=3 \mathrm{~A})$	gfs	2.2	2.6	-	s

DYNAMIC CHARACTERISTICS

Input Capacitance   $\left(V_{D S}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	83	-	pF
Output Capacitance   $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {oss }}$	-	44	-	pF
Reverse Transfer Capacitance   $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {rss }}$	-	4.3	-	pF

## FUNCTIONAL CHARACTERISTICS

Common Source Power Gain $\left(V_{D D}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{f}=945 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right)$	$\mathrm{G}_{\mathrm{ps}}$	11.5	15	-	dB
Drain Efficiency $\left(V_{D D}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{f}=945 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right)$	$\eta$	53	60	-	\%
Load Mismatch $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}, \mathrm{f}=945 \mathrm{MHz},\right.$ Load VSWR 5:1 at all Phase Angles)	$\psi$	No Degradation in Output Power			



Figure 1. MRF184 Test Circuit Schematic

## TYPICAL CHARACTERISTICS



Figure 2. Intermodulation Distortion versus Output Power


Figure 4. Power Gain versus Output Power


Figure 6. Output Power versus Supply Voltage


Figure 3. Intermodulation Distortion versus Output Power


Figure 5. Output Power versus Input Power


Figure 7. Output Power versus Gate Voltage

## TYPICAL CHARACTERISTICS



Figure 8. Output Power versus Frequency


Figure 10. Capacitance versus Voltage


Figure 12. DC Safe Operating Area


Figure 9. Drain Current versus Gate Voltage

Figure 11. DC Safe Operating Area


Figure 13. Performance in Broadband Circuit


Figure 14. Class A Third Order Intercept Point


Figure 15. Component Parts Layout

$V_{D D}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}, \mathrm{P}_{\text {out }}=60 \mathrm{~W}$

$\mathbf{f}$   $\mathbf{M H z}$	Zin   Ohms	$\mathbf{Z O L}_{\mathbf{O}}{ }^{\text {Ohms }}$
800	$0.40+\mathrm{j} 0.90$	$1.85-\mathrm{j} 1.00$
850	$0.45+j 1.10$	$1.75-\mathrm{j} 0.90$
900	$0.52+j 1.20$	$1.70-\mathrm{j} 0.75$
950	$0.60+j 1.30$	$1.60-\mathrm{j} 0.50$
1000	$0.70+j 1.38$	$1.57-\mathrm{j} 0.40$

$Z_{\text {in }}=$ Conjugate of source impedance.
$Z_{\text {out }}=$ Conjugate of the load impedance at given output
power, voltage, frequency and efficiency.
Note: ZOL ${ }^{*}$ was chosen based on tradeoffs between gain, drain efficiency and device stability.
Figure 16. Series Equivalent Input and Output Impedance

Table 1. Common Source S-Parameters (VDS = 13.5 V)
ID $=2.0 \mathrm{~A}$

f	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$			
MHz	\|S11		$\angle \phi$	\| $\mathbf{S}_{21} \mid$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
20	0.916	179	10.88	80	0.014	-22	0.843	175		
30	0.917	178	9.26	79	0.014	-25	0.847	174		
40	0.918	177	8.10	78	0.015	-29	0.852	174		
50	0.919	176	7.16	77	0.015	-33	0.853	174		
100	0.919	175	4.57	75	0.015	-35	0.855	173		
150	0.920	174	3.34	67	0.015	-38	0.865	173		
200	0.921	173	2.60	62	0.014	-41	0.867	173		
250	0.922	173	2.11	59	0.014	-45	0.877	173		
300	0.928	172	1.77	55	0.014	-49	0.881	173		
350	0.938	172	1.50	50	0.013	-55	0.887	173		
400	0.941	171	1.28	47	0.013	-59	0.895	173		
450	0.942	171	1.12	44	0.012	-62	0.896	173		
500	0.943	171	1.00	41	0.012	-68	0.898	172		
550	0.945	171	0.91	38	0.010	-75	0.899	172		
600	0.947	171	0.80	35	0.010	-79	0.903	172		
650	0.948	171	0.71	33	0.009	-85	0.905	172		
700	0.955	170	0.65	30	0.008	-88	0.909	172		
750	0.959	170	0.60	28	0.008	-95	0.919	172		
800	0.962	169	0.55	25	0.007	-102	0.922	172		
850	0.963	169	0.50	23	0.007	-111	0.923	171		
900	0.964	169	0.45	21	0.007	-118	0.926	171		
950	0.968	169	0.43	19	0.006	-125	0.929	171		
1000	0.970	169	0.39	18	0.006	-129	0.933	171		
1050	0.971	168	0.36	17	0.005	-134	0.935	171		
1100	0.972	168	0.34	14	0.005	-142	0.936	170		
1150	0.973	168	0.32	13	0.005	-149	0.938	170		
1200	0.974	167	0.29	12	0.006	-156	0.940	169		
1250	0.976	167	0.28	10	0.007	-162	0.943	169		
1300	0.975	167	0.26	9	0.008	-173	0.945	168		
1350	0.972	166	0.25	8	0.009	-178	0.946	167		
1400	0.969	166	0.24	7	0.011	175	0.947	167		
1450	0.965	165	0.22	6	0.012	172	0.948	167		
1500	0.959	164	0.21	5	0.013	169	0.950	167		

Table 2. Common Source S-Parameters (VDS = 28 V )
ID $=2.0 \mathrm{~A}$

f	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$			
MHz	\| $\mathrm{S}_{11} \mid$	$\angle \phi$	\| $\mathbf{S}_{21} \mid$	$\angle \phi$	\|S12		$\angle \phi$	\|S22		$\angle \phi$
20	0.912	-170	16.01	84	0.016	-12	0.746	178		
30	0.917	-173	13.73	82	0.015	-15	0.755	177		
40	0.918	-174	12.02	80	0.014	-17	0.759	177		
50	0.919	-176	10.62	78	0.013	-20	0.766	176		
100	0.922	-178	6.76	71	0.012	-22	0.775	176		
150	0.930	177	4.92	65	0.011	-25	0.791	176		
200	0.931	176	3.82	60	0.010	-27	0.791	176		
250	0.933	175	3.07	55	0.009	-29	0.793	176		
300	0.941	174	2.53	51	0.009	-31	0.826	176		
350	0.943	173	2.14	45	0.008	-35	0.834	176		
400	0.945	172	1.83	41	0.008	-45	0.853	176		
450	0.948	172	1.58	38	0.007	-52	0.858	176		
500	0.950	172	1.39	35	0.007	-57	0.865	176		
550	0.955	172	1.24	32	0.007	-61	0.876	176		
600	0.960	172	1.10	29	0.006	-64	0.882	176		
650	0.965	171	0.96	26	0.006	-68	0.888	175		
700	0.967	171	0.89	24	0.006	-71	0.894	175		
750	0.970	171	0.80	20	0.005	-73	0.904	175		
800	0.973	170	0.73	18	0.005	-78	0.906	175		
850	0.974	169	0.66	17	0.004	-83	0.908	174		
900	0.975	169	0.61	13	0.004	-91	0.909	173		
950	0.976	169	0.57	12	0.004	-94	0.915	173		
1000	0.978	168	0.52	11	0.004	-96	0.916	173		
1050	0.979	168	0.47	9	0.005	-102	0.919	172		
1100	0.980	168	0.43	7	0.005	-115	0.924	172		
1150	0.980	167	0.41	6	0.006	-119	0.931	171		
1200	0.979	167	0.38	5	0.006	-125	0.934	170		
1250	0.978	167	0.36	2	0.006	-139	0.935	170		
1300	0.974	167	0.34	1	0.007	-148	0.936	170		
1350	0.971	166	0.32	0	0.007	-156	0.937	169		
1400	0.970	165	0.31	-1	0.007	-165	0.938	169		
1450	0.969	165	0.30	-2	0.008	-171	0.939	169		
1500	0.965	164	0.27	-3	0.008	-178	0.946	169		

## Advance Information

## The RF MOSFET Line

RF POWER
Field-Effect Transistor
N-Channel Enhancement-Mode Lateral MOSFET

- High Gain, Rugged Device
- Broadband Performance from HF to 1 GHz
- Bottom Side Source Eliminates DC Isolators, Reducing Common Mode Inductances



## MRF185

(5ATTS, 1.0 GHz 28 VOLTS
LATERAL N-CHANNEL
BROADBAND
RF POWER MOSFET


CASE 375B-02, STYLE 2

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 20$	Vdc
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	$\mathrm{TJ}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	250	Watts
Derate above $25^{\circ} \mathrm{C}$		1.45	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	0.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left({ }^{T} \mathrm{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $\left(V_{G S}=0 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mu \mathrm{Adc}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	Vdc
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}\right)$	IDSS	-	-	1	$\mu \mathrm{Adc}$
Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0 \mathrm{~V}\right)$	IGSS	-	-	1	$\mu \mathrm{Adc}$

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

ON CHARACTERISTICS

Gate Quiescent Voltage $\left(\mathrm{V}_{\mathrm{DS}}=26 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=300 \mathrm{~mA} \text { per side }\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{Q})$	3	4	5	Vdc
Delta Quiescent Voltage between sides ( $\mathrm{V}_{\mathrm{DS}}=26 \mathrm{~V}, \mathrm{I} \mathrm{D}=300 \mathrm{~mA}$ per side)	$\Delta \mathrm{V}_{\mathrm{GS}}(\mathrm{Q})$	-	0.15	0.3	Vdc
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}=3 \mathrm{~A}\right.$ per side)	V ${ }_{\text {DS }}(\mathrm{on})$	-	0.75	1	Vdc
Forward Transconductance $\left(V_{D S}=10 \mathrm{~V}, \mathrm{ID}=3 \mathrm{~A} \text { per side }\right)$	Gfs	1.6	2	-	s

## DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(V_{D S}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {oss }}$	-	38	-	pF
Reverse Transfer Capacitance   $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {rss }}$	-	4.6	6	pF

## FUNCTIONAL CHARACTERISTICS

Common Source Power Gain $\left(V_{D D}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=85 \mathrm{~W}, \mathrm{f}=960 \mathrm{MHz}, \mathrm{I} \mathrm{DQ}=600 \mathrm{~mA}\right)$	$G_{p s}$	11	14	-	dB
Drain Efficiency $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=85 \mathrm{~W}, \mathrm{f}=960 \mathrm{MHz}, \mathrm{I} \mathrm{DQ}=600 \mathrm{~mA}\right)$	$\eta$	45	55	-	\%
Load Mismatch $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=85 \mathrm{~W}, \mathrm{f}=960 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=600 \mathrm{~mA}\right. \text {, }$ Load VSWR 5:1 at All Phase Angles)	$\Psi$	No Degradation in Output Power			

## The RF Line NPN Silicon <br> RF Power Transistors

. . . designed for 13.6 volt VHF large-signal class C and class AB linear power amplifier applications in commercial and industrial equipment.

- High Common Emitter Power Gain
- Specified 13.6 V, 160 MHz Performance:

Output Power = 40 Watts
Power Gain $=9.0 \mathrm{~dB}$ Min
Efficiency $=55 \%$ Min

- Load Mismatch Capability at Rated Voltage and RF Drive
- Silicon Nitride Passivated
- Low Intermodulation Distortion, $\mathrm{d}_{3}=-30 \mathrm{~dB}$ Typ

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	16	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	36	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	IC	8.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1)$	$\mathrm{PD}_{\mathrm{D}}$	100	Watts
Derate above $25^{\circ} \mathrm{C}$		0.57	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

## MRF240

40 W, 145-175 MHz RF POWER TRANSISTORS NPN SILICON


CASE 145A-09, STYLE 1

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (2)	$R_{\text {日JC }}$	1.75	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	16	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=20 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\left.\mathrm{V}_{( } \mathrm{BR}\right) \mathrm{CES}$	36	-	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=5.0 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	10	mAdc

## ON CHARACTERISTICS

DC Current Gain   $\left(\mathrm{IC}=4.0\right.$ Adc, $\left.\mathrm{V}_{\text {CE }}=5.0 \mathrm{Vdc}\right)$	$\mathrm{h}_{\mathrm{FE}}$	10	70	150	-

## DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=12.5 \mathrm{Vdc}, \mathrm{I}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	-	90	125	pF

## NOTES:

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.
2. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
FUNCTIONAL TESTS					
Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=13.6 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=40 \mathrm{~W}, \mathrm{f}=160 \mathrm{MHz}\right)$	GPE	9.0	10	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \qquad\left(\mathrm{V}_{\mathrm{CC}}=13.6 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=40 \mathrm{~W}, \mathrm{f}=160 \mathrm{MHz}\right) \end{aligned}$	$\eta$	55	-	-	\%

## TYPICAL SSB PERFORMANCE

Intermodulation Distortion (3)   (VCC $=13.6 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=35 \mathrm{~W}$ (PEP), $\mathrm{f} 1=146 \mathrm{MHz}$,   $\mathrm{f} 2=146.002 \mathrm{MHz}, \mathrm{ICQ}=50 \mathrm{mAdc})$	$\mathrm{IMD}\left(\mathrm{d}_{3}\right)$	-	-30	-	dB

NOTE:
3. To MIL-STD-1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone.


Figure 1. 160 MHz Test Circuit Schematic


Figure 2. Power Gain versus Frequency


Figure 4. Output Power versus Supply Voltage


Figure 3. Output Power versus Input Power


Figure 5. Output Power versus Supply Voltage


Figure 6. Output Power versus Supply Voltage


Figure 7. Series Equivalent Input/Output Impedances

## The RF Line NPN Silicon RF Power Transistor

The MRF247 is designed for 12.5 Volt VHF large-signal amplifier applications in industrial and commercial FM equipment operating to 175 MHz .

- Specified 12.5 Volt, 175 MHz Characteristics -

Output Power = 75 Watts
Power Gain $=7.0 \mathrm{~dB}$ Min
Efficiency $=55 \%$ Min

- Characterized With Series Equivalent Large-Signal Impedance Parameters
- Internal Matching Network Optimized for Minimum Gain Frequency Slope Response Over the Range 136 to 175 MHz
- Load Mismatch Capability at Rated Pout and Supply Voltage


$75 \mathrm{~W}, 175 \mathrm{MHz}$
CONTROLLED Q
RF POWER
TRANSISTOR
NPN SILICON



## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	18	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	36	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current — Peak	I C	20	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1)$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	250	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	$-65 \mathrm{to}+150$	$\mathrm{~W}^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (2)	$\mathrm{R}_{\theta \mathrm{JC}}$	0.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage   $\left(\mathrm{I}_{\mathrm{C}}=100\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	18	-	-	Vdc
Collector-Emitter Beakdown Voltage   $\left(\mathrm{I}_{\mathrm{C}}=50\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	36	-	-	Vdc
Emitter-Base Breakdown Voltage   $\left(\mathrm{I}=10\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc

(1) This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.
(2) Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.

ELECTRICAL CHARACTERISTICS ( $\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
DC Current Gain ( $\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}$ )	$\mathrm{h}_{\text {FE }}$	10	75	150	-

## DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	-	235	300	pF

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=75 \text { Watts, } \mathrm{f}=175 \mathrm{MHz}\right)$	GPE	7.0	8.5	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=75 \text { Watts, } \mathrm{f}=175 \mathrm{MHz}\right)$	$\eta$	55	60	-	\%
Load Mismatch $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=75 \text { Watts, } \mathrm{f}=175 \mathrm{MHz}\right. \text {, } \\ & \text { VSWR }=30: 1 \text { All Phase Angles }) \end{aligned}$	$\psi$	No Degradation in Output Power			



C1, C17	330 pF ATC 100 mil Ceramic Capacitor
C2, C14	Johansen 1-20 pF Trimmer Capacitor
C3	40 pF Standard Unelco Clamped Mica Capacitor
C4, C16	Sprague $10 \mu \mathrm{FF}-35$ Vdc Electrolytic Capacitor
C5	80 pF Standard Unelco Clamped Mica Capacitor
C6, C13	91 pF Mini-Unelco Clamped Mica Capacitor
C7, C8	240 pF ATC 100 mil Ceramic Capacitor
C9, C10	180 pF ATC 100 mil Ceramic Capacitor

C1, C

C3
C4, C16
C5
C6, C13
C9, C10

330 pF ATC 100 mil Ceramic Capacitor ohansen 1-20 pF Trimmer Capacitor apacitor 80 pF Standard Unelco Clamped Mica Capacitor 91 pF Mini-Unelco Clamped Mica Capacitor 180 pF ATC 100 mil Ceramic Capacitor

Figure 1. 175 MHz Test Circuit Schematic


Figure 2. Output Power versus Input Power


Figure 3. Power Gain versus Frequency


Figure 4. Output Power versus Supply Voltage


Figure 6. Output Power versus Supply Voltage


Figure 5. Output Power versus Supply Voltage

Figure 7. Series Equivalent Impedances

## The RF MOSFET Line RF Power <br> Field-Effect Transistor N-Channel Enhancement-Mode

Designed for broadband commercial and industrial applications at frequencies to 54 MHz . The high gain, broadband performance and linear characterization of this device makes it ideal for large-signal, common source amplifier applications in 12.5 Volt mobile and base station equipment.

- Guaranteed Performance at $54 \mathrm{MHz}, 12.5$ Volts

Output Power - 55 Watts PEP
Power Gain - 13 dB Min
Two-Tone IMD - -25 dBc Max
Efficiency - 40\% Min, Two-Tone Test

- Characterized with Series Equivalent Large-Signal Impedance Parameters
- Excellent Thermal Stability
- All Gold Metal for Ultra Reliability
- Aluminum Nitride Package Electrical Insulator

$55 \mathrm{~W}, 12.5 \mathrm{Vdc}, 54 \mathrm{MHz}$ N-CHANNEL BROADBAND RF POWER FET


CASE 211-11, STYLE 2

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V ${ }_{\text {DSS }}$	36	Vdc
Drain-Gate Voltage (RGS = 1.0 M )	$V_{\text {DGR }}$	36	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 20$	Vdc
Drain Current - Continuous	ID	22	Adc
Total Device Dissipation @ TC $=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & \hline 175 \\ & 1.0 \end{aligned}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	1.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

Handling and Packaging - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

REV 1

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=20 \mathrm{mAdc}\right)$	$V_{\text {(BR) }}$ DSS	36	-	-	Vdc
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	5.0	mAdc
Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0\right)$	IGSS	-	-	5.0	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=25 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	1.25	2.3	3.5	Vdc
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=4.0 \mathrm{Adc}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	-	-	0.4	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=3.0 \mathrm{Adc}\right)$	gfs	4.2	-	-	S

DYNAMIC CHARACTERISTICS

Input Capacitance   $\left(V_{\mathrm{DS}}=12.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{iss}}$	-	140	-	pF
Output Capacitance   $\left(\mathrm{V}_{\mathrm{DS}}=12.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{Oss}}$	-	285	-	pF
Reverse Transfer Capacitance   $\left(\mathrm{V}_{\mathrm{DS}}=12.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	38	44	pF

FUNCTIONAL TESTS (In Motorola Test Fixture.)

Common Source Amplifier Power Gain, $\mathrm{f}_{1}=54, \mathrm{f}_{2}=54.001 \mathrm{MHz}$ $\left(\mathrm{V}_{\mathrm{DD}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=55 \mathrm{~W}(\mathrm{PEP}), \mathrm{I}_{\mathrm{DQ}}=400 \mathrm{~mA}\right)$	$\mathrm{G}_{\mathrm{ps}}$	13	16	-	dB
$\begin{aligned} & \text { Intermodulation Distortion }(1), f_{1}=54.000 \mathrm{MHz}, \mathrm{f}_{2}=54.001 \mathrm{MHz} \\ & \left(\mathrm{~V}_{\mathrm{DD}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\mathrm{out}}=55 \mathrm{~W}(\mathrm{PEP}), \mathrm{I} \mathrm{IQ}=400 \mathrm{~mA}\right) \end{aligned}$	IMD (d3,d5)	-	-30	-25	dBc
$\begin{aligned} & \text { Drain Efficiency, } \mathrm{f}_{1}=54 ; \mathrm{f}_{2}=54.001 \mathrm{MHz} \\ & \quad\left(\mathrm{~V}_{\mathrm{DD}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=55 \mathrm{~W}(\mathrm{PEP}), \mathrm{I} Q=400 \mathrm{~mA}\right) \end{aligned}$	$\eta$	40	45	-	\%
```Drain Efficiency, \(\mathrm{f}=54 \mathrm{MHz}\) \(\left(\mathrm{V}_{\mathrm{DD}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=55 \mathrm{~W} \mathrm{CW}, \mathrm{I}_{\mathrm{DQ}}=400 \mathrm{~mA}\right)\)```	$\eta$	-	60	-	\%
$\begin{aligned} & \text { Output Mismatch Stress, } f_{1}=54 ; f_{2}=54.001 \mathrm{MHz} \\ & \left(V_{D D}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=55 \mathrm{~W}(\mathrm{PEP}), \text { IDQ }=400 \mathrm{~mA},\right. \\ & \text { VSWR }=20: 1, \text { at all phase angles }) \end{aligned}$	ψ	No Degradation in Output Power Before and After Test			

(1) To MIL-STD-1311 Version A, Test Method 2204B, Two Tone, Reference Each Tone.

C1 - 470 pF, Chip Capacitor
C2, C3, C11, C12-20-200 pF, Trimmer, ARCO \#464
C4 - 100 pF, Chip Capacitor
C5, C17-100 $\mu \mathrm{F}, 15 \mathrm{~V}$, Electrolytic
C6 - 0.001μ F, Disc Ceramic
C7, C8, C9, C10 - 330 pF, Chip Capacitor
C14-1200 pF, ATC Chip Capacitor
C15 - 910 pF, 500 V, Dipped Mica
C16-47 $\mu \mathrm{F}, 16 \mathrm{~V}$, Electrolytic

L1 - 8 Turns, \#20 AWG, 0.126" ID
L2 - 5 Turns, \#18 AWG, 0.142" ID
L3 - 3 Turns, \#20 AWG, 0.102" ID
L4-7 Turns, \#24 AWG, 0.070"ID
L5 - 6.5 Turns, \#18 AWG, $0.230^{\prime \prime}$ ID, $0.5^{\prime \prime}$ Long
N1, N2 - Type N Flange Mount
RFC1 - Ferroxcube VK-200-19/4B
R1 - $39 \mathrm{k} \Omega$, 1/4 W Carbon
R2-150 Ω, 1/4 W Carbon
Board - G-10 .060"

Figure 1.54 MHz Linear RF Test Circuit Electrical Schematic
TYPICAL CHARACTERISTICS

Figure 2. IMD versus Output Power

Figure 4. Output Power versus Input Power

Figure 3. Output Power versus Input Power

Figure 5. Output Power versus Supply Voltage

Figure 6. Drain Current versus Gate Voltage

Figure 8. Gate-Source Voltage versus Case Temperature

Figure 7. Capacitance versus Voltage

Figure 9. DC Safe Operating Area

Table 1. Series Equivalent Input and Output Impedance
VDD $=12.5 \mathrm{Vdc}, \mathrm{IDQ}_{\mathrm{D}}=400 \mathrm{~mA}$, Pout $=55 \mathrm{~W}$ PEP

Optimized for Efficiency and IM Performance $|$\begin{tabular}{|c|c|c|}
\hline \mathbf{f}

$\mathbf{M H z}$ \& | $\mathbf{Z i n}_{\text {in }}$ |
| :---: |
| Ohms | \& | $\mathbf{Z O L}^{*}$ |
| :---: |
| Ohms |

\hline 54 \& $6.50+\mathrm{j} 7.96$ \& $1.27+\mathrm{j} 1.54$

\hline
\end{tabular}

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance into which the device operates at a given power, voltage and frequency.

(SCALE: 1:1)

Figure 10. Photomaster for 54 MHz Narrowband Test Fixture
(Reduced 25\% in printed data book, DL110/D)

Figure 11. Test Fixture Photograph — MRF255

Table 2. Common Source Scattering Parameters
($\mathrm{V}_{\mathrm{DS}}=12.5 \mathrm{Vdc}$)
$\mathrm{ID}=100 \mathrm{~mA}$

$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}		
	$\left\|S_{11}\right\|$	$\angle \phi$	\|S \mathbf{S}_{21} \|	$\angle \phi$	${ }^{\text {S }}$ 12 ${ }^{\text {\| }}$	$\angle \phi$	\|S22		$\angle \phi$
1	0.98	-32	39.6	161	0.013	71	0.32	-80	
2	0.92	-60	34.6	145	0.023	56	0.50	-108	
5	0.81	-110	21.3	118	0.035	29	0.75	-143	
10	0.76	-140	11.9	102	0.039	14	0.83	-160	
20	0.74	-158	6.08	90	0.040	4	0.86	-169	
30	0.75	-163	4.03	82	0.039	-2	0.87	-173	
40	0.75	-166	2.98	77	0.038	-5	0.87	-174	
50	0.76	-167	2.35	72	0.037	-8	0.88	-175	
60	0.78	-168	1.91	67	0.036	-10	0.89	-176	
70	0.79	-168	1.60	63	0.034	-12	0.89	-176	
80	0.80	-169	1.36	59	0.032	-13	0.90	-177	
90	0.81	-169	1.18	56	0.031	-14	0.90	-177	
100	0.82	-169	1.03	52	0.029	-15	0.91	-177	
120	0.85	-170	0.81	46	0.025	-14	0.92	-178	
140	0.87	-171	0.65	41	0.022	-11	0.93	-179	
160	0.88	-172	0.54	37	0.019	-6	0.94	180	
180	0.90	-173	0.45	33	0.017	2	0.95	179	
200	0.91	-174	0.38	30	0.016	12	0.95	178	
220	0.92	-175	0.33	27	0.016	23	0.96	177	
240	0.93	-176	0.29	25	0.016	34	0.96	176	
260	0.94	-177	0.25	23	0.018	44	0.97	175	

ID $=400 \mathrm{~mA}$

f	S_{11}		S_{21}		S_{12}		S_{22}		
(MHz)	$\left\|S_{11}\right\|$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
1	0.98	-46	56.6	155	0.008	66	0.45	-148	
2	0.95	-80	46.1	137	0.013	48	0.64	-151	
5	0.90	-129	25.1	113	0.017	25	0.84	-164	
10	0.88	-153	13.4	100	0.019	14	0.89	-172	
20	0.88	-167	6.82	91	0.019	10	0.91	-176	
30	0.88	-171	4.55	87	0.019	9	0.91	-178	
40	0.88	-173	3.41	83	0.019	10	0.91	-178	
50	0.88	-175	2.72	80	0.019	11	0.91	-179	
60	0.88	-176	2.25	78	0.019	12	0.91	-179	
70	0.88	-176	1.92	75	0.019	14	0.92	-180	
80	0.88	-177	1.67	72	0.019	16	0.92	180	
90	0.89	-177	1.47	70	0.019	18	0.92	179	
100	0.89	-178	1.31	68	0.019	20	0.92	179	
120	0.89	-178	1.08	63	0.019	24	0.92	179	
140	0.89	-179	0.90	59	0.019	29	0.93	178	
160	0.90	-179	0.77	55	0.020	34	0.93	177	
180	0.90	-180	0.67	52	0.021	38	0.93	177	
200	0.91	180	0.59	48	0.022	43	0.94	176	
220	0.91	179	0.53	45	0.023	47	0.94	175	
240	0.91	179	0.47	42	0.025	50	0.95	175	
260	0.92	178	0.43	40	0.026	53	0.95	174	

Table 2. Common Source Scattering Parameters (continued) (VDS = 12.5 Vdc)
$l D=1 A$

\mathbf{f} $\mathbf{(M H z})$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
1	0.98	-54	65.5	152	0.006	63	0.60	-162
2	0.96	-91	50.9	133	0.009	44	0.75	-163
5	0.93	-137	26.2	110	0.011	23	0.88	-170
10	0.93	-158	13.7	99	0.012	15	0.91	-175
20	0.92	-169	6.96	92	0.012	15	0.92	-178
30	0.92	-173	4.65	89	0.012	18	0.93	-179
40	0.92	-175	3.49	86	0.013	21	0.93	-180
50	0.92	-176	2.79	84	0.013	25	0.93	180
60	0.92	-177	2.32	82	0.013	28	0.93	179
70	0.92	-178	1.99	80	0.014	31	0.93	179
80	0.92	-179	1.74	78	0.014	34	0.93	179
90	0.92	-179	1.54	76	0.015	37	0.93	178
100	0.92	-180	1.39	74	0.016	40	0.93	178
120	0.92	180	1.15	71	0.017	44	0.93	177
140	0.92	179	0.98	68	0.019	48	0.93	177
160	0.92	178	0.86	65	0.020	51	0.93	176
180	0.92	178	0.76	62	0.022	54	0.93	176
200	0.92	177	0.68	59	0.024	56	0.94	175
220	0.92	177	0.61	56	0.026	58	0.94	175
240	0.92	176	0.56	53	0.028	59	0.94	174
260	0.92	176	0.51	51	0.030	61	0.94	173

DESIGN CONSIDERATIONS

The MRF255 is a common-surce, RF power, N-channel enhancement mode Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET). Motorola RF MOSFETs feature a vertical structure with a planar design.

Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.
This device was designed primarily for HF 12.5 V mobile linear power amplifier applications. The major advantages of RF power MOSFETs include high gain, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage.

MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between all three terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (C_{gd}), and gate-to-source (C_{gs}). The PN junction formed during fabrication of the RF MOSFET results in a junction capacitance from drain-to-source (C_{ds}).
These capacitances are characterized as input ($\mathrm{C}_{\mathrm{iss}}$), output ($\mathrm{C}_{\text {oss }}$) and reverse transfer ($\mathrm{C}_{\text {rss }}$) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The $\mathrm{C}_{\text {iss }}$ can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate.
In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

DRAIN CHARACTERISTICS

One critical figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, RDS(on), occurs in the linear region of the output characteristic and is specified at a specific gate-source voltage and drain current. The drain-source voltage under these conditions is termed $V_{D S(o n) . ~ F o r ~ M O S F E T s, ~}$ DS(on) has a positive temperature coefficient at high temperatures because it contributes to the power dissipation within the device.

GATE CHARACTERISTICS

The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high - on the order of 109 ohms - resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage to the gate greater than the gate-to-source threshold voltage, $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$.

Gate Voltage Rating - Never exceed the gate voltage rating. Exceeding the rated V_{GS} can result in permanent damage to the oxide layer in the gate region.

Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate opencircuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection - These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.

Using a resistor to keep the gate-to-source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change
on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on.

DC BIAS

Since the MRF255 is an enhancement mode FET, drain current flows only when the gate is at a higher potential than the source. See Figure 8 for a typial plot of drain current versus gate voltage. RF power FETs operate optimally with a quiescent drain current (IDQ), whose value is application dependent. The MRF255 was characterized for linear and CW operation at $\mathrm{IDQ}=400 \mathrm{~mA}$, which is the suggested value of bias current for typical applications.

The gate is a dc open circuit and draws essentially no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some applications may require a more elaborate bias sytem.

GAIN CONTROL

For CW applications, power output of the MRF255 may be controlled to some degree with a low power dc control signal applied to the gate, thus facilitating applications such as manual gain control, AGC/ALC and modulation systems. The characteristic is very dependent on frequency and load line.

The RF MOSFET Line Power Field-Effect Transistor N-Channel Enhancement-Mode

Designed primarily for wideband large-signal output and driver stages from $100-500 \mathrm{MHz}$.

- Guaranteed Performance @ $500 \mathrm{MHz}, 28 \mathrm{Vdc}$

Output Power - 150 Watts
Power Gain - 10 dB (Min)
Efficiency - 50\% (Min)
100\% Tested for Load Mismatch at all Phase Angles with VSWR 30:1

verall Lower Capacitance @ 28 V
Ciss - 135 pF
Coss - 140 pF
Crss - 17 pF

- Simplified AVC, ALC and Modulation

Typical data for power amplifiers in industrial and commercial applications:

- Typical Performance @ $400 \mathrm{MHz}, 28 \mathrm{Vdc}$

Output Power - 150 Watts
Power Gain - 12.5 dB
Efficiency - 60\%

- Typical Performance @ $225 \mathrm{MHz}, 28 \mathrm{Vdc}$

CASE 375-04, STYLE 2
$150 \mathrm{~W}, 28 \mathrm{~V}, 500 \mathrm{MHz}$
N-CHANNEL MOS
BROADBAND
$100-500 \mathrm{MHz}$
RF POWER FET

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDSS	65	Vdc
Drain-Gate Voltage ($\mathrm{R}_{\mathrm{GS}}=1.0 \mathrm{M} \Omega$)	V ${ }_{\text {DGR }}$	65	Vdc
Gate-Source Voltage	V_{GS}	± 40	Adc
Drain Current - Continuous	ID	26	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD_{D}	$\begin{aligned} & \hline 400 \\ & 2.27 \end{aligned}$	Watts W/ ${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	0.44	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS (TC $=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (1)					
Drain-Source Breakdown Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	Vdc
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	1	mA
Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\right)$	IGSS	-	-	1	$\mu \mathrm{A}$

ON CHARACTERISTICS (1)

Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	1.5	2.5	4.5	Vdc
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=5 \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	0.5	0.9	1.5	Vdc^{\prime}
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=2.5 \mathrm{~A}\right)$	g_{fs}	3	3.75	-	mhos

DYNAMIC CHARACTERISTICS (1)

Input Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{iss}}$	-	135	-	pF
Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{oss}}$	-	140	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	-	17	-	pF

FUNCTIONAL CHARACTERISTICS (2) (Figure 1)

Common Source Power Gain $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}, \mathrm{f}=500 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=2 \times 100 \mathrm{~mA}\right)$	G_{ps}	10	11.2	-	dB
Drain Efficiency $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}, \mathrm{f}=500 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=2 \times 100 \mathrm{~mA}\right)$	η	50	55	-	\%
Electrical Ruggedness $\left(V_{D D}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}, \mathrm{f}=500 \mathrm{MHz}, \mathrm{I}_{\mathrm{DQ}}=2 \times 100 \mathrm{~mA}\right.$, VSWR 30:1 at all Phase Angles)	ψ	No Degradation in Output Power			

1. Each side of device measured separately.
2. Measured in push-pull configuration.

Figure 1. 500 MHz Test Circuit

TYPICAL CHARACTERISTICS

Figure 2. Output Power versus Input Power

Figure 4. Drain Current versus Gate Voltage (Transfer Characteristics)

Figure 6. Output Power versus Supply Voltage

Figure 3. Output Power versus Gate Voltage

Figure 5. Output Power versus Supply Voltage

Figure 7. Output Power versus Supply Voltage

Figure 8. Capacitance versus Drain-Source Voltage* *Data shown applies only to one half of device, MRF275G

Figure 9. Gate-Source Voltage versus Case Temperature

Figure 10. DC Safe Operating Area

$V_{D D}=28 \mathrm{~V}, I_{D Q}=2 \times 100 \mathrm{~mA}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}$

f (MHz)	$Z_{\text {in }}$ Ohms	$Z_{\text {OL }}{ }^{*}$ Ohms
225	$1.6-\mathrm{j} 2.30$	$3.2-\mathrm{j} 1.50$
400	$1.9+j 0.48$	$2.3-\mathrm{j} 0.19$
500	$1.9+j 2.60$	$2.0+\mathrm{j} 1.30$

$Z_{O L}{ }^{*}=$ Conjugate of the optimum load impedance into which the device operates at a given output power, voltage and frequency.

Note: Input and output impedance values given are measured from gate to gate and drain to drain respectively.

Figure 11. Series Equivalent Input/Output Impedance

Figure 12. 400 MHz Test Circuit

Figure 13. 225 MHz Test Circuit

Figure 14. MRF275G Component Location (500 MHz) (Not to Scale)

Figure 15. MRF275G Circuit Board Photo Master (500 MHz) Scale 1:1
(Reduced 25\% in printed data book, DL110/D)

Figure 16. MRF275G Test Fixture

RF POWER MOSFET CONSIDERATIONS

MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between the terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (C_{gd}), and gate-tosource (C_{gs}). The PN junction formed during the fabrication of the MOSFET results in a junction capacitance from drain-to-source (C_{ds}).

These capacitances are characterized as input ($\mathrm{C}_{\mathrm{iss}}$), output ($\mathrm{C}_{\mathrm{oss}}$) and reverse transfer (Crss) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The Ciss can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate. In the latter case the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

The $\mathrm{C}_{\text {iss }}$ given in the electrical characteristics table was measured using method 2 above. It should be noted that $\mathrm{C}_{\text {iss }}, \mathrm{C}_{\mathrm{oss}}, \mathrm{C}_{\mathrm{rss}}$ are measured at zero drain current and are
provided for general information about the device. They are not RF design parameters and no attempt should be made to use them as such.

LINEARITY AND GAIN CHARACTERISTICS

In addition to the typical IMD and power gain, data presented in Figure 3 may give the designer additional information on the capabilities of this device. The graph represents the small signal unity current gain frequency at a given drain current level. This is equivalent to f\rceil for bipolar transistors. Since this test is performed at a fast sweep speed, heating of the device does not occur. Thus, in normal use, the higher temperatures may degrade these characteristics to some extent.

DRAIN CHARACTERISTICS

One figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, VDS(on), occurs in the linear region of the output characteristic and is specified under specific test conditions for gate-source voltage and drain current. For MOSFETs, V_{DS} (on) has a positive temperature coefficient and constitutes an important design consideration at high temperatures, because it contributes to the power dissipation within the device.

GATE CHARACTERISTICS

The gate of the MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high - on the order of 10^{9} ohms resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage slightly in excess of the gate-to-source threshold voltage, $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$.

Gate Voltage Rating - Never exceed the gate voltage rating (or any of the maximum ratings on the front page). Exceeding the rated V_{GS} can result in permanent damage to the oxide layer in the gate region.

Gate Termination - The gates of this device are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection - These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended.

Using a resistor to keep the gate-to-source impedance low also helps damp transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on.

HANDLING CONSIDERATIONS

When shipping, the devices should be transported only in antistatic bags or conductive foam. Upon removal from the packaging, careful handling procedures should be adhered to. Those handling the devices should wear grounding straps and devices not in the antistatic packaging should be kept in metal tote bins. MOSFETs should be handled by the case and not by the leads, and when testing the device, all leads should make good electrical contact before voltage is applied. As a final note, when placing the FET into the system it is designed for, soldering should be done with grounded equipment.

DESIGN CONSIDERATIONS

The MRF275G is a RF power N-channel enhancement mode field-effect transistor (FETs) designed for HF, VHF and UHF power amplifier applications. Motorola RF MOSFETs feature a vertical structure with a planar design.

Motorola Application Note AN211A, FETs in Theory and Practice, is suggested reading for those not familiar with the construction and characteristics of FETs.

The major advantages of RF power FETs include high gain, low noise, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage. Power output can be varied over a wide range with a low power dc control signal.

DC BIAS

The MRF275G is an enhancement mode FET and, therefore, does not conduct when drain voltage is applied. Drain current flows when a positive voltage is applied to the gate. RF power FETs require forward bias for optimum performance. The value of quiescent drain current (IDQ) is not critical for many applications. The MRF275G was characterized at $\operatorname{IDQ}=100 \mathrm{~mA}$, each side, which is the suggested minimum value of IDQ. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may be just a simple resistive divider network. Some applications may require a more elaborate bias system.

GAIN CONTROL

Power output of the MRF275G may be controlled from its rated value down to zero (negative gain) by varying the dc gate voltage. This feature facilitates the design of manual gain control, AGC/ALC and modulation systems.

The RF Sub-Micron MOSFET Line RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

MRF282S
 MRF282Z

Designed for class A and class AB PCN and PCS base station applications at frequencies up to 2600 MHz . Suitable for FM, TDMA, CDMA, and multicarrier amplifier applications.

- Specified Two-Tone Performance @ 2000 MHz, 26 Volts

Output Power = 10 Watts (PEP)
Power Gain = 11 dB
Efficiency $=30 \%$
Intermodulation Distortion $=-30 \mathrm{dBc}$

- Specified Single-Tone Performance @ 2000 MHz, 26 Volts

Output Power = 10 Watts (CW)
Power Gain = 11 dB
Efficiency $=40 \%$

- Characterized with Series Equivalent Large-Signal Impedance Parameters
- S-Parameter Characterization at High Bias Levels
- Excellent Thermal Stability
- Capable of Handling 10:1 VSWR, @ 26 Vdc, 2000 MHz, 10 Watts (CW) Output Power
- Gold Metallization for Improved Reliability

-Gold Metalization for Improved Reliabily

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	Vdc
Gate-Source Voltage	V_{GS}	± 20	Vdc
Total Device Dissipation @ $\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	60	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ_{J}	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	2.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Drain-Source Breakdown Voltage ($\mathrm{V}_{\mathrm{GS}}=0, \mathrm{ID}=10 \mu \mathrm{Adc}$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	Vdc
Zero Gate Voltage Drain Current $\left(V_{D S}=28 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	1.0	$\mu \mathrm{Adc}$
Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0\right)$	IGSS	-	-	1.0	$\mu \mathrm{Adc}$

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS continued $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
Gate Threshold Voltage ($\left.\mathrm{V}_{\mathrm{DS}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=50 \mu \mathrm{Adc}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	2.0	3.0	4.0	Vdc
Drain-Source On-Voltage $(\mathrm{VGS}=10 \mathrm{Vdc}, \mathrm{ID}=0.5 \mathrm{Adc})$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	-	0.4	0.6	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=0.5 \mathrm{Adc}\right)$	gfs	0.5	0.7	-	S
Gate Quiescent Voltage $\left(\mathrm{V}_{\mathrm{DS}}=26 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=75 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{q})$	3.0	4.0	5.0	Vdc

DYNAMIC CHARACTERISTICS

Input Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=26 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	15	-	pF
Output Capacitance $\left(V_{D S}=26 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0, f=1.0 \mathrm{MHz}\right)$	$\mathrm{Cosss}^{\text {a }}$	-	8.0	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=26 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{Crss}^{\text {r }}$	-	0.45	-	pF

FUNCTIONAL TESTS (In Motorola Test Fixture)

$\begin{aligned} & \text { Common-Source Power Gain } \\ & \left(V_{D D}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}(\mathrm{PEP}), \mathrm{I} \mathrm{DQ}=75 \mathrm{~mA}\right. \text {, } \\ & \mathrm{f} 1=2000.0 \mathrm{MHz}, \mathrm{f} 2=2000.1 \mathrm{MHz}) \end{aligned}$	G_{ps}	11	12.6	-	dB
$\begin{aligned} & \text { Drain Efficiency } \\ & \left(V_{D D}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}(\mathrm{PEP}), \mathrm{IDQ}=75 \mathrm{~mA},\right. \\ & \mathrm{f} 1=2000.0 \mathrm{MHz}, \mathrm{f} 2=2000.1 \mathrm{MHz}) \end{aligned}$	η	30	34	-	\%
$\begin{aligned} & \text { Intermodulation Distortion } \\ & \left(\text { VDD }=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}(\mathrm{PEP}), \mathrm{IDQ}=75 \mathrm{~mA}\right. \text {, } \\ & \mathrm{f} 1=2000.0 \mathrm{MHz}, \mathrm{f} 2=2000.1 \mathrm{MHz}) \end{aligned}$	${ }^{\text {M }}$ MD	-	-32.5	-30	dBc
$\begin{aligned} & \text { Input Return Loss } \\ & \left(V_{D D}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}(\mathrm{PEP}), \mathrm{I} \mathrm{DQ}=75 \mathrm{~mA}\right. \text {, } \\ & \mathrm{f} 1=2000.0 \mathrm{MHz}, \mathrm{f} 2=2000.1 \mathrm{MHz}) \end{aligned}$	${ }^{\text {IRL }}$	10	14	-	dB
$\begin{aligned} & \text { Common-Source Power Gain } \\ & \left(V_{D D}=26 \mathrm{Vdc}, \mathrm{P}_{\mathrm{out}}=10 \mathrm{~W}(\mathrm{PEP}), \mathrm{IDQ}=75 \mathrm{~mA}\right. \text {, } \\ & \mathrm{f} 1=1930.0 \mathrm{MHz}, \mathrm{f} 2=1930.1 \mathrm{MHz}) \end{aligned}$	G_{ps}	11	12.6	-	dB
$\begin{aligned} & \text { Drain Efficiency } \\ & \left(\text { VDD }=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}(\mathrm{PEP}), \mathrm{IDQ}=75 \mathrm{~mA}\right. \text {, } \\ & \mathrm{f1}=1930.0 \mathrm{MHz}, \mathrm{f} 2=1930.1 \mathrm{MHz}) \end{aligned}$	η	-	30	-	\%
$\begin{aligned} & \text { Intermodulation Distortion } \\ & \left(V_{D D}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}(\mathrm{PEP}), \mathrm{I} \mathrm{DQ}=75 \mathrm{~mA}\right. \text {, } \\ & \mathrm{f} 1=1930.0 \mathrm{MHz}, \mathrm{f} 2=1930.1 \mathrm{MHz}) \end{aligned}$	${ }^{\text {M }}$ M	-	-32.5	-	dBc
$\begin{aligned} & \text { Input Return Loss } \\ & \left(V_{D D}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}(\mathrm{PEP}), \mathrm{IDQ}=75 \mathrm{~mA}\right. \text {, } \\ & \mathrm{f} 1=1930.0 \mathrm{MHz}, \mathrm{f} 2=1930.1 \mathrm{MHz}) \end{aligned}$	${ }^{\text {IRL }}$	10	14	-	dB
$\begin{aligned} & \text { Common-Source Power Gain } \\ & \left(V_{D D}=26 \mathrm{Vdc}, \mathrm{P}_{\mathrm{out}}=10 \mathrm{~W} \mathrm{CW}, \mathrm{I}_{\mathrm{DQ}}=75 \mathrm{~mA}, \mathrm{f}=2000.0 \mathrm{MHz}\right) \end{aligned}$	G_{ps}	11	12.3	-	dB
Drain Efficiency $\left(V_{D D}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W} \mathrm{CW}, \mathrm{I}_{\mathrm{DQ}}=75 \mathrm{~mA}, \mathrm{f}=2000.0 \mathrm{MHz}\right)$	η	40	45	-	\%
Output Mismatch Stress $\begin{aligned} & \left(\mathrm{V}_{\mathrm{DD}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W} \mathrm{CW}, \mathrm{IDQ}_{\mathrm{DQ}}=75 \mathrm{~mA},\right. \\ & \mathrm{f}=2000.0 \mathrm{MHz}, \mathrm{f} 2=2000.1 \mathrm{MHz} \text {, Load } \mathrm{VSWR}=10: 1 \text {, } \end{aligned}$ All Phase Angles at Frequency of Test)	Ψ	No Degradation In Output Power			

$\left.\begin{array}{llll}\text { B1, B2, B3, } & \text { Ferrite Bead, Ferroxcube, } 56-590-65-3 B & \begin{array}{l}\text { R1, R2, R3, } \\ \text { B4, B5, B6 }\end{array} & \\ \text { C1, C17 } & & \\ \text { R4, R5, R6 }\end{array}\right)$

Figure 1. Schematic of 1.93-2.0 GHz Broadband Test Circuit

$\begin{aligned} & \mathrm{B1}, \mathrm{B2}, \mathrm{~B} 3, \\ & \mathrm{B4} 4, \mathrm{~B}, \mathrm{~B} 6 \end{aligned}$	Ferrite Bead, Fair Rite, (2743021446)
C1, C16	470 FF, 63 V, Electrolytic Capacitor, Mallory
C2, C9, C12	0.6-4.5 pF, Variable Capacitor, Johanson Gigatrim
C3	0.8-4.5 pF, Variable Capacitor, Johanson Gigatrim
C4, C13	0.1 FF, Chip Capacitor
C5, C14	100 pF, B Case Chip Capacitor, ATC
C6, C8, C11, C15	12 pF , B Case Chip Capacitor, ATC
C7, C10	1000 pF, B Case Chip Capacitor, ATC
C17	0.1 pF, B Case Chip Capacitor, ATC
L1	3 Turns, 27 AWG, $0.087^{\prime \prime}$ OD, $0.050^{\prime \prime}$ ID, $0.053^{\prime \prime}$ Long, 6.0 nH
L2	5 Turns, 27 AWG, $0.087^{\prime \prime}$ OD, $0.050^{\prime \prime}$ ID, $0.091 "$ Long, 15 nH
L3, L4	9 Turns, 26 AWG, $0.080^{\prime \prime}$ OD, $0.046^{\prime \prime}$ ID, $0.170^{\prime \prime}$ Long, 30.8 nH
L5	4 Turns, 27 AWG, $0.087^{\prime \prime}$ OD, $0.050^{\prime \prime}$ ID, $0.078^{\prime \prime}$ Long, 10 nH

R1, R2, R3,	$12 \Omega, 1 / 8 \mathrm{~W}$ Fixed Film Chip Resistor,
R4, R5, R6	$0.08^{\prime \prime} \times 0.13^{\prime \prime}$
W1, W2	Berrylium Copper, $0.010^{\prime \prime} \times 0.110^{\prime \prime} \times 0.210^{\prime \prime}$
Z1	$0.122^{\prime \prime} \times 0.08^{\prime \prime}$ Microstrip
Z2	$0.650^{\prime \prime} \times 0.08^{\prime \prime}$ Microstrip
Z3	$0.160^{\prime \prime} \times 0.08^{\prime \prime}$ Microstrip
Z4	$0.030^{\prime \prime} \times 0.08^{\prime \prime}$ Microstrip
Z5	$0.045^{\prime \prime} \times 0.08^{\prime \prime}$ Microstrip
Z6	$0.291^{\prime \prime} \times 0.08^{\prime \prime}$ Microstrip
Z7	$0.483^{\prime \prime} \times 0.330^{\prime \prime}$ Microstrip
Z8	$0.414^{\prime \prime} \times 0.330^{\prime \prime}$ Microstrip
Z9	$0.392^{\prime \prime} \times 0.08^{\prime \prime}$ Microstrip
Z10	$0.070^{\prime \prime} \times 0.08^{\prime \prime}$ Microstrip
Z11	$1.110^{\prime \prime} \times 0.08^{\prime \prime}$ Microstrip
Board	$1=0.03$ Glass Teflon ${ }^{\circledR}$, Arlon $G X-0300-55-22$,
	$20 z$ Copper, $3 \times 5^{\prime \prime}$ Dimenson, $0.030^{\prime \prime}, \varepsilon_{r}=2.55$

Figure 2. Schematic of 1.81-1.88 GHz Broadband Test Circuit

Figure 3. Schematic of Class A Test Circuit

TYPICAL CHARACTERISTICS

Figure 4. Output Power \& Power Gain versus Input Power

Figure 6. Intermodulation Distortion versus Output Power

Figure 8. Intermodulation Distortion versus Output Power

Figure 5. Output Power versus Frequency

Figure 7. Power Gain and Intermodulation Distortion versus Supply Voltage

Figure 9. Power Gain versus Output Power

Figure 10. Class A DC Safe Operating Area

Figure 12. Class A Third Order Intercept Point

Figure 11. Capacitance versus Drain Source Voltage

Figure 13. Performance in Broadband Circuit

This graph displays calculated MTBF in hours x ampere ${ }^{2}$ drain curent. Life tests at elevated temperature have correlated to better than $\pm 10 \%$ of the theoretical prediction for metal failure. Divide MTBF factor by I_{D}^{2} for MTBF in a particular application.

Figure 14. MTBF Factor versus Junction Temperature

$V_{\text {CC }}=26 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=75 \mathrm{~mA}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}$ (PEP)
\mathbf{f} $\mathbf{M H z}$ $\mathbf{Z}_{\text {in }}(\mathbf{1})$ Ω $\mathbf{Z O L}^{*}$ Ω 1800 $2.1+\mathrm{j} 1.0$ $3.8-\mathrm{j} 0.15$ 1860 $2.05+\mathrm{j} 1.15$ $3.77-\mathrm{j} 0.13$ 1900 $2.0+\mathrm{j} 1.2$ $3.75-\mathrm{j} 0.1$ 1960 $1.9+\mathrm{j} 1.4$ $3.65+\mathrm{j} 0.1$ 2000 $1.85+\mathrm{j} 1.6$ $3.55+\mathrm{j} 0.2$

$Z_{\text {in }}(1)=$ Conjugate of fixture gate terminal impedance.
$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance at given output power, voltage, IMD, bias current and frequency.

Figure 15. Series Equivalent Input and Output Impedence

Table 1. Common Source S-Parameters at VDS $=24 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=600 \mathrm{mAdc}$

$\mathbf{f} \mathbf{G H z}$	\mathbf{S}_{11}		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \boldsymbol{\phi}$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \boldsymbol{\phi}$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \boldsymbol{\phi}$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\boldsymbol{\phi}$
0.1	0.916	-81	33.41	128	0.016	41	0.498	-60
0.2	0.850	-118	20.81	101	0.020	16	0.499	-88
0.3	0.843	-135	14.45	84	0.020	2	0.532	-106
0.4	0.848	-144	10.61	73	0.019	-7	0.552	-117
0.5	0.861	-151	8.34	63	0.017	-15	0.609	-125
0.6	0.872	-154	6.61	55	0.015	-19	0.647	-132
0.7	0.882	-158	5.43	47	0.013	-23	0.675	-139
0.8	0.895	-160	4.54	41	0.011	-24	0.728	-145
0.9	0.901	-163	3.82	34	0.009	-24	0.740	-150
1.0	0.902	-164	3.27	29	0.008	-18	0.773	-160
1.1	0.909	-166	2.83	24	0.006	-6	0.794	-164
1.2	0.917	-168	2.48	19	0.006	10	0.813	-168
1.3	0.923	-169	2.18	14	0.006	14	0.826	-172
1.4	0.931	-171	1.94	10	0.006	15	0.842	-176
1.5	0.933	-172	1.73	6	0.005	43	0.853	-179
1.6	0.934	-174	1.55	2	0.007	60	0.859	177
1.7	0.937	-175	1.40	-1	0.009	60	0.869	174
1.8	0.938	-176	1.27	-4	0.010	63	0.869	171
1.9	0.942	-177	1.16	-7	0.011	71	0.874	169
2.0	0.943	-178	1.06	-10	0.014	73	0.876	166
2.1	0.946	-178	0.98	-12	0.016	71	0.884	163
2.2	0.950	-179	0.92	-15	0.019	67	0.897	160
2.3	0.953	-180	0.86	-18	0.019	63	0.903	157
2.4	0.954	179	0.80	-21	0.020	62	0.907	154
2.5	0.955	178	0.76	-24	0.020	65	0.907	151
2.6	0.961	177	0.71	-26	0.024	69	0.912	149

The RF Sub-Micron MOSFET Line RF Power Field Effect Transistors N-Channel Enhancement-Mode Lateral MOSFETs

MRF284
 MRF284S

Designed for PCN and PCS base station applications at frequencies from 1000 to 2600 MHz . Suitable for FM, TDMA, CDMA, and multicarrier amplifier applications. To be used in class A and class AB for PCN-PCS/cellular radio and wireless local loop

- Specified Two-Tone Performance @ 2000 MHz, 26 Volts

Output Power = 30 Watts (PEP)
Power Gain $=9 \mathrm{~dB}$
Efficiency $=30 \%$
Intermodulation Distortion $=-29 \mathrm{dBc}$

- Typical Single-Tone Performance at 2000 MHz, 26 Volts

Output Power = 30 Watts (CW)
Power Gain = 9.5 dB
Efficiency $=45 \%$

- Characterized with Series Equivalent Large-Signal Impedance Parameters

30 W, 2000 MHz, 26 V
LATERAL N-CHANNEL BROADBAND RF POWER MOSFETs

- S-Parameter Characterization at High Bias Levels
- Excellent Thermal Stability
- Capable of Handling 10:1 VSWR, @ 26 Vdc, 2000 MHz, 30 Watts (CW) Output Power

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	V ${ }_{\text {DSS }}$	65	Vdc
Gate-Source Voltage	V_{GS}	± 20	Vdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$P_{\text {D }}$	$\begin{gathered} \hline 87.5 \\ 0.5 \end{gathered}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JJC}}$	2.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Drain-Source Breakdown Voltage $\left(V_{G S}=0, I_{D}=10 \mu A d c\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	Vdc
Zero Gate Voltage Drain Current $\left(V_{\mathrm{DS}}=20\right.$ Vdc, $\left.\mathrm{V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	1.0	$\mu \mathrm{Adc}$
Gate-Source Leakage Current $\left(V_{G S}=20\right.$ Vdc, $\left.\mathrm{V}_{\mathrm{DS}}=0\right)$	IGSS	-	-	10	$\mu \mathrm{Adc}$

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=150 \mu \mathrm{Adc}\right)$	V_{GS} (th)	2.0	3.0	4.0	Vdc
Gate Quiescent Voltage $\left(\mathrm{V}_{\mathrm{DS}}=26 \mathrm{Vdc}, \mathrm{ID}=200 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{q})$	3.0	4.0	5.0	Vdc
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{Adc}\right)$	$\mathrm{V}_{\text {DS }}(\mathrm{on})$	-	0.3	0.6	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=1.0 \mathrm{Adc}\right)$	gfs	1.0	1.5	-	S

DYNAMIC CHARACTERISTICS

Input Capacitance $\left(V_{D S}=26 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	43	-	pF
Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=26 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	Coss	-	23	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=26 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	Crss	-	1.4	-	pF

FUNCTIONAL TESTS (in Motorola Test Fixture)

$\begin{aligned} & \text { Common-Source Power Gain } \\ & \left(V_{D D}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, I_{\mathrm{DQ}}=200 \mathrm{~mA}\right. \text {, } \\ & \mathrm{f1}=2000.0 \mathrm{MHz}, \mathrm{f} 2=2000.1 \mathrm{MHz}) \end{aligned}$	G_{ps}	9	10.5	-	dB
$\begin{aligned} & \text { Drain Efficiency } \\ & \left(V_{\mathrm{DD}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, I_{\mathrm{DQ}}=200 \mathrm{~mA}\right. \text {, } \\ & \mathrm{f1}=2000.0 \mathrm{MHz}, \mathrm{f} 2=2000.1 \mathrm{MHz}) \end{aligned}$	η	30	35	-	\%
$\begin{aligned} & \text { Intermodulation Distortion } \\ & \left(\mathrm{V} \mathrm{DD}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{I}_{\mathrm{DQ}}=200 \mathrm{~mA}\right. \text {, } \\ & \mathrm{f} 1=2000.0 \mathrm{MHz}, \mathrm{f} 2=2000.1 \mathrm{MHz}) \end{aligned}$	IMD	-	-32	-29	dBc
$\begin{aligned} & \text { Input Return Loss } \\ & \left(V_{\mathrm{DD}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{I}_{\mathrm{DQ}}=200 \mathrm{~mA}\right. \text {, } \\ & \mathrm{f} 1=2000.0 \mathrm{MHz}, \mathrm{f} 2=2000.1 \mathrm{MHz}) \end{aligned}$	IRL	9	15	-	dB
$\begin{aligned} & \text { Common-Source Amplifier Power Gain } \\ & \left(V_{D D}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W} \text { PEP, I IDQ }=200 \mathrm{~mA},\right. \\ & \mathrm{f} 1=1930.0 \mathrm{MHz}, \mathrm{f} 2=1930.1 \mathrm{MHz}) \end{aligned}$	G_{ps}	9	10.4	-	dB
$\begin{aligned} & \text { Drain Efficiency } \\ & \left(V_{D D}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W} \text { PEP, IDQ }=200 \mathrm{~mA}\right. \text {, } \\ & \mathrm{f} 1=1930.0 \mathrm{MHz}, \mathrm{f} 2=1930.1 \mathrm{MHz}) \end{aligned}$	η	-	35	-	\%
$\begin{aligned} & \text { Intermodulation Distortion } \\ & \left(V_{D D}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W} \text { PEP, IDQ }=200 \mathrm{~mA},\right. \\ & \mathrm{f} 1=1930.0 \mathrm{MHz}, \mathrm{f} 2=1930.1 \mathrm{MHz}) \end{aligned}$	IMD	-	-34	-	dBc
$\begin{aligned} & \text { Input Return Loss } \\ & \left(V_{\mathrm{DD}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W} \text { PEP, } \mathrm{I}_{\mathrm{DQ}}=200 \mathrm{~mA}\right. \text {, } \\ & \mathrm{f} 1=1930.0 \mathrm{MHz}, \mathrm{f} 2=1930.1 \mathrm{MHz}) \end{aligned}$	IRL	9	15	-	dB
$\begin{aligned} & \text { Common-Source Amplifier Power Gain } \\ & \left(\mathrm{V} D \mathrm{DD}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W} \mathrm{CW}, \mathrm{I}_{\mathrm{DQ}}=200 \mathrm{~mA}\right. \text {, } \\ & \mathrm{f} 1=2000.0 \mathrm{MHz}) \end{aligned}$	G_{ps}	8.5	9.5	-	dB
```Drain Efficiency \(\left(\mathrm{V}_{\mathrm{DD}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W} \mathrm{CW}, \mathrm{I}_{\mathrm{DQ}}=200 \mathrm{~mA}\right.\), \(\mathrm{f} 1=2000.0 \mathrm{MHz}\) )```	$\eta$	35	45	-	\%
```Output Mismatch Stress \(\left(\mathrm{V}_{\mathrm{DD}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W} \mathrm{CW}, \mathrm{I}_{\mathrm{DQ}}=200 \mathrm{~mA}\right.\), \(\mathrm{f} 1=2000.0 \mathrm{MHz}, \mathrm{VSWR}=10: 1\), at All Phase Angles)```	$\Psi$	No Degradation In Output Power			


Figure 1. Schematic of 1.93-2.0 GHz Broadband Test Circuit

Figure 2. Schematic of 2.0 GHz Class A Test Circuit

TYPICAL CHARACTERISTICS

Figure 3. Output Power \& Power Gain versus Input Power

Figure 5. Intermodulation Distortion versus Output Power

Figure 7. Intermodulation Distortion versus Output Power

Figure 4. Output Power versus Frequency

Figure 6. Power Gain and Intermodulation Distortion versus Supply Voltage

Figure 8. Power Gain versus Output Power

TYPICAL CHARACTERISTICS

Figure 9. DC Safe Operating Area

Figure 10. Capacitance versus Drain Source Voltage

Figure 11. Class A Third Order Intercept Point

TYPICAL CHARACTERISTICS

Figure 12. 1.92-2.0 GHz Broadband Circuit Performance

This graph displays calculated MTBF in hours x ampere ${ }^{2}$ drain current. Life tests at elevated temperature have correlated to better than $\pm 10 \%$ of the theoretical prediction for metal failure. Divide MTBF factor by ID^{2} for MTBF in a particular application.

Figure 13. MTBF Factor versus Junction Temperature

$\mathrm{V}_{\mathrm{CC}}=26 \mathrm{~V}, \mathrm{ICQ}=200 \mathrm{~mA}, \mathrm{P}_{\text {out }}=15 \mathrm{~W}_{\text {avg }}$		
\mathbf{f} $\mathbf{M H z}$	$\mathbf{Z} \mathbf{\text { in }}(\mathbf{1})$ Ω	$\mathbf{Z O L}^{*}$ Ω
1800	$1.0+\mathrm{j} 0.4$	$2.1-\mathrm{j} 0.4$
1860	$1.0+\mathrm{j} 0.8$	$2.2+\mathrm{j} 0.2$
1900	$1.0+\mathrm{j} 1.1$	$2.3+\mathrm{j} 0.5$
1960	$1.0+\mathrm{j} 1.4$	$2.5+\mathrm{j} 0.9$
2000	$1.0+\mathrm{j} 2.3$	$2.6+\mathrm{j} 0.92$

$$
\begin{aligned}
& \mathrm{Z}_{\text {in }}(1)= \text { Conjugate of fixture base terminal impedance. } \\
& \mathrm{Z}_{\mathrm{OL}}^{*}= \text { Conjugate of the optimum load impedance at } \\
& \text { given output power, voltage, bias current and } \\
& \text { frequency. }
\end{aligned}
$$

Figure 14. Series Equivalent Input and Output Impedence

Table 1. Common Source S-Parameters at $V_{D S}=26 \mathrm{Vdc}, \mathrm{ID}=1.8 \mathrm{Adc}$

\mathbf{f}	\mathbf{S}_{11}		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \boldsymbol{\phi}$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \boldsymbol{\phi}$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \boldsymbol{\phi}$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \boldsymbol{\phi}$
1.0	0.902	-170	1.10	28	0.005	60	0.913	-162
1.1	0.934	-167	0.92	26	0.006	82	0.921	-163
1.2	0.948	-167	0.85	24	0.007	89	0.924	-164
1.3	0.957	-169	0.73	21	0.009	94	0.929	-165
1.4	0.959	-169	0.68	19	0.011	94	0.931	-165
1.5	0.960	-170	0.59	17	0.014	94	0.933	-167
1.6	0.958	-172	0.53	14	0.015	92	0.936	-168
1.7	0.958	-172	0.50	13	0.016	93	0.936	-169
1.8	0.956	-174	0.45	10	0.019	92	0.937	-170
1.9	0.954	-175	0.43	8	0.020	90	0.937	-171
2	0.944	-177	0.39	6	0.023	82	0.937	-173
2.1	0.934	-177	0.38	4	0.023	72	0.935	-174
2.2	0.935	-178	0.35	-1	0.013	72	0.932	-176
2.3	0.945	180	0.31	-4	0.016	116	0.925	-179
2.4	0.944	178	0.30	-5	0.023	112	0.930	-179
2.5	0.946	177	0.29	-7	0.024	105	0.935	179
2.6	0.941	174	0.25	-11	0.025	112	0.930	176

The RF Line NPN Silicon High-Frequency Transistor

. . . designed for wideband amplifier, driver or oscillator applications in military, mobile, and aircraft radio.

- Specified 28 Volt, 400 MHz Characteristics -

Output Power = 1.0 Watt
Power Gain $=15 \mathrm{~dB}$ Min
Efficiency $=45 \%$ Typ

- Emitter Ballast and Low Current Density for Improved MTBF
- Common Emitter for Improved Stability

MRF313

$1.0 \mathrm{~W}, 400 \mathrm{MHz}$ HIGH-FREQUENCY TRANSISTOR NPN SILICON

CASE 305A-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	30	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	40	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	3.0	Vdc
Collector Current - Continuous	I_{C}	150	mAdc
Total Device Dissipation @ $\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD_{D}	6.1	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range		35	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\text {日JC }}$	28.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage ($\left.\mathrm{I}_{\mathrm{C}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	30	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	35	-	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	35	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=1.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	3.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=20 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{I}_{\mathrm{CEO}}$	-	-	1.0	mAdc

(continued)

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)
Characteristic

| | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

ON CHARACTERISTICS Current Gain (IC $\left.=100 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}\right)$	hFE	20	60	150	-

DYNAMIC CHARACTERISTICS

Current-Gain — Bandwidth Product $\left(\mathrm{IC}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=20 \mathrm{Vdc}, \mathrm{f}=200 \mathrm{MHz}\right)$	f_{T}	-	2.5	-	GHz
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	3.5	5.0	pF

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain (1) $\left(V_{C C}=28\right.$ Vdc, $\left.P_{\text {out }}=1.0 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right)$	G_{pe}	15	16	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=1.0 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right)$	η	-	45	-	$\%$
Series Equivalent Input Impedance $\left(V_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=1.0 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right)$	$\mathrm{Z}_{\text {in }}$	-	$6.4-\mathrm{j} 4.8$	-	Ohms
Series Equivalent Output Impedance $\left(V_{\text {CC }}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=1.0 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right)$	$\mathrm{Z}_{\text {out }}$	-	$75-\mathrm{j} 45$	-	Ohms

NOTE:

1. Class C

Figure 1. 400 MHz Power Gain Test Circuit

The RF Line NPN Silicon RF Power Transistors

...designed primarily for wideband large-signal driver and output amplifier stages in the $30-200 \mathrm{MHz}$ frequency range.

- Guaranteed Performance at $150 \mathrm{MHz}, 28 \mathrm{Vdc}$

Output Power = 30 Watts
Minimum Gain $=10 \mathrm{~dB}$

- 100% Tested for Load Mismatch at All Phase Angles with 30:1 VSWR
- Gold Metallization System for High Reliability Applications

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	35	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	65	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	I_{C}	3.4	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1)$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	82	Watts
Storage Temperature Range		0.47	$\mathrm{~W}^{\circ} \mathrm{C}$

MRF314

$30 \mathrm{~W}, 30-200 \mathrm{MHz}$ RF POWER TRANSISTORS NPN SILICON

CASE 211-07, STYLE 1

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\text {日JC }}$	2.13	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=30 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$V_{(B R)}$ CEO	35	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=30 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$V_{(B R)}$ CES	65	-	-	Vdc
Collector-Base Breakdown Voltage $(\mathrm{IC}=30 \mathrm{mAdc}, \mathrm{I} \mathrm{E}=0)$	$V_{(B R)} \mathrm{CBO}$	65	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}=3.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	3.0	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=1.5 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	hFE	20	-	80	-

NOTE:

1. These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as RF amplifiers.

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)
Characteristic

	Symbol	Min	Typ	Max	Unit		
DYNAMIC CHARACTERISTICS							
Output Capacitance $\left(V_{\mathrm{CB}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$ C_{ob} - 30 40						$.$	pF
:---							

FUNCTIONAL TESTS (Figure 1)

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}\right)$	Gpe	10	13.5	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}\right)$	η	50	-	-	\%
Load Mismatch $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz},\right.$ VSWR $=30: 1$ all phase angles)	ψ	No Degradation in Power Output			

Figure 1. 150 MHz Test Circuit

Figure 2. Output Power versus Input Power

Figure 4. Power Gain versus Frequency

Figure 3. Output Power versus Input Power

Figure 5. Efficiency versus Frequency

Figure 6. Series Equivalent Input/Output Impedance

The RF Line
 NPN Silicon
 RF Power Transistor

. . . designed primarily for wideband large-signal output amplifier stages in the $30-200 \mathrm{MHz}$ frequency range.

- Guaranteed Performance at $150 \mathrm{MHz}, 28 \mathrm{Vdc}$

Output Power $=80$ Watts Minimum Gain $=10 \mathrm{~dB}$

- Built-In Matching Network for Broadband Operation
- 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR
- Gold Metallization System for High Reliability Applications

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	35	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	65	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	I C	9.0	Adc
Peak		13.5	
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1)$	P_{D}	220	Watts
Derate above $25^{\circ} \mathrm{C}$		1.26	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

MRF316

80 W, 3.0-200 MHz
CONTROLLED "Q" BROADBAND RF POWER TRANSISTOR NPN SILICON

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	0.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{\text {(BR) }}$ CEO	35	-	-	Vdc
Collector-Emitter Breakdown Voltage ($\mathrm{IC}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$)	$\mathrm{V}_{\text {(BR) }} \mathrm{CES}$	65	-	-	Vdc
Collector-Base Breakdown Voltage ($\mathrm{I} \mathrm{C}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	65	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I} \mathrm{E}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	5.0	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(\mathrm{IC}_{\mathrm{C}}=4.0\right.$ Adc, $\left.\mathrm{V}_{\text {CE }}=5.0 \mathrm{Vdc}\right)$	h_{FE}	10	-	80	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{I}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	100	130	pF

NOTE:

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

NARROW BAND FUNCTIONAL TESTS (Figure 1)

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}\right)$	GPE	10	13	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, f=150 \mathrm{MHz}\right)$	η	55	-	-	\%
Load Mismatch $\begin{aligned} & \text { (VCC }=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=80 \mathrm{~W} \mathrm{CW}, \mathrm{f}=150 \mathrm{MHz}, \\ & \text { VSWR }=30: 1 \text { all phase angles) } \end{aligned}$	ψ	No Degradation in Output Power			

Figure 1. 150 MHz Test Amplifier

TYPICAL PERFORMANCE CURVES

Figure 2. Output Power versus Input Power

Figure 4. Output Power versus Supply Voltage

Figure 3. Power Gain versus Frequency

Figure 5. Output Power versus Supply Voltage

Figure 6. Output Power versus Supply Voltage

Figure 7. Series Equivalent Input-Output Impedance

The RF Line
 NPN Silicon
 RF Power Transistor

...designed primarily for wideband large-signal output amplifier stages in $30-200 \mathrm{MHz}$ frequency range.

- Guaranteed Performance at $150 \mathrm{MHz}, 28 \mathrm{Vdc}$

Output Power $=100 \mathrm{~W}$
Minimum Gain $=9.0 \mathrm{~dB}$

- Built-In Matching Network for Broadband Operation
- 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR
- Gold Metallization System for High Reliability
- High Output Saturation Power — Ideally Suited for 30 W Carrier/120 W Peak AM Amplifier Service
- Guaranteed Performance in Broadband Test Fixture

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	35	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	65	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current — Continuous			
- Peak (10 seconds)	I_{C}	12	Adc
		18	
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1)$	P_{D}	270	Watts
Derate above $25^{\circ} \mathrm{C}$		1.54	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

MRF317

$100 \mathrm{~W}, 30-200 \mathrm{MHz}$ CONTROLLED Q BROADBAND RF POWER TRANSISTOR NPN SILICON

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\text {日JC }}$	0.65	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I} \mathrm{C}=100 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	35	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=100 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	65	-	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{I} \mathrm{C}=100 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	65	-	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=10 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	5.0	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=5.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	hFE	10	25	80	-

NOTE:

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.

REV 7

ELECTRICAL CHARACTERISTICS - continued ($T_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic
Symbol Min Typ Max Unit
$\left.\begin{array}{\|l\|c\|c\|c\|c\|}\hline \begin{array}{c}\text { Output Capacitance } \\ \left(V_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, f=1.0 \mathrm{MHz}\right)\end{array} & \mathrm{C}_{\mathrm{ob}} & - & 150 & 175\end{array}\right] \mathrm{pF}$

FUNCTIONAL TESTS (Figure 2)

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=100 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{IC}(\mathrm{Max})=6.5 \mathrm{Adc}\right)$	Gpe	9.0	10	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=100 \mathrm{~W}, \mathrm{f}=150 \mathrm{MHz}, \mathrm{IC}(\mathrm{Max})=6.5 \mathrm{Adc}\right)$	η	55	60	-	\%
Load Mismatch $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=100 \mathrm{~W} \mathrm{CW}, \mathrm{f}=150 \mathrm{MHz},\right. \\ & \text { VSWR }=30: 1 \text { all phase angles }) \end{aligned}$	ψ	No Degradation in Output Power			

Figure 1. 110-160 MHz Broadband Amplifier - Test Fixture Schematic

Figure 2. Power Gain versus Frequency Broadband Test Fixture

Figure 4. Input VSWR versus Frequency Broadband Test Fixture

Figure 3. Efficiency versus Frequency Broadband Test Fixture

Figure 5. Output Power versus Input Power

TYPICAL PERFORMANCE CURVES

Figure 6. Power Gain versus Frequency

Figure 7. Power Output versus Supply Voltage

Figure 8. Power Output versus Supply Voltage

Figure 9. Power Output versus Supply Voltage

Figure 10. Series Equivalent Input-Output Impedance

The RF Line
 NPN Silicon
 RF Power Transistor

. . . designed primarily for wideband large-signal driver and predriver amplifier stages in 200-500 MHz frequency range.

- Guaranteed Performance at $400 \mathrm{MHz}, 28 \mathrm{Vdc}$

Output Power = 10 Watts
Power Gain $=12 \mathrm{~dB}$ Min
Efficiency $=50 \%$ Min

- 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR
- Gold Metallization System for High Reliability
- Computer-Controlled Wirebonding Gives Consistent Input Impedance

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	33	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current — Continuous	I C	1.1	Adc
		1.5	
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(1)$	PD_{D}	27	Watts
Derate above $25^{\circ} \mathrm{C}$		160	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	6.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=20 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	33	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=20 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\left.\mathrm{V}_{(} \mathrm{BR}\right) \mathrm{CES}$	60	-	-	Vdc
Collector-Base Breakdown Voltage $(\mathrm{IC}=20 \mathrm{mAdc}, \mathrm{I} \mathrm{E}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	60	-	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=2.0 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0)$	$V_{(B R)} \mathrm{EBO}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	1.0	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=500 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	h_{FE}	20	-	80	-

NOTE:
(continued)

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic
Symbol Min Typ Max Unit DYNAMIC CHARACTERISTICS Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$ C_{ob} - 10 12 pF

FUNCTIONAL TESTS (Figure 1)

$\begin{aligned} & \text { Common-Emitter Amplifier Power Gain } \\ & \left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right) \end{aligned}$	Gpe	12	13	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right)$	η	50	60	-	\%
Load Mismatch $\begin{aligned} & \left(\mathrm{VCC}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz},\right. \\ & \text { VSWR }=30: 1 \text { all phase angles }) \end{aligned}$	ψ	No Degradation in Output Power			

Figure 1. 400 MHz Test Circuit Schematic

Figure 2. Output Power versus Frequency

Figure 3. Output Power versus Input Power

Figure 4. Output Power versus Supply Voltage

Figure 5. Power Gain versus Frequency

Figure 6. Series Equivalent Impedance

The RF Line NPN Silicon RF Power Transistor

. . . designed primarily for wideband large-signal driver and predriver amplifier stages in the 200-500 MHz frequency range.

- Guaranteed Performance at $400 \mathrm{MHz}, 28 \mathrm{~V}$

Output Power = 20 Watts
Power Gain $=10 \mathrm{~dB}$ Min
Efficiency $=50 \%$ Min

- 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR
- Gold Metallization System for High Reliability
- Computer-Controlled Wirebonding Gives Consistent Input Impedance

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	33	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	60	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current - Continuous - Peak	IC	$\begin{aligned} & 2.2 \\ & 3.0 \end{aligned}$	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ (1) Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} 55 \\ 310 \end{gathered}$	$\begin{aligned} & \text { Watts } \\ & \mathrm{mW} /{ }^{\circ} \mathrm{C} \text { a } \end{aligned}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

MRF323

$20 \mathrm{~W}, 400 \mathrm{MHz}$

RF POWER
TRANSISTOR NPN SILICON

CASE 244-04, STYLE 1

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	3.2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (${ }^{\mathrm{C}} \mathrm{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=20 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	33	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(I_{C}=20 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$V_{\text {(BR)CES }}$	60	-	-	Vdc
Collector-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=20 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	60	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}=2.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	2.0	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(\mathrm{IC}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	hFE	20	-	80	-

NOTE:
(continued)

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
DYNAMIC CHARACTERISTICS					
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {ob }}$	-	20	24	pF

FUNCTIONAL TESTS (Figure 1)

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=20 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right)$	Gpe	10	11	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=20 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right)$	η	50	60	-	\%
Load Mismatch $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=20 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz},\right.$ $\text { VSWR }=30: 1 \text { all phase angles) }$	ψ	No Degradation in Output Power			

Figure 1. 400 MHz Test Circuit Schematic

Figure 2. Output Power versus Frequency

Figure 4. Output Power versus Supply Voltage

Figure 3. Output Power versus Input Power

Figure 5. Power Gain versus Frequency

Figure 6. Series Equivalent Impedance

The RF Line
 NPN Silicon
 RF Power Transistor

...designed primarily for wideband large-signal output and driver amplifier stages in 100 to 500 MHz frequency range.

- Specified 28 Volt, 400 MHz Characteristics -

Output Power $=30$ Watts
Minimum Gain $=8.5 \mathrm{~dB}$
Efficiency $=54 \%$ (Min)

- Built-In Matching Network for Broadband Operation Using Internal Matching Techniques
- 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR
- Gold Metallization for High Reliability Applications

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	33	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
	IC	$\begin{aligned} & 3.4 \\ & 4.5 \end{aligned}$	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ (1) Derate above $25^{\circ} \mathrm{C}$	P_{D}	$\begin{gathered} \hline 82 \\ 0.47 \end{gathered}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

CASE 316-01, STYLE 1

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\text {日JC }}$	2.13	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage ($\mathrm{IC}=30 \mathrm{mAdc}, \mathrm{IB}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	33	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=30 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\left.\mathrm{V}_{(} \mathrm{BR}\right) \mathrm{CES}$	60	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I} \mathrm{E}=3.0 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector-Base Breakdown Voltage $\left(I_{C}=30 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$V_{(B R)} \mathrm{CBO}$	60	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	${ }^{\text {ICBO }}$	-	-	3.0	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(\mathrm{IC}=1.5 \mathrm{Adc}, \mathrm{V}_{\text {CE }}=5.0 \mathrm{Vdc}\right)$	hFE	20	-	80	-

NOTE:
(continued)

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)
Characteristic

	Symbol	Min	Typ	Max	Unit		
DYNAMIC CHARACTERISTICS							
Output Capacitance $\left(V_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$ C_{ob} - 30 40						$.$	pF
:---							

FUNCTIONAL TESTS (Figure 1)

Common-Emitter Amplifier Power Gain $\left(V_{C C}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right)$	GPE	8.5	9.5	-	dB
Collector Efficiency $\left(V_{\mathrm{CC}}=28 \mathrm{Vdc}, P_{\text {out }}=30 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right)$	η	50	60	-	$\%$
Load Mismatch $\left(V_{C C}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right.$, VSWR $=30: 1$ all angles $)$	ψ	No Degradation in Output Power			

Figure 1. 400 MHz Test Circuit

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Supply Voltage

Figure 4. Output Power versus Supply Voltage

Figure 5. Series Equivalent Impedance

The RF Line
 NPN Silicon
 RF Power Transistor

. . . designed primarily for wideband large-signal output amplifier stages in the 100 to 500 MHz frequency range.

- Guaranteed Performance @ $400 \mathrm{MHz}, 28$ Vdc

Output Power $=40$ Watts
Minimum Gain $=9.0 \mathrm{~dB}$

- Built-In Matching Network for Broadband Operation
- 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR
- Gold Metallization System for High Reliability Applications

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	33	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current — Continuous	I C	4.5	Adc
- Peak		6.0	
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1)$	P_{D}	110	Watts
Derate above $25^{\circ} \mathrm{C}$		0.63	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

MRF326

$40 \mathrm{~W}, 225$ to 400 MHz

CONTROLLED "Q" BROADBAND RF POWER TRANSISTOR NPN SILICON

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	1.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=40 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(1 \mathrm{BR}) \mathrm{CEO}}$	33	-	-	Vdc
Collector-Emitter Breakdown Voltage ($\mathrm{IC}=40 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$)	$V_{(B R)}$ CES	60	-	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=4.0 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector-Base Breakdown Voltage ($\mathrm{IC}_{\mathrm{C}}=40 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	60	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	4.0	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(\mathrm{IC}_{\mathrm{C}}=2.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	hFE	20	50	80	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	45	60	pF

NOTE:
(continued)

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.

ELECTRICAL CHARACTERISTICS - continued ($T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

FUNCTIONAL TESTS (Figure 1)

$\begin{aligned} & \text { Common-Emitter Amplifier Power Gain } \\ & \left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\mathrm{out}}=40 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{IC} \mathrm{Max}=2.85 \mathrm{Adc}\right) \end{aligned}$	GPE	9.0	11	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \qquad\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=40 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}, \mathrm{IC} \text { Max }=2.85 \mathrm{Adc}\right) \end{aligned}$	η	50	-	-	\%
$\begin{aligned} & \text { Load Mismatch } \\ & \quad\left(V_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=40 \mathrm{~W} \mathrm{CW}, \mathrm{f}=400 \mathrm{MHz},\right. \\ & \mathrm{VSWR}=30: 1 \text { All Phase Angles }) \end{aligned}$	ψ	No Degradation in Output Power			

C1 - 1.0-10 pF Johanson, Capacitor (JMC 5201)
C2, C3, C6, C8 - 1.0-20 pF Johanson Capacitor
C4, C5 - 36 pF ATC "B" Style Chip Capacitor
C7, C9, C13 - 100 pF UNELCO Capacitor
C11-680 pF Feedthru
C10-1.0 $\mu \mathrm{F} 50 \mathrm{~V}$ Tantalum
C12-0.1 μ F Erie Redcap
L1 - 8 Turns \#26 AWG Enameled, 1/16" ID Closewound
L2, L5 - Ferroxcube VK200-19/4B Ferrite Choke

L3-8 Turns \#20 AWG Enameled, 1/4"ID Closewound
L4 - 4 Turns \#26 AWG 0.1" ID
R1 - 10 Ohm 2.0 W Carbon
R2, R3 - 10 Ohm 1.0 W Carbon
Z1 - Microstrip 0.19" W x $1.28^{\prime \prime} \mathrm{L}$
Z2 — Microstrip $0.28^{\prime \prime} \mathrm{W} \times 1.0^{\prime \prime} \mathrm{L}$
Z3 — Microstrip $0.31^{\prime \prime} \mathrm{W} \times 1.0^{\prime \prime} \mathrm{L}$
Z4 - Microstrip $0.31^{\prime \prime} \mathrm{W} \times 0.9^{\prime \prime} \mathrm{L}$
Board - Glass Teflon $\varepsilon_{r}=2.56 t=0.062^{\prime \prime}$
Input/Output Connectors - Type N UG58 A/U

Figure 1. 400 MHz Test Amplifier

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Supply Voltage

Figure 4. Output Power versus Supply Voltage $\mathrm{f}=400 \mathrm{MHz}$

Figure 5. Series Equivalent Input-Output Impedance

The RF Line NPN Silicon RF Power Transistor

. . . designed primarily for wideband large-signal output amplifier stages in the 100 to 500 MHz frequency range.

- Guaranteed Performance @ $400 \mathrm{MHz}, 28 \mathrm{Vdc}$

Output Power = 80 Watts over 225 to 400 MHz Band
Minimum Gain = $7.3 \mathrm{~dB} @ 400 \mathrm{MHz}$

- Built-In Matching Network for Broadband Operation Using Double Match Technique
- 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR
- Gold Metallization System for High Reliability Applications
- Characterized for 100 to 500 MHz

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	33	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
$\begin{aligned} \hline \text { Collector Current } & \text { - Continuous } \\ & \text { Peak } \end{aligned}$	${ }^{\text {I }}$ C	$\begin{aligned} & \hline 9.0 \\ & 12 \end{aligned}$	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ (1) Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & \hline 250 \\ & 1.43 \end{aligned}$	Watts W/ ${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

MRF327

$80 \mathrm{~W}, 100$ to 500 MHz

CONTROLLED "Q" BROADBAND RF POWER TRANSISTOR NPN SILICON

CASE 316-01, STYLE 1

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	0.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I} \mathrm{C}=80 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$V_{\text {(BR)CEO }}$	33	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=80 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$V_{\text {(BR) }}$ CES	60	-	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=8.0 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector-Base Breakdown Voltage $(\mathrm{IC}=80 \mathrm{mAdc}, \mathrm{IC}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	60	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	${ }^{\text {ICBO }}$	-	-	5.0	mAdc

ON CHARACTERISTICS

DC Current Gain (IC $\left.=4.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	h_{FE}	20	-	80	-
DYNAMIC CHARACTERISTICS					
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$ C_{ob} - 95 125	pF				

NOTE:
(continued)

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.

REV 1

ELECTRICAL CHARACTERISTICS - continued ($T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
FUNCTIONAL TESTS (Figure 1)					
Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right)$	GPE	7.3	9.0	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right)$	η	50	60	-	\%
Load Mismatch $\begin{aligned} & \left(\mathrm{VCC}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz},\right. \\ & \text { VSWR }=30: 1 \text { All Phase Angles }) \end{aligned}$	ψ	No Degradation in Output Power			

Figure 1. 400 MHz Test Circuit

Figure 2. Power Gain versus Frequency

Figure 3. Output Power versus Frequency

Figure 4. Output Power versus Supply Voltage

Figure 5. Output Power versus Supply Voltage

Figure 6. Output Power versus Input Power

Figure 7. Series Equivalent Input-Output Impedance

The RF Line NPN Silicon RF Power Transistor

...designed primarily for wideband large-signal output and driver amplifier stages in the 100 to 500 MHz frequency range.

- Specified 28 Volt, 400 MHz Characteristics -

Output Power = 100 Watts
Minimum Gain $=7.0 \mathrm{~dB}$
Efficiency $=50 \%$ (Min)

- Built-In Matching Network for Broadband Operation Using Double Match Technique
- 100% Tested for Load Mismatch at all Phase Angles with 3:1 VSWR
- Gold Metallization System for High Reliability

MRF329

```
100 W, 100 to 500 MHz
    CONTROLLED "Q"
BROADBAND RF POWER
    TRANSISTOR
    NPN SILICON
```


CASE 333-04, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	30	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
	${ }^{\text {I }}$	$\begin{aligned} & 9.0 \\ & 12 \end{aligned}$	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ (1) Derate above $25^{\circ} \mathrm{C}$	$\mathrm{PD}_{\text {D }}$	$\begin{aligned} & 270 \\ & 1.54 \end{aligned}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (2)	$\mathrm{R}_{\theta \mathrm{JC}}$	0.65	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=80\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	30	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=80\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	60	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=8.0\right.$ mAdc, $\left.\mathrm{IC}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc

NOTES:

(continued)

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.
2. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (continued)					
Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=80 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	60	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	${ }^{\text {ICBO }}$	-	-	5.0	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=4.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	hFE $_{\text {F }}$	20	-	80	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	95	125	pF

FUNCTIONAL TESTS (Figure 1)

Common-Emitter Amplifier Power Gain $($ VCC $=28$ Vdc, Pout $=100 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz})$	GPE	7.0	9.7	-	dB
Collector Efficiency $(\mathrm{V}$ CC $=28$ Vdc, Pout $=100 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz})$	η	50	60	-	$\%$
Load Mismatch (VCC $=28$ Vdc, Pout $=100 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}$, VSWR $=3: 1$ all angles $)$	ψ	No Degradation in Output Power			

Figure 1. 400 MHz Test Circuit

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Frequency

Figure 4. Output Power versus Supply Voltage

Figure 5. Output Power versus Supply Voltage

Figure 6. Power Gain versus Frequency

$\mathrm{Z}_{\mathrm{OL}}{ }^{\star}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.
Figure 7. Series Equivalent Input/Output Impedance

The RF Line NPN Silicon RF Power Transistor

Designed primarily for wideband large-signal output and driver amplifier stages in the 400 to 512 MHz frequency range.

- Specified 28 Volt, 470 MHz Characteristics

Output Power $=80$ Watts

Minimum Gain $=7.3 \mathrm{~dB}$
Efficiency $=50 \%$ (Min)

- Built-In Matching Network for Broadband Operation
- 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR
- Gold Metallization System for High Reliability Applications

$80 \mathrm{~W}, 400$ to 512 MHz
CONTROLLED "Q" BROADBAND RF POWER TRANSISTOR NPN SILICON

CASE 333-04, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	30	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	60	Vdc
Emitter-Base Voltage	VEBO	4	Vdc
$\begin{array}{r} \hline \text { Collector Current - Continuous } \\ \text { - Peak } \end{array}$	IC	$\begin{gathered} 9 \\ 12 \end{gathered}$	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ (1) Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & \hline 250 \\ & 1.43 \end{aligned}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (2)	$\mathrm{R}_{\theta \mathrm{JC}}$	0.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($\mathrm{IC}=80 \mathrm{mAdc}, \mathrm{IB}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	30	-	-	Vdc
Collector-Emitter Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=80 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$)	$V_{(B R)}$ CES	60	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I} \mathrm{E}=8 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4	-	-	Vdc

(1) This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.
(2) Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=80\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	60	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=30\right.$ Vdc, $\left.\mathrm{I}_{\mathrm{E}}=0\right)$	I CBO	-	-	5	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=4\right.$ Adc, $\left.V_{\text {CE }}=5 \mathrm{Vdc}\right)$	hFE	20	-	80	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	C_{ob}	-	95	125	pF

FUNCTIONAL TESTS (Figure 1)

$\begin{aligned} & \text { Common-Emitter Amplifier Power Gain } \\ & \left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, \mathrm{f}=470 \mathrm{MHz}\right) \end{aligned}$	Gpe	7.3	8.8	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, \mathrm{f}=470 \mathrm{MHz}\right)$	η	50	60	-	\%
Load Mismatch $\begin{aligned} & (\mathrm{VCC}=28 \mathrm{Vdc}, \text { Pout }=80 \mathrm{~W}, \mathrm{f}=470 \mathrm{MHz}, \\ & \text { VSWR }=30: 1 \text {, All Phase Angles at Frequency of Test) } \end{aligned}$	ψ	No Degradation in Output Power			

Figure 1. 470 MHz Test Circuit

TYPICAL CHARACTERISTICS

Figure 2. Output Power versus Input Power

Figure 4. Power Gain versus Frequency

Figure 3. Output Power versus Supply Voltage

Figure 5. Output Power versus Frequency

$V_{\text {CC }}=28 \mathrm{~V}$, P $_{\text {out }}=80 \mathrm{~W}$		
f MHz	Z in Ohms	ZOL * Ohms
512	$0.91+\mathrm{j} 2.61$	$1.19+\mathrm{j} 1.34$
500	$1.47+\mathrm{j} 2.71$	$1.33+j 0.96$
470	$1.53+\mathrm{j} 2.98$	$1.60+\mathrm{j} 0.45$
450	$1.27+\mathrm{j} 3.09$	$1.70+\mathrm{j} 0.25$
400	$0.86+\mathrm{j} 3.01$	$2.58-\mathrm{j} 0.79$

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance into
which the device output operates at a given output
power, voltage and frequency.

Figure 6. Series Equivalent Input/Output Impedance

The RF Line NPN Silicon Push-Pull RF Power Transistor

Designed primarily for wideband large-signal output and driver amplifier stages in the 30 to 500 MHz frequency range.

- Specified 28 Volt, 400 MHz Characteristics -

Output Power = 125 W
Typical Gain $=10 \mathrm{~dB}$
Efficiency $=55 \%$ (Typ)

- Built-In Input Impedance Matching Networks for Broadband Operation
- Push-Pull Configuration Reduces Even Numbered Harmonics
- Gold Metallization System for High Reliability
- 100\% Tested for Load Mismatch
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

The MRF392 is two transistors in a single package with separate base and collector leads and emitters common. This arrangement provides the designer with a space saving device capable of operation in a push-pull configuration.

PUSH-PULL TRANSISTORS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	30	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	4.0	Vdc
Collector Current - Continuous	I C	16	Adc
Total Device Dissipation @ $\mathrm{T}^{\mathrm{C}}=25^{\circ} \mathrm{C}(1)$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	270	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	0.65	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE:

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF push-pull amplifier.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (1)					
Collector-Emitter Breakdown Voltage ($\mathrm{I}^{\text {C }}=50 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{B}}=0$)	$V_{\text {(BR) }}$ CEO	30	-	-	Vdc
Collector-Emitter Breakdown Voltage ($\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$)	$\mathrm{V}_{(\mathrm{BR})} \mathrm{CES}$	60	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{E}}=5.0 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc}$, $\left.\mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	5.0	mAdc

ON CHARACTERISTICS (1)

DC Current Gain (IC $=1.0$ Adc, $\left.\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	h_{FE}	40	60	100	-

DYNAMIC CHARACTERISTICS (1)

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	75	95	pF

FUNCTIONAL TESTS (2) — See Figure 1

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=125 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right)$	$G_{p e}$	8.0	10	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \qquad\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=125 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right) \end{aligned}$	η	50	55	-	\%
Load Mismatch $\begin{aligned} & \left(\mathrm{V} C \mathrm{CC}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=125 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz},\right. \\ & \text { VSWR }=30: 1 \text {, all phase angles) } \end{aligned}$	ψ	No Degradation in Output Power			

NOTES:

1. Each transistor chip measured separately.
2. Both transistor chips operating in push-pull amplifier.

L3, L4 - 2-1/2 Turns \#20 AWG, 0.200 ID
L5, L6 - 3-1/2 Turns \#18 AWG, 0.200 ID
Figure 1. 400 MHz Test Fixture

Figure 2. Output Power versus Input Power

Figure 4. Output Power versus Supply Voltage

Figure 3. Output Power versus Input Power

Figure 5. Output Power versus Supply Voltage

Figure 6. Series Equivalent Input/Output Impedance

The RF Line

NPN Silicon Push-Pull RF Power Transistor
...designed primarily for wideband large-signal output and driver amplifier stages in the 30 to 500 MHz frequency range.

- Specified 28 Volt, 500 MHz Characteristics -

Output Power $=100 \mathrm{~W}$
Typical Gain $=9.5 \mathrm{~dB}$ (Class AB); 8.5 dB (Class C)
Efficiency $=55 \%$ (Typ)

- Built-In Input Impedance Matching Networks for Broadband Operation
- Push-Pull Configuration Reduces Even Numbered Harmonics
- Gold Metallization System for High Reliability
- 100\% Tested for Load Mismatch
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MRF393

$100 \mathrm{~W}, 30$ to 500 MHz CONTROLLED "Q" BROADBAND PUSH-PULL RF POWER TRANSISTOR NPN SILICON

CASE 744A-01, STYLE 1
The MRF393 is two transistors in a single package with separate base and collector leads and emitters common. This arrangement provides the designer with a space saving device capable of operation in a push-pull configuration.

PUSH-PULL TRANSISTORS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	30	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	4.0	Vdc
Collector Current - Continuous	I C	16	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1)$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	270	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	0.65	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTE:

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF push-pull amplifier.

ELECTRICAL CHARACTERISTICS ($\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (1)					
Collector-Emitter Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{B}}=0$)	$V_{\text {(BR) }}$ CEO	30	-	-	Vdc
Collector-Emitter Breakdown Voltage ($\mathrm{I}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$)	$V_{\text {(BR) }}$ CES	60	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}^{\text {E }}=5.0 \mathrm{mAdc}$, $\mathrm{IC}=0$)	$V_{(B R) E B O}$	4.0	-	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc}$, $\mathrm{I}_{\mathrm{E}}=0$)	ICBO	-	-	5.0	mAdc

ON CHARACTERISTICS (1)

DC Current Gain (IC $\left.=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	h_{FE}	20	-	100	-

DYNAMIC CHARACTERISTICS (1)

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	40	75	95	pF

FUNCTIONAL TESTS (2) — See Figure 1

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=100 \mathrm{~W}, \mathrm{f}=500 \mathrm{MHz}\right)$	$\mathrm{G}_{\text {pe }}$	7.5	8.5	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=100 \mathrm{~W}, \mathrm{f}=500 \mathrm{MHz}\right)$	η	50	55	-	\%
Load Mismatch $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=100 \mathrm{~W}, \mathrm{f}=500 \mathrm{MHz},\right.$ $\text { VSWR }=30: 1 \text {, all phase angles) }$	ψ	No Degradation in Output Power			

NOTES:

1. Each transistor chip measured separately.
2. Both transistor chips operating in push-pull amplifier.

Figure 1. 500 MHz Test Fixture

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Input Power

CLASS C

Figure 4. Output Power versus Supply Voltage

NOTE: $Z_{\text {in }} \& Z_{O L}$ * are given from base-to-base and collector-to-collector respectively.
Figure 6. Series Equivalent Input/Output Impedance

Figure 5. Output Power versus Supply Voltage

Figure 7. Class AB Output Power versus Input Power

The RF Line
 NPN Silicon
 RF Power Transistor

Designed primarily for application as a high-power linear amplifier from 2.0 to 30 MHz .

- Specified 12.5 Volt, 30 MHz Characteristics -

Output Power = 100 W (PEP)
Minimum Gain $=10 \mathrm{~dB}$
Efficiency $=40 \%$

- Intermodulation Distortion @ 100 W (PEP) IMD = -30 dB (Min)
- 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR

MRF421

100 W (PEP), 30 MHz
RF POWER
TRANSISTORS NPN SILICON

CASE 211-11, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	20	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	45	Vdc
Emitter-Base Voltage	VEBO	3.0	Vdc
Collector Current - Continuous	${ }^{\text {I }}$	20	Adc
Withstand Current - 10 s	-	30	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 290 \\ & 1.66 \end{aligned}$	Watts W/ ${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	0.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage (${ }^{\text {C }}$ C $=50 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{B}}=0$)	$V_{\text {(BR) }}$ CEO	20	-	-	Vdc
Collector-Emitter Breakdown Voltage ($\mathrm{I}^{\text {c }}=200 \mathrm{mAdc}$, $\mathrm{V}_{\mathrm{BE}}=0$)	$V_{\text {(BR) }}$ CES	45	-	-	Vdc
Collector-Base Breakdown Voltage ($\mathrm{IC}^{\text {c }}=200 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{E}}=0$)	$V_{\text {(BR) }}$ CBO	45	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}^{\text {E }}=10 \mathrm{mAdc}$, $\mathrm{IC}=0$)	$\mathrm{V}_{\text {(BR) } \mathrm{EBO}}$	3.0	-	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=16 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=0, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$)	ICES	-	-	10	mAdc

(continued)

ELECTRICAL CHARACTERISTICS - continued ($T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=5.0\right.$ Adc, $\left.V_{\text {CE }}=5.0 \mathrm{Vdc}\right)$	hFE	10	70	-	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=12.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	550	800	pF

FUNCTIONAL TESTS

$\begin{aligned} & \text { Common-Emitter Amplifier Power Gain } \\ & \left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=100 \mathrm{~W}, \mathrm{I}(\max)=10 \mathrm{Adc},\right. \\ & \left.\mathrm{I}_{\mathrm{CQ}}=150 \mathrm{mAdc}, \mathrm{f}=30,30.001 \mathrm{MHz}\right) \end{aligned}$	Gpe	10	12	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \quad\left(\mathrm{V} \mathrm{CC}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=100 \mathrm{~W}, \mathrm{I} \mathrm{I}(\mathrm{max})=10 \mathrm{Adc},\right. \\ & \left.\mathrm{I}_{\mathrm{I}}=150 \mathrm{~mA}, \mathrm{f}=30,30.001 \mathrm{MHz}\right) \end{aligned}$	η	40	-	-	\%
$\begin{aligned} & \text { Intermodulation Distortion (1) } \\ & \left(\mathrm{V}_{\mathrm{CE}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=100 \mathrm{~W}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{Adc},\right. \\ & \left.\mathrm{I}_{\mathrm{CQ}}=150 \mathrm{~mA}, \mathrm{f}=30,30.001 \mathrm{MHz}\right) \end{aligned}$	IMD	-	-33	-30	dB

NOTE:

1. To proposed EIA method of measurement. Reference peak envelope power.

C1, C2, C4-170-780 pF, ARCO 469
C3-80-480 pF, ARCO 466
C5, C7, C10 - ERIE $0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$
C6 — MALLORY $500 \mu \mathrm{~F}$ @ 15 V Electrolytic
C9 - $100 \mu \mathrm{~F}, 15 \mathrm{~V}$ Electrolytic
C8 - $1000 \mathrm{pF}, 350 \mathrm{~V}$ UNDERWOOD
R1 - $10 \Omega, 25$ Watt Wirewound

R2 - 10Ω, 1.0 Watt Carbon
CR1 - 1N4997
L1 - 3 Turns, \#16 Wire, 5/16" I.D., 5/16" Long
L2 - 12 Turns, \#16 Enameled Wire Closewound, 1/4" I.D.
L3 - 1-3/4 Turns, $1 / 8^{\prime \prime}$ Tubing, 3/8" I.D., 3/8" Long
L4 - $10 \mu \mathrm{H}$ Molded Choke
L5 - 10 Ferrite Beads - FERROXCUBE \#56-590-65/3B

Figure 1. 30 MHz Test Circuit Schematic

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Supply Voltage

Figure 4. Power Gain versus Frequency

Figure 6. DC Safe Operating Area

Figure 5. Intermodulation Distortion versus Output Power

Figure 7. Series Equivalent Impedance

Figure 8. Output Capacitance versus Frequency

Figure 9. Output Resistance versus Frequency

The RF Line
 NPN Silicon
 RF Power Transistor

Designed primarily for applications as a high-power linear amplifier from 2.0 to 30 MHz .

- Specified 28 Volt, 30 MHz Characteristics -

Output Power = 150 W (PEP)
Minimum Gain $=10 \mathrm{~dB}$
Efficiency $=40 \%$

- Intermodulation Distortion @ 150 W (PEP) IMD = -30 dB (Min)
- 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR

MRF422

150 W (PEP), 30 MHz
RF POWER
TRANSISTORS NPN SILICON

CASE 211-11, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	40	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	85	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	3.0	Vdc
Collector Current - Continuous	${ }^{\text {I }}$	20	Adc
Withstanding Current - 10 s	-	30	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 290 \\ & 1.66 \end{aligned}$	Watts W/ ${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	0.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage ($\mathrm{I}_{\text {C }}=200 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{B}}=0$)	$V_{\text {(BR) }}$ CEO	35	-	-	Vdc
Collector-Emitter Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}$, $\mathrm{V}_{\mathrm{BE}}=0$)	$V_{\text {(BR) }}$ CES	85	-	-	Vdc
Collector-Base Breakdown Voltage ($\mathrm{IC}^{\text {c }}=100 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{E}}=0$)	$V_{\text {(BR) }}$ CBO	85	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}^{\text {E }}=10 \mathrm{mAdc}$, $\mathrm{IC}=0$)	$\mathrm{V}_{\text {(BR) } \mathrm{EBO}}$	3.0	-	-	Vdc
Collector Cutoff Current ($\mathrm{V}_{\mathrm{CE}}=28 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=0, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$)	ICES	-	-	20	mAdc

(continued)

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=5.0\right.$ Adc, $\left.V_{\text {CE }}=5.0 \mathrm{Vdc}\right)$	hFE	15	30	120	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	420	-	pF

FUNCTIONAL TESTS

$\begin{aligned} & \text { Common-Emitter Amplifier Power Gain } \\ & \left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{I} \mathrm{C}(\mathrm{max})=6.7 \mathrm{Adc},\right. \\ & \left.\mathrm{I}_{\mathrm{CQ}}=150 \mathrm{mAdc}, \mathrm{f}=30,30.001 \mathrm{MHz}\right) \end{aligned}$	GPE	10	13	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{I} \mathrm{C}(\mathrm{max})=6.7 \mathrm{Adc},\right. \\ & \left.\mathrm{I}_{\mathrm{CQ}}=150 \mathrm{mAdc}, \mathrm{f}=30,30.001 \mathrm{MHz}\right) \end{aligned}$	η	-	45	-	\%
$\begin{aligned} & \text { Intermodulation Distortion (1) } \\ & \quad\left(\mathrm{V}_{\mathrm{CE}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{I} \mathrm{C}=6.7 \mathrm{Adc},\right. \\ & \left.\mathrm{I}_{\mathrm{CQ}}=150 \mathrm{mAdc}, \mathrm{f}=30,30.001 \mathrm{MHz}\right) \end{aligned}$	IMD	-	-33	-30	dB
Output Power $\left(\mathrm{V}_{\mathrm{CE}}=28 \mathrm{Vdc}, \mathrm{f}=30 \mathrm{MHz}\right)$	Pout	150	-	-	Watts (PEP)

NOTE:

1. To Mil-Std-1311 Version A, Test Method 2204, Two Tone, Reference each Tone.

C1, C2, C3, C5 - 170-680 pF, ARCO 469
C4 - 80-480 pF, ARCO 466
C6, C8, C11 - ERIE $0.1 \mu \mathrm{~F}, 100 \mathrm{~V}$
C7 - MALLORY $500 \mu \mathrm{~F}, 15 \mathrm{~V}$ Electrolytic
C9 - UNDERWOOD 1000 pF, 350 V
C10-10 $\mu \mathrm{F}, 50 \mathrm{~V}$ Electrolytic
R1 - $10 \Omega, 25$ Watt Wire Wound
R2 - 10Ω, 1.0 Watt Carbon
CR1 - 1N4997

Figure 1. 30 MHz Test Circuit Schematic

Figure 2. Output Power versus Input Power

Figure 3. Power Gain versus Frequency

Figure 4. Linear Output Power versus Supply Voltage

Figure 6. DC Safe Operating Area

Figure 5. Intermodulation Distortion versus Output Power

Figure 7. Series Input Impedance

Figure 8. Output Resistance versus Frequency

Figure 9. Output Capacitance versus Frequency

The RF Line NPN Silicon RF Power Transistor

... designed for high gain driver and output linear amplifier stages in 1.5 to $30 \mathrm{MHz} \mathrm{HF} / \mathrm{SSB}$ equipment.

- Specified 28 Volt, 30 MHz Characteristics -

Output Power = 25 W (PEP)
Minimum Gain $=22 \mathrm{~dB}$
Efficiency = 35\%

- Intermodulation Distortion @ 25 W (PEP) -

IMD = -30 dB (Max)

- 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR
- Class A and AB Characterization
- BLX 13 Equivalent

MRF426

```
25 W (PEP), 30 MHz
```

RF POWER
TRANSISTOR
NPN SILICON

CASE 211-07, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	35	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	65	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	4.0	Vdc
Collector Current - Continuous	I C	3.0	Adc
Withstand Current -5 s	-	6.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}} \mathrm{C}=25^{\circ} \mathrm{C}(1)$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	70	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	$\mathrm{~W}^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	2.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	35	-	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	65	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=28 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{I}_{\mathrm{CES}}$	-	-	10	mAdc

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)
Characteristic

| | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

| ON CHARACTERISTICS |
| :--- | :---: | :---: | :---: | :---: |
| DC Current Gain
 (IC $=1.0 ~ A d c, ~$
 V |

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	60	80	pF

FUNCTIONAL TESTS (SSB)

$\begin{aligned} & \text { Common-Emitter Amplifier Gain } \\ & \left(\mathrm{V} \mathrm{CC}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=25 \mathrm{~W}(\mathrm{PEP}), \mathrm{f} 1=30 \mathrm{MHz},\right. \\ & \mathrm{f} 2=30.001 \mathrm{MHz}, \mathrm{I} \mathrm{I} Q=25 \mathrm{~mA}) \end{aligned}$	GPE	22	25	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \qquad \begin{array}{l} \mathrm{V} \mathrm{CC}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=25 \mathrm{~W}(\mathrm{PEP}), \mathrm{f} 1=30 \mathrm{MHz}, \\ \mathrm{f} 2=30.001 \mathrm{MHz}, \mathrm{I} \mathrm{IQ}=25 \mathrm{~mA}) \end{array} \end{aligned}$	η	35	-	-	\%
$\begin{aligned} & \text { Intermodulation Distortion (2) } \\ & \left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=25 \mathrm{~W}(\mathrm{PEP}), \mathrm{f} 1=30 \mathrm{MHz},\right. \\ & \mathrm{f} 2=30.001 \mathrm{MHz}, \mathrm{I} \mathrm{CQ}=25 \mathrm{~mA}) \end{aligned}$	$\mathrm{IMD}_{(\mathrm{d} 3)}$	-	-35	-30	dB
Load Mismatch $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=25 \mathrm{~W}(\mathrm{PEP}), \mathrm{f} 1=30 \mathrm{MHz}\right.$, $\mathrm{f} 2=30.001 \mathrm{MHz}, \mathrm{ICQ}=25 \mathrm{~mA}$, VSWR 30:1 at All Phase Angles)	ψ	No Degradation in Output Power			

CLASS A PERFORMANCE

Intermodulation Distortion (2) and Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=8.0 \mathrm{~W}\right.$ (PEP), $\mathrm{f} 1=30 \mathrm{MHz}$, $\mathrm{f} 2=30.001 \mathrm{MHz}, \mathrm{I} \mathrm{CQ}=1.2 \mathrm{Adc}$)

GPE	-	23.5	-	dB
$\mathrm{IMD}_{(\mathrm{d} 3)}$	-	-40	-	
$\mathrm{IMD}_{(\mathrm{d} 5)}$	-	-55	-	

NOTE:
2. To Mil-Std-1311 Version A, Test Method 2204B, Two Tone, Reference each Tone.

Figure 1. 30 MHz Linear Test Circuit

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Supply Voltage

Figure 4. Power Gain versus Frequency

Figure 5. Intermodulation Distortion versus Output Power

Figure 6. DC Safe Operating Area

Figure 7. Output Capacitance versus Frequency

Figure 8. Output Resistance versus Frequency

Figure 9. Series Equivalent Input Impedance

The RF Line
 NPN Silicon
 RF Power Transistor

Designed primarily for high-voltage applications as a high-power linear amplifier from 2.0 to 30 MHz . Ideal for marine and base station equipment.

- Specified 50 Volt, 30 MHz Characteristics -

Output Power = 150 W (PEP)
Minimum Gain $=13 \mathrm{~dB}$
Efficiency = 45\%

- Intermodulation Distortion @ 150 W (PEP) IMD = -32 dB (Max)
- Diffused Emitter Resistors for Superior Ruggedness
- 100% Tested for Load Mismatch at all Phase Angles with 30:1 VSWR @ 150 W CW

150 W (LINEAR), 30 MHz
RF POWER
TRANSISTOR
NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	50	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	100	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	I C	16	Adc
Withstand Current - 10 s	-	20	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}} \mathrm{C}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	233	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	$\mathrm{~W}^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	0.75	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=200 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{B}}=0$)	$V_{\text {(BR)CEO }}$	50	-	-	Vdc
Collector-Emitter Breakdown Voltage ($\mathrm{I} \mathrm{C}=100 \mathrm{mAdc}$, $\mathrm{V}_{\mathrm{BE}}=0$)	$\mathrm{V}_{(\mathrm{BR})} \mathrm{CES}$	100	-	-	Vdc
Collector-Base Breakdown Voltage ($\mathrm{I} \mathrm{C}=100 \mathrm{mAdc}$, $\mathrm{I} \mathrm{E}=0$)	$\mathrm{V}_{\text {(BR) } \mathrm{CBO}}$	100	-	-	Vdc
Emitter-Base Breakdown Voltage (I E $=10 \mathrm{mAdc}$, $\mathrm{IC}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc

(continued)

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
$\begin{aligned} & \text { DC Current Gain } \\ & \text { (IC } \left.=5.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	10	30	80	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=50 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	220	300	pF

FUNCTIONAL TESTS

$\begin{aligned} & \text { Common-Emitter Amplifier Gain } \\ & \left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}) \text {, IC }(\max)=3.32 \mathrm{Adc}\right. \text {, } \\ & \mathrm{f}=30 ; 30.001 \mathrm{MHz}) \end{aligned}$	GPE	13	15	-	dB
Output Power $\left(\mathrm{V}_{\mathrm{CE}}=50 \mathrm{Vdc}, \mathrm{f}=30 ; 30.001 \mathrm{MHz}\right)$	Pout	150	-	-	W (PEP)
$\begin{aligned} & \text { Collector Efficiency } \\ & \begin{array}{l} \left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{IC}(\max)=3.32 \mathrm{Adc},\right. \\ \mathrm{f}=30,30.001 \mathrm{MHz}) \end{array} \end{aligned}$	η	45	-	-	\%
Intermodulation Distortion (1) $\left(\mathrm{V}_{\mathrm{CE}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=150 \mathrm{~W}(\mathrm{PEP}), \mathrm{IC}=3.32 \mathrm{Adc}\right)$	IMD	-	-35	-32	dB
$\begin{aligned} & \text { Electrical Ruggedness } \\ & (\text { VCC }=50 \text { Vdc, Pout }=150 \mathrm{~W} \mathrm{CW}, \mathrm{f}=30 \mathrm{MHz}, \\ & \text { VSWR 30:1 at all Phase Angles) } \end{aligned}$	ψ	No Degradation in Output Power			

NOTE:

1. To Mil-Std-1311 Version A, Test Method 2204, Two Tone, Reference each Tone.

Figure 1. 30 MHz Test Circuit Schematic

Figure 2. Output Power versus Input Power

Figure 4. Power Gain versus Frequency

Figure 6. $\mathrm{f} \mathbf{\top}$ versus Collector Current

Figure 3. Output Power versus Supply Voltage

Figure 5. RF Safe Operating Area (SOAR)

Figure 7. IMD versus Pout

Figure 8. Output Capacitance versus Frequency

Figure 9. Output Resistance versus Frequency

Figure 10. Series Equivalent Impedance

The RF Line
 NPN Silicon
 RF Power Transistor

Designed primarily for high-voltage applications as a high-power linear amplifier from 2.0 to 30 MHz . Ideal for marine and base station equipment.

- Specified 50 Volt, 30 MHz Characteristics

Output Power $=250 \mathrm{~W}$
Minimum Gain $=12 \mathrm{~dB}$
Efficiency $=45 \%$

- Intermodulation Distortion @ 250 W (PEP) IMD = -30 dB (Max)
- 100% Tested for Load Mismatch at all Phase Angles with 3:1 VSWR

MRF448

250 W, 30 MHz
RF POWER
TRANSISTOR NPN SILICON

CASE 211-11, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	50	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	100	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	${ }^{\text {I }}$	16	Adc
Withstand Current - 10 s	-	20	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ (1) Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 290 \\ & 1.67 \end{aligned}$	Watts W/ ${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	0.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=200 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	50	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	100	-	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	100	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc

NOTE:

(continued)

1. P_{D} is a measurement reflecting short term maximum condition. See SOAR curve for operating conditions.

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)
Characteristic

| | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

ON CHARACTERISTICS				
DC Current Gain (IC $=5.0$ Adc, $\left.V_{C E}=10 \mathrm{Vdc}\right)$	hFE	10	30	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(V_{\mathrm{CB}}=50 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	350	450	pF

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=250 \mathrm{WCW}, \mathrm{f}=30 \mathrm{MHz}, \mathrm{I}_{\mathrm{CQ}}=250 \mathrm{~mA}\right)$	Gpe	12	14	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=250 \mathrm{~W}, \mathrm{f}=30 \mathrm{MHz}, \mathrm{ICQ}=250 \mathrm{~mA}\right)$	η	-	$\begin{aligned} & 45 \\ & 65 \end{aligned}$	-	$\begin{aligned} & \text { \% (PEP) } \\ & \% \text { (CW) } \end{aligned}$
Intermodulation Distortion (2) $\left(\mathrm{V}_{\mathrm{CE}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=250 \mathrm{~W}(\mathrm{PEP}), \mathrm{ICQ}=250 \mathrm{~mA}, \mathrm{f}=30 \mathrm{MHz}\right)$	IMD	-	-33	-30	dB
Electrical Ruggedness $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=250 \mathrm{~W} \mathrm{CW}, \mathrm{f}=30 \mathrm{MHz},\right.$ VSWR 3:1 at all Phase Angles)	ψ	No Degradation in Output Power			

NOTE:
2. To Mil-Std-1311 Version A, Test Method 2204, Two Tone, Reference each Tone.

Figure 1. 30 MHz Test Circuit Schematic

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Supply Voltage

Figure 4. Power Gain versus Frequency

Figure 5. RF SOAR (Class AB) Pout versus Output VSWR

Figure 6. $\mathbf{f} \mathbf{T}$ versus Collector Current

Figure 7. IMD versus Pout

Figure 8. Output Resistance and Capacitance versus Frequency

Figure 9. Series Equivalent Impedance

The RF Line

NPN Silicon
RF Power Transistor
Designed for power amplifier applications in industrial, commercial and amateur radio equipment to 30 MHz .

- Specified 12.5 Volt, 30 MHz Characteristics -

Output Power $=80$ Watts
Minimum Gain $=12 \mathrm{~dB}$
Efficiency $=50 \%$

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	25	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	45	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	I_{C}	20	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	250	Watts
Derate above $25^{\circ} \mathrm{C}$		1.43	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	0.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

$80 \mathrm{~W}, 30 \mathrm{MHz}$
RF POWER
TRANSISTOR
NPN SILICON

CASE 211-11, STYLE 1

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage ($\left.\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	18	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	36	-	-	Vdc
Emitter-Base Breakdown Voltage ($\left.\mathrm{I}_{\mathrm{E}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc

ON CHARACTERISTICS

DC Current Gain (IC $=5.0$ Adc, $\left.\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	hFE	40	-	150	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	-	250	pF

FUNCTIONAL TESTS (Figure 1)

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, \mathrm{f}=30 \mathrm{MHz}\right)$	G_{pe}	12	-	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, \mathrm{f}=30 \mathrm{MHz}\right) \end{aligned}$	η	50	-	-	\%
Series Equivalent Input Impedance $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, \mathrm{f}=30 \mathrm{MHz}\right)$	$\mathrm{Z}_{\text {in }}$	-	.938-j. 341	-	Ohms
Series Equivalent Output Impedance $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, \mathrm{f}=30 \mathrm{MHz}\right)$	$\mathrm{Z}_{\text {out }}$	-	1.16-j. 201	-	Ohms
Parallel Equivalent Input Impedance $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, \mathrm{f}=30 \mathrm{MHz}\right)$	-	-	$\begin{gathered} \hline 1.06 \Omega \\ 1817 \mathrm{pF} \end{gathered}$	-	-
Parallel Equivalent Output Impedance $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=80 \mathrm{~W}, \mathrm{f}=30 \mathrm{MHz}\right)$	-	-	$\begin{aligned} & 1.19 \Omega \\ & 777 \mathrm{pF} \end{aligned}$	-	-

REV 1

Figure 1. 30 MHz Test Circuit Schematic

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Supply Voltage

The RF Line

NPN Silicon
RF Power Transistor
...designed for power amplifier applications in industrial, commercial and amateur radio equipment to 30 MHz .

- Specified 12.5 Volt, 30 MHz Characteristics -

Output Power = 60 Watts
Minimum Gain $=13 \mathrm{~dB}$
Efficiency $=55 \%$

MATCHING PROCEDURE

In the push-pull circuit configuration it is preferred that the transistors are used as matched pairs to obtain optimum performance.
The matching procedure used by Motorola consists of measuring hFE at the data sheet conditions and color coding the device to predetermined hFE ranges within the normal hFE limits. A color dot is added to the marking on top of the cap. Any two devices with the same color dot can be paired together to form a matched set of units.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	18	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\text {CES }}$	36	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	I_{C}	15	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	P_{D}	175	Watts
Derate above $25^{\circ} \mathrm{C}$		1.0	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

CASE 211-07, STYLE 1

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	1.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}_{\mathrm{C}}=100\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	18	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}_{\mathrm{C}}=50\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	36	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=10\right.$ mAdc, $\left.\mathrm{IC}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc

ON CHARACTERISTICS

DC Current Gain $\left(\mathrm{IC}=5.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	hFE	10	-	150	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=12.5 \mathrm{Vdc}, \mathrm{I}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	-	250	pF

(continued)

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

FUNCTIONAL TESTS (Figure 1)

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{f}=30 \mathrm{MHz}\right)$	G_{pe}	13	-	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{f}=30 \mathrm{MHz}\right) \end{aligned}$	η	55	-	-	\%
Series Equivalent Input Impedance $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{f}=30 \mathrm{MHz}\right)$	$\mathrm{Z}_{\text {in }}$	-	1.66-j. 844	-	Ohms
Series Equivalent Output Impedance $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{~W}, f=30 \mathrm{MHz}\right)$	$\mathrm{Z}_{\text {out }}$	-	1.73-j. 188	-	Ohms
Parallel Equivalent Input Impedance $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{f}=30 \mathrm{MHz}\right)$	$\mathrm{Z}_{\text {in }}$	-	2.09/1030	-	Ω / pF
Parallel Equivalent Output Impedance $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{f}=30 \mathrm{MHz}\right)$	$\mathrm{Z}_{\text {out }}$	-	1.75/330	-	Ω / pF

Figure 1. 30 MHz Test Circuit Schematic

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Supply Voltage

The RF Line NPN Silicon RF Power Transistor

Designed for 12.5 volt low band VHF large-signal power amplifier applications in commercial and industrial FM equipment.

- Specified $12.5 \mathrm{~V}, 50 \mathrm{MHz}$ Characteristics -

Output Power = 70 W
Minimum Gain $=11 \mathrm{~dB}$
Efficiency $=50 \%$

- Load Mismatch Capability at High Line and RF Overdrive

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	18	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	36	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	I_{C}	20	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1)$	P_{D}	250	Watts
\quad Derate above $25^{\circ} \mathrm{C}$		1.43	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

$70 \mathrm{~W}, 50 \mathrm{MHz}$
RF POWER
TRANSISTOR NPN SILICON

CASE 211-11, STYLE 1

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (2)	$R_{\theta \mathrm{JC}}$	0.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage ($\left.\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	18	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	36	-	-	Vdc
Emitter-Base Breakdown Voltage ($\left.\mathrm{I}_{\mathrm{E}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=13.6 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{I}_{\mathrm{CES}}$	-	-	20	mAdc

ON CHARACTERISTICS

DC Current Gain (IC $=5.0$ Adc, $\left.\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	h_{FE}	10	-	150	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V} \mathrm{CB}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	275	450	pF

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain $\left(V_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=70 \mathrm{~W}, \mathrm{f}=50 \mathrm{MHz}\right)$	GPE	11	13	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=70 \mathrm{~W}, \mathrm{f}=50 \mathrm{MHz}\right)$	η	50	-	-	$\%$

NOTES:

1. These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as RF amplifiers
2. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.

C1, C8-9.0-180 pF, Arco 463
C2, C3, C4-80-480 pF, Arco 466
C5 - 1000 pF, 350 V , Unelco
$\mathrm{C} 6-10 \mu \mathrm{~F}, 25 \mathrm{Vdc}$
C7 - $0.01 \mu \mathrm{~F}$, Ceramic RFC1 - $10 \mu \mathrm{H}$ Molded Choke
on a 2.0 W Carbon Resistor
L1 - 2 Turns, \#18 AWG Enameled Wire, 0.4" ID, 0.15" Long
L2 - Loop, \#12 AWG Wire, 0.6" High, 0.4" Wide
L3 - 2 Turns, \#12 AWG Wire, ID 0.4", 0.25" Long
Bead - Ferrite Bead Ferroxcube \#56-590-65/3B

Figure 1.50 MHz Test Circuit

Figure 2. Output Power versus Input Power

Figure 3. Power Gain versus Frequency

Figure 4. Output Power versus Supply Voltage

Figure 5. Series Equivalent Input/Output Impedances

The RF Line

NPN Silicon
RF Low Power Transistor
Designed primarily for wideband large signal predriver stages in the VHF frequency range.

- Specified @ 12.5 V, 175 MHz Characteristics

Output Power $=1.5 \mathrm{~W}$
Minimum Gain $=11.5 \mathrm{~dB}$
Efficiency 60\% (Typ)

- Cost Effective PowerMacro Package
- Electroless Tin Plated Leads for Improved Solderability
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	16	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	36	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	I C	500	mAdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}(1,2)$	P_{D}	3.0 Derate above $75^{\circ} \mathrm{C}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance Junction to Case	$\mathrm{R}_{\text {日JC }}$	25	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	16	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=5.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\text {(BR) }}$ CES	36	-	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	36	-	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=1.0 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
$\begin{aligned} & \text { Collector Cutoff Current } \\ & \left(\mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right) \end{aligned}$	ICES	-	-	5.0	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=250\right.$ mAdc, $\left.V_{C E}=5.0 \mathrm{Vdc}\right)$	hFE	30	-	200	-

NOTES:

(continued)

1. TC, Case temperature measured on collector lead immediately adjacent to body of package.
2. The MRF553 PowerMacro must be properly mounted for reliable operation. AN938, "Mounting Techniques in PowerMacro Transistor," discusses methods of mounting and heatsinking.

REV 7

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic
Symbol Min Typ Max Unit
Output Capacitance $\left(V_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$ C_{ob} - 12 20

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=1.5 \mathrm{~W}, \mathrm{f}=175 \mathrm{MHz}\right)$	Figures 1, 2	$\mathrm{G}_{\text {pe }}$	11.5	13	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=1.5 \mathrm{~W}, \mathrm{f}=175 \mathrm{MHz}\right)$	Figures 1,2	η	50	60	-	$\%$
Load Mismatch Stress $\left(V_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=1.5 \mathrm{~W}, \mathrm{f}=175 \mathrm{MHz}\right.$, VSWR $\geq 10: 1$ All Phase Angles $)$	ψ	No Degradation in Output Power	-			

C1-36 pF Mini Underwood
C2 - 47 pF Mini Underwood
C3-91 pF Mini Underwood
C4-68 pF Mini Underwood
C5, C9-1.0 μ F Erie Red Cap Capacitor
C6, C10-0.1 $\mu \mathrm{F}, 35 \mathrm{~V}$ Tantulum
C7 - 470 pF Chip Capacitor
C8 - 2200 pF Chip Capacitor
R1 - $4.7 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$
R2 - $100 \Omega, 1 / 4 \mathrm{~W}$
D1 - 1N4148 Diode

L1 - 3 Turns, \#18 AWG, $0.210^{\prime \prime}$ ID, $3 / 16^{\prime \prime}$ Length
L2, L4, L7 - 0.62", \#18 AWG Wire Bent into "V"
L3, L6 - $60 \times 125 \times 250$ Mils Copper Pad on 27 Mils Thick Alumina Substrate
L5 - $12 \mu \mathrm{H}$ Molded Choke
L8 - 7 Turns, \#18 AWG, 0.170" ID, 7/16" Length
L9 - $1.0^{\prime \prime}$, \#18 AWG Wire with 5 Ferrite Beads
B — Ferrite Bead
Board Material - Glass Teflon, $\varepsilon_{r}=2.56, t=0.0625^{\prime \prime}$

Figure 1. 140-175 MHz Broadband Circuit Schematic

Figure 2. Typical Performance in Broadband Circuit

f Frequency MHz	$Z_{\text {in }}$ Ohms						$\mathrm{Z}_{\mathrm{OL}}{ }^{*}$Ohms					
	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V} ; \mathrm{P}_{\text {in }}$			$\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{~V} ; \mathrm{P}_{\text {in }}$			$\mathrm{V}_{\text {CC }}=7.5 \mathrm{~V}$; $\mathrm{P}_{\text {out }}$			$\mathrm{V}_{\text {CC }}=12.5 \mathrm{~V} ; \mathrm{P}_{\text {out }}$		
	100 mW	200 mW	300 mW	50 mW	100 mW	150 mW	1.0 W	1.6 W	2.2 W	1.1 W	2.0 W	2.6 W
140	1.65-j3.6	2.0-j2.6	2.3-j1.2	1.7-j4.1	1.8-j3.1	1.9-j2.7	9.9-j11.1	10.6-j5.1	10-j4.9	28.3-j21.5	16-j20.5	16.3-j16.5
175	2.5-j5.6	2.3-j5.9	2.8-j4.0	2.3-j4.6	2.4-j1.2	2.4-j5.7	12.1-j14.9	7.2-j9.8	8.1-j5.4	30.8-j23.3	11.4-j20.9	11.1-j14.3

	$Z_{\text {in }}$ Ohms						$\mathrm{Z}_{\mathrm{OL}}{ }^{*}$ Ohms					
	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V} ; \mathrm{P}_{\text {in }}$			$\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{~V} ; \mathrm{P}_{\text {in }}$			$\mathrm{V}_{\text {CC }}=7.5 \mathrm{~V}$; $\mathrm{P}_{\text {out }}$			$\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{~V} ; \mathrm{P}_{\text {out }}$		
MHz	50 mW	100 mW	200 mW	25 mW	50 mW	100 mW	1.25 W	1.5 W	2.0 W	1.5 W	2.25 W	3.0 W
90	2.5-j9.3	2.5-j6.4	2.5-j4.4	1.6-j10.7	2.5-j7.1	2.2-j1.3	31.8-j9.2	32-j8.9	30.2-j10.7	45.8-j7.2	45.2-j3.9	40-j4.5

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.
Table 1. $\mathrm{Z}_{\text {in }}$ and $\mathrm{Z}_{\text {OL }}$ versus Collector Voltage, Input Power, and Output Power

Figure 3. Power Output versus Power Input

Figure 4. Power Output versus Power Input

Figure 5. Power Output versus Frequency

Figure 7. Power Output versus Collector Voltage

Figure 8. Power Output versus Collector Voltage

The RF Line
 NPN Silicon RF Low Power Transistor

Designed primarily for wideband large signal predriver stages in the UHF frequency range.

- Specified @ 12.5 V, 470 MHz Characteristics @ Pout = 1.5 W Common Emitter Power Gain = 12.5 dB (Typ) Efficiency 60\% (Typ)
- Cost Effective PowerMacro Package
- Electroless Tin Plated Leads for Improved Solderability
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	16	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	36	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	I_{C}	400	mAdc
Operating Junction Temperature	T_{J}	150	${ }^{\circ} \mathrm{C}$
Total Device Dissipation @ $\mathrm{T}^{\mathrm{C}}=75^{\circ} \mathrm{C}(1,2)$ Derate above $75^{\circ} \mathrm{C}$	P_{D}	3.0 40	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ Storage Temperature Range $\mathrm{T}_{\text {stg }}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	25	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=5.0\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	16	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=5.0\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	36	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{IE}=0.1\right.$ mAdc, $\left.\mathrm{IC}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=15\right.$ Vdc, $\left.\mathrm{V}_{\mathrm{BE}}=0, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	I CES	-	-	0.1	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=100 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	hFE	50	90	200	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	3.5	5.0	pF

NOTES:
(continued)

1. TC, Case temperature measured on collector lead immediately adjacent to body of package.
2. The MRF555 PowerMacro must be properly mounted for reliable operation. AN938, "Mounting Techniques in PowerMacro Transistor," discusses methods of mounting and heatsinking.

REV 7

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
FUNCTIONAL TESTS ($\mathrm{f}=470 \mathrm{MHz}$)					
Common-Emitter Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=1.5 \mathrm{~W}\right)$	$G_{p e}$	11	12.5	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\mathrm{out}}=1.5 \mathrm{~W}\right)$	η_{c}	50	60	-	\%
Load Mismatch Stress $\left(\mathrm{V}_{\mathrm{CC}}=15.5 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}=125 \mathrm{~mW},\right.$ VSWR $\geq 10: 1$ all phase angles)	ψ	No Degradation in Output Power			

Figure 1. 400-512 MHz Broadband Circuit

Figure 2. Performance in Broadband Circuit

$\begin{gathered} f \\ \text { Frequency } \\ \text { MHz } \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\text {in }} \\ \text { Ohms } \end{gathered}$		$\begin{aligned} & \hline \mathrm{ZOL}^{*} \\ & \text { Ohms } \end{aligned}$	
	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{~V}$
	$P_{\text {in }}=100 \mathrm{~mW}$	$\mathrm{P}_{\text {in }}=50 \mathrm{~mW}$	Pout $400 \mathrm{MHz}=1.5 \mathrm{~W}$ Pout $450 \mathrm{MHz}=1.35 \mathrm{~W}$ Pout $512 \mathrm{MHz}=1.05 \mathrm{~W}$	Pout $400 \mathrm{MHz}=1.9 \mathrm{~W}$ Pout $450 \mathrm{MHz}=1.45 \mathrm{~W}$ Pout $512 \mathrm{MHz}=0.9 \mathrm{~W}$
400	$2.9-\mathrm{j} 2.7$	1.9 - j3.1	18.0-j13.4	12.2 - j19.7
450	$2.2-\mathrm{j} 0.8$	$2.6-\mathrm{j} 4.0$	$21.6=j 9.9$	20.2 - j18.6
512	3.5-j1.2	2.6 - j2.6	20.1-j1.0	23.4 - j23.0

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.
Table 1. Zin $_{\text {in }}$ and ZoL versus Collector Voltage, Input Power and Output Power $^{\text {P }}$

Figure 3. Power Output versus Power Input

Figure 5. Power Output versus Frequency

Figure 7. Power Output versus Supply Voltage

Figure 4. Power Output versus Frequency

Figure 6. Power Output versus Supply Voltage

Figure 8. Power Output versus Supply Voltage

The RF Line
 NPN Silicon
 RF Low Power Transistor

Designed primarily for wideband large signal predriver stages in the 800 MHz frequency range.

- Specified @ 12.5 V, 870 MHz Characteristics

Output Power =1.5 W
Minimum Gain $=8.0 \mathrm{~dB}$
Efficiency 60\% (Typ)

- Cost Effective PowerMacro Package
- Electroless Tin Plated Leads for Improved Solderability
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	16	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	36	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	I C	400	mAdc
Total Device Dissipation @ $\mathrm{T} \mathrm{C}=75^{\circ} \mathrm{C}(1,2)$ Derate above $75^{\circ} \mathrm{C}$	P_{D}	3.0	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range		40	${ }^{\circ} \mathrm{C}$

MRF557

$1.5 \mathrm{~W}, 870 \mathrm{MHz}$ RF LOW POWER TRANSISTOR NPN SILICON

CASE 317D-02, STYLE 2

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	25	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\text {(BR) }}$ CEO	16	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=5.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$V_{\text {(BR)CES }}$	36	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=0.1 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	ICES	-	-	0.1	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=100 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	h_{FE}	50	90	200	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	3.5	5.0	pF

NOTES:
(continued)

1. T_{C}, Case temperature measured on collector lead immediately adjacent to body of package.
2. The MRF557 PowerMacro must be properly mounted for reliable operation. AN938, "Mounting Techniques in PowerMacro Transistor," discusses methods of mounting and heatsinking.

REV 7

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=1.5 \mathrm{~W}, \mathrm{f}=870 \mathrm{MHz}\right)$	Figures 1, 2	G_{pe}	8.0	9.0	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=1.5 \mathrm{~W}, \mathrm{f}=870 \mathrm{MHz}\right) \end{aligned}$	Figures 1, 2	η_{c}	55	60	-	\%
Load Mismatch Stress $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=15.5 \mathrm{Vdc}, \mathrm{Pin}_{\mathrm{in}}=225 \mathrm{~mW}, \mathrm{f}=870 \mathrm{MHz},\right. \\ & \mathrm{VSWR} \geq 10: 1 \text { all phase angles }) \end{aligned}$	Figures 1, 2	ψ	No Degradation in Output Power			

C1, C2, C5, C7-0.8-8.0 pF Johanson Gigatrim* C3, C4-15 pF Clamped Mica, Mini-Underwood C6-27 pF Clamped Mica, Mini-Underwood
C8 - 91 pF Clamped Mica, Mini-Underwood
C9-68 pF Clamped Mica, Mini-Underwood
C10-1.0 $\mu \mathrm{F}, 25 \mathrm{~V}$ Tantalum
B - Bead, Ferroxcube 56-590-65/3B
PCB - 1/16" Glass Teflon, $\varepsilon_{r}=2.56$

L1, L4 - 5 Turns \#21 AWG, 5/32" ID
L2, L3 - $60 \times 125 \times 250$ Mils Copper Tab on 27 Mil Thick Alumina Substrate
L5 - 7 Turns \#21 AWG, 5/32" ID
Z1-1.65 $\times 0.163^{\prime \prime}$ Microstrip, $Z_{0}=50 \Omega$
Z2 $-0.85 \times 0.163^{\prime \prime}$ Microstrip, $Z_{0}=50 \Omega$
Z3 - $0.625 \times 0.163^{\prime \prime}$ Microstrip, $Z_{O}=50 \Omega$
Z4-1.35 $\times 0.163^{\prime \prime}$ Microstrip, $Z_{0}=50 \Omega$
*Fixed tuned for broadband response.

Figure 1. 800-880 MHz Broadband Circuit

Figure 2. Performance in Broadband Circuit

$\begin{gathered} f \\ \text { Frequency } \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\text {in }} \\ \mathrm{Ohms} \end{gathered}$		$\mathrm{Z}_{\mathrm{OL}}{ }^{*}$ Ohms	
	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{~V}$
	$\mathrm{P}_{\text {in }}=300 \mathrm{~mW}$	$\mathrm{P}_{\text {in }}=200 \mathrm{~mW}$	$P_{\text {out }} 806 \mathrm{MHz}=1.7 \mathrm{~W}$ Pout $870 \mathrm{MHz}=1.4 \mathrm{~W}$ Pout $960 \mathrm{MHz}=1.0 \mathrm{~W}$	Pout $806 \mathrm{MHz}=2.1 \mathrm{~W}$ Pout $870 \mathrm{MHz}=1.8 \mathrm{~W}$ Pout $960 \mathrm{MHz}=1.1 \mathrm{~W}$
806	2.4 + j3.9	2.4 + j3.1	14.7 - j4.4	13.6 - j12.8
870	$2.5+\mathrm{j} 4.6$	$2.7+\mathrm{j} 3.7$	$17.2-\mathrm{j} 8.6$	16-j13.2
960	$6.1+\mathrm{j} 7.4$	$6.8+\mathrm{j} 8.3$	40 - j8.3	38 - j10.5

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.
Table $1 . Z_{\text {in }}$ and $Z_{O L}$ versus Collector Voltage, Input Power and Output Power

Figure 3. Power Output versus Power Input

Figure 5. Power Output versus Frequency

Figure 7. Power Output versus Supply Voltage

Figure 4. Power Output versus Frequency

Figure 6. Power Output versus Supply Voltage

Figure 8. Power Output versus Supply Voltage

The RF Line NPN Silicon High-Frequency Transistor

. . . designed for UHF linear and large-signal amplifier applications.

- Specified 12.5 Volt, 870 MHz Characteristics -

Output Power = 0.5 Watts
Minimum Gain $=8.0 \mathrm{~dB}$
Efficiency 50\%

- S Parameter Data From 250 MHz to 1.5 GHz
- 1.0 dB Compression > + 20 dBm Typ
- Ideally Suited for Broadband, Class A, Low-Noise Applications
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	16	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	36	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	3.0	Vdc
Collector Current - Continuous	$\mathrm{I}^{\text {c }}$	150	mAdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=50^{\circ} \mathrm{C}$ Derate above $50^{\circ} \mathrm{C}$	PD	$\begin{aligned} & \hline 2.0 \\ & 20 \end{aligned}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage ($\mathrm{I} \mathrm{C}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	16	-	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=100 \mu \mathrm{Adc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{\text {(RR) }} \mathrm{CBO}$	36	-	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{IE}=100 \mu \mathrm{Adc}, \mathrm{IC}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	3.0	-	-	Vdc
$\begin{aligned} & \text { Collector Cutoff Current } \\ & \quad\left(\mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0\right) \end{aligned}$	ICES	-	-	1.0	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}\right)$	hFE	30	90	200	-

DYNAMIC CHARACTERISTICS

Current-Gain — Bandwidth Product $\left(\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=200 \mathrm{MHz}\right)$	$\mathrm{f} T$	-	3000	-	MHz
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=12.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	2.0	2.5	pF

(continued)

REV 6

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain $\left(V_{C C}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=0.5 \mathrm{~W}\right)$	$\mathrm{f}=870 \mathrm{MHz}$		
$\mathrm{f}=512 \mathrm{MHz}$		\quad GPE	8.0
:---:			

TYPICAL PERFORMANCE @ VCC $=7.5 \mathrm{~V}$

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=0.5 \mathrm{~W}\right)$	$\begin{aligned} & \mathrm{f}=870 \mathrm{MHz} \\ & \mathrm{f}=512 \mathrm{MHz} \end{aligned}$	GPE		$\begin{aligned} & \hline 6.5 \\ & 10 \end{aligned}$	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=0.5 \mathrm{~W}\right)$	$\begin{aligned} & \mathrm{f}=870 \mathrm{MHz} \\ & \mathrm{f}=512 \mathrm{MHz} \end{aligned}$	η		$\begin{aligned} & 70 \\ & 65 \end{aligned}$		\%

Figure 1. Power Dissipation

Figure 2. 870 MHz Test Fixture

Figure 3. Output Power versus Input Power

Figure 5. Output Power versus Collector Voltage

Figure 4. Output Power versus Frequency

Figure 6. Output Power versus Frequency

f Frequency MHz	$\begin{gathered} \mathrm{Z}_{\text {in }} \\ \text { Ohms } \end{gathered}$			ZOL^{*} Ohms					
	$\mathrm{V}_{\mathrm{CC}}=7.5-12.5 \mathrm{~V}$			$\mathrm{V}_{\text {CC }}=7.5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{~V}$		
	15 mW	25 mW	50 mW	0.25 W	0.5 W	0.75 W	0.25 W	0.5 W	0.75 W
400	4.3-j13.3	4.9-j11.0	$5.7-\mathrm{j} 8.7$	$31-\mathrm{j} 49$	44 - j34	42 - j4.9	$20-j 68$	42 - j60	52 - j54
440	3.9 - j8.8	4.5 - j8.7	$5.4-\mathrm{j} 6.9$	$27-\mathrm{j} 42$	$39-$ j30	40 - j6.9	19 - j62	$37-\mathrm{j} 54$	49 - j50
480	$3.5-\mathrm{j} 4.4$	4.1 - j6.5	$5.0-\mathrm{j} 4.3$	$24-\mathrm{j} 36$	$36-\mathrm{j} 25$	$39-j 9.0$	18-j56	$33-\mathrm{j} 48$	$47-j 46$
520	$3.2-\mathrm{j} 2.2$	3.8 - j4.3	$4.7-j 1.7$	$22-\mathrm{j} 30$	$34-\mathrm{j} 20$	$37-\mathrm{j} 12$	17-j52	31 - j44	47 - j42

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.
Table $1 . Z_{\text {in }}$ and $Z_{O L}$ versus Collector Voltage, Input Power, and Output Power

Figure 7. Output Power versus Input Power

Figure 8. Output Power versus Frequency

Figure 9. Output Power versus Collector Voltage

Figure 10. Output Power versus Frequency

f Frequency MHz	$Z_{\text {in }}$ Ohms			$\overline{\mathrm{Z}_{\mathrm{OL}}{ }^{*}}$ Ohms					
	$\mathrm{V}_{\mathrm{CC}}=7.5-12.5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$			$\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{~V}$		
	25 mW	50 mW	100 mW	0.25 W	0.5 W	0.75 W	0.25 W	0.5 W	0.75 W
800	$2.9+j 2.2$	$3.8+j 4.4$	$4.7+j 6.5$	15.0-j36.8	22.7 - j30.6	27.1 - j22.6	14.6-j43.6	17.2 - j39.7	23.4 - j37.7
850	$3.2+\mathrm{j} 3.5$	$3.8+\mathrm{j} 5.2$	$4.8+j 7.4$	15.7-j35.3	23.9 - j28.7	27.3 - j21.5	16.3-j40.8	17.8-j39.5	23.7 - j36.8
900	$3.8+\mathrm{j} 5.7$	$4.4+\mathrm{j} 7.0$	$5.4+\mathrm{j} 8.7$	16.4 - j33.7	25.1-j27.0	$27.5-\mathrm{j} 20.5$	17.3-j38.2	18.3-j39.3	23.9 - j36.0
950	$4.1+j 7.4$	$4.5+j 8.8$	$5.5+\mathrm{j} 10.1$	17.0 - j32.2	26.3 - j25.2	27.6 - j19.4	17.2 - j36.1	20.1 - j38.5	24.5 - j35.6

$Z_{O L}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.
Table 2. $\mathbf{Z}_{\text {in }}$ and $Z_{O L}$ versus Collector Voltage, Input Power, and Output Power

$G_{U(\max)}=\frac{\left|S_{21}\right|^{2}}{\left(1-\left|S_{11}\right|^{2}\right)\left(1-\left|S_{22}\right|^{2}\right)}$

Figure 11. Gain versus Frequency

Figure 12. Gain versus Collector Current

Figure 14. Current Gain Bandwidth Product versus Collector Current

Figure 13. Noise Figure and Associated Gain versus Collector Current

Figure 15. Output Capacitance versus Collector Base Voltage

$V_{C E}$ (Volts)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}		
			${ }^{\text {S }}$ 11 ${ }^{\text {\| }}$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	${ }^{\text {S }} \mathbf{1 2}{ }^{\text {\| }}$	$\angle \phi$	\|S22		$\angle \phi$
5.0	10	$\begin{gathered} 250 \\ 500 \\ 1000 \\ 1500 \end{gathered}$	$\begin{aligned} & 0.72 \\ & 0.73 \\ & 0.76 \\ & 0.82 \end{aligned}$	$\begin{array}{r} -161 \\ 179 \\ 158 \\ 142 \end{array}$	$\begin{aligned} & 6.20 \\ & 3.16 \\ & 1.62 \\ & 1.08 \end{aligned}$	$\begin{aligned} & 93 \\ & 76 \\ & 55 \\ & 41 \end{aligned}$	$\begin{aligned} & 0.057 \\ & 0.069 \\ & 0.105 \\ & 0.155 \end{aligned}$	$\begin{aligned} & 30 \\ & 43 \\ & 63 \\ & 70 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.27 \\ & 0.27 \\ & 0.41 \end{aligned}$	$\begin{aligned} & -91 \\ & -94 \\ & -119 \\ & -137 \end{aligned}$	
	25	$\begin{gathered} 250 \\ 500 \\ 1000 \\ 1500 \end{gathered}$	$\begin{aligned} & 0.70 \\ & 0.70 \\ & 0.74 \\ & 0.79 \end{aligned}$	$\begin{array}{r} -173 \\ 172 \\ 152 \\ 136 \end{array}$	$\begin{aligned} & \hline 7.17 \\ & 3.63 \\ & 1.90 \\ & 1.32 \end{aligned}$	$\begin{aligned} & 89 \\ & 75 \\ & 54 \\ & 39 \end{aligned}$	$\begin{aligned} & 0.045 \\ & 0.073 \\ & 0.134 \\ & 0.196 \end{aligned}$	$\begin{aligned} & 47 \\ & 60 \\ & 67 \\ & 66 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.20 \\ & 0.21 \\ & 0.32 \end{aligned}$	$\begin{aligned} & -123 \\ & -128 \\ & -157 \\ & -167 \end{aligned}$	
	50	$\begin{gathered} 250 \\ 500 \\ 1000 \\ 1500 \end{gathered}$	$\begin{aligned} & 0.72 \\ & 0.72 \\ & 0.75 \\ & 0.81 \end{aligned}$	$\begin{array}{r} -178 \\ 170 \\ 153 \\ 137 \end{array}$	$\begin{aligned} & 7.63 \\ & 3.85 \\ & 2.01 \\ & 1.40 \end{aligned}$	$\begin{aligned} & 89 \\ & 77 \\ & 59 \\ & 46 \end{aligned}$	$\begin{aligned} & 0.038 \\ & 0.068 \\ & 0.129 \\ & 0.188 \end{aligned}$	$\begin{aligned} & 56 \\ & 67 \\ & 72 \\ & 70 \end{aligned}$	$\begin{aligned} & 0.27 \\ & 0.23 \\ & 0.23 \\ & 0.32 \end{aligned}$	$\begin{aligned} & -139 \\ & -141 \\ & -162 \\ & -164 \end{aligned}$	
	100	$\begin{gathered} 250 \\ 500 \\ 1000 \\ 1500 \end{gathered}$	$\begin{aligned} & 0.73 \\ & 0.74 \\ & 0.76 \\ & 0.81 \end{aligned}$	$\begin{aligned} & 179 \\ & 169 \\ & 153 \\ & 138 \end{aligned}$	$\begin{aligned} & \hline 7.34 \\ & 3.70 \\ & 1.94 \\ & 1.36 \end{aligned}$	$\begin{aligned} & 88 \\ & 77 \\ & 59 \\ & 46 \end{aligned}$	$\begin{aligned} & 0.036 \\ & 0.067 \\ & 0.130 \\ & 0.191 \end{aligned}$	$\begin{aligned} & 61 \\ & 71 \\ & 74 \\ & 71 \end{aligned}$	$\begin{aligned} & 0.26 \\ & 0.22 \\ & 0.24 \\ & 0.32 \end{aligned}$	$\begin{aligned} & \hline-143 \\ & -144 \\ & -166 \\ & -167 \end{aligned}$	
	150	$\begin{gathered} 250 \\ 500 \\ 1000 \\ 1500 \end{gathered}$	$\begin{aligned} & 0.78 \\ & 0.78 \\ & 0.80 \\ & 0.85 \end{aligned}$	$\begin{aligned} & 176 \\ & 167 \\ & 151 \\ & 135 \end{aligned}$	$\begin{aligned} & 5.19 \\ & 2.76 \\ & 1.49 \\ & 1.05 \end{aligned}$	$\begin{aligned} & 92 \\ & 78 \\ & 58 \\ & 45 \end{aligned}$	$\begin{aligned} & 0.033 \\ & 0.065 \\ & 0.129 \\ & 0.191 \end{aligned}$	$\begin{aligned} & 64 \\ & 74 \\ & 77 \\ & 73 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.21 \\ & 0.24 \\ & 0.35 \end{aligned}$	$\begin{aligned} & \hline-131 \\ & -131 \\ & -155 \\ & -161 \end{aligned}$	
10	10	$\begin{gathered} 250 \\ 500 \\ 1000 \\ 1500 \end{gathered}$	$\begin{aligned} & 0.69 \\ & 0.70 \\ & 0.74 \\ & 0.81 \end{aligned}$	$\begin{array}{r} -157 \\ -178 \\ 160 \\ 142 \end{array}$	$\begin{aligned} & \hline 7.03 \\ & 3.59 \\ & 1.84 \\ & 1.20 \end{aligned}$	$\begin{aligned} & 94 \\ & 77 \\ & 55 \\ & 41 \end{aligned}$	$\begin{aligned} & 0.050 \\ & 0.060 \\ & 0.094 \\ & 0.148 \end{aligned}$	$\begin{aligned} & 33 \\ & 46 \\ & 67 \\ & 76 \end{aligned}$	$\begin{aligned} & 0.34 \\ & 0.32 \\ & 0.29 \\ & 0.42 \end{aligned}$	$\begin{aligned} & \hline-67 \\ & -69 \\ & -94 \\ & -121 \end{aligned}$	
	25	$\begin{gathered} 250 \\ 500 \\ 1000 \\ 1500 \end{gathered}$	$\begin{aligned} & \hline 0.67 \\ & 0.68 \\ & 0.72 \\ & 0.78 \end{aligned}$	$\begin{array}{r} \hline-168 \\ 176 \\ 158 \\ 142 \end{array}$	$\begin{aligned} & 8.30 \\ & 4.25 \\ & 2.19 \\ & 1.47 \end{aligned}$	$\begin{aligned} & 91 \\ & 77 \\ & 57 \\ & 44 \end{aligned}$	$\begin{aligned} & 0.039 \\ & 0.060 \\ & 0.109 \\ & 0.165 \end{aligned}$	$\begin{aligned} & 46 \\ & 60 \\ & 71 \\ & 74 \end{aligned}$	$\begin{aligned} & 0.24 \\ & 0.21 \\ & 0.19 \\ & 0.31 \end{aligned}$	$\begin{aligned} & \hline-93 \\ & -89 \\ & -114 \\ & -134 \end{aligned}$	
	50	$\begin{gathered} 250 \\ 500 \\ 1000 \\ 1500 \end{gathered}$	$\begin{aligned} & \hline 0.68 \\ & 0.68 \\ & 0.72 \\ & 0.77 \end{aligned}$	$\begin{array}{r} \hline-174 \\ 172 \\ 155 \\ 139 \end{array}$	$\begin{aligned} & 8.88 \\ & 4.49 \\ & 2.31 \\ & 1.58 \end{aligned}$	$\begin{aligned} & 90 \\ & 77 \\ & 59 \\ & 46 \end{aligned}$	$\begin{aligned} & 0.035 \\ & 0.060 \\ & 0.113 \\ & 0.169 \end{aligned}$	$\begin{aligned} & 55 \\ & 67 \\ & 74 \\ & 74 \end{aligned}$	$\begin{aligned} & 0.21 \\ & 0.18 \\ & 0.17 \\ & 0.28 \end{aligned}$	$\begin{aligned} & \hline-110 \\ & -104 \\ & -128 \\ & -140 \end{aligned}$	
	100	$\begin{gathered} 250 \\ 500 \\ 1000 \\ 1500 \end{gathered}$	$\begin{aligned} & 0.68 \\ & 0.69 \\ & 0.72 \\ & 0.78 \end{aligned}$	$\begin{array}{r} \hline-178 \\ 170 \\ 153 \\ 137 \end{array}$	$\begin{aligned} & 8.49 \\ & 4.32 \\ & 2.25 \\ & 1.53 \end{aligned}$	$\begin{aligned} & 89 \\ & 76 \\ & 58 \\ & 44 \end{aligned}$	$\begin{aligned} & 0.030 \\ & 0.060 \\ & 0.120 \\ & 0.180 \end{aligned}$	$\begin{aligned} & 61 \\ & 71 \\ & 76 \\ & 75 \end{aligned}$	$\begin{aligned} & 0.19 \\ & 0.17 \\ & 0.17 \\ & 0.28 \end{aligned}$	$\begin{aligned} & -104 \\ & -97 \\ & -123 \\ & -137 \end{aligned}$	
	150	$\begin{gathered} 250 \\ 500 \\ 1000 \\ 1500 \end{gathered}$	$\begin{aligned} & \hline 0.72 \\ & 0.73 \\ & 0.76 \\ & 0.83 \end{aligned}$	$\begin{aligned} & 178 \\ & 169 \\ & 152 \\ & 137 \end{aligned}$	$\begin{aligned} & 6.53 \\ & 3.37 \\ & 1.79 \\ & 1.22 \end{aligned}$	$\begin{aligned} & 91 \\ & 77 \\ & 57 \\ & 43 \end{aligned}$	$\begin{aligned} & 0.029 \\ & 0.056 \\ & 0.112 \\ & 0.175 \end{aligned}$	$\begin{aligned} & 64 \\ & 75 \\ & 80 \\ & 79 \end{aligned}$	$\begin{aligned} & 0.22 \\ & 0.24 \\ & 0.22 \\ & 0.34 \end{aligned}$	$\begin{aligned} & \hline-71 \\ & -75 \\ & -105 \\ & -129 \end{aligned}$	

Table 3. Common Emitter Scattering Parameters

The RF Small Signal Line NPN Silicon High-Frequency Transistor

Designed for low noise, wide dynamic range front end amplifiers at frequencies to 1.5 GHz . Specifically aimed at portable communication devices such as pagers and hand-held phones.

- Low Noise Figure
$\mathrm{NF}=1.5 \mathrm{~dB}$ (Typ) @ 1.0 GHz
- High Current Gain-Bandwidth Product ($\mathrm{f}_{\tau}=7.0 \mathrm{GHz}$ Typ @ 6.0 V, 40 mA)
- Small, Surface-Mount Package (SC-70/SOT-323)
- Available in Tape and Reel Packaging.

T1 Suffix = 3,000 Units per $8 \mathrm{~mm}, 7$ inch Reel.
MRF577T1

CASE 419-02, STYLE 3 (SC-70/SOT-323)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	10	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	20	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	3.0	Vdc
Collector Current - Continuous	I_{C}	80	mAdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}(1)$ Derate above $75^{\circ} \mathrm{C}$	P_{D}	232	mW
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	$-55 \mathrm{to}+150$	${ }^{\circ}{ }^{\circ} \mathrm{C}$
Operating Temperature Range	T_{J}	150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (1)	$R_{\theta J C}$	323	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DEVICE MARKING

```
MRF577T1 = D
```

(1) Case temperature measured on the collector lead immediately adjacent to body of package.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=1.0 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \mathrm{~mA}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	10	12	-	Vdc
Collector-Base Breakdown Voltage $\left(I_{C}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	20	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=50 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=0\right)$	$V_{\text {(BR)EBO }}$	2.5	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=8.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	10	$\mu \mathrm{A}$

ON CHARACTERISTICS

DC Current Gain $\left(V_{C E}=10\right.$ Vdc, $\left.I_{C}=30 \mathrm{~mA}\right)$	hFE	50	-	300	-

DYNAMIC CHARACTERISTICS

Collector-Base Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=6.0\right.$ Vdc, $\left.\mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{cb}	-	0.85	-	pF
Current-Gain Bandwidth Product $\left(\mathrm{V}_{\mathrm{CE}}=6.0\right.$ Vdc, $\left.\mathrm{I}_{\mathrm{E}}=40 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right)$	f_{τ}	-	7.0	-	GHz

PERFORMANCE CHARACTERISTICS

Noise Figure - Minimum $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}\right)$ Figure 1	$\begin{aligned} & 500 \mathrm{MHz} \\ & 1.0 \mathrm{GHz} \end{aligned}$	$N F_{\text {min }}$	-	$\begin{aligned} & 1.0 \\ & 1.5 \end{aligned}$	-	dB
Associated Gain at Minimum Noise Figure $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}\right)$ Figure 1	$\begin{aligned} & 500 \mathrm{MHz} \\ & 1.0 \mathrm{GHz} \end{aligned}$	G_{NF}	-	$\begin{aligned} & 15 \\ & 10 \end{aligned}$	-	dB
Maximum Unilateral Gain $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~mA}, \mathrm{f}=1000 \mathrm{MHz}\right)$		GUmax	-	12	-	dB
Insertion Gain $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=40 \mathrm{~mA}, \mathrm{f}=1000 \mathrm{MHz}\right)$		$\left\|S_{21}{ }^{2}\right\|$	-	11	-	dB
Noise Resistance $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}, \mathrm{f}=1000 \mathrm{MHz}\right)$		R_{N}	-	6.0	-	Ohms

Figure 1. Functional Circuit Schematic

TYPICAL CHARACTERISTICS

Figure 2. \mathbf{f}_{τ}, Current-Gain Bandwidth Product versus Collector Current

Figure 4. Input Capacitance versus Emitter-Base Voltage

Figure 6. Forward Insertion Gain and Maximum Unilateral Gain versus Frequency

Figure 3. Collector-Base Capacitance versus Voltage

Figure 5. Maximum Power Dissipation versus Collector Lead Temperature (TC)

Figure 7. Forward Insertion Gain and Maximum Unilateral Gain versus Frequency

Figure 8. Minimum Noise Figure and Associated Gain versus Frequency

Figure 9. Minimum Noise Figure and Associated Gain versus Frequency

Figure 10. Output Third Order Intercept Point versus Collector Current

$\begin{gathered} \mathrm{V}_{\mathrm{CE}} \\ \text { (Volts) } \end{gathered}$	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	$\underset{(\mathrm{dB})}{\mathrm{NF}_{\min }}$	$\mid \Gamma_{0}{ }^{\text {\| }}$	$\angle \Gamma_{0}$	R_{N}
3.0	3.0	300	0.81	0.44	57	10
		500	1.05	0.43	88	9
		900	1.51	0.46	138	6
		1000	1.62	0.47	149	6
		1500	2.11	0.56	-173	4
		2000	2.55	0.69	-157	6
	5.0	300	0.86	0.33	58	8
		500	1.03	0.34	88	8
		900	1.40	0.40	139	6
		1000	1.50	0.42	149	5
		1500	1.89	0.52	-173	4
		2000	2.29	0.65	-157	6
6.0	3.0	300	0.81	0.45	50	11
		500	1.07	0.44	81	11
		900	1.56	0.44	132	8
		1000	1.70	0.45	142	7
		1500	2.23	0.53	-177	5
		2000	2.72	0.67	-158	6
	5.0	300	0.85	0.37	50	10
		500	1.04	0.37	80	9
		900	1.42	0.39	130	7
		1000	1.52	0.40	141	6
		1500	2.00	0.50	-179	5
		2000	2.43	0.65	-159	6
	10	300	1.02	0.24	52	9
		500	1.15	0.26	82	9
		900	1.42	0.33	131	7
		1000	1.50	0.35	142	6
		1500	1.85	0.47	-179	5
		2000	2.25	0.61	-159	5

Table 1. MRF577T1 Common Emitter Noise Parameters

V_{CE}(Volts)	$\underset{(\mathrm{mA})}{\mathrm{Ic}}$	$\begin{gathered} \mathbf{f} \\ (\mathrm{GHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}		
			${ }^{\text {S }}$ 11 ${ }^{\text {l }}$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	\| S_{12} \|	$\angle \phi$	\|S22		$\angle \phi$
3.0	3.0	0.10	0.852	-47	9.09	149	0.061	65	0.881	-25	
		0.20	0.758	-84	7.13	126	0.095	49	0.708	-41	
		0.30	0.687	-108	5.60	112	0.112	41	0.575	-50	
		0.40	0.649	-125	4.52	101	0.121	37	0.490	-56	
		0.50	0.622	-138	3.79	93	0.127	35	0.434	-60	
		0.60	0.588	-148	3.20	87	0.131	35	0.384	-60	
		0.70	0.581	-157	2.81	82	0.135	3	0.357	-63	
		0.80	0.580	-164	2.48	77	0.140	35	0.342	-65	
		0.90	0.574	-170	2.25	72	0.144	37	0.325	-68	
		1.00	0.572	-175	2.05	68	0.149	38	0.315	-70	
		1.50	0.578	163	1.46	50	0.183	45	0.297	-86	
		2.00	0.591	146	1.16	36	0.233	49	0.308	-103	
		2.50	0.609	131	0.99	25	0.298	49	0.330	-122	
		3.00	0.617	118	0.87	17	0.374	45	0.351	-140	
		4.00	0.643	94	0.75	5	0.519	32	0.406	-176	
	5.0	0.10	0.770	-60	13.16	141	0.055	61	0.807	-35	
		0.20	0.666	-99	9.41	119	0.080	47	0.587	-54	
		0.30	0.607	-123	7.02	106	0.092	43	0.450	-64	
		0.40	0.580	-138	5.52	97	0.101	42	0.371	-70	
		0.50	0.562	-149	4.54	90	0.109	42	0.322	-75	
		0.60	0.536	-159	3.83	85	0.117	44	0.273	-75	
		0.70	0.533	-166	3.33	80	0.124	45	0.249	-78	
		0.80	0.534	-172	2.94	76	0.133	46	0.235	-81	
		0.90	0.531	-177	2.65	71	0.142	47	0.222	-84	
		1.00	0.530	178	2.41	68	0.152	48	0.213	-87	
		1.50	0.539	159	1.71	52	0.204	50	0.199	-102	
		2.00	0.551	144	1.36	38	0.262	49	0.212	-119	
		2.50	0.568	130	1.15	27	0.324	46	0.237	-136	
		3.00	0.578	118	1.02	18	0.390	42	0.260	-152	
		4.00	0.614	96	0.86	3	0.513	29	0.326	177	
	10	0.10	0.629	-83	19.46	130	0.044	56	0.663	-53	
		0.20	0.551	-123	12.13	109	0.060	49	0.426	-75	
		0.30	0.522	-143	8.57	98	0.072	50	0.315	-88	
		0.40	0.513	-155	6.58	91	0.083	52	0.259	-97	
		0.50	0.505	-163	5.35	86	0.096	54	0.227	-103	
		0.60	0.489	-171	4.50	82	0.108	56	0.183	-108	
		0.70	0.490	-177	3.89	78	0.121	57	0.168	-113	
		0.80	0.492	178	3.43	74	0.134	57	0.159	-118	
		0.90	0.491	174	3.08	71	0.148	58	0.152	-122	
		1.00	0.491	170	2.80	68	0.161	58	0.148	-127	
		1.50	0.501	154	1.96	53	0.228	55	0.147	-144	
		2.00	0.513	140	1.56	40	0.293	50	0.163	-156	
		2.50	0.528	127	1.32	30	0.354	44	0.190	-168	
		3.00	0.536	116	1.17	20	0.414	38	0.209	-179	
		4.00	0.578	96	0.99	4	0.516	25	0.270	159	
	20	0.10	0.509	-111	24.53	119	0.034	56	0.513	-72	
		0.20	0.485	-144	13.84	102	0.048	58	0.319	-99	
		0.30	0.478	-159	9.51	93	0.062	61	0.249	-115	
		0.40	0.478	-167	7.22	88	0.077	63	0.220	-125	
		0.50	0.476	-173	5.84	83	0.093	64	0.203	-133	
		0.60	0.466	179	4.90	80	0.108	65	0.173	-142	
		0.70	0.469	175	4.23	76	0.124	65	0.168	-147	
		0.80	0.471	171	3.73	73	0.139	64	0.166	-152	
		0.90	0.472	168	3.34	70	0.155	64	0.164	-157	
		1.00	0.472	165	3.03	67	0.170	63	0.164	-160	
		1.50	0.482	150	2.12	54	0.244	57	0.171	-174	
		2.00	0.493	138	1.68	42	0.313	50	0.188	177	
		2.50	0.507	125	1.42	32	0.375	44	0.211	168	
		3.00	0.514	115	1.26	22	0.432	36	0.226	159	
		4.00	0.555	96	1.06	6	0.525	23	0.274	143	

Table 2. Common Emitter S-Parameters

VCE (Volts)	$\underset{(\mathrm{mA})}{\mathrm{IC}_{2}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{GHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}		
			${ }^{\text {\| }} \mathrm{S}_{11} \mid$	$\angle \phi$	${ }^{\text {\| }} \mathbf{2 1}$ \|	$\angle \phi$	${ }^{\text {\| }} \mathbf{S}_{12} \mid$	$\angle \phi$	\|S22		$\angle \phi$
3.0	40	0.10	0.457	-136	27.07	111	0.027	61	0.401	-90	
		0.20	0.465	-159	14.51	97	0.042	66	0.268	-119	
		0.30	0.467	-169	9.85	90	0.059	69	0.230	-135	
		0.40	0.471	-175	7.44	85	0.076	70	0.217	-144	
		0.50	0.470	-180	6.00	82	0.093	70	0.209	-151	
		0.60	0.464	174	5.04	79	0.110	70	0.189	-160	
		0.70	0.467	170	4.34	75	0.127	69	0.188	-164	
		0.80	0.469	167	3.83	72	0.143	68	0.189	-168	
		0.90	0.469	164	3.42	70	0.159	67	0.189	-171	
		1.00	0.470	161	3.11	67	0.176	65	0.191	-174	
		1.50	0.480	148	2.17	54	0.253	58	0.200	174	
		2.00	0.490	136	1.71	42	0.323	51	0.215	166	
		2.50	0.504	124	1.45	32	0.386	43	0.237	159	
		3.00	0.510	114	1.29	23	0.443	36	0.249	150	
		4.00	0.549	95	1.09	6	0.532	22	0.291	136	
6.0	3.0	0.10	0.872	-42	9.23	151	0.049	68	0.903	-20	
		0.20	0.776	-76	7.48	130	0.079	53	0.757	-33	
		0.30	0.695	-100	6.01	115	0.095	45	0.635	-40	
		0.40	0.647	-117	4.91	105	0.104	40	0.555	-45	
		0.50	0.612	-131	4.14	97	0.110	38	0.500	-47	
		0.60	0.572	-141	3.51	90	0.114	38	0.454	-47	
		0.70	0.56	-151	3.09	85	0.118	38	0.427	-49	
		0.80	0.558	-158	2.72	80	0.123	38	0.412	-50	
		0.90	0.549	-165	2.48	75	0.127	40	0.395	-52	
		1.00	0.544	-171	2.26	71	0.132	42	0.384	-54	
		1.50	0.548	167	1.60	53	0.163	49	0.360	-66	
		2.00	0.562	149	1.27	39	0.209	54	0.360	-82	
		2.50	0.581	133	1.06	27	0.271	54	0.366	-99	
		3.00	0.593	120	0.93	18	0.346	51	0.375	-117	
		4.00	0.628	96	0.77	6	0.498	38	0.405	-155	
	5.0	0.10	0.797	-52	13.58	145	0.045	64	0.840	-28	
		0.20	0.678	-89	10.10	122	0.068	51	0.642	-43	
		0.30	0.601	-113	7.68	109	0.080	46	0.509	-50	
		0.40	0.562	-130	6.10	100	0.089	45	0.430	-54	
		0.50	0.537	-141	5.05	93	0.096	45	0.380	-56	
		0.60	0.505	-152	4.25	87	0.103	46	0.335	-55	
		0.70	0.499	-160	3.71	82	0.110	47	0.311	-56	
		0.80	0.498	-166	3.27	78	0.118	48	0.296	-58	
		0.90	0.492	-172	2.95	74	0.127	50	0.282	-59	
		1.00	0.49	-177	2.68	70	0.135	51	0.272	-61	
		1.50	0.498	163	1.89	54	0.183	53	0.249	-72	
		2.00	0.512	147	1.49	40	0.237	53	0.249	-87	
		2.50	0.533	132	1.25	29	0.295	51	0.256	-105	
		3.00	0.547	120	1.10	19	0.359	46	0.266	-121	
		4.00	0.594	98	0.90	4	0.488	34	0.309	-158	
	10	0.100	0.658	-71	20.57	134	0.038	60	0.710	-42	
		0.200	0.542	-111	13.36	112	0.053	52	0.473	-58	
		0.300	0.492	-132	9.57	101	0.065	52	0.353	-65	
		0.400	0.472	-146	7.39	94	0.075	54	0.288	-70	
		0.500	0.46	-155	6.02	88	0.086	56	0.250	-72	
		0.600	0.438	-164	5.06	84	0.097	58	0.207	-70	
		0.700	0.437	-171	4.38	80	0.109	59	0.189	-72	
		0.800	0.438	-176	3.86	76	0.120	59	0.176	-74	
		0.900	0.437	179	3.46	73	0.132	59	0.166	-76	
		1.000	0.437	175	3.14	69	0.144	59	0.158	-78	
		1.500	0.448	158	2.19	55	0.205	57	0.140	-91	
		2.000	0.463	144	1.73	42	0.265	53	0.143	-107	
		2.500	0.482	130	1.45	31	0.323	48	0.155	-126	
		3.000	0.496	119	1.28	21	0.381	42	0.165	-141	
		4.000	0.549	99	1.05	5	0.488	30	0.216	-173	

Table 2. Common Emitter S-Parameters (continued)

$V_{C E}$ (Volts)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{GHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}	
			${ }^{\text {\| }} \mathbf{S}_{11} \mid$	$\angle \phi$	\| $\mathbf{S 2 1}{ }^{\text {\| }}$	$\angle \phi$	${ }^{\text {S }}$ 12\|	$\angle \phi$	${ }^{\text {\| }} \mathbf{2 2}$ \|	$\angle \phi$
6.0	20	0.10	0.521	-94	26.70	123	0.030	59	0.555	-56
		0.20	0.448	-131	15.53	104	0.043	58	0.335	-74
		0.30	0.426	-149	10.76	96	0.056	62	0.243	-82
		0.40	0.42	-159	8.19	90	0.070	64	0.199	-88
		0.50	0.415	-166	6.63	85	0.083	65	0.172	-92
		0.60	0.401	-175	5.56	82	0.097	66	0.132	-93
		0.70	0.403	-180	4.80	78	0.111	66	0.121	-96
		0.80	0.405	176	4.23	75	0.125	65	0.112	-100
		0.90	0.405	173	3.78	72	0.139	65	0.106	-104
		1.00	0.406	169	3.43	69	0.153	64	0.101	-107
		1.50	0.42	154	2.38	56	0.220	59	0.094	-125
		2.00	0.434	141	1.87	44	0.284	53	0.105	-141
		2.50	0.454	128	1.57	33	0.343	47	0.125	-157
		3.00	0.466	118	1.39	23	0.399	40	0.137	-169
		4.00	0.52	99	1.15	6	0.495	28	0.189	167
	40	0.10	0.438	-116	30.08	114	0.025	61	0.423	-68
		0.20	0.407	-147	16.43	99	0.039	65	0.245	-86
		0.30	0.400	-160	11.20	92	0.053	68	0.179	-96
		0.40	0.400	-168	8.48	87	0.068	70	0.152	-103
		0.50	0.398	-173	6.84	83	0.083	70	0.135	-108
		0.60	0.389	179	5.74	80	0.098	70	0.100	-113
		0.70	0.392	175	4.95	77	0.113	69	0.094	-117
		0.80	0.395	172	4.35	74	0.128	69	0.090	-123
		0.90	0.396	169	3.89	71	0.143	68	0.087	-127
		1.00	0.397	165	3.53	68	0.157	67	0.085	-131
		1.50	0.411	152	2.44	55	0.227	60	0.088	-149
		2.00	0.426	139	1.92	44	0.293	53	0.103	-161
		2.50	0.446	127	1.61	33	0.352	47	0.126	-173
		3.00	0.459	117	1.42	24	0.408	40	0.139	176
		4.00	0.512	99	1.17	7	0.500	27	0.190	156

Table 2. Common Emitter S-Parameters (continued)

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{~V} \\
& \mathrm{I} \mathrm{C}=5.0 \mathrm{~mA} \\
& \square \quad-\text { Potentially Unstable }
\end{aligned}
$$

$\mathrm{f}(\mathrm{MHz})$	NF OPT (dB)	$\Gamma \mathrm{MS} \mathrm{NF} \mathrm{OPT}$	R_{N}	K
500	1.03	$0.34 \angle 88^{\circ}$	8	0.69

Figure 11. MRF577T1 Constant Gain and Noise Figure Contours

Figure 12. MRF577T1 Constant Gain and Noise Figure Contours

$\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}$
$\mathrm{I} \mathrm{C}=10 \mathrm{~mA}$
$\square-$ Potentially Unstable

$\mathrm{f}(\mathrm{MHz})$	NF OPT (dB)	$\Gamma \mathrm{MS} \mathrm{NF} \mathrm{OPT}$	R_{N}	K
500	1.15	$0.26 \angle 82^{\circ}$	9	0.86

Figure 13. MRF577T1 Constant Gain and Noise Figure Contours

$\mathrm{V}_{C E}=6.0 \mathrm{~V}$
$\mathrm{I} \mathrm{C}=10 \mathrm{~mA}$

$\mathrm{f}(\mathrm{MHz})$	NF OPT (dB)	$\Gamma \mathrm{MS} \mathrm{NF} \mathrm{OPT}$	R_{N}	K
1000	1.49	$0.35 \angle 142^{\circ}$	6	1.04

Figure 14. MRF577T1 Constant Gain and Noise Figure Contours

The RF Line
 NPN Silicon Low Noise Transistors

Motorola's MRF579 is a high performance NPN transistor designed for use in high gain, low noise small-signal amplifiers. The MRF579 is well suited for low voltage portable wireless applications. This device features excellent linearity having a third order IMD ouput power of +30 dBm .

- Low Noise Figure, $\mathrm{NF}_{\text {min }}=1.4 \mathrm{~dB}$ (Typ) @ $1 \mathrm{GHz}, 3 \mathrm{~V} @ 5 \mathrm{~mA}$
- High Current Gain-Bandwidth Product, $\mathrm{f}_{\mathrm{t}}=8 \mathrm{GHz}$ @ 40 mA
- Insertion Gain = 12 dB @ $1 \mathrm{GHz}, 6 \mathrm{~V}$ @ 20 mA
- Output Third Order Intercept, OIP3 = +30 dBm @ 1 GHz @ 10 mA
- Fully Ion-Implanted with Gold Metallization and Nitride Passivation
- Available in Tape and Reel Packaging Options:

T1 Suffix = 3,000 Units per Reel
$I_{\text {Cmax }}=50 \mathrm{~mA}$ LOW NOISE TRANSISTORS

CASE 463-01, STYLE 1
(SC-90/SC-75)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	10	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	20	Vdc
Emitter-Base Voltage	VEBO	3	Vdc
Power Dissipation (1) $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$ Derate linearly above $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$ @	PDmax	$\begin{gathered} 0.156 \\ 2.08 \end{gathered}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Collector Current - Continuous (2)	IC	80	mA
Maximum Junction Temperature	$\mathrm{T}_{\text {Jmax }}$	150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Case	$\mathrm{R}_{\text {өJC }}$	480	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DEVICE MARKINGS

MRF579T1 = N1

(1) To calculate the junction temperature use $T_{J}=\left(P_{D} \times R_{\theta J C}\right)+T_{C}$. The case temperature is measured on collector lead adjacent to the package body.
(2) IC - Continuous (MTBF > 10 years).

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (3)					
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	10	12	-	Vdc
Collector-Base Breakdown Voltage $\left(I_{C}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	20	-	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=0.05 \mathrm{~mA}, \mathrm{I} \mathrm{C}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	2.5	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=8 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	0.1	$\mu \mathrm{A}$

ON CHARACTERISTICS (3)

DC Current Gain $\left(\mathrm{V}_{\mathrm{CE}}=5 \mathrm{~V}, \mathrm{IC}=30 \mathrm{~mA}\right)$	h_{FE}	50	-	300	-

DYNAMIC CHARACTERISTICS

Collector-Base Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$ $\left(\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	C_{cb}			pF	
Current Gain - Bandwidth Product $\left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I} \mathrm{C}=40 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right)$		-	1.3	-	

PERFORMANCE CHARACTERISTICS

Conditions	Symbol	Min	Typ	Max	Unit
Insertion Gain $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I} \mathrm{I}=3 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I} \mathrm{I}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{aligned}$	$\left\|S_{21}\right\|^{2}$	-	$\begin{gathered} 7 \\ 12 \end{gathered}$		dB
Maximum Unilateral Gain (4) $\left(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{IC}=3 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right)$ $\left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right)$	$G_{U \max }$	-	$\begin{aligned} & 10 \\ & 13 \end{aligned}$	-	dB
Maximum Stable Gain and/or Maximum Available Gain (5) $\begin{aligned} & (\mathrm{V} C E=3 \mathrm{~V}, \mathrm{I} \mathrm{C}=3 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}) \\ & (\mathrm{V} \mathrm{CE}=6 \mathrm{~V}, \mathrm{I} \mathrm{I}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}) \end{aligned}$	MSG MAG		$\begin{aligned} & 12 \\ & 14 \end{aligned}$	-	dB
$\begin{aligned} & \text { Noise Figure - Minimum } \\ & \qquad \begin{array}{l} \left.\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{IC}=3 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{array} \end{aligned}$	$\mathrm{NF}_{\text {min }}$		$\begin{aligned} & 1.5 \\ & 1.4 \end{aligned}$		dB
Noise Resistance $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{IC}=3 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{aligned}$	R_{N}	-	8	-	Ω
Associated Gain at Minimum NF $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=3 \mathrm{~V}, \mathrm{I} \mathrm{I}=3 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I} \mathrm{I}=5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{aligned}$	G_{NF}	-	$\begin{gathered} 9 \\ 11 \end{gathered}$	-	dB
Output Power at 1 dB Gain Compression (6) $\left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right)$	$\mathrm{P}_{1 \mathrm{~dB}}$	-	+11	-	dBm
Output Third Order Intercept (6) $\left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right.$)	OIP_{3}	-	+31	-	dBm

(3) Pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$ pulsed.
(4) Maximum unilateral gain is $G_{U \max }=\frac{\left|\mathrm{S}_{21}\right|^{2}}{\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)}$
(5) Maximum available gain and maximum stable gain are defined by the K factor as follows: MAG $=\frac{\left|S_{21}\right|}{\left|S_{12}\right|}\left(K \pm \sqrt{K^{2}-1}\right)$, if $K>1$
(6) $Z_{\text {in }}=50 \Omega$ and $Z_{\text {out }}$ matched for optimum IP3.

$$
M S G=\frac{\left|S_{21}\right|}{\left|S_{12}\right|} \text {, if } \mathrm{K}<1
$$

TYPICAL CHARACTERISTICS

Figure 1. Capacitance versus Voltage

Figure 3. DC Current Gain versus Collector Current

Figure 2. Input Capacitance versus Voltage

Figure 4. Gain-Bandwidth Product versus Collector Current

Figure 5. Functional Circuit Schematic

Figure 6. Maximum Stable/Available Gain versus Frequency

Figure 8. Maximum Unilateral Gain and Forward Insertion Gain versus Frequency

Figure 10. Maximum Unilateral Gain and Forward Insertion Gain versus Collector Current

Figure 7. Maximum Stable/Available Gain versus Frequency

Figure 9. Maximum Unilateral Gain and Forward Insertion Gain versus Frequency

Figure 11. Maximum Unilateral Gain and Forward Insertion Gain versus Collector Current

Figure 12. Maximum Stable/Available Gain versus Collector Current

Figure 13. Maximum Stable/Available Gain versus Collector Current

Figure 14. Minimum Noise Figure and Associated Gain versus Frequency

Figure 16. Minimum Noise Figure and Associated Gain versus Collector Current

Figure 17. Minimum Noise Figure and Associated Gain versus Collector Current

TYPICAL CHARACTERISTICS

Figure 18. Output Third Order Intercept and Output Power at 1 dB Gain Compression versus Collector Current

Figure 19. MRF579T1 Series Constant Gain and Noise Figure Contours

Figure 20. MRF579T1 Series Constant Gain and Noise Figure Contours

Figure 21. MRF579T1 Series Constant Gain and Noise Figure Contours

Figure 22. MRF579T1 Series Constant Gain and Noise Figure Contours

VCE	$\underset{(\mathrm{mA})}{\mathrm{Ic}}$	$\begin{gathered} \mathbf{f} \\ (\mathrm{GHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}		
			$\left\|S_{11}\right\|$	$\angle \phi$	${ }^{\text {S }} 21$ \|	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
1.0	1.0	0.1	0.948	-35	3.45	156	0.095	70	0.948	-17	
		0.3	0.847	-88	2.55	119	0.206	40	0.752	-41	
		0.5	0.762	-117	1.85	97	0.238	24	0.615	-51	
		0.7	0.729	-137	1.45	81	0.244	15	0.544	-60	
		0.9	0.714	-152	1.18	69	0.239	9	0.511	-68	
		1.0	0.713	-157	1.09	63	0.234	6	0.504	-71	
		1.3	0.715	-171	0.89	49	0.212	3	0.494	-82	
		1.5	0.722	-178	0.79	42	0.197	2	0.502	-91	
		2.0	0.739	166	0.62	29	0.159	12	0.534	-110	
		2.5	0.762	152	0.51	21	0.163	33	0.570	-128	
		3.0	0.768	141	0.45	20	0.219	46	0.605	-146	
		3.5	0.769	130	0.43	22	0.295	48	0.632	-161	
		4.0	0.760	120	0.44	23	0.372	44	0.644	-176	
		4.5	0.747	111	0.48	22	0.441	37	0.644	170	
		5.0	0.735	103	0.51	19	0.497	31	0.646	158	
	3.0	0.1	0.859	-56	8.94	145	0.084	60	0.848	-36	
		0.3	0.736	-119	5.06	108	0.143	33	0.513	-73	
		0.5	0.673	-144	3.32	92	0.156	26	0.368	-87	
		0.7	0.661	-160	2.47	81	0.161	24	0.306	-98	
		0.9	0.655	-170	1.97	72	0.165	25	0.282	-107	
		1.0	0.657	-174	1.79	68	0.167	25	0.276	-110	
		1.3	0.660	175	1.43	58	0.174	28	0.271	-121	
		1.5	0.665	170	1.27	52	0.181	30	0.281	-127	
		2.0	0.677	158	1.01	39	0.204	36	0.312	-140	
		2.5	0.695	146	0.85	29	0.238	40	0.355	-151	
		3.0	0.702	137	0.75	22	0.285	42	0.397	-162	
		3.5	0.708	128	0.68	17	0.336	40	0.437	-173	
		4.0	0.709	120	0.63	13	0.391	37	0.469	176	
		4.5	0.709	111	0.61	10	0.443	33	0.494	165	
		5.0	0.707	104	0.6	8	0.491	27	0.519	155	
	5.0	0.1	0.790	-74	12.72	137	0.074	54	0.762	-51	
		0.3	0.696	-135	6.18	103	0.111	33	0.427	-97	
		0.5	0.651	-156	3.92	89	0.124	32	0.311	-114	
		0.7	0.646	-169	2.88	80	0.134	34	0.274	-128	
		0.9	0.645	-178	2.28	72	0.146	36	0.261	-137	
		1.0	0.647	179	2.07	69	0.152	37	0.258	-141	
		1.3	0.650	170	1.65	60	0.172	40	0.260	-150	
		1.5	0.654	165	1.46	54	0.186	41	0.268	-154	
		2.0	0.663	154	1.16	42	0.226	43	0.292	-163	
		2.5	0.677	143	0.98	33	0.269	43	0.322	-170	
		3.0	0.679	135	0.87	25	0.314	41	0.354	-178	
		3.5	0.684	126	0.79	18	0.361	38	0.385	174	
		4.0	0.687	119	0.74	13	0.408	35	0.413	166	
		4.5	0.688	111	0.70	9	0.452	30	0.436	158	
		5.0	0.689	104	0.67	5	0.493	25	0.462	149	

Table 1. Common Emitter S-Parameters

$\begin{aligned} & \mathrm{V}_{\mathrm{CE}} \\ & (\mathrm{Vdc}) \end{aligned}$	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\stackrel{\mathbf{f}}{(\mathrm{GHz})}$	S_{11}		S_{21}		S_{12}		S_{22}		
			\|S $\mathrm{S}_{11} \mid$	$\angle \phi$	$\left\|\mathrm{S}_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
3.0	3.0	0.1	0.884	-44	9.32	152	0.058	67	0.901	-24	
		0.3	0.751	-103	6.00	116	0.112	40	0.612	-50	
		0.5	0.668	-131	4.06	99	0.126	32	0.457	-58	
		0.7	0.643	-149	3.05	87	0.133	30	0.379	-64	
		0.9	0.633	-162	2.44	78	0.137	29	0.340	-69	
		1.0	0.632	-167	2.22	74	0.139	30	0.329	-71	
		1.3	0.633	-179	1.77	63	0.145	33	0.306	-78	
		1.5	0.637	175	1.56	58	0.152	36	0.305	-84	
		2.0	0.649	161	1.22	44	0.173	43	0.313	-99	
		2.5	0.667	149	1.01	33	0.207	48	0.337	-114	
		3.0	0.676	140	0.88	25	0.253	50	0.367	-128	
		3.5	0.686	130	0.78	19	0.306	49	0.400	-142	
		4.0	0.691	122	0.71	14	0.364	46	0.428	-155	
		4.5	0.692	113	0.67	11	0.422	41	0.451	-168	
		5.0	0.694	105	0.64	8	0.477	36	0.474	179	
	5.0	0.1	0.813	-58	13.99	145	0.053	62	0.831	-34	
		0.3	0.681	-120	7.72	109	0.090	40	0.483	-66	
		0.5	0.615	-144	5.01	95	0.103	37	0.335	-75	
		0.7	0.602	-160	3.70	85	0.113	38	0.267	-83	
		0.9	0.597	-170	2.93	77	0.123	40	0.234	-89	
		1.0	0.598	-175	2.66	74	0.129	42	0.225	-91	
		1.3	0.602	175	2.10	64	0.146	45	0.207	-100	
		1.5	0.606	170	1.85	59	0.159	46	0.207	-106	
		2.0	0.617	158	1.45	47	0.196	49	0.217	-119	
		2.5	0.636	147	1.20	36	0.236	49	0.242	-131	
		3.0	0.641	138	1.05	28	0.280	48	0.271	-143	
		3.5	0.652	129	0.94	21	0.327	46	0.302	-154	
		4.0	0.658	122	0.85	14	0.376	42	0.332	-165	
		4.5	0.666	114	0.79	9	0.425	38	0.359	-175	
		5.0	0.671	106	0.75	5	0.472	33	0.387	174	
	10.0	0.1	0.696	-82	21.04	133	0.043	55	0.699	-52	
		0.3	0.613	-141	9.54	102	0.066	44	0.353	-93	
		0.5	0.572	-160	5.98	90	0.082	48	0.240	-106	
		0.7	0.569	-172	4.35	82	0.099	51	0.199	-120	
		0.9	0.569	-180	3.42	76	0.116	54	0.183	-129	
		1.0	0.571	177	3.10	73	0.126	54	0.178	-132	
		1.3	0.575	169	2.44	65	0.153	55	0.174	-143	
		1.5	0.581	164	2.14	60	0.172	55	0.177	-148	
		2.0	0.592	154	1.67	49	0.219	53	0.189	-158	
		2.5	0.607	143	1.39	39	0.264	51	0.209	-165	
		3.0	0.612	135	1.22	31	0.309	47	0.230	-172	
		3.5	0.620	128	1.09	23	0.352	43	0.252	-178	
		4.0	0.626	121	1.00	17	0.394	39	0.273	175	
		4.5	0.634	113	0.93	11	0.435	35	0.294	167	
		5.0	0.643	106	0.87	5	0.474	30	0.318	160	

Table 1. Common Emitter S-Parameters (continued)

$\begin{aligned} & \mathrm{V}_{\mathrm{CE}} \\ & \text { (Vdc) } \end{aligned}$	$\underset{(\mathrm{mA})}{\mathrm{IC}_{\mathrm{C}}}$	$\begin{gathered} \mathbf{f} \\ (\mathrm{GHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}		
			\|S ${ }_{11}$ \|	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
6.0	5.0	0.1	0.839	-49	14.26	149	0.043	66	0.866	-26	
		0.3	0.682	-110	8.46	114	0.078	43	0.546	-51	
		0.5	0.597	-136	5.57	98	0.090	40	0.401	-55	
		0.7	0.576	-153	4.14	87	0.099	41	0.330	-58	
		0.9	0.567	-164	3.28	80	0.109	43	0.294	-61	
		1.0	0.567	-169	2.98	76	0.113	44	0.283	-62	
		1.3	0.569	-180	2.36	67	0.129	47	0.259	-67	
		1.5	0.574	174	2.07	61	0.141	49	0.255	-72	
		2.0	0.586	162	1.61	49	0.174	52	0.251	-84	
		2.5	0.605	150	1.33	38	0.210	53	0.263	-97	
		3.0	0.616	141	1.15	29	0.252	53	0.281	-111	
		3.5	0.629	133	1.01	21	0.297	51	0.305	-124	
		4.0	0.642	125	0.91	15	0.346	48	0.329	-137	
		4.5	0.653	117	0.83	9	0.397	44	0.352	-149	
		5.0	0.663	109	0.77	5	0.449	40	0.376	-163	
	15.0	0.1	0.654	-83	26.76	131	0.032	57	0.660	-49	
		0.3	0.551	-141	11.75	101	0.051	51	0.311	-81	
		0.5	0.507	-160	7.32	90	0.068	56	0.202	-86	
		0.7	0.504	-171	5.31	83	0.086	59	0.158	-95	
		0.9	0.505	-179	4.17	77	0.104	61	0.136	-102	
		1.0	0.507	178	3.78	74	0.114	61	0.129	-104	
		1.3	0.512	170	2.96	67	0.141	61	0.118	-114	
		1.5	0.520	166	2.59	62	0.160	60	0.116	-120	
		2.0	0.533	156	2.01	52	0.206	58	0.121	-133	
		2.5	0.551	146	1.66	42	0.249	54	0.137	-143	
		3.0	0.559	138	1.44	33	0.291	51	0.154	-151	
		3.5	0.573	131	1.28	26	0.332	47	0.172	-159	
		4.0	0.584	124	1.17	18	0.371	43	0.191	-167	
		4.5	0.595	117	1.07	12	0.410	38	0.210	-175	
		5.0	0.609	110	1.00	6	0.449	34	0.233	177	
	30.0	0.1	0.559	-107	32.48	121	0.025	55	0.512	-65	
		0.3	0.517	-155	12.68	96	0.044	60	0.231	-100	
		0.5	0.485	-169	7.80	87	0.064	65	0.149	-109	
		0.7	0.489	-178	5.63	81	0.085	67	0.124	-121	
		0.9	0.492	176	4.41	76	0.106	67	0.114	-131	
		1.0	0.495	173	3.98	73	0.116	66	0.111	-134	
		1.3	0.500	167	3.12	66	0.147	65	0.110	-145	
		1.5	0.507	163	2.72	62	0.167	63	0.112	-150	
		2.0	0.521	153	2.11	52	0.215	59	0.123	-161	
		2.5	0.540	144	1.74	43	0.260	55	0.137	-167	
		3.0	0.548	137	1.51	35	0.303	50	0.153	-173	
		3.5	0.559	130	1.34	27	0.343	46	0.168	-178	
		4.0	0.570	123	1.22	20	0.382	41	0.182	176	
		4.5	0.582	117	1.13	13	0.418	37	0.197	170	
		5.0	0.596	110	1.05	7	0.454	32	0.218	163	

Table 1. Common Emitter S-Parameters (continued)

$\begin{aligned} & \mathrm{V}_{\mathrm{CE}} \\ & (\mathrm{Vdc}) \end{aligned}$	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{NF}_{\text {min }}$ (dB)	Го		$\begin{aligned} & \mathrm{R}_{\mathrm{N}} \\ & (\Omega) \end{aligned}$	R_{N}	$\begin{aligned} & G_{N F} \\ & \text { (dB) } \end{aligned}$
				MAG	$\angle \phi$			
1.0	1.0	0.3	0.94	0.65	63	16	0.31	12.1
		0.5	1.27	0.64	88	17	0.34	9.7
		0.7	1.59	0.64	110	16	0.31	7.5
		0.9	1.88	0.64	129	13	0.25	5.7
		1.0	2.02	0.64	138	11	0.21	4.9
		1.5	2.63	0.67	173	4	0.08	2.1
		2.0	3.10	0.74	-168	5	0.10	1.3
3.0	3.0	0.3	0.76	0.48	53	9	0.18	16.6
		0.5	1.00	0.47	78	10	0.20	13.8
		0.7	1.22	0.46	101	10	0.20	11.9
		0.9	1.44	0.47	121	9	0.17	10.0
		1.0	1.54	0.47	131	8	0.16	9.0
		1.5	2.01	0.53	168	5	0.10	6.0
		2.0	2.41	0.63	-170	5	0.09	4.8
6.0	5.0	0.3	0.81	0.41	48	9	0.17	18.7
		0.5	1.00	0.40	73	10	0.19	15.8
		0.7	1.18	0.39	96	9	0.18	13.8
		0.9	1.36	0.40	116	9	0.17	11.8
		1.0	1.45	0.41	125	8	0.16	10.9
		1.5	1.87	0.47	163	6	0.11	7.7
		2.0	2.26	0.58	-174	5	0.09	6.3

Table 2. Common Emitter Noise Parameters

The RF Line
 NPN Silicon
 High-Frequency Transistors

Designed for high current low power amplifiers up to 1.0 GHz .

- Low Noise (2.0 dB @ 500 MHz)
- Low Intermodulation Distortion
- High Gain
- State-of-the-Art Technology

Fine Line Geometry
Arsenic Emitters
Gold Top Metallization
Nichrome Thin-Film Ballasting Resistors

- Excellent Dynamic Range
- Fully Characterized
- High Current-Gain Bandwidth Product
- MRF5812 available in tape and reel packaging by adding suffix:

R1 suffix $=500$ units per reel
R2 suffix $=2,500$ units per reel

MRF581 MRF5812R1, R2

IC $=200 \mathrm{~mA}$
LOW NOISE
HIGH-FREQUENCY
TRANSISTORS
NPN SILICON

CASE 317-01, STYLE 2 MRF581

CASE 751-06, STYLE 1 SORF (SO-8) MRF5812

MAXIMUM RATINGS

Rating		Symbol	MRF581	MRF5812	Unit
Collector-Emitter Voltage		$\mathrm{V}_{\text {CEO }}$	18	15	Vdc
Collector-Base Voltage		$\mathrm{V}_{\mathrm{CBO}}$	36	30	Vdc
Emitter-Base Voltage		VEBO	2.5		Vdc
Collector Current - Continuous		IC	200		mAdc
Thermal Resistance OJC (1)	MRF581	$\mathrm{R}_{\text {өJC }}$	40		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance OJC (1)	MRF5812	$\mathrm{R}_{\theta \mathrm{JC}}$	45		${ }^{\circ} \mathrm{C} / \mathrm{W}$
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$ (1) Derate above $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$	MRF581	P_{D}	$\begin{gathered} 1.88 \\ 25 \end{gathered}$		Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$ (1) Derate above $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$	MRF5812	P_{D}	$\begin{aligned} & 1.67 \\ & 22.2 \end{aligned}$		Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Storage Junction Temperature Range		$\mathrm{T}_{\text {stg }}$	- 55 to		${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature		TJmax	150		${ }^{\circ} \mathrm{C}$

DEVICE MARKING

MRF5812 = 5812

NOTES:

1. Case temperature measured on collector lead immediately adjacent to body of package.

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS						
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	MRF581	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	$\begin{aligned} & 18 \\ & 15 \end{aligned}$	-	-	Vdc
Collector-Emitter Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0$)	MRF5812	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	15	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=5.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	MRF5812	$V_{\text {(BR) }}$ CES	30	-	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=1.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	MRF581	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	$\begin{aligned} & 36 \\ & 30 \end{aligned}$		-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}=0.1 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0$)	MRF581 MRF5812	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	2.5	-	-	Vdc
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=2.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	MRF581	IEBO	-	-	100	$\mu \mathrm{Adc}$
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	MRF581	ICBO	-	-	100	$\mu \mathrm{Adc}$
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=15 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	MRF5812	${ }^{\text {ICBO }}$	-	-	0.1	mAdc

ON CHARACTERISTICS

DC Current Gain (1) (IC $=50 \mathrm{mAdc}, \mathrm{V}_{\text {CE }}=5.0 \mathrm{Vdc}$)	MRF581	hFE	50	-	200	-
DC Current Gain (1) (IC $=50 \mathrm{mAdc}, \mathrm{V}_{\text {CE }}=5.0 \mathrm{Vdc}$)	MRF5812	hFE	30	90	200	-

DYNAMIC CHARACTERISTICS

Collector-Base Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	MRF581	$\mathrm{C}_{\text {ob }}$	-	1.4	2.0	pF
Collector-Base Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	MRF5812	C_{cb}	-	1.2	2.0	pF
Current-Gain Bandwidth Product $\left(\mathrm{IC}=75 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{GHz}\right)$	MRF581	${ }^{\text {¢ }}$	-	5.0	-	GHz
$\begin{aligned} & \text { Current-Gain - Bandwidth Product } \\ & \left(\mathrm{I}_{\mathrm{C}}=75 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{GHz}\right) \end{aligned}$	MRF5812	${ }^{\text {f }}$	-	5.5	-	GHz

FUNCTIONAL TESTS

Noise Figure (Minimum) (Figure 11) $\left(\mathrm{I} \mathrm{C}=50 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=0.5 \mathrm{GHz}\right)$	MRF581	$N F_{\text {min }}$	-	2.0	3.0	dB
Noise Figure (Minimum) (Figure 11) $\left(\mathrm{I} \mathrm{C}=50 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=0.5 \mathrm{GHz}\right)$	MRF5812	$\mathrm{NF}_{\text {min }}$	-	2.0	-	dB
Noise Figure (50 Ohm Insertion) $\left(\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=0.5 \mathrm{GHz}\right)$	MRF5812	$N F_{50} \Omega$	-	2.5	3.0	dB
Power Gain at Optimum Noise Figure ($\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=0.5 \mathrm{GHz}$)	MRF581	$G_{N F}$	13	15.5	-	dB
$\begin{aligned} & \text { Insertion Gain } \\ & \qquad \text { (IC }=50 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=0.5 \mathrm{GHz} \text {) } \end{aligned}$	MRF5812	$\left\|S_{21}\right\|^{2}$	13	15.5	-	dB
Maximum Unilateral Gain ($\mathrm{I} \mathrm{C}=75 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=0.5 \mathrm{GHz}$)		GUmax ${ }^{(2)}$	-	17	-	dB
Intermodulation Distortion (3) $\left(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I} \mathrm{C}=75 \mathrm{~mA}, \mathrm{~V}_{\text {out }}=+50 \mathrm{dBmV}\right)$		IMD(d3)	-	-65	-	dB

NOTES:

1. $300 \mu \mathrm{~s}$ pulse on Tektronix 576 or equivalent.
2. $G_{U m a x}=\frac{\left|S_{21}\right|^{2}}{\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)}$
3. 2 Tones, $\mathrm{f} 1=497 \mathrm{MHz}$, $\mathrm{f} 2=503 \mathrm{MHz}$, 3rd Order Single Tone reference.

TYPICAL CHARACTERISTICS
 MRF581

Figure 1. C_{ib} Input Capacitance versus Voltage

Figure 3. Gain-Bandwidth Product versus Collector Current

Figure 2. $\mathrm{C}_{\mathrm{cb}}, \mathrm{C}_{\mathrm{ob}}$ Collector-Base Capacitance versus Voltage

Figure 4. 3rd Order Intercept Point

Figure 5. GUmax - Maximum Unilateral Gain, $\left|S_{21}\right|^{2}$ versus Frequency

Figure 7. Minimum Noise Figure and Gain Associated with Minimum Noise Figure versus Frequency

Figure 9. Noise Figure versus Collector Current

Figure 6. A Amax , Maximum Available Gain versus Frequency

Figure 8. Noise Figure versus Collector Current $\mathrm{f}=500 \mathrm{MHz}$

Figure 10. Noise Figure and Gain Associated with Noise Figure versus Collector Current

Figure 11. MRF581, MRF5812 Functional Circuit Schematic

TYPICAL CHARACTERISTICS
 MRF5812

Figure 12. C_{ib} Input Capacitance versus Voltage

Figure 13. $\mathrm{C}_{\mathrm{cb}}, \mathrm{C}_{\mathrm{ob}}$ Collector-Base Capacitance versus Voltage

Figure 14. Minimum Noise Figure and Gain Associated with Noise Figure versus Frequency

Figure 16. GUmax - Maximum Unilateral Gain, $\left|S_{21}\right|^{2}$ versus Frequency

Figure 18. Gain-Bandwidth Product versus Collector Current

Figure 15. Noise Figure and Insertion Gain versus Collector Current

Figure 17. GAmax, Maximum Available Gain versus Frequency

Figure 19. 3rd Order Intercept Point and 1.0 dB Compression Point

Figure 20. MRF581 Input/Output Reflection Coefficient versus Frequency
$V_{C E}=10 \mathrm{~V} \quad \mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}$

Figure 21. MRF581 Forward/Reverse Transmission Coefficients versus Frequency

$\begin{aligned} & \mathrm{V}_{\mathrm{CE}} \\ & \text { (Volts) } \end{aligned}$	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} f \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}	
			$\left\|S_{11}\right\|$	$\angle \phi$	$\left\|\mathrm{S}_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	$\mid S_{22}{ }^{\text {\| }}$	$\angle \phi$
5.0	25	$\begin{gathered} \hline 300 \\ 500 \\ 1000 \\ 1500 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.69 \\ & 0.72 \\ & 0.73 \\ & 0.76 \\ & \hline \end{aligned}$	$\begin{array}{r} -169 \\ 176 \\ 157 \\ 139 \\ \hline \end{array}$	$\begin{aligned} & \hline 6.57 \\ & 3.95 \\ & 2.10 \\ & 1.47 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 93 \\ & 82 \\ & 62 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.06 \\ & 0.07 \\ & 0.12 \\ & 0.17 \\ & \hline \end{aligned}$	$\begin{aligned} & 39 \\ & 47 \\ & 60 \\ & 61 \end{aligned}$	$\begin{aligned} & \hline 0.34 \\ & 0.29 \\ & 0.27 \\ & 0.33 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-129 \\ & -142 \\ & -165 \\ & -172 \end{aligned}$
	50	$\begin{gathered} \hline 300 \\ 500 \\ 1000 \\ 1500 \end{gathered}$	$\begin{aligned} & \hline 0.70 \\ & 0.72 \\ & 0.72 \\ & 0.76 \end{aligned}$	$\begin{array}{r} -173 \\ 173 \\ 157 \\ 138 \end{array}$	$\begin{aligned} & \hline 7.14 \\ & 4.27 \\ & 2.24 \\ & 1.61 \end{aligned}$	$\begin{aligned} & 93 \\ & 82 \\ & 65 \\ & 53 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.07 \\ & 0.13 \\ & 0.18 \end{aligned}$	$\begin{aligned} & 45 \\ & 53 \\ & 62 \\ & 61 \end{aligned}$	$\begin{aligned} & 0.38 \\ & 0.34 \\ & 0.33 \\ & 0.37 \end{aligned}$	$\begin{array}{r} -144 \\ -157 \\ 179 \\ 173 \end{array}$
	75	$\begin{gathered} 300 \\ 500 \\ 1000 \\ 1500 \end{gathered}$	$\begin{aligned} & 0.70 \\ & 0.72 \\ & 0.72 \\ & 0.76 \end{aligned}$	$\begin{array}{r} -175 \\ 172 \\ 155 \\ 138 \end{array}$	$\begin{aligned} & \hline 7.26 \\ & 4.33 \\ & 2.28 \\ & 1.64 \end{aligned}$	$\begin{aligned} & 92 \\ & 82 \\ & 65 \\ & 53 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.07 \\ & 0.13 \\ & 0.19 \end{aligned}$	$\begin{aligned} & 48 \\ & 55 \\ & 63 \\ & 61 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.37 \\ & 0.30 \\ & 0.39 \end{aligned}$	$\begin{array}{r} -148 \\ -161 \\ 176 \\ 170 \end{array}$
	100	$\begin{gathered} 300 \\ 500 \\ 1000 \\ 1500 \\ \hline \end{gathered}$	$\begin{aligned} & 0.70 \\ & 0.72 \\ & 0.72 \\ & 0.75 \\ & \hline \end{aligned}$	$\begin{array}{r} -176 \\ 172 \\ 155 \\ 137 \\ \hline \end{array}$	$\begin{aligned} & \hline 7.30 \\ & 4.34 \\ & 2.28 \\ & 1.64 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 92 \\ & 82 \\ & 65 \\ & 53 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.07 \\ & 0.13 \\ & 0.19 \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & 56 \\ & 63 \\ & 61 \end{aligned}$	$\begin{aligned} & 0.40 \\ & 0.37 \\ & 0.36 \\ & 0.39 \\ & \hline \end{aligned}$	$\begin{array}{r} -151 \\ -163 \\ 175 \\ 168 \\ \hline \end{array}$
10	25	$\begin{gathered} 300 \\ 500 \\ 1000 \\ 1500 \\ \hline \end{gathered}$	$\begin{aligned} & 0.66 \\ & 0.69 \\ & 0.70 \\ & 0.74 \\ & \hline \end{aligned}$	$\begin{array}{r} -165 \\ 178 \\ 159 \\ 141 \\ \hline \end{array}$	$\begin{aligned} & \hline 7.58 \\ & 4.56 \\ & 2.39 \\ & 1.65 \\ & \hline \end{aligned}$	$\begin{aligned} & 95 \\ & 82 \\ & 64 \\ & 50 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.07 \\ & 0.11 \\ & 0.16 \\ & \hline \end{aligned}$	$\begin{aligned} & 40 \\ & 48 \\ & 61 \\ & 64 \end{aligned}$	$\begin{aligned} & 0.29 \\ & 0.23 \\ & 0.19 \\ & 0.26 \\ & \hline \end{aligned}$	$\begin{aligned} & -106 \\ & -116 \\ & -141 \\ & -153 \end{aligned}$
	50	$\begin{gathered} \hline 300 \\ 500 \\ 1000 \\ 1500 \end{gathered}$	$\begin{aligned} & \hline 0.65 \\ & 0.68 \\ & 0.69 \\ & 0.72 \end{aligned}$	$\begin{array}{r} \hline-169 \\ 175 \\ 157 \\ 139 \end{array}$	$\begin{aligned} & \hline 8.25 \\ & 4.96 \\ & 2.60 \\ & 1.82 \end{aligned}$	$\begin{aligned} & 94 \\ & 82 \\ & 65 \\ & 52 \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & 0.07 \\ & 0.12 \\ & 0.17 \end{aligned}$	$\begin{aligned} & \hline 46 \\ & 54 \\ & 63 \\ & 63 \end{aligned}$	$\begin{aligned} & \hline 0.30 \\ & 0.24 \\ & 0.22 \\ & 0.27 \end{aligned}$	$\begin{aligned} & \hline-126 \\ & -138 \\ & -164 \\ & -171 \end{aligned}$
	75	$\begin{gathered} 300 \\ 500 \\ 1000 \\ 1500 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.66 \\ & 0.68 \\ & 0.69 \\ & 0.72 \\ & \hline \end{aligned}$	$\begin{array}{r} -171 \\ 175 \\ 157 \\ 139 \\ \hline \end{array}$	$\begin{aligned} & \hline 8.49 \\ & 5.06 \\ & 2.64 \\ & 1.86 \\ & \hline \end{aligned}$	$\begin{aligned} & 93 \\ & 82 \\ & 65 \\ & 53 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.07 \\ & 0.12 \\ & 0.17 \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & 55 \\ & 64 \\ & 63 \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.25 \\ & 0.23 \\ & 0.27 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-132 \\ & -145 \\ & -170 \\ & -176 \end{aligned}$
	100	$\begin{gathered} \hline 300 \\ 500 \\ 1000 \\ 1500 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.66 \\ & 0.68 \\ & 0.68 \\ & 0.72 \\ & \hline \end{aligned}$	$\begin{array}{r} -172 \\ 174 \\ 157 \\ 139 \\ \hline \end{array}$	$\begin{aligned} & \hline 8.46 \\ & 5.06 \\ & 2.64 \\ & 1.86 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 93 \\ & 82 \\ & 65 \\ & 52 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.07 \\ & 0.12 \\ & 0.17 \\ & \hline \end{aligned}$	$\begin{aligned} & 49 \\ & 56 \\ & 64 \\ & 63 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.30 \\ & 0.25 \\ & 0.23 \\ & 0.27 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline-134 \\ & -147 \\ & -172 \\ & -177 \end{aligned}$
15	25	$\begin{gathered} \hline 300 \\ 500 \\ 1000 \\ 1500 \end{gathered}$	$\begin{aligned} & 0.65 \\ & 0.67 \\ & 0.68 \\ & 0.72 \end{aligned}$	$\begin{array}{r} -163 \\ 179 \\ 160 \\ 141 \end{array}$	$\begin{aligned} & \hline 7.96 \\ & 4.82 \\ & 2.51 \\ & 1.73 \end{aligned}$	$\begin{aligned} & 95 \\ & 82 \\ & 63 \\ & 49 \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.06 \\ & 0.11 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 40 \\ & 48 \\ & 62 \\ & 65 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.28 \\ & 0.21 \\ & 0.17 \\ & 0.24 \end{aligned}$	$\begin{aligned} & -92 \\ & -98 \\ & -119 \\ & -137 \end{aligned}$
	50	$\begin{gathered} \hline 300 \\ 500 \\ 1000 \\ 1500 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.64 \\ & 0.66 \\ & 0.67 \\ & 0.71 \\ & \hline \end{aligned}$	$\begin{array}{r} -167 \\ 177 \\ 159 \\ 141 \\ \hline \end{array}$	$\begin{aligned} & \hline 8.76 \\ & 5.37 \\ & 2.75 \\ & 1.91 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 94 \\ & 82 \\ & 65 \\ & 51 \\ & \hline \end{aligned}$	$\begin{gathered} 0.0 \\ 0.06 \\ 0.11 \\ 0.16 \\ \hline \end{gathered}$	$\begin{aligned} & 46 \\ & 54 \\ & 64 \\ & 64 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.26 \\ & 0.20 \\ & 0.16 \\ & 0.22 \end{aligned}$	$\begin{aligned} & \hline-112 \\ & -122 \\ & -148 \\ & -157 \end{aligned}$
	75	$\begin{gathered} \hline 300 \\ 500 \\ 1000 \\ 1500 \end{gathered}$	$\begin{aligned} & \hline 0.64 \\ & 0.66 \\ & 0.69 \\ & 0.70 \end{aligned}$	$\begin{array}{r} \hline-168 \\ 176 \\ 158 \\ 140 \end{array}$	$\begin{aligned} & \hline 8.93 \\ & 5.34 \\ & 2.78 \\ & 1.93 \end{aligned}$	$\begin{aligned} & 93 \\ & 82 \\ & 65 \\ & 51 \end{aligned}$	$\begin{aligned} & \hline 0.05 \\ & 0.06 \\ & 0.11 \\ & 0.16 \end{aligned}$	$\begin{aligned} & 47 \\ & 55 \\ & 65 \\ & 64 \end{aligned}$	$\begin{aligned} & \hline 0.25 \\ & 0.20 \\ & 0.16 \\ & 0.22 \end{aligned}$	$\begin{aligned} & \hline-117 \\ & -128 \\ & -154 \\ & -162 \end{aligned}$
	100	$\begin{gathered} 300 \\ 500 \\ 1000 \\ 1500 \end{gathered}$	$\begin{aligned} & 0.64 \\ & 0.66 \\ & 0.67 \\ & 0.70 \\ & \hline \end{aligned}$	$\begin{array}{r} -169 \\ 176 \\ 158 \\ 140 \\ \hline \end{array}$	$\begin{aligned} & 8.91 \\ & 5.33 \\ & 2.78 \\ & 1.93 \\ & \hline \end{aligned}$	$\begin{aligned} & 93 \\ & 82 \\ & 64 \\ & 51 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.05 \\ & 0.06 \\ & 0.11 \\ & 0.16 \\ & \hline \end{aligned}$	$\begin{aligned} & 48 \\ & 56 \\ & 65 \\ & 64 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.25 \\ & 0.19 \\ & 0.16 \\ & 0.21 \\ & \hline \end{aligned}$	$\begin{aligned} & -117 \\ & -129 \\ & -154 \\ & -160 \end{aligned}$

Table 1. MRF581 Common Emitter S-Parameters

$V_{C E}$ (Volts)	$\underset{(\mathrm{mA})}{\mathrm{I}_{\mathrm{C}}}$	$\begin{gathered} f \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}	
			$\left\|S_{11}\right\|$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	$\left\|S_{22}\right\|$	$\angle \phi$
5.0	25	$\begin{gathered} 100 \\ 300 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & 0.66 \\ & 0.66 \\ & 0.65 \\ & 0.62 \\ & 0.57 \\ & 0.55 \end{aligned}$	$\begin{array}{r} -123 \\ -167 \\ 178 \\ 154 \\ 109 \\ 68 \end{array}$	$\begin{gathered} 18.3 \\ 7.0 \\ 4.3 \\ 2.2 \\ 1.3 \\ 1.0 \end{gathered}$	$\begin{aligned} & \hline 118 \\ & 92 \\ & 81 \\ & 63 \\ & 39 \\ & 23 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.13 \\ & 0.28 \\ & 0.41 \end{aligned}$	$\begin{aligned} & 43 \\ & 44 \\ & 52 \\ & 61 \\ & 57 \\ & 41 \end{aligned}$	$\begin{aligned} & 0.53 \\ & 0.31 \\ & 0.28 \\ & 0.28 \\ & 0.31 \\ & 0.34 \end{aligned}$	$\begin{aligned} & -79 \\ & -120 \\ & -133 \\ & -141 \\ & -148 \\ & -164 \end{aligned}$
	50	$\begin{gathered} 100 \\ 300 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & 0.64 \\ & 0.65 \\ & 0.65 \\ & 0.61 \\ & 0.56 \\ & 0.52 \end{aligned}$	$\begin{array}{r} -133 \\ -171 \\ 175 \\ 152 \\ 109 \\ 70 \end{array}$	$\begin{gathered} 20.2 \\ 7.6 \\ 4.6 \\ 2.3 \\ 1.3 \\ 1.0 \end{gathered}$	$\begin{gathered} 114 \\ 91 \\ 81 \\ 63 \\ 39 \\ 23 \end{gathered}$	$\begin{aligned} & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.13 \\ & 0.28 \\ & 0.41 \end{aligned}$	$\begin{aligned} & 44 \\ & 50 \\ & 56 \\ & 63 \\ & 57 \\ & 39 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.34 \\ & 0.31 \\ & 0.28 \\ & 0.30 \\ & 0.29 \end{aligned}$	$\begin{aligned} & -93 \\ & -137 \\ & -148 \\ & -149 \\ & -150 \\ & -169 \end{aligned}$
	75	$\begin{gathered} 100 \\ 300 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & 0.64 \\ & 0.66 \\ & 0.64 \\ & 0.61 \\ & 0.54 \\ & 0.52 \end{aligned}$	$\begin{array}{r} -137 \\ -173 \\ 174 \\ 151 \\ 107 \\ 69 \end{array}$	$\begin{gathered} 20.8 \\ 7.7 \\ 4.7 \\ 2.4 \\ 1.4 \\ 1.1 \end{gathered}$	$\begin{aligned} & 113 \\ & 91 \\ & 82 \\ & 65 \\ & 42 \\ & 24 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.06 \\ & 0.08 \\ & 0.14 \\ & 0.30 \\ & 0.42 \end{aligned}$	$\begin{aligned} & 44 \\ & 52 \\ & 59 \\ & 64 \\ & 55 \\ & 37 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.35 \\ & 0.32 \\ & 0.30 \\ & 0.27 \\ & 0.25 \end{aligned}$	$\begin{aligned} & -99 \\ & -142 \\ & -154 \\ & -164 \\ & -167 \\ & -172 \end{aligned}$
	100	$\begin{gathered} 100 \\ 300 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & 0.64 \\ & 0.65 \\ & 0.64 \\ & 0.61 \\ & 0.54 \\ & 0.52 \end{aligned}$	$\begin{gathered} -140 \\ -174 \\ 173 \\ 151 \\ 107 \\ 65 \end{gathered}$	$\begin{gathered} 20.8 \\ 7.6 \\ 4.7 \\ 2.4 \\ 1.4 \\ 1.1 \end{gathered}$	$\begin{aligned} & 112 \\ & 90 \\ & 81 \\ & 65 \\ & 42 \\ & 24 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.06 \\ & 0.08 \\ & 0.15 \\ & 0.30 \\ & 0.42 \end{aligned}$	$\begin{aligned} & 44 \\ & 53 \\ & 60 \\ & 64 \\ & 54 \\ & 37 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.36 \\ & 0.33 \\ & 0.31 \\ & 0.27 \\ & 0.25 \end{aligned}$	$\begin{aligned} & -103 \\ & -145 \\ & -156 \\ & -166 \\ & -169 \\ & -174 \end{aligned}$
10	25	$\begin{gathered} 100 \\ 300 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & 0.65 \\ & 0.63 \\ & 0.62 \\ & 0.60 \\ & 0.55 \\ & 0.55 \end{aligned}$	$\begin{gathered} -112 \\ -162 \\ -178 \\ 157 \\ 112 \\ 69 \end{gathered}$	$\begin{gathered} 20.2 \\ 8.0 \\ 5.0 \\ 2.5 \\ 1.4 \\ 1.0 \end{gathered}$	$\begin{aligned} & \hline 121 \\ & 93 \\ & 82 \\ & 63 \\ & 39 \\ & 23 \end{aligned}$	$\begin{aligned} & 0.04 \\ & 0.05 \\ & 0.07 \\ & 0.11 \\ & 0.25 \\ & 0.39 \end{aligned}$	$\begin{aligned} & 46 \\ & 46 \\ & 52 \\ & 63 \\ & 61 \\ & 47 \end{aligned}$	$\begin{aligned} & 0.56 \\ & 0.29 \\ & 0.25 \\ & 0.26 \\ & 0.35 \\ & 0.40 \end{aligned}$	$\begin{aligned} & -62 \\ & -93 \\ & -102 \\ & -112 \\ & -125 \\ & -145 \end{aligned}$
	50	$\begin{gathered} 100 \\ 300 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & 0.63 \\ & 0.62 \\ & 0.60 \\ & 0.58 \\ & 0.51 \\ & 0.50 \end{aligned}$	$\begin{array}{r} -122 \\ -167 \\ 178 \\ 154 \\ 111 \\ 70 \end{array}$	$\begin{gathered} \hline 22.9 \\ 8.8 \\ 5.3 \\ 2.7 \\ 1.5 \\ 1.2 \end{gathered}$	$\begin{aligned} & 117 \\ & 92 \\ & 82 \\ & 64 \\ & 40 \\ & 24 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.05 \\ & 0.07 \\ & 0.12 \\ & 0.26 \\ & 0.39 \end{aligned}$	$\begin{aligned} & 46 \\ & 51 \\ & 58 \\ & 65 \\ & 59 \\ & 44 \end{aligned}$	$\begin{aligned} & 0.50 \\ & 0.28 \\ & 0.24 \\ & 0.23 \\ & 0.28 \\ & 0.34 \end{aligned}$	$\begin{aligned} & -74 \\ & -112 \\ & -122 \\ & -129 \\ & -132 \\ & -144 \end{aligned}$
	75	$\begin{gathered} 100 \\ 300 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & 0.63 \\ & 0.63 \\ & 0.62 \\ & 0.58 \\ & 0.52 \\ & 0.50 \end{aligned}$	$\begin{gathered} -126 \\ -168 \\ 177 \\ 154 \\ 111 \\ 70 \end{gathered}$	$\begin{gathered} 23.8 \\ 9.0 \\ 5.5 \\ 2.8 \\ 1.5 \\ 1.2 \end{gathered}$	$\begin{aligned} & \hline 116 \\ & 92 \\ & 82 \\ & 65 \\ & 41 \\ & 24 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.05 \\ & 0.07 \\ & 0.12 \\ & 0.26 \\ & 0.39 \end{aligned}$	$\begin{aligned} & 45 \\ & 51 \\ & 58 \\ & 65 \\ & 58 \\ & 42 \end{aligned}$	$\begin{aligned} & 0.49 \\ & 0.28 \\ & 0.24 \\ & 0.23 \\ & 0.27 \\ & 0.32 \end{aligned}$	$\begin{aligned} & -80 \\ & -120 \\ & -130 \\ & -137 \\ & -135 \\ & -145 \end{aligned}$
	100	$\begin{gathered} 100 \\ 300 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & 0.62 \\ & 0.62 \\ & 0.60 \\ & 0.57 \\ & 0.51 \\ & 0.50 \end{aligned}$	$\begin{array}{r} -128 \\ -169 \\ 176 \\ 152 \\ 109 \\ 68 \end{array}$	$\begin{gathered} 23.8 \\ 8.9 \\ 5.4 \\ 2.8 \\ 1.5 \\ 1.2 \end{gathered}$	$\begin{gathered} 114 \\ 91 \\ 81 \\ 64 \\ 40 \\ 24 \end{gathered}$	$\begin{aligned} & 0.03 \\ & 0.05 \\ & 0.07 \\ & 0.12 \\ & 0.27 \\ & 0.39 \end{aligned}$	$\begin{aligned} & 46 \\ & 54 \\ & 61 \\ & 66 \\ & 59 \\ & 43 \end{aligned}$	$\begin{aligned} & 0.46 \\ & 0.26 \\ & 0.23 \\ & 0.21 \\ & 0.26 \\ & 0.32 \end{aligned}$	$\begin{aligned} & -82 \\ & -120 \\ & -130 \\ & -136 \\ & -134 \\ & -145 \end{aligned}$
15	25	$\begin{gathered} 100 \\ 300 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & \hline 0.66 \\ & 0.63 \\ & 0.61 \\ & 0.58 \\ & 0.54 \\ & 0.56 \end{aligned}$	$\begin{gathered} -106 \\ -159 \\ -177 \\ 156 \\ 110 \\ 68 \end{gathered}$	$\begin{aligned} & 21 \\ & 8.5 \\ & 5.2 \\ & 2.6 \\ & 1.4 \\ & 1.0 \end{aligned}$	$\begin{gathered} 123 \\ 94 \\ 82 \\ 62 \\ 36 \\ 22 \end{gathered}$	$\begin{aligned} & 0.03 \\ & 0.05 \\ & 0.06 \\ & 0.11 \\ & 0.23 \\ & 0.37 \end{aligned}$	$\begin{aligned} & 47 \\ & 46 \\ & 52 \\ & 64 \\ & 63 \\ & 49 \end{aligned}$	$\begin{aligned} & 0.57 \\ & 0.30 \\ & 0.26 \\ & 0.28 \\ & 0.39 \\ & 0.46 \end{aligned}$	$\begin{aligned} & -54 \\ & -77 \\ & -84 \\ & -96 \\ & -115 \\ & -137 \end{aligned}$
	50	$\begin{gathered} 100 \\ 300 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & 0.62 \\ & 0.60 \\ & 0.58 \\ & 0.56 \\ & 0.52 \\ & 0.52 \end{aligned}$	$\begin{gathered} -114 \\ -163 \\ -179 \\ 154 \\ 109 \\ 67 \end{gathered}$	$\begin{aligned} & 24 \\ & 9.2 \\ & 5.7 \\ & 2.9 \\ & 1.5 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 119 \\ & 93 \\ & 81 \\ & 63 \\ & 39 \\ & 22 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.05 \\ & 0.07 \\ & 0.12 \\ & 0.25 \\ & 0.37 \end{aligned}$	$\begin{aligned} & 46 \\ & 51 \\ & 58 \\ & 66 \\ & 60 \\ & 46 \end{aligned}$	$\begin{aligned} & 0.51 \\ & 0.26 \\ & 0.22 \\ & 0.23 \\ & 0.32 \\ & 0.39 \end{aligned}$	$\begin{aligned} & -64 \\ & -92 \\ & -100 \\ & -109 \\ & -118 \\ & -137 \end{aligned}$
	75	$\begin{gathered} 100 \\ 300 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & 0.62 \\ & 0.59 \\ & 0.58 \\ & 0.56 \\ & 0.50 \\ & 0.52 \end{aligned}$	$\begin{array}{r} -118 \\ -165 \\ 179 \\ 154 \\ 109 \\ 67 \end{array}$	$\begin{gathered} 24.6 \\ 9.4 \\ 5.7 \\ 2.9 \\ 1.5 \\ 1.1 \end{gathered}$	$\begin{aligned} & 117 \\ & 92 \\ & 81 \\ & 63 \\ & 38 \\ & 22 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.05 \\ & 0.07 \\ & 0.12 \\ & 0.25 \\ & 0.37 \end{aligned}$	$\begin{aligned} & 46 \\ & 53 \\ & 60 \\ & 66 \\ & 60 \\ & 46 \end{aligned}$	$\begin{aligned} & 0.48 \\ & 0.24 \\ & 0.21 \\ & 0.22 \\ & 0.31 \\ & 0.38 \end{aligned}$	$\begin{aligned} & -67 \\ & -96 \\ & -104 \\ & -111 \\ & -118 \\ & -136 \end{aligned}$
	100	$\begin{gathered} 100 \\ 300 \\ 500 \\ 1000 \\ 2000 \\ 3000 \end{gathered}$	$\begin{aligned} & 0.62 \\ & 0.60 \\ & 0.58 \\ & 0.56 \\ & 0.50 \\ & 0.50 \\ & \hline \end{aligned}$	$\begin{array}{r} -121 \\ -165 \\ 179 \\ 155 \\ 111 \\ 68 \end{array}$	$\begin{gathered} \hline 24.8 \\ 9.3 \\ 5.7 \\ 2.9 \\ 1.5 \\ 1.1 \end{gathered}$	$\begin{aligned} & 116 \\ & 91 \\ & 81 \\ & 63 \\ & 39 \\ & 23 \end{aligned}$	$\begin{aligned} & 0.03 \\ & 0.05 \\ & 0.07 \\ & 0.12 \\ & 0.25 \\ & 0.37 \end{aligned}$	$\begin{aligned} & 46 \\ & 53 \\ & 61 \\ & 65 \\ & 62 \\ & 47 \end{aligned}$	$\begin{aligned} & 0.46 \\ & 0.23 \\ & 0.20 \\ & 0.22 \\ & 0.32 \\ & 0.39 \end{aligned}$	$\begin{aligned} & -68 \\ & -96 \\ & -102 \\ & -109 \\ & -117 \\ & -136 \end{aligned}$

Table 2. MRF5812 Common Emitter S-Parameters

$\mathrm{f}(\mathrm{MHz})$	$\Gamma \mathrm{MS}$	$\Gamma \mathrm{ML}$	$\Gamma M S$ NF OPT	$\mathrm{G}_{A} M A X$ $(\mathrm{~dB})$	Rn (Ω)	NF OPT	NF (50Ω) 500 $0.91 \angle 176^{\circ}$
$0.78 \angle 77^{\circ}$	$0.39 \angle 159^{\circ}$	18	10.5	2.0	2.5		

Circuit Per Figure 14
Figure 22. MRF581 Constant Gain Contours Noise Figure Contours

Figure 23. MRF581 Test Fixture Schematic

The RF Line
 NPN Silicon High-Frequency Transistor

. . . designed for use in high-gain, low-noise, ultra-linear, tuned and wideband amplifiers. Ideal for use in CATV, MATV, and instrumentation applications.

- Low Noise Figure -
$\mathrm{NF}=3.0 \mathrm{~dB}$ (Typ) @ f $=500 \mathrm{MHz}, \mathrm{I} \mathrm{C}=90 \mathrm{~mA}$
- High Power Gain -

$$
\mathrm{GU}(\max)=16.5 \mathrm{~dB}(\mathrm{Typ}) @ \mathrm{f}=500 \mathrm{MHz}
$$

- Ion Implanted
- All Gold Metal System
- High fT - 5.5 GHz
- Low Intermodulation Distortion:

$$
\mathrm{TB}_{3}=-70 \mathrm{~dB}
$$

$$
\mathrm{DIN}=125 \mathrm{~dB} \mu \mathrm{~V}
$$

- Nichrome Emitter Ballast Resistors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	17	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	34	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	2.5	Vdc
Collector Current - Continuous	I C	200	mAdc
Total Device Dissipation @ $\mathrm{T} \mathrm{C}=50^{\circ} \mathrm{C}$ Derate above $\mathrm{T}_{\mathrm{C}}=50^{\circ} \mathrm{C}$	PD	5.0	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	200	${ }^{\circ} \mathrm{C}$

$\mathrm{NF}=3.0 \mathrm{~dB} @ 0.5 \mathrm{GHz}$ HIGH-FREQUENCY TRANSISTOR NPN SILICON

CASE 244A-01, STYLE 1

ELECTRICAL CHARACTERISTICS ($T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	17	-	-	Vdc
Collector-Base Breakdown Voltage ($\mathrm{IC}=1.0 \mathrm{mAdc}, \mathrm{I} \mathrm{E}=0$)	$\mathrm{V}_{\text {(BR) }} \mathrm{CBO}$	34	-	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{IC}=0, \mathrm{I} \mathrm{E}=0.1 \mathrm{mAdc})$	$\mathrm{V}_{(\mathrm{BR}) \text { EBO }}$	2.5	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	50	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

DC Current Gain (1) $\left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	hFE	50	-	200

NOTE:
(continued)

1. $300 \mu \mathrm{~s}$ pulse on Tektronix 576 or equivalent.

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
DYNAMIC CHARACTERISTICS					
$\begin{aligned} & \text { Current-Gain — Bandwidth Product (2) } \\ & \qquad\left(I_{C}=90 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=15 \mathrm{Vdc}, \mathrm{f}=0.5 \mathrm{GHz}\right) \end{aligned}$	${ }^{\text {¢ }}$	-	5.5	-	GHz
Collector-Base Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{cb}	-	1.7	2.2	pF

FUNCTIONAL TESTS

Narrowband - Figure 15 $\begin{aligned} & \left(\mathrm{I} \mathrm{C}=90 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{f}=0.5 \mathrm{GHz}\right) \\ & \text { Noise Figure } \\ & \text { Power Gain at Optimum Noise Figure } \end{aligned}$	$\begin{gathered} \mathrm{NF} \\ \mathrm{G}_{\mathrm{NF}} \end{gathered}$	11	$\begin{aligned} & 3.0 \\ & 13 \end{aligned}$	4.0	dB
Broadband - Figure 16 $\begin{aligned} & \left(\mathrm{I} \mathrm{C}=90 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{f}=0.3 \mathrm{GHz}\right) \\ & \text { Noise Figure } \\ & \text { Power Gain at Optimum Noise Figure } \end{aligned}$	$\begin{gathered} \mathrm{NF} \\ \mathrm{G}_{\mathrm{NF}} \end{gathered}$		$\begin{gathered} 6.3 \\ 11 \end{gathered}$		dB
Triple Beat Distortion $\begin{aligned} & \left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{P}_{\text {Ref }}=50 \mathrm{dBmV}\right) \\ & \left(\mathrm{I}_{\mathrm{C}}=90 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}, \mathrm{P}_{\text {Ref }}=50 \mathrm{dBmV}\right) \end{aligned}$	TB3	-	-70	-	dB
$\begin{aligned} & \text { DIN } 45004 \\ & \left(\mathrm{IC}=90 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}\right) \\ & \left(\mathrm{IC}=90 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CC}}=15 \mathrm{~V}\right) \end{aligned}$	DIN	-	125	-	$\mathrm{dB} \mu \mathrm{V}$
Maximum Available Power Gain (3) $\left(\mathrm{I}_{\mathrm{C}}=90 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=15 \mathrm{Vdc}, \mathrm{f}=0.5 \mathrm{GHz}\right)$	GUmax	-	16.5	-	dB

NOTES:
2. Characterized on HP8542 Automatic Network Analyzer

$$
\text { 3. } G_{U \max }=\frac{\left|\mathrm{S}_{21}\right|^{2}}{\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)}
$$

Figure 1. Typical Noise Figure and Associated Gain versus Frequency

Figure 2. Noise Figure versus Collector Current

Figure 3. GUmax versus Collector Current

Figure 4. Gain-Bandwidth Product versus Collector Current

TYPICAL PERFORMANCE

Figure 5. Broadband Noise Figure

Figure 7. 1.0 dB Compression Point versus Collector Current

Figure 6. Junction Capacitance versus Voltage

Figure 8. Third Order Intercept Point

Figure 9. Second Order Distortion versus Collector Current

Figure 11. 35-Channel X-Modulation Distortion versus Collector Current

Figure 10. Triple Beat Distortion versus Collector Current

Figure 12. DIN 45004B versus Collector Current

Figure 13. Input/Output Reflection Coefficient versus Frequency (GHz)
$V_{C E}=15 \mathrm{~V} \quad I_{C}=90 \mathrm{~mA}$

Figure 14. Forward/Reverse Transmission Coefficients versus Frequency (GHz)

$\mathrm{VCE}_{\mathrm{CE}}$(Volts)	$\begin{gathered} \mathrm{IC} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}	
			$\left\|S_{11}\right\|$	$\angle \phi$	${ }^{\text {S }} 21$ \|	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	${ }^{\text {S }}$ 22\|	$\angle \phi$
5.0	30	100	0.56	-131	16.45	113	0.04	45	0.49	-91
		200	0.58	-159	9.42	98	0.06	49	0.38	-116
		400	0.60	-178	5.00	86	0.08	55	0.35	-132
		600	0.64	170	3.61	76	0.11	56	0.38	-138
		800	0.67	162	2.92	67	0.14	55	0.41	-144
		1000	0.70	155	2.55	58	0.17	54	0.44	-152
	60	100	0.53	-141	17.89	110	0.04	50	0.47	-102
		200	0.56	-164	10.05	97	0.05	55	0.39	-126
		400	0.59	178	5.31	85	0.09	60	0.38	-141
		600	0.63	169	3.82	76	0.12	59	0.40	-146
		800	0.66	161	3.09	67	0.15	57	0.44	-153
		1000	0.69	155	2.67	58	0.18	55	0.47	-160
	90	100	0.52	-145	18.26	109	0.04	52	0.47	-106
		200	0.56	-166	10.20	96	0.05	57	0.39	-130
		400	0.59	177	5.38	85	0.09	62	0.39	-144
		600	0.63	168	3.86	76	0.12	60	0.41	-149
		800	0.66	161	3.12	67	0.15	58	0.45	-155
		1000	0.69	155	2.70	58	0.19	55	0.48	-162
10	30	100	0.53	-122	18.36	115	0.04	48	0.50	-75
		200	0.53	-153	10.63	100	0.05	51	0.36	-96
		400	0.55	175	5.71	87	0.08	57	0.33	-112
		600	0.59	173	4.16	78	0.10	58	0.35	-119
		800	0.62	165	3.37	68	0.13	57	0.39	-127
		1000	0.65	158	2.95	59	0.15	55	0.42	-136
	60	100	0.49	-132	20.19	112	0.03	51	0.46	-85
		200	0.51	-158	11.54	99	0.05	57	0.35	-107
		400	0.53	-178	6.12	87	0.08	61	0.33	-123
		600	0.58	171	4.43	78	0.11	60	0.36	-129
		800	0.60	164	3.58	68	0.14	59	0.40	-136
		1000	0.63	157	3.12	60	0.16	57	0.44	-144
	90	100	0.48	-135	20.82	111	0.03	53	0.45	-88
		200	0.50	-160	11.77	98	0.05	59	0.34	-111
		400	0.53	-179	6.22	86	0.08	63	0.33	-126
		600	0.57	171	4.50	78	0.11	62	0.36	-131
		800	0.60	164	3.64	68	0.14	59	0.41	-139
		1000	0.63	157	3.18	60	0.17	57	0.44	-147

(continued)
Table 1. Common-Emitter S-Parameters

VCE (Volts)	$\begin{gathered} \mathrm{IC} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} f \\ (\mathrm{MHz}) \end{gathered}$	S_{11}		S_{21}		S_{12}		S_{22}	
			$\left\|S_{11}\right\|$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	${ }^{\text {S }} 22$ \|	$\angle \phi$
15	30	100	0.49	-112	20.34	118	0.04	54	0.51	-52
		200	0.52	-145	11.51	101	0.05	56	0.36	-77
		400	0.48	-164	6.12	87	0.09	63	0.32	-74
		600	0.52	-174	4.19	75	0.12	62	0.32	-90
		800	0.53	177	3.29	68	0.16	61	0.38	-90
		1000	0.53	168	2.76	61	0.20	56	0.47	-90
	60	100	0.45	-122	22.14	115	0.03	56	0.45	-60
		200	0.49	-150	12.24	99	0.05	60	0.33	-86
		400	0.45	-166	6.45	86	0.09	65	0.30	-83
		600	0.50	-175	4.42	75	0.13	63	0.32	-99
		800	0.51	177	3.47	68	0.16	61	0.38	-98
		1000	0.51	168	2.91	62	0.20	55	0.46	-96
	90	100	0.44	-127	22.76	114	0.03	58	0.43	-62
		200	0.48	-152	12.44	98	0.05	62	0.32	-89
		400	0.44	-167	6.55	85	0.09	66	0.29	-85
		600	0.50	-176	4.47	75	0.13	64	0.32	-102
		800	0.51	176	3.51	69	0.17	61	0.38	-100
		1000	0.51	168	2.95	62	0.20	55	0.46	-98

Table 1. Common-Emitter S-Parameters (continued)

Figure 15. Narrowband Test Fixture Schematic 500 MHz

Figure 16. Broadband Test Circuit Schematic

Figure 17. Second Order Distortion Test

Figure 19. Cross Modulation Distortion Test

Figure 18. Triple Beat Distortion Test

Figure 20. DIN 45004B Intermodulation Test

The RF Line NPN Silicon RF Power Transistor

. . . designed for 12.5 Volt UHF large-signal amplifier applications in industrial and commercial FM equipment operating to 512 MHz .

- Specified 12.5 Volt, 470 MHz Characteristics -

Output Power = 15 Watts
Minimum Gain $=7.8 \mathrm{~dB}$
Efficiency = 55\%

- Characterized with Series Equivalent Large-Signal Impedance Parameters
- Built-In Matching Network for Broadband Operation
- Tested for Load Mismatch Stress at all Phase Angles with 20:1 VSWR @ 16-Volt High Line and Overdrive

MRF641

15 W, 470 MHz CONTROLLED Q RF POWER TRANSISTOR NPN SILICON

CASE 316-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	16	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	36	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	I C	3.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD_{D}	43.7	Watts
Storage Temperature Range		0.25	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	4.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(I_{C}=20\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	16	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=20\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	36	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=5.0\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=0, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{\mathrm{CES}}$	-	-	5.0	mAdc

(continued)
REV 6

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
$\begin{aligned} & \text { DC Current Gain } \\ & \quad\left(\mathrm{IC}_{\mathrm{C}}=1.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	30	70	150	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=12.5 \mathrm{Vdc}, \mathrm{I}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	40	60	pF

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=15 \mathrm{~W}, \mathrm{f}=470 \mathrm{MHz}\right)$	Gpe	7.8	8.5	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=15 \mathrm{~W}, \mathrm{f}=470 \mathrm{MHz}\right)$	η	55	60	-	\%
$\begin{aligned} & \text { Output Mismatch Stress } \\ & \left(V_{C C}=16 \mathrm{Vdc}, \text { Pin }=3.0 \mathrm{~W}, \mathrm{f}=470 \mathrm{MHz},\right. \\ & \text { VSWR }=20: 1, \text { All Phase Angles) } \end{aligned}$	ψ	No Degradation in Output Power			


```
Z1 - 1.225" x 0.187" Microstrip
Z2 - 0.884" x 0.187" Microstrip
Z3 - Capacitor Block (Base)
Z4 - Collector Block
Z5 - 1.1" x 0.187" Microstrip
Z6 - 0.433" x 0.187" Microstrip
Z7 - 0.4" x 0.187" Microstrip
Dotted Area - Capacitor Assembly
```

C1, C2-0.8-10 pF Johanson
C3, C4-24 pF Chip Caps 100 mils ATC
C5, C6-22 pF Chip Caps 100 mils ATC
C12-220 pF Chip Cap 100 mils ATC
$\mathrm{C} 7, \mathrm{C} 11-1.0 \mu \mathrm{~F}$ Tantalum 35 Vdc
C9, C10 - 680 pF Feedthrough Allen-Bradley
C13-200 pF UNELCO
C8 - $0.1 \mu \mathrm{~F}, 50 \mathrm{~V}$ Erie Red Cap
RFC1 - VK 200 - 104B Ferrite Choke
L1 - 4 Turns 0.2" Dia. \#16 AWG
L2 - 9 Turns 0.15" Dia. \#16 AWG
Bead - Ferroxcube 56-590-65-35EB

Figure 1. Test Circuit Schematic

Figure 2. Power Output versus Power Input

Figure 4. Power Output versus Supply Voltage

Figure 3. Power Output versus Frequency

Figure 5. Power Saturation Profile

Figure 6. Series Equivalent Input-Output Impedance

The RF Line NPN Silicon RF Power Transistor

. . . designed for 12.5 Volt UHF large-signal amplifier applications in industrial and commercial FM equipment operating to 512 MHz .

- Specified 12.5 Volt, 470 MHz Characteristics -

Output Power = 25 Watts
Minimum Gain $=6.2 \mathrm{~dB}$
Efficiency $=60 \%$

- Characterized with Series Equivalent Large-Signal Impedance Parameters
- Built-In Matching Network for Broadband Operation
- Tested for Load Mismatch Stress at all Phase Angles with 20:1 VSWR @ 16-Volt High Line and 50\% Overdrive
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MRF644

$25 \mathrm{~W}, 470 \mathrm{MHz}$ CONTROLLED Q RF POWER TRANSISTOR NPN SILICON

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	16	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	36	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector Current - Continuous	IC	4.0	Adc
Total Device Dissipation @ TC $=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & \hline 103 \\ & 0.59 \end{aligned}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta \mathrm{JC}}$	1.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	16	-	-	Vdc
Collector-Emitter Breakdown Voltage ($\mathrm{IC}=20 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	36	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I} \mathrm{E}=5.0 \mathrm{mAdc}, \mathrm{IC}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=0, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	ICES	-	-	5.0	mAdc

(continued)

REV 6

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
$\begin{aligned} & \text { DC Current Gain } \\ & \left(\mathrm{I}_{\mathrm{C}}=4.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	40	70	100	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V} \mathrm{CB}=12.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	Cob	-	60	85	pF

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=25 \mathrm{~W}, \mathrm{I}_{\mathrm{C}}(\mathrm{MAX})=3.6 \mathrm{Adc}, \mathrm{f}=470 \mathrm{MHz}\right)$	$\mathrm{G}_{\text {pe }}$	6.2	7.0	-	dB
Input Power $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=25 \mathrm{~W}, \mathrm{f}=470 \mathrm{MHz}\right)$	$P_{\text {in }}$	-	5.0	6.0	Watts
$\begin{aligned} & \text { Collector Efficiency } \\ & \quad\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=25 \mathrm{~W}, \mathrm{I}_{\mathrm{C}}(\mathrm{MAX})=3.6 \mathrm{Adc}, \mathrm{f}=470 \mathrm{MHz}\right) \end{aligned}$	η	55	60	-	\%
$\begin{aligned} & \text { Output Mismatch Stress } \\ & \left(\mathrm{V}_{\mathrm{CC}}=16 \mathrm{Vdc}, \mathrm{P}_{\text {in }}=\text { Note } 1, \mathrm{f}=470 \mathrm{MHz},\right. \\ & \text { VSWR }=20: 1, \text { All Phase Angles }) \end{aligned}$	ψ^{*}	No Degradation in Output Power			
Series Equivalent Input Impedance $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=25 \mathrm{~W}, \mathrm{f}=470 \mathrm{MHz}\right)$	$\mathrm{Z}_{\text {in }}$	-	$1.2+\mathrm{j} 3.3$	-	Ohms
Series Equivalent Output Impedance $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=25 \mathrm{~W}, \mathrm{f}=470 \mathrm{MHz}\right)$	ZOL	-	$1.9+\mathrm{j} 2.1$	-	Ohms

NOTE:

1. $\mathrm{P}_{\text {in }}=150 \%$ of Drive Requirement for 25 W Output at 12.5 Vdc .

* $\psi=$ Mismatch stress factor - the electrical criterion established to verify the device resistance to load mismatch failure. The mismatch stress test is accomplished in the standard test fixture (Figure 1) terminated in a 20:1 minimum load mismatch at all phase angles.

Figure 1. Test Circuit Schematic

Figure 2. Power Output versus Power Input

Figure 4. Power Output versus Supply Voltage

Figure 3. Power Output versus Frequency

Figure 5. Power Saturation Profile

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

Figure 6. Series Equivalent Input-Output Impedance

The RF Line NPN Silicon RF Power Transistor

Designed for 12.5 Volt UHF large-signal amplifier applications in industrial and commercial FM equipment operating to 520 MHz .

- Guaranteed 440, 470, 512 MHz 12.5 Volt Characteristics

Output Power = 50 Watts
Minimum Gain = $5.2 \mathrm{~dB} @ 440,470 \mathrm{MHz}$
Efficiency =55\% @ 440, 470 MHz
IRL = 10 dB

- Characterized with Series Equivalent Large-Signal Impedance Parameters from 400 to 520 MHz
- Built-In Matching Network for Broadband Operation
- Triple Ion Implanted for More Consistent Characteristics
- Implanted Emitter Ballast Resistors
- Silicon Nitride Passivated
- 100% Tested for Load Mismatch Stress at all Phase Angles with 20:1 VSWR @ $15.5 \mathrm{Vdc}, 2.0$ dB Overdrive
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MRF650

$50 \mathrm{~W}, 512 \mathrm{MHz}$
RF POWER TRANSISTOR NPN SILICON

CASE 316-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	16.5	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	38	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	I C	12	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	135	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	$-65 \mathrm{to}+150$	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R $_{\theta \mathrm{JC}}$	1.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage ($\left.\mathrm{IC}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	16.5	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	38	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=0, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	$\mathrm{I}_{\mathrm{CES}}$	-	-	5.0	mAdc

ON CHARACTERISTICS

DC Current Gain (lC $=1.0$ Adc, $\left.\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	h_{FE}	20	70	120	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=12.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	135	170	pF

REV 8

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
FUNCTIONAL TESTS (In Motorola Test Fixture. See Figure 1.)					
Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}, \mathrm{f}=440,470 \mathrm{MHz}\right)$	$G_{p e}$	5.2	6.1	-	dB
Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}, \mathrm{f}=512 \mathrm{MHz}\right)$	G_{pe}	5.0	5.9	-	dB
Input Return Loss $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}, \mathrm{f}=440,470,512 \mathrm{MHz}\right)$	IRL	10	15	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}, \mathrm{f}=440,470 \mathrm{MHz}\right)$	η	55	65	-	\%
$\begin{aligned} & \text { Collector Efficiency } \\ & \quad\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}, \mathrm{f}=512 \mathrm{MHz}\right) \end{aligned}$	-	50	60	-	\%
$\begin{aligned} & \hline \text { Output Mismatch Stress } \\ & \quad(\mathrm{V} \mathrm{CC}=15.5 \mathrm{~V}, 2.0 \mathrm{~dB} \text { Overdrive, } \mathrm{f}=470 \mathrm{MHz}, \\ & \mathrm{VSWR}=20: 1, \text { All Phase Angles })(1) \end{aligned}$	$\psi(2)$	No Degradation in Output Power			

NOTES:

1. $\mathrm{P}_{\mathrm{in}}=2.0 \mathrm{~dB}$ above drive requirement for 50 W output at 12.5 Vdc .
2. $\psi=$ Mismatch stress factor - the electrical criterion established to verify the device resistance to load mismatch failure. The mismatch stress test is accomplished in the standard test fixture (Figure 1) terminated in a $20: 1$ minimum load mismatch at all phase angles.

B1, B8 - Ferrite Bead Ferroxcube VK200 20-4B
B2, B3, B4, B5, B6, B7 - Ferrite Bead Ferroxcube \#56-590-3B
C1, C8 - $10 \mu \mathrm{~F}, 25 \mathrm{~V}, 25 \%$, Electrolytic, ECS TE-1204
C2, C7 - 1000 pF, Chip Cap, 5\%, ATC 100B102JC50
C3, C6 - 91 pF, 5\%, Mica, SAHA 3HS0006-91
C4, C5, C12, C13-36 pF, 5\%, SAHA 3HS0006-36
C9, C16-220 pF, Chip Cap, 5\%, ATC 100B221JC200
C10, C11, C15 - 0.8-10 pF, Variable, Johanson JMC501 PG26J200
C14 - 1.0-20 pF, Variable, Johanson JMC5501 PG26J200
L1, L2 - 3 Turns, 18 AWG, 0.19" ID - Total Length 3.5"
N1, N2 - N Coaxial Conn., Omni-Spectra 3052-1648-10
R1, R2 - 10 Ohm, 10\%, 1.0 W, Carbon, RCA 831010

TL1, TL12 $-Z_{0}=50$ Ohm
TL2 - See Photomaster
TL3 - See Photomaster
TL4 - See Photomaster
TL5 - See Photomaster
TL6 - See Photomaster
TL7 - See Photomaster
TL8 - See Photomaster
TL9 - See Photomaster
TL10 - See Photomaster
TL11 - See Photomaster
Transmission Line Boards: 1/16" Glass-Teflon

> Keene GX-0600-55-22 2 oz. Cu Clad Both Sides $\varepsilon_{\mathrm{r}}=2.55$

Bias Boards: 1/16" G10 or Equivalent
2 oz. Cu Clad Double Sided

Figure 1. 440 to 512 MHz Broadband Test Circuit Schematic

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Frequency

Figure 4. Output Power versus Supply Voltage

Figure 5. Broadband Performance for $\mathrm{P}_{\mathrm{O}}=50 \mathrm{~W}$

NOTE: $Z_{\text {in }} \& Z_{O L}{ }^{*}$ are given from base-to-base and collector-to-collector respectively.

Figure 6. Input and Output Impedance Normalized to 10 Ohms Circuit Tuned for Maximum Gain @ Po = 50 W

Figure 7. Schematic of Broadband Demonstration Amplifier (3)

PERFORMANCE CHARACTERISTICS OF BROADBAND DEMONSTRATION AMPLIFIER

Figure 8. Output Power versus Input Power

Figure 9. $\mathrm{P}_{\mathrm{O}}, \eta_{\mathrm{c}}$ and VSWR versus Frequency
(3) Detailed design and performance information available from Motorola upon request.

The RF Line

NPN Silicon
RF Power Transistors
Designed for 12.5 Vdc UHF large-signal, amplifier applications in industrial and commercial FM equipment operating to 512 MHz .

- Guaranteed 12.5 Volt, 512 MHz Characteristics

Output Power = 5.0 Watts
Minimum Gain $=10 \mathrm{~dB}$
Efficiency $=65 \%$ (Typ)

- Typical Performance at $512 \mathrm{MHz}, 12.5 \mathrm{~V}, 5.0 \mathrm{~W}$ Output $=6.0 \mathrm{~dB}$
- Series Equivalent Large-Signal Characterization
- Gold Metallized, Emitter Ballasted for Long Life and Reliability
- Capable of 30:1 VSWR Load Mismatch at 15.5 V Supply Voltage
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	16	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	36	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	4.0	Vdc
Collector Current - Continuous	I C	2.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}} \mathrm{C}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	25	$\mathrm{W} a t t s$ $\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +153	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	7.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

MRF652 MRF652S

5.0 W, 512 MHz RF POWER TRANSISTORS NPN SILICON

CASE 244-04, STYLE 1 MRF652

CASE 249-06, STYLE 1 MRF652S

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I} \mathrm{C}=25 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$V_{\text {(BR)CEO }}$	16	-	-	Vdc
Collector-Emitter Breakdown Voltage ($\mathrm{I} \mathrm{C}=25 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$)	$V_{\text {(BR)CES }}$	36	-	-	Vdc
Collector-Base Breakdown Voltage $(\mathrm{IC}=25 \mathrm{mAdc}, \mathrm{I} \mathrm{E}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	36	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I} \mathrm{E}=5.0 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	ICES	-	-	1.0	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=200 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	h_{FE}	10	-	150	-

(continued)

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Characteristic

| | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| DYNAMIC CHARACTERISTICS | | | | | |
| Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$ | C_{ob} | - | 9.5 | 15 | pF |

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=5.0 \mathrm{~W}\right)$	$\begin{aligned} & \mathrm{f}=512 \mathrm{MHz} \\ & \mathrm{f}=870 \mathrm{MHz} \end{aligned}$	G_{pe}	10	$\begin{aligned} & 11 \\ & 6.0 \end{aligned}$	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=5.0 \mathrm{~W}, \mathrm{f}=512 \mathrm{MHz}\right)$		η	60	65	-	\%
Load Mismatch $\begin{aligned} & \left(\mathrm{VCC}=15.5 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}=500 \mathrm{~mW}, \mathrm{f}=512 \mathrm{MHz},\right. \\ & \mathrm{VSWR}=30: 1, \text { At All Phase Angles }) \end{aligned}$		ψ	No Degradation in Output Power			

Figure 1. 440-512 MHz Broadband Test Circuit

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Frequency

Figure 4. Output Power versus Supply Voltage

Figure 5. Typical Broadband Circuit Performance

VCC $=12.5 \mathrm{Vdc}$
$\mathrm{P}_{\text {out }}=5.0 \mathrm{~W}$
f Zin $Z_{\text {OL }}{ }^{*}$ MHz Ohms Ohms 400 $1.18+\mathrm{j} 0.54$ $6.7-\mathrm{j} 6.9$ 440 $1.19+j 0.88$ $7.05-j 6.1$ 470 $1.19+j 1.11$ $7.6-j 5.1$ 512 $1.19+j 1.35$ $8.1-j 4.1$

$Z_{O L}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

Figure 6. Series Equivalent Input/Output Impedance

The RF Line

NPN Silicon
RF Power Transistor
Designed for 12.5 Volt UHF large-signal amplifier applications in industrial and commercial FM equipment operating to 512 MHz .

- Specified 12.5 Volt, 512 MHz Characteristics

Output Power = 10 W
Gain $=8.0 \mathrm{~dB}$ (Typ)
Efficiency $=65 \%$ (Typ)

- Gold Metallized, Emitter Ballasted for Long Life and Reliability
- Capable of 20:1 VSWR Load Mismatch at 16 V Supply Voltage
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	16.5	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	38	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	4.0	Vdc
Collector Current - Continuous	I_{C}	2.75	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	44	Watts
W/o C			
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	T_{J}	200	${ }^{\circ} \mathrm{C}$

$10 \mathrm{~W}, 512 \mathrm{MHz}$
RF POWER
TRANSISTOR NPN SILICON

CASE 244-04, STYLE 1

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	4.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	16.5	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	38	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{I}_{\mathrm{CES}}$	-	-	5.0	mAdc

ON CHARACTERISTICS

DC Current Gain (lC = 1.0 Adc, $\mathrm{V}_{\text {CE }}=5.0 \mathrm{Vdc}$)	$\mathrm{h}_{\text {FE }}$	20	-	120	-
DYNAMIC CHARACTERISTICS					
Output Capacitance ($\mathrm{V}_{\mathrm{CB}}=12.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}$)	$\mathrm{C}_{\text {ob }}$	-	22	28	pF

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}, \mathrm{f}=512 \mathrm{MHz}\right)$	$\mathrm{G}_{\text {pe }}$	7.0	8.0	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \qquad\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}, \mathrm{f}=512 \mathrm{MHz}\right) \end{aligned}$	η_{c}	55	65	-	\%
Load Mismatch Stress $\left(\mathrm{V}_{\mathrm{CC}}=16 \mathrm{Vdc}, \mathrm{f}=512 \mathrm{MHz}, \mathrm{P}_{\text {in }}(1)=2.6 \mathrm{~W}\right. \text {, }$ $\text { VSWR }=20: 1 \text {, All Phase Angles) }$	ψ	No Degradation in Output Power			

NOTE:

1. P in $=2.0 \mathrm{~dB}$ over the typical input power required for 10 W output power @ 12.5 Vdc .

REV 8

Figure 1. Broadband Test Circuit Schematic

Figure 2. Output Power versus Input Power

Figure 4. Output Power versus Supply Voltage

Figure 3. Output Power versus Frequency

Figure 5. Typical Broadband Circuit Performance

Figure 6. Series Equivalent Input and Output Impedance

The RF Line
 NPN Silicon
 RF Power Transistor

... designed for 12.5 Volt UHF large-signal amplifier applications in industrial and commercial FM equipment operating to 512 MHz .

- Specified 12.5 Volt, 512 MHz Characteristics

Output Power $=15 \mathrm{~W}$
Minimum Gain $=7.8 \mathrm{~dB}$
Efficiency $=55 \%$

- Built-In Matching Network for Broadband Operation
- Gold Metallized, Emitter Ballasted for Long Life and Reliability
- Capable of 20:1 VSWR Load Mismatch at 15.5 V Supply Voltage
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

CASE 244-04, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	16	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	36	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	I C	4.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD_{D}	44	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta \mathrm{JC}}$	4.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I} \mathrm{C}=25 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\text {(BR) }} \mathrm{CEO}$	16	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=25 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{\text {(BR) }}$ CES	36	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{E}}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
$\begin{aligned} & \text { Collector-Cutoff Current } \\ & \left(\mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0\right) \end{aligned}$	ICES	-	-	2.0	mAdc

(continued)

REV 6

ELECTRICAL CHARACTERISTICS - continued ($T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.)
Characteristic

| | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |

| DC Current Gain
 (IC $=1.0 ~ A d c, ~$
 C CE |
| :--- | :---: | :---: | :---: | :---: | :---: |

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	31	45	pF

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=15 \mathrm{~W}, \mathrm{f}=512 \mathrm{MHz}\right)$	Gpe	7.8	8.8	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=15 \mathrm{~W}, \mathrm{f}=512 \mathrm{MHz}\right)$	η	55	63	-	$\%$
Load Mismatch Stress $\left(\mathrm{V}_{\mathrm{CC}}=15.5 \mathrm{Vdc}, \mathrm{f}=512 \mathrm{MHz}, \mathrm{P}_{\text {in }}=3.0 \mathrm{~W}\right.$, VSWR $=20: 1$, All Phase Angles $)$	ψ	No Degradation in Output Power			

C1, C5 - 68 pF Mini-Unelco
C2, C3-33 pF, Mini-Unelco
C4-47 pF, Mini-Unelco
C6, C11-10 $\mu \mathrm{F}$, 25 V Tantalum
C7, C10-0.1 $\mu \mathrm{F}$, Ceramic
C8, C9-91 pF, Mini-Unelco
L1, L4 - 4-1/2 Turns, \#18 AWG, Enamel Covered, 0.16" ID

L2, L3 - 2 Turns, \#18 AWG Enamel Covered, $0.16^{\prime \prime}$ ID
B - Ferrite Bead, Ferroxcube 56-590-65-3B
Z1-Z6 - See PCB Artwork
PCB - $1 / 32^{\prime \prime}$ G-10, $\varepsilon_{r}=4.5$ @ UHF
Socket - See Socket Drawings
JP1 - Jumper, \#14 AWG w/Banana Plugs

Figure 1. 440-512 MHz Broadband Test Circuit

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Frequency

Figure 4. Power Output versus Supply Voltage

Figure 5. Typical Broadband Circuit Performance

Figure 6. Series Equivalent Input and Output Impedance

The RF Line
 NPN Silicon
 RF Power Transistor

Designed for 12.5 Volt UHF large-signal, common emitter, class-C amplifier applications in industrial and commercial FM equipment operating to 520 MHz .

- Specified 12.5 Volt, 512 MHz Characteristics

Output Power $=65$ Watts
Minimum Gain $=4.15 \mathrm{~dB}$
Minimum Efficiency = 50\%

- Characterized with Series Equivalent Large-Signal Impedance Parameters from 400 to 520 MHz
- Built-In Matching Network for Broadband Operation
- Triple Ion Implanted for More Consistent Characteristics
- Implanted Emitter Ballast Resistors for Improved Ruggedness
- Silicon Nitride Passivated
- Capable of Surviving Load Mismatch Stress at all Phase Angles with 20:1 VSWR @ 15.5 Vdc and 2.0 dB Overdrive

MRF658

65 W, 512 MHz RF POWER TRANSISTOR NPN SILICON

CASE 316-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	16.5	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	38	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	I_{C}	15	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD_{D}	175	1.0

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\text {日JC }}$	1.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	16.5	29	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	38	45	-	Vdc
Emitter-Base Breakdown Voltage $\left(I_{E}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	4.6	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=0, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	ICES	-	0.1	10	mAdc

(continued)

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
$\begin{aligned} & \text { DC Current Gain } \\ & \text { (IC = } 10 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc} \text {) } \end{aligned}$	$\mathrm{h}_{\text {FE }}$	40	85	120	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=12.5 \mathrm{Vdc}, \mathrm{I}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	170	220	pF

FUNCTIONAL TESTS (In Motorola Test Fixture. See Figure 1.)

Output Power $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}=25 \mathrm{~W}, \mathrm{f}=470 \& 512 \mathrm{MHz}\right)$	Pout	65	-	-	W
$\begin{aligned} & \text { Collector Efficiency } \\ & \left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=65 \mathrm{~W}, \mathrm{f}=470 \& 512 \mathrm{MHz}\right) \end{aligned}$	η	50	60	-	\%
Output Mismatch Stress $\left(\mathrm{V}_{\mathrm{CC}}=15.5 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}=32 \mathrm{~W}, \mathrm{f}=512 \mathrm{MHz}, \mathrm{VSWR}\right. \text { 20:1, }$ All Phase Angles)	ψ		No Degradation in Output Power		

B1-B4 - Long Bead, Fair Rite (2743019446)
C1 - 56 pF, Chip Capacitor, Murata Erie
C2 - 1-20 pF Trimmer, Johanson-JMC 5501 PG26J200
C3-39 pF, Chip Capacitor, Murata Erie
C4 - 1-20 pF Trimmer, Johanson-JMC 5501
C5 - 33 pF , Miniature Clamped Mica, SAHA
C6 - 33 pF , Miniature Clamped Mica, SAHA
C7-33 pF, Miniature Clamped Mica, SAHA
C8 - 27 pF , Miniature Clamped Mica, SAHA
C11-1-20 pF Trimmer, Johanson-JMC 5501 PG26J200
C12 - 110 pF, Chip Capacitor, Murata Erie
C13-10 $\mu \mathrm{F}, 50$ V Electrolytic, Panasonic-ECEV1HV100R
C14-0.18 μ F Chip Capacitor
C15-130 pF, Chip Capacitor, Murata Erie

C16 - 130 pF, Chip Capacitor, Murata Erie
C17 - 130 pF, Chip Capacitor, Murata Erie
C18 - 130 pF, Chip Capacitor, Murata Erie
C19-0.18 μ F Chip Capacitor
C20 - $10 \mu \mathrm{~F}, 50$ V Electrolytic, Panasonic-ECEV1HV100R
Board - 1/16" Glass Teflon, $\varepsilon_{r}=2.55$, Keene (GX-0600-55-22)
L1, L2 - 5 Turns, 20 AWG, ID 0.126"
L3 - 2 Turns, 26 AWG, ID 0.073"
N1, N2 - Type N Flange, Omni Spectra (3052-1648-10)

Murata Erie Chip Capacitors -
GRH710COGxxxx100VBE
SAHA Mini Clamped Mica Capacitors - 3HS0006-xx

Figure 1. 512 MHz Test Circuit

Figure 2. Output Power versus Input Power

Figure 4. Output Power versus Supply Voltage

$V_{C C}=12.5 \mathrm{~V} \quad P_{0}=70 \mathrm{~W}$		
f MHz	ZIN OHMS	ZOL^{*} OHMS
400	$0.62+\mathrm{j} 2.8$	$1.20+\mathrm{j} 2.5$
440	$0.72+\mathrm{j} 3.1$	$1.10+\mathrm{j} 2.8$
480	$0.81+\mathrm{j} 3.3$	$0.94+\mathrm{j} 3.1$
520	$0.90+\mathrm{j} 3.6$	$0.80+\mathrm{j} 3.4$

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of optimum load impedance into which the device operates at a given output power, voltage and frequency.

Figure 5. Series Equivalent Input and Output Impedances

The RF Line NPN Silicon RF Power Transistor

. . . designed for 12.5 volt UHF large-signal, common-base amplifier applications in industrial and commercial FM equipment operating in the range of $806-960 \mathrm{MHz}$.

- Specified 12.5 Volt, 870 MHz Characteristics

Output Power = 20 Watts
Power Gain $=6.0 \mathrm{~dB}$ Min
Efficiency $=50 \%$ Min

- Series Equivalent Large-Signal Characterization
- Internally Matched Input for Broadband Operation
- 100\% Tested for Load Mismatch Stress at All Phase Angles with 20:1 VSWR @ 15.5 Volt Supply and 50\% RF Overdrive
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Silicon Nitride Passivated

CASE 319-07, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	16	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	36	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	4.0	Vdc
Collector Current - Continuous	I C	7.6	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1)$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	80	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	$\mathrm{~W}^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (2)	$R_{\theta J C}$	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=50\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	16	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=50\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	36	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}=10\right.$ mAdc, $\left.\mathrm{IC}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=15\right.$ Vdc, $\left.\mathrm{I}_{\mathrm{E}}=0\right)$	I CBO	-	-	5.0	mAdc

NOTES:

(continued)

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.
2. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic
Symbol Min Typ Max Unit
ON CHARACTERISTICS DCurrent Gain (IC $=2.0$ Adc, VCE $=5.0 \mathrm{Vdc})$

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=12.5 \mathrm{Vdc}, \mathrm{I}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	45	65	pF

FUNCTIONAL TESTS

$\begin{aligned} & \text { Common-Base Amplifier Power Gain } \\ & \left(\text { Pout }^{2}=20 \mathrm{~W}, \mathrm{~V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{f}=870 \mathrm{MHz}\right) \end{aligned}$	GpB	6.0	7.0	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \left(\text { Pout }=20 \mathrm{~W}, \mathrm{~V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{f}=870 \mathrm{MHz}\right) \end{aligned}$	η	50	55	-	\%
$\begin{aligned} & \text { Load Mismatch Stress } \\ & \left(\mathrm{V}_{\mathrm{CC}}=15.5 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}(3)=6.0 \mathrm{~W}, \mathrm{f}=870 \mathrm{MHz},\right. \\ & \mathrm{VSWR}=20: 1, \text { all phase angles }) \end{aligned}$	-	No Degradation in Output Power			

NOTE:
3. $\mathrm{P}_{\text {in }}=150 \%$ of the typical input power requirement for 20 W output power @ 12.5 Vdc .

Figure 1. 870 MHz Test Circuit Schematic

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Frequency

Figure 4. Output Power versus Supply Voltage

Figure 5. Series Equivalent Input/Output Impedance

The RF Line NPN Silicon RF Power Transistor

. . . designed for 12.5 volt UHF large-signal, common-base amplifier applications in industrial and commercial FM equipment operating in the range of $806-960 \mathrm{MHz}$.

- Specified 12.5 Volt, 870 MHz Characteristics

Output Power $=45$ Watts
Power Gain $=4.5 \mathrm{~dB}$ Min
Efficiency $=60 \%$ Min

- Series Equivalent Large-Signal Characterization
- Internally Matched Input for Broadband Operation
- Tested for Load Mismatch Stress at All Phase Angles with 10:1 VSWR @ High Line and Rated Drive
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Silicon Nitride Passivated

MRF847

$45 \mathrm{~W}, 870 \mathrm{MHz}$
RF POWER
TRANSISTOR NPN SILICON

CASE 319-07, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	16.5	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	38	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	4.0	Vdc
Collector Current - Continuous	I_{C}	12	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	150	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$ Storage Temperature Range
Junction Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\text {日JC }}$	1.17	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	16.5	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	38	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	ICES	-	-	10	mAdc

(continued)

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
DC Current Gain $\left(\mathrm{IC}=2.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	$\mathrm{h}_{\text {FE }}$	40	65	120	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=12.5 \mathrm{Vdc}, \mathrm{I}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	75	90	pF

FUNCTIONAL TESTS

Common-Base Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=45 \mathrm{~W}, \mathrm{f}=870 \mathrm{MHz}\right)$	GpB	4.5	5.5	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \quad\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=45 \mathrm{~W}, \mathrm{f}=870 \mathrm{MHz}\right) \end{aligned}$	η_{c}	60	68	-	\%
```Load Mismatch (VCC = 15.5 Vdc, Pin = 16 W, f = 870 MHz, VSWR = 10:1, All Phase Angles)```	$\psi$	No Degradation in Output Power			



Figure 1. 806-870 MHz Broadband Test Circuit


Figure 2. Output Power versus Input Power


Figure 3. Output Power versus Frequency


Figure 4. Output Power versus Supply Voltage


Figure 5. Typical Broadband Circuit Performance


$\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {in }}=16 \mathrm{~W}, \mathrm{P}_{\text {out }}=45 \mathrm{~W}$					
$\begin{gathered} \mathrm{f} \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{in}} \\ (\mathrm{Ohms}) \end{gathered}$		$\begin{gathered} \mathrm{f} \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{OL}}{ }^{*} \\ (\mathrm{Ohms}) \end{gathered}$	
806	0.99	+j5.52	806	0.67	+j1.33
838	1.48	+j5.47	838	0.68	+j1.66
870	1.79	+j5.25	870	0.72	+j2.16
915	2.12	+j4.80	915	0.83	+j2.40
960	2.11	+j4.28	960	0.99	+j2.50

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

Figure 6. Series Equivalent Input/Output Impedances

## The RF Line <br> NPN Silicon <br> RF Power Transistor

Designed for 24 Volt UHF large-signal, common emitter, class A linear amplifier applications in industrial and commercial equipment operating in the range of $800-960 \mathrm{MHz}$.

- Specified for $\mathrm{V}_{\mathrm{CE}}=24 \mathrm{Vdc}$, $\mathrm{I} \mathrm{C}=0.3$ Adc Characteristics

Output Power = 2.1 Watts CW
Minimum Power Gain $=12.5 \mathrm{~dB}$
Minimum ITO $=+43 \mathrm{dBm}$
Typical Noise Figure $=5.25 \mathrm{~dB}$

- Characterized with Small-Signal S-Parameters and Series Equivalent Large-Signal Parameters from 800-960 MHz
- Silicon Nitride Passivated
- $100 \%$ Tested for Load Mismatch Stress at All Phase Angles with 30:1 VSWR @ $24 \mathrm{Vdc}, \mathrm{I} \mathrm{C}=0.3$ Adc and Rated Output Power
- Will Withstand RF Input Overdrive of 0.4 W CW
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	30	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	55	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	4	Vdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}} \mathrm{C}=50^{\circ} \mathrm{C}$   Derate above $50^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	17	Watts
Operating Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	0.114	200
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance $\left(\mathrm{T}_{J}=150^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{C}}=50^{\circ} \mathrm{C}\right)$	$\mathrm{R}_{\theta \mathrm{JC}}$	8.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage ( $\mathrm{IC}=20 \mathrm{~mA}, \mathrm{IB}=0$ )	$V_{\text {(BR)CEO }}$	28	35	-	Vdc
Collector-Emitter Breakdown Voltage ( $\mathrm{IC}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE}}=0$ )	$\mathrm{V}_{(\mathrm{BR})} \mathrm{CES}$	55	85	-	Vdc
Collector-Base Breakdown Voltage ( $\mathrm{I}^{\text {C }}=20 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0$ )	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	55	85	-	Vdc
Emitter-Base Breakdown Voltage ( $\mathrm{I}_{\mathrm{E}}=1 \mathrm{~mA}, \mathrm{I} \mathrm{C}=0$ )	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4	5	-	Vdc
Collector Cutoff Current ( $\mathrm{V}_{\mathrm{CB}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$ )	ICES	-	-	1	mA

(continued)

REV 3

ELECTRICAL CHARACTERISTICS — continued

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
DC Current Gain $\left(I_{C}=0.1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\right)$	$\mathrm{h}_{\text {FE }}$	30	60	120	-

DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=24 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	2.4	3.3	4.4	pF

FUNCTIONAL CHARACTERISTICS

Common-Emitter Power Gain $\begin{aligned} & (\mathrm{V} \mathrm{VE}=24 \mathrm{~V}, \mathrm{I} \mathrm{C}=0.3 \mathrm{~A}, \mathrm{f}=840-900 \mathrm{MHz}, \\ & \text { Power Output }=2.1 \mathrm{~W}) \end{aligned}$	$\mathrm{Pg}_{\mathrm{g}}$	12.5	13.5	-	dB
Load Mismatch $\begin{aligned} & \left(\mathrm{P}_{\mathrm{O}}=2.1 \mathrm{~W}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{IC}=0.3 \mathrm{~A}, \mathrm{f}=840 \mathrm{MHz},\right. \\ & \text { Load VSWR }=30: 1 \text {, All Phase Angles) } \end{aligned}$	$\psi$	No Degradation in Output Power			
RF Input Overdrive $\left(\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.3 \mathrm{~A}, \mathrm{f}=840 \mathrm{MHz}\right)$   No degradation	Pin(over)	-	-	0.4	W
Third Order Intercept Point $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{IC}=0.3 \mathrm{~A}\right) \\ & (\mathrm{f1}=900 \mathrm{MHz}, \mathrm{f} 2=900.1 \mathrm{MHz}, \end{aligned}$ Meas. @ IMD 3rd Order = -40 dBc)	ITO	+43	+44.5	-	dBm
Noise Figure $\left(\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.3 \mathrm{~A}, \mathrm{f}=900 \mathrm{MHz}\right)$	NF	-	5.25	-	dB
Input Return Loss $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{I} \mathrm{C}=0.3 \mathrm{~A}, \mathrm{f}=840-900 \mathrm{MHz},\right. \\ & \text { Power Output }=2.1 \mathrm{~W}) \end{aligned}$	IRL	-	-15	-10	dB

Table 1. MRF857S Common Emitter S-Parameters

$\begin{aligned} & \mathrm{V}_{\mathrm{CE}} \\ & \text { (V) } \end{aligned}$	$\begin{aligned} & \mathrm{IC} \\ & (\mathrm{~A}) \end{aligned}$	$\stackrel{\mathrm{f}}{(\mathrm{MHz})}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
			\| $\mathrm{S}_{11}$ \|	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
24	0.3	800	0.915	165	2.098	54	0.037	58	0.343	-157	
		820	0.915	165	2.049	53	0.038	58	0.345	-157	
		840	0.915	165	1.991	52	0.038	58	0.349	-157	
		860	0.913	164	1.951	51	0.039	59	0.352	-158	
		880	0.914	164	1.912	50	0.040	59	0.355	-158	
		900	0.914	163	1.865	49	0.041	59	0.359	-158	
		920	0.913	163	1.832	48	0.042	59	0.362	-158	
		940	0.915	162	1.783	47	0.043	59	0.366	-159	
		960	0.916	162	1.748	46	0.043	59	0.369	-159	

Table 2. $Z_{\text {in }}$ and $Z_{O L}$ * versus Frequency

f   (MHz)	Zin   (Ohms)		ZOL   (Ohms)	
840	1.5		4.4	18.4
870	1.7	4.7	18.0	-26.3
900	1.5	4.8	14.9	-26.1

$\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.3 \mathrm{~A}, \mathrm{P}_{\mathrm{O}}=2.1 \mathrm{~W}$
$Z_{\mathrm{OL}}{ }^{*}=$ Conjugate of optimum load impedance into which the device operates at a given output power, voltage and frequency.


B1, B4	Long Ferrite Bead, Fair Rite (2743021447)
B2, B3	Short Ferrite Bead, Fair Rite (2743019447)
C1	$250 \mu$ F, 50 Vdc Electrolytic Capacitor
C2, C8	$10 \mu$ F, 50 Vdc Electrolytic Capacitor
C3, C9	$0.1 \mu$ F, Chip Capacitor
C4, C7	1000 pF, Chip Capacitor
C5, C6	100 pF, Chip Capacitor
C10, C12	$43 \mathrm{pF}, 100$ Mil Chip Capacitor
C11	$0.8-8 \mathrm{pF}$, Johansen Gigatrim
F1	1 A Micro-Fuse
L1, L2	5 Turns, 20 AWG, 0.126" ID, 46.2 nH
Q1	MMBT2222ALT1, NPN Transistor
Q2	BD136, PNP Transistor


R1	$330 \Omega, 1 / 4 \mathrm{~W}$
R2	$500 \Omega$ Potentiometer, $1 / 4 \mathrm{~W}$
R3	$4.7 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W}$
R4	$2 \times 4.7 \mathrm{~K} \Omega, 1 / 4 \mathrm{~W}$
R5	$47 \Omega, 2 \mathrm{~W}$
R6	$75 \Omega, 1 / 4 \mathrm{~W}$
R7	$4.7 \Omega, 1 / 4 \mathrm{~W}$
R8	$10 \Omega, 3 \mathrm{~W}$
R9, R10	$4 \times 39 \Omega, 1 / 8 \mathrm{~W}$ Chip Resistors in Parallel
TL1-TL16	Microstrip Transmission Line
V_Supply	$+27 \mathrm{Vdc} \pm 0.5 \mathrm{~V}$ Due to Resistor Tolerance
VCE	$+24 \mathrm{Vdc} @ 0.3 \mathrm{~A}$
Board	$0.030^{\prime \prime}$ Glass-Teflon ${ }^{\circledR} 2 \mathrm{oz} . \mathrm{Cu}, \varepsilon_{r}=2.55$

Figure 1. MRF857S Class A RF Test Fixture Schematic

TYPICAL CHARACTERISTICS


Figure 2. Performance of MRF857S in Broadband Circuit


Figure 3. MRF857S Output Power \& Power Gain versus Input Power


Figure 4. MRF857S DC SOA


Figure 6. MRF857S MTBF Factor versus Junction Temperature


Figure 7. MRF857S Test Fixture Component Layout

## The RF Line <br> NPN Silicon <br> RF Power Transistor

## MRF858 MRF858S

Designed for 24 Volt UHF large-signal, common emitter, class A linear amplifier applications in industrial and commercial equipment operating in the range of $800-960 \mathrm{MHz}$.

- Specified for $\mathrm{V}_{\mathrm{CE}}=24 \mathrm{Vdc}$, $\mathrm{I} \mathrm{C}=0.5$ Adc Characteristics

Output Power = 3.6 Watts CW
Minimum Power Gain $=11 \mathrm{~dB}$
Minimum ITO $=+44.5 \mathrm{dBm}$
CLASS A $800-960 \mathrm{MHz}$ 3.6 W (CW), 24 V NPN SILICON RF POWER TRANSISTOR

Typical Noise Figure $=6 \mathrm{~dB}$

- Characterized with Small-Signal S-Parameters and Series Equivalent Large-Signal Parameters from 800-960 MHz
- Silicon Nitride Passivated
- $100 \%$ Tested for Load Mismatch Stress at All Phase Angles with 30:1 VSWR @ 24 Vdc, IC = 0.5 Adc and Rated Output Power
- Will Withstand RF Input Overdrive of 0.85 W CW
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.


CASE 319-07, STYLE 2 MRF858


CASE 319A-02, STYLE 2 MRF858S

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	30	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	55	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4	Vdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}} \mathrm{C}=50^{\circ} \mathrm{C}$   Derate above $50^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	20	Watts
Operating Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	2.138	$\mathrm{~W}^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance $\left(\mathrm{T} J=150^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{C}}=50^{\circ} \mathrm{C}\right)$	$\mathrm{R}_{\theta \mathrm{JC}}$	6.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$

## ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit


Collector-Emitter Breakdown Voltage ( $\mathrm{IC}=20 \mathrm{~mA}, \mathrm{IB}=0$ )	$\left.\mathrm{V}_{( } \mathrm{BR}\right) \mathrm{CEO}$	28	35	-	Vdc
Collector-Emitter Breakdown Voltage ( $\mathrm{IC}=20 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE}}=0$ )	$\mathrm{V}_{(\mathrm{BR})} \mathrm{CES}$	55	85	-	Vdc
Collector-Base Breakdown Voltage ( $\mathrm{IC}=20 \mathrm{~mA}, \mathrm{IE}=0$ )	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	55	85	-	Vdc
Emitter-Base Breakdown Voltage ( $\mathrm{I} \mathrm{E}=1 \mathrm{~mA}, \mathrm{IC}=0$ )	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4	5	-	Vdc
Collector Cutoff Current ( $\mathrm{V}_{\mathrm{CB}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0$ )	ICES	-	-	1	mA

(continued)

ELECTRICAL CHARACTERISTICS — continued

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
DC Current Gain $\left(I_{C}=0.1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\right)$	$h_{\text {FE }}$	30	60	120	-

DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=24 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	-	6.5	8	pF

FUNCTIONAL CHARACTERISTICS

Common-Emitter Power Gain $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{I} \mathrm{C}=0.5 \mathrm{~A}, \mathrm{f}=840-900 \mathrm{MHz},\right. \\ & \text { Power Output }=3.6 \mathrm{~W}) \end{aligned}$	$\mathrm{Pg}_{\mathrm{g}}$	11	12	-	dB
Load Mismatch $\begin{aligned} & \left(\mathrm{P}_{\mathrm{O}}=3.6 \mathrm{~W}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{I} \mathrm{C}=0.5 \mathrm{~A}, \mathrm{f}=840 \mathrm{MHz},\right. \\ & \text { Load VSWR }=30: 1 \text {, All Phase Angles) } \end{aligned}$	$\psi$	No Degradation in Output Power			
RF Input Overdrive $\left(\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{I} \mathrm{C}=0.5 \mathrm{~A}, \mathrm{f}=840 \mathrm{MHz}\right)$   No degradation	Pin(over)	-	-	0.85	W
Third Order Intercept Point $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{IC}=0.5 \mathrm{~A}\right) \\ & (\mathrm{f1}=900 \mathrm{MHz}, \mathrm{f} 2=900.1 \mathrm{MHz}, \\ & \text { Meas. @ IMD 3rd Order }=-40 \mathrm{dBc}) \end{aligned}$	ITO	+44.5	+45.5	-	dBm
Noise Figure $\left(\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{I} \mathrm{C}=0.5 \mathrm{~A}, \mathrm{f}=900 \mathrm{MHz}\right)$	NF	-	6	-	dB
Input Return Loss $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{f}=840-900 \mathrm{MHz},\right. \\ & \text { Power Output }=3.6 \mathrm{~W}) \end{aligned}$	IRL	-	-12	-9	dB

Table 1. MRF858 Common Emitter S-Parameters

$\begin{aligned} & V_{C E} \\ & (V) \end{aligned}$	$\begin{aligned} & \text { IC } \\ & \text { (A) } \end{aligned}$	$\stackrel{\mathrm{f}}{(\mathrm{MHz})}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$			
			\|S $\mathbf{S}_{11} \mid$	$\angle \phi$	\|S21		$\angle \phi$	\|S ${ }_{12} \mid$	$\angle \phi$	\|S22		$\angle \phi$
24	0.5	800	0.942	167	1.493	50	0.027	58	0.538	-165		
		820	0.942	166	1.453	50	0.027	58	0.541	-164		
		840	0.941	166	1.415	49	0.028	59	0.545	-165		
		860	0.940	166	1.379	48	0.028	59	0.550	-165		
		880	0.941	165	1.351	47	0.029	59	0.553	-165		
		900	0.940	165	1.320	46	0.030	59	0.557	-165		
		920	0.940	165	1.289	45	0.030	59	0.562	-165		
		940	0.940	164	1.252	44	0.031	59	0.566	-165		
		960	0.940	164	1.222	43	0.031	59	0.570	-165		

Table 2. $Z_{\text {in }}$ and $Z_{O L}$ * versus Frequency

$\mathbf{f}$   (MHz)	Zin   (Ohms)		ZOL *   (Ohms)	
840	1.1	2.9	9.9	-14.4
870	1.1	3.5	9.5	-14.6
900	1.2	3.5	9	-14.5

$\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~A}, \mathrm{P}_{\mathrm{O}}=3.6 \mathrm{~W}$
$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of optimum load impedance into which the device operates at a given output power, voltage and frequency.


Figure 1. MRF858 Class A RF Test Fixture Schematic

TYPICAL CHARACTERISTICS


Figure 2. Performance in Broadband Circuit


Figure 3. Output Power \& Power Gain versus Input Power


Figure 4. DC SOA


Figure 5. DC SOA
(This device is MTBF limited for $\mathrm{V}_{\mathrm{CE}}<\mathbf{2 0} \mathrm{Vdc}$.)


Figure 6. MTBF Factor versus Junction Temperature


Figure 7. MRF858 Test Fixture Component Layout

## The RF Line <br> NPN Silicon <br> RF Power Transistor

Designed for 24 Volt UHF large-signal, common emitter, class A linear amplifier applications in industrial and commercial equipment operating in the range of 800 to 960 MHz .

- Specified for $\mathrm{V}_{\mathrm{CE}}=24 \mathrm{Vdc}, \mathrm{I} \mathrm{C}=0.9$ Adc Characteristics

Output Power = 6.5 Watts CW
Minimum Power Gain $=11.5 \mathrm{~dB}$
Minimum ITO $=+47 \mathrm{dBm}$
Typical Noise Figure $=6 \mathrm{~dB}$

- Characterized with Small-Signal S-Parameters and Series Equivalent Large-Signal Parameters from 800 to 960 MHz
- Silicon Nitride Passivated
- 100\% Tested for Load Mismatch Stress at All Phase Angles with 30:1 VSWR @ $24 \mathrm{Vdc}, \mathrm{IC}=0.9$ Adc and Rated Output Power
- Will Withstand RF Input Overdrive of 2 W CW
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration


## MRF859S

CLASS A
800-960 MHz
6.5 W (CW), 24 V NPN SILICON
RF POWER TRANSISTOR


CASE 319A-02, STYLE 2

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	30	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	55	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4	Vdc
Total Device Dissipation @ $\mathrm{T}^{\mathrm{C}}=60^{\circ} \mathrm{C}$ Derate above $60^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	$\begin{gathered} 34 \\ 0.24 \end{gathered}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance $\left(\mathrm{T}_{\mathrm{J}}=150^{\circ} \mathrm{C}, \mathrm{T}_{\mathrm{C}}=60^{\circ} \mathrm{C}\right)$	$\mathrm{R}_{\theta \mathrm{JC}}$	3.9	${ }^{\circ} \mathrm{C} / \mathrm{W}$

## ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage ( $\left.\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	28	32	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}_{\mathrm{C}}=25 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	55	75	-	Vdc
Collector-Base Breakdown Voltage ( $\left.\mathrm{I}_{\mathrm{C}}=25 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	55	75	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4	5	-	Vdc
Collector Cutoff Current $\left(\mathrm{V} \mathrm{CB}=15 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I})$	-	-	2	mA

(continued)

ELECTRICAL CHARACTERISTICS - continued

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
DC Current Gain $\left(\mathrm{IC}=1 \mathrm{~A}, \mathrm{~V}_{\mathrm{CE}}=5 \mathrm{~V}\right)$	$h_{\text {he }}$	20	60	120	-

DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=24 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	13	-	26	pF

## FUNCTIONAL CHARACTERISTICS

Common-Emitter Power Gain $\left(\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.9 \mathrm{~A}, \mathrm{f}=840-900 \mathrm{MHz}, \mathrm{P}_{\text {out }}=6.5 \mathrm{~W}\right)$	$\mathrm{Pg}_{\mathrm{g}}$	11.5	13	-	dB
Load Mismatch $\begin{aligned} & \text { (VCE }=24 \mathrm{~V}, \mathrm{IC}=0.9 \mathrm{~A}, \mathrm{f}=840 \mathrm{MHz}, \mathrm{P}_{\text {out }}=6.5 \mathrm{~W} \text {, } \\ & \text { Load VSWR }=30: 1 \text {, All Phase Angles) } \end{aligned}$	$\psi$	No Degradation in Output Power			
RF Input Overdrive $(\mathrm{V} C E=24 \mathrm{~V}, \mathrm{IC}=0.9 \mathrm{~A}, \mathrm{f}=840 \mathrm{MHz})$   No degradation	Pin(over)	-	-	2	W
Third Order Intercept Point $(\mathrm{V} C E=24 \mathrm{~V}, \mathrm{IC}=0.9 \mathrm{~A}, \mathrm{f} 1=900 \mathrm{MHz}, \mathrm{f} 2=900.1 \mathrm{MHz},$   Meas. @ IMD 3rd Order = -40 dBc)	ITO	+47	+48	-	dBm
Noise Figure $\left(\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.9 \mathrm{~A}, \mathrm{f}=900 \mathrm{MHz}\right)$	NF	-	6	-	dB
Input Return Loss $\left(\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.9 \mathrm{~A}, \mathrm{f}=840-900 \mathrm{MHz}, \mathrm{P}_{\text {out }}=6.5 \mathrm{~W}\right)$	IRL	-	-	-9	dB

Table 1. Common Emitter S-Parameters

$\begin{aligned} & \mathrm{V}_{\mathrm{CE}} \\ & (\mathrm{~V}) \end{aligned}$	${ }^{\text {IC }}$   (A)	$\stackrel{\mathrm{f}}{(\mathrm{MHz})}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
			$\left\|S_{11}\right\|$	$\angle \phi$	${ }^{\text {\| }} \mathbf{2 1}$ \|	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
24	0.9	800	0.906	170	1.022	12	0.016	11	0.804	-168	
		820	0.902	170	1.022	7	0.015	8	0.823	-167	
		840	0.897	171	1.018	3	0.013	6	0.845	-167	
		860	0.894	171	1.012	-3	0.011	4	0.870	-167	
		880	0.893	171	1.005	-8	0.009	3	0.895	-168	
		900	0.893	171	0.988	-14	0.007	5	0.920	-168	
		920	0.894	172	0.962	-20	0.005	14	0.946	-169	
		940	0.897	172	0.924	-26	0.008	47	0.969	-170	
		960	0.903	172	0.884	-32	0.004	102	0.987	-172	

Table 2. $Z_{\text {in }}$ and $Z_{O L}{ }^{*}$ versus Frequency

f   (MHz)	Z   (Ohms)		$\mathbf{Z O L}^{*}$   (Ohms)	
840	1.6	3.3	2	-4.1
870	1.5	3.6	1.6	-3.3
900	2.2	3.5	1.7	-2.7

$\mathrm{V}_{\mathrm{CE}}=24 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0.9 \mathrm{~A}, \mathrm{P}_{\mathrm{O}}=6.5 \mathrm{~W}$
$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of optimum load impedance into which the device operates at a given output power, voltage and frequency.


Figure 1. MRF859S Class A RF Test Fixture Schematic

TYPICAL CHARACTERISTICS


Figure 2. Performance in Broadband Circuit


Figure 3. Output Power \& Power Gain versus Input Power


Figure 4. DC SOA


Figure 5. DC SOA


Figure 6. MTBF Factor versus Junction Temperature

(SCALE: 1:1)

Figure 7. MRF859S Photomaster


Figure 8. MRF859S Test Fixture Component Layout

## The RF Line NPN Silicon RF Power Transistors

. . . designed for 24 volt UHF large-signal, common-emitter amplifier applications in industrial and commercial FM equipment operating in the range of $800-960 \mathrm{MHz}$.

- Specified 24 Volt, 900 MHz Characteristics

Output Power = 5.0 Watts
Power Gain $=9.0 \mathrm{~dB}$ Min
Efficiency $=50 \%$ Min

- Series Equivalent Large-Signal Characterization
- Capable of Withstanding 20:1 VSWR Load Mismatch at Rated Output Power and Supply Voltage
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Silicon Nitride Passivated
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	30	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	55	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	$\mathrm{I}_{\mathrm{C}}$	0.6	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=50^{\circ} \mathrm{C}(1)$   Derate above $50^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	18   0.143	Watts   $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$


5.0 W, 900 MHz RF POWER TRANSISTORS NPN SILICON


CASE 319-07, STYLE 2 MRF891


CASE 319A-02, STYLE 2 MRF891S

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (2)	$\mathrm{R}_{\theta \mathrm{JCC}}$	7.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	30	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=20 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	55	-	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=0.5 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	ICES	-	-	1.0	mAdc

## ON CHARACTERISTICS

DC Current Gain   $\left(I_{C}=200 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	hFE	30	-	150	-

NOTES: (continued)

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.
2. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.

REV 6

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic
Symbol Min Typ Max Unit   DYNAMIC CHARACTERISTICS        $\left.\begin{array}{c}\text { Output Capacitance } \\ \left(V_{C B}=24 ~ V d c, ~ I E ~\right.\end{array}=0, f=1.0 \mathrm{MHz}\right)$ $\mathrm{C}_{\mathrm{ob}}$ - 6.5 8.0 pF

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain (Broadband)   $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=5.0 \mathrm{~W}, \mathrm{f}=900 \mathrm{MHz}\right)$	$\mathrm{G}_{\text {pe }}$	9.0	10	-	dB
Collector Efficiency   $\left(\mathrm{V}_{\text {CC }}=24 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=5.0 \mathrm{~W}, \mathrm{f}=900 \mathrm{MHz}\right)$	$\eta$	50	57	-	$\%$
Load Mismatch Stress   $\left(V_{C C}=24 \mathrm{Vdc}, \mathrm{P}_{\text {in }}=0.63 \mathrm{~W}, \mathrm{f}=900 \mathrm{MHz}\right.$,   VSWR $=20: 1$, all phase angles $)$	$\psi$	No Degradation in Output Power			



Figure 1. Broadband Test Fixture


Figure 2. Output Power versus Input Power


Figure 3. Output Power versus Supply Voltage


Figure 5. Typical Broadband Circuit Performance

Figure 7. Series Equivalent Output Impedance


Figure 6. Series Equivalent Input Impedance


## The RF Line <br> NPN Silicon <br> RF Power Transistor

. . . designed for 24 volt UHF large-signal, common-base amplifier applications in industrial and commercial FM equipment operating in the range of $804-960 \mathrm{MHz}$.

- Specified 24 Volt, 900 MHz Characteristics

Output Power = 30 Watts
Power Gain $=7.0 \mathrm{~dB}$ Min
Efficiency $=55 \%$ Min

- Series Equivalent Large-Signal Characterization
- Capable of 30:1 VSWR Load Mismatch at Rated Output Power and Supply Voltage
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Silicon Nitride Passivated


CASE 319-07, STYLE 1
MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	30	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	50	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	$\mathrm{I}_{\mathrm{C}}$	7.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1)$   Derate above 25 $\mathrm{P}_{\mathrm{D}} \mathrm{C}$	115	Watts	
Storage Temperature Range		0.66	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (2)	$R_{\theta J C}$	1.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit


Collector-Emitter Breakdown Voltage ( $\left.\mathrm{I}_{\mathrm{C}}=25 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	30	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=25 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	50	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\mathrm{CBO}}$	-	-	10	mAdc

## NOTES:

(continued)

1. This device is designed for RF operation. The total device dissipation rating applies only when the device is operated as an RF amplifier.
2. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.

ELECTRICAL CHARACTERISTICS - continued ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
$\begin{aligned} & \text { DC Current Gain } \\ & \text { (IC } \left.=2.0 \mathrm{Adc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	10	-	120	-

DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=30 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	-	45	-	pF

FUNCTIONAL TESTS

Common-Base Amplifier Power Gain   $\left(P_{\text {out }}=30 \mathrm{~W}, \mathrm{VCC}_{\mathrm{C}}=24 \mathrm{Vdc}, \mathrm{f}=900 \mathrm{MHz}\right)$	GPE	7.0	8.5	-	dB
Collector Efficiency   $\left(\right.$ Pout $\left.=30 \mathrm{~W}, \mathrm{~V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{f}=900 \mathrm{MHz}\right)$	$\eta$	55	60	-	$\%$



Figure 1. 850-900 MHz Broadband Circuit Schematic


Figure 2. Output Power versus Input Power


Figure 4. Output Power versus Supply Voltage


Figure 3. Output Power versus Frequency


Figure 5. Typical Broadband Circuit Performance

$V_{\text {CC }}=24 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}$

f   Frequency   MHz	Zin   Ohms	Z OL *   Ohms
800	$0.9+j 4.5$	$1.0+j 0.7$
850	$1.3+j 4.7$	$1.1+j 0.9$
900	$1.6+j 4.4$	$1.2+j 1.1$
960	$1.5+j 3.7$	$1.2+j 1.3$

$Z_{O L}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

Figure 6. Series Equivalent Impedance

## The RF Line NPN Silicon RF Power Transistor

Designed for 24 Volt UHF large-signal, common emitter, class-AB linear amplifier applications in industrial and commercial FM/AM equipment operating in the range $800-970 \mathrm{MHz}$.

- Specified 24 Volt, 900 MHz Characteristics

Output Power = 30 Watts
Minimum Gain = $10 \mathrm{~dB} @ 900 \mathrm{MHz}$, class-AB
Minimum Efficiency = 30\% @ $900 \mathrm{MHz}, 30$ Watts (PEP)
Maximum Intermodulation Distortion -30 dBc @ 30 Watts (PEP)

- Characterized with Series Equivalent Large-Signal Parameters from 800 to 960 MHz
- Silicon Nitride Passivated
- $100 \%$ Tested for Load Mismatch Stress at all Phase Angles with 5:1 VSWR @ 26 Vdc, and Rated Output Power
- Gold Metalized, Emitter Ballasted for Long Life and Resistance to MetalMigration
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.


## MRF897

$30 \mathrm{~W}, 900 \mathrm{MHz}$ RF POWER TRANSISTOR NPN SILICON


CASE 395B-01, STYLE 1

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	30	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector-Current - Continuous	$\mathrm{I}_{\mathrm{C}}$	4.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	105	Watts
Storage Temperature Range		$\mathrm{T}_{\text {stg }}$	$-65 \mathrm{to}+150$
$\mathrm{~W} /{ }^{\circ} \mathrm{C}$			

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	1.67	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

## OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage ( $\mathrm{I}^{\text {C }}=50 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{B}}=0$ )	$\mathrm{V}_{\text {(BR) }}$ CEO	30	33	-	Vdc
Collector-Emitter Breakdown Voltage ( $\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$ )	$V_{\text {(BR)CES }}$	60	80	-	Vdc
Emitter-Base Breakdown Voltage ( $\mathrm{I}^{\text {E }}=5 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0$ )	$\mathrm{V}_{\text {(BR) EBO }}$	4.0	4.7	-	Vdc
Collector Cutoff Current ( $\mathrm{V}_{\mathrm{CE}}=30 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=0$ )	ICES	-	-	10.0	mAdc

## ON CHARACTERISTICS

DC Current Gain (ICE $\left.=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{Vdc}\right)$	$\mathrm{h}_{\mathrm{FE}}$	30	80	120	-

## DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=24 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	14	21	28	pF

(continued)
REV 6

ELECTRICAL CHARACTERISTICS - continued ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

FUNCTIONAL CHARACTERISTICS

$\begin{aligned} & \text { Common-Emitter Amplifier Power Gain } \\ & \left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \text { Watts (PEP), } \mathrm{I}_{\mathrm{Cq}}=125 \mathrm{~mA}, \mathrm{f}_{1}=900 \mathrm{MHz}\right. \text {, } \\ & \left.\mathrm{f}_{2}=900.1 \mathrm{MHz}\right) \end{aligned}$	$\mathrm{G}_{\text {pe }}$	10.0	12.0	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \text { Pout }=30 \text { Watts }(\mathrm{PEP}), \mathrm{I}_{\mathrm{Cq}}=125 \mathrm{~mA}, \mathrm{f}_{1}=900 \mathrm{MHz},\right. \\ & \left.\mathrm{f}_{2}=900.1 \mathrm{MHz}\right) \end{aligned}$	$\eta$	35	38	-	\%
$\begin{aligned} & \text { Intermodulation Distortion } \\ & \left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \text { Watts }(\mathrm{PEP}), \mathrm{I}_{\mathrm{Cq}}=125 \mathrm{~mA}, \mathrm{f}_{1}=900 \mathrm{MHz}\right. \text {, } \\ & \left.\mathrm{f}_{2}=900.1 \mathrm{MHz}\right) \end{aligned}$	IMD	-	-37	-30	dBc
$\begin{aligned} & \text { Output Mismatch Stress } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{Watts}(\mathrm{PEP}), \mathrm{I}_{\mathrm{Cq}}=125 \mathrm{~mA}, \mathrm{f}_{1}=900 \mathrm{MHz},\right. \\ & \left.\mathrm{f}_{2}=900.1 \mathrm{MHz} \text {, Load VSWR }=5: 1 \text { (all phase angles) }\right) \end{aligned}$	$\psi$	No Degradation in Output Power Before and After Test			



B1, B2, B3, B4 - Ferrite Bead, Fair Rite \#2743019447
C1-0.8-8.0 pF Trimmer Capacitor, Johanson
C2, C3, C23, C24 - 43 pF, 100 mil, ATC Chip Capacitor
C4, C5, C18, C19, C21, C22-820 pF, 100 mil, Chip Capacitor, Kemet
C6, C7, C11, C12 - $10 \mu \mathrm{~F}$, Lytic Capacitor, Panasonic
C8, C9, C16, C17 - 100 pF, 100 mil, Chip Capacitor, Murata Erie
C10-13 pF, 50 mil, ATC Chip Capacitor
C13, C14 - $250 \mu \mathrm{~F}$ Lytic Capacitor, Mallory
C15-1.1 pF, 50 mil, ATC Chip Capacitor
C20 - 6.8 pF, 100 mil, ATC Chip Capacitor
L1, L2, L3, L4, L5, L6 - 5 Turns 20 AWG, IDIA 0.126" choke

N1, N2 - Type N Flange Mount, Omni Spectra 3052-1648-10
Q1 - Bias Transistor BD136 PNP
R1, R12-39 Ohm, 2.0 W
R3, R4, R5, R6-4.0 39 Ohm, $1 / 8 \mathrm{~W}$, Chips in Parallel, Rohm 390-J
TL1-TL11 - See Photomaster
Balun1, Balun2, Coax 1, Coax $2-2.20^{\prime \prime} 50$ Ohm, 0.088" o.d. semi-rigid coax, Micro Coax UT-85-M17
Board - 1/32" Glass Teflon, Arlon GX-0300-55-22, $\varepsilon_{r}=2.55$

Figure 1. MRF897 Broadband Test Circuit


Figure 2. Output Power versus Input Power


Figure 4. Output Power versus Supply Voltage


Figure 6. Power Gain versus Output Power


Figure 3. Output Power versus Frequency


Figure 5. Intermodulation versus Output Power


Figure 7. Broadband Test Fixture Performance


Figure 8. Series Equivalent Input/Output Impedances

## The RF Line NPN Silicon RF Power Transistor

Designed for 24 Volt UHF large-signal, common emitter, class-AB linear amplifier applications in industrial and commercial FM/AM equipment operating in the range $800-970 \mathrm{MHz}$.

- Specified 24 Volt, 900 MHz Characteristics

Output Power $=30$ Watts
Minimum Gain = $10.5 \mathrm{~dB} @ 900 \mathrm{MHz}$, class-AB
Minimum Efficiency = 30\% @ $900 \mathrm{MHz}, 30$ Watts (PEP)
Maximum Intermodulation Distortion -30 dBc @ 30 Watts (PEP)

- Characterized with Series Equivalent Large-Signal Parameters from 800 to 960 MHz
- Silicon Nitride Passivated
- $100 \%$ Tested for Load Mismatch Stress at all Phase Angles with 5:1 VSWR @ 26 Vdc, and Rated Output Power
- Gold Metalized, Emitter Ballasted for Long Life and Resistance to MetalMigration


## MRF897R

$30 \mathrm{~W}, 900 \mathrm{MHz}$ RF POWER TRANSISTOR NPN SILICON


CASE 395B-01, STYLE 1

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	30	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	4.0	Vdc
Collector-Current - Continuous	$\mathrm{I}_{\mathrm{C}}$	4.0	Adc
Total Device Dissipation @ $\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	105	Watts
Storage Temperature Range		$\mathrm{T}_{\text {stg }}$	-65 to +150

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	1.67	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage ( $\mathrm{I}^{\text {C }}=50 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{B}}=0$ )	$V_{\text {(BR) }}$ CEO	30	33	-	Vdc
Collector-Emitter Breakdown Voltage ( $\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$ )	$V_{\text {(BR)CES }}$	60	80	-	Vdc
Emitter-Base Breakdown Voltage ( $\mathrm{I}^{\text {E }}=5 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0$ )	$\mathrm{V}_{\text {(BR) } \mathrm{EBO}}$	4.0	4.7	-	Vdc
Collector Cutoff Current ( $\left.\mathrm{V}_{\mathrm{CE}}=30 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=0, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	ICES	-	-	10.0	mAdc

## ON CHARACTERISTICS

DC Current Gain (ICE $\left.=1.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{Vdc}\right)$	$\mathrm{h}_{\mathrm{FE}}$	30	80	120	-

## DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=24 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	14	21	28	pF

(continued)
REV 1

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
FUNCTIONAL CHARACTERISTICS					
$\begin{aligned} & \text { Common-Emitter Amplifier Power Gain } \\ & \left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \text { Watts }(\text { PEP }), \mathrm{I}_{\mathrm{Cq}}=125 \mathrm{~mA}, \mathrm{f}_{1}=900 \mathrm{MHz}\right. \text {, } \\ & \left.\mathrm{f}_{2}=900.1 \mathrm{MHz}\right) \end{aligned}$	$G_{p e}$	10.5	12.0	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \text { Watts }(\text { PEP }), \mathrm{I}_{\mathrm{Cq}}=125 \mathrm{~mA}, \mathrm{f}_{1}=900 \mathrm{MHz},\right. \\ & \left.\mathrm{f}_{2}=900.1 \mathrm{MHz}\right) \end{aligned}$	$\eta$	30	38	-	\%
$\begin{aligned} & \text { Intermodulation Distortion } \\ & \left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \text { Watts }(\text { PEP }), \mathrm{I}_{\mathrm{Cq}}=125 \mathrm{~mA}, \mathrm{f}_{1}=900 \mathrm{MHz}\right. \text {, } \\ & \left.\mathrm{f}_{2}=900.1 \mathrm{MHz}\right) \end{aligned}$	IMD	-	-37	-30	dBc
Output Mismatch Stress   $\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30\right.$ Watts (PEP), $\mathrm{I}_{\mathrm{cq}}=125 \mathrm{~mA}, \mathrm{f}_{1}=900 \mathrm{MHz}$, $\mathrm{f}_{2}=900.1 \mathrm{MHz}$, Load VSWR $=5: 1$ (all phase angles))	$\psi$	No Degradation in Output Power			



B1, B2, B3, B4 - Short Ferrite Bead, Fair Rite \#2743019447
C1 - 0.8-8.0 pF Var Capacitor, Johansen Gigatrim
C2, C3, C23, C24-43 pF, 100 mil, ATC Chip Capacitor C4, C5, C21, C22 - 1000 pF, 100 mil, ATC Chip Capacitor
C6, C7, C11, C12 - $10 \mu$ F, Electrolytic Capacitor, Panasonic C8, C9, C16, C17-100 pF, 100 mil, ATC Chip Capacitor C10-9.1 pF, 50 mil, ATC Chip Capacitor C13-250 $\mu$ F Electrolytic Capacitor, Mallory
C14, C18, C19, C25-0.1 $\mu$ F, Chip Capacitor, Kemet
C15-1.1 pF, 50 mil, ATC Chip Capacitor
C20-6.8 pF, 100 mil, ATC Chip Capacitor
L1, L2, L3, L4, L5, L6, L7, L8 - 5 Turns 20 AWG,
IDIA 0.126" Choke, Taylor Spring 46 nH
Figure 1. 840-900 MHz Test Circuit Schematic


Figure 2. Output Power versus Input Power


Figure 3. Output Power versus Frequency


Figure 4. Output Power versus Supply Voltage


Figure 5. Intermodulation versus Output Power

Figure 6. Power Gain versus Output Power



Figure 7. Broadband Test Fixture Performance

$\mathrm{P}_{\text {out }}=30 \mathrm{~W}$ (PEP), $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}$		
$\mathbf{f}$   $\mathbf{M H z}$	$\mathbf{Z}_{\text {in }}$   Ohms	$\mathbf{Z O L}^{*}$   Ohms
800	$1.7+\mathrm{j} 9.2$	$5.9-\mathrm{j} 0.4$
850	$2.6+\mathrm{j} 10$	$5.7+\mathrm{j} 2.6$
900	$4+\mathrm{j} 9.9$	$5.9+\mathrm{j} 3.4$
950	$5+\mathrm{j} 8.8$	$6.2+\mathrm{j} 4.4$

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance into which the device operates at a given output power, voltage and frequency.


NOTE: $\mathrm{Z}_{\text {in }} \& \mathrm{Z}_{\mathrm{OL}}{ }^{*}$ are given from base-to-base and collector-to-collector respectively.

Figure 8. Series Equivalent Input/Output Impedances


Figure 9. MRF897R Photomaster
(Reduced 25\% in printed data book, DL110/D)


Figure 10. 840-900 MHz Test Circuit Component Layout

## The RF Line <br> NPN Silicon <br> RF Power Transistor

. . . designed for 24 Volt UHF large-signal, common base amplifier applications in industrial and commercial FM equipment operating in the range of $850-960 \mathrm{MHz}$.

- Motorola Advanced Amplifier Concept Package
- Specified 24 Volt, 900 MHz Characteristics

Output Power $=60$ Watts
Power Gain $=7.0 \mathrm{~dB}$ Min
Efficiency $=60 \%$ Min

- Double Input/Output Matched for Wideband Performance and Simplified External Matching
- Series Equivalent Large-Signal Characterization
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Silicon Nitride Passivated
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.


## MRF898

$60 \mathrm{~W}, 850-960 \mathrm{MHz}$ RF POWER TRANSISTOR NPN SILICON


CASE 333A-02, STYLE 1

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	30	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	55	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	IC	10	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 175 \\ & 1.0 \end{aligned}$	Watts W/ ${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JCC}}$	1.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$V_{\text {(BR)CEO }}$	30	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	55	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	ICES	-	-	10	mAdc

(continued)

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic
Symbol Min Typ Max Unit
ON CHARACTERISTICS Current Gain   (IC = 2.0 Adc, VCE $=5.0$ Vdc)

DYNAMIC CHARACTERISTICS

Output Capacitance (1)   $\left(\mathrm{V}_{\mathrm{CB}}=24 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	-	60	-	pF

FUNCTIONAL TESTS

Common-Base Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{f}=900 \mathrm{MHz}\right)$	Gpb	7.0	7.9	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{f}=900 \mathrm{MHz}\right)$	$\eta$	60	65	-	\%
Output Mismatch Stress $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{~W}, \mathrm{f}=900 \mathrm{MHz},\right.$ $\text { VSWR }=5: 1 \text {, all phase angles) }$	$\psi$	No Degradation in Output Power			

NOTE:

1. Value of "Cob" is that of die only. It is not measurable in MRF898 because of internal matching network.


B1, B2, B3 - Bead, Ferroxcube 56-390-65/3B
C1, C2, C12-39 pF, 100 Mil Chip Capacitor
C3, C11-91 pF, Mini Underwood or Equivalent
C4, C7, C9 - $10 \mu \mathrm{~F}, 35 \mathrm{~V}$ Electrolytic
C5 - 4000 pF, 1.0 kV Ceramic
C6, C10 - 1000 pF, 350 V Unelco or Equivalent
C8-47 pF, 100 Mil Chip Capacitor
L1, L4-4 Turns \#18 AWG Choke
L2 - 11 Turns \#20 AWG Choke on 10 Ohm, 1.0 Watt Resistor
L3 - 3 Turns \#18 AWG Choke on 10 Ohm, 1.0 Watt Resistor

TL1, TL6 - 50 Ohm Microstrip
TL2 - $400 \times 950$ Mils
TL3, TL4 - $140 \times 200$ Mils
TL5 - $320 \times 690$ Mils
TL7 - $260 \times 230$ Mils
Board - 3M Epsilam-10, 50 Mil
Bias Boards - 1/32" G10 or Equivalent

Figure 1. 850-960 MHz Broadband Test Circuit


Figure 2. Output Power versus Input Power


Figure 4. Output Power versus Supply Voltage


Figure 3. Output Power versus Frequency


Figure 5. Typical Broadband Circuit Performance


Figure 6. Input/Output Impedance versus Frequency

## The RF Line NPN Silicon RF Power Transistor

Designed for 26 Volt UHF large-signal, common emitter, Class AB linear amplifier applications in industrial and commercial FM/AM equipment operating in the range $800-960 \mathrm{MHz}$.

- Specified 26 Volt, 900 MHz Characteristics

Output Power = 150 Watts (PEP)
Minimum Gain $=8.0 \mathrm{~dB} @ 900 \mathrm{MHz}$, Class AB
Minimum Efficiency = 35\% @ 900 MHz , 150 Watts (PEP)
Maximum Intermodulation Distortion -28 dBc @ 150 Watts (PEP)

- Characterized with Series Equivalent Large-Signal Parameters from 800 to 960 MHz
- Silicon Nitride Passivated
- $100 \%$ Tested for Load Mismatch Stress at all Phase Angles with 5:1 VSWR @ 26 Vdc, and Rated Output Power
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.


## MRF899

$150 \mathrm{~W}, 900 \mathrm{MHz}$ RF POWER TRANSISTOR NPN SILICON


CASE 375A-01, STYLE 1

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	28	Vdc
Collector-Emitter Voltage	$V_{\text {CES }}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector-Current - Continuous	IC	25	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	$\begin{aligned} & 230 \\ & 1.33 \end{aligned}$	Watts W/ ${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	0.75	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ( $\mathrm{I}^{\text {C }}=100 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{B}}=0$ )	$V_{\text {(BR)CEO }}$	28	37	-	Vdc
Collector-Emitter Breakdown Voltage ( $\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$ )	$\mathrm{V}_{\text {(BR) }} \mathrm{CES}$	60	85	-	Vdc
Emitter-Base Breakdown Voltage ( $\mathrm{I}_{\mathrm{E}}=10 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{C}}=0$ )	$V_{\text {(BR) EBO }}$	4.0	4.9	-	Vdc
Collector Cutoff Current ( $\mathrm{V}_{\mathrm{CE}}=30 \mathrm{Vdc}, \mathrm{V}_{\mathrm{BE}}=0$ )	ICES	-	-	10	mAdc

## ON CHARACTERISTICS

DC Current Gain (ICE $=1.0$ Adc, $\left.\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	$\mathrm{h}_{\mathrm{FE}}$	30	75	120	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=26 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)(1)$	$\mathrm{C}_{\mathrm{ob}}$	-	75	-	pF

(1) For information only. This part is collector matched.
(continued)

REV 7

ELECTRICAL CHARACTERISTICS - continued ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

FUNCTIONAL CHARACTERISTICS

$\begin{aligned} & \text { Common-Emitter Amplifier Power Gain } \\ & V_{C C}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=150 \text { Watts (PEP), } \mathrm{I}_{\mathrm{Cq}}=300 \mathrm{~mA}, \mathrm{f}_{1}=900 \mathrm{MHz} \text {, } \\ & \mathrm{f}_{2}=900.1 \mathrm{MHz} \end{aligned}$	$\mathrm{G}_{\mathrm{pe}}$	8.0	9.0	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \text { P }_{\text {out }}=150 \text { Watts (PEP), } \mathrm{I}_{\mathrm{Cq}}=300 \mathrm{~mA}, \mathrm{f}_{1}=900 \mathrm{MHz}, \\ & \mathrm{f}_{2}=900.1 \mathrm{MHz} \end{aligned}$	$\eta$	30	40	-	\%
$\begin{aligned} & \text { 3rd Order Intermodulation Distortion } \\ & \mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=150 \text { Watts }(\mathrm{PEP}), \mathrm{I}_{\mathrm{Cq}}=300 \mathrm{~mA}, \mathrm{f}_{1}=900 \mathrm{MHz} \text {, } \\ & \mathrm{f}_{2}=900.1 \mathrm{MHz} \end{aligned}$	IMD	-	-32	-28	dBc
Output Mismatch Stress $V_{C C}=26 \mathrm{Vdc}, P_{\text {out }}=150 \text { Watts (PEP), } \mathrm{I}_{\mathrm{Cq}}=300 \mathrm{~mA}, \mathrm{f}_{1}=900 \mathrm{MHz},$ $\mathrm{f}_{2}=900.1 \mathrm{MHz}, \mathrm{VSWR}=5: 1 \text { (all phase angles) }$	$\psi$	No Degradation in Output Power Before and After Test			



B1, B2 - Ferrite Bead, Ferroxcube \#56-590-65-3B
C1, C2, C24, C25-43 pF, B Case, ATC Chip Capacitor
C3, C4, C20, C21-100 pF, B Case, ATC Chip Capacitor
C5, C6, C12, C13 - 1000 pF, B Case, ATC Chip Capacitor
C7, C8, C14, C15-1800 pF, AVX Chip Capacitor
C9-9.1 pF, A Case, ATC Chip Capacitor
C10, C11, C17, C18, C22, C23-10 $\mu$ F, Electrolytic Capacitor Panasonic
C16 - 3.9 pF, B Case, ATC Chip Capacitor
C19-0.8 pF, B Case, ATC Chip Capacitor
C26 - $200 \mu \mathrm{~F}$, Electrolytic Capacitor Mallory Sprague
C27-500 $\mu$ F Electrolytic Capacitor

L1 - 5 Turns 24 AWG IDIA 0.059" Choke, 19.8 nH L2, L3, L7, L9 - 4 Turns 20 AWG IDIA $0.163^{\prime \prime}$ Choke L4, L5, L6, L8 - 12 Turns 22 AWG IDIA $0.140^{\prime \prime}$ Choke N1, N2 - Type N Flange Mount, Omni Spectra
Q1 - Bias Transistor BD136 PNP
R2, R3, R4, R5-4.0 $\times 39$ Ohm 1/8 W Chips in Parallel
R1a, R1b - 56 Ohm 1.0 W
TL1-TL8 - See Photomaster
Balun1, Balun2, Coax 1, Coax 2 - $2.20^{\prime \prime} 50$ Ohm 0.088" o.d.
Semi-rigid Coax, Micro Coax
Board - 1/32" Glass Teflon, $\varepsilon_{r}=2.55^{\prime \prime}$ Arlon (GX-0300-55-22)

Figure 1. 900 MHz Power Gain Test Circuit


Figure 2. Output Power versus Input Power


Figure 4. Output Power versus Supply Voltage


Figure 3. Output Power versus Frequency


Figure 5. Intermodulation versus Output Power


Figure 6. Power Gain versus Output Power


Figure 7. Broadband Test Fixture Performance


$\begin{gathered} f \\ \mathrm{MHz} \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{\mathrm{in}} \\ & \mathrm{Ohms} \end{aligned}$	$\mathrm{Z}_{\mathrm{OL}}{ }^{*}$ Ohms
800	$5.51+\mathrm{j} 10.6$	$4.52+j 2.64$
850	8.17 + j13.2	$4.21+j 2.98$
900	$11.2+j 13.8$	$3.68+j 2.97$
960	$16.8+j 10.1$	$2.98+j 2.71$
$\mathrm{ZOL}^{*}=$ Conjugate of optimum load impedance into which the device operates at a given output power, voltage and frequency.		

NOTE: $Z_{\text {in }}$ \& $Z_{\text {OL }}{ }^{*}$ are given from base-to-base and collector-to-collector respectively

Figure 8. Input and Output Impedances
with Circuit Tuned for Maximum Gain @ $P_{0}=150$ W (PEP), VCC = 26 V


Figure 9. MRF899 Test Fixture Component Layout

## The RF Small Signal Line NPN Silicon High-Frequency Transistors

Designed for low noise, wide dynamic range front end amplifiers, at frequencies to 1.5 GHz . Specifically aimed at portable communication devices such as pagers and hand-held phones.

- Small, Surface-Mount Package (SC-70)
- High Current Gain-Bandwidth Product ( $f_{\tau}=6.0 \mathrm{GHz}$ Typ @ 6.0 V, 20 mA )
- Low Noise Figure
$\mathrm{NF}=1.7 \mathrm{~dB}$ (Typ) @ 500 MHz
- Available in Tape and Reel Packaging.

T1 Suffix $=3,000$ Units per $8 \mathrm{~mm}, 7$ inch Reel

## MRF917T1

## LOW NOISE

 HIGH FREQUENCY TRANSISTOR

CASE 419-02, STYLE 3 (SC-70/SOT-323)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	12	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	20	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	2.0	Vdc
Collector Current - Continuous	IC	60	mAdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$ (1) Derate above $75^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 222 \\ & 3.0 \end{aligned}$	$\begin{gathered} \mathrm{mW} \\ \mathrm{~mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Operating Temperature Range	TJ	150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case (1)	$R_{\text {日JC }}$	338	${ }^{\circ} \mathrm{C} / \mathrm{W}$

## DEVICE MARKING

MRF917T1 = K
(1) Case temperature measured on the collector lead immediately adjacent to body of package.

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \mathrm{~mA}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	12	-	-	Vdc
Collector-Base Breakdown Voltage $\left(I_{C}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	20	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I} \mathrm{E}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	2.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	${ }^{\text {ICBO }}$	-	-	50	nA

ON CHARACTERISTICS

DC Current Gain   $\left(V_{C E}=10\right.$ Vdc, IC $\left.=30 \mathrm{~mA}\right)$	hFE	40	-	200	-

DYNAMIC CHARACTERISTICS

Collector-Base Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=1.0\right.$ Vdc, $\left.\mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{cb}}$	-	0.54	-	pF
Current-Gain Bandwidth Product   $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right)$	$\mathrm{f}_{\tau}$	-	6.0	-	GHz

PERFORMANCE CHARACTERISTICS

Noise Figure - Minimum $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}\right)$ Figure 1	$\begin{aligned} & 500 \mathrm{MHz} \\ & 1.0 \mathrm{GHz} \end{aligned}$	$\mathrm{NF}_{\text {min }}$	-	$\begin{aligned} & \hline 1.7 \\ & 2.3 \end{aligned}$	-	dB
Associated Gain at Minimum Noise Figure $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}\right)$ Figure 1	$\begin{aligned} & 500 \mathrm{MHz} \\ & 1.0 \mathrm{GHz} \end{aligned}$	$\mathrm{G}_{\mathrm{NF}}$	-	$\begin{gathered} 15.4 \\ 10 \end{gathered}$	-	dB
Maximum Unilateral Gain $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}, \mathrm{f}=1000 \mathrm{MHz}\right)$		GUmax	-	12	-	dB
$\begin{aligned} & \text { Insertion Gain } \\ & \qquad\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=20 \mathrm{~mA}, \mathrm{f}=1000 \mathrm{MHz}\right) \end{aligned}$		$\left\|S_{21}{ }^{2}\right\|$	-	11.2	-	dB
Noise Resistance   $\left(\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}, \mathrm{f}=1000 \mathrm{MHz}\right)$		$\mathrm{R}_{\mathrm{N}}$	-	15	-	Ohms



Figure 1. Functional Circuit Schematic


Figure 2. $\mathfrak{f}_{\tau}$, Current-Gain Bandwidth Product versus Collector Current


Figure 4. Maximum Power Dissipation versus Collector Lead Temperature (TC)


Figure 6. Forward Insertion Gain and Maximum Unilateral Gain versus Frequency


Figure 3. Output Capacitance versus Collector-Base Voltage


Figure 5. Forward Insertion Gain and Maximum Unilateral Gain versus Frequency


Figure 7. Minimum Noise Figure and Associated Gain versus Frequency

## TYPICAL CHARACTERISTICS



Figure 8. Minimum Noise Figure and Associated Gain versus Frequency

Figure 9. Minimum Noise Figure and Associated Gain versus Collector Current


Figure 10. Minimum Noise Figure and Associated Gain versus Collector Current


$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=3.0 \mathrm{~mA} \\
& \square \quad \text { - Potentially Unstable }
\end{aligned}
$$

$\mathrm{f}(\mathrm{MHz})$	NF OPT (dB)	$\Gamma \mathrm{MS} \mathrm{NF} \mathrm{OPT}$	$\mathrm{R}_{\mathrm{N}}$	K
500	1.60	$0.39 \angle 52^{\circ}$	19	0.67

Figure 11. Constant Gain and Noise Figure Contours

$\mathrm{V}_{C E}=3.0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{C}}=3.0 \mathrm{~mA}$

$f(\mathrm{MHz})$	NF OPT (dB)	ГMS NF OPT	$R_{N}$	K
1000	2.30	$0.29 \angle 110^{\circ}$	15	1.09

Figure 12. Constant Gain and Noise Figure Contours

$\mathrm{V}_{\mathrm{CE}}=6.0 \mathrm{~V}$
$\mathrm{I} \mathrm{C}=5.0 \mathrm{~mA}$
$\square-$ Potentially Unstable
$\square$

$\mathrm{f}(\mathrm{MHz})$	NF OPT (dB)	$\Gamma \mathrm{MS} \mathrm{NF} \mathrm{OPT}$	$\mathrm{R}_{\mathrm{N}}$	K
500	1.70	$0.35 \angle 45^{\circ}$	19	0.80

Figure 13. Constant Gain and Noise Figure Contours

$\mathrm{V}_{C E}=6.0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{~mA}$

$\mathrm{f}(\mathrm{MHz})$	NF OPT $(\mathrm{dB})$	ГMS NF OPT	$\mathrm{R}_{\mathrm{N}}$	K
1000	2.3	$0.25 \angle 99^{\circ}$	16	1.09

Figure 14. Constant Gain and Noise Figure Contours


Figure 15. Output Third Order Intercept versus Collector Current


Figure 16. Third Order Intercept and 1 dB Compression Point

| $\mathrm{V}_{\text {CE }}$ | IC | f (MHz) | $\mathrm{NF}_{\text {min }}(\mathrm{dB})$ | \|Gam Opt| | $\angle$ Gam Opt | $\mathrm{R}_{\mathrm{N}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3.0 V | 1 mA | 300 | 1.22 | 0.58 | 33 | 27 |
|  |  | 500 | 1.74 | 0.50 | 61 | 25 |
|  |  | 900 | 2.70 | 0.41 | 111 | 19 |
|  |  | 1000 | 2.93 | 0.40 | 121 | 18 |
|  |  | 1500 | 3.96 | 0.41 | 166 | 13 |
|  |  | 2000 | 4.83 | 0.54 | -165 | 13 |
|  | 3 mA | 300 | 1.25 | 0.46 | 26 | 20 |
|  |  | 500 | 1.57 | 0.39 | 52 | 19 |
|  |  | 900 | 2.19 | 0.30 | 100 | 16 |
|  |  | 1000 | 2.34 | 0.29 | 110 | 15 |
|  |  | 1500 | 3.08 | 0.31 | 158 | 13 |
|  |  | 2000 | 3.81 | 0.45 | -165 | 11 |
| 6.0 V | 3 mA | 300 | 1.28 | 0.49 | 23 | 22 |
|  |  | 500 | 1.60 | 0.41 | 48 | 20 |
|  |  | 900 | 2.24 | 0.30 | 94 | 17 |
|  |  | 1000 | 2.39 | 0.29 | 104 | 16 |
|  |  | 1500 | 3.18 | 0.30 | 153 | 14 |
|  |  | 2000 | 3.97 | 0.43 | -167 | 12 |
|  | 5 mA | 300 | 1.45 | 0.41 | 21 | 20 |
|  |  | 500 | 1.68 | 0.35 | 45 | 19 |
|  |  | 900 | 2.17 | 0.26 | 89 | 16 |
|  |  | 1000 | 2.30 | 0.25 | 100 | 16 |
|  |  | 1500 | 2.96 | 0.26 | 149 | 13 |
|  |  | 2000 | 3.66 | 0.39 | -167 | 12 |
|  | 10 mA | 300 | 1.96 | 0.27 | 21 | 20 |
|  |  | 500 | 2.09 | 0.23 | 46 | 19 |
|  |  | 900 | 2.40 | 0.20 | 93 | 16 |
|  |  | 1000 | 2.49 | 0.19 | 104 | 16 |
|  |  | 1500 | 3.00 | 0.24 | 154 | 14 |
|  |  | 2000 | 3.60 | 0.36 | -164 | 12 |

Table 1. MRF917T1 Common Emitter Noise Parameters

$\begin{gathered} \text { VCE } \\ \text { (Volts) } \end{gathered}$	$\begin{gathered} \mathrm{IC} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
			\|S ${ }_{11} \mid$	$\angle \phi$	${ }^{\text {S }} 21 \mid$	$\angle \phi$	${ }^{\text {S }}$ 12\|	$\angle \phi$	${ }^{\text {S }} \mathbf{2 2}$ \|	$\angle \phi$
3.0	3.0	0.10	0.814	-38	9.28	152	0.040	70	0.921	-18
		0.20	0.704	-69	7.56	132	0.066	56	0.784	-28
		0.30	0.615	-91	6.11	117	0.081	49	0.677	-34
		0.40	0.553	-109	5.01	106	0.091	46	0.602	-37
		0.50	0.512	-122	4.24	98	0.098	45	0.552	-39
		0.60	0.465	-134	3.59	92	0.104	44	0.510	-39
		0.70	0.447	-144	3.16	86	0.110	45	0.487	-40
		0.80	0.441	-151	2.79	81	0.117	45	0.472	-41
		0.90	0.428	-159	2.54	77	0.123	46	0.457	-43
		1.00	0.424	-165	2.32	72	0.129	47	0.447	-44
		1.50	0.423	170	1.64	55	0.167	51	0.420	-55
		2.00	0.439	152	1.30	40	0.211	52	0.413	-68
		2.50	0.462	135	1.09	28	0.263	51	0.407	-83
		3.00	0.485	122	0.95	19	0.321	48	0.406	-98
		4.00	0.543	98	0.77	5	0.446	38	0.410	-133
	5.0	0.10	0.717	-48	13.51	146	0.036	67	0.864	-24
		0.20	0.589	-83	10.13	124	0.057	55	0.678	-36
		0.30	0.511	-106	7.75	110	0.068	51	0.559	-41
		0.40	0.463	-123	6.17	101	0.078	50	0.485	-43
		0.50	0.436	-135	5.12	94	0.086	51	0.440	-44
		0.60	0.400	-146	4.31	88	0.094	52	0.402	-42
		0.70	0.390	-154	3.76	84	0.103	53	0.381	-43
		0.80	0.389	-162	3.32	79	0.112	53	0.367	-44
		0.90	0.381	-168	2.99	75	0.121	54	0.356	-45
		1.00	0.380	-173	2.73	71	0.130	55	0.347	-46
		1.50	0.388	165	1.91	55	0.179	55	0.323	-56
		2.00	0.406	148	1.51	42	0.229	53	0.316	-68
		2.50	0.431	133	1.27	30	0.281	50	0.310	-83
		3.00	0.456	121	1.11	20	0.335	46	0.309	-98
		4.00	0.519	99	0.90	4	0.446	36	0.322	-133
	10	0.10	0.552	-67	19.98	136	0.031	63	0.752	-34
		0.20	0.442	-105	13.19	114	0.045	57	0.523	-45
		0.30	0.398	-127	9.51	103	0.056	58	0.413	-49
		0.40	0.377	-142	7.37	95	0.067	59	0.351	-49
		0.50	0.365	-151	6.02	89	0.078	61	0.317	-50
		0.60	0.345	-162	5.05	85	0.089	62	0.284	-46
		0.70	0.343	-168	4.37	81	0.100	62	0.269	-46
		0.80	0.345	-174	3.86	77	0.112	62	0.258	-47
		0.90	0.341	-179	3.46	74	0.123	62	0.250	-48
		1.00	0.344	177	3.14	70	0.135	62	0.243	-49
		1.50	0.359	159	2.19	56	0.192	59	0.223	-58
		2.00	0.378	144	1.72	43	0.248	54	0.216	-71
		2.50	0.404	130	1.44	32	0.301	49	0.210	-87
		3.00	0.431	119	1.26	22	0.352	44	0.210	-102
		4.00	0.492	99	1.03	5	0.452	33	0.227	-138
	20	0.10	0.394	-94	25.51	125	0.024	64	0.612	-44
		0.20	0.349	-131	15.10	106	0.037	64	0.387	-52
		0.30	0.339	-148	10.51	97	0.049	66	0.301	-54
		0.40	0.336	-159	8.03	91	0.062	68	0.255	-54
		0.50	0.333	-165	6.50	86	0.075	68	0.232	-54
		0.60	0.323	-175	5.44	82	0.088	69	0.204	-48
		0.70	0.325	-179	4.70	79	0.100	68	0.194	-48
		0.80	0.329	176	4.14	75	0.113	68	0.185	-50
		0.90	0.329	173	3.71	72	0.126	67	0.180	-50
		1.00	0.332	169	3.36	69	0.139	66	0.175	-52
		1.50	0.351	154	2.33	56	0.201	61	0.160	-62
		2.00	0.372	141	1.82	44	0.258	55	0.155	-77
		2.50	0.399	128	1.53	33	0.313	50	0.151	-95
		3.00	0.423	118	1.34	24	0.364	44	0.152	-111
		4.00	0.486	98	1.09	7	0.459	32	0.174	-149

Table 2. MRF917T1 Common Emitter S-Parameters

VCE (Volts)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\stackrel{\mathrm{f}}{(\mathrm{GHz})}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
			\|S ${ }_{11} \mid$	$\angle \phi$	${ }^{\text {\| }}$ 21 ${ }^{\text {\| }}$	$\angle \phi$	\|S ${ }_{12} \mid$	$\angle \phi$	\|S22		$\angle \phi$
3.0	40	0.10	0.331	-127	26.91	116	0.020	67	0.480	-49	
		0.20	0.338	-154	14.86	100	0.033	70	0.297	-52	
		0.30	0.342	-164	10.16	93	0.046	72	0.239	-51	
		0.40	0.347	-171	7.70	88	0.060	73	0.210	-50	
		0.50	0.347	-175	6.22	84	0.074	73	0.196	-50	
		0.60	0.344	177	5.21	80	0.087	73	0.176	-44	
		0.70	0.346	174	4.49	77	0.100	72	0.171	-45	
		0.80	0.352	170	3.96	74	0.114	71	0.164	-47	
		0.90	0.352	167	3.54	71	0.127	70	0.161	-47	
		1.00	0.356	164	3.21	68	0.140	69	0.157	-50	
		1.50	0.377	151	2.23	55	0.202	63	0.145	-62	
		2.00	0.400	138	1.75	43	0.261	57	0.142	-80	
		2.50	0.426	126	1.47	33	0.317	50	0.139	-100	
		3.00	0.448	115	1.29	23	0.369	44	0.141	-117	
		4.00	0.504	96	1.06	7	0.465	32	0.166	-156	
6.0	3.0	0.10	0.829	-34	9.23	154	0.033	71	0.936	-14	
		0.20	0.720	-63	7.67	134	0.056	59	0.823	-23	
		0.30	0.627	-85	6.30	120	0.069	52	0.730	-28	
		0.40	0.557	-102	5.21	109	0.078	49	0.664	-31	
		0.50	0.509	-115	4.44	101	0.085	47	0.619	-32	
		0.60	0.456	-127	3.77	94	0.091	47	0.581	-32	
		0.70	0.434	-137	3.32	88	0.096	47	0.561	-33	
		0.80	0.425	-145	2.93	83	0.102	48	0.547	-34	
		0.90	0.408	-153	2.67	79	0.108	49	0.534	-35	
		1.00	0.402	-160	2.44	75	0.114	50	0.524	-37	
		1.50	0.396	174	1.72	57	0.148	54	0.501	-46	
		2.00	0.411	155	1.36	43	0.189	56	0.494	-58	
		2.50	0.435	137	1.14	31	0.237	56	0.485	-71	
		3.00	0.463	123	0.99	21	0.294	54	0.482	-84	
		4.00	0.525	99	0.79	7	0.424	45	0.473	-117	
	5.0	0.10	0.736	-43	13.73	148	0.030	69	0.888	-20	
		0.20	0.602	-75	10.55	126	0.048	58	0.727	-29	
		0.30	0.512	-98	8.19	113	0.059	54	0.620	-33	
		0.40	0.454	-114	6.56	103	0.068	53	0.553	-35	
		0.50	0.418	-127	5.47	96	0.076	53	0.512	-35	
		0.60	0.377	-138	4.61	90	0.083	54	0.479	-34	
		0.70	0.363	-147	4.03	85	0.091	55	0.461	-34	
		0.80	0.359	-155	3.55	81	0.099	56	0.448	-35	
		0.90	0.348	-162	3.21	77	0.107	57	0.438	-36	
		1.00	0.346	-168	2.92	73	0.116	57	0.430	-37	
		1.50	0.351	169	2.04	57	0.160	58	0.409	-46	
		2.00	0.370	152	1.60	44	0.206	57	0.401	-57	
		2.50	0.398	136	1.30	32	0.255	54	0.392	-69	
		3.00	0.425	123	1.17	22	0.307	51	0.389	-82	
		4.00	0.496	100	0.93	6	0.421	42	0.385	-113	
	10	0.100	0.547	-62	21.95	136	0.025	66	0.768	-29	
		0.200	0.417	-99	14.53	115	0.038	60	0.558	-37	
		0.300	0.362	-120	10.49	103	0.048	61	0.460	-38	
		0.400	0.334	-135	8.13	96	0.058	63	0.408	-38	
		0.500	0.319	-145	6.64	90	0.069	64	0.379	-38	
		0.600	0.294	-156	5.56	86	0.079	65	0.354	-34	
		0.700	0.291	-163	4.82	82	0.089	65	0.343	-34	
		0.800	0.293	-169	4.25	78	0.100	65	0.333	-35	
		0.900	0.290	-174	3.81	75	0.110	65	0.327	-36	
		1.000	0.292	-179	3.46	72	0.121	65	0.321	-37	
		1.500	0.307	162	2.40	58	0.174	62	0.304	-45	
		2.000	0.330	147	1.87	45	0.225	58	0.296	-56	
		2.500	0.359	133	1.57	34	0.275	53	0.285	-68	
		3.000	0.387	122	1.36	24	0.324	49	0.280	-80	
		4.000	0.461	101	1.10	7	0.424	38	0.275	-112	

Table 2. MRF917T1 Common Emitter S-Parameters (continued)

VCE (Volts)	$\begin{gathered} \mathrm{Ic} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
			${ }^{\text {\| }} 111$	$\angle \phi$	${ }^{\text {S }} 21$ \|	$\angle \phi$	${ }^{\text {S }} 12$ \|	$\angle \phi$	${ }^{\text {S }} 22 \mid$	$\angle \phi$
6.0	20	0.10	0.391	-85	27.76	125	0.020	66	0.637	-36
		0.20	0.313	-122	16.43	106	0.032	66	0.436	-39
		0.30	0.292	-140	11.44	98	0.043	68	0.365	-38
		0.40	0.284	-152	8.74	91	0.055	70	0.330	-36
		0.50	0.279	-159	7.08	87	0.067	70	0.313	-36
		0.60	0.266	-169	5.92	83	0.078	71	0.295	-32
		0.70	0.267	-174	5.11	80	0.090	70	0.289	-32
		0.80	0.272	-179	4.50	76	0.101	70	0.281	-33
		0.90	0.271	177	4.03	73	0.113	69	0.278	-34
		1.00	0.275	173	3.65	71	0.124	68	0.274	-35
		1.50	0.297	158	2.52	58	0.179	64	0.260	-43
		2.00	0.322	144	1.97	46	0.232	58	0.251	-55
		2.50	0.353	131	1.64	35	0.283	53	0.239	-68
		3.00	0.380	120	1.43	25	0.332	48	0.233	-81
		4.00	0.452	100	1.16	8	0.430	37	0.225	-113
	40	0.10	0.319	-114	27.96	116	0.017	67	0.532	-34
		0.20	0.295	-145	15.39	101	0.029	71	0.391	-31
		0.30	0.292	-157	10.51	93	0.040	73	0.353	-29
		0.40	0.295	-165	7.98	88	0.052	74	0.335	-28
		0.50	0.295	-170	6.45	85	0.064	74	0.327	-29
		0.60	0.290	-179	5.39	81	0.076	74	0.316	-26
		0.70	0.294	178	4.65	78	0.087	73	0.313	-27
		0.80	0.300	174	4.10	75	0.099	72	0.306	-29
		0.90	0.301	171	3.67	72	0.110	71	0.305	-30
		1.00	0.306	168	3.33	69	0.121	70	0.301	-32
		1.50	0.333	154	2.31	57	0.176	65	0.286	-42
		2.00	0.359	141	1.81	45	0.229	60	0.276	-54
		2.50	0.389	127	1.52	34	0.281	55	0.262	-68
		3.00	0.415	117	1.32	25	0.332	50	0.254	-81
		4.00	0.478	97	1.08	8	0.434	38	0.241	-113

Table 2. MRF917T1 Common Emitter S-Parameters (continued)

## The RF Small Signal Line NPN Silicon Low Voltage, Low Current, Low Noise, High-Frequency Transistors

Designed for use in low voltage, low current applications at frequencies to 2.0 GHz. Specifically aimed at portable communication devices such as pagers and hand-held phones.

- High Gain (GUmax 15 dB Typ @ 1.0 GHz ) @ 1.0 mA
- Small, Surface-Mount Package (SC-70)
- High Current Gain-Bandwidth Product at Low Current, Low Voltage ( $\mathfrak{f}_{\tau}=8.0 \mathrm{GHz}$ Typ @ 3.0 V, 5.0 mA )
- Available in Tape and Reel by Adding T1 or T3 Suffix to Part Number. T1 Suffix $=3,000$ Units per $8 \mathrm{~mm}, 7$ inch Reel.
T3 Suffix $=10,000$ Units per $8 \mathrm{~mm}, 7$ inch Reel.

```
 IC = 10 mA
 LOW NOISE
HIGH FREQUENCY
TRANSISTOR
```



CASE 419-02, STYLE 3 (SC-70/SOT-323)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	10	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	20	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	2.5	Vdc
Collector Current - Continuous	$\mathrm{I}_{\mathrm{C}}$	10	mAdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=50^{\circ} \mathrm{C}$   Derate above $50^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	100	mW
Storage Temperature Range		1.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	$\mathrm{T}_{\text {stg }}$	$-55 \mathrm{to}+150$	${ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS

Characteristic	Symbol	Value	Unit
Thermal Resistance, Junction-to-Case	$\mathrm{R}_{\theta \mathrm{JC}}$	1000	${ }^{\circ} \mathrm{C} / \mathrm{W}$

DEVICE MARKING

```
MRF927T1 = F
```

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ( $\mathrm{I} \mathrm{C}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0 \mathrm{~mA}$ )	$\mathrm{V}_{\text {(BR) }}$ CEO	10	-	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{I} \mathrm{C}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	20	-	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{I} E=0.1 \mathrm{~mA}, \mathrm{I} \mathrm{C}=0)$	$V_{(B R) E B O}$	1.5	-	-	Vdc
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=1.0 \mathrm{Vdc}, \mathrm{I} \mathrm{C}=0\right)$	IEBO	-	-	0.1	$\mu \mathrm{A}$

ON CHARACTERISTICS

DC Current Gain   $\left(V_{C E}=1.0\right.$ Vdc, $\left.I_{C}=0.5 \mathrm{~mA}\right)$	hFE	50	-	200	-

DYNAMIC CHARACTERISTICS

Collector-Base Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=1.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{cb}}$	-	0.33	-	pF
Current-Gain Bandwidth Product   $\left(\mathrm{V}_{\mathrm{CE}}=3.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=5.0 \mathrm{~mA}, \mathrm{f}=1.0 \mathrm{GHz}\right)$	$\mathrm{f}_{\tau}$	-	8.0	-	GHz

PERFORMANCE CHARACTERISTICS

Noise Figure - Minimum $\left(\mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{f}=1000 \mathrm{MHz}\right)$	Figure 3	$N F_{\text {min }}$	-	1.7	-	dB
Associated Gain at Minimum Noise Figure $\left(\mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{f}=1000 \mathrm{MHz}\right)$	Figure 3	$\mathrm{G}_{\mathrm{NF}}$	-	9.8	-	dB
Maximum Unilateral Gain $\left(\mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{f}=1000 \mathrm{MHz}\right)$		GUmax	-	15	-	dB
$\begin{aligned} & \text { Insertion Gain } \\ & \qquad\left(\mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{f}=1000 \mathrm{MHz}\right) \end{aligned}$		${ }^{-S_{21}{ }^{2} \mid}$	-	8.0	-	dB
Noise Resistance $\left(\mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=1.0 \mathrm{~mA}, \mathrm{f}=1000 \mathrm{MHz}\right)$		$\mathrm{R}_{\mathrm{N}}$	-	62	-	Ohms



Figure 1. $\mathrm{C}_{\mathrm{ib}}$ Input Capacitance versus Voltage


Figure 2. $\mathrm{C}_{\text {cb }}$, Collector-Base Capacitance versus Voltage


Figure 3. Functional Circuit Schematic


Figure 4. DC Current Gain versus Collector Current


Figure 6. Gain Bandwidth Product versus Collector Current


Figure 8. Forward Insertion Gain and Maximum Unilateral Gain versus Frequency


Figure 5. DC Current Gain versus Collector Current


Figure 7. Gain Bandwidth Product versus Collector Current


Figure 9. Forward Insertion Gain and Maximum Unilateral Gain versus Frequency

## TYPICAL CHARACTERISTICS



Figure 10. Minimum Noise Figure and Associated Gain versus Frequency


Figure 12. MSG, Maximum Stable Gain; MAG, Maximum Available Gain versus Frequency


Figure 13. MSG, Maximum Stable Gain; MAG, Maximum Available Gain versus Frequency


Figure 14. Noise Figure and Gain @ Minimum Noise Figure versus Collector Current

$\begin{gathered} \mathrm{V}_{\mathrm{CE}} \\ (\mathrm{Vdc}) \end{gathered}$	$\underset{(\mathrm{mA})}{\mathrm{Ic}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
			${ }^{\text {\| }}{ }_{11} \mid$	$\angle \phi$	${ }^{\text {S }} 21 \mid$	$\angle \phi$	${ }^{\text {S }}$ 12 ${ }^{\text {\| }}$	$\angle \phi$	${ }^{\text {\| }} \mathbf{2 2}$ \|	$\angle \phi$
1.0	0.25	0.10	0.992	-4	0.911	174	0.020	86	0.997	-3
		0.20	0.990	-9	0.903	169	0.039	83	0.993	-6
		0.30	0.983	-13	0.909	163	0.059	80	0.992	-8
		0.40	0.978	-17	0.904	157	0.077	77	0.988	-11
		0.50	0.973	-21	0.834	149	0.095	72	0.975	-13
		0.60	0.943	-25	0.892	144	0.111	69	0.966	-16
		0.70	0.929	-29	0.873	139	0.127	66	0.958	-19
		0.80	0.889	-33	0.901	135	0.142	63	0.949	-22
		0.90	0.895	-37	0.888	129	0.158	60	0.939	-24
		1.00	0.876	-41	0.890	124	0.171	57	0.929	-26
		1.50	0.772	-60	0.871	100	0.227	44	0.873	-38
		2.00	0.670	-78	0.835	80	0.261	34	0.823	-48
		2.50	0.564	-96	0.812	62	0.276	25	0.776	-58
		3.00	0.477	-114	0.785	48	0.276	18	0.741	-68
		3.50	0.412	-132	0.741	36	0.270	15	0.722	-77
		4.00	0.364	-151	0.701	25	0.261	14	0.711	-87
		4.50	0.308	-172	0.702	17	0.261	18	0.682	-97
		5.00	0.297	166	0.639	11	0.270	22	0.686	-107
	0.5	0.10	0.983	-5	1.788	174	0.020	86	0.994	-3
		0.20	0.977	-10	1.763	168	0.040	82	0.992	-7
		0.30	0.965	-16	1.764	162	0.059	79	0.984	-10
		0.40	0.953	-21	1.735	156	0.077	76	0.976	-13
		0.50	0.947	-26	1.637	147	0.094	70	0.954	-16
		0.60	0.901	-30	1.673	142	0.109	67	0.941	-19
		0.70	0.878	-34	1.619	137	0.124	64	0.927	-21
		0.80	0.827	-38	1.601	132	0.136	62	0.912	-24
		0.90	0.825	-43	1.594	127	0.151	58	0.893	-27
		1.00	0.796	-48	1.571	122	0.162	56	0.877	-29
		1.50	0.659	-67	1.420	99	0.207	45	0.797	-40
		2.00	0.535	-85	1.275	80	0.232	37	0.733	-49
		2.50	0.417	-102	1.177	63	0.247	32	0.678	-58
		3.00	0.332	-122	1.097	50	0.256	29	0.639	-67
		3.50	0.271	-143	1.014	38	0.265	28	0.617	-75
		4.00	0.238	-164	0.949	28	0.279	29	0.604	-84
		4.50	0.212	170	0.928	19	0.305	31	0.573	-94
		5.00	0.218	147	0.856	12	0.333	31	0.574	-105
	1.0	0.10	0.965	-7	3.383	172	0.020	85	0.990	-4
		0.20	0.952	-14	3.315	165	0.040	81	0.982	-9
		0.30	0.928	-20	3.277	157	0.057	77	0.965	-13
		0.40	0.905	-26	3.172	151	0.074	73	0.947	-16
		0.50	0.88	-33	3.027	141	0.090	67	0.910	-19
		0.60	0.819	-37	2.936	136	0.102	64	0.887	-23
		0.70	0.783	-42	2.804	130	0.115	61	0.861	-26
		0.80	0.725	-47	2.666	125	0.125	59	0.839	-28
		0.90	0.702	-52	2.623	119	0.136	56	0.810	-31
		1.00	0.664	-57	2.525	114	0.145	54	0.787	-33
		1.50	0.504	-75	2.085	93	0.181	47	0.690	-42
		2.00	0.382	-92	1.759	75	0.207	42	0.626	-50
		2.50	0.278	-108	1.548	61	0.229	40	0.577	-58
		3.00	0.21	-129	1.397	48	0.252	38	0.543	-66
		3.50	0.168	-154	1.271	38	0.276	36	0.523	-73
		4.00	0.15	-177	1.177	28	0.303	35	0.513	-82
		4.50	0.148	155	1.123	19	0.336	34	0.490	-91
		5.00	0.165	132	1.049	12	0.369	32	0.487	-101

Table 1. Common Emitter S-Parameters

$\begin{aligned} & \mathrm{V}_{\mathrm{CE}} \\ & (\mathrm{Vdc}) \end{aligned}$	$\underset{(\mathrm{mA})}{\mathrm{Ic}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
			${ }^{\text {\| }}$ 11]	$\angle \phi$	${ }^{\text {\| }} \mathbf{2 1}$ \|	$\angle \phi$	${ }^{\text {S }} 12 \mid$	$\angle \phi$	${ }^{\text {S }} \mathbf{2 2}$ \|	$\angle \phi$
1.0	2.0	0.10	0.928	-10	6.181	169	0.020	83	0.980	-6
		0.20	0.901	-19	5.967	160	0.037	78	0.959	-12
		0.30	0.856	-28	5.744	150	0.054	73	0.923	-17
		0.40	0.811	-36	5.410	142	0.068	69	0.886	-22
		0.50	0.753	-43	5.051	132	0.080	63	0.828	-25
		0.60	0.681	-48	4.679	126	0.091	61	0.790	-28
		0.70	0.632	-54	4.367	119	0.100	59	0.753	-31
		0.80	0.574	-59	4.021	114	0.108	57	0.726	-33
		0.90	0.538	-64	3.831	109	0.116	55	0.692	-35
		1.00	0.497	-68	3.595	104	0.123	54	0.667	-37
		1.50	0.349	-86	2.732	85	0.156	50	0.576	-44
		2.00	0.255	-102	2.200	70	0.186	47	0.527	-50
		2.50	0.182	-120	1.871	57	0.216	45	0.491	-58
		3.00	0.137	-143	1.647	46	0.246	42	0.469	-66
		3.50	0.115	-167	1.478	36	0.276	39	0.460	-73
		4.00	0.109	167	1.356	27	0.306	36	0.453	-81
		4.50	0.115	138	1.268	19	0.337	33	0.443	-89
		5.00	0.136	119	1.190	11	0.368	30	0.441	-98

Table 1. Common Emitter S-Parameters (continued)

$\begin{aligned} & \text { VCE } \\ & \text { (Vdc) } \end{aligned}$	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\stackrel{\mathbf{f}}{(\mathrm{GHz})}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
			${ }^{\text {\| }}$ 11 1	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	\|S ${ }_{12} \mid$	$\angle \phi$	${ }^{\text {S }} \mathbf{2 2}$ \|	$\angle \phi$
3.0	0.5	0.10	0.985	-5	1.796	174	0.018	86	0.995	-3
		0.20	0.980	-10	1.776	169	0.034	83	0.993	-6
		0.30	0.969	-15	1.778	163	0.051	79	0.986	-9
		0.40	0.959	-19	1.753	157	0.066	76	0.980	-12
		0.50	0.952	-24	1.651	149	0.081	71	0.961	-14
		0.60	0.910	-28	1.693	144	0.095	68	0.949	-17
		0.70	0.888	-32	1.639	139	0.108	65	0.937	-20
		0.80	0.841	-36	1.628	134	0.119	63	0.924	-23
		0.90	0.839	-41	1.618	129	0.131	60	0.908	-25
		1.00	0.812	-45	1.596	124	0.142	57	0.894	-27
		1.50	0.681	-64	1.445	102	0.184	47	0.824	-38
		2.00	0.565	-80	1.294	83	0.210	39	0.768	-47
		2.50	0.455	-96	1.190	66	0.226	33	0.720	-56
		3.00	0.369	-112	1.106	53	0.237	30	0.687	-64
		3.50	0.308	-128	1.019	41	0.246	28	0.670	-72
		4.00	0.264	-146	0.950	30	0.256	28	0.661	-81
		4.50	0.212	-166	0.933	21	0.274	29	0.638	-89
		5.00	0.201	171	0.858	13	0.294	30	0.642	-99
	1.0	0.10	0.969	-6	3.341	173	0.017	85	0.992	-4
		0.20	0.958	-13	3.284	166	0.034	81	0.985	-8
		0.30	0.938	-19	3.255	159	0.050	78	0.972	-11
		0.40	0.917	-24	3.163	152	0.064	74	0.957	-15
		0.50	0.896	-30	3.019	143	0.078	68	0.925	-18
		0.60	0.838	-35	2.951	138	0.089	66	0.905	-21
		0.70	0.805	-40	2.823	132	0.101	63	0.883	-23
		0.80	0.750	-44	2.700	127	0.110	61	0.864	-26
		0.90	0.732	-49	2.661	122	0.121	58	0.838	-28
		1.00	0.696	-53	2.570	117	0.129	56	0.818	-31
		1.50	0.541	-71	2.139	95	0.163	48	0.731	-40
		2.00	0.424	-86	1.807	78	0.188	43	0.674	-47
		2.50	0.325	-100	1.588	63	0.210	40	0.629	-55
		3.00	0.252	-116	1.430	51	0.230	37	0.600	-63
		3.50	0.204	-132	1.294	40	0.250	36	0.589	-70
		4.00	0.170	-150	1.195	30	0.272	34	0.581	-78
		4.50	0.136	-173	1.141	21	0.297	33	0.565	-86
		5.00	0.134	162	1.063	13	0.323	32	0.566	-95

Table 2. Common Emitter S-Parameters

VCE(Vdc)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$			
			${ }^{\text {\| }}$ 11\|	$\angle \phi$	\|S21		$\angle \phi$	${ }^{\text {\| }}$ 12\| ${ }^{\text {\| }}$	$\angle \phi$	\|S22		$\angle \phi$
3.0	3.0	0.10	0.902	-11	8.541	168	0.017	83	0.976	-7		
		0.20	0.863	-21	8.133	156	0.031	77	0.946	-13		
		0.30	0.805	-31	7.647	146	0.045	73	0.901	-18		
		0.40	0.746	-39	7.050	137	0.056	69	0.856	-22		
		0.50	0.673	-45	6.436	127	0.066	65	0.794	-24		
		0.60	0.604	-50	5.853	121	0.074	63	0.757	-27		
		0.70	0.552	-55	5.378	115	0.082	61	0.721	-29		
		0.80	0.499	-59	4.897	110	0.089	60	0.697	-30		
		0.90	0.461	-63	4.586	105	0.096	59	0.667	-32		
		1.00	0.424	-66	4.260	100	0.103	59	0.647	-33		
		1.50	0.295	-80	3.141	83	0.136	56	0.578	-38		
		2.00	0.215	-91	2.494	70	0.169	54	0.542	-44		
		2.50	0.152	-105	2.101	58	0.201	51	0.514	-51		
		3.00	0.108	-124	1.837	47	0.232	47	0.497	-59		
		3.50	0.083	-146	1.641	38	0.263	44	0.490	-66		
		4.00	0.071	-173	1.501	30	0.294	41	0.485	-73		
		4.50	0.069	148	1.395	21	0.325	38	0.480	-81		
		5.00	0.090	121	1.310	14	0.357	35	0.478	-90		
	5.0	0.10	0.839	-15	12.345	164	0.016	81	0.961	-9		
		0.20	0.774	-28	11.339	149	0.030	75	0.906	-16		
		0.30	0.690	-38	10.154	137	0.041	71	0.840	-21		
		0.40	0.614	-47	8.971	127	0.050	68	0.780	-24		
		0.50	0.528	-52	7.877	119	0.058	65	0.715	-26		
		0.60	0.464	-57	6.974	112	0.066	64	0.677	-27		
		0.70	0.414	-61	6.267	107	0.073	63	0.646	-28		
		0.80	0.370	-65	5.628	102	0.080	63	0.625	-29		
		0.90	0.338	-68	5.165	98	0.087	63	0.602	-30		
		1.00	0.307	-71	4.742	94	0.094	62	0.587	-31		
		1.50	0.207	-83	3.389	79	0.130	61	0.536	-36		
		2.00	0.148	-96	2.658	66	0.165	58	0.512	-41		
		2.50	0.100	-113	2.221	56	0.200	54	0.490	-49		
		3.00	0.072	-138	1.930	46	0.233	51	0.475	-56		
		3.50	0.059	-168	1.720	37	0.266	47	0.470	-64		
		4.00	0.062	152	1.569	29	0.299	43	0.466	-72		
		4.50	0.080	118	1.451	21	0.331	40	0.462	-80		
		5.00	0.107	103	1.362	14	0.365	36	0.460	-88		

Table 2. Common Emitter S-Parameters (continued)

$\begin{aligned} & \mathrm{V}_{\mathrm{CE}} \\ & (\mathrm{Vdc}) \end{aligned}$	$\underset{(\mathrm{mA})}{\mathrm{IC}_{2}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	$\underset{(\mathrm{dB})}{\mathrm{NF}_{\text {min }}}$	$\begin{gathered} \Gamma_{0} \\ \text { (MAG, ANG) } \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{N}} \\ \text { (ohms) } \end{gathered}$
1.0	0.5	300	1.65	$0.81 \angle 8$	89
		500	1.70	$0.80<13$	86
		900	1.85	$0.77 \angle 23$	78
		1000	1.90	$0.77 \angle 25$	76
		1500	2.05	$0.74<40$	64
		2000	2.20	$0.70 \angle 56$	50
	1.0	300	1.45	$0.76 \angle 7$	71
		500	1.47	$0.76<12$	69
		900	1.65	$0.75<21$	63
		1000	1.70	$0.74 \angle 24$	62
		1500	1.90	$0.71<38$	53
		2000	2.05	$0.67 \angle 55$	44

Table 3. Common-Emitter Noise Parameters

$\begin{aligned} & \mathrm{V}_{\mathrm{CE}} \\ & (\mathrm{Vdc}) \end{aligned}$	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{NF}_{\min }$ (dB)	$\begin{gathered} \Gamma_{0} \\ \text { (MAG, ANG) } \end{gathered}$	$\begin{gathered} \mathrm{R}_{\mathrm{N}} \\ \text { (ohms) } \end{gathered}$
3.0	1.0	300	1.60	$0.72 \angle 7$	61
		500	1.62	$0.72<12$	60
		900	1.64	$0.70<21$	57
		1000	1.64	$0.70<24$	56
		1500	1.70	$0.67 \angle 39$	49
		2000	1.80	$0.63 \angle 55$	41
	3.0	300	1.80	$0.63 \angle 7$	48
		500	1.82	$0.62<11$	47
		900	1.84	$0.60<19$	45
		1000	1.85	$0.59 \angle 22$	44
		1500	1.94	$0.56 \angle 37$	40
		2000	2.12	$0.51 \angle 56$	34

Table 3. Common-Emitter Noise Parameters (continued)

Name	Value	Name	Value	Name	Value
IS	$187.1 \mathrm{E}-18$	IRB	$80.0 \mathrm{E}-6$	TF	$13.0 \mathrm{E}-12$
BF	133	RBM	31	XTF	500
NF	0.9958	RE	3.3	VTF	1.1
VAF	40	RC	0	ITF	0.35
IKF	0.07	XTB	$0(1)$	PTF	50
ISE	$5.393 E-12$	EG	$1.11(1)$	TR	$2.38 \mathrm{E}-9$
NE	4.933	XTI	$3(1)$	FC	0.9
BR	17	CJE	$280.0 \mathrm{E}-15$	CJS	$0(1)$
NR	0.9929	VJE	0.884	VJS	$1(1)$
VAR	2.6	MJE	0.318	MJS	$0(1)$
IRR	0.018	CJC	$290.0 \mathrm{E}-15$	AF	$1(1)$
ISC	$28.92 \mathrm{E}-18$	VJC	0.424	KF	$0(1)$
NC	1.049	MJC	0.108		
RB	31	XCJC	0.2		

Note

1. These parameters have not been extracted. Default values are shown.

Table 4. Spice Parameters (MRF927 Die Gummel-Poon Parameters)


Figure 15. MRF927 SC-70 Package Equivalent Circuit

$\mathrm{V}_{C E}=1.0 \mathrm{~V}$
$\mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA}$
$\square$ - Potentially Unstable

$\mathrm{f}(\mathrm{MHz})$	NF OPT (dB)	ГMS NF OPT	Rn	K
500	1.7	$0.80 \angle 13^{\circ}$	86	0.25

Figure 16. Constant Gain and Noise Figure Contours


$\mathrm{f}(\mathrm{MHz})$	NF OPT (dB)	$\Gamma \mathrm{MS} \mathrm{NF} \mathrm{OPT}$	Rn	K
500	1.47	$0.76 \angle 12^{\circ}$	69	0.29

Figure 17. Constant Gain and Noise Figure Contours


$$
\begin{aligned}
& \mathrm{V}_{\mathrm{CE}}=1.0 \mathrm{~V} \\
& \mathrm{I}_{\mathrm{C}}=0.5 \mathrm{~mA} \\
& \square \text { - Potentially Unstable }
\end{aligned}
$$

$\mathrm{f}(\mathrm{MHz})$	NF OPT (dB)	ГMS NF OPT	Rn	K
1000	1.9	$0.77 \angle 25^{\circ}$	76	0.43

Figure 18. Constant Gain and Noise Figure Contours


$\mathrm{f}(\mathrm{MHz})$	NF OPT $(\mathrm{dB})$	$\Gamma \mathrm{MS} \mathrm{NF} \mathrm{OPT}$	Rn	K
1000	1.7	$0.74 \angle 24^{\circ}$	62	0.51

Figure 19. Constant Gain and Noise Figure Contours

## The RF Line <br> NPN Silicon Low Noise Transistors

Motorola's MRF949 is a high performance NPN transistor designed for use in high gain, low noise small-signal amplifiers. The MRF949 is well suited for low voltage wireless applications. This device features a 9 GHz DC current gain-bandwidth product with excellent linearity.

- Low Noise Figure, $\mathrm{NF}_{\min }=1.4 \mathrm{~dB}$ (Typ) @ $1 \mathrm{GHz} @ 5 \mathrm{~mA}$
- High Current Gain-Bandwidth Product, $\mathrm{f}_{\mathrm{t}}=9 \mathrm{GHz} @ 15 \mathrm{~mA}$
- Maximum Stable Gain = 18 dB @ 1 GHz @ 5 mA
- Output Third Order Intercept, OIP3 = +29 dBm @ 1 GHz @ 10 mA
- Fully Ion-Implanted with Gold Metallization and Nitride Passivation
- Available in Tape and Reel Packaging Options:

T1 Suffix = 3,000 Units per Reel

MRF949T1
$I_{\text {Cmax }}=50 \mathrm{~mA}$ LOW NOISE TRANSISTORS

CASE 463-01, STYLE 1
(SC-90/SC-75)

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	10	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	20	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	1.5	Vdc
Power Dissipation (1) $\mathrm{T} \mathrm{C}=75^{\circ} \mathrm{C}$   Derate linearly above $\mathrm{T} \mathrm{C}=75^{\circ} \mathrm{C} @$	$\mathrm{P}_{\text {Dmax }}$	0.144	1.92

## DEVICE MARKINGS

MRF949T1 = JL
(1) To calculate the junction temperature use $T_{J}=\left(P_{D} \times R_{\theta J C}\right)+T_{C}$. The case temperature is measured on collector lead adjacent to the package body.
(2) IC —Continuous (MTBF > 10 years).

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (3)					
Collector-Emitter Breakdown Voltage $\left(I_{C}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\left.\mathrm{V}_{( } \mathrm{BR}\right) \mathrm{CEO}$	10	12	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(1 \mathrm{BR}) \mathrm{CBO}}$	20	23	-	Vdc
Emitter Cutoff Current $\left(V_{E B}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\right)$	IEBO	-	-	0.1	$\mu \mathrm{A}$
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	0.1	$\mu \mathrm{A}$

ON CHARACTERISTICS (3)

DC Current Gain (VCE $=6 \mathrm{~V}, \mathrm{I} \mathrm{I}=5 \mathrm{~mA})$	hFE	50	-	-	-

## DYNAMIC CHARACTERISTICS

Collector-Base Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$   $\left(\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{cb}}$			pF	
Current Gain - Bandwidth Product   $\left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I} \mathrm{C}=30 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right)$		-	0.4	-	

PERFORMANCE CHARACTERISTICS

Conditions	Symbol	Min	Typ	Max	Unit
Insertion Gain $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I} \mathrm{I}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{aligned}$	$\left\|S_{21}\right\|^{2}$	-	$\begin{gathered} 7 \\ 15 \end{gathered}$		dB
Maximum Unilateral Gain (4) $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I} \mathrm{C}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{aligned}$	$G_{U \max }$	-	$\begin{aligned} & 13 \\ & 17 \end{aligned}$	-	dB
Maximum Stable Gain and/or Maximum Available Gain (5) $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I} \mathrm{I}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I} \mathrm{I}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{aligned}$	MSG MAG		$\begin{aligned} & 12 \\ & 18 \end{aligned}$	-	dB
$\begin{aligned} & \text { Noise Figure-Minimum } \\ & \qquad \begin{array}{l} \text { (VCE }=1 \mathrm{~V}, \mathrm{IC}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}) \\ \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{array} \end{aligned}$	$\mathrm{NF}_{\text {min }}$		$\begin{aligned} & 1.6 \\ & 1.4 \end{aligned}$		dB
Noise Resistance $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{IC}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{aligned}$	$\mathrm{R}_{\mathrm{N}}$	-	$\begin{aligned} & 24 \\ & 19 \end{aligned}$	-	$\Omega$
Associated Gain at Minimum NF $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I} \mathrm{C}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ & (\mathrm{V} \mathrm{CE}=6 \mathrm{~V}, \mathrm{I} \mathrm{C}=5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}) \end{aligned}$	$\mathrm{G}_{\mathrm{NF}}$	-	$\begin{aligned} & 10 \\ & 15 \end{aligned}$	-	dB
Output Power at 1 dB Gain Compression (6) $\left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right)$	$\mathrm{P}_{1 \mathrm{~dB}}$	-	+13	-	dBm
Output Third Order Intercept (6) $\left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right.$ )	$\mathrm{OIP}_{3}$	-	+28	-	dBm

(3) Pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$ pulsed.
(4) Maximum unilateral gain is $G_{U \max }=\frac{\left|\mathrm{S}_{21}\right|^{2}}{\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)}$
(5) Maximum available gain and maximum stable gain are defined by the $K$ factor as follows: MAG $=\frac{\left|S_{21}\right|}{\left|S_{12}\right|}\left(K \pm \sqrt{K^{2}-1}\right)$, if $K>1$
(6) $Z_{\text {in }}=50 \Omega$ and $Z_{\text {out }}$ matched for optimum IP3.

$$
M S G=\frac{\left|S_{21}\right|}{\left|S_{12}\right|} \text {, if } \mathrm{K}<1
$$

## TYPICAL CHARACTERISTICS



Figure 1. Capacitance versus Voltage


Figure 3. DC Current Gain versus Collector Current


Figure 2. Input Capacitance versus Voltage


Figure 4. Gain-Bandwidth Product versus Collector Current


Figure 5. Functional Circuit Schematic


Figure 6. Maximum Stable/Available Gain versus Frequency


Figure 8. Maximum Unilateral Gain and Forward Insertion Gain versus Frequency


Figure 10. Maximum Unilateral Gain and Forward Insertion Gain versus Collector Current


Figure 7. Maximum Stable/Available Gain versus Frequency


Figure 9. Maximum Unilateral Gain and Forward Insertion Gain versus Frequency


Figure 11. Maximum Unilateral Gain and Forward Insertion Gain versus Collector Current

## TYPICAL CHARACTERISTICS



Figure 12. Maximum Stable/Available Gain versus Collector Current

$I^{\prime}$, COLLECTOR CURRENT (mA)
Figure 13. Maximum Stable/Available Gain versus Collector Current


Figure 14. Minimum Noise Figure and Associated Gain versus Frequency


Figure 15. Minimum Noise Figure and Associated Gain versus Frequency


Figure 16. Minimum Noise Figure and Associated Gain versus Collector Current


Figure 17. Minimum Noise Figure and Associated Gain versus Collector Current

TYPICAL CHARACTERISTICS


Figure 18. Output Third Order Intercept and Output Power at 1 dB Gain Compression versus Collector Current


Figure 19. MRF949T1 Series Constant Gain and Noise Figure Contours
$\mathrm{V} C E=1 \mathrm{~V}$
$\mathrm{I}=1 \mathrm{~mA}$

f	NF			
(GHz)	NFT	$\Gamma_{0}$	$\mathrm{R}_{\mathrm{N}}$	K
2.0	2.08 dB	$0.50 \angle 119.8^{\circ}$	13	0.93



Figure 20. MRF949T1 Series Constant Gain and Noise Figure Contours


Figure 21. MRF949T1 Series Constant Gain and Noise Figure Contours


Figure 22. MRF949T1 Series Constant Gain and Noise Figure Contours

$\mathrm{V}_{\mathrm{VE}}$ $(\mathrm{Vdc})$   (Vdc)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
			$\left\|S_{11}\right\|$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
1.0	1.0	0.1	0.964	-12	3.62	171	0.028	82	0.989	-6	
		0.3	0.926	-36	3.41	152	0.078	69	0.950	-17	
		0.5	0.872	-55	2.98	135	0.115	56	0.878	-24	
		0.7	0.773	-73	2.67	121	0.140	47	0.811	-31	
		0.9	0.701	-89	2.40	110	0.157	40	0.751	-37	
		1.0	0.672	-96	2.27	105	0.163	37	0.725	-39	
		1.3	0.605	-116	1.95	90	0.172	31	0.660	-44	
		1.5	0.579	-127	1.77	83	0.176	27	0.631	-48	
		2.0	0.537	-152	1.43	66	0.173	24	0.584	-56	
		2.5	0.521	-173	1.22	52	0.168	25	0.555	-65	
		3.0	0.520	171	1.06	41	0.168	31	0.542	-74	
		3.5	0.529	157	0.94	31	0.179	38	0.543	-84	
		4.0	0.543	145	0.84	24	0.205	45	0.541	-95	
		4.5	0.552	133	0.79	17	0.248	48	0.525	-106	
		5.0	0.571	123	0.72	13	0.296	48	0.527	-117	
	3.0	0.1	0.896	-20	9.79	165	0.027	79	0.960	-12	
		0.3	0.780	-57	8.17	138	0.068	61	0.826	-29	
		0.5	0.653	-80	6.36	120	0.089	51	0.680	-38	
		0.7	0.551	-101	5.11	107	0.103	46	0.578	-43	
		0.9	0.488	-117	4.23	97	0.113	43	0.510	-47	
		1.0	0.468	-125	3.89	93	0.117	43	0.484	-48	
		1.3	0.431	-143	3.14	82	0.128	43	0.425	-51	
		1.5	0.420	-153	2.78	77	0.137	43	0.401	-54	
		2.0	0.410	-174	2.16	63	0.157	44	0.364	-60	
		2.5	0.415	169	1.80	52	0.179	45	0.343	-68	
		3.0	0.426	157	1.55	43	0.205	46	0.332	-76	
		3.5	0.439	146	1.37	34	0.234	46	0.332	-85	
		4.0	0.454	137	1.24	26	0.265	45	0.329	-95	
		4.5	0.470	128	1.13	19	0.302	44	0.323	-105	
		5.0	0.492	119	1.05	12	0.339	41	0.324	-116	
	5.0	0.1	0.831	-27	14.66	160	0.026	75	0.929	-16	
		0.3	0.668	-72	10.92	129	0.059	57	0.719	-37	
		0.5	0.530	-97	7.88	112	0.075	51	0.556	-44	
		0.7	0.450	-118	6.06	100	0.087	49	0.458	-48	
		0.9	0.409	-133	4.89	92	0.098	49	0.400	-50	
		1.0	0.397	-140	4.47	88	0.103	50	0.379	-51	
		1.3	0.378	-157	3.55	79	0.119	51	0.331	-53	
		1.5	0.376	-166	3.12	74	0.131	51	0.312	-56	
		2.0	0.378	177	2.41	62	0.159	52	0.283	-62	
		2.5	0.392	162	1.99	52	0.190	51	0.266	-70	
		3.0	0.402	151	1.71	43	0.221	50	0.258	-78	
		3.5	0.417	141	1.51	35	0.253	48	0.257	-87	
		4.0	0.433	133	1.36	27	0.286	46	0.254	-97	
		4.5	0.451	125	1.25	20	0.321	43	0.250	-107	
		5.0	0.469	117	1.16	13	0.356	40	0.251	-118	

Table 1. Common Emitter S-Parameters

VCE   (Vdc)	$\underset{(\mathrm{mA})}{\mathrm{Ic}}$	$\begin{gathered} \mathbf{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$			
			\|S ${ }_{11}$ \|	$\angle \phi$	\|S21		$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
3.0	3.0	0.1	0.909	-17	9.75	166	0.019	80	0.972	-9		
		0.3	0.805	-48	8.43	142	0.051	65	0.874	-22		
		0.5	0.680	-70	6.76	124	0.070	55	0.756	-29		
		0.7	0.567	-89	5.55	111	0.082	51	0.669	-33		
		0.9	0.490	-104	4.65	102	0.091	48	0.608	-36		
		1.0	0.464	-111	4.30	98	0.095	48	0.587	-37		
		1.3	0.408	-130	3.49	86	0.105	48	0.534	-39		
		1.5	0.391	-141	3.10	81	0.113	48	0.513	-41		
		2.0	0.366	-163	2.42	68	0.131	50	0.479	-46		
		2.5	0.365	178	2.01	56	0.151	52	0.459	-52		
		3.0	0.371	164	1.73	47	0.175	53	0.448	-59		
		3.5	0.385	152	1.52	38	0.202	54	0.446	-67		
		4.0	0.404	142	1.37	30	0.232	54	0.443	-75		
		4.5	0.420	132	1.26	23	0.268	53	0.436	-83		
		5.0	0.443	124	1.16	16	0.307	51	0.434	-92		
	5.0	0.1	0.853	-22	14.73	162	0.019	78	0.950	-12		
		0.3	0.697	-60	11.59	134	0.045	62	0.791	-27		
		0.5	0.547	-82	8.62	116	0.060	56	0.652	-32		
		0.7	0.447	-102	6.75	104	0.070	54	0.565	-35		
		0.9	0.386	-117	5.50	96	0.080	54	0.513	-37		
		1.0	0.368	-124	5.03	92	0.085	54	0.494	-37		
		1.3	0.332	-142	4.02	83	0.099	55	0.453	-39		
		1.5	0.323	-152	3.54	78	0.109	56	0.436	-40		
		2.0	0.315	-173	2.74	66	0.134	57	0.408	-45		
		2.5	0.323	170	2.26	56	0.161	57	0.392	-51		
		3.0	0.334	158	1.93	47	0.189	56	0.384	-58		
		3.5	0.348	147	1.70	38	0.218	55	0.380	-65		
		4.0	0.369	138	1.53	31	0.249	53	0.376	-73		
		4.5	0.387	130	1.40	24	0.283	51	0.371	-81		
		5.0	0.410	122	1.30	17	0.319	49	0.367	-89		
	10.0	0.1	0.730	-33	23.83	154	0.017	74	0.896	-17		
		0.3	0.518	-80	15.52	122	0.037	61	0.647	-33		
		0.5	0.382	-103	10.52	106	0.049	60	0.517	-34		
		0.7	0.319	-122	7.89	96	0.060	61	0.450	-35		
		0.9	0.287	-137	6.28	89	0.072	62	0.414	-35		
		1.0	0.279	-144	5.71	86	0.078	63	0.402	-35		
		1.3	0.268	-159	4.49	79	0.096	64	0.374	-36		
		1.5	0.269	-168	3.94	74	0.108	64	0.362	-38		
		2.0	0.278	176	3.02	64	0.139	63	0.343	-42		
		2.5	0.294	161	2.48	55	0.171	61	0.331	-49		
		3.0	0.311	151	2.12	47	0.202	59	0.323	-56		
		3.5	0.329	142	1.86	39	0.233	56	0.319	-63		
		4.0	0.347	134	1.68	31	0.265	53	0.314	-71		
		4.5	0.367	127	1.53	24	0.298	51	0.309	-79		
		5.0	0.390	120	1.42	18	0.332	47	0.305	-87		

Table 1. Common Emitter S-Parameters (continued)

VCE   (Vdc)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$				
			\|S11		$\angle \phi$	\|S21		$\angle \phi$	${ }^{\text {\| }} \mathrm{S}_{12} \mid$	$\angle \phi$	\|S22		$\angle \phi$
6.0	5.0	0.1	0.870	-20	14.57	163	0.016	79	0.958	-10			
		0.3	0.719	-55	11.68	136	0.040	64	0.822	-23			
		0.5	0.566	-76	8.81	118	0.053	58	0.697	-28			
		0.7	0.457	-94	6.96	106	0.063	56	0.619	-30			
		0.9	0.387	-109	5.69	98	0.072	56	0.571	-31			
		1.0	0.365	-115	5.22	94	0.076	56	0.554	-32			
		1.3	0.320	-133	4.18	84	0.089	57	0.516	-33			
		1.5	0.306	-143	3.69	79	0.098	58	0.501	-35			
		2.0	0.291	-164	2.86	67	0.121	59	0.476	-39			
		2.5	0.293	178	2.35	57	0.146	60	0.462	-45			
		3.0	0.304	165	2.02	48	0.171	59	0.454	-51			
		3.5	0.319	154	1.78	40	0.198	59	0.452	-58			
		4.0	0.339	145	1.60	32	0.228	58	0.449	-65			
		4.5	0.359	136	1.46	25	0.261	56	0.445	-72			
		5.0	0.384	128	1.35	18	0.297	54	0.442	-80			
	15.0	0.1	0.698	-37	28.78	150	0.014	74	0.877	-17			
		0.3	0.465	-84	17.38	118	0.030	63	0.627	-29			
		0.5	0.331	-105	11.47	103	0.041	64	0.525	-28			
		0.7	0.274	-123	8.50	95	0.052	66	0.478	-27			
		0.9	0.248	-137	6.74	88	0.063	67	0.453	-27			
		1.0	0.241	-143	6.12	85	0.069	67	0.443	-27			
		1.3	0.232	-158	4.80	78	0.086	68	0.425	-28			
		1.5	0.235	-165	4.20	74	0.098	68	0.415	-30			
		2.0	0.247	179	3.22	64	0.127	66	0.400	-34			
		2.5	0.264	165	2.64	55	0.156	64	0.390	-41			
		3.0	0.279	156	2.25	48	0.185	62	0.385	-47			
		3.5	0.297	148	1.98	40	0.214	60	0.381	-54			
		4.0	0.317	141	1.78	33	0.245	57	0.376	-61			
		4.5	0.338	134	1.62	26	0.276	55	0.371	-69			
		5.0	0.361	127	1.50	19	0.310	52	0.366	-76			
	30.0	0.1	0.550	-54	35.24	141	0.012	70	0.801	-20			
		0.3	0.351	-107	17.63	109	0.024	66	0.562	-25			
		0.5	0.267	-130	11.12	97	0.035	70	0.506	-21			
		0.7	0.246	-147	8.12	90	0.047	72	0.481	-21			
		0.9	0.239	-158	6.39	84	0.058	72	0.467	-22			
		1.0	0.239	-163	5.79	82	0.064	73	0.462	-22			
		1.3	0.245	-174	4.52	75	0.082	72	0.450	-24			
		1.5	0.253	-180	3.96	71	0.094	72	0.444	-26			
		2.0	0.272	168	3.04	62	0.123	70	0.433	-32			
		2.5	0.296	156	2.48	53	0.152	68	0.425	-39			
		3.0	0.315	148	2.12	45	0.182	66	0.421	-46			
		3.5	0.339	140	1.86	38	0.213	64	0.417	-54			
		4.0	0.358	134	1.67	31	0.245	62	0.414	-61			
		4.5	0.381	127	1.52	24	0.279	59	0.410	-69			
		5.0	0.406	120	1.40	18	0.317	56	0.406	-77			

Table 1. Common Emitter S-Parameters (continued)

$\begin{aligned} & \mathrm{V}_{\mathrm{CE}} \\ & \text { (Vdc) } \end{aligned}$	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{NF}_{\text {min }}$ (dB)	Го		$\begin{aligned} & \mathrm{R}_{\mathrm{N}} \\ & (\Omega) \end{aligned}$	$\mathrm{R}_{\mathrm{N}}$	$\begin{aligned} & G_{N F} \\ & \text { (dB) } \end{aligned}$
				MAG	$\angle \phi$			
1.0	1.0	0.3	1.14	0.67	16	29	0.58	17.3
		0.5	1.24	0.63	28	28	0.56	14.8
		0.7	1.35	0.60	40	27	0.53	12.5
		0.9	1.50	0.57	52	25	0.51	10.6
		1.0	1.57	0.56	58	24	0.49	9.7
		1.5	1.86	0.51	89	19	0.39	6.5
		2.0	2.08	0.50	120	13	0.26	5.2
3.0	3.0	0.3	1.04	0.57	12	21	0.42	21.5
		0.5	1.12	0.53	21	20	0.41	18.8
		0.7	1.21	0.50	31	19	0.39	16.4
		0.9	1.30	0.47	42	19	0.38	14.3
		1.0	1.34	0.45	47	18	0.37	13.4
		1.5	1.57	0.41	77	15	0.31	9.9
		2.0	1.80	0.40	110	12	0.24	8.4
6.0	5.0	0.3	1.22	0.54	11	22	0.44	23.1
		0.5	1.27	0.51	19	21	0.42	20.3
		0.7	1.32	0.48	28	20	0.41	17.8
		0.9	1.38	0.45	38	20	0.39	15.7
		1.0	1.41	0.44	43	19	0.38	14.7
		1.5	1.61	0.40	71	17	0.33	11.2
		2.0	1.86	0.38	103	13	0.26	9.5

Table 2. Common Emitter Noise Parameters

Name	Value	Name	Value	Name	Value
IS	$4.598 \mathrm{E}-16$	IRB	$8.00 \mathrm{E}-05$	TF	$1.00 \mathrm{E}-11$
BF	175	RBM	3	XTF	50
NF	0.9904	RE	0.45	VTF	1.2
VAF	22	RC	6	ITF	0.32
IKF	0.08	XTB	0	PTF	32
ISE	$1.548 \mathrm{E}-14$	EG	1.11	TR	$1.00 \mathrm{E}-09$
NE	1.703	XTI	3	FC	0.9
BR	76.1	CJE	$8.70 \mathrm{E}-13$		
NR	0.9952	VJE	0.905		
VAR	2.1	MJE	0.389		
IKR	0.02059	CJC	$3.60 \mathrm{E}-13$		
ISC	$3.395 \mathrm{E}-16$	VJC	0.4907		
NC	1.13	MJC	0.2198		
RB	8	XCJC	0.43		

Table 3. Spice Parameters (MRF949 Die Gummel-Poon Parameters)


Figure 23. MRF949 SC-90/SC-75 Package Equivalent Circuit

## The RF Line <br> NPN Silicon Low Noise Transistors

Motorola's MRF959 is a high performance silicon NPN transistor designed for use in high gain, low noise small-signal amplifiers. The MRF959 is well suited for low voltage applications. This device features a 9 GHz DC current gain-bandwidth product with excellent linearity.

- Low Noise Figure, $\mathrm{NF}_{\min }=1.3 \mathrm{~dB}$ (Typ) @ $1 \mathrm{GHz} @ 5 \mathrm{~mA}$
- High Current Gain-Bandwidth Product, $\mathrm{f}_{\mathrm{t}}=9 \mathrm{GHz} @ 30 \mathrm{~mA}$
- Maximum Available Gain, MAG = 17 dB (Typ) @ $1 \mathrm{GHz} @ 15 \mathrm{~mA}$
- Output Third Order Intercept, OIP3 = +30 dBm @ 1 GHz @ 30 mA
- Fully Ion-Implanted with Gold Metallization and Nitride Passivation
- Available in Tape and Reel Packaging Options:

T1 Suffix = 3,000 Units per Reel
$I_{\text {max }}=100 \mathrm{~mA}$ LOW NOISE TRANSISTORS


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	10	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	20	Vdc
Emitter-Base Voltage	VEBO	1.5	Vdc
Power Dissipation (1) $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$   Derate linearly above $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$ @	PDmax	$\begin{gathered} 0.150 \\ 2 \end{gathered}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Collector Current - Continuous (2)	IC	100	mA
Maximum Junction Temperature	$\mathrm{T}_{\text {Jmax }}$	150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Case	$\mathrm{R}_{\text {өJC }}$	500	${ }^{\circ} \mathrm{C} / \mathrm{W}$

## DEVICE MARKINGS

MRF959T1 = V1
(1) To calculate the junction temperature use $T_{J}=\left(P_{D} \times R_{\theta J C}\right)+T_{C}$. The case temperature is measured on collector lead adjacent to the package body.
(2) ${ }^{I} \mathrm{C}$ - Continuous (MTBF > 10 years).

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (3)					
Collector-Emitter Breakdown Voltage $\left(I_{C}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\left.\mathrm{V}_{( } \mathrm{BR}\right) \mathrm{CEO}$	10	13	-	Vdc
Collector-Base Breakdown Voltage $(\mathrm{IC}=0.1 \mathrm{~mA}, \mathrm{I} \mathrm{E}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	20	25	-	Vdc
Emitter Cutoff Current $\left(V_{E B}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=0\right)$	IEBO	-	-	0.1	$\mu \mathrm{A}$
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	0.1	$\mu \mathrm{A}$

ON CHARACTERISTICS (3)

DC Current Gain (VCE $\left.=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}\right)$	$\mathrm{h}_{\mathrm{FE}}$	75	-	150	-

## DYNAMIC CHARACTERISTICS

Collector-Base Capacitance $\begin{aligned} & \left(\mathrm{V}_{C B}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CB}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right) \end{aligned}$	$\mathrm{C}_{\mathrm{cb}}$	-	$\begin{aligned} & 0.63 \\ & 0.44 \end{aligned}$	-	pF
Current Gain - Bandwidth Product $\left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I} \mathrm{C}=30 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right)$	${ }^{\text {¢ }}$	-	9	-	GHz

PERFORMANCE CHARACTERISTICS

Conditions	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Insertion Gain } \\ & \left.\qquad \begin{array}{l} \mathrm{V} C E \\ (\mathrm{~V} C E \\ \mathrm{V} \end{array} \mathrm{~V}, \mathrm{I}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{f}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{aligned}$	$\left\|S_{21}\right\|^{2}$	-	$\begin{gathered} 4 \\ 14 \end{gathered}$		dB
$\begin{aligned} & \text { Maximum Unilateral Gain (4) } \\ & \begin{array}{l} \left(V_{C E}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I} \mathrm{C}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{array} \end{aligned}$	$G_{U \max }$		$\begin{gathered} 9 \\ 15 \end{gathered}$	-	dB
Maximum Stable Gain and/or Maximum Available Gain (5) $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I} \mathrm{I}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I} \mathrm{C}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{aligned}$	MSG   MAG		$\begin{aligned} & 10 \\ & 17 \end{aligned}$	-	dB
$\begin{aligned} & \text { Noise Figure - Minimum } \\ & \qquad \begin{array}{l} \left(V_{C E}=1 \mathrm{~V}, \mathrm{I} \mathrm{C}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{array} \end{aligned}$	$\mathrm{NF}_{\text {min }}$		$\begin{aligned} & 1.6 \\ & 1.3 \end{aligned}$	-	dB
Noise Resistance $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{IC}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I} \mathrm{I}=5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{aligned}$	$\mathrm{R}_{\mathrm{N}}$		$\begin{gathered} 14 \\ 9 \end{gathered}$	-	$\Omega$
$\begin{aligned} & \text { Associated Gain at Minimum NF } \\ & \left(\mathrm{V} C E=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{aligned}$	$\mathrm{G}_{\mathrm{NF}}$	-	$\begin{gathered} 8 \\ 13 \end{gathered}$	-	dB
Output Power at 1 dB Gain Compression (6) $\left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I} \mathrm{C}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right)$	$\mathrm{P}_{1 \mathrm{~dB}}$	-	+12	-	dBm
Output Third Order Intercept (6) $\left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I} \mathrm{C}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right)$	$\mathrm{OIP}_{3}$	-	+26	-	dBm

(3) Pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$ pulsed.
(4) Maximum unilateral gain is $G_{U m a x}=\frac{\left|S_{21}\right|^{2}}{\left(1-\left|S_{11}\right|^{2}\right)\left(1-\left|S_{22}\right|^{2}\right)}$
(5) Maximum available gain and maximum stable gain are defined by the $K$ factor as follows: MAG $=\frac{\left|S_{21}\right|}{\left|S_{12}\right|}\left(K \pm \sqrt{K^{2}-1}\right)$, if $K>1$
(6) $Z_{\text {in }}=50 \Omega$ and $Z_{\text {out }}$ matched for small signal maximum gain.

$$
\text { MSG }=\frac{\left|S_{21}\right|}{\left|S_{12}\right|} \text {, if } \mathrm{K}<1
$$

## TYPICAL CHARACTERISTICS



Figure 1. Capacitance versus Voltage


Figure 3. DC Current Gain versus Collector Current


Figure 2. Input Capacitance versus Voltage


Figure 4. Gain-Bandwidth Product versus Collector Current


Figure 5. Functional Circuit Schematic


Figure 6. Maximum Stable/Available Gain versus Frequency


Figure 8. Maximum Unilateral Gain and Forward Insertion Gain versus Frequency


Figure 10. Maximum Unilateral Gain and Forward Insertion Gain versus Collector Current


Figure 7. Maximum Stable/Available Gain versus Frequency


Figure 9. Maximum Unilateral Gain and Forward Insertion Gain versus Frequency


Figure 11. Maximum Unilateral Gain and Forward Insertion Gain versus Collector Current


Figure 12. Maximum Stable/Available Gain versus Collector Current


Figure 13. Maximum Stable/Available Gain versus Collector Current


Figure 14. Minimum Noise Figure and Associated Gain versus Frequency


Figure 15. Minimum Noise Figure and Associated Gain versus Frequency


Figure 16. Minimum Noise Figure and Associated Gain versus Collector Current


Figure 17. Minimum Noise Figure and Associated Gain versus Collector Current

TYPICAL CHARACTERISTICS


Figure 18. Output Third Order Intercept and Output Power at 1 dB Gain Compression versus Collector Current


Figure 19. MRF959T1 Series Constant Gain and Noise Figure Contours


Figure 20. MRF959T1 Series Constant Gain and Noise Figure Contours


Figure 21. MRF959T1 Series Constant Gain and Noise Figure Contours


Figure 22. MRF959T1 Series Constant Gain and Noise Figure Contours

$V_{C E}$   (Vdc)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
			$\left\|S_{11}\right\|$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
1.0	1.0	0.1	0.946	-21	3.53	165	0.047	78	0.980	-9	
		0.3	0.888	-60	3.08	139	0.122	56	0.889	-24	
		0.5	0.801	-89	2.49	118	0.160	41	0.778	-32	
		0.7	0.748	-111	2.06	102	0.177	30	0.698	-39	
		0.9	0.711	-128	1.74	90	0.183	24	0.646	-45	
		1.0	0.700	-135	1.62	85	0.182	21	0.629	-47	
		1.3	0.688	-153	1.33	72	0.174	17	0.591	-54	
		1.5	0.682	-163	1.18	64	0.166	15	0.579	-59	
		2.0	0.680	179	0.94	49	0.141	21	0.571	-73	
		2.5	0.702	163	0.77	37	0.135	39	0.568	-90	
		3.0	0.713	152	0.67	30	0.172	56	0.582	-104	
		3.5	0.712	138	0.59	26	0.235	62	0.596	-118	
		4.0	0.727	127	0.55	25	0.312	60	0.603	-132	
		4.5	0.710	117	0.54	24	0.393	55	0.602	-145	
		5.0	0.705	108	0.55	23	0.463	48	0.598	-160	
	3.0	0.1	0.850	-34	9.36	158	0.044	72	0.934	-18	
		0.3	0.736	-86	6.84	126	0.096	49	0.707	-42	
		0.5	0.640	-117	4.86	107	0.115	39	0.532	-51	
		0.7	0.606	-137	3.74	95	0.123	35	0.436	-56	
		0.9	0.584	-151	3.01	86	0.129	35	0.385	-61	
		1.0	0.578	-156	2.76	82	0.132	35	0.370	-63	
		1.3	0.581	-170	2.20	72	0.140	37	0.331	-68	
		1.5	0.580	-178	1.93	66	0.146	39	0.321	-73	
		2.0	0.581	168	1.51	53	0.167	45	0.315	-85	
		2.5	0.611	156	1.25	42	0.195	50	0.316	-101	
		3.0	0.619	147	1.09	33	0.237	53	0.336	-113	
		3.5	0.621	135	0.96	26	0.285	53	0.358	-124	
		4.0	0.645	127	0.87	20	0.338	51	0.381	-136	
		4.5	0.638	118	0.81	16	0.397	47	0.400	-147	
		5.0	0.65	110	0.758	12	0.45	43	0.415	-160	
	5.0	0.1	0.650	-53	23.10	147	0.025	68	0.844	-27	
		0.3	0.535	-114	13.19	114	0.048	53	0.513	-50	
		0.5	0.474	-140	8.59	100	0.060	54	0.359	-52	
		0.7	0.465	-156	6.34	91	0.072	57	0.290	-53	
		0.9	0.459	-166	5.01	84	0.084	59	0.256	-55	
		1.0	0.456	-170	4.55	81	0.091	60	0.247	-56	
		1.3	0.467	180	3.56	74	0.112	62	0.220	-58	
		1.5	0.469	174	3.11	69	0.126	62	0.212	-61	
		2.0	0.473	163	2.40	59	0.162	62	0.203	-71	
		2.5	0.509	152	1.96	49	0.198	61	0.189	-86	
		3.0	0.514	146	1.69	41	0.237	58	0.202	-95	
		3.5	0.518	135	1.49	33	0.276	56	0.214	-105	
		4.0	0.544	129	1.35	26	0.316	53	0.230	-115	
		4.5	0.543	122	1.24	20	0.358	49	0.247	-123	
		5.0	0.568	114	1.14	14	0.398	45	0.255	-136	

Table 1. Common Emitter S-Parameters

VCE   (Vdc)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
			$\left\|S_{11}\right\|$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\| $\mathrm{S}_{22} \mid$	$\angle \phi$
3.0	3.0	0.1	0.866	-28	9.71	161	0.031	75	0.954	-13
		0.3	0.760	-76	7.57	131	0.072	54	0.782	-31
		0.5	0.653	-106	5.59	113	0.089	43	0.630	-37
		0.7	0.607	-127	4.37	100	0.097	39	0.541	-40
		0.9	0.578	-142	3.55	91	0.102	38	0.491	-43
		1.0	0.569	-148	3.26	87	0.105	38	0.475	-45
		1.3	0.566	-163	2.60	77	0.111	41	0.437	-48
		1.5	0.562	-172	2.28	71	0.116	43	0.425	-51
		2.0	0.561	173	1.77	58	0.131	50	0.411	-61
		2.5	0.588	160	1.45	47	0.155	56	0.396	-73
		3.0	0.598	151	1.26	38	0.190	60	0.406	-84
		3.5	0.603	139	1.10	30	0.233	61	0.419	-95
		4.0	0.629	130	0.98	23	0.282	60	0.433	-106
		4.5	0.626	122	0.90	18	0.338	57	0.447	-117
		5.0	0.644	113	0.83	13	0.394	53	0.452	-130
	5.0	0.1	0.792	-36	14.53	156	0.029	72	0.921	-18
		0.3	0.663	-90	10.09	124	0.062	52	0.676	-39
		0.5	0.566	-120	7.01	107	0.074	46	0.510	-43
		0.7	0.535	-139	5.32	96	0.083	45	0.425	-46
		0.9	0.517	-153	4.25	88	0.091	47	0.380	-48
		1.0	0.510	-158	3.89	84	0.096	48	0.367	-49
		1.3	0.515	-171	3.06	75	0.109	51	0.333	-52
		1.5	0.515	-178	2.69	70	0.118	53	0.322	-55
		2.0	0.516	169	2.08	58	0.146	56	0.310	-64
		2.5	0.548	156	1.70	48	0.176	58	0.294	-77
		3.0	0.556	149	1.47	39	0.213	59	0.306	-87
		3.5	0.559	137	1.29	31	0.253	58	0.319	-97
		4.0	0.587	130	1.16	24	0.296	56	0.334	-108
		4.5	0.586	122	1.06	18	0.345	53	0.351	-117
		5.0	0.608	114	0.98	12	0.393	49	0.358	-130
	10.0	0.1	0.823	-24	14.80	161	0.018	77	0.952	-13
		0.3	0.666	-63	11.47	131	0.045	60	0.790	-29
		0.5	0.514	-87	8.47	113	0.058	53	0.653	-34
		0.7	0.425	-108	6.60	100	0.069	51	0.577	-38
		0.9	0.366	-124	5.37	91	0.078	50	0.532	-40
		1.0	0.347	-132	4.91	86	0.083	50	0.512	-42
		1.3	0.309	-152	3.91	75	0.098	50	0.479	-44
		1.5	0.295	-163	3.44	70	0.108	49	0.465	-48
		2.0	0.284	172	2.65	55	0.134	48	0.449	-55
		2.5	0.277	151	2.18	43	0.161	45	0.442	-63
		3.0	0.291	134	1.87	31	0.190	42	0.440	-71
		3.5	0.298	118	1.63	20	0.221	37	0.441	-82
		4.0	0.299	108	1.46	11	0.245	32	0.431	-92
		4.5	0.343	96	1.35	1	0.278	29	0.430	-102
		5.0	0.373	82	1.24	-8	0.313	23	0.436	-113

Table 1. Common Emitter S-Parameters (continued)

VCE   (Vdc)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \stackrel{\mathrm{f}}{(\mathrm{GHz})} \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$			
			\|S ${ }_{11}$ \|	$\angle \phi$	\|S21		$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
6.0	5.0	0.1	0.809	-32	14.52	158	0.024	74	0.934	-15		
		0.3	0.665	-83	10.44	126	0.053	55	0.721	-32		
		0.5	0.550	-112	7.37	109	0.065	49	0.572	-35		
		0.7	0.507	-132	5.63	98	0.074	49	0.493	-37		
		0.9	0.482	-146	4.52	90	0.082	50	0.452	-38		
		1.0	0.472	-152	4.12	86	0.086	51	0.440	-39		
		1.3	0.471	-166	3.27	77	0.098	55	0.409	-41		
		1.5	0.469	-174	2.87	72	0.108	57	0.398	-44		
		2.0	0.469	172	2.22	60	0.135	61	0.385	-52		
		2.5	0.502	160	1.82	50	0.166	63	0.364	-62		
		3.0	0.512	151	1.57	41	0.203	64	0.372	-72		
		3.5	0.514	140	1.38	33	0.244	63	0.381	-81		
		4.0	0.548	132	1.24	25	0.289	61	0.391	-92		
		4.5	0.545	124	1.13	19	0.341	58	0.404	-102		
		5.0	0.571	117	1.04	13	0.394	54	0.403	-114		
	15.0	0.1	0.598	-56	28.57	144	0.020	68	0.814	-26		
		0.3	0.458	-115	15.28	111	0.038	59	0.491	-43		
		0.5	0.396	-141	9.78	98	0.050	62	0.367	-40		
		0.7	0.387	-156	7.18	90	0.063	64	0.315	-39		
		0.9	0.381	-166	5.67	84	0.077	66	0.290	-39		
		1.0	0.377	-170	5.12	81	0.084	67	0.284	-40		
		1.3	0.389	-179	4.01	74	0.106	68	0.264	-41		
		1.5	0.394	174	3.51	70	0.120	68	0.257	-44		
		2.0	0.397	164	2.71	60	0.157	66	0.247	-52		
		2.5	0.436	154	2.21	51	0.194	65	0.224	-64		
		3.0	0.443	148	1.91	43	0.233	62	0.233	-73		
		3.5	0.448	138	1.68	35	0.272	59	0.240	-82		
		4.0	0.479	131	1.52	28	0.311	56	0.250	-92		
		4.5	0.474	125	1.39	21	0.353	53	0.265	-101		
		5.0	0.506	118	1.29	15	0.395	49	0.263	-113		
	30.0	0.1	0.476	-76	36.18	135	0.017	66	0.706	-33		
		0.3	0.396	-134	16.55	104	0.032	65	0.387	-44		
		0.5	0.364	-156	10.31	94	0.046	69	0.296	-38		
		0.7	0.365	-167	7.50	87	0.061	71	0.261	-36		
		0.9	0.364	-175	5.88	81	0.077	72	0.245	-36		
		1.0	0.360	-178	5.23	79	0.085	72	0.242	-37		
		1.3	0.376	175	4.16	73	0.108	71	0.228	-39		
		1.5	0.382	170	3.63	69	0.124	71	0.222	-41		
		2.0	0.387	161	2.79	59	0.163	68	0.215	-50		
		2.5	0.428	152	2.28	51	0.200	65	0.193	-63		
		3.0	0.436	146	1.96	43	0.240	62	0.202	-72		
		3.5	0.440	136	1.73	35	0.279	59	0.210	-82		
		4.0	0.473	130	1.56	28	0.317	55	0.219	-92		
		4.5	0.470	124	1.43	21	0.359	52	0.234	-101		
		5.0	0.499	118	1.32	15	0.400	48	0.233	-113		

Table 1. Common Emitter S-Parameters (continued)

$\begin{aligned} & \mathrm{VCE}_{\mathrm{CE}} \\ & \text { (Vdc) } \end{aligned}$	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{GHz}) \end{gathered}$	$\underset{(\mathrm{dB})}{\mathrm{NF}_{\min }}$	Го		$\begin{aligned} & \mathbf{R}_{\mathbf{N}} \\ & (\Omega) \end{aligned}$	$\mathrm{R}_{\mathrm{N}}$	GNF   (dB)
				MAG	$\angle \phi$			
1.0	1.0	0.3	0.97	0.58	38	18	0.35	15.6
		0.5	1.16	0.56	62	18	0.36	13.1
		0.7	1.35	0.54	83	17	0.34	10.9
		0.9	1.52	0.53	102	15	0.30	9.0
		1.0	1.61	0.53	111	14	0.28	8.2
		1.5	2.02	0.56	149	8	0.16	5.2
		2.0	2.39	0.64	175	4	0.08	4.5
3.0	3.0	0.3	0.93	0.37	37	10	0.20	19.8
		0.5	1.03	0.36	59	10	0.20	17.0
		0.7	1.13	0.36	80	10	0.20	14.6
		0.9	1.24	0.37	99	9	0.18	12.4
		1.0	1.29	0.37	108	9	0.18	11.4
		1.5	1.59	0.43	146	7	0.13	8.6
		2.0	1.92	0.53	172	4	0.08	6.8
6.0	5.0	0.3	0.98	0.29	34	10	0.19	21.4
		0.5	1.05	0.29	56	10	0.19	18.5
		0.7	1.12	0.29	76	9	0.19	16.0
		0.9	1.20	0.30	95	9	0.18	13.9
		1.0	1.28	0.31	104	9	0.17	13.0
		1.5	1.51	0.37	142	7	0.13	10.1
		2.0	1.84	0.47	170	5	0.10	8.2

Table 2. Common Emitter Noise Parameters

## The RF Line

Microwave Pulse
Power Transistors
Designed for Class A and AB common emitter amplifier applications in the low-power stages of IFF, DME, TACAN, radar transmitters, and CW systems.

- Guaranteed Performance @ 1090 MHz, 18 Vdc — Class A

Output Power = 0.2 Watt
Minimum Gain $=10 \mathrm{~dB}$

- $100 \%$ Tested for Load Mismatch at All Phase Angles with 10:1 VSWR
- Industry Standard Package
- Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Internal Input Matching for Broadband Operation
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	20	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	50	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	3.5	Vdc
Collector Current - Continuous	$\mathrm{I}_{\mathrm{C}}$	200	mAdc
Total Device Dissipation @ T $\mathrm{C}=25^{\circ} \mathrm{C}(1)$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	7.0	Watts   $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

MRF1000MB
$0.7 \mathrm{~W}, 960-1215 \mathrm{MHz}$ CLASS A/AB
MICROWAVE POWER TRANSISTORS NPN SILICON


THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (2)	$R_{\theta J C}$	25	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage   $\left(I_{C}=5.0\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	20	-	-	Vdc
Collector-Emitter Breakdown Voltage   $\left(\mathrm{I}_{\mathrm{C}}=5.0\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	50	-	-	Vdc
Collector-Base Breakdown Voltage   $\left(\mathrm{IC}=5.0\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	50	-	-	Vdc
Emitter-Base Breakdown Voltage   $\left(\mathrm{I}_{\mathrm{E}}=1.0\right.$ mAdc, $\left.\mathrm{IC}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	3.5	-	-	Vdc
Collector Cutoff Current   $\left(\mathrm{V}_{\mathrm{CB}}=20\right.$ Vdc, $\left.\mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\mathrm{CBO}}$	-	-	0.5	mAdc

## ON CHARACTERISTICS

DC Current Gain   $(\mathrm{IC}=100 \mathrm{mAdc}, \mathrm{V}$ CE $=5.0 \mathrm{Vdc})$	$\mathrm{h}_{\mathrm{FE}}$	10	-	100	-

1. These devices are designed for RF operation. The total device dissipation rating applies only when the device is operated as RF amplifiers.
2. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
DYNAMIC CHARACTERISTICS					
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {ob }}$	-	2.0	5.0	pF

FUNCTIONAL TESTS

$\begin{aligned} & \text { Common-Emitter Power Gain - Class A } \\ & \qquad\left(\mathrm{V}_{\mathrm{CE}}=18 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{f}=1090 \mathrm{MHz}, \mathrm{P}_{\text {out }}=200 \mathrm{~mW}\right) \end{aligned}$	Gpe	10	12	-	dB
$\begin{aligned} & \text { Common-Emitter Power Gain - Class AB } \\ & \quad\left(\mathrm{V}_{\mathrm{CE}}=18 \mathrm{Vdc}, \mathrm{ICQ}=10 \mathrm{mAdc}, \mathrm{f}=1090 \mathrm{MHz}, \text { Pout }=0.7 \mathrm{~W}\right) \end{aligned}$	GPE	-	10.7	-	dB
```Load Mismatch - Class A (VCE = 18 Vdc, IC = 100 mAdc, f = 1090 MHz, Pout = 200 mW, VSWR = 10:1 All Phase Angles)```	$\psi$	No Degradation in Power Output			


Class AB Bias Control Circuit 18 V Output ICQ 10 mA Nominal

Class A Constant Current Bias Control Circuit $\mathrm{IC}=100 \mathrm{~mA}, \mathrm{~V}$ CE $=18 \mathrm{~V}$

Figure 1. 1090 MHz Test Circuit

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Frequency

Figure 4. DC Safe Operating Area

Figure 5. Power Gain versus Frequency

SERIES EQUIVALENT IMPEDANCES
$P_{\text {out }}=0.5 \mathrm{~W}, \mathrm{~V}_{\mathrm{CE}}=18 \mathrm{Vdc}$, ${ }^{\mathrm{I}} \mathrm{CQ}=10 \mathrm{mAdc}$, Class AB

$\begin{gathered} f \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{in}} \\ \text { Ohms } \end{gathered}$	$\mathrm{Z}_{\mathrm{OL}}{ }^{*}$ Ohms
960	$3.0+$ j9.0	16-j40
1090	$3.2+\mathrm{j} 10$	$8.5-\mathrm{j} 31$
1215	$2.8+j 12$	$7.0-j 26$

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage, and frequency.

S-PARAMETERS $-\mathrm{V}_{\mathrm{CE}}=18 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}$, Class A

\mathbf{f} $(\mathbf{M H z})$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
950	0.77	166	2.42	40	0.016	42	0.48	-87
1000	0.78	165	2.36	38	0.016	48	0.50	-90
1050	0.77	163	2.31	33	0.016	46	0.51	-94
1100	0.77	162	2.31	28	0.016	46	0.54	-97
1150	0.78	161	2.20	23	0.015	46	0.57	-100
1200	0.78	159	2.20	19	0.016	47	0.59	-103
1250	0.78	158	2.12	12	0.016	42	0.61	-106

Figure 6. Common-Emitter S-Parameters and Series Equivalent Input/Output Impedances

The RF Line

Microwave Pulse
Power Transistors
Designed for Class B and C common base amplifier applications in short and long pulse TACAN, IFF, DME, and radar transmitters.

- Guaranteed Performance @ 1090 MHz, 35 Vdc

Output Power = 4.0 Watts Peak
Minimum Gain $=10 \mathrm{~dB}$
100\% Tested for Load Mismatch at All Phase Angles with 10:1 VSWR

- Industry Standard Package
- Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Internal Input Matching for Broadband Operation
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.
4.0 W, 960-1215 MHz MICROWAVE POWER TRANSISTORS NPN SILICON

CASE 332A-03, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	20	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	50	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	3.5	Vdc
Collector Current - Continuous	IC	250	mAdc
Total Device Dissipation @ TC $=25^{\circ} \mathrm{C}$ (1) Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & \hline 7.0 \\ & 40 \end{aligned}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (2)	$\mathrm{R}_{\theta \mathrm{JC}}$	25	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (${ }^{2} \mathrm{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ($\mathrm{I} \mathrm{C}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0$)	$V_{\text {(BR)CEO }}$	20	-	-	Vdc
Collector-Emitter Breakdown Voltage ($\mathrm{I} \mathrm{C}=5.0 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	50	-	-	Vdc
Collector-Base Breakdown Voltage ($\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0$)	$\mathrm{V}_{\text {(BR) }} \mathrm{CBO}$	50	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=1.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	3.5	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=35 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	${ }^{\text {ICBO }}$	-	-	0.5	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(\mathrm{IC}=75 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	h FE	10	-	100	-

NOTES:

1. These devices are designed for RF operation. The total device dissipation rating applies only when the device is operated as RF amplifiers.
2. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
DYNAMIC CHARACTERISTICS					
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=35 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {ob }}$	-	3.3	5.0	pF

FUNCTIONAL TESTS (Pulse Width = $10 \mu \mathrm{~s}$, Duty Cycle $=1.0 \%$)

Common-Base Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=35 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=4.0 \mathrm{~W} \mathrm{pk}, \mathrm{f}=1090 \mathrm{MHz}\right)$	GpB	10	11	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \qquad\left(\mathrm{V}_{\mathrm{CC}}=35 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=4.0 \mathrm{~W} \mathrm{pk}, \mathrm{f}=1090 \mathrm{MHz}\right) \end{aligned}$	η	40	45	-	dB
$\begin{aligned} & \text { Load Mismatch } \\ & \quad\left(V_{C C}=35 \text { Vdc, Pout }=4.0 \mathrm{~W} \mathrm{pk}, \mathrm{f}=1090 \mathrm{MHz}\right. \text {, } \\ & \text { VSWR }=10: 1 \text { All Phase Angles) } \end{aligned}$	ψ	No Degradation in Power Output			

C1-0.1 $\mu \mathrm{F}$
C2, C4-220 pF Chip Capacitor
C3-20 $\mu \mathrm{F}, 50 \mathrm{~V}$ Electrolytic
L1, L2 - 3 Turns \#18 AWG, 1/8" ID
Z1-Z6 Distributed Microstrip Elements, See Photomaster
Board Material - 0.031" Thick Glass Teflon

Figure 1. 1090 MHz Test Circuit

TYPICAL CHARACTERISTICS

Figure 2. Output Power versus Input Power

Figure 4. Output Power versus Supply Voltage

$\begin{gathered} f \\ \mathrm{MHz} \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{\text {in }} \\ & \text { Ohms } \end{aligned}$	$\begin{gathered} \mathrm{Z}_{\mathrm{OL}}^{*}\left(\mathrm{P}_{\mathrm{in}}=400 \mathrm{~mW} \mathrm{pk}\right) \\ \text { Ohms } \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{OL}}{ }^{*}\left(\mathrm{P}_{\text {out }}=4.0 \mathrm{~W} \mathrm{pk}\right) \\ \text { Ohms } \end{gathered}$
960	$5.0+\mathrm{j} 17.5$	23.5 - j26	22.5 - j36
1090	$10+\mathrm{j} 23$	18.5-j25	15-j32.5
1215	$16+\mathrm{j} 29.5$	15.5-j23.5	11-j23

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=\begin{gathered}\text { Conjugate of the optimum load impedance into which the device } \\ \text { output operates at a given output power, voltage, and frequency. }\end{gathered}$

Figure 6. Series Equivalent Input/Output Impedance

TYPICAL CHARACTERISTICS

Figure 7. Typical Long Pulse Performance

The RF Line

Microwave Pulse
Power Transistors

MRF1015MB

Designed for Class B and C common base amplifier applications in short and long pulse TACAN, IFF, DME, and radar transmitters.

- Guaranteed Performance @ 1090 MHz, 50 Vdc

Output Power = 15 Watts Peak
Minimum Gain $=10 \mathrm{~dB}$

- 100% Tested for Load Mismatch at All Phase Angles with 10:1 VSWR
- Industry Standard Package
- Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Internal Input Matching for Broadband Operation

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	60	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	IC	1.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1)$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	17.5	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$ Storage Temperature Range

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (2)	$\mathrm{R}_{\theta \mathrm{JC}}$	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=10\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	60	-	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{IC}=10\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	60	-	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=1.0$ mAdc, $\mathrm{IC}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=50\right.$ Vdc, $\left.\mathrm{I}_{\mathrm{E}}=0\right)$	I CBO	-	-	1.0	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(\mathrm{IC}=250 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	hFE	10	40	100	-

NOTES:

1. These devices are designed for RF operation. The total device dissipation rating applies only when the device is operated as RF amplifiers.
2. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic
Symbol Min Typ Max Unit DYNAMIC CHARACTERISTICS Output Capacitance $\left(V_{\mathrm{CB}}=50 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, f=1.0 \mathrm{MHz}\right)$ C_{ob} - 5.0 7.5 pF

FUNCTIONAL TESTS (Pulse Width = $10 \mu \mathrm{~s}$, Duty Cycle $=1.0 \%$)

Common-Base Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=15 \mathrm{~W} \text { Peak, } \mathrm{f}=1090 \mathrm{MHz}\right)$	GpB	10	12.5	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=15 \mathrm{~W} \text { Peak, } \mathrm{f}=1090 \mathrm{MHz}\right)$	η	30	35	-	\%
Load Mismatch $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \text { Pout }=15 \mathrm{~W} \text { Peak, } \mathrm{f}=1090 \mathrm{MHz},\right. \\ & \text { VSWR }=10: 1 \text { All Phase Angles }) \end{aligned}$	ψ	No Degradation in Power Output			

Figure 1. 1090 MHz Test Circuit

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Frequency

Figure 4. Output Power versus Supply Voltage

Figure 5. Power Gain versus Frequency

Figure 6. Series Equivalent Input/Output Impedances

The RF Line

Microwave Pulse
Power Transistors
Designed for Class B and C common base amplifier applications in short and long pulse TACAN, IFF, DME, and radar transmitters.

- Guaranteed Performance @ 1090 MHz, 50 Vdc

Output Power = 35 Watts Peak
Minimum Gain $=10 \mathrm{~dB}$

- 100% Tested for Load Mismatch at All Phase Angles with 10:1 VSWR
- Industry Standard Package
- Nitride Passivated

MRF1035MB

- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Internal Input Matching for Broadband Operation

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CES }}$	60	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	60	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector-Current - Continuous	IC	2.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ (1) Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{gathered} 35 \\ 200 \end{gathered}$	$\begin{gathered} \text { Watts } \\ \mathrm{mW} /{ }^{\circ} \mathrm{C} \end{gathered}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

35 W (PEAK), 960-1215 MHz
MICROWAVE POWER
TRANSISTORS
NPN SILICON

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (2)	$R_{\theta J C}$	5.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I}=20\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	60	-	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{IC}=20\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	60	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=2.0\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=50\right.$ Vdc, $\left.\mathrm{I}_{\mathrm{E}}=0\right)$	I CBO	-	-	2.0	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=500 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	h $_{\text {FE }}$	10	40	100	-

[^39]ELECTRICAL CHARACTERISTICS - continued ($T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic
Symbol Min Typ Max Unit DYNAMIC CHARACTERISTICS Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=50 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$ C_{ob} - 10 15 pF

FUNCTIONAL TESTS (Pulse Width = $10 \mu \mathrm{~s}$, Duty Cycle $=1 \%$)

Common-Base Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=35 \mathrm{~W} \text { Peak, } \mathrm{f}=1090 \mathrm{MHz}\right)$	GpB	10	12.4	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=35 \mathrm{~W} \text { Peak, } f=1090 \mathrm{MHz}\right)$	η	30	34	-	\%
Load Mismatch $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=35 \mathrm{~W} \text { Peak, } \mathrm{f}=1090 \mathrm{MHz},\right.$ VSWR = 10:1 All Phase Angles)	ψ	No Degradation in Power Output			

Figure 1. 1090 MHz Test Circuit

Figure 2. Output Power versus Power

Figure 4. Output Power versus Supply Voltage

Figure 3. Output Power versus Frequency

Figure 5. Power Gain versus Frequency

$\begin{gathered} P_{\text {out }}=35 \mathrm{~W} p \mathrm{pk} \quad \mathrm{~V}_{\mathrm{CC}}=50 \mathrm{~V} \\ t_{\mathrm{p}}=10 \mu \mathrm{~s} \quad \mathrm{D}=1 \% \end{gathered}$		
$\begin{gathered} f \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\text {in }} \\ \text { Ohms } \end{gathered}$	$\begin{aligned} & \mathrm{ZOL}^{*} \\ & \text { Ohms } \end{aligned}$
960	$3.8+$ j8.2	7.5 - j3.3
1090	$6.0+\mathrm{j} 8.2$	$9.0+\mathrm{j} 0$
1215	$4.2+\mathrm{j} 5.7$	$9.1+\mathrm{j} 1.7$

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage, and frequency.

Figure 6. Series Equivalent Input/Output Impedances

The RF Line
 Microwave Pulse
 Power Transistors

Designed for Class B and C common base amplifier applications in short pulse TACAN, IFF, and DME transmitters.

- Guaranteed Performance @ 1090 MHz, 50 Vdc

Output Power = 90 Watts Peak
Minimum Gain $=8.4 \mathrm{~dB}$

- 100% Tested for Load Mismatch at All Phase Angles with 10:1 VSWR
- Industry Standard Package
- Nitride Passivated
- Gold Metallized for Long Life and Resistance to Metal Migration
- Internal Input Matching for Broadband Operation
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	70	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	4.0	Vdc
Collector-Current — Peak (1)	I_{C}	6.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1)(2)$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	290	Watts
Storage Temperature Range		1.66	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (3)	$\mathrm{R}_{\theta \mathrm{JC}}$	0.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=25 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	70	-	-	Vdc
Collector-Base Breakdown Voltage $(\mathrm{IC}=25 \mathrm{mAdc}, \mathrm{I} \mathrm{E}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	70	-	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=5.0 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0)$	$V_{(B R) E B O}$	4.0	-	-	Vdc
$\begin{aligned} & \text { Collector Cutoff Current } \\ & \left(\mathrm{V}_{\mathrm{CB}}=50 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right) \end{aligned}$	ICBO	-	-	5.0	mAdc

ON CHARACTERISTICS

DC Current Gain (4) (IC = $=2.5$ Adc, $\left.\mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	hFE	10	30	-	-

NOTES:

(continued)

1. Pulse Width $=10 \mu \mathrm{~s}$, Duty Cycle $=1 \%$.
2. These devices are designed for RF operation. The total device dissipation rating applies only when the device is operated as RF amplifiers.
3. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.
4. $80 \mu \mathrm{~s}$ Pulse on Tektronix 576 or equivalent.

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Characteristic

	Symbol	Min	Typ	Max	Unit
DYNAMIC CHARACTERISTICS					
Output Capacitance $\left(V_{C B}=50 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$ C_{ob} - 12 16	pF				

FUNCTIONAL TESTS (Pulse Width = $10 \mu \mathrm{~s}$, Duty Cycle $=1.0 \%$)

Common-Base Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=90 \mathrm{~W} \text { pk, } \mathrm{f}=1090 \mathrm{MHz}\right)$	GpB	8.4	10.8	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=90 \mathrm{~W} \mathrm{pk}, \mathrm{f}=1090 \mathrm{MHz}\right)$	η	35	40	-	\%
Load Mismatch $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=90 \mathrm{~W} \text { pk, } \mathrm{f}=1090 \mathrm{MHz},\right. \\ & \text { VSWR }=10: 1 \text { All Phase Angles }) \end{aligned}$	ψ	No Degradation in Power Output			

C1, C2 - 220 pF Chip Capacitor, 100-mil ATC
C3 $-0.1 \mu \mathrm{~F}$
C $4-47 \mu$ F/75 V
L1, L2 - 3 Turns \#18 AWG, 1/8" ID
Z1-Z9 - Distributed Microstrip Elements,
See Photomaster
Board Material - $0.031^{\prime \prime}$ Thick Glass Teflon, $\varepsilon_{r}=2.5$
Figure 1. 1090 MHz Test Circuit

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Frequency

Figure 4. Output Power versus Supply Voltage

Figure 5. Power Gain versus Frequency

$\begin{array}{cl} P_{\text {out }}=90 \mathrm{~W} p k & V_{C C}=50 \mathrm{~V} \\ t_{\mathrm{p}}=10 \mu \mathrm{~s} & \mathrm{D}=1 \% \end{array}$		
$\begin{gathered} f \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\mathrm{in}} \\ \text { Ohms } \end{gathered}$	$\mathrm{Z}_{\mathrm{OL}}{ }^{*}$ Ohms
960	$2.8+$ j13.2	$7.6+\mathrm{j} 3.5$
1090	$7.4+\mathrm{j} 11.4$	$7.6+\mathrm{j} 4.0$
1215	$4.7+$ j7.5	$7.7+j 4.5$

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage, and frequency.

Figure 6. Series Equivalent Input/Output Impedance

Figure 7. Typical Pulse Performance

The RF Line
 Microwave Pulse
 Power Transistors

Designed for Class B and C common base amplifier applications in short pulse TACAN, IFF, and DME transmitters.

- Guaranteed Performance @ 1090 MHz, 50 Vdc

Output Power = 150 Watts Peak
Minimum Gain $=7.8 \mathrm{~dB}$

- 100% Tested for Load Mismatch at All Phase Angles with 10:1 VSWR
- Industry Standard Package
- Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Internal Input Matching for Broadband Operation
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	70	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	4.0	Vdc
Collector Current - Peak (1)	I_{C}	12	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1)(2)$	P_{D}	583	Watts
Derate above 25 ${ }^{\circ} \mathrm{C}$		3.33	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

MRF1150MA MRF1150MB

150 W PEAK, 960 - 1215 MHz MICROWAVE POWER

TRANSISTORS
NPN SILICON

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (3)	$\mathrm{R}_{\text {日JC }}$	0.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(I_{C}=50\right.$ mAdc, $\left.V_{B E}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	70	-	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=50\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	70	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=5.0\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=50\right.$ Vdc, $\left.\mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\mathrm{CBO}}$	-	-	10	mAdc

ON CHARACTERISTICS

DC Current Gain (4) $\left(I_{C}=5.0 \mathrm{Adc}, \mathrm{V}_{\text {CE }}=5.0 \mathrm{Vdc}\right)$	hFE	10	30	-	-

NOTES:

(continued)

1. Pulse Width $=10 \mu \mathrm{~s}$, Duty Cycle $=1 \%$.
2. These devices are designed for RF operation. The total device dissipation rating applies only when the device is operated as RF amplifiers.
3. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.
4. $80 \mu \mathrm{~s}$ Pulse on Tektronix 576 or equivalent.

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
DYNAMIC CHARACTERISTICS					
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=50 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {ob }}$	-	25	32	pF

FUNCTIONAL TESTS (Pulse Width $=10 \mu \mathrm{~s}$, Duty Cycle = 1.0\%)

Common-Base Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=150 \mathrm{~W} \text { pk, } \mathrm{f}=1090 \mathrm{MHz}\right)$	GpB	7.8	9.8	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=150 \mathrm{~W} \text { pk, } \mathrm{f}=1090 \mathrm{MHz}\right)$	η	35	40	-	\%
Load Mismatch $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \text { Pout }=150 \mathrm{~W} \text { pk, } \mathrm{f}=1090 \mathrm{MHz},\right. \\ & \text { VSWR }=10: 1 \text { All Phase Angles) } \end{aligned}$	ψ	No Degradation in Power Output			

C1, C2 - 220 pF Chip Capacitor, 100 -mil ATC
C3-0.1 μ F/100 V
C4 - $47 \mu \mathrm{~F} / 75 \mathrm{~V}$ Electrolytic
L1, L2 - 3 Turns \#18 AWG, 1/8" ID
Z1-Z10 - Distributed Microstrip Elements - See Photomaster
Board Material - 0.031" Thick Teflon-Fiberglass, $\varepsilon_{r}=2.5$

Figure 1. 1090 MHz Test Circuit

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Frequency

Figure 4. Output Power versus Supply Voltage

Figure 5. Power Gain versus Frequency

$Z_{O L}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage, and frequency.

Figure 6. Series Equivalent Input/Output Impedance

Figure 7. Typical Pulse Performance

The RF MOSFET Line RF Power Field Effect Transistor N-Channel Enhancement-Mode Lateral MOSFETs

MRF1507
 MRF1507T1

The MRF1507 is designed for broadband commercial and industrial applications at frequencies to 520 MHz . The high gain and broadband performance of this device makes it ideal for large-signal, common source amplifier applications in 7.5 volt portable FM equipment.

- Specified Performance @ $520 \mathrm{MHz}, 7.5$ Volts

Output Power - 8 Watts
Power Gain - 10 dB
Efficiency - 65\%

- Characterized with Series Equivalent Large-Signal Impedance Parameters
- Excellent Thermal Stability
- Capable of Handling 20:1 VSWR, @ 9.5 Vdc, 520 MHz , 2 dB Overdrive
- Broadband UHF/VHF Demonstration Amplifier Information Available Upon Request
- RF Power Plastic Surface Mount Package
- Available in Tape and Reel by Adding T1 Suffix to Part Number. T1 Suffix = 1,000 Units per 12 mm, 7 Inch Reel.

s
$8 \mathrm{~W}, 520 \mathrm{MHz}, 7.5 \mathrm{~V}$
LATERAL N-CHANNEL
BROADBAND
RF POWER MOSFET

CASE 466-02, STYLE 1 (PLD 1.5)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage (1)	$\mathrm{V}_{\mathrm{DSS}}$	25	Vdc
Gate-Source Voltage	V_{GS}	± 20	Vdc
Drain Current - Continuous	I_{D}	4	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}} \mathrm{C}=25^{\circ} \mathrm{C}$ Derate above 25${ }^{\circ} \mathrm{C}$	P_{D}	62.5	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$ Storage Temperature Range Operating Junction Temperature $\mathrm{T}_{\text {stg }}$
0.50	-65 to +150	${ }^{\circ} \mathrm{C}$	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) Not designed for 12.5 volt applications.

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Zero Gate Voltage Drain Current $\left(V_{D S}=25 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	1	$\mu \mathrm{Adc}$
Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0\right)$	IGSS	-	-	1	$\mu \mathrm{Adc}$

ON CHARACTERISTICS

Gate Threshold Voltage (VDS = $10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=100 \mu \mathrm{Adc}$)	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	2.5	3.4	-	Vdc
Drain-Source On-Voltage $\left(V_{G S}=10 \mathrm{Vdc}, \mathrm{ID}_{\mathrm{D}}=2 \mathrm{Adc}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	0.3	0.44	-	Vdc
Forward Transconductance $\left(V_{D S}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=2 \mathrm{Adc}\right)$	9fs	1.30	1.80	-	S

DYNAMIC CHARACTERISTICS

Input Capacitance $\left(V_{D S}=7.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	48	-	pF
Output Capacitance $\left(V_{D S}=7.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {oss }}$	-	40.5	-	pF
Reverse Transfer Capacitance $\left(V_{\mathrm{DS}}=7.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {rss }}$	-	5.2	-	pF

FUNCTIONAL TESTS (In Motorola Test Fixture)

Common-Source Amplifier Power Gain $\left(V_{D D}=7.5 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}=29 \mathrm{dBm}, \mathrm{I} \mathrm{DQ}=150 \mathrm{~mA}, \mathrm{f}=520 \mathrm{MHz}\right)$	G_{ps}	10	11	-	dB
Drain Efficiency $\left(\mathrm{V}_{\mathrm{DD}}=7.5 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}=29 \mathrm{dBm}, \mathrm{I}_{\mathrm{DQ}}=150 \mathrm{~mA}, \mathrm{f}=520 \mathrm{MHz}\right)$	η	50	65	-	$\%$
$P_{\text {out }}$ $\left(V_{\mathrm{DD}}=7.5 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}=29 \mathrm{dBm}, \mathrm{I}_{\mathrm{DQ}}=150 \mathrm{~mA}, \mathrm{f}=520 \mathrm{MHz}\right)$	$P_{\text {out }}$	8	9.9	-	W

B1	Fair Rite Products Long Ferrite Bead	R4	$20 \Omega, 1 / 4 \mathrm{~W}$ Carbon
C1, C5	$0.1 \mu \mathrm{FF}, 100$ mil Chip Capacitor	Z1	$0.459^{\prime \prime} \times 0.083^{\prime \prime}$ Microstrip
C2, C4	$10 \mu \mathrm{~F}, 50 \mathrm{~V}$ Electrolytic Capacitor	Z2	$0.135^{\prime \prime} \times 0.083^{\prime \prime}$ Microstrip
C3, C6, C8, C14	$130 \mathrm{pF}, 100$ mil Chip Capacitor	Z3	$1.104^{\prime \prime} \times 0.083^{\prime \prime}$ Microstrip
C7, C9, C13	$0.3-20 \mathrm{pF}$ Trimmer Capacitor	Z4	$0.114^{\prime \prime} \times 0.083^{\prime \prime}$ Microstrip
C10	$82 \mathrm{pF}, 100$ mil Chip Capacitor	Z5	$0.154^{\prime \prime} \times 0.083^{\prime \prime}$ Microstrip
C11	$39 \mathrm{pF}, 100$ mil Chip Capacitor	Z6	$0.259^{\prime \prime} \times 0.213^{\prime \prime}$ Microstrip
C12	$32 \mathrm{pF}, 100$ mil Chip Capacitor	Z7	$0.217^{\prime \prime} \times 0.213^{\prime \prime}$ Microstrip
L1	4 Turns, \#20 AWG Enamel, $0.1^{\prime \prime}$ ID	Z8	$0.175^{\prime \prime} \times 0.083^{\prime \prime}$ Microstrip
N1, N2	Type N Connectors	Z9	$0.747^{\prime \prime} \times 0.083^{\prime \prime}$ Microstrip
R1	$1.1 \mathrm{M} \Omega, 1 / 4 \mathrm{~W}$ Carbon	Z10	$0.608^{\prime \prime} \times 0.083^{\prime \prime}$ Microstrip
R2	$2 \mathrm{k} \Omega, 1 / 2 \mathrm{~W}$ Carbon	Z11	$0.594^{\prime \prime} \times 0.083^{\prime \prime}$ Microstrip
R3	$100 \Omega, 1 / 4 \mathrm{~W}$ Carbon	Board	Glass Teflon, 31 mils

Figure 1. 500-520 MHz Broadband Test Circuit

TYPICAL CHARACTERISTICS

Figure 2. Output Power versus Input Power

Figure 3. Output Power versus Supply Voltage @ 400 MHz

TYPICAL CHARACTERISTICS

Figure 4. Output Power versus Supply Voltage @ 470 MHz

Figure 6. Output Power versus Gate Current

Figure 8. Pout versus IDQ

Figure 5. Output Power versus Supply Voltage @ 440 MHz

Figure 7. Gain, Pout, Efficiency versus Drain Voltage

Figure 9. Pout, Gain, Drain Efficiency versus Pin

TYPICAL CHARACTERISTICS

Figure 10. Pout versus Drain Voltage

Figure 12. Pout versus Drain Voltage

Figure 14. Pout versus Pin $_{\text {in }}$

Figure 11. Pout versus IDQ

Figure 13. Pout versus IDQ

Figure 15. Pout versus $\mathrm{P}_{\text {in }}$

TYPICAL CHARACTERISTICS

Figure 16. Pout versus $\mathrm{P}_{\text {in }}$

Figure 18. Capacitance versus Voltage

Figure 17. Drain Current versus Gate Voltage (Typical Device Shown)

Figure 19. Maximum Rated Forward Biased Safe Operating Area

\mathbf{f} $\mathbf{M H z}$	$\mathbf{Z}_{\text {in }}$ Ω	$\mathbf{Z}_{\mathbf{O L}}{ }^{*}$ Ω
400	$3.6-\mathrm{j} 3.1$	$2.5-\mathrm{j} 0.5$
440	$4.0-\mathrm{j} 3.7$	$2.7-\mathrm{j} 0.6$
470	$3.1-\mathrm{j} 4.4$	$2.5-\mathrm{j} 1.2$
500	$2.0-\mathrm{j} 2.71$	$2.05-\mathrm{j} 0.65$
520	$1.9-\mathrm{j} 3.5$	$2.1-\mathrm{j} 0.4$

$Z_{\text {in }}=$ Conjugate of source impedance with parallel 20Ω resistor and 82 pF capacitor in series with gate.

$\mathrm{ZOL}^{*}=$ Conjugate of the load impedance at given output power, voltage, frequency, and $\eta_{D}>50 \%$.

$V_{\mathrm{DD}}=7.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=800 \mathrm{~mA}, \mathrm{P}_{\text {out }}=8 \mathrm{~W}$
\mathbf{f} $\mathbf{M H z}$
$\mathbf{Z}_{\text {in }}$ Ω
135

$Z_{\text {in }}=$ Conjugate of source impedance with parallel 10Ω resistor and 1000 pF capacitor in series with gate.
$\mathrm{ZOL}^{*}=$ Conjugate of the load impedance at given output power, voltage, frequency, and $\eta_{D}>50 \%$.

Note: Z ${ }_{O L}{ }^{*}$ was chosen based on tradeoffs between gain, drain efficiency, and device stability.

Table 1. Common Source Scattering Parameters (VDS = 7.5 Vdc)
ID $=150 \mathrm{~mA}$

\mathbf{f} $\mathbf{M H z}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
50	0.76	-138	15.18	100	0.04	12	0.71	-141
100	0.77	-155	7.68	84	0.04	-3	0.72	-156
200	0.81	-162	3.53	65	0.03	-18	0.78	-162
300	0.85	-165	2.08	53	0.03	-27	0.83	-164
400	0.89	-167	1.37	44	0.03	-33	0.87	-166
500	0.91	-169	0.96	37	0.02	-36	0.90	-168
700	0.95	-171	0.54	27	0.01	-35	0.94	-170
850	0.96	-173	0.38	22	0.01	-30	0.95	-172
1000	0.97	-174	0.29	19	0.01	-19	0.96	-173
1200	0.98	-175	0.20	16	0.01	3	0.97	-174

ID $=800 \mathrm{~mA}$

\mathbf{f} $\mathbf{M H z}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
50	0.82	-152	16.58	98	0.03	9	0.79	-161
100	0.81	-165	8.37	88	0.03	1	0.80	-169
200	0.82	-170	4.08	76	0.02	-8	0.81	-172
300	0.84	-172	2.60	68	0.02	-13	0.83	-173
400	0.85	-172	1.84	61	0.02	-17	0.84	-173
500	0.87	-172	1.38	54	0.02	-20	0.86	-173
700	0.90	-173	0.86	44	0.02	-21	0.89	-174
850	0.91	-174	0.64	38	0.01	-19	0.90	-174
1000	0.92	-175	0.49	33	0.01	-12	0.92	-175
1200	0.94	-176	0.36	29	0.01	2	0.93	-176

ID $=1.5 \mathrm{~A}$

\mathbf{f} $\mathbf{M H z}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
50	0.83	-156	16.45	97	0.02	9	0.80	-164
100	0.83	-167	8.29	88	0.02	1	0.81	-171
200	0.83	-172	4.06	77	0.02	-6	0.82	-174
300	0.84	-173	2.61	70	0.02	-10	0.83	-174
400	0.86	-173	1.86	63	0.02	-13	0.85	-174
500	0.87	-174	1.41	57	0.02	-15	0.86	-174
700	0.89	-174	0.89	47	0.01	-16	0.88	-175
850	0.91	-175	0.67	41	0.01	-13	0.90	-175
1000	0.92	-175	0.52	36	0.01	-6	0.91	-175
1200	0.93	-176	0.38	31	0.01	8	0.92	-176

APPLICATIONS INFORMATION

DESIGN CONSIDERATIONS

The MRF1507 is a common-source, RF power, N-Channel enhancement mode, Lateral Metal-Oxide Semiconductor Field-Effect Transistor (MOSFET). Motorola Application Note AN211A, "FETs in Theory and Practice", is suggested reading for those not familiar with the construction and characteristics of FETs.

This surface mount packaged device was designed primarily for VHF and UHF portable power amplifier applications. Manufacturability is improved by utilizing the tape and reel capability for fully automated pick and placement of parts. However, care should be taken in the design process to insure proper heat sinking of the device.

The major advantages of Lateral RF power MOSFETs include high gain, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage.

MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between all three terminals. The metal oxide gate structure determines the capacitors from gate-to-drain (C_{gd}), and gate-to-source (C_{gs}). The PN junction formed during fabrication of the RF MOSFET results in a junction capacitance from drain-to-source (C_{ds}). These capacitances are characterized as input ($\mathrm{C}_{\text {iss }}$), output ($\mathrm{C}_{\text {oss }}$) and reverse transfer ($\mathrm{C}_{\mathrm{rss}}$) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The $\mathrm{C}_{\text {iss }}$ can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate.
In the latter case, the numbers are lower. However, neither method represents the actual operating conditions in RF applications.

DRAIN CHARACTERISTICS

One critical figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, RDS(on), occurs
in the linear region of the output characteristic and is specified at a specific gate-source voltage and drain current. The drain-source voltage under these conditions is termed $V_{D S(o n)}$. For MOSFETs, $V_{D S(o n)}$ has a positive temperature coefficient at high temperatures because it contributes to the power dissipation within the device.

BVDSS values for this device are higher than normally required for typical applications. Measurement of $B V_{D S S}$ is not recommended and may result in possible damage to the device.

GATE CHARACTERISTICS

The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The DC input resistance is very high - on the order of $10^{9} \Omega$ - resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage to the gate greater than the gate-to-source threshold voltage, $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$.

Gate Voltage Rating - Never exceed the gate voltage rating. Exceeding the rated V_{GS} can result in permanent damage to the oxide layer in the gate region.

Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating should be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection - These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended. Using a resistor to keep the gate-to-source impedance low also helps dampen transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on.

DC BIAS

Since the MRF1507 is an enhancement mode FET, drain current flows only when the gate is at a higher potential than the source. RF power FETs operate optimally with a quiescent drain current (IDQ), whose value is application dependent. The MRF1507 was characterized at $I_{D Q}=150 \mathrm{~mA}$, which is the suggested value of bias current for typical applications. For special applications such as linear amplification, $I_{D Q}$ may have to be selected to optimize the critical parameters.
The gate is a dc open circuit and draws no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system.

GAIN CONTROL

Power output of the MRF1507 may be controlled to some degree with a low power dc control signal applied to the gate, thus facilitating applications such as manual gain control, ALC/AGC and modulation systems. This characteristic is very dependent on frequency and load line.

MOUNTING

The specified maximum thermal resistance of $2^{\circ} \mathrm{C} / \mathrm{W}$ assumes a majority of the $0.065^{\prime \prime} \times 0.180^{\prime \prime}$ source contact on the back side of the package is in good contact with an ap-
propriate heat sink. As with all RF power devices, the goal of the thermal design should be to minimize the temperature at the back side of the package.

AMPLIFIER DESIGN

Impedance matching networks similar to those used with bipolar transistors are suitable for the MRF1507. For examples see Motorola Application Note AN721, "Impedance Matching Networks Applied to RF Power Transistors." Large-signal impedances are provided, and will yield a good first pass approximation.

Since RF power MOSFETs are triode devices, they are not unilateral. This coupled with the very high gain of the MRF1507 yields a device capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. The RF test fixture implements a parallel resistor and capacitor in series with the gate, and has a load line selected for a higher efficiency, lower gain, and more stable operating region.

Two-port stability analysis with the MRF1507 S-parameters provides a useful tool for selection of loading or feedback circuitry to assure stable operation. See Motorola Application Note AN215A, "RF Small-Signal Design Using Two-Port Parameters" for a discussion of two port network theory and stability.

The RF Line
 NPN Silicon
 Power Transistors

... designed for 12.5 volt large-signal power amplifiers in commercial and industrial equipment.

- High Common Emitter Power Gain
- Specified 12.5 V, 175 MHz Performance

Output Power = 30 Watts
Power Gain $=10 \mathrm{~dB}$
Efficiency $=60 \%$

- Diffused Emitter Resistor Ballasting
- Characterized to 220 MHz
- Load Mismatch at High Line and Overdrive Conditions

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	16	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	36	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	4.0	Vdc
Collector Current - Continuous	I_{C}	8.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	P_{D}	100	Watts
Derate above $25^{\circ} \mathrm{C}$		0.57	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	200	${ }^{\circ} \mathrm{C}$

MRF1946 MRF1946A

$30 \mathrm{~W}, 136-220 \mathrm{MHz}$ RF POWER TRANSISTORS NPN SILICON

CASE 211-07, STYLE 1 MRF1946

CASE 145A-09, STYLE 1 MRF1946A

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\text {日JC }}$	1.75	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I} \mathrm{C}=25 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	16	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=25 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{\text {(BR) }}$ CES	36	-	-	Vdc
Emitter-Base Breakdown Voltage ($\mathrm{I}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0$)	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	ICES	-	-	5.0	mAdc

ON CHARACTERISTICS

DC Current Gain $\left(I_{C}=1.0 ~ A d c, ~ V_{C E}=5.0 ~ V d c\right)$	hFE	40	75	150	-

(continued)

REV 6

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
DYNAMIC CHARACTERISTICS					
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {ob }}$	-	75	100	pF

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{f}=175 \mathrm{MHz}\right)$	G_{pe}	10	11	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{f}=175 \mathrm{MHz}\right)$	η	60	70	-	\%
Load Mismatch $\left(\mathrm{V}_{\mathrm{CC}}=15.5 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}=2.0 \mathrm{~dB}\right.$ Overdrive, Load VSWR = 30:1)	ψ	No Degradation in Power Output			

Figure 1. Broadband Test Circuit Schematic

Figure 2. Output Power versus Input Power

Figure 4. Output Power versus Supply Voltage

Figure 6. Output Power versus Supply Voltage

Figure 3. Output Power versus Frequency

Figure 5. Output Power versus Supply Voltage

Figure 7. Output Power versus Supply Voltage

Figure 8. Typical Performance in a Broadband Circuit

$\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}$

\mathbf{f} $\mathbf{M H z}$	$\mathbf{Z}_{\text {in }}$ Ohms	Z OL * Ohms
136	$0.60-\mathrm{j} 0.48$	$2.22-\mathrm{j} 0.74$
150	$0.63-\mathrm{j} 0.26$	$2.30-\mathrm{j} 0.40$
175	$0.62+\mathrm{jo.13}$	$2.35-\mathrm{j} 0.04$
220	$0.73+\mathrm{j} 0.57$	$2.20+\mathrm{j} 0.43$

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

Figure 9. Series Equivalent Input and Output Impedance

The RF Line
 NPN Silicon
 RF Power Transistor

. . . designed for 12.5 volt VHF large-signal power amplifiers in commercial and industrial FM equipment.

- Compact . 280 Stud Package
- Specified 12.5 V, 175 MHz Performance

Output Power = 15 Watts
Power Gain $=12 \mathrm{~dB}$ Min
Efficiency $=60 \% \mathrm{Min}$

- Characterized to 220 MHz
- Load Mismatch Capability at High Line and Overdrive

MRF2628

15 W 136-220 MHz RF POWER TRANSISTOR NPN SILICON

CASE 244-04, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	18	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	36	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	I C	2.5	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	P_{D}	40	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	$\mathrm{~W}^{\circ} \mathrm{C}$
Junction Temperature	T_{J}	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	4.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ($\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=25\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	18	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=25\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	36	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{IE}=5.0\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=15\right.$ Vdc, $\left.\mathrm{I}_{\mathrm{E}}=0\right)$	I CBO	-	-	1.0	mAdc

(continued)
REV 6

ELECTRICAL CHARACTERISTICS - continued ($T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
DC Current Gain ($\mathrm{I}_{\mathrm{C}}=500 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}$)	$\mathrm{h}_{\text {FE }}$	10	70	150	-

DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	C_{ob}	-	33	60	pF

FUNCTIONAL TESTS (Figure 1)

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=15 \mathrm{~W}, \mathrm{f}=175 \mathrm{MHz}\right)$	Gpe	12	13	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=15 \mathrm{~W}, \mathrm{f}=175 \mathrm{MHz}\right)$	η	60	68	-	\%
```Load Mismatch (V}\mp@subsup{\textrm{V}}{\textrm{C}}{}=15.5\textrm{Vdc},\mp@subsup{\textrm{P}}{\textrm{in}}{}=2.0\textrm{dB}\mathrm{ Overdrive, Load VSWR = 30:1)```	$\psi$	No Degradation in Output Power			



Figure 1. Broadband Circuit


Figure 2. Output Power versus Frequency


Figure 4. Output Power versus Supply Voltage


Figure 3. Output Power versus Input Power


Figure 5. Output Power versus Supply Voltage


Figure 6. Output Power versus Supply Voltage


Figure 7. Output Power versus Supply Voltage


Figure 8. Typical Performance in a Broadband Circuit


Figure 9. Series Equivalent Impedance

## The RF Line

 NPN Silicon Low Noise TransistorsMotorola's MRF2947 device contains two high performance, low-noise NPN silicon bipolar transistors. This device has two 941 die housed in the high performance six leaded SC-70ML package; yielding a 9 GHz current gain-bandwidth product.

The RF performance at levels of 1 volt and 1 mA makes the MRF2947 well suited for low-voltage, low-current, front-end applications such as paging, cellular, GSM, DECT, CT2 and other portable wireless systems. The MRF2947 is fully ion-implanted with gold metallization and nitride passivation for maximum device reliability, performance and uniformity.

- Low Noise Figure, NF = 1.5 dB (Typ) @ $1 \mathrm{GHz} @ 5 \mathrm{~mA}$
- High Current Gain-Bandwidth Product, $\mathrm{f}_{\mathrm{t}}=9 \mathrm{GHz}$ (Typ) @ 6 Volts, 15 mA
- Maximum Stable Gain, 18 dB @ 1 GHz @ 5 mA
- Output Third Order Intercept, $\mathrm{OIP}_{3}=+27 \mathrm{dBm}$
- Available in Tape and Reel Packaging Options:

T1 Suffix $=3,000$ Units per $8 \mathrm{~mm}, 7$ inch Reel T2 Suffix $=3,000$ Units per $8 \mathrm{~mm}, 7$ inch Reel (reverse device orientation in tape)

## MRF2947AT1,T2 MRF2947RAT1,T2



CASE 419B-01, STYLES 16 \& 17 SC-70ML/SOT-363

STYLE 16


STYLE 17

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	10	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	20	Vdc
Emitter-Base Voltage	VEBO	1.5	Vdc
Power Dissipation (1) $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$   Derate linearly above $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$ @	PDmax	$\begin{gathered} \hline 0.188 \\ 2.5 \end{gathered}$	Watts $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Collector Current - Continuous (2)	IC	50	mA
Maximum Junction Temperature	TJmax	150	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Case	$\mathrm{R}_{\text {өJC }}$	400	${ }^{\circ} \mathrm{C} / \mathrm{W}$

## DEVICE MARKINGS

```
MRF2947AT1,T2 = WU
MRF2947RAT1,T2 = XR
```

(1) To calculate the junction temperature use $T_{J}=P_{D} \times R_{\theta J C}+T_{C}$. The case temperature is measured on collector lead adjacent to the package body.
(2) $I_{C}-$ Continuous (MTBF > 10 years).

ELECTRICAL CHARACTERISTICS $\left(T_{A}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS (3)					
Collector-Emitter Breakdown Voltage $\left(I_{C}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	$V_{\text {(BR) }}$ CEO	10	12	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=0.1 \mathrm{~mA}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	20	23	-	Vdc
Emitter Cutoff Current $\left(V_{E B}=1 V, I_{C}=0\right)$	IEBO	-	-	0.1	$\mu \mathrm{A}$
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	0.1	$\mu \mathrm{A}$

ON CHARACTERISTICS (3)

DC Current Gain $\left(\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}\right.$, $\left.\mathrm{IC}=500 \mu \mathrm{~A}\right)$	$\mathrm{h}_{\mathrm{FE}}^{1}$	50	-	-	-
DC Current Gain $\left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}\right.$, $\left.\mathrm{IC}=5 \mathrm{~mA}\right)$	$\mathrm{h}_{\mathrm{FE}}^{3}$	75	-	150	-

## DYNAMIC CHARACTERISTICS

Collector-Base Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{cb}}$	-	0.42	-	pF
Current Gain - Bandwidth Product   $\left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right)$	$\mathrm{f}_{\mathrm{T}}$	-	9	-	GHz

PERFORMANCE CHARACTERISTICS

Conditions	Symbol	Min	Typ	Max	Unit
$\begin{aligned} & \text { Insertion Gain } \\ & \begin{array}{l} \left(V_{C E}=1 \mathrm{~V}, \mathrm{IC}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{array} \end{aligned}$	$\left\|S_{21}\right\|^{2}$		$\begin{gathered} 7 \\ 15 \end{gathered}$		dB
Maximum Unilateral Gain (4) $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I} \mathrm{C}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{aligned}$	GUmax		$\begin{aligned} & 13 \\ & 17 \end{aligned}$	-	dB
Maximum Stable Gain and/or Maximum Available Gain (5) $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I} \mathrm{I}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I} \mathrm{I}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{aligned}$	MSG MAG		$\begin{aligned} & 12 \\ & 18 \end{aligned}$	-	dB
$\begin{aligned} & \text { Noise Figure - Minimum } \\ & \left(\mathrm{V}_{\mathrm{CE}}=1 \mathrm{~V}, \mathrm{I} \mathrm{C}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I} \mathrm{C}=5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{aligned}$	$N F_{\text {min }}$	-	$\begin{aligned} & 1.8 \\ & 1.5 \end{aligned}$	-	dB
Noise Resistance $\begin{aligned} & \left(\mathrm{VCE}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ & (\mathrm{V} \mathrm{CE}=6 \mathrm{~V}, \mathrm{I} \mathrm{C}=5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}) \end{aligned}$	$\mathrm{R}_{\mathrm{N}}$	-	$\begin{aligned} & 22 \\ & 17 \end{aligned}$		$\Omega$
$\begin{aligned} & \text { Associated Gain at Minimum NF } \\ & \left(\mathrm{V} C E=1 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=1 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right) \end{aligned}$	$\mathrm{G}_{\mathrm{NF}}$	-	$\begin{gathered} 9 \\ 14 \end{gathered}$		dB
Output Power at 1 dB Gain Compression (6) $\left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right)$	$\mathrm{P}_{1 \mathrm{~dB}}$	-	+13	-	dBm
Output Third Order Intercept (6) $\left(\mathrm{V}_{\mathrm{CE}}=6 \mathrm{~V}, \mathrm{I} \mathrm{C}=15 \mathrm{~mA}, \mathrm{f}=1 \mathrm{GHz}\right)$	$\mathrm{OIP}_{3}$	-	+27	-	dBm

(3) Pulse width $\leq 300 \mu \mathrm{~s}$, duty cycle $\leq 2 \%$ pulsed.
(4) Maximum unilateral gain is $\mathrm{GU}_{\max }=\frac{\left|\mathrm{S}_{21}\right|^{2}}{\left(1-\left|\mathrm{S}_{11}\right|^{2}\right)\left(1-\left|\mathrm{S}_{22}\right|^{2}\right)}$

(6) $\mathrm{Z}_{\mathrm{O}}=50 \Omega$ and $\mathrm{Z}_{\text {out }}$ matched for small signal maximum gain.

$$
\text { MSG }=\frac{\left|S_{21}\right|}{\left|S_{12}\right|} \text {, if } \mathrm{K}<1
$$



Figure 1. Capacitance versus Voltage


Figure 3. DC Current Gain versus Collector Current


Figure 2. Input Capacitance versus Voltage


Figure 4. Gain-Bandwidth Product versus Collector Current


Figure 5. Functional Circuit Schematic


Figure 6. Maximum Stable/Available Gain versus Frequency


Figure 8. Maximum Unilateral Gain and Forward Insertion Gain versus Frequency


Figure 7. Maximum Stable/Available Gain versus Frequency


Figure 9. Maximum Unilateral Gain and Forward Insertion Gain versus Frequency


Figure 11. Maximum Unilateral Gain and Forward Insertion Gain versus Collector Current

## TYPICAL CHARACTERISTICS



Figure 12. Maximum Stable/Available Gain versus Collector Current


Figure 13. Maximum Stable/Available Gain versus Collector Current


Figure 14. Minimum Noise Figure and Associated Gain versus Frequency


Figure 16. Minimum Noise Figure and Associated Gain versus Collector Current


Figure 17. Minimum Noise Figure and Associated Gain versus Collector Current

## TYPICAL CHARACTERISTICS



Figure 18. Output Third Order Intercept and Output Power at 1 dB Gain Compression versus Collector Current


Figure 19.1 dB Gain Compression and Third Order Intercept

$V_{\text {CE }}$   (Vdc)	$\begin{gathered} \text { IC } \\ (\mathrm{mA}) \end{gathered}$	$\begin{gathered} \mathbf{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
			$\left\|S_{11}\right\|$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	${ }^{(S 22 \mid}$	$\angle \phi$
0.5	1.0	0.1	0.957	-15	3.60	168	0.035	81	0.985	-8
		0.3	0.907	-42	3.33	147	0.098	64	0.932	-22
		0.5	0.833	-65	2.87	127	0.139	50	0.845	-31
		0.7	0.738	-85	2.50	112	0.165	39	0.770	-40
		0.9	0.668	-102	2.20	99	0.181	31	0.707	-46
		1.0	0.640	-110	2.07	94	0.186	28	0.680	-49
		1.3	0.579	-132	1.75	78	0.194	20	0.617	-57
		1.5	0.555	-144	1.58	70	0.197	16	0.593	-62
		2.0	0.521	-171	1.27	50	0.191	10	0.555	-72
		2.5	0.500	165	1.09	34	0.184	10	0.535	-83
		3.0	0.504	145	0.95	21	0.185	14	0.526	-95
		3.5	0.501	126	0.83	9	0.202	18	0.528	-107
		4.0	0.461	114	0.74	0	0.226	18	0.528	-121
		4.5	0.526	101	0.70	-8	0.262	20	0.521	-134
		5.0	0.559	85	0.64	-14	0.309	17	0.530	-148
1.0	1.0	0.1	0.961	-13	3.60	170	0.028	82	0.989	-7
		0.3	0.919	-37	3.38	150	0.078	67	0.950	-19
		0.5	0.855	-58	2.96	132	0.114	54	0.878	-27
		0.7	0.762	-77	2.62	117	0.138	44	0.814	-34
		0.9	0.692	-93	2.35	105	0.154	36	0.757	-41
		1.0	0.661	-101	2.22	99	0.159	33	0.731	-43
		1.3	0.591	-122	1.90	83	0.168	26	0.671	-50
		1.5	0.562	-133	1.72	75	0.171	22	0.645	-55
		2.0	0.512	-160	1.40	56	0.169	17	0.603	-65
		2.5	0.479	177	1.20	40	0.166	19	0.578	-75
		3.0	0.474	156	1.06	27	0.172	23	0.561	-86
		3.5	0.469	139	0.94	15	0.195	28	0.555	-99
		4.0	0.455	124	0.84	5	0.230	29	0.545	-112
		4.5	0.487	109	0.80	-3	0.281	29	0.526	-126
		5.0	0.504	94	0.74	-11	0.341	25	0.519	-140
	5.0	0.1	0.807	-28	14.46	158	0.026	75	0.930	-17
		0.3	0.638	-73	10.62	127	0.058	57	0.716	-38
		0.5	0.497	-99	7.61	109	0.074	50	0.558	-44
		0.7	0.423	-120	5.85	96	0.087	48	0.470	-48
		0.9	0.379	-136	4.72	87	0.099	48	0.419	-51
		1.0	0.366	-143	4.30	83	0.105	48	0.398	-53
		1.3	0.342	-162	3.42	72	0.123	47	0.358	-56

Table 1. Common Emitter S-Parameters

$\mathrm{V}_{\mathrm{VE}}$   (Vdc)	$\underset{(\mathrm{mA})}{\mathrm{Ic}}$	$\begin{gathered} \mathbf{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$					
			\|S11		$\angle \phi$	\|S21		$\angle \phi$	\|S12		$\angle \phi$	\|S22		$\angle \phi$
		1.5	0.334	-171	3.01	66	0.135	47	0.343	-59				
		2.0	0.329	168	2.33	52	0.168	45	0.323	-67				
		2.5	0.323	150	1.93	39	0.203	42	0.310	-75				
		3.0	0.334	135	1.67	28	0.239	37	0.300	-85				
		3.5	0.339	122	1.48	17	0.277	32	0.294	-97				
		4.0	0.338	112	1.33	8	0.309	26	0.280	-110				
		4.5	0.374	101	1.24	-2	0.348	22	0.274	-122				
		5.0	0.392	89	1.16	-11	0.390	15	0.272	-135				
3.0	1.0	0.1	0.962	-12	3.64	171	0.020	83	0.992	-6				
		0.3	0.927	-34	3.44	153	0.058	69	0.966	-15				
		0.5	0.868	-54	3.05	135	0.085	57	0.910	-22				
		0.7	0.781	-72	2.74	121	0.105	47	0.863	-28				
		0.9	0.710	-88	2.49	109	0.118	40	0.818	-34				
		1.0	0.677	-96	2.37	104	0.123	37	0.795	-36				
		1.3	0.601	-117	2.04	88	0.130	29	0.747	-42				
		1.5	0.567	-129	1.85	80	0.134	26	0.723	-47				
		2.0	0.509	-158	1.49	60	0.131	21	0.691	-56				
		2.5	0.470	177	1.27	44	0.129	24	0.673	-65				
		3.0	0.463	154	1.11	31	0.135	30	0.665	-74				
		3.5	0.458	134	0.96	18	0.155	35	0.667	-85				
		4.0	0.441	119	0.85	9	0.183	37	0.663	-97				
		4.5	0.483	104	0.81	0	0.225	37	0.653	-108				
		5.0	0.512	87	0.73	-8	0.274	34	0.657	-120				
	3.0	0.1	0.890	-18	9.77	165	0.020	80	0.973	-10				
		0.3	0.784	-51	8.36	140	0.050	63	0.874	-24				
		0.5	0.651	-74	6.66	121	0.069	52	0.756	-31				
		0.7	0.548	-95	5.43	107	0.080	47	0.678	-36				
		0.9	0.473	-111	4.54	97	0.088	44	0.625	-39				
		1.0	0.446	-119	4.19	92	0.092	43	0.600	-41				
		1.3	0.389	-139	3.39	79	0.103	42	0.556	-45				
		1.5	0.366	-151	3.00	73	0.110	41	0.538	-48				
		2.0	0.340	-177	2.34	57	0.128	41	0.516	-56				
		2.5	0.323	160	1.94	43	0.150	41	0.505	-64				
		3.0	0.331	141	1.66	31	0.175	40	0.500	-72				
		3.5	0.335	124	1.45	20	0.204	37	0.502	-83				
		4.0	0.333	112	1.29	10	0.229	33	0.495	-93				
		4.5	0.377	99	1.20	0	0.263	31	0.492	-103				
		5.0	0.408	84	1.10	-9	0.300	26	0.499	-114				
	5.0	0.1	0.823	-24	14.80	161	0.018	77	0.952	-13				
		0.3	0.666	-63	11.47	131	0.045	60	0.790	-29				
		0.5	0.514	-87	8.47	113	0.058	53	0.653	-34				
		0.7	0.425	-108	6.60	100	0.069	51	0.577	-38				
		0.9	0.366	-124	5.37	91	0.078	50	0.532	-40				
		1.0	0.347	-132	4.91	86	0.083	50	0.512	-42				
		1.3	0.309	-152	3.91	75	0.098	50	0.479	-44				
		1.5	0.295	-163	3.44	70	0.108	49	0.465	-48				
		2.0	0.284	172	2.65	55	0.134	48	0.449	-55				
		2.5	0.277	151	2.18	43	0.161	45	0.442	-63				
		3.0	0.291	134	1.87	31	0.190	42	0.440	-71				
		3.5	0.298	118	1.63	20	0.221	37	0.441	-82				
		4.0	0.299	108	1.46	11	0.245	32	0.431	-92				
		4.5	0.343	96	1.35	1	0.278	29	0.430	-102				
		5.0	0.373	82	1.24	-8	0.313	23	0.436	-113				

Table 1. Common Emitter S-Parameters (continued)

$V_{C E}$   (Vdc)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \stackrel{\mathrm{f}}{(\mathrm{GHz})} \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$			
			\|S ${ }_{11}$ \|	$\angle \phi$	\|S21		$\angle \phi$	${ }^{\text {\| }}$ 12 1	$\angle \phi$	\|S22		$\angle \phi$
6.0	1.0	0.1	0.968	-11	3.66	171	0.017	83	0.993	-5		
		0.3	0.933	-32	3.48	154	0.049	71	0.970	-14		
		0.5	0.878	-50	3.10	137	0.073	59	0.924	-20		
		0.7	0.789	-67	2.81	123	0.091	50	0.881	-26		
		0.9	0.716	-82	2.56	112	0.103	43	0.839	-31		
		1.0	0.683	-89	2.44	106	0.107	40	0.820	-33		
		1.3	0.600	-109	2.11	91	0.115	34	0.775	-39		
		1.5	0.564	-120	1.92	83	0.118	31	0.753	-43		
		2.0	0.492	-148	1.57	64	0.118	28	0.721	-52		
		2.5	0.444	-172	1.34	48	0.119	32	0.701	-60		
		3.0	0.428	165	1.17	34	0.129	39	0.691	-70		
		3.5	0.417	146	1.03	22	0.155	44	0.688	-81		
		4.0	0.402	130	0.92	12	0.190	46	0.682	-92		
		4.5	0.432	114	0.88	3	0.240	45	0.668	-103		
		5.0	0.451	97	0.80	-5	0.302	41	0.662	-115		
	5.0	0.1	0.850	-21	14.49	162	0.016	78	0.959	-11		
		0.3	0.691	-57	11.47	133	0.039	63	0.820	-25		
		0.5	0.533	-79	8.58	115	0.052	56	0.699	-29		
		0.7	0.430	-97	6.74	102	0.062	54	0.629	-32		
		0.9	0.362	-111	5.50	92	0.072	53	0.588	-35		
		1.0	0.337	-118	5.04	88	0.076	53	0.570	-36		
		1.3	0.286	-137	4.02	77	0.090	53	0.540	-39		
		1.5	0.268	-147	3.54	71	0.100	53	0.528	-42		
		2.0	0.242	-173	2.75	57	0.125	52	0.512	-49		
		2.5	0.226	167	2.27	45	0.152	50	0.504	-56		
		3.0	0.232	149	1.95	33	0.182	47	0.499	-64		
		3.5	0.236	133	1.71	23	0.214	43	0.497	-74		
		4.0	0.240	123	1.54	13	0.242	39	0.486	-84		
		4.5	0.276	110	1.43	4	0.280	35	0.482	-93		
		5.0	0.296	97	1.33	-6	0.321	30	0.481	-104		
	15.0	0.1	0.656	-37	28.03	149	0.014	74	0.879	-17		
		0.3	0.423	-83	16.63	115	0.030	63	0.639	-29		
		0.5	0.293	-105	10.92	100	0.041	64	0.547	-28		
		0.7	0.240	-123	8.09	91	0.052	65	0.509	-28		
		0.9	0.209	-138	6.41	83	0.065	65	0.490	-30		
		1.0	0.201	-145	5.82	80	0.071	65	0.481	-31		
		1.3	0.186	-162	4.56	71	0.089	63	0.469	-34		
		1.5	0.183	-171	3.99	66	0.102	62	0.462	-37		
		2.0	0.184	168	3.06	54	0.133	58	0.456	-45		
		2.5	0.182	150	2.51	43	0.164	54	0.454	-53		
		3.0	0.197	136	2.15	32	0.196	49	0.451	-61		
		3.5	0.206	124	1.88	22	0.230	44	0.449	-71		
		4.0	0.215	115	1.69	13	0.258	38	0.436	-80		
		4.5	0.252	105	1.57	4	0.294	34	0.433	-90		
		5.0	0.272	92	1.46	-6	0.334	28	0.432	-100		

Table 1. Common Emitter S-Parameters (continued)

VCE (Vdc)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{NF}_{\text {min }}$   (dB)	Го		$\begin{aligned} & \mathbf{R}_{\mathbf{N}} \\ & (\Omega) \end{aligned}$	$\mathrm{R}_{\mathrm{N}}$	$G_{N F}$   (dB)
				MAG	$\angle \phi$			
1.0	1.0	0.3	1.50	0.67	18	27	0.54	18.1
		0.5	1.53	0.62	31	26	0.52	14.6
		0.7	1.56	0.59	44	25	0.49	11.9
		0.9	1.70	0.56	57	23	0.45	9.7
		1.0	1.81	0.53	64	22	0.44	8.8
		1.5	2.19	0.50	97	16	0.31	5.7
		2.0	2.57	0.48	131	9	0.19	4.8
3.0	3.0	0.3	1.19	0.53	15	19	0.37	21.9
		0.5	1.19	0.49	26	18	0.36	18.3
		0.7	1.22	0.45	37	17	0.34	15.6
		0.9	1.36	0.42	49	16	0.32	13.8
		1.0	1.46	0.41	56	16	0.31	12.7
		1.5	1.82	0.37	89	13	0.25	9.6
		2.0	2.13	0.35	127	9	0.18	7.9
6.0	5.0	0.3	1.28	0.49	16	19	0.38	24.8
		0.5	1.28	0.46	24	18	0.37	20.4
		0.7	1.33	0.43	34	18	0.35	17.7
		0.9	1.45	0.41	44	17	0.34	15.6
		1.0	1.55	0.40	50	17	0.34	14.3
		1.5	1.95	0.36	81	14	0.28	11.3
		2.0	2.25	0.33	116	11	0.21	9.2

Table 2. Common Emitter Noise Parameters


Figure 20. MRF2947 Series Constant Gain and Noise Figure Contours



Figure 21. MRF2947 Series Constant Gain and Noise Figure Contours


Figure 22. MRF2947 Series Constant Gain and Noise Figure Contours


Figure 23. MRF2947 Series Constant Gain and Noise Figure Contours

## The RF MOSFET Line <br> RF Power <br> Field Effect Transistor <br> N-Channel Enhancement-Mode Lateral MOSFET

Designed for IMARSAT satellite up link at 1.6 to 1.64 GHz , 28 volts, Class AB, CW amplifier applications.

- Guaranteed Performance @ 1.6 GHz, 28 Volts Output Power = 10 Watts Minimum Gain = 9.5 dB @ 10 Watts Minimum Efficiency=45\% @ 10 Watts
- High Gain, Rugged Device
- Bottom Side Source Eliminates DC Isolators, Reducing Common Mode Inductances
- Broadband Performance of This Device Makes It Ideal for Applications from 800 to 1700 MHz , Common-Source Class AB Operation.
- Typical Performance at Class A Operation:


$$
\text { Pout }=2 \text { Watts, VDD }=28 \text { Volts, } I D Q=1 A \text {, }
$$

$$
\text { Gain }=12.5 \mathrm{~dB}, \mathrm{IMD}=-32 \mathrm{~dB}
$$

- Characterized with Small-Signal S-Parameters from 500 to 2500 MHz
- Capable of Handling 30:1 VSWR, @ 28 Vdc
- Circuit Board Available Upon Request by Contacting RF Tactical Marketing in Phoenix, AZ


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	65	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 20$	$\mathrm{Vdc}^{\circ}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Drain-Source Breakdown Voltage $\left(V_{G S}=0, I D=1 \mu A\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	65	-	-	Vdc
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	10	$\mu \mathrm{Adc}$
Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\right)$	IGSS	-	-	1	$\mu$ Adc

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

REV 1

ELECTRICAL CHARACTERISTICS - continued ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
Gate Threshold Voltage $\left(V_{D S}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=50 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	2	2.5	5	Vdc
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{~V}, \mathrm{ID}_{\mathrm{D}}=1 \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	-	1.5	-	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~A}\right)$	gfs	0.35	0.55	-	mhos

DYNAMIC CHARACTERISTICS

Input Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	Ciss	-	15	-	pF
Output Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	Coss	-	9	-	pF
Reverse Transfer Capacitance $\left(\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	Crss	-	0.7	-	pF

FUNCTIONAL CHARACTERISTICS

Common Source Power Gain $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}, \mathrm{f}=1.6 \mathrm{GHz}\right)$	$\mathrm{G}_{\mathrm{ps}}$	9.5	10.5	-	dB
Drain Efficiency $\left(V_{D D}=28 \mathrm{Vdc}, P_{\text {out }}=10 \mathrm{~W}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}, \mathrm{f}=1.6 \mathrm{GHz}\right)$	$\eta$	45	50	-	\%
Output Mismatch Stress $\begin{aligned} & \text { (VDS }=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}, \mathrm{f}=1600 \mathrm{MHz}, \\ & \text { Load VSWR } 30: 1 \text { at All Phase Angles) } \end{aligned}$	$\Psi$	No Degradation in Output Power			
Series Equivalent Input Impedance $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}, \mathrm{I} \mathrm{DQ}=50 \mathrm{~mA}, \mathrm{f}=1.6 \mathrm{GHz}\right)$	$\mathrm{Z}_{\text {in }}$	-	$3.1+\mathrm{j} 7.18$	-	$\Omega$
Series Equivalent Output Impedance $\left(\mathrm{V}_{\mathrm{DD}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=10 \mathrm{~W}, \mathrm{I}_{\mathrm{DQ}}=50 \mathrm{~mA}, \mathrm{f}=1.6 \mathrm{GHz}\right)$	Zol	-	6.16-j4.75	-	$\Omega$



Figure 1. 1.6 GHz Test Circuit Schematic


Figure 2. Output Power versus Input Power


Figure 3. Output Power versus Drain Voltage


Figure 4. Capacitance versus Drain Voltage

$\underset{\text { MHz }}{\text { f }}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
	\|S $\mathrm{S}_{11} \mid$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
500	0.806	-164	4.98	54	0.026	-18	0.598	-125	
510	0.805	-164	4.87	53	0.024	-18	0.604	-126	
520	0.803	-165	4.75	52	0.024	-20	0.610	-127	
530	0.805	-165	4.66	52	0.023	-20	0.619	-128	
540	0.803	-166	4.55	51	0.023	-21	0.623	-128	
550	0.806	-166	4.45	50	0.023	-22	0.628	-129	
600	0.818	-169	4.00	45	0.021	-27	0.646	-132	
650	0.822	-171	3.64	41	0.018	-20	0.663	-135	
700	0.832	-174	3.35	38	0.017	-28	0.683	-138	
750	0.838	-175	3.06	34	0.014	-32	0.704	-141	
800	0.843	-178	2.84	30	0.012	-23	0.722	-143	
820	0.847	-179	2.74	29	0.011	-21	0.724	-144	
840	0.852	-179	2.67	27	0.008	-27	0.725	-145	
860	0.855	180	2.59	26	0.009	-17	0.732	-146	
880	0.858	179	2.52	25	0.006	-16	0.741	-147	
900	0.859	179	2.46	24	0.004	-6	0.752	-147	
920	0.860	178	2.39	22	0.006	24	0.758	-147	
940	0.865	177	2.34	21	0.009	34	0.777	-148	
960	0.874	176	2.29	19	0.011	25	0.790	-150	
980	0.876	175	2.22	18	0.010	21	0.780	-152	
1000	0.876	175	2.16	16	0.010	25	0.782	-152	
1010	0.877	174	2.13	16	0.009	21	0.782	-153	
1020	0.877	174	2.11	16	0.008	26	0.786	-153	
1030	0.875	174	2.08	15	0.008	28	0.788	-153	
1040	0.878	173	2.06	15	0.009	28	0.791	-153	
1050	0.877	173	2.03	14	0.010	40	0.795	-154	
1060	0.884	173	2.01	13	0.009	38	0.793	-154	
1070	0.882	172	1.99	13	0.009	52	0.795	-154	
1080	0.887	172	1.96	12	0.008	54	0.796	-155	
1090	0.886	171	1.94	12	0.009	51	0.803	-155	
1100	0.888	171	1.92	11	0.010	44	0.803	-156	
1120	0.889	170	1.88	10	0.010	56	0.809	-156	
1140	0.888	170	1.84	8	0.013	56	0.817	-157	
1160	0.892	169	1.80	7	0.014	60	0.826	-157	
1180	0.895	168	1.77	6	0.014	62	0.836	-158	
1200	0.898	167	1.73	5	0.015	62	0.841	-159	
1220	0.906	167	1.70	4	0.017	68	0.847	-160	
1240	0.905	166	1.67	2	0.017	66	0.849	-161	
1260	0.904	165	1.64	1	0.018	63	0.862	-162	
1280	0.902	164	1.60	0	0.019	56	0.861	-163	
1300	0.906	163	1.55	-1	0.021	55	0.867	-163	

Table 1. Common Source S-Parameters ( $\mathrm{V}_{\mathrm{DS}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=750 \mathrm{~mA}$ )

$\begin{gathered} \mathrm{f} \\ \mathrm{MHz} \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
	\|S $\mathrm{S}_{11} \mid$	$\angle \phi$	${ }^{\text {S }}$ 21 ${ }^{\text {\| }}$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\| $\mathbf{S 2 2}^{2}$ \|	$\angle \phi$
1320	0.901	162	1.52	-2	0.018	49	0.866	-164
1340	0.906	162	1.49	-3	0.021	61	0.873	-165
1360	0.907	161	1.47	-4	0.022	61	0.875	-166
1380	0.905	161	1.44	-5	0.022	58	0.877	-167
1400	0.901	160	1.42	-7	0.021	58	0.881	-168
1420	0.900	159	1.39	-7	0.022	57	0.884	-168
1440	0.903	158	1.37	-9	0.022	58	0.885	-169
1460	0.912	158	1.34	-10	0.021	56	0.887	-170
1480	0.905	161	1.44	-5	0.022	58	0.877	-167
1500	0.910	156	1.30	-11	0.024	56	0.889	-171
1520	0.903	156	1.27	-12	0.023	57	0.891	-172
1540	0.899	155	1.26	-13	0.025	58	0.892	-173
1560	0.902	154	1.24	-15	0.026	56	0.893	-173
1570	0.902	153	1.22	-15	0.026	52	0.894	-174
1580	0.906	153	1.22	-16	0.024	53	0.892	-174
1590	0.906	153	1.21	-16	0.025	51	0.892	-174
1600	0.909	152	1.20	-17	0.026	49	0.892	-175
1610	0.911	152	1.20	-17	0.028	49	0.891	-175
1620	0.912	152	1.19	-17	0.026	53	0.889	-175
1630	0.907	151	1.18	-18	0.026	51	0.888	-176
1640	0.905	151	1.17	-18	0.027	55	0.889	-176
1650	0.895	150	1.16	-18	0.024	53	0.889	-177
1660	0.893	150	1.15	-19	0.027	52	0.889	-177
1670	0.890	150	1.14	-19	0.027	53	0.891	-177
1680	0.894	149	1.13	-20	0.026	51	0.891	-178
1690	0.899	148	1.12	-20	0.027	49	0.889	-178
1700	0.899	148	1.12	-21	0.027	53	0.888	-178
1750	0.905	147	1.09	-24	0.028	51	0.881	-180
1800	0.887	144	1.06	-26	0.029	50	0.889	179
1850	0.893	142	1.03	-28	0.029	50	0.885	178
1900	0.888	141	1.00	-31	0.031	51	0.883	176
1950	0.883	138	0.99	-34	0.032	51	0.888	176
2000	0.887	135	0.97	-36	0.032	44	0.887	174
2050	0.875	134	0.94	-38	0.035	46	0.894	173
2100	0.885	130	0.93	-42	0.037	45	0.894	172
2150	0.882	128	0.93	-45	0.038	37	0.905	170
2200	0.865	125	0.91	-47	0.040	37	0.907	169
2250	0.875	121	0.90	-50	0.040	30	0.911	168
2300	0.864	118	0.89	-54	0.037	27	0.915	165
2350	0.857	114	0.88	-56	0.042	31	0.917	163
2400	0.849	111	0.87	-59	0.042	23	0.906	162
2500	0.841	102	0.86	-66	0.040	13	0.887	160

Table 1. Common Source S-Parameters (VDS = 28 V , $\mathrm{ID}=750 \mathrm{~mA}$ ) (continued)


Figure 5. Photomaster for MRF3010 (Reduced 25\% in printed data book, DL110/D)


Figure 6. 1.6 GHz Test Circuit Layout

## The RF Line <br> Microwave Linear Power Transistor

Designed for Class A, common emitter linear power amplifiers.

- Specified 20 Volt, 1.6 GHz Characteristics

Output Power - 0.5, 0.8, 1.6 Watts Gain - 9.0-12 dB

- Low Parasitic Microwave Stripline Package
- Gold Metallization Diffused Emitter Ballast Resistors
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

MRF3095
$9.0-12 \mathrm{~dB}$
$1.55-1.65 \mathrm{GHz}$
$0.5-1.6$ WATTS MICROWAVE LINEAR POWER TRANSISTOR


CASE 328A-03, STYLE 2
maximum ratings

Rating	Symbol	Limit	Unit
Collector Base Voltage	$\mathrm{V}_{\text {CES }}$	50	Vdc
Emitter Base Voltage	$\mathrm{V}_{\text {EBO }}$	3.5	Vdc
Collector Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	22	Vdc
Collector Current	$\mathrm{I}_{\mathrm{C}}$	0.4	Adc
Operating Junction Temperature	$\mathrm{T}_{J}$	200	${ }^{\circ} \mathrm{C}$
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	35	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit

## OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage   $(\mathrm{IC}=10 \mathrm{~mA})$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	50	-	-	Vdc
Emitter Base Breakdown Voltage   $(\mathrm{IE}=0.25 \mathrm{~mA})$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	3.5	-	-	Vdc
Collector Base Breakdown Voltage   $(\mathrm{IC}=1.0 \mathrm{~mA})$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	45	-	-	Vdc
Collector-Emitter Breakdown Voltage   $(\mathrm{IC}=10 \mathrm{~mA})$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	22	-	-	Vdc
Collector Cutoff Current   $\left(V_{C B}=28 \mathrm{~V}\right)$	ICBO	-	-	0.25	mAdc

ON CHARACTERISTICS

DC Current Gain   $\left(V_{\mathrm{CE}}=5.0 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=100 \mathrm{~mA}\right)$	$\mathrm{h}_{\mathrm{fe}}$	20	35	120	-

## DYNAMIC CHARACTERISTICS

Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	Cob	-	-	3.5	pF
Functional Tests $\left(\mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=120 \mathrm{~mA}, \mathrm{P}_{\mathrm{O}}=0.8 \mathrm{~W}, \mathrm{f}=1.6 \mathrm{GHz}\right)$	GPE	9.0	10	-	dB
Output Load Mismatch $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{IC}_{\mathrm{C}}=120 \mathrm{~mA}, \mathrm{P}_{\mathrm{O}}=0.8 \mathrm{~W},\right. \\ & \mathrm{f}=1.6 \mathrm{GHz}, \text { Load VSWR }=\infty: 1) \end{aligned}$	$\psi$	No degradation in output power			
$\begin{aligned} & \text { Gain Linearity } \\ & \left(\mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{C}}=120 \mathrm{~mA}, \mathrm{f}=1.6 \mathrm{GHz}\right. \text {, } \\ & \left.\mathrm{P}_{\mathrm{O} 1}=0.8 \mathrm{~W}, \mathrm{P}_{\mathrm{o} 2}=0.8 \mathrm{~mW}\right) \end{aligned}$	$\mathrm{L}_{\mathrm{G}}$	-	-	-0.2 to +1.0	dB

TYPICAL CHARACTERISTICS

$\begin{gathered} \mathrm{VCE}_{\mathrm{CE}} \\ \text { (Volts) } \end{gathered}$	$\begin{gathered} \mathrm{IC} \\ (\mathrm{~mA}) \end{gathered}$	$\stackrel{\mathrm{f}}{(\mathrm{MHz})}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
			Mag	$\angle \phi$						
20	120	500	0.83	-177.4	4.90	71.1	0.29	21.7	0.36	-81.6
		600	0.83	179.6	4.08	64.4	0.30	22.1	0.37	-87.2
		700	0.83	176.9	3.48	59.3	0.31	23.6	0.39	-92.3
		800	0.83	175.0	3.20	52.8	0.34	23.2	0.42	-96.4
		900	0.82	171.6	2.70	48.6	0.33	25.0	0.43	-103.2
		1000	0.82	169.5	2.49	42.3	0.36	24.9	0.46	-107.6
		1100	0.83	167.4	2.26	37.0	0.38	25.2	0.48	-112.5
		1200	0.80	164.3	2.10	29.4	0.39	22.1	0.51	-117.7
		1300	0.81	162.2	1.87	27.9	0.41	25.9	0.54	-121.6
		1400	0.81	160.1	1.77	21.7	0.44	24.4	0.57	-125.3
		1500	0.80	157.8	1.63	15.2	0.45	22.4	0.58	-129.3
		1600	0.80	155.2	1.46	11.1	0.46	22.6	0.61	-131.7
		1700	0.80	152.3	1.42	9.6	0.48	23.9	0.66	-133.9
		1800	0.78	148.5	1.36	2.5	0.53	21.6	0.66	-136.6
		1900	0.77	144.5	1.25	-3.1	0.54	19.7	0.66	-139.3
		2000	0.78	141.0	1.17	-5.6	0.58	20.3	0.67	-141.9

Table 1. Common Emitter S-Parameters


Figure 1. Output Power versus Input Power

$\mathbf{f}$   $\mathbf{G H z}$	Z   Ohms		$\mathbf{Z O L}^{*}$   Ohms	
	$\mathbf{R}$	jx	$\mathbf{R}$	jx
1.55	5.2	10.6	8.6	-22.4
1.60	4.9	9.9	9.6	-25.4
1.65	4.8	9.3	10.3	-27.8

*ZOL = Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and power.

Figure 2. Series Equivalent Input and Output Impedance

## The RF Line NPN Silicon High-Frequency Transistor

- Tape and reel packaging available for MRF3866R2:

R2 suffix $=2,500$ units per reel


IC $=400 \mathrm{~mA}$
HIGH-FREQUENCY TRANSISTORS NPN SILICON


MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	30	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	55	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	3.5	Vdc
Collector Current - Continuous	I C	0.4	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	625	mW
Derate above $25^{\circ} \mathrm{C}$		5.0	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	1.5	Watts   Derate above $25^{\circ} \mathrm{C}$
Operating and Storage Junction	$\mathrm{T}_{\mathrm{J},} \mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
$\quad$ Temperature Range			
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{Jmax}}$	150	${ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	83.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance, Junction to Ambient	$R_{\theta J A}$	125	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=5.0 \mathrm{mAdc}, \mathrm{R}_{\mathrm{BE}}=10 \Omega\right)$	$V_{\text {(BR) }}$ CER	55	-	Vdc
Collector-Emitter Sustaining Voltage $\left(\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{\text {CEO }}$ (sus)	30	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=100 \mu \mathrm{Adc}, \mathrm{I} \mathrm{C}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	3.5	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	ICEO	-	0.02	mAdc
$\begin{aligned} & \text { Collector Cutoff Current } \\ & \left(\mathrm{V}_{\mathrm{CE}}=30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=-1.5 \mathrm{Vdc}(\text { Rev. }), \mathrm{T}_{\mathrm{C}}=150^{\circ} \mathrm{C}\right) \\ & \left(\mathrm{V}_{\mathrm{CE}}=55 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=-1.5 \mathrm{Vdc}(\text { Rev. })\right. \end{aligned}$	ICEX		$\begin{aligned} & 5.0 \\ & 0.1 \end{aligned}$	mAdc
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{BE}}=3.5 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	IEBO	-	0.1	mAdc

(continued)

REV 1

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit

ON CHARACTERISTICS

DC Current Gain   (IC $\left.=360 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)(1)$   (IC $\left.=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	hFE			-
Collector-Emitter Saturation Voltage   (IC $=100$ mAdc, $\left.\mathrm{I}_{\mathrm{B}}=20 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{CE}}(\mathrm{sat})$	-	-	10

## SMALL-SIGNAL CHARACTERISTICS

Current-Gain — Bandwidth Product   $\left(\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc}, \mathrm{f}=200 \mathrm{MHz}\right)$	f T	500	-	MHz
Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{obo}}$	-	3.0	pF

## FUNCTIONAL TEST

Amplifier Power Gain   $\left(V_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=1.0 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right)$	$\mathrm{G}_{\text {pe }}$	10	-	dB
Collector Efficiency   $\left(V_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=1.0 \mathrm{~W}, \mathrm{f}=400 \mathrm{MHz}\right)$	$\eta$	45	-	$\%$

NOTE:

1. Pulse Test: Pulse Width $\leq 300 \mu \mathrm{~s}$, Duty Cycle $\leq 2.0 \%$.

VCE(Volts)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\stackrel{f}{(\mathrm{MHz})}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
			$\mathrm{S}_{11}$	$\angle \phi$	S21	$\angle \phi$	$\mathrm{S}_{12}$	$\angle \phi$	$\mathrm{S}_{22}$	$\angle \phi$
15	50	100	0.67	-166	13.75	92	0.016	44	0.32	-27
		200	0.69	-176	6.93	81	0.024	53	0.30	-24
		300	0.70	177	4.57	73	0.032	57	0.32	-31
		400	0.71	172	3.38	67	0.042	59	0.34	-37
		500	0.72	168	2.66	61	0.049	59	0.37	-45
		600	0.72	164	2.17	54	0.056	61	0.40	-53
		700	0.72	160	1.85	49	0.061	63	0.43	-60
		800	0.72	155	1.61	44	0.068	65	0.47	-66
		900	0.71	151	1.40	39	0.075	64	0.50	-73
		1000	0.70	146	1.25	34	0.084	68	0.53	-79

Table 1. MRF3866R2 Common Emitter S-Parameters

## The RF Line <br> NPN Silicon RF Low Power Transistor

Designed for amplifier, frequency multiplier, or oscillator applications in industrial equipment constructed with surface mount components. Suitable for use as output driver or pre-driver stages in VHF and UHF equipment.

- Low Cost SORF Plastic Surface Mount Package
- Guaranteed RF Specification - $\left|\mathrm{S}_{21}\right|^{2}$
- S-Parameter Characterization
- Low Voltage Version of MRF3866
- Tape and Reel Packaging Available.

R2 suffix $=2,500$ units per reel

$1.0 \mathrm{~W}, 175 \mathrm{MHz}$ HIGH-FREQUENCY TRANSISTOR NPN SILICON


CASE 751-06, STYLE 1 SORF (SO-8)

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	20	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	40	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	2.0	Vdc
Collector Current - Continuous	$\mathrm{I}_{\mathrm{C}}$	400	mAdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$   Derate above $75^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	1.67	Watts   $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Operating Junction and Storage Temperature Range		$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\text {stg }}$	-65 to +150

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta \mathrm{JC}}$	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$

## DEVICE MARKING

MRF4427 = 4427
ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Sustaining Voltage   $\left(\mathrm{I}_{\mathrm{C}}=5.0\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	20	-	-	Vdc
Collector-Emitter Breakdown Voltage   $\left(\mathrm{IC}=5.0\right.$ mAdc, $\mathrm{R}_{\mathrm{BE}}=10$ ohms $)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CER}}$	40	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=100 \mu \mathrm{Adc}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	2.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=12\right.$ Vdc, $\left.\mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{I}=0$	-	-	20	$\mu \mathrm{Adc}$

NOTE:
(continued)

1. Case temperature measured on collector lead immediately adjacent to body of package.

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
$\begin{aligned} & \text { DC Current Gain } \\ & \text { (IC } \left.=100 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) \\ & \left(\mathrm{IC}=360 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right) \end{aligned}$	$\mathrm{h}_{\text {FE }}$	$\begin{aligned} & 10 \\ & 5.0 \end{aligned}$	50	200	-
Collector-Emitter Saturation Voltage ( $\mathrm{I}_{\mathrm{C}}=100 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=20 \mathrm{mAdc}$ )	$\mathrm{V}_{\text {CE }}$ (sat)	-	60	-	mVdc

## DYNAMIC CHARACTERISTICS

Current-Gain - Bandwidth Product   $\left(I_{C}=50\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{CE}}=12 \mathrm{Vdc}, \mathrm{f}=200 \mathrm{MHz}\right)$	$\mathrm{f}_{\mathrm{T}}$	-	1600	-	MHz
Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=12 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	-	-	3.0	pF

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain   $\left(P_{\text {in }}=15 \mathrm{~mW}, \mathrm{~V}_{\mathrm{CC}}=12 \mathrm{Vdc}, \mathrm{f}=175 \mathrm{MHz}\right)$	$\mathrm{G}_{\text {pe }}$	-	18	-	dB
Collector Efficiency (Figure 1)   $\left(P_{\text {out }}=1.0 \mathrm{~W}, \mathrm{~V}_{\mathrm{CC}}=12 \mathrm{Vdc}, \mathrm{f}=175 \mathrm{MHz}\right)$	$\eta$	-	60	-	$\%$
Insertion Gain   $\left(V_{\mathrm{CE}}=12 \mathrm{Vdc}, \mathrm{IC}=50 \mathrm{~mA}, \mathrm{f}=200 \mathrm{MHz}\right)$	$\mid \mathrm{S}_{\left.21\right\|^{2}}$	14	16.4	-	dB



Figure 1. 175 MHz RF Amplifier Circuit for Functional Tests


Figure 2. Collector-Base Capacitance versus Voltage


Figure 4. Output Power versus Voltage


Figure 3. Gain Bandwidth Product versus Collector Current


Figure 5. Output Power versus Frequency

$\begin{gathered} \mathrm{V}_{\mathrm{CE}} \\ \text { (Volts) } \end{gathered}$	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$	
			${ }^{\text {S }}$ 11\|	$\angle \phi$	${ }^{\text {S }} 21$ \|	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	${ }^{\text {S }} \mathbf{2 2}$ \|	$\angle \phi$
5.0	5.0	50	0.82	-104	10.3	125	0.05	38	0.68	-34
		100	0.83	-141	6.1	103	0.06	26	0.51	-40
		200	0.81	-165	3.2	85	0.07	21	0.44	-46
		500	0.80	169	1.3	57	0.07	32	0.49	-73
		750	0.79	156	0.8	42	0.08	49	0.58	-94
		1000	0.76	144	0.6	30	0.11	61	0.65	-114
	25	50	0.77	-151	19	107	0.02	36	0.35	-75
		100	0.79	-168	9.9	94	0.03	37	0.21	-87
		200	0.79	-180	5.0	82	0.04	49	0.16	-97
		500	0.78	163	2.0	61	0.07	62	0.22	-106
		750	0.77	152	1.3	48	0.10	66	0.31	-115
		1000	0.74	141	0.9	36	0.13	66	0.37	-127
	50	50	0.77	-163	21.1	103	0.02	37	0.29	-98
		100	0.79	-174	10.7	92	0.02	50	0.19	-119
		200	0.79	177	5.4	82	0.03	62	0.16	-134
		500	0.78	162	2.2	62	0.07	67	0.20	-131
		750	0.77	151	1.4	50	0.10	69	0.26	-130
		1000	0.74	140	1.1	38	0.13	67	0.32	-139
12	5.0	50	0.83	-97	11	129	0.04	46	0.75	-26
		100	0.82	-135	6.8	107	0.05	29	0.61	-29
		200	0.81	-162	3.6	88	0.05	24	0.54	-34
		500	0.79	171	1.4	60	0.06	37	0.47	-57
		750	0.78	157	0.9	44	0.07	55	0.64	-76
		1000	0.75	145	0.7	32	0.09	68	0.70	-95
	25	50	0.73	-143	22.1	111	0.02	38	0.43	-52
		100	0.76	-164	11.7	96	0.02	39	0.29	-52
		200	0.77	-177	6.0	84	0.03	48	0.22	-53
		500	0.76	165	2.4	63	0.06	64	0.27	-69
		750	0.75	154	1.6	49	0.08	67	0.35	-84
		1000	0.72	143	1.1	38	0.11	69	0.42	-98
	50	50	0.73	-156	25.5	106	0.02	41	0.32	-67
		100	0.75	-171	13.1	94	0.02	49	0.20	-69
		200	0.76	59	6.6	83	0.03	60	0.15	-71
		500	0.75	164	2.6	64	0.06	69	0.20	-81
		750	0.74	153	1.7	51	0.09	70	0.27	-92
		1000	0.71	142	1.2	38	0.12	70	0.34	-104

Table 1. Common Emitter S-Parameters

Freq. (MHz)	$\begin{aligned} & \mathrm{P}_{\text {in }} \\ & (\mathrm{mW}) \end{aligned}$	Pout (mW)	VCC (Volts)	$\underset{(\mathrm{Ohms})}{\mathrm{z}_{\text {in }}}$	$\begin{gathered} \mathrm{Z}_{\mathrm{OL}}{ }^{*} \\ (\mathrm{Ohms}) \end{gathered}$
136	15	-	12.5	6.2 - j11.6	-
175	15	-	12.5	4.6 - j10.4	-
136	-	1000	12.5	-	47.7 + j41.7
175	-	1000	12.5	-	47.4 - j34.4
136	30	-	7.5	5.65 - j12.6	-
175	30	-	7.5	$6.25-$ j12.2	-
136	-	650	7.5	-	27.6 - j32.4
175	-	650	7.5	-	27.9-j27.6
136	30	-	5.0	6.1 - j13.3	-
175	30	-	5.0	$5.9-\mathrm{j} 12.22$	-
136	-	450	5.0	-	24.8 - j22.8
175	-	450	5.0	-	28.3-j29.3

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.
Table 2. Series Input/Output Impedances

## The RF MOSFET Line RF Power Field Effect Transistor N-Channel Enhancement-Mode

Designed for broadband commercial and industrial applications at frequencies to 520 MHz . The high gain and broadband performance of this device makes it ideal for large-signal, common source amplifier applications in 12.5 volt mobile, and base station FM equipment.

- Guaranteed Performance at $512 \mathrm{MHz}, 12.5$ Volts

Output Power - 15 Watts
Power Gain - 10 dB Min
Efficiency - 50\% Min

- Characterized with Series Equivalent Large-Signal Impedance Parameters
- S-Parameter Characterization at High Bias Levels
- Excellent Thermal Stability
- All Gold Metal for Ultra Reliability
- Capable of Handling 20:1 VSWR, @ $15.5 \mathrm{Vdc}, 512 \mathrm{MHz}$, 2 dB Overdrive
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.


15 W, 512 MHz, 12.5 VOLTS N-CHANNEL BROADBAND RF POWER FET


CASE 319-07, STYLE 3

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	36	Vdc
Drain-Gate Voltage (RGS $=1 \mathrm{M} \Omega$ )	$\mathrm{V}_{\mathrm{DGR}}$	36	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 20$	Vdc
Drain Current - Continuous	$\mathrm{ID}_{\mathrm{D}}$	6	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	50	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	3.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Drain-Source Breakdown Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=5 \mathrm{mAdc}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	36	-	-	Vdc
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0\right)$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	5	mAdc
Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0\right)$	$\mathrm{I}_{\mathrm{GSS}}$	-	-	2	$\mu \mathrm{ddc}$

[^40]REV 6

ELECTRICAL CHARACTERISTICS - continued ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

ON CHARACTERISTICS

Gate Threshold Voltage $\left(V_{D S}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=10 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	1.25	2.3	3.5	Vdc
Drain-Source On-Voltage $\left(\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}, \mathrm{ID}=1 \mathrm{Adc}\right)$	$\mathrm{V}_{\text {DS }}(\mathrm{on})$	-	-	0.375	Vdc
Forward Transconductance $\left(V_{D S}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{Adc}\right)$	gfs	1.2	-	-	S

DYNAMIC CHARACTERISTICS

Input Capacitance   $\left(V_{\mathrm{DS}}=12.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{iss}}$	-	33	-	pF
Output Capacitance   $\left(\mathrm{V}_{\mathrm{DS}}=12.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{oss}}$	-	74	-	pF
Reverse Transfer Capacitance   $\left(\mathrm{V}_{\mathrm{DS}}=12.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	7	8.8	10.8	pF

FUNCTIONAL TESTS (In Motorola Test Fixture)

$\begin{array}{ll} \hline \text { Common-Source Amplifier Power Gain } & \\ \left(V_{D D}=12.5 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=15 \mathrm{~W},\right. & \mathrm{f}=512 \mathrm{MHz} \\ \mathrm{I} D \mathrm{M}=100 \mathrm{~mA}) & \mathrm{f}=175 \mathrm{MHz} \end{array}$	$G_{p s}$	10	$\begin{gathered} 11.5 \\ 15 \end{gathered}$	-	dB
Drain Efficiency $\begin{array}{ll} \left(V_{D D}=12.5 \mathrm{Vdc}, P_{\text {out }}=15 \mathrm{~W},\right. & f=512 \mathrm{MHz} \\ \left.\mathrm{I}_{\mathrm{DQ}}=100 \mathrm{~mA}\right) & \mathrm{f}=175 \mathrm{MHz} \end{array}$	$\eta$	50	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	-	\%
Load Mismatch $\left(V_{D D}=15.5 \mathrm{Vdc}, 2 \mathrm{~dB}\right.$ Overdrive, $\mathrm{f}=512 \mathrm{MHz}$, Load VSWR $=20: 1$, All Phase Angles at Frequency of Test)	$\psi$	No Degradation in Output Power			



Figure 1.512 MHz Narrowband Test Circuit Electrical Schematic


Figure 2. Output Power versus Input Power


Figure 4. Output Power versus Gate Voltage


Figure 3. Output Power versus Supply Voltage


Figure 5. Drain Current versus Gate Voltage


Figure 6. Capacitance versus Voltage


Figure 7. Gate-Source Voltage versus Case Temperature

TYPICAL CHARACTERISTICS


Figure 8. DC Safe Operating Area


$\mathbf{f}$   $(\mathbf{M H z})$	$\mathbf{Z}_{\text {in }}$   $(\Omega)$	$\mathbf{Z}_{\mathbf{O L}}{ }^{*}$   $(\Omega)$
400	$2.0-\mathrm{j} 6.1$	$1.3-\mathrm{j} 0.4$
420	$1.8-\mathrm{j} 5.3$	$1.4-\mathrm{j} 0.4$
440	$1.6-\mathrm{j} 4.7$	$1.5-\mathrm{j} 0.4$
460	$1.5-\mathrm{j} 4.2$	$1.5-\mathrm{j} 0.3$
480	$1.4-\mathrm{j} 3.8$	$1.5-\mathrm{j} 0.2$
500	$1.3-\mathrm{j} 3.6$	$1.4-\mathrm{j} 0.1$
520	$1.2-\mathrm{j} 3.5$	$1.3+\mathrm{j} 0.1$

$Z_{\text {in }}=$ Conjugate of source impedance with parallel $160 \Omega$ resistor and 36 pF capacitor in series with gate.
$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the load impedance at given output power, voltage and frequency that produces maximum gain.

Figure 9. Series Equivalent Input and Output Impedance

Table 1. Common Source Scattering Parameters (VDS = 12.5 V)
$\mathrm{ID}=50 \mathrm{~mA}$

$\mathbf{f}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
$\mathbf{M H z}$	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
50	0.63	-123	8	100	0.063	11	0.79	-149
100	0.62	-142	4	82	0.063	-6	0.82	-162
200	0.70	-152	1.8	61	0.056	-23	0.86	-169
300	0.78	-157	1.1	47	0.046	-35	0.90	-171
400	0.84	-162	0.70	36	0.037	-42	0.93	-174
500	0.88	-165	0.49	28	0.029	-46	0.94	-175
700	0.93	-171	0.28	17	0.016	-45	0.97	-179
850	0.95	-175	0.20	13	0.010	-31	0.97	179
1000	0.96	-178	0.15	10	0.007	11	0.98	178

$$
I D=100 \mathrm{~mA}
$$

$\mathbf{f}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
$\mathbf{M H z}$	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
50	0.67	-136	9.1	99	0.047	10	0.82	-158
100	0.66	-153	4.6	84	0.048	-3	0.85	-168
200	0.71	-160	2.2	66	0.043	-17	0.87	-172
300	0.77	-163	1.3	54	0.037	-26	0.90	-174
400	0.82	-165	0.89	44	0.031	-32	0.92	-175
500	0.86	-168	0.64	36	0.025	-35	0.94	-177
700	0.91	-173	0.37	25	0.015	-30	0.96	-179
850	0.93	-176	0.27	20	0.010	-11	0.97	179
1000	0.95	-179	0.20	16	0.009	25	0.98	177

ID $=500 \mathrm{~mA}$

$\mathbf{f}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
$\mathbf{M H z}$	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
50	0.81	-150	11.1	98	0.027	11	0.85	-168
100	0.81	-164	5.6	86	0.027	2	0.87	-174
200	0.82	-170	2.7	73	0.025	-5	0.88	-176
300	0.84	-173	1.7	63	0.023	-9	0.89	-177
400	0.86	-174	1.2	55	0.020	-9	0.91	-178
500	0.88	-175	0.92	47	0.018	-7	0.92	-179
700	0.91	-178	0.57	35	0.013	7	0.94	180
850	0.93	180	0.43	29	0.013	26	0.95	178
1000	0.94	178	0.33	23	0.014	44	0.96	177

ID $=2.5 \mathrm{~A}$

$\mathbf{f}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
$\mathbf{M H z}$	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
50	0.86	-144	10.1	101	0.022	15	0.85	-171
100	0.85	-161	5.2	88	0.022	5	0.87	-175
200	0.86	-170	2.5	74	0.021	-1	0.89	-177
300	0.87	-173	1.6	64	0.019	-4	0.90	-178
400	0.89	-175	1.1	55	0.017	-2	0.91	-178
500	0.91	-176	0.84	48	0.015	2	0.93	-179
700	0.93	-179	0.52	37	0.013	22	0.95	179
850	0.94	179	0.39	30	0.014	39	0.96	178
1000	0.95	177	0.30	26	0.016	52	0.96	176

## DESIGN CONSIDERATIONS

The MRF5015 is a common-source, RF power, N-Channel enhancement mode, Metal-Oxide Semiconductor FieldEffect Transistor (MOSFET). Motorola RF MOSFETs feature a vertical structure with a planar design. Motorola Application Note AN211A, "FETs in Theory and Practice," is suggested reading for those not familiar with the construction and characteristics of FETs.
This device was designed primarily for 12.5 volt VHF and UHF power amplifier applications. The major advantages of RF power MOSFETs include high gain, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage.

## MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between all three terminals. The metal oxide gate structure determines the capacitors from gate-to-drain ( $\mathrm{C}_{\mathrm{gd}}$ ), and gate-to-source ( $\mathrm{C}_{\mathrm{gs}}$ ). The PN junction formed during fabrication of the RF MOSFET results in a junction capacitance from drain-to-source ( $\mathrm{C}_{\mathrm{ds}}$ ). These capacitances are characterized as input ( $\mathrm{C}_{\mathrm{iss}}$ ), output ( $\mathrm{C}_{\mathrm{oss}}$ ) and reverse transfer ( $\mathrm{C}_{\text {rss }}$ ) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The $\mathrm{C}_{\text {iss }}$ can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate.
In the latter case, the numbers are lower. However, neither method represents the actual operating conditions in RF applications.


## DRAIN CHARACTERISTICS

One critical figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $\mathrm{R}_{\mathrm{ds}}(\mathrm{on})$, occurs in the linear region of the output characteristic and is specified at a specific gate-source voltage and drain current. The drain-source voltage under these conditions is termed $\mathrm{V}_{\mathrm{ds}}(\mathrm{on})$. For MOSFETs, $\mathrm{V}_{\mathrm{ds}}$ (on) has a positive temperature coefficient at high temperatures because it contributes to the power dissipation within the device.

## GATE CHARACTERISTICS

The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high, on the order of $10^{9} \Omega$, resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage to the gate greater than the gate-to-source threshold voltage, $V_{G S}(t h)$.

Gate Voltage Rating - Never exceed the gate voltage rating. Exceeding the rated $\mathrm{V}_{\mathrm{GS}}$ can result in permanent damage to the oxide layer in the gate region.

Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating must be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection - These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended with appropriate RF decoupling networks.

Using a resistor to keep the gate-to-source impedance low also helps dampen transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on.

## DC BIAS

Since the MRF5015 is an enhancement mode FET, drain current flows only when the gate is at a higher potential than the source. See Figure 5 for a typical plot of drain current versus gate voltage. RF power FETs operate optimally with a quiescent drain current (IDQ), whose value is application dependent. The MRF5015 was characterized at IDQ $=100 \mathrm{~mA}$, which is the suggested value of bias current for typical applications. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws essentially no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system.

## GAIN CONTROL

Power output of the MRF5015 may be controlled to some degree with a low power dc control signal applied to the gate, thus facilitating applications such as manual gain control, ALC/AGC and modulation systems. Figure 4 is an example of output power variation with gate-source bias voltage with $P_{\text {in }}$ held constant. This characteristic is very dependent on frequency and load line.

## AMPLIFIER DESIGN

Impedance matching networks similar to those used with bipolar transistors are suitable for the MRF5015. For examples see Motorola Application Note AN721, "Impedance Matching Networks Applied to RF Power Transistors." Both small-signal S-parameters and large-signal impedances are provided. While the S-parameters will not produce an exact design solution for high power operation, they do yield a good first approximation. This is an additional advantage of RF power MOSFETs.

Since RF power MOSFETs are triode devices, they are not unilateral. This coupled with the very high gain of MRF5015
yield a device quite capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. Different stabilizing techniques may be required depending on the desired gain and bandwidth of the application. The RF test fixture implements a parallel resistor and capacitor in series with the gate to improve stability and input impedance Q.

Two port stability analysis with the MRF5015 S-parameters provides a useful tool for selection of loading or feedback circuitry to assure stable operation. See Motorola Application Note AN215A, "RF Small-Signal Design Using Two-Port Parameters," for a discussion of two port network theory and stability.

## The RF MOSFET Line RF Power Field Effect Transistor N-Channel Enhancement-Mode

Designed for broadband commercial and industrial applications at frequencies to 520 MHz . The high gain and broadband performance of this device makes it ideal for large-signal, common source amplifier applications in 12.5 volt mobile, and base station FM equipment.

- Guaranteed Performance at $512 \mathrm{MHz}, 12.5$ Volt

Output Power - 35 Watts
Power Gain - 6.5 dB Min
Efficiency - 50\% Min

- Characterized with Series Equivalent Large-Signal Impedance Parameters
- S-Parameter Characterization at High Bias Levels
- Excellent Thermal Stability
- All Gold Metal for Ultra Reliability
- Capable of Handling 20:1 Load VSWR, @ 15.5 Volt, 512 MHz, 2 dB Overdrive
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.


35 W, 12.5 VOLTS, 512 MHz N-CHANNEL BROADBAND RF POWER FET


CASE 316-01, STYLE 3

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$V_{\text {DSS }}$	36	Vdc
Drain-Gate Voltage (RGS = $1 \mathrm{M} \Omega$ )	V DGR	36	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 20$	Vdc
Drain Current - Continuous	ID	15	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{gathered} 97 \\ 0.56 \end{gathered}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\text {日JC }}$	1.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Drain-Source Breakdown Voltage $\left(\mathrm{V}_{\mathrm{GS}}=0, \mathrm{I}_{\mathrm{D}}=20 \mathrm{mAdc}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{DSS}}$	36	-	-	Vdc
Zero Gate Voltage Drain Current $\left(\mathrm{V}_{\mathrm{DS}}=15 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0\right)$	$\mathrm{I}_{\mathrm{DSS}}$	-	-	5	mAdc
Gate-Source Leakage Current $\left(\mathrm{V}_{\mathrm{GS}}=20 \mathrm{Vdc}, \mathrm{V}_{\mathrm{DS}}=0\right)$	$\mathrm{I}_{\mathrm{GSS}}$	-	-	5	$\mu \mathrm{Adc}$

(continued)

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=25 \mathrm{mAdc}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	1.25	2.3	3.5	Vdc
Drain-Source On-Voltage ( $\mathrm{V}_{\mathrm{GS}}=10 \mathrm{Vdc}, \mathrm{ID}=3 \mathrm{Adc}$ )	$\mathrm{V}_{\mathrm{DS}}(\mathrm{on})$	-	-	0.422	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=3 \mathrm{Adc}\right)$	9fs	3.2	-	-	S

DYNAMIC CHARACTERISTICS

Input Capacitance   $\left(V_{\mathrm{DS}}=12.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	88	-	pF
Output Capacitance   $\left(\mathrm{V}_{\mathrm{DS}}=12.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {oss }}$	-	197	-	pF
Reverse Transfer Capacitance   $\left(V_{\mathrm{DS}}=12.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{rss}}$	18	24	29	pF

FUNCTIONAL TESTS (In Motorola Test Fixture)

Common-Source Amplifier Power Gain $\begin{array}{ll} \left(V_{D D}=12.5 \mathrm{Vdc}, P_{\text {out }}=35 \mathrm{~W},\right. & f=512 \mathrm{MHz} \\ \left.I_{D Q}=400 \mathrm{~mA}\right) & f=175 \mathrm{MHz} \end{array}$	$\mathrm{G}_{\mathrm{ps}}$	$6.5$	$\begin{aligned} & 7.5 \\ & 12 \end{aligned}$	-	dB
$\begin{array}{ll} \hline \text { Drain Efficiency } & \\ \left(V_{D D}=12.5 \mathrm{Vdc}, \text { P out }=35 \mathrm{~W},\right. & \mathrm{f}=512 \mathrm{MHz} \\ \text { IDQ }=400 \mathrm{~mA}) & \mathrm{f}=175 \mathrm{MHz} \end{array}$	$\eta$	$50$	$\begin{aligned} & 55 \\ & 55 \end{aligned}$	-	\%
Load Mismatch $\left(V_{D D}=15.5 \mathrm{Vdc}, 2 \mathrm{~dB}\right.$ Overdrive, $\mathrm{f}=512 \mathrm{MHz}$, Load VSWR $=20: 1$, All Phase Angles at Frequency of Test)	$\psi$	No Degradation in Output Power			



## Components List

B1, B2	Short Ferrite Bead, Fair Rite Products
C1, C14	$10 \mu$ F, 50 V, Electrolytic
C2	1500 pF , Chip Capacitor
C3	140 pF , Chip Capacitor
C4, C11	$0-10 \mathrm{pF}$, Trimmer Capacitor
C5	30 pF , Chip Capacitor
C6, C7	43 pF, Chip Capacitor
C8, C9	36 pF, Chip Capacitor
C10	3.6 pF , Chip Capacitor
C12, C15, C16	120 pF , Chip Capacitor
C13	$0.1 \mu \mathrm{~F}$, Chip Capacitor
L1	5 Turs, 18 AWG, $0.116^{\prime \prime}$ ID
L2	8 Turns, 20 AWG, $0.125^{\prime \prime}$ ID


N1, N2	Type N Flange Mount
R1	$1 \mathrm{k} \Omega, 1 / 4 \mathrm{~W}$, Carbon
R2	$1 \mathrm{M} \Omega, 1 / 4 \mathrm{~W}$, Carbon
R3	$100 \Omega, 1 / 4 \mathrm{~W}$, Carbon
R4	$110 \Omega, 1 / 4 \mathrm{~W}$, Carbon
Z1, Z9	Transmission Line*
Z2	Transmission Line*
Z3	Transmission Line*
Z4	Transmission Line*
Z7	Transmission Line*
Z8	Transmission Line*
Board	Glass Teflon® 0.060"
	"See Photomaster for Dimensions

Figure 1.512 MHz Narrowband Test Circuit Electrical Schematic

TYPICAL CHARACTERISTICS


Figure 2. Output Power versus Input Power


Figure 4. Output Power versus Supply Voltage


Figure 6. Drain Current versus Gate Voltage


Figure 3. Output Power versus Supply Voltage


Figure 5. Output Power versus Gate Voltage


Figure 7. Capacitance versus Voltage


Figure 8. Gate-Source Voltage versus Case Temperature


Figure 9. DC Safe Operating Area

VDD $=12.5 \mathrm{~V}$, IDQ $=400 \mathrm{~mA}, \mathrm{P}_{\text {in }}=7.8 \mathrm{~W}$,

$\mathbf{f}$   $(\mathrm{MHz})$	$\mathbf{Z}_{\text {in }}$   $(\Omega)$	$\mathbf{Z}_{\mathrm{OL}}{ }^{*}$   $(\Omega)$
400	$1.0+\mathrm{j} 0.89$	$0.87+\mathrm{j} 2.1$
420	$0.90+\mathrm{j} 0.83$	$0.79+\mathrm{j} 2.2$
440	$0.83+\mathrm{j} 0.81$	$0.73+\mathrm{j} 2.3$
460	$0.82+\mathrm{j} 0.83$	$0.71+\mathrm{j} 2.4$
480	$0.87+\mathrm{j} 0.90$	$0.71+\mathrm{j} 2.5$
500	$0.97+\mathrm{j} 1.0$	$0.74+\mathrm{j} 2.6$
520	$1.1+\mathrm{j} 1.2$	$0.80+\mathrm{j} 2.7$

$Z_{\text {in }}=$ Conjugate of source impedance.
$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the load impedance at given input power, voltage and frequency that produces maximum output power.

Figure 10. Series Equivalent Input and Output Impedance

Table 1. Common Source Scattering Parameters (VDS = 12.5 V)
ID $=100 \mathrm{~mA}$

$\mathbf{f}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
$\mathbf{M H z}$	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
25	0.74	-153	6.9	94	0.039	6	0.87	-169
50	0.74	-164	3.4	82	0.039	-5	0.89	-174
100	0.77	-168	1.6	67	0.036	-16	0.90	-176
150	0.81	-170	1	56	0.032	-25	0.92	-178
200	0.85	-171	0.69	46	0.028	-31	0.93	-179
300	0.90	-174	0.38	32	0.019	-36	0.96	179
400	0.93	-178	0.24	22	0.013	-30	0.97	177
450	0.94	-179	0.20	19	0.010	-22	0.97	175
500	0.95	179	0.17	16	0.008	-8	0.98	174
600	0.96	176	0.12	13	0.008	27	0.98	172

ID $=400 \mathrm{~mA}$

$\mathbf{f}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
$\mathbf{M H z}$	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
25	0.88	-163	7.8	94	0.018	7	0.93	-175
50	0.88	-172	3.9	87	0.018	3	0.93	-178
100	0.88	-176	1.9	77	0.018	-1	0.94	-180
150	0.89	-178	1.3	70	0.017	-2	0.94	179
200	0.89	-179	0.91	63	0.016	-1	0.94	178
300	0.91	180	0.57	51	0.014	3	0.95	177
400	0.92	178	0.39	41	0.012	14	0.96	175
450	0.93	177	0.33	37	0.012	22	0.96	174
500	0.94	176	0.29	33	0.012	29	0.97	173
600	0.95	174	0.22	27	0.014	42	0.97	171

$\mathrm{ID}=1 \mathrm{~A}$

$\mathbf{f}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
$\mathbf{M H z}$	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
25	0.92	-165	7.8	95	0.013	9	0.94	-177
50	0.91	-173	3.9	88	0.013	6	0.95	-179
100	0.92	-177	1.9	81	0.013	7	0.95	179
150	0.92	-179	1.3	75	0.013	9	0.95	179
200	0.92	180	0.95	69	0.012	12	0.95	178
300	0.93	178	0.61	59	0.012	21	0.96	176
400	0.94	176	0.43	50	0.013	32	0.96	174
450	0.94	175	0.38	46	0.013	37	0.97	174
500	0.94	174	0.33	43	0.014	42	0.97	173
600	0.95	173	0.26	36	0.016	49	0.97	171

$$
\mathrm{ID}=5 \mathrm{~A}
$$

$\mathbf{f}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
$\mathbf{M H z}$	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
25	0.94	-164	7.2	95	0.010	10	0.95	-178
50	0.94	-172	3.6	89	0.010	9	0.95	-180
100	0.94	-177	1.8	81	0.010	11	0.96	179
150	0.94	-179	1.2	76	0.011	16	0.96	178
200	0.94	179	0.89	70	0.011	21	0.96	177
300	0.95	177	0.57	61	0.011	31	0.96	176
400	0.95	176	0.42	52	0.013	41	0.97	174
450	0.95	175	0.36	48	0.013	45	0.97	173
500	0.96	174	0.32	45	0.014	48	0.97	172
600	0.96	172	0.26	39	0.017	54	0.97	171

## DESIGN CONSIDERATIONS

The MRF5035 is a common-source, RF power, N-Channel enhancement mode, Metal-Oxide Semiconductor FieldEffect Transistor (MOSFET). Motorola RF MOSFETs feature a vertical structure with a planar design. Motorola Application Note AN211A, "FETs in Theory and Practice," is suggested reading for those not familiar with the construction and characteristics of FETs.

This device was designed primarily for 12.5 volt VHF and UHF Land Mobile FM power amplifier applications. The major advantages of RF power MOSFETs include high gain, simple bias systems, relative immunity from thermal runaway, and the ability to withstand severely mismatched loads without suffering damage.

## MOSFET CAPACITANCES

The physical structure of a MOSFET results in capacitors between all three terminals. The metal oxide gate structure determines the capacitors from gate-to-drain $\left(\mathrm{C}_{g d}\right)$, and gate-to-source ( $\mathrm{C}_{\mathrm{gs}}$ ). The PN junction formed during fabrication of the RF MOSFET results in a junction capacitance from drain-to-source ( $\mathrm{C}_{\mathrm{ds}}$ ). These capacitances are characterized as input ( $\mathrm{C}_{\mathrm{iss}}$ ), output ( $\mathrm{C}_{\mathrm{Oss}}$ ) and reverse transfer ( $\mathrm{C}_{\mathrm{rss}}$ ) capacitances on data sheets. The relationships between the inter-terminal capacitances and those given on data sheets are shown below. The $\mathrm{C}_{\text {iss }}$ can be specified in two ways:

1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero volts at the gate.
In the latter case, the numbers are lower. However, neither method represents the actual operating conditions in RF applications.


## DRAIN CHARACTERISTICS

One critical figure of merit for a FET is its static resistance in the full-on condition. This on-resistance, $\mathrm{R}_{\mathrm{ds}}(\mathrm{on})$, occurs in
the linear region of the output characteristic and is specified at a specific gate-source voltage and drain current. The drain-source voltage under these conditions is termed $\mathrm{V}_{\mathrm{ds}(\mathrm{on})}$. For MOSFETs, $\mathrm{V}_{\mathrm{ds}}$ (on) has a positive temperature coefficient at high temperatures because it contributes to the power dissipation within the device.

## GATE CHARACTERISTICS

The gate of the RF MOSFET is a polysilicon material, and is electrically isolated from the source by a layer of oxide. The input resistance is very high, on the order of $10^{9} \Omega$, resulting in a leakage current of a few nanoamperes.

Gate control is achieved by applying a positive voltage to the gate greater than the gate-to-source threshold voltage, $\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$.

Gate Voltage Rating - Never exceed the gate voltage rating. Exceeding the rated $\mathrm{V}_{\mathrm{GS}}$ can result in permanent damage to the oxide layer in the gate region.

Gate Termination - The gates of these devices are essentially capacitors. Circuits that leave the gate open-circuited or floating must be avoided. These conditions can result in turn-on of the devices due to voltage build-up on the input capacitor due to leakage currents or pickup.

Gate Protection - These devices do not have an internal monolithic zener diode from gate-to-source. If gate protection is required, an external zener diode is recommended with appropriate RF decoupling networks.

Using a resistor to keep the gate-to-source impedance low also helps dampen transients and serves another important function. Voltage transients on the drain can be coupled to the gate through the parasitic gate-drain capacitance. If the gate-to-source impedance and the rate of voltage change on the drain are both high, then the signal coupled to the gate may be large enough to exceed the gate-threshold voltage and turn the device on.

## DC BIAS

Since the MRF5035 is an enhancement mode FET, drain current flows only when the gate is at a higher potential than the source. See Figure 6 for a typical plot of drain current versus gate voltage. RF power FETs operate optimally with a quiescent drain current (IDQ), whose value is application dependent. The MRF5035 was characterized at IDQ $=400 \mathrm{~mA}$, which is the suggested value of bias current for typical applications. For special applications such as linear amplification, IDQ may have to be selected to optimize the critical parameters.

The gate is a dc open circuit and draws essentially no current. Therefore, the gate bias circuit may generally be just a simple resistive divider network. Some special applications may require a more elaborate bias system.

## GAIN CONTROL

Power output of the MRF5035 may be controlled to some degree with a low power dc control signal applied to the gate, thus facilitating applications such as manual gain control, ALC/AGC and modulation systems. Figure 5 is an example of output power variation with gate-source bias voltage with $P_{\text {in }}$ held constant. This characteristic is very dependent on frequency and load line.

## AMPLIFIER DESIGN

Impedance matching networks similar to those used with bipolar transistors are suitable for the MRF5035. For examples see Motorola Application Note AN721, "Impedance Matching Networks Applied to RF Power Transistors." Both small-signal S-parameters and large-signal impedances are provided. While the S-parameters will not produce an exact design solution for high power operation, they do yield
a good first approximation. This is an additional advantage of RF power MOSFETs.

Since RF power MOSFETs are triode devices, they are not unilateral. This coupled with the high gain of the MRF5035 yield a device quite capable of self oscillation. Stability may be achieved by techniques such as drain loading, input shunt resistive loading, or output to input feedback. Different stabilizing techniques may be required depending on the desired gain and bandwidth of the application. The RF test fixture implements a resistor in shunt with the gate to improve stability. Two port stability analysis with the MRF5035 S-parameters provides a useful tool for selection of loading or feedback circuitry to assure stable operation. See Motorola Application Note AN215A, "RF Small-Signal Design Using Two-Port Parameters," for a discussion of two port network theory and stability.

## The RF Line NPN Silicon High-Frequency Transistor

Designed for high current, low power amplifiers up to 1.0 GHz .

- Low Noise (2.0 dB @ 500 MHz )
- Low Intermodulation Distortion
- High Gain
- State-of-the-Art Technology

Fine Line Geometry
Arsenic Emitters
Gold Top Metallization
Nichrome Thin-Film Ballasting Resistors

- Excellent Dynamic Range
- Fully Characterized
- High Current-Gain Bandwidth Product
- Available in Tape and Reel by Adding T1 Suffix to Part Number.

T1 Suffix = 3,000 Units per $8 \mathrm{~mm}, 7$ inch Reel.

## MRF5811LT1

IC $=200 \mathrm{~mA}$
LOW NOISE
HIGH-FREQUENCY
TRANSISTOR
NPN SILICON



MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	18	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	36	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	2.5	Vdc
Collector Current - Continuous	IC	200	mAdc
Thermal Resistance 9 JC (1)	$\mathrm{R}_{\text {өJC }}$	106	${ }^{\circ} \mathrm{C} / \mathrm{W}$
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$ Derate above $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}$	PD	$\begin{gathered} 0.71 \\ 9.4 \end{gathered}$	Watts
Storage Junction Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	TJmax	150	${ }^{\circ} \mathrm{C}$

## DEVICE MARKING

MRF5811L $=20$
NOTES:

1. Case temperature measured on collector lead immediately adjacent to body of package.

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ( $\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0$ )	$\left.\mathrm{V}_{( } \mathrm{BR}\right) \mathrm{CEO}$	18	-	-	Vdc
Collector-Base Breakdown Voltage $(\mathrm{I} \mathrm{C}=1.0 \mathrm{mAdc}, \mathrm{I} \mathrm{E}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	36	-	-	Vdc
Emitter-Base Breakdown Voltage ( $\mathrm{I}=0.1 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0$ )	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	2.5	-	-	Vdc
Emitter Cutoff Current $\left(\mathrm{V}_{\mathrm{EB}}=2.0 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	IEBO	-	-	100	$\mu \mathrm{Adc}$
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	${ }^{\text {ICBO }}$	-	-	100	$\mu \mathrm{Adc}$

## ON CHARACTERISTICS

DC Current Gain (1)   $\left(I_{C}=50\right.$ mAdc, $\left.V_{C E}=5.0 \mathrm{Vdc}\right)$	$\mathrm{h}_{\mathrm{FE}}$	50	-	200	-

## DYNAMIC CHARACTERISTICS

Collector-Base Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	-	2.0	-	pF
Collector-Base Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=10 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{cb}}$	-	1.2	2.0	pF
Current-Gain Bandwidth Product $(2)$   $\left(\mathrm{I}=75\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{GHz}\right)$	f T	-	5.0	-	GHz

## FUNCTIONAL TESTS

Noise Figure (Minimum), Figure 3 $\left(\mathrm{I} \mathrm{C}=50 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=500 \mathrm{MHz}\right)$	$N F_{\text {min }}$	-	2.0	3.0	dB
Noise Figure (50 Ohm Insertion) $\left(\mathrm{I} \mathrm{C}=50 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=500 \mathrm{MHz}\right)$	$\mathrm{NF}_{50} \Omega$	-	2.5	-	dB
Power Gain at Optimum Noise Figure, Figure 3 $\left(\mathrm{I} \mathrm{C}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}, \mathrm{f}=500 \mathrm{MHz}\right)$	$\mathrm{G}_{\mathrm{NF}}$	-	18.4	-	dB
$\begin{aligned} & \text { Insertion Gain } \\ & \text { (IC } \left.=50 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{f}=500 \mathrm{MHz}\right) \end{aligned}$	$\left\|S_{21}\right\|^{2}$	-	14.2	-	dB
$\begin{aligned} & \text { Maximum Unilateral Gain (2) } \\ & \quad\left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{CE}}=6.0 \mathrm{Vdc}, \mathrm{f}=500 \mathrm{MHz}\right) \end{aligned}$	GU max	-	18	-	dB

NOTES:

1. $300 \mu \mathrm{~s}$ pulse on Tektronix 576 or equivalent.
2. $G_{U \max }=\frac{\left|S_{21}\right|^{2}}{\left(1-\left|S_{11}\right|^{2}\right)\left(1-\left|S_{22}\right|^{2}\right)}$

## TYPICAL CHARACTERISTICS



Figure 1. $\mathrm{C}_{\mathrm{ib}}$ Input Capacitance versus Voltage


Figure 2. Ccb, Cob Collector-Base Capacitance versus Voltage


Figure 3. MRF5811L Functional Circuit Schematic


Figure 4. Gain-Bandwidth Product versus Collector Current


Figure 5. $\mathrm{GU}_{\mathrm{m}}^{\mathrm{max})}$ Maximum Unilateral Gain, $\left|S_{21}\right|^{2}$ versus Frequency


Figure 6. MSG - Maximum Stable Gain, MAG - Maximum Available Gain versus Frequency


Figure 7. Minimum Noise Figure and Gain @ Minimum Noise Figure versus Frequency


Figure 8. Noise Figure and Gain @ Minimum Noise Figure versus Collector Current

$\mathbf{V C E}_{\text {CE }}$ (Vdc)	$\mathbf{I} \mathbf{C}(\mathbf{m A})$	$\mathbf{f}(\mathbf{M H z})$	$\mathbf{N F}_{\min }(\mathbf{d B})$	$\mid$ Gam Opt $\mid$	$<$ Gam Opt	$\mathbf{R n}$
6.0	10	500	1.64	0.49	164	3.5
		1000	2.81	0.68	-173	3.5
	50	500	2.0	0.51	177	3.9
		1000	2.85	0.61	-168	4.7

Table 1. Common Emitter Noise Parameters

$\begin{gathered} \mathrm{V}_{\mathrm{CE}} \\ \text { (Volts) } \end{gathered}$	$\begin{gathered} \mathrm{IC} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{gathered} \mathbf{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
			${ }^{\text {S }} 11$ \|	$\angle \phi$	$\left\|\mathrm{S}_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
3.0	25	0.10	0.734	-132	17.54	115	0.045	37	0.544	-89	
		0.20	0.765	-157	9.66	99	0.051	30	0.395	-120	
		0.30	0.771	-168	6.59	90	0.056	32	0.354	-135	
		0.40	0.773	-174	4.98	84	0.060	34	0.340	-143	
		0.50	0.768	-180	4.01	81	0.065	38	0.319	-150	
		0.60	0.768	176	3.36	76	0.070	41	0.319	-153	
		0.70	0.769	173	2.89	73	0.076	43	0.321	-155	
		0.80	0.771	170	2.55	69	0.081	44	0.325	-157	
		0.90	0.770	167	2.27	65	0.088	46	0.329	-158	
		1.00	0.771	165	2.06	62	0.094	47	0.335	-159	
		1.50	0.773	152	1.41	47	0.127	49	0.367	-163	
		2.00	0.777	140	1.08	33	0.162	48	0.408	-167	
		2.50	0.786	129	0.87	22	0.194	45	0.461	-171	
		3.00	0.793	118	0.75	12	0.229	40	0.498	-177	
		3.50	0.803	108	0.65	4	0.262	35	0.530	177	
		4.00	0.812	100	0.58	-2	0.294	30	0.563	169	
		4.50	0.811	91	0.53	-7	0.328	24	0.587	162	
		5.00	0.816	83	0.50	-11	0.355	18	0.616	154	
	50	0.10	0.732	-141	19.19	112	0.039	36	0.542	-105	
		0.20	0.764	-163	10.33	97	0.045	34	0.44	-136	
		0.30	0.771	-172	7.01	90	0.050	37	0.416	-149	
		0.40	0.772	-177	5.29	84	0.056	40	0.408	-156	
		0.50	0.768	178	4.26	81	0.062	44	0.392	-162	
		0.60	0.768	174	3.57	77	0.069	47	0.392	-165	
		0.70	0.769	171	3.08	74	0.076	49	0.393	-167	
		0.80	0.770	168	2.71	70	0.083	50	0.395	-169	
		0.90	0.769	166	2.42	67	0.090	51	0.396	-170	
		1.00	0.769	163	2.19	64	0.098	51	0.399	-172	
		1.50	0.769	151	1.51	50	0.135	51	0.414	-176	
		2.00	0.771	139	1.17	37	0.171	48	0.434	-180	
		2.50	0.778	128	0.96	26	0.204	44	0.467	178	
		3.00	0.783	118	0.83	16	0.237	39	0.487	173	
		3.50	0.792	108	0.73	7	0.268	33	0.506	168	
		4.00	0.802	100	0.66	0	0.297	28	0.53	162	
		4.50	0.800	91	0.60	-6	0.328	22	0.546	156	
		5.00	0.808	83	0.56	-12	0.353	16	0.572	149	
	75	0.10	0.738	-145	19.35	110	0.036	35	0.54	-112	
		0.20	0.769	-165	10.31	96	0.042	35	0.458	-142	
		0.30	0.774	-173	6.98	89	0.048	39	0.44	-153	
		0.40	0.776	-178	5.26	84	0.054	43	0.434	-160	
		0.50	0.772	177	4.24	81	0.061	47	0.42	-166	
		0.60	0.772	173	3.55	77	0.068	49	0.42	-169	
		0.70	0.773	170	3.06	74	0.076	51	0.421	-171	
		0.80	0.773	168	2.69	71	0.084	52	0.422	-172	
		0.90	0.772	165	2.41	67	0.091	53	0.423	-174	
		1.00	0.772	162	2.18	65	0.099	53	0.426	-175	
		1.50	0.771	150	1.50	50	0.138	52	0.436	-180	
		2.00	0.772	139	1.17	38	0.175	48	0.451	176	
		2.50	0.778	128	0.96	27	0.208	44	0.478	174	
		3.00	0.783	117	0.83	17	0.241	38	0.493	169	
		3.50	0.790	108	0.74	8	0.271	33	0.507	165	
		4.00	0.800	99	0.67	1	0.299	27	0.526	158	
		4.50	0.798	91	0.62	-5	0.329	21	0.538	153	
		5.00	0.806	83	0.57	-11	0.353	15	0.561	147	

Table 2. Common Emitter S-Parameters

$\mathrm{V}_{\mathrm{CE}}$ (Volts)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathrm{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
			${ }^{\mid S} \mathrm{~S}_{11} \mid$	$\angle \phi$	${ }^{\text {S }}$ 21 ${ }^{\text {l }}$	$\angle \phi$	\|S ${ }_{12}$ \|	$\angle \phi$	\|S22		$\angle \phi$
3.0	100	0.10	0.747	-149	18.83	109	0.035	35	0.531	-117	
		0.20	0.775	-167	9.95	95	0.041	35	0.463	-145	
		0.30	0.781	-175	6.72	88	0.047	40	0.448	-156	
		0.40	0.782	-179	5.07	83	0.053	44	0.444	-162	
		0.50	0.779	176	4.08	81	0.061	48	0.431	-168	
		0.60	0.778	173	3.42	77	0.068	50	0.431	-170	
		0.70	0.779	170	2.95	74	0.076	52	0.432	-172	
		0.80	0.779	167	2.60	70	0.084	53	0.434	-174	
		0.90	0.778	164	2.32	67	0.092	53	0.434	-175	
		1.00	0.778	162	2.10	64	0.100	54	0.436	-177	
		1.50	0.776	150	1.45	50	0.139	52	0.445	179	
		2.00	0.777	138	1.13	38	0.177	48	0.46	175	
		2.50	0.782	127	0.93	27	0.209	44	0.485	173	
		3.00	0.786	117	0.81	17	0.243	38	0.498	168	
		3.50	0.794	107	0.72	9	0.273	32	0.51	163	
		4.00	0.802	99	0.65	1	0.301	27	0.528	157	
		4.50	0.800	91	0.60	-5	0.330	21	0.539	152	
		5.00	0.807	83	0.56	-11	0.354	15	0.56	145	
6.0	25	0.10	0.715	-122	19.96	119	0.039	40	0.562	-72	
		0.20	0.742	-151	11.31	101	0.046	33	0.364	-98	
		0.30	0.748	-164	7.76	92	0.050	33	0.298	-112	
		0.40	0.750	-171	5.89	86	0.054	36	0.271	-120	
		0.50	0.743	-177	4.73	82	0.058	39	0.24	-127	
		0.60	0.744	179	3.97	78	0.063	42	0.237	-131	
		0.70	0.746	175	3.42	74	0.068	44	0.239	-134	
		0.80	0.748	172	3.00	70	0.074	46	0.243	-135	
		0.90	0.747	169	2.68	66	0.079	47	0.248	-137	
		1.00	0.748	166	2.42	63	0.085	49	0.255	-139	
		1.50	0.753	153	1.64	47	0.115	52	0.3	-144	
		2.00	0.760	141	1.25	33	0.148	51	0.352	-150	
		2.50	0.772	130	1.00	21	0.180	49	0.417	-155	
		3.00	0.783	119	0.84	11	0.215	44	0.464	-163	
		3.50	0.795	109	0.72	2	0.249	40	0.505	-170	
		4.00	0.807	101	0.63	-5	0.283	34	0.545	-179	
		4.50	0.808	92	0.56	-10	0.319	28	0.576	173	
		5.00	0.815	84	0.51	-14	0.349	22	0.609	164	
	50	0.10	0.706	-131	22.47	116	0.034	40	0.527	-86	
		0.20	0.734	-157	12.38	99	0.041	36	0.37	-117	
		0.30	0.740	-168	8.44	91	0.046	38	0.325	-132	
		0.40	0.742	-174	6.38	86	0.051	42	0.308	-140	
		0.50	0.736	-179	5.13	82	0.057	46	0.283	-147	
		0.60	0.737	177	4.30	78	0.063	48	0.281	-151	
		0.70	0.738	173	3.70	74	0.069	50	0.282	-154	
		0.80	0.740	170	3.26	71	0.075	51	0.285	-155	
		0.90	0.739	168	2.90	68	0.082	52	0.287	-157	
		1.00	0.740	165	2.63	65	0.089	53	0.291	-158	
		1.50	0.742	152	1.79	50	0.123	53	0.315	-162	
		2.00	0.748	141	1.37	36	0.158	50	0.348	-165	
		2.50	0.758	129	1.11	25	0.189	47	0.395	-168	
		3.00	0.768	119	0.94	14	0.222	42	0.427	-173	
		3.50	0.780	109	0.81	5	0.253	37	0.458	-178	
		4.00	0.793	101	0.72	-3	0.283	32	0.491	175	
		4.50	0.795	92	0.65	-9	0.316	26	0.518	169	
		5.00	0.805	84	0.58	-15	0.343	20	0.552	161	

Table 2. Common Emitter S-Parameters (continued)

VCE (Volts)	$\underset{(\mathrm{mA})}{\mathrm{IC}}$	$\begin{gathered} \mathbf{f} \\ (\mathrm{GHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
			${ }^{\text {\| }} \mathrm{S}_{11} \mid$	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	${ }^{\text {S }}$ 12\|	$\angle \phi$	\|S22		$\angle \phi$
6.0	75	0.10	0.710	-135	22.99	114	0.033	39	0.505	-93	
		0.20	0.735	-159	12.49	98	0.039	37	0.367	-123	
		0.30	0.741	-169	8.49	90	0.044	40	0.33	-137	
		0.40	0.742	-175	6.42	85	0.050	44	0.317	-145	
		0.50	0.737	180	5.16	82	0.056	48	0.295	-153	
		0.60	0.737	176	4.32	78	0.062	50	0.294	-156	
		0.70	0.739	173	3.72	74	0.069	52	0.295	-158	
		0.80	0.740	170	3.27	71	0.076	53	0.297	-160	
		0.90	0.739	167	2.92	68	0.083	54	0.298	-161	
		1.00	0.740	164	2.64	65	0.090	54	0.302	-162	
		1.50	0.742	152	1.80	50	0.125	53	0.322	-166	
		2.00	0.747	140	1.38	37	0.160	50	0.349	-169	
		2.50	0.757	129	1.12	25	0.191	47	0.392	-171	
		3.00	0.766	119	0.95	15	0.224	42	0.42	-176	
		3.50	0.778	109	0.82	5	0.254	36	0.448	180	
		4.00	0.791	100	0.73	-3	0.284	31	0.479	173	
		4.50	0.793	92	0.66	-9	0.315	26	0.504	167	
		5.00	0.803	84	0.60	-15	0.342	20	0.536	160	
	100	0.10	0.718	-138	22.70	112	0.032	38	0.481	-96	
		0.20	0.740	-161	12.22	97	0.038	37	0.354	-126	
		0.30	0.745	-170	8.28	90	0.043	41	0.321	-140	
		0.40	0.746	-176	6.25	84	0.049	45	0.309	-147	
		0.50	0.741	179	5.03	81	0.055	49	0.29	-154	
		0.60	0.741	175	4.21	77	0.062	51	0.289	-157	
		0.70	0.743	172	3.62	74	0.069	53	0.29	-159	
		0.80	0.744	169	3.19	70	0.076	54	0.293	-161	
		0.90	0.743	166	2.84	67	0.083	54	0.294	-162	
		1.00	0.744	164	2.57	64	0.090	55	0.298	-163	
		1.50	0.745	151	1.75	49	0.126	54	0.318	-166	
		2.00	0.750	140	1.35	36	0.160	51	0.347	-169	
		2.50	0.760	129	1.09	25	0.192	47	0.39	-171	
		3.00	0.769	118	0.93	14	0.224	42	0.418	-175	
		3.50	0.781	109	0.80	5	0.255	37	0.447	180	
		4.00	0.793	100	0.71	-3	0.284	31	0.478	173	
		4.50	0.794	91	0.64	-9	0.316	26	0.502	167	
		5.00	0.804	84	0.58	-15	0.342	20	0.534	160	

Table 2. Common Emitter S-Parameters (continued)

## The RF Line NPN Silicon RF Power Transistor

The MRF6401 is designed for Class A common emitter, linear power amplifiers in the $1.0-2.0 \mathrm{GHz}$ frequency range. It has been specifically designed for use in Personal Communications Network (PCN) base station and INMARSAT Standard M applications.

- Specified 20 Volts, 1.66 GHz Characteristics:

Output Power - 0.5 Watts
Gain - 10 dB Min
Class A Operation

- Specified 20 Volts, 1.88 GHz Characteristics:

Output Power - 0.5 Watts
Gain - 9.0 dB Min
Class A Operation


CASE 305C-02, STYLE 1 SOE200-PILL

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	22	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	45	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	3.5	Vdc
Operating Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	5.8	Watts   $\mathrm{W} /{ }^{\circ} \mathrm{C}$   Storage Temperature Range

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (1)	$\mathrm{R}_{\theta \mathrm{JC}}$	30	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage   (IC $=10$ mAdc, $\left.\mathrm{R}_{\mathrm{B}}=75 \Omega\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CER}}$	28	-	-	Vdc
Emitter-Base Breakdown Voltage   $\left(I_{\mathrm{E}}=0.25 \mathrm{mAdc}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	3.5	-	-	Vdc
Collector-Base Breakdown Voltage   $(\mathrm{IC}=1 \mathrm{mAdc})$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	45	-	-	Vdc

(1) Thermal resistance is determined under specified RF operating condition.

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
DC Current Gain ( $\mathrm{I} \mathrm{C}=0.1 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5 \mathrm{Vdc}$ )	hFE	20	-	120	-

DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=26 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	-	1.4	-	pF

FUNCTIONAL TESTS $\left(\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=80 \mathrm{~mA}\right)$

$\begin{aligned} & \text { Common-Emitter Amplifier Power Gain } \\ & \left(f=1660 \mathrm{MHz}, \mathrm{P}_{\text {out }}=0.5 \mathrm{~W}\right) \\ & \left(\mathrm{f}=1880 \mathrm{MHz}, \mathrm{P}_{\text {out }}=0.5 \mathrm{~W}\right) \end{aligned}$	$G_{p}$	$\begin{gathered} 10 \\ 9 \end{gathered}$	$\begin{aligned} & 11 \\ & 10 \end{aligned}$	-	dB
Load Mismatch $\begin{aligned} & \left(\mathrm{f}=1660 \mathrm{MHz}, \mathrm{f}=1880 \mathrm{MHz}, \mathrm{P}_{\text {out }}=0.5 \mathrm{~W},\right. \\ & \text { Load VSWR }=20: 1 \text {, all phase angles at frequency of test }) \end{aligned}$	$\psi$	No Degradation in Output Power			
Intermodulation Distortion $\begin{aligned} & \left(\mathrm{P}_{\text {out }}=0.5 \mathrm{~W} \text { PEP, } \mathrm{f} 1=1659.2 \mathrm{MHz}, \mathrm{f} 2=1660 \mathrm{MHz}\right) \\ & \left(\mathrm{P}_{\text {out }}=0.5 \mathrm{~W} \text { PEP, } \mathrm{f} 1=1879.2 \mathrm{MHz}, \mathrm{f} 2=1880 \mathrm{MHz}\right) \end{aligned}$	IMD	$\begin{aligned} & -30 \\ & -30 \end{aligned}$	$\begin{aligned} & -35 \\ & -35 \end{aligned}$	-	dBc



Figure 1. 1600-2000 MHz Broadband Application Amplifier Schematic

## TYPICAL CHARACTERISTICS



Figure 2. Output Power versus Input Power


Figure 3. Third Order Intercept


Figure 4. Performance in Broadband Test Fixture

Table 1. Common Emitter S-Parameters
$\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{IC}_{\mathrm{C}}=80 \mathrm{~mA}$

POLAR S-PARAMETERS IN $\mathbf{5 0} \Omega$ SYSTEM								
$\mathbf{f}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\mathbf{M H z}^{\|c\|} \mathbf{S}_{\mathbf{1 1}} \mid$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
100	0.626	-118	28.4	127	0.0186	45	0.649	-40
200	0.718	-149	17.1	106	0.0230	35	0.434	-49
400	0.754	-171	9.10	88	0.0271	35	0.303	-53
600	0.761	179	6.15	77	0.0312	38	0.272	-56
800	0.762	171	4.65	68	0.0359	42	0.266	-62
1000	0.763	165	3.73	60	0.0409	44	0.271	-68
1200	0.758	159	3.13	52	0.0469	44	0.286	-75
1400	0.753	155	2.60	44	0.0490	46	0.291	-87
1600	0.765	150	2.30	39	0.0574	50	0.288	-93
1800	0.769	144	2.06	32	0.0665	49	0.303	-97
1900	0.768	142	1.98	29	0.0714	48	0.312	-100
2000	0.767	139	1.88	25	0.0756	48	0.322	-103

$\mathrm{V}_{\mathrm{CC}}=20 \mathrm{~V}, \mathrm{IC}=50 \mathrm{~mA}$

POLAR S-PARAMETERS IN $\mathbf{5 0} \Omega$ SYSTEM								
$\mathbf{f}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\mathbf{M H z}$	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$
100	0.618	-113	26.2	130	0.0195	45	0.678	-36
200	0.713	-145	16.2	108	0.0251	34	0.465	-47
400	0.758	-168	8.78	89.2	0.0288	32	0.331	-51
600	0.763	180	5.94	78	0.0323	35	0.297	-55
800	0.761	169	4.49	68	0.0363	39	0.290	-61
1000	0.764	166	3.61	60	0.0415	41	0.294	-68
1200	0.758	160	3.02	52	0.0467	42	0.310	-75
1400	0.757	155	2.52	44.5	0.0486	45	0.313	-87
1600	0.768	150	2.22	39	0.0566	48	0.311	-92
1800	0.772	145	2	32	0.0655	48	0.328	-97
1900	0.770	142	1.91	28	0.0705	47	0.335	-101
2000	0.772	140	1.81	25	0.0745	47	0.345	-104


(SCALE 1:1)
TEFLON ${ }^{\circledR}$ GLASS 0.508 MM 2 SIDES $35 \mu \mathrm{~m} \mathrm{Cu}$

Figure 5. MRF6401 Photomaster
(Reduced 25\% in printed data book, DL110/D)


Figure 6. Test Circuit Components Layout

## The RF Line NPN Silicon RF Power Transistor

The MRF6402 is designed for 1.8 GHz Personal Communications Network (PCN) base stations applications. It incorporates high value emitter ballast resistors, gold metallizations and offers a high degree of reliability and ruggedness. For ease of design, this transistor has an internally matched input.

- To be used in Class AB for PCN and Cellular Radio Applications
- Specified 26 V, 1.88 GHz Characteristics

Output Power - 4.5 Watts
Gain - 10 dB Typ
Efficiency - 45\% Typ

- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

4.5 W, 1.88 GHz RF POWER TRANSISTOR NPN SILICON


CASE 319-07, STYLE 2

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CER}}$	40	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	45	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	3.5	Vdc
Collector-Current - Continuous	$\mathrm{I}_{\mathrm{C}}$	0.7	Adc
Total Device Dissipation @ $\mathrm{T}^{\mathrm{C}}=25^{\circ} \mathrm{C}$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{PD}_{\mathrm{D}}$	15	Watts
Storage Temperature Range		$\mathrm{T}_{\text {stg }}$	-65 to +150
Operating Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (1)	$R_{\theta J C}$	5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage   $\left(\mathrm{IC}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{BE}}=75 \Omega\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CER}}$	40	-	-	Vdc
Emitter-Base Breakdown Voltage   $(\mathrm{I} \mathrm{E}=5 \mathrm{mAdc})$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	3.5	-	-	Vdc
Collector-Base Breakdown Voltage (IC $=10 \mathrm{mAdc})$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	40	-	-	Vdc
Collector-Emitter Leakage ( $\left.\mathrm{V}_{\mathrm{CE}}=26 \mathrm{~V}, \mathrm{R}_{\mathrm{BE}}=75 \Omega\right)$	I CER	-	-	5	mA

(1) Thermal resistance is determined under specified RF operating condition.
(continued)

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
DC Current Gain ( $\mathrm{IC}=0.1 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=20 \mathrm{Vdc}$ )	$\mathrm{h}_{\text {FE }}$	50	-	200	-

DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=26 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	-	6	-	pF

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{~V}, \mathrm{P}_{\mathrm{out}}=4 \mathrm{~W}, \mathrm{I}_{\mathrm{CQ}}=40 \mathrm{~mA}, \mathrm{f}=1.88 \mathrm{GHz}\right)$	$G_{p}$	9	10	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{~V}, \mathrm{P}_{\text {out }}=4 \mathrm{~W}, \mathrm{f}=1.88 \mathrm{GHz}\right)$	$\eta$	40	43	-	\%
Load Mismatch $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{~V}, \mathrm{P}_{\text {out }}=4.5 \mathrm{~W}, \mathrm{I} \mathrm{CQ}=40 \mathrm{~mA}, \mathrm{f}=1.88 \mathrm{GHz}\right. \text {, } \\ & \text { Load VSWR }=3: 1 \text {, All Phase Angles at Frequency of Test) } \end{aligned}$	$\Psi$	No Degradation in Output Power			



$f$   $(\mathrm{GHz})$	$\mathrm{Z}_{\text {in }}$   $(\Omega)$	$\mathrm{Z}_{\mathrm{OL}}{ }^{*}$   $(\Omega)$
1.75	$0.12+\mathrm{j} 0.18$	$0.06+\mathrm{j} 0.05$
1.84	$0.13+\mathrm{j} 0.2$	$0.06+\mathrm{j} 0.04$
1.95	$0.15+\mathrm{j} 0.16$	$0.06+\mathrm{j} 0.02$

$Z_{O L}$ : Conjugate of optimum load impedance into which the device operates at a given output power, voltage, current and frequency.

Figure 1. Input and Output Impedances with Circuit Tuned for Maximum Gain $@ V_{C E}=26 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=40 \mathrm{~mA}, \mathrm{P}_{\text {out }}=4.5 \mathrm{~W}$


Figure 2. Typical Output Power versus Input Power


Figure 3. IMD versus Output Power


Figure 4. 1.80-1.88 GHz Test Circuit Electrical Schematic


Figure 5. Test Circuit Components View and Parts List

## The RF Line <br> NPN Silicon <br> RF Power Transistor

The MRF6404 is designed for 26 volts microwave large signal, common emitter, class AB linear amplifier applications operating in the range 1.8 to 2.0 GHz.

- Specified 26 Volts, 1.88 GHz Characteristics

Output Power - 30 Watts
Gain - 7.5 dB Min @ 30 Watts
Efficiency - 38\% Min @ 30 Watts

- Characterized with Series Equivalent Large-Signal Parameters from 1.8 to 2.0 GHz
- To be used in Class AB for DCS1800 and PCS1900/Cellular Radio
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration


## MRF6404 MRF6404K

$30 \mathrm{~W}, 1.88 \mathrm{GHz}$
RF POWER TRANSISTOR NPN SILICON


CASE 395C-01, STYLE 1

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	24	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4	Vdc
Collector-Current - Continuous	$\mathrm{I}_{\mathrm{C}}$	10	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	125	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (1)	$\mathrm{R}_{\text {日JC }}$	1.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

## OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	24	29	-	Vdc
Emitter-Base Breakdown Voltage ( $\left.\mathrm{I}_{\mathrm{E}}=10 \mathrm{mAdc}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4	5	-	Vdc
Collector-Base Breakdown Voltage ( $\left.\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	60	68	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{R}_{\mathrm{BE}}=75 \Omega\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CER}}$	40	56	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\mathrm{I}_{\mathrm{CES}}$	-	-	10	mA

## ON CHARACTERISTICS

DC Current Gain (IC $=1$ Adc, $\mathrm{V}_{\mathrm{CE}}=5 \mathrm{Vdc}$ )	$\mathrm{h}_{\mathrm{FE}}$	20	50	120	-

(1) Thermal resistance is determined under specified RF operating condition.

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic
Symbol Min Typ Max Unit   DYNAMIC CHARACTERISTICS $\mathrm{C}_{\mathrm{ob}}$ 30 38 - pF   Output Capacitance   (VCB $=26 \mathrm{~V}, \mathrm{I} \mathrm{E}=0, \mathrm{f}=1 \mathrm{MHz}$ )   For information only. This part is collector matched.

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{~V}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}, \mathrm{I}_{\mathrm{CQ}}=150 \mathrm{~mA}, \mathrm{f}=1.88 \mathrm{GHz}\right)$	$\mathrm{G}_{\mathrm{pe}}$	7.5	8.5	-	dB
$\begin{aligned} & \text { Common-Emitter Amplifier Power Gain } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{~V}, \mathrm{P}_{\text {out }}=28 \mathrm{~W}, \mathrm{I} \mathrm{CQ}=150 \mathrm{~mA}\right) \\ & (\mathrm{f}=1.99 \mathrm{GHz}) \end{aligned}$	$\mathrm{G}_{\mathrm{pe}}$	7	8	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{~V} \text {, Pout }=30 \mathrm{~W}, \mathrm{f}=1.88 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{~V}, \mathrm{P}_{\text {out }}=28 \mathrm{~W}, \mathrm{f}=1.99 \mathrm{GHz}\right) \end{aligned}$	$\eta$	$\begin{aligned} & 38 \\ & 35 \end{aligned}$	$\begin{aligned} & 43 \\ & 40 \end{aligned}$	-	\%
$\begin{aligned} & \hline \text { Output Power at } 1 \mathrm{dBc} \\ & \left(\mathrm{~V}_{\mathrm{CC}}=26 \mathrm{~V}, \mathrm{f}=1.88 \mathrm{GHz}\right) \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{~V}, \mathrm{f}=1.99 \mathrm{GHz}\right) \end{aligned}$	$\mathrm{P}_{1 \mathrm{dBc}}$	$\begin{aligned} & 30 \\ & 28 \end{aligned}$	$\begin{aligned} & 35 \\ & 33 \end{aligned}$	-	Watts
$\begin{aligned} & \text { Output Mismatch Stress: } \mathrm{VSWR}=3: 1 \text { (all phase angles) } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=25 \mathrm{~W}, \mathrm{I} \mathrm{CQ}=150 \mathrm{~mA}, \mathrm{f}=1.88 \mathrm{GHz}\right) \end{aligned}$	$\Psi$	No Degradation in Output Power			



## DCS EVALUATION

$\mathbf{f}$   $(\mathbf{G H z})$	$\mathbf{Z}_{\mathbf{i n}}$   $(\Omega)$	$\mathbf{Z O L}_{\mathbf{O}}{ }^{*}$   $(\Omega)$
1.8	$4.3+\mathrm{j} 6.1$	$2.7-\mathrm{j} 1.0$
1.85	$4.6+\mathrm{j} 5.3$	$2.9+\mathrm{j} 0.3$
1.9	$4.8+\mathrm{j} 5.0$	$3.0+\mathrm{j} 1.2$

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}$ : Conjugate of optimum load impedance into which the device operates at a given output power, voltage, current and frequency.

Figure 1. Input and Output Impedances with Circuit Tuned for Maximum Gain $@ V_{C C}=26 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=150 \mathrm{~mA}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}$

TYPICAL CHARACTERISTICS


Figure 2. Output Power versus Input Power


Figure 4. Intermodulation versus Output Power


Figure 3. Output Power versus Frequency


Figure 5. AM/PM Conversion


## Base Bias Circuit

C12, C13 15 nF, Chip Capacitor, Vitramon (0805 A153 JXB)
P1
R3 $47 \Omega$, Chip Resistor, 0805
R4 $330 \Omega$, Chip Resistor, 0805
T1,T2 Motorola MJD 31C

## Decoupling Base Bias Circuit

C4 68 pF, Chip Capacitor, ATC 100A
C5, C9 330 pF, Chip Capacitor, Vitramon (0805 A331 JXB)
C7, C11 $4.7 \mu \mathrm{~F}, 63 \mathrm{~V}$, Electrolytic Capacitor
C8 $\quad 68$ pF, Chip Capacitor, ATC 100A
C10 $\quad 15 \mathrm{nF}$, Chip Capacitor, Vitramon (0805 A153 JXB)
R1 $1.5 \Omega$, Chip Resistor, 0805
R2 $56 \Omega$, Chip Resistor, 1206

Figure 6. 1.80-1.88 GHz Test Circuit Electrical Schematic and Components List


Figure 7. 1.80-1.88 GHz PCN Test Circuit Photomaster


Figure 8. 1.80-1.88 GHz PCN Test Circuit Components Layout


PCS EVALUATION

$\mathbf{f}$   $(\mathbf{G H z})$	$\mathbf{Z}_{\text {in }}$   $(\Omega)$	$\mathbf{Z O L}^{*}$   $(\Omega)$
1.90	$4.9+\mathrm{j} 3.0$	$3.2+\mathrm{j} 0.5$
1.93	$5.4+\mathrm{j} 2.5$	$3.3+\mathrm{j} 1.2$
1.97	$5.6+\mathrm{j} 1.4$	$3.4+\mathrm{j} 1.5$
2.00	$5.4-\mathrm{j} 0.2$	$3.6+\mathrm{j} 2.5$

ZOL*: Conjugate of optimum load impedance into which the device operates at a given output power, voltage, current and frequency.

Figure 9. Input and Output Impedances with Circuit Tuned for Maximum Gain $@ \mathrm{VCC}=26 \mathrm{~V}, \mathrm{ICQ}=150 \mathrm{~mA}, \mathrm{P}_{\text {out }}=28 \mathrm{~W}$

TYPICAL CHARACTERISTICS


Figure 10. Output Power versus Input Power


Figure 12. Output Power and Efficiency versus Input Power


Figure 11. Output Power versus Frequency

Figure 13. Output Power and Efficiency versus Input Power


Figure 14. Output Power versus Frequency


## Base Bias Circuit

C12, C13	15 nF, Chip Capacitor, Vitramon (0805 A153 JXB)
P1	$1 \mathrm{~K} \Omega$, Trimmer
R3	$47 \Omega$, Chip Resistor, 0805
R4	$330 \Omega$, Chip Resistor, 0805
T1,T2	Motorola MJD 31C

## Decoupling Base Bias Circuit

C4	68 pF, Chip Capacitor, ATC 100A
C5, C9	330 pF, Chip Capacitor, Vitramon (0805 A331 JXB)
C7, C11	$4.7 \mu \mathrm{~F}$, 63 V, Electrolytic Capacitor
C8	68 pF , Chip Capacitor, ATC 100A
C10	15 nF , Chip Capacitor, Vitramon (0805 A153 JXB)
R1	$1.2 \Omega$, Chip Resistor, 0805
R2	$56 \Omega$, Chip Resistor, 1206

Figure 15. 1.9-2.0 GHz Test Circuit Electrical Schematic and Components List


Figure 16. 1.9-2.0 GHz Test Circuit Photomaster


Figure 17. 1.9-2.0 GHz Test Circuit Components Layout

## The RF Line NPN Silicon RF Power Transistor

Designed for PCN and PCS base station applications, the MRF6408 incorporates high value emitter ballast resistors, gold metallizations and offers a high degree of reliability and ruggedness.

- To be used in class AB for PCN-PCS / Cellular Radio
- Specified 26 Volts, 1.88 GHz Characteristics

Output Power = 12 Watts CW
Typical Gain $=8.8 \mathrm{~dB}$
Typical Efficiency $=42 \%$

- Specified 26 Volts, 1.99 GHz Characteristics

Output Power = 12 Watts CW
Typical Gain $=8.3 \mathrm{~dB}$
Typical Efficiency $=39 \%$


12 W, 2.0 GHz
RF POWER TRANSISTOR NPN SILICON


CASE 395C-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	24	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\text {CES }}$	60	Vdc
Emitter-Base Voltage	$V_{\text {EBO }}$	4	Vdc
Collector-Current - Continuous	IC	5	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$\mathrm{PD}_{\text {D }}$	$\begin{gathered} 60 \\ 0.35 \end{gathered}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (1)	$R_{\theta J C}$	2.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $(\mathrm{IC}=20 \mathrm{mAdc}, \mathrm{I} \mathrm{~B}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	24	30	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{~B}=5.0 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0)$	$V_{\text {(BR) }} \mathrm{EBO}$	4	5	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=20 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	55	64	-	Vdc
$\begin{aligned} & \text { Collector Cutoff Current } \\ & \quad\left(\mathrm{V}_{\mathrm{CE}}=30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0\right) \end{aligned}$	ICES	-	-	6	mA

(1) Thermal resistance is determined under specified RF operating condition.

ELECTRICAL CHARACTERISTICS - continued ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic
Symbol Min Typ Max Unit
DC Current Gain   (ICE $=1$ Adc, V $_{\text {CE }}=5$ Vdc) hFE 20 35 80

## DYNAMIC CHARACTERISTICS

Output Capacitance (2)   $\left(\mathrm{V}_{\mathrm{CB}}=26 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	-	18	-	pF

## FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=12 \mathrm{~W}(\mathrm{CW}), \mathrm{I} \mathrm{CQ}=100 \mathrm{~mA}, \mathrm{f}=1.88 \mathrm{GHz}\right)$	$\mathrm{G}_{\mathrm{pe}}$	7.8	8.8	-	dB
Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=12 \mathrm{~W}(\mathrm{CW}), \mathrm{I}_{\mathrm{CQ}}=100 \mathrm{~mA}, \mathrm{f}=1.99 \mathrm{GHz}\right)$	$\mathrm{G}_{\mathrm{pe}}$	7.5	8.3	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=12 \mathrm{~W}(\mathrm{CW}), \mathrm{I}_{\mathrm{CQ}}=100 \mathrm{~mA}, \mathrm{f}=1.88 \mathrm{GHz}\right)$	$\eta$	37	42	-	\%
$\begin{aligned} & \text { Collector Efficiency } \\ & \qquad\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=12 \mathrm{~W}(\mathrm{CW}), \mathrm{I} \mathrm{CQ}=100 \mathrm{~mA}, \mathrm{f}=1.99 \mathrm{GHz}\right) \end{aligned}$	$\eta$	34	39	-	\%
Output Power at 1 dB Compression Point $\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{I}_{\mathrm{CQ}}=100 \mathrm{~mA}, \mathrm{f}=1.88 \mathrm{GHz}\right)$	P@1dB	15	-	-	W
Output Power at 1 dB Compression Point $\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{I} \mathrm{CQ}=100 \mathrm{~mA}, \mathrm{f}=1.99 \mathrm{GHz}\right)$	P@1dB	14	-	-	W
$\begin{aligned} & \text { Intermodulation Distortion } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\mathrm{out}}=12 \mathrm{~W}(\mathrm{PEP}), \mathrm{I} \mathrm{CQ}=100 \mathrm{~mA},\right. \\ & \mathrm{f} 1=1880 \mathrm{MHz}, \mathrm{f} 2=1880.1 \mathrm{MHz}) \end{aligned}$	IMD	-	-35	-30	dBc
$\begin{aligned} & \text { Intermodulation Distortion } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\mathrm{out}}=12 \mathrm{~W}(\mathrm{PEP}), \mathrm{I} \mathrm{CQ}=100 \mathrm{~mA},\right. \\ & \mathrm{f} 1=1990 \mathrm{MHz}, \mathrm{f} 2=1990.1 \mathrm{MHz}) \end{aligned}$	IMD	-	-35	-30	dBc
$\begin{aligned} & \text { Load Mismatch } \\ & \text { (VCC }=26 \text { Vdc, Pout }=12 \mathrm{~W}(\mathrm{CW}), \mathrm{I} \mathrm{CQ}=100 \mathrm{~mA}, \mathrm{f}=1.99 \mathrm{GHz} \text {, } \\ & \text { Load VSWR }=3: 1 \text {, All Phase Angles at Frequency of Test) } \end{aligned}$	$\psi$	No Degradation in Output Power			

(2) For information only. This part is collector matched.


Test Circuits Bias and Decoupling Components List

C1, C2	33 pF , Chip Capacitor, ATC100A	C1, C2	33 pF, Chip Capacitor, ATC100A
CT1	Trimmer Capacitor, Gigatrim 37281	CT1	Trimmer Capacitor, Gigatrim 37281
CT2	Trimmer Capacitor, Gigatrim 37281	CT2	Trimmer Capacitor, Gigatrim 37281
CT3	Trimmer Capacitor, Gigatrim 37281	CT3	Not Used
Z1	$50 \Omega \quad \Theta 1=10^{\circ}$	Z1	$50 \Omega \quad \Theta 1=10^{\circ}$
Z2	$50 \Omega \quad \Theta 2=74.5^{\circ} \quad \Theta \mathrm{B}=16.5^{\circ}$	Z2	$50 \Omega \quad \Theta 2=74.5^{\circ} \quad \Theta \mathrm{B}=16.5^{\circ}$
Z4	$74 \Omega \quad \Theta 4=68^{\circ}$	Z4	$74 \Omega \quad \Theta 4=68^{\circ}$
Z5	$12.8 \Omega \quad \Theta 5=21^{\circ}$	Z5	$12.8 \Omega \quad \Theta 5=21^{\circ}$
Z6	$10.4 \Omega \quad \Theta 6=49.5^{\circ}$	Z6	$10.4 \Omega \quad \Theta 6=49.5^{\circ}$
Z7	$18 \Omega \quad \Theta 7=36.5^{\circ}$	Z7	$18 \Omega \quad \Theta 7=36.5^{\circ}$
Z8	$45 \Omega \quad \Theta 8=20^{\circ}$	Z8	$45 \Omega \quad \Theta 8=20^{\circ}$
Z10	$50 \Omega \quad \Theta 10=10^{\circ}$	Z10	$50 \Omega \quad \Theta 10=10^{\circ}$
Z11	$74 \Omega \quad \Theta 11=74.5^{\circ}$	Z11	$74 \Omega \quad \Theta 11=60^{\circ}$
Z12	$50 \Omega \quad \Theta 12=10^{\circ}$	Z12	$50 \Omega \quad \Theta 12=10^{\circ}$

Electrical Lengths are referenced from $\mathrm{I}_{\mathrm{G}} @ \mathrm{f}=1.9 \mathrm{GHz}$
1.88 GHz Test Circuit RF Components List
1.99 GHz Test Circuit RF Components List

Figure 1. Test Circuits Schematic


Figure 2. Output Power versus Input Power (CW)


Figure 4. Intermodulation Distortion versus Output Power


Figure 6. Intermodulation Distortion versus Output Power


Figure 3. Output Power (CW) versus Frequency


Figure 5. Intermodulation Distortion versus Output Power


Figure 7. Intermodulation Distortion versus Output Power


Normalized to $20 \Omega$

$\mathbf{f}$   $\mathbf{M H z}$	$\mathbf{Z}_{\text {in }}$   Ohms	$\mathbf{Z O L}^{\text {T }}$   Ohms
1800	$7.5-\mathrm{j} 2.5$	$5.1-\mathrm{j} 4.5$
1900	$6.5-\mathrm{j} 4$	$4.6-\mathrm{j} 5.1$
2000	$4-\mathrm{j} 5.9$	$4.1-\mathrm{j} 6.4$

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}$ : Conjugate of optimum load impedance into which the device operates at a given output power, voltage current and frequency.

Figure 8. Input and Output Impedances with Circuit Tuned for Maximum Gain @ VCC = 26 V, ICQ = 100 mA , Pout $=12 \mathrm{~W}(C W)$

$\begin{aligned} & \mathrm{V}_{\mathrm{CE}} \\ & \text { (Vdc) } \end{aligned}$	${ }^{I} C$   (Adc)	$\begin{gathered} \mathrm{f} \\ (\mathrm{MHz}) \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$		
			${ }^{\text {S }} 11$ \|	$\angle \phi$	${ }^{\text {S }} 21$ \|	$\angle \phi$	${ }^{\text {S }} 12 \mid$	$\angle \phi$	\|S22		$\angle \phi$
26	1.0	1000	0.987	176	0.502	-179	0.012	136	0.898	172	
		1050	0.986	176	0.478	-177	0.012	136	0.886	172	
		1100	0.984	175	0.570	179	0.014	138	0.874	172	
		1150	0.982	175	0.553	-177	0.014	137	0.859	171	
		1200	0.979	174	0.623	176	0.017	140	0.844	171	
		1250	0.974	173	0.660	177	0.017	140	0.826	171	
		1300	0.970	172	0.757	176	0.021	138	0.807	171	
		1350	0.962	171	0.790	170	0.021	138	0.785	171	
		1400	0.950	170	0.932	169	0.025	132	0.760	171	
		1450	0.932	169	0.996	161	0.028	131	0.727	172	
		1500	0.899	167	1.272	154	0.031	123	0.690	173	
		1550	0.845	165	1.407	145	0.035	113	0.649	177	
		1600	0.761	165	1.587	132	0.041	100	0.628	-176	
		1650	0.670	170	1.763	109	0.041	076	0.672	-168	
		1700	0.667	-179	1.671	092	0.039	055	0.776	-166	
		1750	0.746	-173	1.390	069	0.030	035	0.861	-168	
		1800	0.823	-173	1.184	061	0.024	013	0.897	-172	
		1850	0.875	-174	0.901	046	0.018	001	0.911	-175	
		1900	0.907	-176	0.755	044	0.015	-012	0.909	-177	
		1950	0.928	-177	0.614	038	0.013	-022	0.921	-179	
		2000	0.941	-178	0.484	036	0.010	-037	0.901	-179	

Table 1. Small Signal S-Parameters


Teflon Glass $1 / 50^{\prime \prime}, 35 \mu \mathrm{Cu}, \in_{r}=2.55$

Figure 9. MRF6408 Photomaster (Reduced 25\% in printed data book, DL110/D)


Figure 10. 1.88 GHz Test Circuit Components Layout

Figure 11. 1.99 GHz Test Circuit Components Layout

## The RF Line <br> NPN Silicon <br> RF Power Transistor

The MRF6409 is designed for GSM base stations applications. It incorporates high value emitter ballast resistors, gold metallizations and offers a high degree of reliability and ruggedness.

- To be used in Class AB
- Specified 26 Volts, 960 MHz Characteristics

Output Power - 20 Watts CW
Gain - 11 dB Typ
Efficiency - 60\% Typ

$20 \mathrm{~W}, 960 \mathrm{MHz}$ RF POWER TRANSISTOR NPN SILICON


CASE 319-07, STYLE 2

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	24	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	55	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector-Current — Continuous	$\mathrm{I}_{\mathrm{C}}$	5.0	Adc
Total Device Dissipation @ $\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}$   Derate above $25^{\circ} \mathrm{C}$	PD	45	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	$\mathrm{~T}^{\circ} \mathrm{C}$
Operating Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (1)	$R_{\theta J C}$	3.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	24	30	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{B}}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	5.0	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=20 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$V_{\text {(BR)CES }}$	55	60	-	Vdc
$\begin{aligned} & \text { Collector-Cutoff Current } \\ & \left(\mathrm{V}_{\mathrm{CE}}=30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0\right) \end{aligned}$	ICES	-	-	6.0	mA

(1) Thermal resistance is determined under specified RF operating condition.

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)
Characteristic

|  | Symbol | Min | Typ | Max | Unit |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |


ON CHARACTERISTICS					
DCurrent Gain   (ICE $=1.0$ Adc, $\left.V_{\text {CE }}=5.0 \mathrm{Vdc}\right)$	hFE	20	35	80	-

## DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=26 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	-	18	-	pF

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=20 \mathrm{~W}(\mathrm{CW}), \mathrm{I}_{\mathrm{CQ}}=50 \mathrm{~mA}, \mathrm{f}=960 \mathrm{MHz}\right)$	$\mathrm{G}_{\mathrm{pe}}$	10	11	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=20 \mathrm{~W}(\mathrm{CW}), \mathrm{I}_{\mathrm{CQ}}=50 \mathrm{~mA}, \mathrm{f}=960 \mathrm{MHz}\right)$	$\eta$	50	60	-	\%
Load Mismatch $\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=15 \mathrm{~W}(\mathrm{CW}), \mathrm{I}_{\mathrm{CQ}}=50 \mathrm{~mA}, \mathrm{f}=960 \mathrm{MHz},\right.$ Load VSWR = 3:1, All Phase Angles at Frequency of Test)	$\Psi$	No Degradation in Output Power			



Figure 1. Test Circuit Electrical Schematic

## TYPICAL CHARACTERISTICS



Figure 2. Output Power versus Input Power (CW)


Figure 4. Output Power versus Supply Voltage (CW)


Figure 3. Output Power versus Frequency (CW)


Figure 5. Power Gain and Efficiency versus Output Power


Figure 6. Typical Broadband Performances


Figure 7. Intermodulation Distortion versus Output Power


$f$   $(\mathrm{MHz})$	$\mathrm{Z}_{\text {in }}$   $(\Omega)$	$\mathrm{Z}_{\mathrm{OL}}{ }^{*}$   $(\Omega)$
920	$1.4+\mathrm{j} 3.0$	$3.2-\mathrm{j} 2.5$
940	$1.5+\mathrm{j} 3.9$	$3.5-\mathrm{j} 1.88$
960	$1.5+\mathrm{j} 4.2$	$3.9-\mathrm{j} 2.5$
980	$1.6+\mathrm{j} 4.4$	$4.0-\mathrm{j} 2.8$

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}$ : Conjugate of optimum load impedance into which the device operates at a given output power, voltage, current and frequency.

Figure 8. Input and Output Impedances with Circuit Tuned for Maximum Gain @ $\mathrm{V}_{\mathrm{CC}}=26 \mathrm{~V}, \mathrm{I}_{\mathrm{CQ}}=50 \mathrm{~mA}, \mathrm{P}_{\text {out }}=20 \mathrm{~W}(\mathrm{CW})$


Figure 9. 960 MHz Test Circuit RF, Photomaster Scale 1:1
(Reduced 25\% in printed data book, DL110/D)


Figure 10. 960 MHz Test Circuit RF, Photomaster Scale 1:1 and Components Location
(Reduced 25\% in printed data book, DL110/D)

## The RF Line <br> NPN Silicon RF Power Transistor

The MRF6414 is designed for 26 volt UHF large signal, common emitter, class AB linear amplifier applications.

- Specified 26 Volt, 960 MHz Characteristics

Output Power = 50 Watts
Minimum Gain $=8.5 \mathrm{~dB} @ 960 \mathrm{MHz}$, Class AB
Minimum Efficiency =50\% @ $960 \mathrm{MHz}, 50$ Watts

- Silicon Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration

$50 \mathrm{~W}, 960 \mathrm{MHz}$
RF POWER TRANSISTOR
NPN SILICON


CASE 333A-02, STYLE 2

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	28	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	65	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4	Vdc
Collector-Current - Continuous	IC	6	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$\mathrm{PD}_{\mathrm{D}}$	$\begin{aligned} & \hline 134 \\ & 0.77 \end{aligned}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	1.3	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ( $\mathrm{I}_{\mathrm{C}}=20 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{B}}=0$ )	$V_{\text {(BR)CEO }}$	28	-	-	Vdc
Collector-Base Breakdown Voltage ( $\mathrm{IC}=20 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{E}}=0$ )	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	65	-	-	Vdc
Emitter-Base Breakdown Voltage ( $\mathrm{IE}=10 \mathrm{mAdc}$, $\mathrm{IC}=0$ )	$\mathrm{V}_{(\mathrm{BR})} \mathrm{EBO}$	4	-	-	Vdc
Collector-Emitter Leakage Current ( $\mathrm{V}_{\mathrm{CE}}=30 \mathrm{Vdc}, \mathrm{R}_{\mathrm{BE}}=75 \Omega$ )	ICER	-	-	10	mAdc

ON CHARACTERISTICS

DC Current Gain (ICE $=1$ Adc, $\left.\mathrm{V}_{\mathrm{CE}}=5 \mathrm{Vdc}\right)$	$\mathrm{h}_{\text {FE }}$	30	-	120	-

REV 1

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
DYNAMIC CHARACTERISTICS	$\mathrm{C}_{\mathrm{ob}}$	-	45	-	pF
Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=26 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right)(1)$					

## FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}, \mathrm{I} \mathrm{CQ}=200 \mathrm{~mA}, \mathrm{f}=960 \mathrm{MHz}\right)$	$\mathrm{G}_{\mathrm{pe}}$	8.5	-	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \quad\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}, \mathrm{I}_{\mathrm{CQ}}=200 \mathrm{~mA}, \mathrm{f}=960 \mathrm{MHz}\right) \end{aligned}$	$\eta$	50	55	-	\%
Output Mismatch Stress $\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}, \mathrm{I}_{\mathrm{CQ}}=200 \mathrm{~mA}, \mathrm{f}=960 \mathrm{MHz}\right)$   VSWR $=3: 1$; all phase angles at frequency of test	$\Psi$	No Degradation in Output Power			

(1) For information only. It is not measurable in MRF6414 because of internal matching network.


Figure 1. 960 MHz Test Circuit Schematic

TYPICAL CHARACTERISTICS


Figure 2. Output Power versus Input Power (Typical)


Figure 4. Output Power versus Supply Voltage


Figure 3. Output Power versus Frequency


Figure 5. Typical Broadband Amplifier

(SCALE 1:1)
TEST CIRCUIT @ f=960 MHz
TEFLON ${ }^{\circledR}$ GLASS $1 / 50$ INCH Er $=2.55$

Figure 6. MRF6414 Photomaster (Reduced 25\% in printed data book, DL110/D)


Figure 7. 960 MHz Test Circuit Components Layout


Normalized to $10 \Omega$

$\mathbf{f}$   $\mathbf{M H z}$	$\mathbf{Z}_{\text {in }}$   Ohms	ZOL *   Ohms
900	$4.4+\mathrm{j} 4.6$	$4.7+\mathrm{j} 4.7$
935	$5.1+\mathrm{j} 4.8$	$4.0+\mathrm{j} 3.9$
960	$5.4+\mathrm{j} 3.6$	$3.7+\mathrm{j} 4.5$
980	$4.7+\mathrm{j} 2.5$	$3.4+\mathrm{j} 4.7$

ZOL ${ }^{*}$ : Conjugate of optimum load impedance into which the device operates at a given output power, voltage, current and frequency.

Figure 8. Input and Output Impedances with Circuit Tuned for Maximum Gain $@ V_{C C}=26 \mathrm{~V}, \mathrm{I}_{\mathrm{Q}}=200 \mathrm{~mA}, \mathrm{P}_{\text {out }}=50 \mathrm{~W}$

## The RF Line NPN Silicon RF Low Power Transistor

Designed primarily for wideband large signal predriver stages in 800 MHz and UHF frequency ranges.

- Specified @ 12.5 V, 870 MHz Characteristics

Output Power $=750 \mathrm{~mW}$
Minimum Gain $=8.0 \mathrm{~dB}$
Efficiency 60\% (Typ)

- State-of-the-Art Technology Fine Line Geometry Gold Top Metal and Wires Silicon Nitride Passivated Ion Implanted Arsenic Emitters
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.
- Order MRF8372 in tape and reel packaging by adding suffix:

R1 suffix $=500$ units per reel
R2 suffix $=2,500$ units per reel
$750 \mathrm{~mW}, 870 \mathrm{MHz}$ RF LOW POWER TRANSISTOR NPN SILICON


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	16	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	36	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector Current - Continuous	I C	200	mAdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=75^{\circ} \mathrm{C}(1)$   Derate above $75^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	1.67	Watts   $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range		22.2	${ }^{\circ} \mathrm{C}$
Maximum Junction Temperature	$\mathrm{T}_{\mathrm{J}}, \mathrm{T}_{\mathrm{stg}}$	-55 to +150	${ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	45	${ }^{\circ} \mathrm{C} / \mathrm{W}$

## DEVICE MARKING

MRF8372 = 8372
NOTE:

1. Case temperature measured on collector lead immediately adjacent to body of package.

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

## OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=5.0 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	16	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=5.0 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{\text {(BR) }} \mathrm{CES}$	36	-	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=0.1 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=15 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right)$	ICES	-	-	0.1	mAdc

ON CHARACTERISTICS

DC Current Gain   $\left(\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}\right)$	hFE	30	90	200	-

## DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=15 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	-	1.8	2.5	pF

FUNCTIONAL TESTS

Common-Emitter Amplifier Power Gain   $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}\right.$, Pout $\left.=0.75 \mathrm{~W}, \mathrm{f}=870 \mathrm{MHz}\right)$	Gpe	8.0	10	-	dB
Collector Efficiency   $\left(\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{Vdc}, P_{\text {out }}=0.75 \mathrm{~W}, \mathrm{f}=870 \mathrm{MHz}\right)$	$\eta$	55	60	-	$\%$



Figure 1. 800-900 MHz Broadband Circuit

## 800/900 MHz BAND DATA



Figure 2. Typical Broadband Performance

f Frequency MHz	$Z_{\text {in }}$ Ohms		ZOL ${ }^{*}$ Ohms	
	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=7.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}=12.5 \mathrm{~V}$
	$\mathrm{P}_{\text {in }}=150 \mathrm{~mW}$	$\mathrm{P}_{\text {in }}=100 \mathrm{~mW}$	$\begin{aligned} & \mathrm{P}_{\text {out }}=806 \mathrm{MHz}=820 \mathrm{~mW} \\ & \mathrm{P}_{\text {out }}=870 \mathrm{MHz}=635 \mathrm{~mW} \\ & \mathrm{P}_{\text {out }}=960 \mathrm{MHz}=530 \mathrm{~mW} \end{aligned}$	$\begin{aligned} & \text { Pout }=806 \mathrm{MHz}=1.05 \mathrm{~mW} \\ & \mathrm{P}_{\text {out }}=870 \mathrm{MHz}=855 \mathrm{~mW} \\ & \mathrm{P}_{\text {out }}=960 \mathrm{MHz}=580 \mathrm{~mW} \end{aligned}$
806	$8.0+j 1.9$	$4.0+\mathrm{j} 1.2$	24.7-j19.2	20.9 - j31.0
870	$5.2+\mathrm{j} 3.5$	$6.0+j 1.9$	36.9 - j20.5	32.1 - j26.6
960	$6.8+\mathrm{j} 4.0$	$6.1+\mathrm{j} 2.5$	39.3 - j18.5	36.3 - j25.7

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage, and frequency.
Table 1. Series Equivalent Input/Output Impedance

TYPICAL CHARACTERISTICS 800/900 MHz BAND DATA (continued)


Figure 3. Output Power versus Input Power $\mathrm{f}=\mathbf{8 7 0} \mathrm{MHz}$


Figure 5. Output Power versus Collector Voltage


Figure 4. Output Power versus Frequency
VCC $=7.5 \mathrm{Vdc}$


Figure 6. Output Power versus Frequency


Figure 7. Output Power versus Input Power


Figure 9. Output Power versus Collector Voltage


Figure 8. Output Power versus Frequency


Figure 10. Output Power versus Frequency

## Advance Information <br> The RF Small Signal Line <br> Silicon Lateral FET <br> N-Channel Enhancement-Mode MOSFET

Designed for use in low voltage, moderate power amplifiers such as portable analog and digital cellular radios and PC RF modems.

- Performance Specifications at $5.8 \mathrm{~V}, 900 \mathrm{MHz}$ :

Output Power $=30 \mathrm{dBm}$ Min
Power Gain = 10 dB Typ
Efficiency $=50 \%$ Min

- Guaranteed Ruggedness at Load VSWR $=20: 1$
- New Plastic Surface Mount Package
- Available in Tape and Reel Packaging.

T1 Suffix = 1,000 Units per 12 mm, 7 inch Reel

- Device Marking $=9745$

$30 \mathrm{dBm}, 900 \mathrm{MHz}$ HIGH FREQUENCY POWER TRANSISTOR LDMOS FET


CASE 449-02, STYLE 1
(PLD-1)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	35	Vdc
Drain-Gate Voltage $\left(\mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega\right)$	$\mathrm{V}_{\mathrm{DGO}}$	25	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 10$	Vdc
Drain Current - Continuous	$\mathrm{I}_{\mathrm{D}}$	2	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=50^{\circ} \mathrm{C}$   Derate above $50^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	10	W
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	$\mathrm{T}_{\mathrm{J}}$	150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Drain-Source Leakage Current   $\left(V_{D S}=35 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	10	$\mu \mathrm{Adc}$
Gate-Source Leakage Current   $\left(V_{G S}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\right)$	IGSS	-	-	1	$\mu \mathrm{Adc}$

[^41]ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

ON CHARACTERISTICS

Gate Threshold Voltage   $\left(V_{D S}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=25 \mu \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	1	2	3	Vdc
Forward Transconductance   $\left(\mathrm{V}_{\mathrm{DS}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=200 \mathrm{~mA}\right)$	$\mathrm{g}_{\mathrm{fs}}$	-	550	-	mmhos
Resistance Drain-Source   $\left(\mathrm{V}_{\mathrm{GS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	$\mathrm{R}_{\mathrm{DS}}(\mathrm{on})$	-	1	2.5	$\Omega$

DYNAMIC CHARACTERISTICS

Input Capacitance   $\left(V_{D S}=6 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	14	-	pF
Output Capacitance   $\left(V_{\text {DS }}=6 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {oss }}$	-	11	-	pF
Feedback Capacitance   $\left(V_{\text {DS }}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {rss }}$	-	1.8	-	pF

## FUNCTIONAL CHARACTERISTICS

$\left.\begin{array}{c}\text { Power Gain } \\ (V D D\end{array}=5.8 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}=20 \mathrm{dBm}, \mathrm{I}_{\mathrm{DQ}}=150 \mathrm{~mA}, \mathrm{f}=900 \mathrm{MHz}\right)$	$\mathrm{G}_{\mathrm{ps}}$	9.5	10	-	dB
Drain Efficiency   $\left(V_{\mathrm{DD}}=5.8 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}=20 \mathrm{dBm}, \mathrm{I}_{\mathrm{DQ}}=150 \mathrm{~mA}, \mathrm{f}=900 \mathrm{MHz}\right)$	$\eta \mathrm{D}$	50	55	-	$\%$
Ruggedness Test   $\left(V_{\mathrm{DD}}=5.8 \mathrm{Vdc}, \mathrm{Pin}_{\mathrm{in}}=20 \mathrm{dBm}, \mathrm{I}_{\mathrm{DQ}}=150 \mathrm{~mA}, \mathrm{f}=900 \mathrm{MHz}\right.$,   Load VSWR $=20: 1$, All Phase Angles at Frequency Test)	$\Psi$	No Degradation in Output Power after Test			

Table 1. Large Signal Impedance $V_{D D}=5.8 \mathrm{~V}, P_{\text {in }}=20 \mathrm{dBm}, \mathrm{I}_{\mathrm{DQ}}=150 \mathrm{~mA}$

$\mathbf{f}$   $\mathbf{M H z}$	$\mathbf{Z}$ in   $\mathbf{O h m s}$	$\mathbf{Z O L}^{*}$   Ohms
850	$7.0-\mathrm{j} 6.4$	$6.1-\mathrm{j} 5.1$
900	$5.2-\mathrm{j} 6.5$	$5.9-\mathrm{j} 4.6$
950	$5.2-\mathrm{j} 6.0$	$6.1-\mathrm{j} 4.7$

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}$ is the conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

## Advance Information <br> The RF Small Signal Line <br> Gallium Arsenide <br> N-Channel Depletion-Mode MESFET

Designed for use in driver stages of moderate power RF amplifiers to 2 GHz . Typical applications are cellular radios and personal communication transmitters such as AMPS, ETACS, NMT, GSM, PCN, JDC and DECT.

- Performance Specifications at $900 \mathrm{MHz}, 5.8 \mathrm{~V}$ :

Output Power $=21 \mathrm{dBm}$
Power Gain $=14 \mathrm{~dB}$ Min
Drain Efficiency = 55\% Min

- Plastic Surface Mount Package
- Order MRF9811T1 for Tape and Reel Packaging. T1 Suffix = 3,000 Units per $8 \mathrm{~mm}, 7$ inch Reel.



## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	VDSS	10	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 5$	Vdc
Drain Current - Continuous	ID	0.7	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=50^{\circ} \mathrm{C}$ Derate above $50^{\circ} \mathrm{C}$	PD	$\begin{gathered} \hline 0.77 \\ 7.7 \end{gathered}$	$\underset{\mathrm{mW} /{ }^{\circ} \mathrm{C}}{\mathrm{~W}}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\text {日JC }}$	130	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Gate-Drain Breakdown Voltage   $($ IGD $=0.25 \mathrm{~mA}$, Source Open $)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{GDO}}$	15	-	-	Vdc
Zero Gate Voltage Drain Current   $\left(V_{\text {DS }}=1.5\right.$ Vdc, $\left.\mathrm{V}_{\text {GS }}=0\right)$	IDSS	0.35	-	-	Adc
Gate-Source Leakage Current   $\left(V_{G S}=-5.0\right.$ Vdc, Drain Open $)$	IGSO	-	0.5	10	$\mu$ Adc

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS continued $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
Gate Threshold Voltage $\left(\mathrm{V}_{\mathrm{DS}}=5.8 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=0.25 \mathrm{~A}\right)$	$\mathrm{V}_{\text {GS }}$ (th)	-	-2	-	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=5.8 \mathrm{Vdc}, \mathrm{I}_{\mathrm{D}}=30 \mathrm{~mA}\right)$	9fs	-	90	-	mmhos

## DYNAMIC CHARACTERISTICS

Input Capacitance   $\left(V_{\mathrm{DS}}=5.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	2	-	pF
Output Capacitance   $\left(V_{\mathrm{DS}}=5.8 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {oss }}$	-	3.5	-	pF

FUNCTIONAL CHARACTERISTICS (In specified test circuit shown on data sheet)

Common Source Output Power   $\left(V_{D S}=5.8 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=30 \mathrm{~mA}, \mathrm{P}_{\mathrm{in}}=7 \mathrm{dBm}, \mathrm{f}=900 \mathrm{MHz}\right)$	$\mathrm{G}_{\mathrm{ps}}$	14	-	-	dB
Drain Efficiency   $\left(V_{\mathrm{DS}}=5.8 \mathrm{~V}, \mathrm{I}_{\mathrm{DQ}}=30 \mathrm{~mA}, \mathrm{P}_{\mathrm{in}}=7 \mathrm{dBm}, \mathrm{f}=900 \mathrm{MHz}\right)$	7 D	55	-	-	$\%$

## Advance Information <br> The RF Small Signal Line <br> GaAs MESFET AGC Amplifier

The MRF9820T1 is a high performance GaAs AGC amplifier suitable for use in low noise front end amplifier or downconverter applications. The device contains two enhancement mode MESFETs connected in cascode to allow access to both gates for gain control or injection of LO signals. This device is well suited for low voltage, low current front-end applications such as paging, cellular, GSM, DECT, and other portable wireless systems.

- Low Noise Figure: $1.5 \mathrm{~dB} @ 940 \mathrm{MHz}, 1 \mathrm{~mA}$
- Built In ESD Protection
- Does Not Require a Negative Supply Voltage
- RF Power Gain 16 dB @ $940 \mathrm{MHz}, 1 \mathrm{~mA}$
- High Third Order Intercept Point
- Industry Standard SOT-143 Surface Mount Package
- Order MRF9820T1 for Tape and Reel Packaging.

T1 Suffix = 3,000 Units per $8 \mathrm{~mm}, 7$ inch Reel.

MRF9820T1

## SURFACE MOUNT LOW NOISE ENHANCEMENT MODE GaAs CASCODE

CASE 318A-05, STYLE 11 (SOT-143)

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DS}}$	6	Vdc
Gate 1-Source Voltage	$\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}$	-4	Vdc
Gate 2-Source Voltage	$\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}$	-4	Vdc
Drain Current - Continuous	$\mathrm{ID}_{\mathrm{D}}$	$\mathrm{I} D S S$	-
Total Device Dissipation @ $\mathrm{T}^{\prime} \mathrm{C}=75^{\circ} \mathrm{C}$   Derate above $75^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	231	mW
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-55 to +150	${ }^{\circ} \mathrm{C}$
Operating Channel Temperature	$\mathrm{T}_{\mathrm{Ch}}$	150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Rating	Symbol	Max	Unit
Thermal Resistance, Channel to Case	$\mathrm{R}_{\theta \mathrm{ch}}-\mathrm{C}$	325	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Value	Unit
Gate 1 Leakage Current ( $\left.\mathrm{V}_{\mathrm{DS}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=0.425 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=1 \mathrm{~V}\right)$	IG1S	4	$\mu \mathrm{A}$
Gate 2 Leakage Current ( $\mathrm{V}_{\mathrm{DS}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=0.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=0.425 \mathrm{~V}$ )	IG2S	4	$\mu \mathrm{A}$
Threshold Voltage ( $\left.\mathrm{V}_{\mathrm{DS}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}\right)$	$\mathrm{V}_{\text {th }}$	$\begin{aligned} & 275(\min ) \\ & 425 \text { (max) } \end{aligned}$	mV
Gate 1-to-Source Cutoff Voltage ( $\mathrm{V}_{\mathrm{DS}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=1 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}$ )	$\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}$ (off)	$\begin{aligned} & \hline 100(\min ) \\ & 360(\max ) \end{aligned}$	mV
Gate 2-to-Source Cutoff Voltage ( $\mathrm{V}_{\mathrm{DS}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=0.5 \mathrm{~V}, \mathrm{ID}=200 \mu \mathrm{~A}$ )	$\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}$ (off)	$\begin{gathered} 10(\min ) \\ 370(\max ) \end{gathered}$	mV
Forward Transconductance ( $\mathrm{V}_{\mathrm{DS}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=1 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}$ )	9m	9 (min)	mS
Drain-to-Source Leakage Current ( $\left.\mathrm{V}_{\mathrm{DS}}=2 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 1 \mathrm{~S}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2 \mathrm{~S}}=0 \mathrm{~V}\right)$	IDS(off)	2 (max)	$\mu \mathrm{A}$

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

PERFORMANCE CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Value	Unit
RF Power Gain ( $\mathrm{V}_{\mathrm{DS}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2}=1.7 \mathrm{~V}, \mathrm{I} \mathrm{D}=1 \mathrm{~mA}, \mathrm{f}=940 \mathrm{MHz}$ )	$G_{p s}$	14 (min)	dB
Noise Figure ( $\mathrm{V}_{\mathrm{DS}}=3 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 2}=1.7 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=1 \mathrm{~mA}, \mathrm{f}=940 \mathrm{MHz}$ )	NF	$\begin{gathered} 1.5 \text { (typ) } \\ 2.0 \text { (max) } \end{gathered}$	dB
Input Third Order Intercept Point	IIP3	$\begin{aligned} & -3 \text { (typ) } \\ & -8 \text { (min) } \end{aligned}$	dBm



Figure 1. Electrical Schematic of GaAs AGC Amplifier


Figure 2. Drain Current versus $\mathrm{V}_{\mathrm{DS}}$; Stepping $\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}$


Figure 4. Drain Current versus $V_{D S}$; Stepping $V_{G 2 S}$


Figure 3. Drain Current versus
$\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}$; Stepping $\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}$


Figure 5. Drain Current versus
$\mathrm{V}_{\mathrm{G} 2 \mathrm{~S}}$; Stepping $\mathrm{V}_{\mathrm{G} 1 \mathrm{~S}}$

## Advance Information <br> The RF Small Signal Line Gallium Arsenide PHEMT Pseudomorphic High Electron Mobility Transistor



Designed for use in low voltage, moderate power amplifiers such as portable analog and digital cellular radios and PC RF modems.

- Performance Specifications at $3.5 \mathrm{~V}, 850 \mathrm{MHz}$ :

Output Power $=31 \mathrm{dBm}$ Min
Power Gain $=11 \mathrm{~dB}$ Typ
Efficiency $=70 \%$ Min

- Guaranteed Ruggedness at Load VSWR $=20: 1$
- New Plastic Surface Mount Package
- Available in Tape and Reel Packaging Options:

T1 suffix = 1,000 Units per Reel

- Device Marking $=9822$

31 dBm, 850 MHz HIGH FREQUENCY POWER TRANSISTOR GaAs PHEMT

CASE 449-02, STYLE 1
(PLD-1)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Gate Voltage	$\mathrm{V}_{\mathrm{DGO}}$	12	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	-6	Vdc
Drain Current - Continuous	$\mathrm{I}_{\mathrm{D}}$	3	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=50^{\circ} \mathrm{C}$   Derate above $50^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	10	W
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature Range	$\mathrm{T}_{\mathrm{J}}$	${ }^{\circ} \mathrm{C}$	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

## OFF CHARACTERISTICS

Drain-Gate Breakdown Voltage   $\left(\mathrm{I}_{\mathrm{D}}=1.5 \mathrm{~mA}\right)$	$\mathrm{BV}_{\mathrm{GDO}}$	12	-	-	Vdc
Off-state Leakage Current   $\left(V_{\text {DS }}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=-2.6 \mathrm{~V}\right)$	IDS(off)	-	-	3	mA
Gate-Source Leakage Current   $\left(\mathrm{V}_{\text {GS }}=-2.6 \mathrm{~V}\right)$	I GSS	-	-	10	$\mu \mathrm{Adc}$

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS - continued ( $T_{C}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
Gate Threshold Voltage $\left(V_{D S}=3.5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=150 \mathrm{~mA}\right)$	$\mathrm{V}_{\mathrm{GS}}(\mathrm{th})$	-1.5	-	-0.5	Vdc
Forward Transconductance $\left(\mathrm{V}_{\mathrm{DS}}=6 \mathrm{~V}, \mathrm{ID}=200 \mathrm{~mA}\right)$	gfs	-	1.5	-	mhos
Saturation Drain-Current $\left(\mathrm{V}_{\mathrm{GS}}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=1.5 \mathrm{~V}\right)$	IDSS	1.8	2.5	-	A

## FUNCTIONAL CHARACTERISTICS

Power Gain   $\left(V_{D D}=3.5 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}=20 \mathrm{dBm}, \mathrm{IDQ}=150 \mathrm{~mA}, \mathrm{f}=850 \mathrm{MHz}\right)$	$\mathrm{G}_{\mathrm{ps}}$	10.5	11	-	dB
Drain Efficiency   $\left(V_{D D}=3.5 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}=20 \mathrm{dBm}, \mathrm{I}_{\mathrm{DQ}}=150 \mathrm{~mA}, \mathrm{f}=850 \mathrm{MHz}\right)$	$\mathrm{\eta D}$	65	70	-	$\%$



C1, C13	1000 pF, ATC "B" Series	L2	7 Turns, AWG \#18, 0.09" I.D., Close Wound
C2	2.7 pF, ATC "B" Series	L3	3 Ferrite Beads on 1/2" AWG \#16
C3	2.7 pF, ATC "B" Series	R1	$680 \Omega$, 1/8 Watt Leaded
C4	7.5 pF, ATC "B" Series	Z1	0.075 " $\times 0.790^{\prime \prime}$ Microstrip
C5	33 pF , ATC "B" Series	Z2	0.075 " $\times 0.09^{\prime \prime}$ Microstrip
C6, C12	$47 \mu \mathrm{~F}$, Ceramic	Z3, Z 4	0.075 " $\times 0.25^{\prime \prime}$ Microstrip
C7, C8, C9, C10, C11	$0.05 \mu \mathrm{~F}$ Chip	Z5	$0.075^{\prime \prime} \times 0.09^{\prime \prime}$ Microstrip
L1, L4	VK-200 4 Turn Ferrite Bead	Z6	0.075 " x $0.53^{\prime \prime}$ Microstrip

Figure 1. 850 MHz Test Fixture Schematic

Table 1. Large Signal Impedance $V_{D D}=3.5 \mathrm{~V}, \mathrm{P}_{\text {in }}=20 \mathrm{dBm}, \mathrm{IDQ}=150 \mathrm{~mA}$

$\mathbf{f}$   $\mathbf{M H z}$	Zin   Ohms	$\mathbf{Z O L}^{*}$   Ohms
850	$5.0-\mathrm{j} 6.3$	$5.5-\mathrm{j} 1.2$

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}$ is the conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

## The RF Line Microwave Power Transistor

... designed for CW and long pulsed common base amplifier applications, such as JTIDS and Mode S, in the 0.96 to 1.215 GHz frequency range at high overall duty cycles.

- Guaranteed Performance @ $1.215 \mathrm{GHz}, 28 \mathrm{Vdc}$

Output Power = 5.0 Watts CW
Minimum Gain $=8.5 \mathrm{~dB}, 10.3 \mathrm{~dB}$ (Typ)

- RF Performance Curves given for 28 Vdc and 36 Vdc Operation
- 100\% Tested for Load Mismatch at All Phase Angles with 10:1 VSWR
- Hermetically Sealed Industry Standard Package
- Silicon Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Internal Input Matching for Broadband Operation
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.


5.0 W,960-1215 MHz
MICROWAVE POWER
TRANSISTOR
NPN SILICON



## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	55	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	55	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	3.5	Vdc
Collector Current - Continuous (1)	I C	1.25	mAdc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}(1)$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{PD}_{\mathrm{D}}$	25	Watt   $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
Junction Temperature	$\mathrm{TJ}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (2)	$R_{\theta J C}$	7.0	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:

1. These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as RF amplifiers.
2. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ( $\mathrm{IC}=25 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$ )	$V_{\text {(BR)CES }}$	55	-	-	Vdc
Collector-Base Breakdown Voltage ( $\mathrm{I} \mathrm{C}=25 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{E}}=0$ )	$V_{\text {(BR) }}{ }^{\text {(BRO }}$	55	-	-	Vdc
Emitter-Base Breakdown Voltage ( $\mathrm{I}_{\mathrm{E}}=0.5 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0$ )	$\mathrm{V}_{\text {(BR) } \mathrm{EBO}}$	3.5	-	-	Vdc
Collector Cutoff Current ( $\mathrm{V}_{\mathrm{CB}}=28 \mathrm{Vdc}$, $\mathrm{I}_{\mathrm{E}}=0$ )	ICBO	-	-	1.0	mAdc

## ON CHARACTERISTICS

DC Current Gain (IC $\left.=500 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	$\mathrm{h}_{\text {FE }}$	20	-	100	-
DYNAMIC CHARACTERISTICS					
Output Capacitance $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$ $\mathrm{C}_{\mathrm{ob}}$ - 7.0 10 pF					

FUNCTIONAL TESTS

Common-Base Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=5.0 \mathrm{~W}, \mathrm{f}=1215 \mathrm{MHz}\right)$	GpB	8.5	10.3	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=5.0 \mathrm{~W}, \mathrm{f}=1215 \mathrm{MHz}\right)$	$\eta$	45	55	-	\%
Load Mismatch $\begin{aligned} & (\mathrm{VCC}=28 \mathrm{Vdc}, \text { Pout }=5.0 \mathrm{~W}, \mathrm{f}=1215 \mathrm{MHz}, \\ & \text { VSWR }=10: 1 \text { All Phase Angles }) \end{aligned}$	$\psi$	No Degradation in Output Power			



Figure 1. Test Circuit


Figure 2. Output Power versus Input Power


Figure 3. Output Power versus Input Power


$\mathrm{P}_{\text {out }}=5 \mathrm{~W}, \mathrm{~V}_{\mathrm{CC}}=28 \mathrm{~V}$		
f   MHz	$\begin{gathered} \mathrm{Z}_{\mathrm{in}} \\ \mathrm{OHMS} \end{gathered}$	$\begin{aligned} & \mathrm{Z}_{\mathrm{OL}}{ }^{*} \\ & \mathrm{OHMS} \end{aligned}$
960	$6.5+j 8.5$	7.4 -j18.9
1025	$10.0+j 7.0$	7.2 -j17.4
1090	$11.2+j 4.9$	7.1 -j16.3
1150	$10.8+j 2.0$	7.15-j14.3
1215	$7.8+j 0.0$	7.8 -j11.2

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

Figure 4. Series Equivalent Input/Output Impedances

# The RF Line <br> Microwave Long Pulse Power Transistor 

Designed for 960-1215 MHz long or short pulse common base amplifier applications such as JTIDS and Mode-S transmitters.

- Guaranteed Performance @ $960 \mathrm{MHz}, 36$ Vdc

Output Power = 30 Watts Peak
Minimum Gain $=9.0 \mathrm{~dB} \operatorname{Min}(9.5 \mathrm{~dB}$ Typ)

- $100 \%$ Tested for Load Mismatch at All Phase Angles with 10:1 VSWR
- Hermetically Sealed Industry Standard Package
- Silicon Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Internal Input Matching for Broadband Operation



## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CES }}$	55	Vdc
Collector-Base Voltage (1)	$\mathrm{V}_{\text {CBO }}$	55	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	3.5	Vdc
Collector Current - Continuous (1)	I C	3.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1),(2)$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{PD}_{\mathrm{D}}$	110	Watts   $\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (3)	$R_{\theta J C}$	1.6	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:

1. Under pulse RF operating conditions.
2. These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as pulsed RF amplifiers.
3. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques. (Worst case $\theta_{J C}$ value measured @ $23 \%$ duty cycle)

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ( $\mathrm{IC}^{\text {c }}=25 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$ )	$V_{\text {(BR) }}$ CES	55	-	-	Vdc
Collector-Base Breakdown Voltage ( $\mathrm{I} \mathrm{C}=25 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{E}}=0$ )	$V_{\text {(BR) }} \mathrm{CBO}$	55	-	-	Vdc
Emitter-Base Breakdown Voltage ( $\mathrm{I}_{\mathrm{E}}=5.0 \mathrm{mAdc}, \mathrm{IC}=0$ )	$V_{\text {(BR) } \mathrm{EBO}}$	3.5	-	-	Vdc
Collector Cutoff Current ( $\mathrm{V}_{\mathrm{CB}}=36 \mathrm{Vdc}$, $\mathrm{I}_{\mathrm{E}}=0$ )	ICBO	-	-	2.0	mAdc

## ON CHARACTERISTICS

DC Current Gain (IC $\left.=500 \mathrm{mAdc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	$\mathrm{h}_{\mathrm{FE}}$	20	-	-	-

FUNCTIONAL TESTS ( $10 \mu \mathrm{~s}$ Pulses @ $50 \%$ duty cycle for 3.5 ms ; overall duty cycle $-25 \%$ )

Common-Base Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=36 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W} \text { Peak, } \mathrm{f}=960 \mathrm{MHz}\right)$	GPB	9.0	9.5	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=36 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W} \text { Peak, } \mathrm{f}=960 \mathrm{MHz}\right)$	$\eta$	40	45	-	\%
Load Mismatch $\left(\mathrm{V}_{\mathrm{CC}}=36 \mathrm{Vdc}, \text { Pout }=30 \mathrm{~W} \text { Peak, } \mathrm{f}=960 \mathrm{MHz}\right. \text {, }$ VSWR = 10:1 All Phase Angles)	$\psi$	No Degradation in Output Power			



C1 - 75 pF 100 Mil Chip Capacitor
C2 - 39 pF 100 Mil Chip Capacitor
C3 - $0.1 \mu \mathrm{~F}$
C4 - $1000 \mu \mathrm{~F}, 50 \mathrm{Vdc}$, Electrolytic
L1 - 3 Turns \#18 AWG, 1/8" ID, 0.18 Long

Z1-Z9 - Microstrip, See Details
Board Material - Teflon, Glass Laminate Dielectric Thickness $=0.030^{\prime \prime}$ $\varepsilon_{r}=2.55$, 2 Oz. Copper


Figure 1. Test Circuit


Figure 2. Output Power versus Input Power


$\mathrm{P}_{\text {out }}=30 \mathrm{WPk} \quad \mathrm{V}_{\mathrm{CC}}=36 \mathrm{~V}$		
f MHz	Zin   Ohms	$\mathrm{Z}_{\mathrm{OL}}{ }^{*}$   Ohms
960	$2.05+j 5.2$	$2.9-j 2.35$
1025	2.67 + j6.34	2.55-j1.3
1090	$4.0+j 7.1$	2.52 - j0.9
1155	$5.5+\mathrm{j} 6.2$	2.6 - j0.6
1220	$5.7+j 4.3$	2.8 - j0.3

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance into which the device operates at a given output power, voltage, and frequency.

Figure 3. Series Equivalent Input/Output Impedances

## The RF Line <br> Microwave Long Pulse Power Transistor

Designed for 960-1215 MHz long pulse common base amplifier applications such as JTIDS and Mode S transmitters.

- Guaranteed Performance @ 1.215 GHz, 36 Vdc

Output Power = 120 Watts Peak
Gain $=8.0 \mathrm{~dB}$ Min., 9.2 dB (Typ)

- $100 \%$ Tested for Load Mismatch at All Phase Angles with 3:1 VSWR
- Hermetically Sealed Industry Standard Package
- Silicon Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Internal Input and Output Matching for Broadband Operation
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.



MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	55	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	55	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	3.5	Vdc
Collector Current — Peak (1)	$\mathrm{I}_{\mathrm{C}}$	15	Adc
Total Device Dissipation @ $\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C}(1),(2)$   Derate above 25 ${ }^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	380	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +200	$\mathrm{~W}^{\circ} \mathrm{C}$
Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	200	

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (3)	$\mathrm{R}_{\theta \mathrm{JJC}}$	0.46	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=60 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	55	-	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=60 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	55	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	3.5	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=36\right.$ Vdc, $\left.\mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\mathrm{CBO}}$	-	-	25	mAdc

## NOTES:

(continued)

1. Under pulse RF operating conditions.
2. These devices are designed for RF operation. The total device dissipation rating applies only when the device is operated as RF amplifiers.
3. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.

REV 7

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
DC Current Gain ( $\mathrm{IC}=5.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}$ )	$\mathrm{h}_{\text {FE }}$	20	-	-	-

FUNCTIONAL TESTS ( $7.0 \mu \mathrm{~s}$ Pulses @ $54 \%$ duty cycle for 3.4 ms ; then off for 4.5 ms ; overall duty cycle $=23 \%$ )

Common-Base Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=36 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=120 \mathrm{~W} \text { Peak, } \mathrm{f}=1215 \mathrm{MHz}\right)$	GpB	8.0	9.2	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=36 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=120 \mathrm{~W} \text { Peak, } \mathrm{f}=1215 \mathrm{MHz}\right)$	$\eta$	50	55	-	\%
Load Mismatch $\left(\mathrm{V}_{\mathrm{CC}}=36 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=120 \mathrm{~W} \text { Peak, } \mathrm{f}=1215 \mathrm{MHz}\right. \text {, }$ VSWR = 3:1 All Phase Angles)	$\psi$	No Degradation in Output Power			



Figure 1. Test Circuit


Figure 2. Output Power versus Input Power


Figure 4. Series Equivalent Input Impedances


Figure 3. Output Power versus Input Power


Figure 5. Series Equivalent Output Impedance

## The RF Line <br> Microwave Pulse <br> Power Transistor

... designed for 1025-1150 MHz pulse common base amplifier applications such as TCAS, TACAN and Mode-S transmitters.

- Silicon Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Internal Input and Output Matching
- Characterized with $10 \mu \mathrm{~s}$, 10\% Duty Cycle Pulses
- Recommended Driver for a Pair of MRF10500 Transistors




## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	65	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	65	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	3.5	Vdc
Collector Current - Peak (1)	I C	14	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1),(2)$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{PD}_{\mathrm{D}}$	700	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +200	$\mathrm{~W}^{\circ} \mathrm{C}$
Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (3)	$R_{\text {日JC }}$	0.25	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:

1. Under pulse RF operating conditions.
2. These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as pulsed RF amplifiers.
3. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques. (Worst case $\theta_{J C}$ value measured @ $10 \mu \mathrm{~s}, 10 \%$.)

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ( $\mathrm{I}^{\text {c }}=60 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$ )	$V_{\text {(BR)CES }}$	65	-	-	Vdc
Collector-Base Breakdown Voltage ( $\mathrm{I} \mathrm{C}=60 \mathrm{mAdc}$, $\mathrm{I} \mathrm{E}=0$ )	$V_{\text {(BR) }}$ CBO	65	-	-	Vdc
Emitter-Base Breakdown Voltage ( $\mathrm{I}_{\mathrm{E}}=10 \mathrm{mAdc}$, $\mathrm{IC}=0$ )	$\mathrm{V}_{\text {(BR) } \mathrm{EBO}}$	3.5	-	-	Vdc
Collector Cutoff Current ( $\mathrm{V}_{\mathrm{CB}}=36 \mathrm{Vdc}$, $\mathrm{I}_{\mathrm{E}}=0$ )	ICBO	-	-	25	mAdc

ON CHARACTERISTICS

DC Current Gain (IC $\left.=5.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	$\mathrm{h}_{\mathrm{FE}}$	20	-	-	-

FUNCTIONAL TESTS

Common-Base Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=150 \mathrm{~W} \text { Peak, } \mathrm{f}=1090 \mathrm{MHz}\right)$	GPB	9.5	10	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \qquad\left(\mathrm{V} \text { CC }=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=150 \mathrm{~W} \text { Peak, } \mathrm{f}=1090 \mathrm{MHz}\right) \end{aligned}$	$\eta$	40	-	-	\%
Load Mismatch $\left(V_{C C}=50 \mathrm{Vdc}, P_{\text {out }}=150 \mathrm{~W} \text { Peak, } f=1090 \mathrm{MHz},\right.$   VSWR = 10:1 All Phase Angles)	$\psi$	No Degradation in Output Power			



Figure 1. Test Circuit


Figure 2. Output Power versus Input Power


Figure 3. Series Equivalent Input/Output Impedances

## The RF Line <br> Microwave Pulse Power Transistor

Designed for 1025-1150 MHz pulse common base amplifier applications such as TCAS, TACAN and Mode-S transmitters.

- Guaranteed Performance @ 1090 MHz

Output Power $=350$ Watts Peak
Gain $=8.5 \mathrm{~dB}$ Min, 9.0 dB (Typ)

- $100 \%$ Tested for Load Mismatch at All Phase Angles with 10:1 VSWR
- Hermetically Sealed Package
- Silicon Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Internal Input and Output Matching
- Characterized using Mode-S Pulse Format


350 W (PEAK)
1025-1150 MHz
MICROWAVE POWER
TRANSISTOR
NPN SILICON



## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CES }}$	65	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	65	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	3.5	Vdc
Collector Current — Peak (1)	I C	31	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1),(2)$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{PD}_{\mathrm{D}}$	1590	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +200	$\mathrm{~W}^{\circ} \mathrm{C}$
Junction Temperature	$\mathrm{TJ}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (3)	$R_{\theta J C}$	0.11	${ }^{\circ} \mathrm{C} / \mathrm{W}$

NOTES:

1. Under pulse RF operating conditions.
2. These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as pulsed RF amplifiers.
3. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques. (Worst Case $\theta_{\text {Jc }}$ measured using Mode-S pulse train, $128 \mu \mathrm{~s}$ burst $0.5 \mu \mathrm{~s}$ on, $0.5 \mu \mathrm{~s}$ off repeating at 6.4 ms interval.)

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage ( $\left.\mathrm{I}_{\mathrm{C}}=60 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	65	-	-	Vdc
Collector-Base Breakdown Voltage ( $\left.\mathrm{I}_{\mathrm{C}}=60 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	65	-	-	Vdc
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{E}}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	3.5	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=36 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{I}_{\mathrm{CBO}}$	-	-	25	mAdc

ON CHARACTERISTICS

DC Current Gain ( $\left.\mathrm{I}=5.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	$\mathrm{h}_{\mathrm{FE}}$	20	-	-

FUNCTIONAL TESTS

Common-Base Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=350 \mathrm{~W} \text { Peak, } \mathrm{f}=1090 \mathrm{MHz}\right)$	GpB	8.5	9.0	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=350 \mathrm{~W} \text { Peak, } \mathrm{f}=1090 \mathrm{MHz}\right)$	$\eta$	40	-	-	\%
Load Mismatch $\begin{aligned} & \left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \text { Pout }=350 \mathrm{~W} \text { Peak, } f=1090 \mathrm{MHz},\right. \\ & \text { VSWR }=10: 1 \text { All Phase Angles) } \end{aligned}$	$\psi$	No Degradation in Output Power			



C1 - 75 pF 100 Mil Chip Capacitor
C2 - 39 pF 100 Mil Chip Capacitor
C3 $-0.1 \mu \mathrm{~F}$
C4-100 $\mu \mathrm{F}, 100 \mathrm{Vdc}$, Electrolytic
L1 - 3 Turns \#18 AWG, 1/8" ID, 0.18 Long


Figure 1. Test Circuit

(1) $128 \mu \mathrm{~s}$ burst $0.5 \mu \mathrm{~s}$ on, $0.5 \mu \mathrm{~s}$ off repeating at 6.4 ms interval.

Figure 2. Output Power versus Input Power


f MHz	$\begin{aligned} & \mathrm{Z} \text { in } \\ & \text { OHMS } \end{aligned}$	$\begin{gathered} \mathrm{Z}_{\mathrm{OL}}{ }^{*}(1) \\ \text { OHMS } \end{gathered}$
1025	$1.92+\mathrm{j} 3.80$	$2.52+j 0.70$
1050	2.44 + j3.92	$2.18+j 0.85$
1090	$3.55+j 3.02$	1.94 + j1.13
1125	$4.11+j 2.27$	$1.80+\mathrm{j} 1.22$
1150	$4.13+j 1.35$	$1.71+\mathrm{j} 1.31$

Figure 3. Series Equivalent Input/Output Impedances

## The RF Line <br> Microwave Pulse <br> Power Transistors

...designed for 1025-1150 MHz pulse common base amplifier applications such as TCAS, TACAN and Mode-S transmitters.

- Guaranteed Performance @ 1090 MHz

Output Power = 500 Watts Peak
Gain $=8.5 \mathrm{~dB}$ Min, 9.0 dB (Typ)

- $100 \%$ Tested for Load Mismatch at All Phase Angles with 10:1 VSWR
- Hermetically Sealed Industry Package
- Silicon Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Internal Input and Output Matching
- Characterized with $10 \mu \mathrm{~s}, 1 \%$ Duty Cycle Pulses


## MRF10500 MRF10501

```
 500 W (PEAK)
 1025-1150 MHz
MICROWAVE POWER
 TRANSISTORS
 NPN SILICON
```



CASE 355D-02, STYLE 1 MRF10500


CASE 355H-01, STYLE 1 MRF10501

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	65	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	65	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	3.5	Vdc
Collector Current - Peak (1)	I C	29	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}(1),(2)$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{PD}_{\mathrm{D}}$	1460	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$
Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (3)	$R_{\theta J C}$	0.12	${ }^{\circ} \mathrm{C} / \mathrm{W}$

## NOTES:

1. Under pulse RF operating conditions.
2. These devices are designed for RF operation. The total device dissipation rating applies only when the devices are operated as pulsed RF amplifiers.
3. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques. (Worst case $\theta_{J C}$ value measured @ $32 \mu \mathrm{~s}, 2 \%$.)

REV 6

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ( $\mathrm{I}^{\text {c }}=60 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$ )	$V_{\text {(BR)CES }}$	65	-	-	Vdc
Collector-Base Breakdown Voltage ( $\mathrm{I} \mathrm{C}=60 \mathrm{mAdc}$, $\mathrm{I} \mathrm{E}=0$ )	$V_{\text {(BR) }} \mathrm{CBO}$	65	-	-	Vdc
Emitter-Base Breakdown Voltage ( $\mathrm{I}_{\mathrm{E}}=10 \mathrm{mAdc}$, $\mathrm{I}_{\mathrm{C}}=0$ )	$V_{\text {(BR) } \mathrm{EBO}}$	3.5	-	-	Vdc
Collector Cutoff Current ( $\mathrm{V}_{\mathrm{CB}}=36 \mathrm{Vdc}$, $\mathrm{I}_{\mathrm{E}}=0$ )	ICBO	-	-	25	mAdc

## ON CHARACTERISTICS

DC Current Gain (IC $\left.=5.0 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=5.0 \mathrm{Vdc}\right)$	$\mathrm{h}_{\mathrm{FE}}$	20	-	-	-

FUNCTIONAL TESTS

Common-Base Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=500 \mathrm{~W} \text { Peak, } \mathrm{f}=1090 \mathrm{MHz}\right)$	GPB	8.5	9.0	-	dB
Collector Efficiency $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=500 \mathrm{~W} \text { Peak, } \mathrm{f}=1090 \mathrm{MHz}\right)$	$\eta$	40	45	-	\%
Load Mismatch $\left(\mathrm{V}_{\mathrm{CC}}=50 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=500 \mathrm{~W} \text { Peak, } \mathrm{f}=1090 \mathrm{MHz}\right. \text {, }$ VSWR = 10:1 All Phase Angles)	$\psi$	No Degradation in Output Power			



Figure 1. Test Circuit


Figure 2. Output Power versus Input Power


$\begin{gathered} \mathrm{f} \\ \mathrm{MHz} \end{gathered}$	$\begin{gathered} \mathrm{z}_{\text {in }} \\ \mathrm{OHMS} \end{gathered}$	$\begin{gathered} \mathrm{Z}_{\text {OL }}{ }^{*}\left(\mathrm{Z}_{\text {OUT }}\right) \\ \text { OHMS } \end{gathered}$
1030	$5.3+$ j2.25	$2.6+j 1.89$
1060	$6.2+\mathrm{j} 0.2$	2.56 + 2.0
1090	$5.2-\mathrm{j} 1.4$	$2.12+$ j2.2
1120	3.7-j1.35	$1.9+j 2.15$
1150	3.15-j1.3	$1.6+j 1.62$

Figure 3. Series Equivalent Input/Output Impedances

## The RF Line <br> NPN Silicon <br> RF Power Transistor

Designed for 26 volts microwave large-signal, common emitter, class A and class $A B$ linear amplifier applications in industrial and commercial FM/AM equipment operating in the range $1400-1600 \mathrm{MHz}$.

- Specified 26 Volts, 1490 MHz , Class AB Characteristics:

Output Power - 30 Watts
Gain — 9 dB Min @ 30 Watts (PEP)
Efficiency - 30\% Min @ 30 Watts (PEP) Intermodulation Distortion ——30 dBc Max @ 30 Watts (PEP)

- Third Order Intercept Point — 53.5 dBm Typ @ 1490 MHz , $\mathrm{V}_{\mathrm{CE}}=24 \mathrm{Vdc}, \mathrm{I} \mathrm{C}=2.5 \mathrm{Adc}$
- Characterized with Series Equivalent Large-Signal Parameters from 1400-1600 MHz
- Characterized with Small Signal S-Parameters from $1000-2000 \mathrm{MHz}$
- Silicon Nitride Passivated
- $100 \%$ Tested for Load Mismatch Stress at all Phase Angles with 3:1 Load VSWR @ 28 Vdc, at Rated Output Power
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

$30 \mathrm{~W}, 1.5 \mathrm{GHz}$ RF POWER TRANSISTOR NPN SILICON


CASE 395C-01, STYLE 1

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	25	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\text {CES }}$	60	Vdc
Emitter-Base Voltage	VEBO	4	Vdc
Collector-Current - Continuous	IC	10	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & 125 \\ & 0.71 \end{aligned}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	1.40	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	25	29	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	60	64	-	Vdc
Collector-Emitter Breakdown Voltage (IC $=50 \mathrm{mAdc}, \mathrm{RBE}=100 \Omega$ )	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CER}}$	30	52	-	Vdc

(continued)

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS - continued					
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=5 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4	5	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	ICES	-	-	10	mAdc

ON CHARACTERISTICS

DC Current Gain   (ICE $=1$ Adc, $\left.V_{\text {CE }}=5 \mathrm{Vdc}\right)$	h he	20	35	80	-

## DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=26 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	-	38	-	pF

FUNCTIONAL TESTS (Figure 12)

$\begin{aligned} & \text { Common-Emitter Amplifier Power Gain } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}(\mathrm{PEP}), \text { I } \mathrm{CQ}=125 \mathrm{~mA},\right. \\ & \left.\mathrm{f}_{1}=1490 \mathrm{MHz}, \mathrm{f}_{2}=1490.1 \mathrm{MHz}\right) \end{aligned}$	$\mathrm{G}_{\mathrm{pe}}$	9.0	9.6	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \left(V_{C C}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}(\mathrm{PEP}), \mathrm{I} \mathrm{CQ}=125 \mathrm{~mA},\right. \\ & \left.\mathrm{f}_{1}=1490 \mathrm{MHz}, \mathrm{f}_{2}=1490.1 \mathrm{MHz}\right) \end{aligned}$	$\eta$	30	34	-	\%
$\begin{aligned} & \text { Intermodulation Distortion } \\ & \left(V_{C C}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}(\mathrm{PEP}), \mathrm{I} \mathrm{CQ}=125 \mathrm{~mA},\right. \\ & \left.\mathrm{f}_{1}=1490 \mathrm{MHz}, \mathrm{f}_{2}=1490.1 \mathrm{MHz}\right) \end{aligned}$	IMD	-	-34	-30	dBc
$\begin{aligned} & \text { Input Return Loss } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}(\mathrm{PEP}), \mathrm{I} \mathrm{CQ}=125 \mathrm{~mA},\right. \\ & \left.\mathrm{f}_{1}=1490 \mathrm{MHz}, \mathrm{f}_{2}=1490.1 \mathrm{MHz}\right) \end{aligned}$	IRL	12	15	-	dB
Load Mismatch $\begin{aligned} & \left(V_{C C}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}(\mathrm{PEP}), \mathrm{ICQ}=125 \mathrm{~mA},\right. \\ & \mathrm{f}_{1}=1490 \mathrm{MHz}, \mathrm{f}_{2}=1490.1 \mathrm{MHz} \text {, Load VSWR }=3: 1 \text {, All Phase } \\ & \text { Angles at Frequency of Test) } \end{aligned}$	$\psi$	No Degradation in Output Power			

## TYPICAL CHARACTERISTICS



Figure 1. Output Power \& Power Gain versus Input Power


Figure 2. Output Power versus Frequency

## TYPICAL CHARACTERISTICS



Figure 3. Intermodulation Distortion versus Output Power


Figure 5. Intermodulation Distortion versus Output Power


Figure 7. Power Gain and Intermodulation Distortion versus Collector Voltage


Figure 4. Performance in Broadband Circuit


Figure 6. Power Gain versus Output Power


Figure 8. Class A Third Order Intercept Point


Figure 9. DC Safe Operating Area


Figure 10. MTBF Factor versus Junction Temperature
The above graph displays calculated MTBF in hours $x$ ampere 2 emitter current. Life tests at elevated temperatures have correlated to better than $\pm 10 \%$ of the theoretical prediction for metal failure. Divide MTBF Factor by $I^{2}$ for MTBF in a particular application.


$\mathbf{f}$   $(\mathbf{G H z})$	$\mathbf{Z}_{\text {in }}$   $(\Omega)$	$\mathbf{Z}^{*} \mathbf{O L}$   $(\Omega)$
1.40	$1.15+\mathrm{j} 4.25$	$1.87+\mathrm{j} 0.78$
1.45	$1.15+\mathrm{j} 4.55$	$1.67+\mathrm{j} 0.78$
1.50	$1.20+\mathrm{j} 4.80$	$1.47+\mathrm{j} 0.78$
1.55	$1.45+\mathrm{j} 5.15$	$1.27+\mathrm{j} 0.78$
1.60	$1.89+\mathrm{j} 5.25$	$1.00+\mathrm{j} 0.78$

$Z^{*} O L=$ Conjugate of optimum load impedance into which the device operates at a given output power, voltage and frequency.

Figure 11. Input and Output Impedances with Circuit Tuned for Maximum Gain @ Pout $=30$ Watts (PEP), $\mathrm{V}_{\mathrm{CC}}=26$ Volts, ICQ $=125 \mathrm{~mA}$, and Driven by Two Equal Amplitude Tones with Separation of 100 KHz

Table 1. Small Signal S Parameters at VCE = $24 \mathrm{Vdc}, \mathrm{I}_{\mathrm{C}}=2.5 \mathrm{Adc}$

f	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$			
MHz	$\left\|S_{11}\right\|$	$\angle \phi$	\|S21		$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
1000	0.983	173	0.366	49	0.006	36	0.890	178		
1050	0.984	172	0.367	46	0.007	33	0.893	178		
1100	0.978	172	0.367	43	0.007	33	0.888	178		
1150	0.975	171	0.373	40	0.007	30	0.885	178		
1200	0.975	171	0.382	36	0.008	31	0.886	177		
1250	0.969	170	0.391	33	0.007	27	0.881	177		
1300	0.963	169	0.408	29	0.008	21	0.879	177		
1350	0.955	169	0.428	25	0.009	20	0.879	177		
1400	0.945	168	0.452	20	0.008	7	0.873	177		
1450	0.933	167	0.487	13	0.009	1	0.875	178		
1500	0.915	166	0.525	6	0.009	-8	0.875	178		
1550	0.889	166	0.572	-3	0.009	-18	0.877	178		
1600	0.856	166	0.618	-16	0.009	-35	0.887	178		
1650	0.833	168	0.654	-30	0.010	-54	0.901	178		
1700	0.820	171	0.654	-48	0.010	-86	0.918	178		
1750	0.839	174	0.600	-66	0.010	-120	0.930	177		
1800	0.872	175	0.517	-81	0.010	-152	0.932	176		
1850	0.909	176	0.435	-94	0.010	-176	0.925	174		
1900	0.937	175	0.357	-104	0.011	159	0.924	173		
1950	0.957	174	0.296	-112	0.012	148	0.917	173		
2000	0.970	173	0.247	-119	0.012	136	0.915	173		



B1, B4	Long Bead, Fair Rite
B2, B3	Short Bead, Fair Rite
C1	0.3 pF, B Case Chip Capacitor, ATC
C2	$220 \mu$ F, Electrolytic Capacitor, Mallory
C3, C14	$0.1 \mu \mathrm{~F}$, Chip Capacitor, Kemit
C4, C8	0.8 to 8 pF, Variable Capacitor, Johanson
C5, C11	1800 pF, Chip Capacitor, Kemit
C6, C12	18 pF, B Case Chip Capacitor, ATC
C7, C10	51 pF, Chip Capacitor, Murata Erie
C9	1.7 pF, B Case Chip Capacitor, ATC
C13	$470 \mu$ F, Electrolytic Capacitor, Mallory


D1	Surface Mount Diode, Motorola
D2	Light Emitting Diode, Industrial Devices
L1, L2	3 Turn, 20 AWG, 0.126" ID Choke
N1, N2	Type N Flange Mount RF Connector, Omni Spectra
Q1	Transistor PNP Motorola (BD136)
Q2, Q3	Surface Mount Transistor, NPN, Motorola (MJD47)
R1	$2 \times 330 \Omega, 1 / 8$ Watt Chip Resistors in Parallel, Rohm
R2	$100 \Omega, 1 / 8$ Watt, Chip Resistor, Rohm
R3, R6	$4 \times 38 \Omega, 1 / 8$ Watt, Chip Resistors in Parallel, Rohm
R4	$39 \Omega, 1 / 8$ Watt, Chip Resistor, Rohm
R5	$22 \mathrm{~K} \Omega, 1 / 8$ Watt, Chip Resistor, Rohm
Board	Glass Teflon ${ }^{\circledR}$, Arlon GX-0300-55-22, $\varepsilon_{r}=2.55$

Figure 12. Class AB Broadband Test Fixture Electrical Schematic


B1, B4	Long Bead, Fair Rite
B2, B3	Short Bead, Fair Rite
C1, C2	$100 \mu$ F, Electrolytic Capacitor, Mallory
C3, C14	$0.1 \mu$ F, Chip Capacitor, Kemit
C4	1.3 pF, B Case Chip Capacitor, ATC
C5, C12	18 pF, B Case Chip Capacitor, ATC
C6, C11	1800 pF, Chip Capacitor, Kemit
C7, C9	0.8 to 8 pF, Variable Capacitor, Johanson
C8, C10	51 pF, Chip Capacitor, Murata Erie
C13	470 $\mu$ F, Electrolytic Capacitor, Mallory
L1, L2	3 Turn, 20 AWG, 0.126" ID Choke
N1, N2	Type N Flange Mount RF Connector, Omni Spectra


Q1	Transistor NPN Motorola (BD135)
Q2	Transistor PNP Motorola (BD136)
R1	$250 \Omega, 1 / 8$ Watt, Chip Resistor Rohm
R2	$500 \Omega, 1 / 4$ Watt Potentiometer, State of the Art
R3	$4.7 \mathrm{~K} \Omega, 1 / 8$ Watt, Chip Resistor, Rohm
R4	$2 \times 4.7 \mathrm{~K} \Omega, 1 / 8$ Watt, Chip Resistors in Parallel, Rohm
R5	$1.0 \Omega, 10$ Watt, Resistor, Dale
R6	$38 \Omega, 1.0$ Watt, Resistor
R7	$75 \Omega, 1 / 8$ Watt, Chip Resistor, Rohm
R8	$2 \times 10 \Omega, 1 / 8$ Watt, Chip Resistors in Parallel, Rohm
R9, R10	$4 \times 38 \Omega, 1 / 8$ Watt, Chip Resistors in Parallel, Rohm
Board	Glass Teflon ${ }^{\circledR}$, Arlon GX-0300-55-22, $\varepsilon_{r}=2.55$

Figure 13. Class A Test Fixture Electrical Schematic

## The RF Sub-Micron Bipolar Line RF Power Bipolar Transistors

Designed for broadband commercial and industrial applications at frequencies from 1400 to 1600 MHz . The high gain and broadband performance of these devices makes them ideal for large-signal, common-emitter class A and class AB amplifier applications in 26 volt amplitude modulated and multi-carrier base station equipment.

- Guaranteed Two-Tone Performance at 1490 MHz, 26 Volts

Output Power - 60 Watts (PEP)
Power Gain - 10 dB
Efficiency - 33\%

- Characterized with Series Equivalent Large-Signal Impedance Parameters
- S-Parameter Characterization at High Bias Levels
- Excellent Thermal Stability
- All Gold Metal for Ultra Reliability
- Capable of Handling 3:1 VSWR @ 26 Vdc, 1490 MHz, 60 Watts (PEP) Output Power


## MRF15060 <br> MRF15060S

$60 \mathrm{~W}, 1.49 \mathrm{GHz}$ RF POWER
BIPOLAR
TRANSISTORS


CASE 451-04, STYLE 1 (MRF15060)


CASE 451A-01, STYLE 1 (MRF15060S)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	25	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	60	Adc
Collector Current - Continuous	$\mathrm{I}_{\mathrm{C}}$	8	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=70^{\circ} \mathrm{C}$   Derate above $70^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	185	Watts
Storage Temperature Range		$\mathrm{T}_{\text {stg }}$	-65 to +150
Operating Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Rating	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$\mathrm{R}_{\theta \mathrm{JC}}$	0.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS
(TC $=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ( $\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0$ )	$V_{\text {(BR)CEO }}$	25	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{\text {(BR) }}$ CES	60	-	-	Vdc
Emitter-Base Breakdown Voltage ( $\mathrm{I} \mathrm{E}=10 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0 \mathrm{mAdc}$ )	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	3	3.5	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	ICES	-	-	10	mAdc

## ON CHARACTERISTICS

DC Current Gain   $\left(I_{C}=1\right.$ Adc, $\left.V_{C E}=5 \mathrm{Vdc}\right)$	$\mathrm{h}_{\text {FE }}$	20	40	80	-

## DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=26 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)(1)$	$\mathrm{C}_{\mathrm{ob}}$	-	55	-	pF

FUNCTIONAL TESTS (In Motorola Test Circuit. See Figure 1)

$\begin{aligned} & \text { Common-Emitter Amplifier Power Gain } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{Watts}(\mathrm{PEP}), \mathrm{I} \mathrm{CQ}=200 \mathrm{~mA},\right. \\ & \left.\mathrm{f}_{1}=1490.0 \mathrm{MHz}, \mathrm{f}_{2}=1490.1 \mathrm{MHz}\right) \end{aligned}$	$\mathrm{G}_{\mathrm{pe}}$	10	11.7	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \left(V_{C C}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{Watts}(\mathrm{PEP}), \mathrm{I} \mathrm{CQ}=200 \mathrm{~mA}\right. \text {, } \\ & \left.\mathrm{f}_{1}=1490.0 \mathrm{MHz}, \mathrm{f}_{2}=1490.1 \mathrm{MHz}\right) \end{aligned}$	$\eta$	33	38	-	dB
$\begin{aligned} & \text { 3rd Order Intermodulation Distortion } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{Watts}(\mathrm{PEP}), \mathrm{ICQ}=200 \mathrm{~mA}\right. \text {, } \\ & \left.\mathrm{f}_{1}=1490.0 \mathrm{MHz}, \mathrm{f}_{2}=1490.1 \mathrm{MHz}\right) \end{aligned}$	IMD	-	-32	-28	dB
$\begin{aligned} & \text { Input Return Loss } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{Watts}(\mathrm{PEP}), \mathrm{ICQ}=200 \mathrm{~mA}\right. \text {, } \\ & \left.\mathrm{f}_{1}=1490.0 \mathrm{MHz}, \mathrm{f}_{2}=1490.1 \mathrm{MHz}\right) \end{aligned}$	IRL	12	20	-	dB
$\begin{aligned} & \text { Output Mismatch Stress } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{Watts}(\mathrm{PEP}), \mathrm{I} \mathrm{CQ}=200 \mathrm{~mA},\right. \\ & \mathrm{f}_{1}=1490.0 \mathrm{MHz}, \mathrm{f}_{2}=1490.1 \mathrm{MHz}, \\ & \text { VSWR }=3: 1, \text { at All Phase Angles) } \end{aligned}$	$\psi$	No Degradation in Output Power			

NOTE: For information only. This part is collector matched.


B1, B2	Short RF Bead Fair Rite-2743019447	D1	Diode, 1N4003
C1, C2, C6, C8	18 pF, Chip Capacitor	L1, L2	3 Turns, 20 AWG, IDIA 0.102" (17.7 nH)
C3	3.9 pF, Chip Capacitor	Q1	Transistor, NPN BD135
C4, C5	$0.6-4.5 \mathrm{pF}$, Variable Capacitor	Q2	Transistor, PNP BD136
C7, C9	100 pF, Chip Capacitor	R1	$120 \Omega, 1 / 4 \mathrm{~W}$ Resistor
C10, C13	1000 pF, Chip Capacitor	R2	$51 \Omega, 1 / 4 \mathrm{~W}$, Chip Resistor
C11, C14, C17	$0.1 \mu$ F, 50 Vdc Ceramic Capacitor	R3, R4	$4 \times 39 \Omega, 1 / 8 \mathrm{~W}$ Chip Resistors
C12, C15, C18	$10 \mu \mathrm{~F}, 50$ Vdc Electrolytic Capacitor	TL1-TL4	Microstrip Line See Photomaster
C16	$250 \mu$ F, 50 Vdc Electrolytic Capacitor	Board	$1 / 32^{\prime \prime}$ Glass Teflon ${ }^{\circledR}$, Arlon GX-0300-55-22,
			$\varepsilon_{r}=2.55$

Figure 1. MRF15060 RF Test Fixture Schematic

## TYPICAL CHARACTERISTICS



Figure 2. Output Power \& Power Gain versus Input Power


Figure 4. Intermodulation Distortion versus Output Power


Figure 6. Intermodulation Distortion versus Output Power


Figure 3. Output Power versus Frequency


Figure 5. Power Gain and Intermodulation Distortion versus Supply Voltage


Pout, OUTPUT POWER (WATTS) PEP
Figure 7. Power Gain versus Output Power


Figure 8. Performance in Broadband Circuit


Figure 9. Class A Third Order Intercept Point


Figure 10. DC Safe Operating Area


$V_{C C}=26 \mathrm{Vdc}, I_{C Q}=200 \mathrm{~mA}, \mathrm{P}_{\text {out }}=60$ Watts PEP		
$\mathbf{f}$   $\mathbf{M H z}$	$\mathbf{Z}_{\text {in }}(\mathbf{1})$   Ohms	$\mathbf{Z O L}^{*}$   Ohms
1400	$1.07+\mathrm{j} 3.4$	$2.25+\mathrm{j} 3.1$
1450	$1.04+\mathrm{j} 3.0$	$2.37+\mathrm{j} 2.4$
1500	$1.01+\mathrm{j} 2.7$	$2.46+\mathrm{j} 2.1$
1550	$0.99+\mathrm{j} 2.3$	$2.54+\mathrm{j} 1.4$
1600	$0.97+\mathrm{j} 1.9$	$2.66+\mathrm{j} 1.0$

$Z_{\text {in }}(1)=$ Conjugate of fixture base impedance.
$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=$ Conjugate of the optimum load impedance at given output power, voltage, bias current and frequency.

Figure 11. Series Equivalent Input and Output Impedence


Figure 12. MRF15060 Component Parts Layout

Table 1. Typical Common Emitter S-Parameters (VCC = 26 V)

$$
\mathrm{ID}=3.0 \mathrm{~A}
$$

$\mathbf{f}$   $\mathbf{M H z}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \phi$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \phi$
1000	0.964	163	0.28	93	0.018	73	0.991	178
1050	0.958	162	0.30	87	0.018	76	0.989	178
1100	0.957	161	0.31	82	0.017	81	0.987	179
1150	0.956	160	0.34	76	0.022	73	0.982	179
1200	0.955	158	0.38	70	0.023	67	0.969	179
1250	0.953	157	0.42	62	0.022	57	0.956	180
1300	0.941	155	0.47	53	0.019	60	0.937	180
1350	0.922	154	0.55	43	0.015	64	0.915	-180
1400	0.920	153	0.67	28	0.013	66	0.891	-180
1450	0.901	152	0.80	6	0.012	71	0.880	-180
1500	0.903	151	0.83	-24	0.007	76	0.911	-179
1550	0.906	152	0.70	-54	0.008	89	0.954	-180
1600	0.913	153	0.51	-75	0.009	92	0.971	-180
1650	0.921	154	0.38	-89	0.010	95	0.973	-179
1700	0.946	154	0.29	-98	0.012	97	0.974	-179
1750	0.974	155	0.34	-107	0.014	105	0.976	-178
1800	0.968	154	0.19	-115	0.016	116	0.977	-178
1850	0.966	153	0.16	-121	0.018	138	0.978	-177
1900	0.947	152	0.14	-128	0.021	143	0.980	-177
1950	0.918	151	0.12	-138	0.027	151	0.982	-177
2000	0.912	150	0.09	-146	0.031	159	0.985	-176

## Advance Information

The RF Line
NPN Silicon
RF Power Transistor
Designed for 26 volts microwave large-signal, common emitter, class A and class AB linear amplifier applications in industrial and commercial FM/AM equipment operating in the range 1400-1600 MHz.

- Specified 26 Volts, 1490 MHz, Class AB Characteristics

Output Power - 90 Watts (PEP)
Gain - 7.5 dB Min @ 90 Watts (PEP)
Collector Efficiency — 30\% Min @ 90 Watts (PEP)
Intermodulation Distortion —-28 dBc Max @ 90 Watts (PEP)

- Third Order Intercept Point — 56.5 dBm Typ @ $1490 \mathrm{MHz}, \mathrm{V}_{\mathrm{CE}}=24 \mathrm{Vdc}$, IC = 5 Adc
- Characterized with Series Equivalent Large-Signal Parameters from 1400-1600 MHz
- Characterized with Small-Signal S-Parameters from 1000-2000 MHz
- Silicon Nitride Passivated
- 100\% Tested for Load Mismatch Stress at All Phase Angles with 3:1 Load VSWR @ 28 Vdc, and Rated Output Power
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.


## MRF15090

$90 \mathrm{~W}, 1.5 \mathrm{GHz}$ RF POWER TRANSISTOR NPN SILICON


CASE 375A-01, STYLE 1

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CEO}}$	25	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4	Vdc
Collector-Current - Continuous @ $\mathrm{T}_{\mathrm{J}(\max )}=150^{\circ} \mathrm{C}$	$\mathrm{I}_{\mathrm{C}}$	15	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	250	Watts
Storage Temperature Range		1.43	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	0.70	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage   $\left(\mathrm{IC}=50\right.$ mAdc, $\left.\mathrm{I}_{\mathrm{B}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	25	28	-	Vdc
Collector-Emitter Breakdown Voltage   $\left(\mathrm{IC}=50\right.$ mAdc, $\left.\mathrm{V}_{\mathrm{BE}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	60	65	-	Vdc
Collector-Emitter Breakdown Voltage   $\left(\mathrm{IC}=50\right.$ mAdc, $\left.\mathrm{R}_{\mathrm{BE}}=100 \Omega\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CER}}$	30	-	-	Vdc

(continued)
This document contains information on a new product. Specifications and information herein are subject to change without notice.

REV 6

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted.)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS - continued					
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=5 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4	4.8	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	ICES	-	-	10	mAdc

ON CHARACTERISTICS

DC Current Gain   $($ ICE $=1$ Adc, VCE $=5 \mathrm{Vdc})$	hFE	20	40	80	-

## DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(V_{C B}=26\right.$ Vdc, $\left.\mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right)-$   For Information Only. This Part Is Collector Matched.	$\mathrm{C}_{\mathrm{ob}}$	-	52	-

FUNCTIONAL TESTS (Figure 12)

$\begin{aligned} & \text { Common-Emitter Amplifier Power Gain } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=90 \mathrm{~W}(\mathrm{PEP}), \text { ICQ }=250 \mathrm{~mA},\right. \\ & \left.\mathrm{f}_{1}=1490 \mathrm{MHz}, \mathrm{f}_{2}=1490.1 \mathrm{MHz}\right) \end{aligned}$	$\mathrm{G}_{\mathrm{pe}}$	7.5	8.3	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=90 \mathrm{~W}(\mathrm{PEP}), \mathrm{ICQ}=250 \mathrm{~mA},\right. \\ & \left.\mathrm{f}_{1}=1490 \mathrm{MHz}, \mathrm{f}_{2}=1490.1 \mathrm{MHz}\right) \end{aligned}$	$\eta$	30	36	-	\%
$\begin{aligned} & \text { Intermodulation Distortion } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=90 \mathrm{~W}(\mathrm{PEP}), \mathrm{I} \mathrm{CQ}=250 \mathrm{~mA},\right. \\ & \left.\mathrm{f}_{1}=1490 \mathrm{MHz}, \mathrm{f}_{2}=1490.1 \mathrm{MHz}\right) \end{aligned}$	IMD	-	-32	-28	dBc
$\begin{aligned} & \text { Input Return Loss } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=90 \mathrm{~W}(\mathrm{PEP}), \mathrm{I} \mathrm{CQ}=250 \mathrm{~mA},\right. \\ & \left.\mathrm{f}_{1}=1490 \mathrm{MHz}, \mathrm{f}_{2}=1490.1 \mathrm{MHz}\right) \end{aligned}$	IRL	12	15	-	dB
Load Mismatch $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=90 \mathrm{~W}(\mathrm{PEP}), \mathrm{I}_{\mathrm{CQ}}=250 \mathrm{~mA},\right.$ $f_{1}=1490 \mathrm{MHz}, \mathrm{f}_{2}=1490.1 \mathrm{MHz}$, Load VSWR $=3: 1$, All Phase Angles at Frequency of Test)	$\psi$	No Degradation in Output Power			



Figure 1. Output Power \& Power Gain versus Input Power


Figure 3. Intermodulation Distortion versus Output Power


Figure 5. Intermodulation Distortion versus Output Power


Figure 4. Performance in Broadband Circuit


Pout, OUTPUT POWER (WATTS) PEP
Figure 6. Power Gain versus Output Power

## TYPICAL CHARACTERISTICS



Figure 7. Class A Third Order Intercept Point


Figure 9. DC Safe Operating Area


Figure 8. Power Gain and Intermodulation Distortion versus Supply Voltage


Figure 10. MTBF Factor versus Junction Temperature

The graph above displays calculated MTBF in hours x ampere ${ }^{2}$ emitter current. Life tests at elevated temperatures have correlated to better than $\pm 10 \%$ of the theoretical prediction for metal failure. Divide MTBF Factor by IC ${ }^{2}$ for MTBF in a particular application.


$\mathbf{f}$   $(\mathbf{M H z})$	$\mathbf{Z}_{\text {in }}$   $(\Omega)$	$\mathbf{Z O L}_{\mathbf{O}}{ }^{*}$   $(\Omega)$
1400	$3.28+\mathrm{j} 9.07$	$4.62+\mathrm{j} 2.23$
1450	$3.85+\mathrm{j} 10.4$	$4.35+\mathrm{j} 3.41$
1500	$4.55+\mathrm{j} 11.4$	$4.08+\mathrm{j} 3.60$
1550	$5.45+\mathrm{j} 11.9$	$3.80+\mathrm{j} 3.78$
1600	$6.20+\mathrm{j} 12.2$	$3.55+\mathrm{j} 3.84$

$\mathrm{Z}_{\text {in }}=\begin{aligned} & \text { Input impedance is a balanced base to } \\ & \text { base measurement. }\end{aligned}$
$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=\begin{aligned} & \text { Conjugate of optimum load impedance } \\ & \text { collector to collector into which the device } \\ & \text { operates at a given output power, bias } \\ & \text { current, voltage and frequency. }\end{aligned}$

Figure 11. Input and Output Impedances with Circuit Tuned for Maximum Gain @ Pout = 90 Watts (PEP), $V_{C C}=26$ Volts, ICQ = 250 mA , and Driven by Two Equal Amplitude Tones with Separation of 100 KHz

Table 1. Common Emitter S-Parameters (for One Side of Push-Pull MRF15090) at $\mathrm{V}_{\mathrm{CE}}=\mathbf{2 4}$ Vdc, $\mathrm{I}_{\mathrm{C}}=2.5$ Adc

$\begin{gathered} \mathrm{f} \\ \mathrm{MHz} \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		$\mathrm{S}_{22}$				
	\| $\mathrm{S}_{11} \mid$	$\angle \phi$	\|S21		$\angle \phi$	\|S12		$\angle \phi$	\|S22		$\angle \phi$
1000	0.999	172	0.164	108	0.006	72	0.957	173			
1050	0.999	171	0.179	103	0.007	69	0.956	172			
1100	0.994	170	0.196	97	0.007	66	0.948	172			
1150	0.992	170	0.216	92	0.008	63	0.940	171			
1200	0.994	169	0.241	86	0.008	62	0.935	171			
1250	0.986	168	0.269	80	0.009	57	0.924	170			
1300	0.982	167	0.306	73	0.010	51	0.915	170			
1350	0.973	166	0.351	66	0.011	45	0.905	170			
1400	0.957	164	0.408	56	0.012	33	0.888	170			
1450	0.938	163	0.483	44	0.013	22	0.876	170			
1500	0.903	162	0.571	29	0.014	7	0.859	171			
1550	0.857	163	0.651	10	0.014	-13	0.855	173			
1600	0.821	165	0.673	-14	0.013	-40	0.877	174			
1650	0.837	169	0.623	-37	0.011	-67	0.902	174			
1700	0.872	170	0.529	-56	0.009	-104	0.922	173			
1750	0.901	170	0.437	-70	0.008	-138	0.931	172			
1800	0.920	170	0.363	-81	0.007	-165	0.932	171			
1850	0.940	169	0.309	-90	0.008	173	0.930	170			
1900	0.954	169	0.265	-98	0.008	150	0.932	169			
1950	0.965	168	0.232	-104	0.009	139	0.930	169			
2000	0.971	167	0.205	-110	0.010	132	0.929	168			



B1, B2, B3, B4	Ferrite Bead, Ferroxcube	L1	1 Turn, 24 AWG, 0.042" ID Choke
C1	2.7 pF, B Case Chip Capacitor, ATC	L2, L3, L8, L9	3 Turn, 20 AWG, 0.126" ID Choke
C2	$0.6-4.0$ pF, Variable Capacitor, Johanson	L4, L5, L6, L7	12 Turns, 22 AWG, 0.140" ID Choke
C3, C4, C23, C24	18 pF, B Case Chip Capacitor, ATC	L10	3 Turns, 24 AWG, 0.046" ID Choke
C5, C6, C22, C25	51 pF, Chip Capacitor, Murata Erie	N1, N2	Type N Flange Mount RF Connector, Omni Spectra
C7, C8, C20, C21	1800 pF, Chip Capacitor, Kemit	Q1, Q3	Transistor, NPN, Motorola (MJD47)
C9, C10, C11	$100 \mu \mathrm{~F}$, Electrolytic Capacitor, Mallory	Q2	Transistor PNP Motorola (BD136)
C12	5.1 pF, A Case Chip Capacitor, ATC	R1, R2, R7, R8	$10 \Omega, 1 / 2 \mathrm{~W}$, Resistor
C13, C14, C18, C19	$0.1 \mu$ F, Chip Capacitor, Kemit	R3	$150 \Omega, 1 / 2 \mathrm{~W}$, Resistor
C15	1.1 pF, B Case Chip Capacitor, ATC	R4	$2 \times 66 \Omega, 1 / 8 \mathrm{~W}$, Chip Resistors in Parallel, Rohm
C16, C17	470 HF, Electrolytic Capacitor, Mallory	R5	$93 \Omega$, 1/8 W, Chip Resistor, Rohm
C26	0.3 pF, B Case Chip Capacitor, ATC	R6	$22 \mathrm{~K} \Omega, 1 / 8 \mathrm{~W}$, Chip Resistor, Rohm
D1	Diode, Motorola (MUR5120T3)	TL1 to TL10	See Photomaster
D2	Light Emitting Diode, Industrial Devices	Board	Glass Teflon ${ }^{\circledR}$, Arlon GX-0300-55-22, $\varepsilon_{r}=2.55$

Figure 12. Class AB Test Fixture Electrical Schematic


B1, B2, B5, B6	Long Bead, Fair Rite
B3, B4, B7, B8	Short Bead, Fair Rite
C1, C2, C3, C4	$100 \mu$ FF, Electrolytic Capacitor, Mallory
C5, C6, C17, C18	$0.1 \mu$ F, Chip Capacitor, Kemit
C7, C8, C21, C22	18 pF , B Case Chip Capacitor, ATC
C9, C10, C20, C23	51 pF, Chip Capacitor, Murata Erie
C11, C12, C19, C24	1800 pF, Chip Capacitor, Kemit
C13	4.3 pF, B Case Chip Capacitor, ATC
C14	2.0 pF, B Case Chip Capacitor, ATC
C15, C16	$470 \mu$ F, Electrolytic Capacitor, Mallory
C25	$0.6-4 \mathrm{pF}$ Variable Capacitor, Johanson
L1	3 Turns, 24 AWG, 0.046" ID Choke
L2, L3, L4, L5	3 Turns, 20 AWG, 0.126" ID Choke
L6	2 Turns, 24 AWG, 0.042" ID Choke

N1, N2
Q1, Q2
Q3, Q4
R1, R6
R2, R5
R3, R4
R7, R8
R9, R14
R10, R13
R11, R12
R15, R16
R17, R18, R19, R20
Board

Type N Flange Mount RF Connector, Omni Spectra
Transistor NPN Motorola (BD135)
Transistor PNP Motorola (BD136)
$250 \Omega$, 1/8 W, Chip Resistor, Rohm
$500 \Omega, 1 / 4 \mathrm{~W}$, Potentiometer, State of the Art
$4.7 \Omega, 1 / 8 \mathrm{~W}$, Chip Resistor, Rohm
$2 \times 4.7 \mathrm{~K} \Omega, 1 / 8 \mathrm{~W}$, Chip Resistors
in Parallel, Rohm
$1.0 \Omega, 10$ W, Resistor, Dale
$38 \Omega$, 1 W, Resistor
$75 \Omega, 1 / 8 \mathrm{~W}$, Chip Resistor, Rohm
$2 \times 10 \Omega, 1 / 8 \mathrm{~W}$, Chip Resistors in Parallel, Rohm
$4 \times 38 \Omega, 1 / 8$ W, Chip Resistors in Parallel, Rohm
Glass Teflon ${ }^{\circledR}$, Arlon GX-0300-55-22, $\varepsilon_{r}=2.55$

Figure 13. Class A Test Fixture Electrical Schematic

## The RF Line NPN Silicon <br> RF Power Transistor

Designed for 28 Volt microwave large-signal, common base, Class-C CW amplifier applications in the range $1600-1640 \mathrm{MHz}$.

- Specified 28 Volt, 1.6 GHz Class-C Characteristics

Output Power = 6 Watts
Minimum Gain = 7.4 dB , @ 6 Watts
Minimum Efficiency=40\% @ 6 Watts

- Characterized with Series Equivalent Large-Signal Parameters from 1500 MHz to 1700 MHz
- Silicon Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.


## MRF16006

6.0 WATTS, 1.6 GHz RF POWER TRANSISTOR NPN SILICON


CASE 395C-01, STYLE 2

MAXIMUM RATINGS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CES}}$	60	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	4.0	Vdc
Collector-Current	$\mathrm{I}_{\mathrm{C}}$	1.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}} \mathrm{C}=25^{\circ} \mathrm{C}$   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	26	Watts
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	0.15	$\mathrm{~W} /{ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Thermal Resistance - Junction to Case (1) (2)	$\mathrm{R}_{\text {日JC }}$	6.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) Thermal measurement performed using CW RF operating condition.
(2) Thermal resistance is determined under specified RF operating conditions by infrared measurement techniques.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

## OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=40 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$V_{\text {(BR) }}$ CES	55	-	-	Vdc
Collector-Base Breakdown Voltage $(\mathrm{IC}=40 \mathrm{mAdc}, \mathrm{I} \mathrm{E}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	55	-	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=2.5 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{VCE}=28 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	ICES	-	-	2.5	mAdc

ON CHARACTERISTICS

DC Current Gain   (ICE $=0.2$ Adc, VCE $=5.0$ Vdc)	hFE	20	-	80

## DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{Vdc}, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	11	-	pf

## FUNCTIONAL TESTS

Common-Base Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=6 \mathrm{Watts}, \mathrm{f}=1600 / 1640 \mathrm{MHz}\right)$	$G_{\text {pe }}$	7.4	-	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \qquad\left(V_{C C}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=6 \text { Watts, } \mathrm{f}=1600 / 1640 \mathrm{MHz}\right) \end{aligned}$	$\eta$	40	45	-	\%
Return Loss $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=6 \mathrm{Watts}, \mathrm{f}=1600 / 1640 \mathrm{MHz}\right)$	${ }^{\text {IRL }}$	-	8.0	-	dB
Output Mismatch Stress ( $\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=6$ Watts, $\mathrm{f}=1600 \mathrm{MHz}$, Load VSWR $=3: 1$ all phase angles at frequency of test)	$\psi$	No Degradation in Output Power			



Board Material - Teflon ${ }^{\circledR}$ Glass Laminate Dielectric
Thickness $-0.30^{\prime \prime}, \varepsilon_{r}=2.55^{\prime \prime}, 2.0 \mathrm{oz}$. Copper

B1	Fair Rite Bead on \#24 Wire
C1, C5	100 pF, B Case, ATC Chip Cap
C2	$0.1 \mu$ F, Dipped Mica Cap
C3	$0.1 \mu$ F, Chip Cap


C4	$47 \mu \mathrm{~F}, 50 \mathrm{~V}$, Electrolytic Cap
L1, L2	3 Turns, \#18, 0.133" ID, $0.15^{\prime \prime}$ Long
L3	9 Turns, \#24 Enamel
R1	$82 \Omega, 1.0 \mathrm{~W}$, Carbon Resistor

Figure 1. MRF16006 Test Fixture Schematic


Figure 2. Series Equivalent Input/Output Impedance


Figure 3. Output Power versus Input Power

## The RF Line NPN Silicon <br> RF Power Transistor

Designed for 28 Volt microwave large-signal, common base, Class-C CW amplifier applications in the range $1600-1640 \mathrm{MHz}$.

- Specified 28 Volt, 1.6 GHz Class-C Characteristics

Output Power = 30 Watts
Minimum Gain = 7.5 dB , @ 30 Watts
Minimum Efficiency=40\% @ 30 Watts

- Characterized with Series Equivalent Large-Signal Parameters from 1500 MHz to 1700 MHz
- Silicon Nitride Passivated
- Gold Metallized, Emitter Ballasted for Long Life and Resistance to Metal Migration
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

30 WATTS, 1.6 GHz RF POWER TRANSISTOR NPN SILICON


CASE 395C-01, STYLE 2

MAXIMUM RATINGS $\left(T_{J}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CES }}$	60	Vdc
Emitter-Base Voltage	VEBO	4.0	Vdc
Collector-Current	IC	4.0	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	$\begin{aligned} & \hline 103 \\ & 0.58 \end{aligned}$	Watts ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS

Thermal Resistance - Junction to Case (1) (2)
$\mathrm{R}_{\theta \mathrm{JC}}$
1.7
${ }^{\circ} \mathrm{C} / \mathrm{W}$
(1) Thermal measurement performed using CW RF operating condition.
(2) Thermal resistance is determined under specified RF operating conditions by infrared measurement techniques.

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=100 \mathrm{mAdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$V_{\text {(BR) }}$ CES	55	-	-	Vdc
Collector-Base Breakdown Voltage $(\mathrm{IC}=100 \mathrm{mAdc}, \mathrm{I} \mathrm{E}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	55	-	-	Vdc
Emitter-Base Breakdown Voltage ( $\mathrm{I} \mathrm{E}=10 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0$ )	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4.0	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=28 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	ICES	-	-	10	mAdc

ON CHARACTERISTICS

DC Current Gain   (ICE $=1.0$ Adc, VCE $=5.0 \mathrm{Vdc})$	hFE	20	35	80

## FUNCTIONAL TESTS

Collector-Base Amplifier Power Gain $\left(V_{C C}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \text { Watts, } \mathrm{f}=1600 / 1640 \mathrm{MHz}\right)$	$\mathrm{G}_{\text {pe }}$	7.5	7.7	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \quad\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \text { Watts, } \mathrm{f}=1600 / 1640 \mathrm{MHz}\right) \end{aligned}$	$\eta$	40	45	-	\%
Input Return Loss   $\left(V_{C C}=28 \mathrm{Vdc}, P_{\text {out }}=30\right.$ Watts, $\left.f=1600 / 1640 \mathrm{MHz}\right)$	${ }^{\text {IRL }}$	8.0	-	-	dB
Output Mismatch Stress   $V_{C C}=28 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30$ Watts, $\mathrm{f}=1600 \mathrm{MHz}$, Load   $V S W R=3: 1$, All phase angles at frequency of test	$\Psi$	No Degradation in Output Power			



Board Material - Teflon ${ }^{\circledR}$ Glass Laminate Dielectric
Thickness $=0.30^{\prime \prime}, \varepsilon_{r}=2.55^{\prime \prime}, 2.0$ oz. Copper

B1	Fair Rite Bead on \#24 Wire	C4	$47 \mu$ F, 50 V , Electrolytic
C1, C5	100 pF, B Case, ATC Chip Cap	L1, L2	3 Turns, \#18, 0.133" ID, $0.15^{\prime \prime}$ Long
C2	$0.1 \mu$ F, Dipped Mica Cap	L3	9 Turns, \#24 Enamel
C3	$0.1 \mu$ F, Chip Cap	R1	$82 \Omega, 1.0$ W, Carbon

Figure 1. MRF16030 Test Fixture Schematic

$V_{C C}=28 \mathrm{Vdc}, P_{\text {out }}=30 \mathrm{~W}$

$\mathbf{f}$   $\mathbf{M H z}$	$\mathbf{Z}_{\text {in }}$   Ohms	$\mathbf{Z O L}_{\mathbf{O}}{ }^{\text {Ohms }}$
1500	$3.05+\mathrm{j} 4.88$	$2.66+\mathrm{j} 2.53$
1600	$4.32+\mathrm{j} 6.00$	$1.79+\mathrm{j} 2.80$
1700	$5.62+\mathrm{j} 5.79$	$1.51+\mathrm{j} 2.64$

$Z_{O L}{ }^{*}=$ Conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

Figure 2. Series Equivalent Input/Output Impedance


Figure 3. Output Power versus Input Power

## The RF Sub-Micron Bipolar Line RF Power Bipolar Transistor

Designed for broadband commercial and industrial applications at frequencies from 1800 to 2000 MHz . The high gain and broadband performance of this device makes it ideal for large-signal, common-emitter class A and class AB amplifier applications. Suitable for frequency modulated, amplitude modulated and multi-carrier base station RF power amplifiers.

- Specified 26 Volts, 2.0 GHz, Class AB, Two-Tones Characteristics

Output Power - 30 Watts (PEP)
Power Gain - 9.8 dB
Efficiency - 34\%
Intermodulation Distortion --28 dBc

- Typical 26 Volts, 1.88 GHz, Class AB, CW Characteristics

Output Power - 30 Watts
Power Gain - 10.5 dB
Efficiency - 40\%

- Excellent Thermal Stability
- Capable of Handling 3:1 VSWR @ 26 Vdc, $2000 \mathrm{MHz}, 30$ Watts (PEP) Output Power
- Characterized with Series Equivalent Large-Signal Impedance Parameters
- S-Parameter Characterization at High Bias Levels
- Designed for FM, TDMA, CDMA, and Multi-Carrier Applications


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	25	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\text {CES }}$	60	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	60	Vdc
Collector-Emitter Voltage ( $\mathrm{RBE}=100 \Omega$ )	$\mathrm{V}_{\text {CER }}$	30	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EB }}$	-3	Vdc
Collector Current - Continuous	IC	4	Adc
Total Device Dissipation @ TC $=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & \hline 125 \\ & 0.71 \end{aligned}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Rating	Symbol	Max	Unit
Thermal Resistance, Junction to Case (1)	$\mathrm{R}_{\text {日JC }}$	1.4	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) Thermal resistance is determined under specified RF operating condition.

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ( $\mathrm{I} \mathrm{C}=25 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0$ )	$V_{\text {(BR)CEO }}$	25	26	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{C}}=25 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0\right)$	$V_{\text {(BR) }}$ CES	60	70	-	Vdc
Collector-Base Breakdown Voltage $(\mathrm{IC}=25 \mathrm{mAdc}, \mathrm{I} \mathrm{E}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	60	70	-	Vdc

REV 1

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Emitter-Base Breakdown Voltage $\left(\mathrm{I}_{\mathrm{B}}=5 \mathrm{mAdc}, \mathrm{I}_{\mathrm{C}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	3	3.8	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CE}}=30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	ICES	-	-	10	mAdc

ON CHARACTERISTICS

DC Current Gain   $\left(V_{C E}=5\right.$ Vdc, ICE $=1$ Adc $)$	hFE	20	40	80	-

DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=26 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)(1)$	$\mathrm{C}_{\mathrm{ob}}$	-	28	-

FUNCTIONAL TESTS (In Motorola Test Fixture)

$\begin{aligned} & \text { Common-Emitter Amplifier Power Gain } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{Watts}, \mathrm{I} \mathrm{CQ}=120 \mathrm{~mA},\right. \\ & \left.\mathrm{f}_{1}=2000.0 \mathrm{MHz}, \mathrm{f}_{2}=2000.1 \mathrm{MHz}\right) \end{aligned}$	Gpe	9.8	10.5	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{Watts}(\mathrm{PEP}), \mathrm{ICQ}=120 \mathrm{~mA}\right. \text {, } \\ & \left.\mathrm{f}_{1}=2000.0 \mathrm{MHz}, \mathrm{f}_{2}=2000.1 \mathrm{MHz}\right) \end{aligned}$	$\eta$	34	38	-	\%
$\begin{aligned} & \text { Intermodulation Distortion } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{Watts}(\mathrm{PEP}), \mathrm{I} \mathrm{CQ}=120 \mathrm{~mA}\right. \text {, } \\ & \left.\mathrm{f}_{1}=2000.0 \mathrm{MHz}, \mathrm{f}_{2}=2000.1 \mathrm{MHz}\right) \end{aligned}$	IMD	-	-33	-28	dBc
$\begin{aligned} & \text { Input Return Loss } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{Watts}(\mathrm{PEP}), \mathrm{I} \mathrm{CQ}=125 \mathrm{~mA}\right. \text {, } \\ & \left.\mathrm{f}_{1}=2000.0 \mathrm{MHz}, \mathrm{f}_{2}=2000.1 \mathrm{MHz}\right) \end{aligned}$	IRL	10	17	-	dB
Load Mismatch $\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30\right.$ Watts (PEP), $\mathrm{I} C Q=120 \mathrm{~mA}$, $\mathrm{f}_{1}=2000.0 \mathrm{MHz}, \mathrm{f}_{2}=2000.1 \mathrm{MHz}$, Load VSWR $=3: 1$, All Phase Angles at Frequency of Test)	$\psi$	No Degradation in Output Power			
$\begin{aligned} & \text { Common-Emitter Amplifier Power Gain } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{Watts}(\text { PEP }), \text { ICQ }=125 \mathrm{~mA}\right. \text {, } \\ & \left.\mathrm{f}_{1}=1930.0 \mathrm{MHz}, \mathrm{f}_{2}=1930.1 \mathrm{MHz}\right) \end{aligned}$	$\mathrm{G}_{\text {pe }}$	-	10.5	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{Watts}(\mathrm{PEP}), \mathrm{I} \mathrm{CQ}=125 \mathrm{~mA}\right. \text {, } \\ & \left.\mathrm{f}_{1}=1930.0 \mathrm{MHz}, \mathrm{f}_{2}=1930.1 \mathrm{MHz}\right) \end{aligned}$	$\eta$	-	34	-	\%
$\begin{aligned} & \text { Intermodulation Distortion } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{Watts}(\mathrm{PEP}), \mathrm{I} \mathrm{CQ}=125 \mathrm{~mA}\right. \text {, } \\ & \left.\mathrm{f}_{1}=1930.0 \mathrm{MHz}, \mathrm{f}_{2}=1930.1 \mathrm{MHz}\right) \end{aligned}$	IMD	-	-35	-	dBc
$\begin{aligned} & \text { Input Return Loss } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{Watts}(\mathrm{PEP}), \mathrm{I} \mathrm{CQ}=125 \mathrm{~mA}\right. \text {, } \\ & \left.\mathrm{f}_{1}=1930.0 \mathrm{MHz}, \mathrm{f}_{2}=1930.1 \mathrm{MHz}\right) \end{aligned}$	IRL	-	14	-	dB

GUARANTEED BUT NOT TESTED (In Motorola Test Fixture)

Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{Watts}, \mathrm{I} \mathrm{CQ}=125 \mathrm{~mA}, \mathrm{f}=1880 \mathrm{MHz}\right)$	$\mathrm{G}_{\mathrm{pe}}$	-	10.5	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \qquad\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \text { Watts }, \mathrm{I} \mathrm{CQ}=125 \mathrm{~mA}, \mathrm{f}=1880 \mathrm{MHz}\right) \end{aligned}$	$\eta$	-	40	-	\%
Input Return Loss $\left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \text { Watts }, \mathrm{ICQ}=125 \mathrm{~mA}, \mathrm{f}=1880 \mathrm{MHz}\right)$	IRL	-	14	-	dB
Output Mismatch Stress $\left(\mathrm{V}_{\mathrm{CC}}=25 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=30 \mathrm{Watts}, \mathrm{I}_{\mathrm{CQ}}=125 \mathrm{~mA},\right.$   $f=1880 \mathrm{MHz}$, VSWR $=3: 1$, All Phase Angles at Frequency of Test)	$\psi$	Typically No Degradation in Output Power			

(1) For Information Only. This Part Is Collector Matched.


Figure 1. Class AB Test Fixture Electrical Schematic
$\mathrm{B} 1, \mathrm{~B} 2$
$\mathrm{C} 1, \mathrm{C} 9, \mathrm{C} 13$
$\mathrm{C} 2, \mathrm{C} 8$
$\mathrm{C} 3, \mathrm{C} 10$
C 4
$\mathrm{C} 5, \mathrm{C} 11$
$\mathrm{C} 6, \mathrm{C} 14$
$\mathrm{C}, \mathrm{C} 12$
C 15
$\mathrm{~L} 1, \mathrm{~L} 2$
$\mathrm{~N} 1, \mathrm{~N} 2$
Long Bead, Fair Rite
$0.6-4 \mathrm{pF}$, Variable Capacitor, Johanson, Gigatrim
$100 \mu \mathrm{~F}, 50 \mathrm{~V}$, Electrolytic Capacitor, Mallory
18 pF B Case Chip Capacitor, ATC
$1.3 \mathrm{pF}, \mathrm{B}$ Case Chip Capacitor, ATC
24 pF, B Case Chip Capacitor, ATC
$0.1 \mu \mathrm{FF}$, Chip Capacitor, Kermet
$75 \mathrm{pF}, \mathrm{B}$ Case Chip Capacitor, ATC
$470 \mu \mathrm{~F}, 63 \mathrm{~V}$, Electrolytic Capacitor, Mallory
0.75 in., 20 AWG
Type N Flange Mount RF
Connector, MA/COM

Q1	Transistor, NPN, Motorola (BD135)
Q2	Transistor, PNP, Motorola (BD136)
R1	$250 \Omega$, Chip Resistor, 1/8 Watt, Rohm
R2	$500 \Omega, 1 / 4$ Watt, Potentiometer
R3	$4.7 \mathrm{k} \Omega$, Chip Resistor, $1 / 8$ Watt, Rohm
R4	$2 \times 4.7 \mathrm{k} \Omega$, Chip Resistor, $1 / 8$ Watt, Rohm
R5	$1.0 \Omega, 10$ Watt, Resistor, DALE
R6	$39 \Omega, 1$ Watt, Resistor
R7, R9	$4 \times 39 \Omega$, Chip Resistors, $1 / 8$ Watt, Rohm
R8	$75 \Omega$, Chip Resistor, $1 / 8$ Watt, Rohm
Board	30 Mil Glass Teflon ${ }^{\circledR}$, Arlon GX-0300-55-22,
	$\varepsilon_{r}=2.55$

Figure 2. Class A Test Fixture Electrical Schematic

## TYPICAL CHARACTERISTICS



Figure 3. Output Power \& Power Gain versus Input Power


Figure 4. Output Power versus Frequency


Figure 6. Power Gain and Intermodulation Distortion versus Supply Voltage


Figure 8. Power Gain versus Output Power


Figure 9. DC Class A Safe Operating Area


Figure 10. Performance in Broadband Circuit


Figure 11. Class A Third Order Intercept Point


This above graph displays calculated MTBF in hours $x$ ampere ${ }^{2}$ emitter current. Life tests at elevated temperatures have correlated to better than $\pm 10 \%$ of the theoretical prediction for metal failure. Divide MTBF factor by IC 2 for MTBF in a particular application.

Figure 12. MTBF Factor versus Junction Temperature


$\mathrm{V}_{\mathrm{CC}}=26 \mathrm{~V}, \mathrm{I} \mathrm{CQ}=125 \mathrm{~mA}, \mathrm{P}_{\text {out }}=30 \mathrm{~W}(\mathrm{PEP})$		
$\mathbf{f}$   $\mathbf{M H z}$	$\mathbf{Z}_{\mathbf{i n}(\mathbf{1})}$   $\Omega$	$\mathbf{Z}_{\mathbf{O L}}{ }^{*}$   $\Omega$
1800	$4.5+\mathrm{j} 7.0$	$4.7+\mathrm{j} 2.4$
1850	$4.5+\mathrm{j} 6.0$	$4.4+\mathrm{j} 1.6$
1900	$4.5+\mathrm{j} 4.6$	$3.4+\mathrm{j} 1.2$
1950	$3.7+\mathrm{j} 2.4$	$3.3+\mathrm{j} 1.6$
2000	$3.5+\mathrm{j} 1.5$	$3.5+\mathrm{j} 2.0$

$Z_{\text {in }}(1)=$ Conjugate of fixture base impedance.
$\mathrm{Z}_{\mathrm{OL}}{ }^{*}=\begin{aligned} & \text { Conjugate of the optimum load impedance at } \\ & \text { given output power, voltage, bias current and } \\ & \text { frequency. }\end{aligned}$
Figure 13. Series Equivalent Input and Output Impedence

Table 1. Common Emitter S-Parameters at $\mathrm{V}_{\mathrm{CE}}=24 \mathrm{Vdc}$, $\mathrm{IC}=1.8 \mathrm{Adc}$

$\begin{gathered} \mathrm{f} \\ \mathrm{GHz} \end{gathered}$	$\mathrm{S}_{11}$		$\mathrm{S}_{21}$		$\mathrm{S}_{12}$		S22		
	\|S ${ }_{11}$ \|	$\angle \phi$	$\left\|S_{21}\right\|$	$\angle \phi$	$\left\|S_{12}\right\|$	$\angle \phi$	\|S22		$\angle \phi$
1.5	. 964	158	. 65	74	. 046	60	. 859	161	
1.55	. 960	156	. 74	68	. 047	56	. 841	161	
1.6	. 952	155	. 87	60	. 049	53	. 815	160	
1.65	. 933	153	1.05	50	. 048	46	. 787	161	
1.7	. 892	149	1.32	35	. 047	40	. 744	163	
1.75	. 804	149	1.64	13	. 040	29	. 719	168	
1.8	. 727	157	1.78	-18	. 026	21	. 778	175	
1.85	. 787	163	1.50	-50	. 015	54	. 883	174	
1.9	. 873	163	1.14	-73	. 020	81	. 937	171	
1.95	. 921	160	. 84	-89	. 026	88	. 949	168	
2	. 941	157	. 62	-102	. 031	93	. 950	165	
2.05	. 943	155	. 48	-109	. 036	93	. 946	164	
2.1	. 940	153	. 38	-118	. 040	92	. 942	163	
2.15	. 928	151	. 30	-127	. 042	97	. 939	162	
2.2	. 917	150	. 24	-133	. 049	99	. 935	161	
2.25	. 907	150	. 20	-140	. 056	101	. 933	160	
2.3	. 888	148	. 17	-150	. 066	100	. 926	159	
2.35	. 861	148	. 14	-159	. 077	98	. 916	157	
2.4	. 853	149	. 11	-167	. 087	92	. 909	157	
2.45	. 860	146	. 10	-176	. 095	89	. 900	155	
2.5	. 880	146	. 10	156	. 119	84	. 880	155	

## The RF Sub-Micron Bipolar Line RF Power Bipolar Transistors

The MRF20060 and MRF20060S are designed for broadband commercial and industrial applications at frequencies from 1800 to 2000 MHz . The high gain, excellent linearity and broadband performance of these devices make them ideal for large-signal, common emitter class A and class AB amplifier applications. These devices are suitable for frequency modulated, amplitude modulated and multi-carrier base station RF power amplifiers.

- Guaranteed Two-tone Performance at 2000 MHz, 26 Volts

Output Power - 60 Watts (PEP)
Power Gain - 9 dB
Efficiency - 33\%
Intermodulation Distortion - -30 dBc

- Characterized with Series Equivalent Large-Signal Impedance Parameters
- S-Parameter Characterization at High Bias Levels
- Excellent Thermal Stability
- Capable of Handling 3:1 VSWR @ 26 Vdc, $2000 \mathrm{MHz}, 60$ Watts (PEP) Output Power
- Designed for FM, TDMA, CDMA and Multi-Carrier Applications

$60 \mathrm{~W}, 2000 \mathrm{MHz}$ RF POWER BROADBAND NPN BIPOLAR


CASE 451-04, STYLE 1 (MRF20060)


CASE 451A-01, STYLE 1
(MRF20060S)

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage ( $\mathrm{I}_{\mathrm{B}}=0 \mathrm{~mA}$ )	$\mathrm{V}_{\text {CEO }}$	25	Vdc
Collector-Emitter Voltage	$\mathrm{V}_{\text {CES }}$	60	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CBO }}$	60	Vdc
Collector-Emitter Voltage (RBE = 100 Ohm)	$\mathrm{V}_{\text {CER }}$	30	Vdc
Base-Emitter Voltage	$\mathrm{V}_{\text {EB }}$	-3	Vdc
Collector Current - Continuous	IC	8	Adc
Total Device Dissipation @ TC $=25^{\circ} \mathrm{C}$ Derate above $25^{\circ} \mathrm{C}$	PD	$\begin{aligned} & \hline 250 \\ & 1.43 \end{aligned}$	Watts $\mathrm{W} /{ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$
Operating Junction Temperature	TJ	200	${ }^{\circ} \mathrm{C}$

THERMAL CHARACTERISTICS

Rating	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	0.7	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS (TC = $25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage ( $\mathrm{I}_{\mathrm{C}}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{B}}=0$ )	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CEO}}$	25	26	-	Vdc
Collector-Emitter Breakdown Voltage ( $\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{V}_{\mathrm{BE}}=0$ )	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CES}}$	60	69	-	Vdc
Collector-Base Breakdown Voltage $\left(\mathrm{IC}=50 \mathrm{mAdc}, \mathrm{I}_{\mathrm{E}}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	60	69	-	Vdc
Reverse Base-Emitter Breakdown Voltage $\left(\mathrm{I}_{\mathrm{B}}=10 \mathrm{mAdc}, \mathrm{I} \mathrm{C}=0\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	3	3.5	-	Vdc
Zero Base Voltage Collector Leakage Current $\left(\mathrm{V}_{\mathrm{CE}}=30 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	ICES	-	-	10	mAdc

## ON CHARACTERISTICS

DC Current Gain   $\left(V_{C E}=5\right.$ Vdc, IC $=1$ Adc $)$	hFE	20	40	80	-

## DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=26 \mathrm{Vdc}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)(1)$	$\mathrm{C}_{\mathrm{ob}}$	-	55	-	pF

FUNCTIONAL TESTS (In Motorola Test Fixture)

$\begin{aligned} & \text { Common-Emitter Amplifier Power Gain } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{Watts}(\mathrm{PEPP}), \mathrm{I} \mathrm{CQ}=200 \mathrm{~mA},\right. \\ & \left.\mathrm{f}_{1}=2000.0 \mathrm{MHz}, \mathrm{f}_{2}=2000.1 \mathrm{MHz}\right) \end{aligned}$	$\mathrm{G}_{\text {pe }}$	9	9.4	-	dB
$\begin{aligned} & \text { Collector Efficiency } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{Watts}(\mathrm{PEP}), \mathrm{I} \mathrm{CQ}=200 \mathrm{~mA},\right. \\ & \left.\mathrm{f}_{1}=2000.0 \mathrm{MHz}, \mathrm{f}_{2}=2000.1 \mathrm{MHz}\right) \end{aligned}$	$\eta$	33	35	-	\%
$\begin{aligned} & \text { Intermodulation Distortion } \\ & \left(\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{Watts}(\mathrm{PEP}), \mathrm{ICQ}=200 \mathrm{~mA}\right. \text {, } \\ & \left.\mathrm{f}_{1}=2000.0 \mathrm{MHz}, \mathrm{f}_{2}=2000.1 \mathrm{MHz}\right) \end{aligned}$	IMD	-	-33	-30	dB
$\begin{aligned} & \text { Input Return Loss } \\ & \left(\mathrm{V} \mathrm{CC}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60 \mathrm{Watts}(\mathrm{PEP}), \mathrm{ICQ}=200 \mathrm{~mA}\right. \text {, } \\ & \left.\mathrm{f}_{1}=2000.0 \mathrm{MHz}, \mathrm{f}_{2}=2000.1 \mathrm{MHz}\right) \end{aligned}$	IRL	12	19	-	dB
Output Mismatch Stress   ( $\mathrm{V}_{\mathrm{CC}}=26 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=60$ Watts (PEP), $\mathrm{ICQ}=200 \mathrm{~mA}$, $\mathrm{f}_{1}=2000.0 \mathrm{MHz}, \mathrm{f}_{2}=2000.1 \mathrm{MHz}, \mathrm{VSWR}=3: 1$, All Phase Angles at Frequency of Test)	$\psi$	No Degradation in Output Power			

(1) For Information Only. This Part Is Collector Matched.


Figure 1. Class AB, 1.93-2 GHz Test Fixture Electrical Schematic


Figure 2. Class A, 1.93-2 GHz Test Fixture Electrical Schematic

## TYPICAL CHARACTERISTICS



Figure 3. Output Power \& Power Gain versus Input Power

Figure 4. Output Power versus Frequency


Figure 6. Power Gain and Intermodulation Distortion versus Supply Voltage


Figure 8. Power Gain versus Output Power


Figure 9. Class A DC Safe Operating Area


Figure 11. Class A Third Order Intercept Point


Figure 10. Performance in Broadband Circuit


This above graph displays calculated MTBF in hours $x$ ampere ${ }^{2}$ emitter curent. Life tests at elevated temperatures have correlated to better than $\pm 10 \%$ of the theoretical prediction for metal failure. Divide MTBF factor by $\mathrm{IC}^{2}$ for MTBF in a particular application.

Figure 12. MTBF Factor versus Junction Temperature


$\stackrel{f}{\mathrm{MHz}}$	$\underset{\Omega}{\mathrm{z}_{\mathrm{in}}(1)}$	$\underset{\Omega}{\mathrm{ZOL}^{*}}$
1800	$1.0+\mathrm{j} 4.8$	$1.7+\mathrm{j} 3.3$
1850	$1.5+\mathrm{j} 4.8$	$2.2+\mathrm{j} 2.7$
1900	$2.0+$ j4.7	2.4 + 3.0
1950	$2.5+\mathrm{j} 4.7$	2.3 + j3.2
2000	$3.5+$ j4.7	$2.0+$ j 3.4

$Z_{\text {in }}(1)=$ Conjugate of fixture base terminal impedance.
$\mathrm{Z}_{\mathrm{OL}}^{*}=$
Conjugate of the optimum load impedance at
given output power, voltage, bias current and
frequency.

Figure 13. Series Equivalent Input and Output Impedence

Table 1. Common Emitter S-Parameters at $\mathrm{V}_{\mathrm{CE}}=24 \mathrm{Vdc}$, $\mathrm{IC}=3.5 \mathrm{Adc}$

$\mathbf{f}$   $\mathbf{G H z}$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	$\left\|\mathbf{S}_{\mathbf{1 1}}\right\|$	$\angle \boldsymbol{\phi}$	$\left\|\mathbf{S}_{\mathbf{2 1}}\right\|$	$\angle \boldsymbol{\phi}$	$\left\|\mathbf{S}_{\mathbf{1 2}}\right\|$	$\angle \boldsymbol{\phi}$	$\left\|\mathbf{S}_{\mathbf{2 2}}\right\|$	$\angle \boldsymbol{\phi}$
1.5	0.986	168	0.32	81	0.031	60	0.923	169
1.55	0.985	167	0.35	76	0.031	63	0.918	169
1.6	0.981	167	0.40	70	0.032	61	0.908	169
1.65	0.973	166	0.45	63	0.030	53	0.897	169
1.7	0.968	165	0.52	56	0.033	50	0.889	168
1.75	0.951	163	0.62	46	0.028	47	0.880	169
1.8	0.914	161	0.76	32	0.027	39	0.871	170
1.85	0.851	161	0.91	12	0.024	26	0.863	171
1.9	0.789	164	1.02	-15	0.015	5	0.888	174
1.95	0.810	170	0.94	-44	0.005	-7	0.931	174
2	0.880	172	0.75	-68	0.006	-151	0.953	172
2.05	0.934	170	0.57	-85	0.010	152	0.967	170
2.1	0.964	168	0.45	-98	0.015	158	0.965	169
2.15	0.977	165	0.36	-109	0.022	164	0.955	168
2.2	0.975	163	0.30	-118	0.033	165	0.950	167
2.25	0.961	161	0.25	-128	0.049	160	0.947	167
2.3	0.942	160	0.22	-139	0.066	149	0.938	166
2.35	0.919	157	0.19	-149	0.077	142	0.931	165
2.4	0.860	156	0.17	-163	0.100	137	0.922	165
2.45	0.821	159	0.15	177	0.128	122	0.914	165
2.5	0.781	161	0.14	157.0	0.156	108	0.907	165

## The RF Line

Microwave Linear
Power Transistors
. . . designed primarily for large-signal output and driver amplifier stages in the 1.0 to 4.0 GHz frequency range.

- Designed for Class A or AB, Common-Emitter Linear Power Amplifiers
- Specified 20 Volt, 2.0 GHz Characteristics:

Output Power - 0.5 Watt
Power Gain - 10 to 11 dB

- $100 \%$ Tested for Load Mismatch at All Phase Angles with $\infty: 1$ VSWR
- Gold Metallization for Improved Reliability
- Diffused Ballast Resistors


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\text {CEO }}$	22	Vdc
Collector-Base Voltage	$\mathrm{V}_{\text {CES }}$	50	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\text {EBO }}$	3.5	Vdc
Operating Junction Temperature	$\mathrm{T}_{\mathrm{J}}$	200	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +200	${ }^{\circ} \mathrm{C}$



THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	40	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(I_{C}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{B}}=0\right)$	$V_{\text {(BR) }}$ CEO	22	-	-	Vdc
Collector-Emitter Breakdown Voltage $\left(\mathrm{I} \mathrm{C}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{BE}}=0\right)$	$V_{(B R)}$ CES	50	-	-	Vdc
Collector-Base Breakdown Voltage $(\mathrm{I} \mathrm{C}=1.0 \mathrm{~mA}, \mathrm{I} \mathrm{E}=0)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	45	-	-	Vdc
Emitter-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=0.25 \mathrm{~mA}, \mathrm{I} \mathrm{C}=0)$	$\mathrm{V}_{(1 \mathrm{BR}) \mathrm{EBO}}$	3.5	-	-	Vdc
Collector Cutoff Current $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0\right)$	ICBO	-	-	0.25	mAdc

ON CHARACTERISTICS

DC Current Gain   $\left(I_{C}=100 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CE}}=5.0 \mathrm{~V}\right)$	hFE	20	-	120	-

## DYNAMIC CHARACTERISTICS

Output Capacitance   $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1.0 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	-	-	3.5	pF

ELECTRICAL CHARACTERISTICS — continued

Characteristic	Symbol	Min	Typ	Max	Unit
FUNCTIONAL TESTS					
Common-Emitter Amplifier Power Gain $\left(\mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{P}_{\text {out }}=0.5 \mathrm{~W}, \mathrm{f}=2.0 \mathrm{GHz}, \mathrm{I}_{\mathrm{E}}=120 \mathrm{~mA}\right)$	GPE	10	-	-	dB
Load Mismatch $\left(\mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=120 \mathrm{~mA}, \mathrm{P}_{\text {out }}=0.5 \mathrm{~W}, \mathrm{f}=2.0 \mathrm{GHz},\right.$ $\text { Load VSWR }=\infty: 1 \text {, All Phase Angles) }$	$\psi$	No Degradation in Output Power			
Cutoff Frequency ( $\mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=120 \mathrm{~mA}$ )	$\mathrm{f}_{\tau}$	4.0	4.5	-	GHz
Gain Linearity $\left(\mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=120 \mathrm{~mA}, \mathrm{f}=2.0 \mathrm{GHz}, \mathrm{P}_{\mathrm{o} 1}=0.5 \mathrm{~W}, \mathrm{P}_{\mathrm{o} 2}=0.5 \mathrm{~mW}\right)$	$\mathrm{L}_{\mathrm{G}}$	-	-	$\begin{aligned} & \hline-0.2 \\ & +1.0 \end{aligned}$	dB
Intermodulation Distortion, 3rd Order $\left(\mathrm{V}_{\mathrm{CE}}=20 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=120 \mathrm{~mA}, \mathrm{P}_{\mathrm{o}}(\mathrm{PEP})=0.5 \mathrm{~W}\right. \text {, }$   Tones at 2.0 GHz and 2.005 GHz )	IMD	-	-30	-	dB

## TYPICAL CHARACTERISTICS



Figure 1. 1.0 dB Compression Point versus Emitter Current


Figure 3. Gain and 1.0 dB Compressed Power versus Frequency


Figure 2. Gain versus Emitter Current


Figure 4. DC Safe Operating Area

$\mathbf{V}_{\mathbf{C E}}$   (Volts)	$\mathbf{I} \mathbf{C}$   $(\mathbf{m A})$	$\mathbf{f}$   $(\mathbf{G H z})$	$\mathbf{S}_{\mathbf{1 1}}$		$\mathbf{S}_{\mathbf{2 1}}$		$\mathbf{S}_{\mathbf{1 2}}$		$\mathbf{S}_{\mathbf{2 2}}$	
	100	0.5	0.76	-177	6.65	74	0.03	20	0.43	-73
		1.0	0.76	159	3.24	39	0.03	24	0.50	-104
		1.3	0.76	148	2.46	21	0.04	25	0.56	-120
		1.5	0.75	141	2.07	9.0	0.04	24	0.60	-130
		1.7	0.76	134	1.80	-1.0	0.05	24	0.64	-140
		2.0	0.76	124	1.51	-14	0.06	22	0.68	-152
		2.3	0.74	113	1.27	-33	0.06	13	0.74	-167
		2.5	0.73	106	1.15	-43	0.07	9.0	0.76	-173
		2.7	0.72	98	1.06	-52	0.07	5.0	0.77	179
		32	0.69	85	0.95	-67	0.08	-4.0	0.82	170
		3.3	0.64	71	0.86	-81	0.09	-14	0.85	161
		3.5	0.61	60	0.81	-94	0.10	-22	0.87	155
		3.7	0.57	47	0.77	-103	0.10	-30	0.80	149
		4.0	0.51	24	0.70	-119	0.11	-44	0.92	141

Table 1. MRW54001 Common Emitter S-Parameters

The graph shown below displays MTTF in hours $x$ ampere ${ }^{2}$ emitter current for each of the devices. Life tests at elevated temperatures have correlated to better than $\pm 10 \%$ to the theoretical prediction for metal failure. Divide MTTF by IC ${ }^{2}$ for MTTF in a particular application.


Figure 5. MTTF Factor versus Junction Temperature

## Advance Information <br> The RF Small Signal Line <br> Silicon Lateral FET <br> N-Channel Enhancement-Mode MOSFET

Designed for use in low voltage, moderate power amplifiers such as portable analog and digital cellular radios and PC RF modems.

- Performance Specifications at 6 Volt, 850 MHz :

Output Power $=31.5 \mathrm{dBm}$ Min
Power Gain $=8.5 \mathrm{~dB}$ Typ
Efficiency $=60 \%$ Min

- Guaranteed Ruggedness at Load VSWR $=20: 1$
- Available in Tape and Reel Packaging Options:

T1 Suffix = 1,000 Units per Reel

- MXR9745RT1 is Gate-Drain Pin Out Reversed. All Electricals Same as MXR9745T1


## MXR9745T1 MXR9745RT1

$31.5 \mathrm{dBm}, 850 \mathrm{MHz}$ HIGH FREQUENCY POWER TRANSISTOR LDMOS FET


CASE 345-03
(MXR9745RT1, STYLE 8) (MXR9745T1, STYLE 9) (SOT-89)

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain-Source Voltage	$\mathrm{V}_{\mathrm{DSS}}$	35	Vdc
Drain-Gate Voltage $\left(\mathrm{R}_{\mathrm{GS}}=1 \mathrm{M} \Omega\right)$	$\mathrm{V}_{\mathrm{DGO}}$	25	Vdc
Gate-Source Voltage	$\mathrm{V}_{\mathrm{GS}}$	$\pm 10$	Vdc
Drain Current - Continuous	$\mathrm{I}_{\mathrm{D}}$	2	Adc
Total Device Dissipation @ $\mathrm{T}_{\mathrm{C}}=50^{\circ} \mathrm{C}$   Derate above $50^{\circ} \mathrm{C}$	PD	10	W
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	$\mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Junction Temperature	$\mathrm{T} J$	150	${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$			

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{\theta J C}$	10	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Drain-Source Leakage Current   $\left(V_{D S}=35 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0\right)$	IDSS	-	-	10	$\mu \mathrm{Adc}$
Gate-Source Leakage Current   $\left(\mathrm{V}_{\mathrm{GS}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{DS}}=0\right)$	I GSS	-	-	1	$\mu \mathrm{Adc}$

NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

ON CHARACTERISTICS

Gate Threshold Voltage   $\left(V_{D S}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=500 \mu \mathrm{~A}\right)$	$\mathrm{V}_{\mathrm{GS}(\mathrm{th})}$	1	1.3	2	Vdc
Forward Transconductance   $\left(\mathrm{V}_{\mathrm{DS}}=6 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=400 \mathrm{~mA}\right)$	$\mathrm{gfs}_{\mathrm{fs}}$	-	550	-	mmhos
Resistance Drain-Source   $\left(\mathrm{V}_{\mathrm{GS}}=4 \mathrm{~V}, \mathrm{I}_{\mathrm{D}}=100 \mathrm{~mA}\right)$	$\mathrm{R}_{\mathrm{DS}}(\mathrm{on})$	-	1	2.5	$\Omega$

DYNAMIC CHARACTERISTICS

Input Capacitance   $\left(V_{D S}=6 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {iss }}$	-	14	-	pF
Output Capacitance   $\left(V_{\text {DS }}=6 \mathrm{~V}, \mathrm{~V}_{\text {GS }}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {oss }}$	-	11	-	pF
Feedback Capacitance   $\left(V_{\text {DS }}=6 \mathrm{~V}, \mathrm{~V}_{\mathrm{GS}}=0, f=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\text {rss }}$	-	1.8	-	pF

## FUNCTIONAL CHARACTERISTICS

Power Gain $\left(\mathrm{V}_{\mathrm{DD}}=6 \mathrm{Vdc}, \mathrm{P}_{\mathrm{in}}=23 \mathrm{dBm}, \mathrm{IDQ}=250 \mathrm{~mA}, \mathrm{f}=850 \mathrm{MHz}\right)$	$\mathrm{G}_{\mathrm{ps}}$	8	8.5	-	dB
Drain Efficiency $\left(\mathrm{V}_{\mathrm{DD}}=6 \mathrm{Vdc}, \mathrm{P}_{\text {in }}=23 \mathrm{dBm}, \mathrm{I}_{\mathrm{DQ}}=250 \mathrm{~mA}, \mathrm{f}=850 \mathrm{MHz}\right)$	$\eta \mathrm{D}$	55	60	-	\%
Ruggedness Test   $\left(V_{D D}=6 \mathrm{Vdc}, \mathrm{P}_{\text {in }}=23 \mathrm{dBm}, \mathrm{I}_{\mathrm{DQ}}=250 \mathrm{~mA}, \mathrm{f}=850 \mathrm{MHz}\right.$,   Load VSWR $=20: 1$, All Phase Angles at Frequency Test)	$\Psi$	No Degradation in Output Power after Test			

Table 1. Large Signal Impedance
$V_{D D}=6 \mathrm{~V}, \mathrm{P}_{\text {in }}=23 \mathrm{dBm}, \mathrm{IDQ}_{\mathrm{D}}=250 \mathrm{~mA}$

$\mathbf{f}$   $\mathbf{M H z}$	$\mathbf{Z}_{\text {in }}$   Ohms	$\mathbf{Z O L}^{*}$   Ohms
850	$4.8-\mathrm{j} 6.4$	$6-\mathrm{j} 7.5$

$\mathrm{Z}_{\mathrm{OL}}{ }^{*}$ is the conjugate of the optimum load impedance into which the device output operates at a given output power, voltage and frequency.

## The RF Line

NPN Silicon

## RF Power Transistor

The TPV8100B is designed for output stages in band IV and V TV transmitter amplifiers. It incorporates high value emitter ballast resistors, gold metallizations and offers a high degree of reliability and ruggedness.

Including double input and output matching networks, the TPV8100B features high impedances. It can easily operate in a full 470 MHz to 860 MHz bandwidth in a single and simple circuit.

- To be used class AB for TV band IV and V.
- Specified 28 Volts, 860 MHz Characteristics

Output Power = 125 Watts (peak sync.)
Output Power = 100 Watts (CW)
Minimum Gain $=8.5 \mathrm{~dB}$

- Specified 32 Volts, 860 MHz Characteristics Output Power = 150 Watts (peak sync.)
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.
$150 \mathrm{~W}, 470-860 \mathrm{MHz}$ NPN SILICON RF POWER TRANSISTOR


CASE 398-03, STYLE 1

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	$\mathrm{V}_{\mathrm{CER}}$	40	Vdc
Collector-Base Voltage	$\mathrm{V}_{\mathrm{CBO}}$	65	Vdc
Emitter-Base Voltage	$\mathrm{V}_{\mathrm{EBO}}$	4	Vdc
Collector-Current - Continuous	I C	12	Adc
Total Device Dissipation @ $25^{\circ} \mathrm{C}$ Case   Derate above $25^{\circ} \mathrm{C}$	$\mathrm{P}_{\mathrm{D}}$	215	Watts
Operating Junction Temperature		$\mathrm{T}_{\mathrm{J}}$	200
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-65 to +150	${ }^{\circ} \mathrm{C}$

## THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case (1)	$\mathrm{R}_{\theta \mathrm{JC}}$	0.8	${ }^{\circ} \mathrm{C} / \mathrm{W}$

ELECTRICAL CHARACTERISTICS ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit

OFF CHARACTERISTICS

Collector-Emitter Breakdown Voltage $\left(\mathrm{IC}=10 \mathrm{~mA}, \mathrm{R}_{\mathrm{be}}=75 \Omega\right)$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CER}}$	30	-	-	Vdc
Collector-Emitter Breakdown Voltage $\text { (IC = } 10 \text { mAdc) }$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{EBO}}$	4	-	-	Vdc
Collector-Base Breakdown Voltage $(\mathrm{I} \mathrm{E}=20 \mathrm{mAdc})$	$\mathrm{V}_{(\mathrm{BR}) \mathrm{CBO}}$	65	-	-	Vdc
Collector-Emitter Leakage $\left(\mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V}, \mathrm{R}_{\mathrm{be}}=75 \Omega\right)$	ICER	-	-	10	mA

NOTE:
(continued)

1. Thermal resistance is determined under specified RF operating condition.

REV 6

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
ON CHARACTERISTICS					
DC Current Gain ( $\mathrm{IC}=2 \mathrm{Adc}, \mathrm{V}_{\mathrm{CE}}=10 \mathrm{Vdc}$ )	$\mathrm{h}_{\text {FE }}$	30	-	120	-

## DYNAMIC CHARACTERISTICS

Output Capacitance (each side) (2)   $\left(\mathrm{V}_{\mathrm{CB}}=28 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=0, \mathrm{f}=1 \mathrm{MHz}\right)$	$\mathrm{C}_{\mathrm{ob}}$	-	44	-	pF

FUNCTIONAL TESTS IN CW (SOUND)

Common-Emitter Amplifier Power Gain   $\left(V_{C C}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=100 \mathrm{~W}, \mathrm{I}_{\mathrm{CQ}}=2 \times 50 \mathrm{~mA}, \mathrm{f}=860 \mathrm{MHz}\right)$	$\mathrm{G}_{\mathrm{p}}$	8.5	9.5	-	dB
Collector Efficiency   $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, \mathrm{P}_{\text {out }}=100 \mathrm{~W}, \mathrm{I}_{\mathrm{Q}}=2 \times 50 \mathrm{~mA}, \mathrm{f}=860 \mathrm{MHz}\right)$	$\eta$	55	58	-	$\%$
Output Power @ 1 dB Compression $(\mathrm{Pref}=25 \mathrm{~W})$   $\left(\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, \mathrm{ICQ}=2 \times 50 \mathrm{~mA}, \mathrm{f}=860 \mathrm{MHz}\right)$	Pout	100	110	-	W

FUNCTIONAL TESTS IN VIDEO (STANDARD BLACK LEVEL)

Peak Output Power (synch.)   $\left(V_{C C}=28 \mathrm{~V}, \mathrm{ICQ}=2 \times 50 \mathrm{~mA}, \mathrm{f}=860 \mathrm{MHz}\right)$	Pout	125	135	-	W
Peak Output Power (synch.)   $(\mathrm{V} C \mathrm{CC}=32 \mathrm{~V}, \mathrm{ICQ}=2 \times 25 \mathrm{~mA}, \mathrm{f}=860 \mathrm{MHz})$	Pout	150	160	-	W
Recommended Quiescent Current	ICQ	-	-	$2 \times 0.3$	A

## NOTE:

2. Value of " $\mathrm{C}_{\mathrm{ob}}$ " is that of die only. It is not measurable in TPV8100B because of internal matching network.


Input and Output impedances with circuit tuned for maximum linearity $@ V_{C C}=28 \mathrm{~V} / \mathrm{I}_{\mathrm{CQ}}=2 \times 50 \mathrm{~mA} / \mathrm{P}_{\mathrm{out}}=100 \mathrm{~W}$

Figure 1. Series Equivalent Input/Output Impedances


C1, C9 - Chip Capacitor 15 nF
C2, C10 - Chip Capacitor 100 nF
C3, C11 - Chip Capacitor $100 \mu \mathrm{~F} / 40 \mathrm{~V}$
C4 - Chip Capacitor 15 pF ATC 100A
C5 - Chip Capacitor 5.6 pF ATC 100A
C6 - Trimmer Capacitor 1-4 pF
C7 - Chip Capacitor 12 pF ATC 100B
C8 - Chip Capacitor 15 pF ATC 100A
C12 - Chip Capacitor 12 pF ATC 100A
L1, L3 - Coaxial Wire $25 \Omega / 85$ Mils/40 mm
L2, L4 - Printed Board Inductance
R1, R2 - Chip Resistor $1 \Omega 0805$ 5\%

Figure 2. Test Circuit

TYPICAL CHARACTERISTICS

## CW - WIDEBAND



Figure 3. Power Gain versus Frequency


Figure 4. Collector Efficiency versus Frequency

TYPICAL VIDEO CHARACTERISTICS @ $\mathbf{f}=800 \mathrm{MHz}$
VCE $=28 \mathrm{~V}$


Figure 5. Peak Output Power versus Peak Input Power


Figure 6. Peak Output Power versus Peak Input Power

TEST CONDITIONS:
DIFF. Gain, 10 Steps
Channel 61
$\mathrm{V}_{\mathrm{CE}}=28 \mathrm{~V}$


Figure 7. Gain versus Output Power

## TYPICAL VIDEO CHARACTERISTICS @ $\mathbf{f}=800 \mathrm{MHz}$

$\mathrm{V}_{\mathrm{CE}}=32 \mathrm{~V}$



$\mathrm{V}_{\text {CE }}=\mathbf{3 2} \mathbf{~ V}$, ICQ $=\mathbf{2} \mathbf{x} \mathbf{2 5} \mathbf{~ m A}$	
Pout	Gain
25 W	10.6 dB
50 W	11.1 dB
100 W	11.3 dB
120 W	11.1 dB
130 W	11.0 dB
140 W	10.7 dB
150 W	10.5 dB
160 W	10.2 dB

(see curve on left)
Figure 8. Peak Output Power versus Peak Input Power

TEST CONDITIONS:
DIFF. Gain, 10 Steps
Channel 61
$\mathrm{V}_{\mathrm{CE}}=32 \mathrm{~V}$
$\mathrm{I}^{\mathrm{I}} \mathrm{CQ}=2 \times 25 \mathrm{~mA}$


Figure 9. Differential Gain


Figure 10. Components View

## Chapter Five RF Amplifier Modules

## Section One <br> 5.1-0

RF Amplifier Modules - Selector Guide

## Section Two <br> 5.2-0

RF Amplifier Modules - Data Sheets

## Section One Selector Guide

## Motorola RF Amplifier Modules

Motorola's line of RF amplifiers designed and specified for use in land mobile radios and general purpose wideband amplification applications. They feature small size, matched inputs and outputs, high stability and guaranteed performance specifications. For the user, they offer the benefits of smaller and less complex system designs in less time and at lower overall cost.
Each amplifier uses modern transistor chips which are gold metallized and have silicon nitride passivation for increased reliability and long life. Chip and wire construction features MOS capacitors and laser trimmed nichrome resistors. Circuit substrates and metallization have been selected for optimum performance cost and reliablity.

## Table of Contents

RF Amplifier Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1-1
Land Mobile/Portable . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1-2
Base Stations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1-3
Wideband Linear Amplifiers . . . . . . . . . . . . . . . . . . 5.1-4

## Motorola RF Amplifier Modules

Complete amplifiers with 50 ohm in/out impedances are available for a variety of applications including land mobile radios, base stations, and other uses requiring large-signal amplification, both linear and Class C. Frequencies covered range from $68-1990 \mathrm{MHz}$ with power levels extending to 180 watts.

## Land Mobile/Portable

The advantages of small size, reproducibility and overall lower cost become more pronounced with increasing frequency of operation. These amplifiers offer a wide range in power levels and gain, with guaranteed performance specifications for bandwidth, stability and ruggedness.
Table 1. VHF/UHF, Class C

	Pout   Output Power   Watts	Pin   Input Power   Watts	f   Frequency   MHz	GP   Power Gain, Min   dB	VDD   Supply Voltage   Volts	Package/Style

136-174 MHz, VHF Band - (LDMOS Die) - Lateral MOSFETs

MHW2627-1(46b)	7	0.02	$136-174$	25.5	7.5	$420 \mathrm{AC} / 1$


Device	$P_{\text {sat }}$ Watts	ACP   (Pout $=1.6 \mathrm{~W}$   @ $\mathrm{f}_{\mathrm{o}} \pm \mathbf{2 5} \mathrm{kHz}$,   18 kHz BW)   (dBc)	f   Frequency MHz	Gp Power Gain, Min   dB	VDD Supply Voltage   Volts	Package/Style

380-470 MHz, Land Mobile Linear (for TransEuropean Trunked Radio - TETRA) — Class AB - (LDMOS Die) Lateral MOSFETs

MHW2701-1(46b)	4.5	-30	$380-430$	28	7	$420 Z / 1$
MHW2701-2(46b)	4.5	-30	$420-470$	28	7	$420 Z / 1$


Device	$P_{\text {sat }}$ Watts	ACP   ( $\mathrm{P}_{\text {out }}=5 \mathrm{~W}$   @ $\mathrm{f}_{\mathrm{o}} \pm 25 \mathrm{kHz}$,   18 kHz BW)   (dBc)	$\begin{gathered} \mathbf{f} \\ \text { Frequency } \\ \text { MHz } \end{gathered}$	Gp   Power Gain, Min   dB	$V_{D D}$ Supply Voltage   Volts	Package/Style

380-470 MHz, Land Mobile Linear (for TransEuropean Trunked Radio - TETRA) - Class AB - (LDMOS Die) Lateral MOSFETs

MHW2703-1(46b)	10	-30	$380-400$	28	7	$420 Z / 1$
MHW2723(46b)	12	-30	$380-470$	30	12.5	$420 Z / 1$


	Pout   Output Power   Watts	Pin   Input Power   Watts	f   Frequency   MHz	GP   Power Gain, Min   dB	VDD   Supply Voltage   Volts	Package/Style

400-520 MHz, UHF Band - Class D - A (Dynamic Bias via Gate Control) - (LDMOS Die) - Lateral MOSFETs

MHW2727-1(46b)	7	0.02	$400-470$	25.5	7.5	$420 \mathrm{AC} / 1$
MHW2727-2(46b)	7	0.02	$450-520$	25.5	7.5	$420 \mathrm{AC} / 1$

806-821 MHz, UHF Band (for Integrated Digital Enhanced Network - iDEN™) - Class AB — (LDMOS Die) Lateral MOSFETs

MHW2801 (46a)	0.8	0.00025	$806-821$	35	6	$420 \mathrm{~L} / 1$

## Land Mobile/Portable (continued)

Table 1. VHF/UHF, Class C (continued)

	Pout   Output Power	Pin   Input   Power   Device	Watts	frequency   Whats	GP   Power Gain, Min	VDD   Supply Voltage
	WHz	dB	Volts	Package/Style		

806 - 960 MHz, UHF Band - Class AB (LDMOS Die) - Lateral MOSFETs

MHW2803(46a)	3.5	0.001	$806-824$	35.5	6	$420 \mathrm{~L} / 1$
MHW2805-1(46a)	5	0.004	$806-870$	31	7.5	$420 \mathrm{AB} / 1$
MHW2805-2(46a)	5	0.004	$890-950$	31	7.5	$420 \mathrm{AB} / 1$
MHW2820-1(46b)	20	$<0.250$	$806-870$	19	12.5	$301 \mathrm{G} / 1(42)$
MHW2820-2(46b)	18	$<0.300$	$890-950$	17.9	12.5	$301 \mathrm{G} / 1(42)$
MHW2821-1	20	$<0.250$	$806-870$	19	12.5	$301 \mathrm{AB} / 1$
MHW2821-2	18	$<0.300$	$890-950$	17.9	12.5	$301 \mathrm{AB} / 1$

Table 2. UHF, Linear - Lateral MOSFETs

	Pout   Output Power   Watts	Pin   Input Power   Watts	f   Frequency   MHz	Gp   Power Gain, Min   dB	VCC   Supply Voltage   Volts	Package/Style

824-849 MHz (for Amps) - Class AB (LDMOS Die)

MIM2901(46a)	1.41	0.004	$824-849$	25.5	3.6	TBD

880-915 MHz (for GSM) - Class AB (LDMOS Die)

Device	Pout   Output Power   Watts	Pin   Input Power   Watts	$\mathbf{f}$   Frequency   MHz	GP   Power Gain, Min   dB	VDD   Supply Voltage   Volts	Package/Style
MIM2906(46a)	3.5	0.316	$890-915$	30.5	6	$467 \mathrm{~A} / 1$

## Base Stations

Designed for applications such as a driver for a macro cell site or the final output in micro cell site, these class AB amplifiers are ideal for GSM based systems at 900 MHz and 2 GHz . These 50 ohm blocks provide 10 to 30 watt outputs with gains up to 30 dB in a compact hybrid module package.

Table 1. Base Stations

	Pout   Output Power   Watts	Pin   Input Power   Watts	f   Frequency   MHz	GP   Power Gain, Min   dB	VDD   Supply Voltage   Volts	Package/Style

925-960 MHz (for GSM) - Class AB (LDMOS Die) - Lateral MOSFETs

MHW910(46a)	10	0.050	$925-960$	23	24	$301 \mathrm{AB} / 1$
MHW913	14	0.1	$880-915$	21.5	12.5	$301 \mathrm{AB} / 1$
MHW916	16	0.036	$925-960$	26.5	26	$301 \mathrm{AB} / 1$
MHW930 $\star$	30	0.060	$925-960$	27	26	$301 \mathrm{AB} / 1$


	Pout   Output Power   Watts	Pin   Input Power   Watts	frequency   MHz	Gp   Power Gain, Min   dB	VCC   Supply Voltage   Volts	Package/Style

1805-1880 MHz (for DCS1800) — Class AB (Silicon Bipolar Die)

MHW1815 $\star$	15.0	0.015	$1805-1880$	30	26	$301 \mathrm{AK} / 1$
$\mathbf{1 9 3 0 - 1 9 9 0 ~ M H z ~ ( f o r ~ P C S 1 9 0 0 ) ~ - ~ C l a s s ~ A B ~ ( S i l i c o n ~ B i p o l a r ~ D i e ) ~}$						
$\left.\begin{array}{\|l\|c\|c\|c\|c\|c\|}\hline \text { MHW1915 } \star & 15.0 & 0.019 & 1930-1990 & 29 & 26 \\ \text { MHW1916 } & 15.0 & 0.013 & 1930-1990 & 31 & 26\end{array}\right] 301 \mathrm{AK} / 1$						

[^42]
## Base Stations (continued)

Table 2. Cellular Base Station Pre-Drivers
These 50 ohm amplifiers are recommended for modern, multi-tone, CDMA and/or TDMA base-station pre-driver applications. Their high third-order intercept, tight phase control and excellent group delay characteristics make these amplifiers ideal for use in high-power feedforward loops.
Ultra-Linear - Class A (Silicon Bipolar Die)

Device	$\begin{gathered} \text { BW } \\ \text { MHz } \end{gathered}$	VCC (Nom.) Volts	IcC (Nom.) mA	Gain (Nom.) dB	Gain Flatness (Typ) $\pm$ dB	$\mathrm{P}_{1 \mathrm{~dB}}$ (Typ) dBm	3rd Order Intercept (Typ) dBm/MHz	$\begin{aligned} & \text { NF } \\ & \text { (Typ) } \\ & \text { dB } \end{aligned}$	Case/ Style
MHL9128	800-960	28	400	20	0.5	31	43	7.5	448/1

Ultra-Linear - Class A (LDMOS Die) - Lateral MOSFETs

Device	BW   MHz	$V_{D D}$ (Nom.) Volts	IDD (Nom.) mA	Gain (Nom.) dB	Gain Flatness (Typ) $\pm \mathrm{dB}$	$\mathrm{P}_{1 \mathrm{~dB}}$ (Typ) dBm	3rd Order Intercept (Typ) dBm/MHz	$\begin{gathered} \mathrm{NF} \\ \text { (Typ) } \\ \mathrm{dB} \end{gathered}$	Case/ Style
MHL9236 (46a)	800-960	26	525	30	. 1	34	47	4.5	301AP/1
MHL9236M ${ }^{\text {(46a) }}$	800-960	26	525	30	. 1	34	47	4.5	301AP/2

## Wideband Linear Amplifiers

Table 1. Standard 50 Ohm Linear Hybrids
This series of RF linear hybrid amplifiers have been optimized for wideband, 50 ohm applications. These amplifiers were designed for multi-purpose RF applications where linearity, dynamic range and wide bandwidth are of primary concern. Each amplifier is available in various package options. The MHL series utilizes a new case style that provides microstrip input and output connections.

Device	BW   MHz	$\mathrm{V}_{\mathrm{CC}}$ (Nom.) Volts	ICC (Nom.) mA	Gain/Freq. (Typ) dB/MHz	Gain Flatness (Typ) $\pm \mathrm{dB}$	$\mathrm{P}_{1 \mathrm{~dB}}$ (Typ) dBm	3rd Order Intercept Point/Freq. (Typ) $\mathrm{dBm} / \mathrm{MHz}$	NF/Freq.   (Typ)   dB/MHz	Case/ Style
CA2832C	1-200	28	435	35.5/100	0.5	33	47/200	5/200	714F/1
CA2830C	5-200	24	300	34.5/100	0.5	29	46/200	4.7/200	714F/1
CA2810C	10-450	24	310	34/50	1.5	30	43/300	5/300	714F/1
MHL8118	40-1000	28	400	17.5/900	1	30	41.5/1000	8.5/1000	448/1
MHL8115	40-1000	15	700	17.5/900	1	30	41.5/1000	8.5/1000	448/2
MHL8018	40-1000	28	210	18.5/900	1	26	38/1000	7.5/1000	448/1
MHL8015	40-1000	15	380	18.5/900	1	26	38/1000	7.5/1000	448/2

(46)To be introduced: a) 1Q98; b) 2Q98

RF Amplifier Modules Packages


## Section Two

## Motorola RF Amplifier Modules Data Sheets

CA2810C ..... 5.2-3
CA2830C ..... 5.2-6
CA2832C ..... 5.2-9
MHL8015 ..... 5.2-12
MHL8018 ..... 5.2-12
MHL8115 ..... 5.2-14
MHL8118 ..... 5.2-14
MHL9128 ..... 5.2-16
MHW913 ..... 5.2-18
MHW916 ..... 5.2-21
MHW930 ..... 5.2-24
MHW1815 ..... 5.2-26
MHW1915 ..... 5.2-28
MHW1916 ..... 5.2-30
MHW2821-1 ..... 5.2-32
MHW2821-2 ..... 5.2-32

## The RF Line Wideband Linear Amplifier

. . . designed for amplifier applications in 50 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ :
- Frequency Range - 10 to 450 MHz

Output Power - 1 W Typ @ 1 dB Compression, $\mathrm{f}=200 \mathrm{MHz}$
Power Gain - 34 dB Typ @ f=50 MHz
PEP - 400 mW Typ @ -32 dB IMD
Noise Figure - 5 dB Max @ $\mathrm{f}=300 \mathrm{MHz}$
34 dB 10-450 MHz 800 mWATT WIDEBAND LINEAR AMPLIFIER

- All Gold Metallization for Improved Reliability


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	28	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	+5	dBm
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$



ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	10	-	450	MHz
Gain Flatness ( $\mathrm{f}=10-450 \mathrm{MHz}$ )	$\mathrm{F}_{\mathrm{L}}$	-	-	$\pm 1.5$	dB
Power Gain ( $\mathrm{f}=50 \mathrm{MHz}$ )	$\mathrm{PG}_{\mathrm{G}}$	33	34	35	dB
Noise Figure, Boradband ( $\mathrm{f}=300 \mathrm{MHz}$ )	NF	-	-	5	dB
Power Output - 1 dB Compression ( $\mathrm{f}=200 \mathrm{MHz}$ )	$\mathrm{P}_{01 \mathrm{~dB}}$	800	1000	-	mW
Third Order Intercept (See Figure 10, $\mathrm{f}_{1}=300 \mathrm{MHz}$ )	ITO	-	43	-	dBm
Input/Output VSWR ( $\mathrm{f}=10-450 \mathrm{MHz}$ )	VSWR	-	-	2:1	-
Second Harmonic Distortion $\left(\mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW}, \mathrm{f}_{2 \mathrm{H}}=10-300 \mathrm{MHz}\right)$	$\mathrm{d}_{\text {so }}$	-	-55	-45	dB
Reverse Isolation ( $\mathrm{f}=10-450 \mathrm{MHz}$ )	-	-	40	-	dB
$\begin{aligned} & \text { Peak Envelope Power } \\ & \text { (Two Tone Distortion Test — See Figure 10) } \\ & (\mathrm{f}=10-450 \mathrm{MHz} @-32 \mathrm{~dB} \text { IMD) } \end{aligned}$	PEP	-	400	-	mW
Supply Current	ICC	270	310	330	mA



Figure 1. Power Gain versus Voltage


Figure 3. 1 dB Compression versus Voltage


Figure 5. Third Order Intercept versus Voltage


Figure 2. Relative Power Gain versus Temperature


Figure 4. Noise Figure versus Voltage


Figure 6. Peak Envelope Power versus Voltage


Figure 7. Second Harmonic Distortion versus Voltage


Figure 8. Group Delay versus Frequency

Biased at 24 Volts
$\mathrm{T}=25^{\circ} \mathrm{C} \quad \mathrm{Zo}=50 \Omega$

Frequency   (MHz)	S11		S21		S12		S22	
	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
10	-13.8	3.5	34.2	-145	-46	-131	-13.5	8.2
50	-16.0	-3.0	34.2	150	-47	-172	-18.5	4.6
100	-14.4	-14	34.4	88	-48	102	-14.5	-9.2
200	-13.2	-50	34.6	2	-42	35	-13.2	-80
300	-13.9	-79	35.0	-80	-46	65	-16.7	-49
400	-14.1	-115	35.0	-80	-48	-44	-14.2	11
450	-16.2	-122	34.6	120	-53	-82	-13.8	-46

Magnitude in dB, Phase Angle in degrees.
Table 1. S-Parameters


Figure 9. External Connections
Figure 10. Intermodulation Test

## The RF Line Wideband Linear Amplifiers

. . . designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ :

Frequency Range - 5 to 200 MHz
Output Power - 800 mW Typ @ 1 dB Compression, $\mathrm{f}=200 \mathrm{MHz}$
Power Gain — 34.5 dB Typ @ $\mathrm{f}=100 \mathrm{MHz}$
PEP — 800 mW Typ @ -32 dB IMD
CA2830C

Noise Figure - 4.7 dB Typ @ f = 200 MHz
ITO - $46 \mathrm{dBm} @ \mathrm{f}=200 \mathrm{MHz}$

- All Gold Metallization for Improved Reliability
- Unconditional Stability Under All Load Conditions


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	28	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	+5	dBm
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$



ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 50 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	5	-	200	MHz
Gain Flatness ( $\mathrm{f}=5-200 \mathrm{MHz}$ )	-	-	$\pm 0.5$	$\pm 1$	dB
Power Gain ( $\mathrm{f}=100 \mathrm{MHz}$ )	$\mathrm{PG}_{\mathrm{G}}$	33.5	34.5	35.5	dB
Noise Figure, Broadband ( $\mathrm{f}=200 \mathrm{MHz}$ )	NF	-	4.7	5.5	dB
Power Output - 1 dB Compression $(f=5-200 \mathrm{MHz})$	Po 1dB	630	800	-	mW
Power Output - 1 dB Compression $\left(\mathrm{f}=5-200 \mathrm{MHz}, \mathrm{~V}_{\mathrm{CC}}=28 \mathrm{~V}\right)$	$\mathrm{P}_{\mathrm{o}} 1 \mathrm{~dB}$	1000	1260	-	mW
Third Order Intercept (See Figure 10, $\mathrm{f}_{1}=200 \mathrm{MHz}$ )	ITO	44	46	-	dBm
Input/Output VSWR (f = 5-200 MHz)	VSWR	-	1.5:1	2:1	-
Second Harmonic Distortion (Tone at $100 \mathrm{~mW}, \mathrm{f}_{2 \mathrm{H}}=150 \mathrm{MHz}$ )	$\mathrm{d}_{\text {so }}$	-	-60	-50	dB
Peak Envelope Power (Two Tone Distortion Test - See Figure 10) (f = 5-200 MHz @ -32 dB IMD)	PEP	600	800	-	mW
Supply Current	ICC	270	300	330	mA



Figure 1. Power Gain versus Frequency


Figure 2. Relative Power Gain versus Temperature


Figure 3. 1 dB Gain Compression versus Voltage


Figure 4. Noise Figure versus Voltage


Figure 5. Third Order Intercept versus Voltage


Figure 6. Peak Envelope Power versus Voltage


Figure 7. Second Harmonic Distortion versus Voltage


Figure 8. Group Delay versus Frequency

Biased at 24 Volts
$\mathrm{T}=25^{\circ} \mathrm{C} \quad \mathrm{Zo}=50 \Omega$

Frequency   $(\mathbf{M H z})$	S11		S21		S12		S22	
	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
5	-18.3	66.2	34.6	15.2	-47.0	17.7	-9.8	87.4
10	-19.3	45.5	34.6	-0.6	-47.0	2.3	-14.5	76.8
50	-15.6	35.0	34.2	-56.7	-47.5	-30.3	-12.6	45.0
100	-13.2	34.4	33.9	-114	-47.9	-62.9	-10.8	10.7
200	-11.1	30.1	33.5	134	-48.3	-128	-14.9	-42.6

Magnitude in dB, Phase Angle in degrees.
Table 1. S-Parameters


Figure 9. External Connections

$I T O=P_{O}+\frac{I M D}{2} @ I M D>60 d B$ $P E P=4 X P_{O} @ I M D=-32 d B$

Figure 10. Intermodulation Test

## The RF Line Wideband Linear Amplifier

. . . designed for amplifier applications in 50 to 100 ohm systems requiring wide bandwidth, low noise and low distortion. This hybrid provides excellent gain stability with temperature and linear amplification as a result of the push-pull circuit design.

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$ :

Frequency Range - 1 to 200 MHz
Output Power - 1580 mW Typ @ 1 dB Compression, f = 200 MHz
Power Gain — 35.5 dB Typ @ $\mathrm{f}=100 \mathrm{MHz}$
PEP - 900 mW Typ @ -32 dB IMD
Noise Figure - 5 dB Typ @ f = 200 MHz
35.5 dB

1-200 MHz
1.6 WATT

WIDEBAND LINEAR AMPLIFIER

ITO - $47 \mathrm{dBm} @ \mathrm{f}=200 \mathrm{MHz}$

- All Gold Metallization for Improved Reliability
- Unconditional Stability Under All Load Conditions


## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	30	Vdc
RF Power Input	$\mathrm{P}_{\text {in }}$	+5	dBm
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-20 to +90	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

## CA2832C



ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=28 \mathrm{~V}, 50 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	1	-	200	MHz
Gain Flatness ( $\mathrm{f}=1-200 \mathrm{MHz}$ )	-	-	$\pm 0.5$	$\pm 1$	dB
Power Gain ( $\mathrm{f}=100 \mathrm{MHz}$ )	$\mathrm{PG}_{\mathrm{G}}$	34	35.5	37	dB
Noise Figure, Broadband ( $\mathrm{f}=200 \mathrm{MHz}$ )	NF	-	5	6	dB
Power Output - 1 dB Compression ( $\mathrm{f}=1-200 \mathrm{MHz}$ )	$\mathrm{P}_{\mathrm{o}} 1 \mathrm{~dB}$	1260	1580	-	mW
Power Output - 1 dB Compression ( $\mathrm{f}=150 \mathrm{MHz}$ )	Po 1dB	-	2000	-	mW
Third Order Intercept (See Figure 10, $\mathrm{f}_{1}=200 \mathrm{MHz}$ )	ITO	45	47	-	dBm
Input/Output VSWR (f = 1-200 MHz)	VSWR	-	1.5:1	2:1	-
Second Harmonic Distortion ( $\mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW}, \mathrm{f}_{2 \mathrm{H}}=150 \mathrm{MHz}$ )	$\mathrm{d}_{\text {so }}$	-	-70	-60	dB
Peak Envelope Power (Two Tone Distortion Test — See Figure 10) ( $\mathrm{f}=1-200 \mathrm{MHz} @-32 \mathrm{~dB}$ IMD)	PEP	-	900	-	mW
Supply Current	ICC	400	435	470	mA



Figure 1. Power Gain versus Voltage


Figure 3. 1 dB Compression versus Voltage


Figure 5. Third Order Intercept versus Voltage


Figure 2. Relative Power Gain versus Temperature


Figure 4. Noise Figure versus Voltage


Figure 6. Peak Envelope Power versus Voltage


Figure 7. Second Harmonic Distortion versus Voltage


Figure 8. Group Delay versus Frequency

Biased at 28 Volts
$\mathrm{T} \mathrm{C}=25^{\circ} \mathrm{C} \mathrm{Zo}=50 \Omega$

Frequency   (MHz)	S11		S21		S12		S22	
	Mag	Ang	Mag	Ang	Mag	Ang	Mag	Ang
1	-16.7	64	36.0	23.3	-42	-5.2	-12.9	73
10	-21.5	21	36.2	-8.4	-47	-1.4	-21.9	28
50	-18.5	6.8	35.9	-56	-44	2.8	-17.9	-10
100	-16.9	-1.8	35.7	-103	-46	-68	-15.7	-48
200	-12.9	-18	34.7	145	-49	-98	-14.9	115

Magnitude in dB, Phase Angle in degrees.
Table 1. S-Parameters


Figure 9. External Connections


ITO = Po + IMD / 2 @ IMD > 60 dB PEP $=4 \times$ Po @ $I M D=-32 d B$

Figure 10. Intermodulation Test

## The RF Line <br> UHF Linear Amplifier

Designed for linear amplifier applications in 50 ohm systems requiring wide bandwidth, low noise, and low distortion. Internal DC blocking on RF ports reduces external component count and related circuit area. This hybrid utilizes push-pull circuit design.

- Supply Voltage: 15 Vdc (MHL8015)

$$
28 \text { Vdc (MHL8018) }
$$

- Third Order Intercept: 38 dBm Typ
- Power Gain: 18.5 dB Typ (@ f=900 MHz)
- Excellent Phase Linearity and Group Delay Characteristics
- 50 Ohm Input/Output Impedances


## MHL8015 MHL8018

$400 \mathrm{~mW}, 18.5 \mathrm{~dB}$
$40-1000 \mathrm{MHz}$
LINEAR AMPLIFIERS


CASE 448-02
MHL8015, STYLE 2 MHL8018, STYLE 1

ABSOLUTE MAXIMUM RATINGS $\left(T_{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	18	Vdc
		32	
MHL8015			
Storage Temperature Range	$\mathrm{P}_{\text {in }}$	+14	dBm
Operating Case Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=15 \mathrm{Vdc}(\mathrm{MHL} 8015), 28 \mathrm{Vdc}(\mathrm{MHL} 8018) ; 50 \Omega\right.$ System)

Characteristic	Symbol	Min	Typ	Max	Unit
$\begin{array}{ll}\text { Supply Current } & \text { MHL8015 } \\ & \text { MHL8018 }\end{array}$	IDC	-	$\begin{aligned} & 380 \\ & 210 \end{aligned}$	$\begin{aligned} & 410 \\ & 240 \end{aligned}$	mA
Power Gain ( $f=900 \mathrm{MHz}$ )	$\mathrm{PG}_{\mathrm{G}}$	17.5	18.5	19.5	dB
Gain Flatness ( $f=40-1000 \mathrm{MHz}$ )	FL	-	1.0	2.0	dB
Power Output @ 1 dB Comp. $\quad(\mathrm{f}=900 \mathrm{MHz}$ )	Pout 1 dB	25	26	-	dBm
Third Order Intercept (f1 = 879 MHz, f2 = 884 MHz)	ITO	37	38	-	dBm
Input/Output VSWR $(f=40-900 \mathrm{MHz})$    $(\mathrm{f}=900-1000 \mathrm{MHz})$	VSWR	-	-	$\begin{aligned} & 2.0: 1 \\ & 2.6: 1 \end{aligned}$	
$\begin{array}{ll}\text { Noise Figure, Broadband } & (f=500 \mathrm{MHz}) \\ & (\mathrm{f}=1000 \mathrm{MHz})\end{array}$	NF	-	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	$\begin{aligned} & 8.0 \\ & 9.0 \end{aligned}$	dB
Second Harmonic Distortion ( $\mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW}, \mathrm{f}_{2} \mathrm{H}=1000 \mathrm{MHz}$ )	dso	-	-50	-40	dB
Second Order Intermodulation Distortion $\left(\mathrm{P}_{\mathrm{o}}=2.75 \mathrm{dBm}, \mathrm{f}_{1}=373 \mathrm{MHz}, \mathrm{f}_{2}=450 \mathrm{MHz}\right)$	IM2	-	-	-60	dB
Intermodulation Distortion, 3 Tone ( $\mathrm{f}=860 \mathrm{MHz}, \mathrm{P}_{\text {sync }}=200 \mathrm{~mW}$ )	IM3	-	-60	-	dB

REV 1


Figure 1. MHL8015 External Connections
(Case 448-02, Style 2)


C1, C2 $\geq 0.01 \mu \mathrm{~F}$ (CHIP)
R1 $=200 \Omega, 1$ WATT

Figure 2. MHL8018 External Connections
(Case 448-02, Style 1)

## The RF Line <br> UHF Linear Amplifier

Designed for linear amplifier applications in 50 Ohm systems requiring wide bandwidth, low noise, and low distortion. Internal DC blocking on RF ports reduces external component count and related circuit area. This hybrid utilizes push-pull circuit design.

- Supply Voltage: 15 Vdc (MHL8115)

$$
28 \text { Vdc (MHL8118) }
$$

- Third Order Intercept: 41.5 dBm Typ
- Power Gain: 17.5 dB Typ (@ 900 MHz )
- Excellent Phase Linearity and Group Delay Characteristics
- 50 Ohm Input/Output Impedances


## MHL8115 MHL8118

$1 \mathrm{~W}, 17.5 \mathrm{~dB}$
$50-1000 \mathrm{MHz}$ LINEAR AMPLIFIERS


CASE 448-02
MHL8115, STYLE 2 MHL8118, STYLE 1

ABSOLUTE MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
DC Supply Voltage	MHL8115            MHL8118	$\mathrm{V}_{\mathrm{CC}}$	18
32	Vdc		
RF Input Power	$\mathrm{P}_{\text {in }}$	+20	dBm
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-20 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=+25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{CC}}=15 \mathrm{Vdc}\right.$ (MHL8115), 28 Vdc (MHL8118); $50 \Omega$ System)

Characteristic		Symbol	Min	Typ	Max	Unit
Supply Current	$\begin{aligned} & \hline \text { MHL8115 } \\ & \text { MHL8118 } \end{aligned}$	IDC	-	$\begin{aligned} & 700 \\ & 400 \end{aligned}$	$\begin{aligned} & 760 \\ & 440 \end{aligned}$	mA
Power Gain	( $\mathrm{f}=900 \mathrm{MHz}$ )	PG	16.5	17.5	-	dB
Gain Flatness	( $\mathrm{f}=50-1000 \mathrm{MHz}$ )	FL	-	1.0	2.0	dB
Power Output @ 1 dB Comp.	( $\mathrm{f}=900 \mathrm{MHz}$ )	Pout 1 dB	29	30	-	dBm
Third Order Intercept (f1 = 879 MHz, f2 = 884 MHz)		ITO	40.5	41.5	-	dBm
Input/Output VSWR	$\begin{aligned} & (\mathrm{f}=50-900 \mathrm{MHz}) \\ & (\mathrm{f}=900-1000 \mathrm{MHz}) \end{aligned}$	VSWR	-	-	$\begin{aligned} & \text { 2.0:1 } \\ & 2.6: 1 \end{aligned}$	
Noise Figure, Broadband	$\begin{aligned} & (\mathrm{f}=500 \mathrm{MHz}) \\ & (\mathrm{f}=1000 \mathrm{MHz}) \end{aligned}$	NF	-	$\begin{aligned} & \hline 7.5 \\ & 8.5 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 9.5 \end{aligned}$	dB
Second Harmonic Distortion ( $\mathrm{P}_{\mathrm{O}}=100 \mathrm{~mW}, \mathrm{f}_{2} \mathrm{H}=1000 \mathrm{MHz}$ )		dso	-	-55	-45	dB
Second Order Intermodulation Distortion $\left(\mathrm{P}_{\mathrm{O}}=2.75 \mathrm{dBm}, \mathrm{f}_{1}=373 \mathrm{MHz}, \mathrm{f}_{2}=450 \mathrm{MHz}\right)$		IM2	-	-65	-60	dB
Intermodulation Distortion, 3 Tone ( $\mathrm{f}=860 \mathrm{MHz}, \mathrm{P}_{\text {sync }}=200 \mathrm{~mW}$ )		IM3	-	-60	-	dB

REV 1


Figure 1. MHL8115 External Connections
(Case 448-02, Style 2)


Figure 2. MHL8118 External Connections
(Case 448-02, Style 1)

## The RF Line <br> UHF Linear Amplifier

Designed specifically for linear amplifier applications in the cellular frequency band. Internal DC blocking on RF ports reduces external component count and related circuit area. This device can be easily combined for higher power applications.

- Supply Voltage: 28 Vdc
- Third Order Intercept: 43 dBm Typ
- Power Gain: 20 dB Typ (@ f = 900 MHz )
- Excellent Phase Linearity and Group Delay Characteristics
- 50 Ohm Input/Output Impedances

MHL9128


ABSOLUTE MAXIMUM RATINGS $\left({ }^{T} \mathrm{C}=25^{\circ} \mathrm{C}\right.$ unless otherwise stated)

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	32	$\mathrm{Vdc}^{(20}$
RF Input Power	$\mathrm{P}_{\mathrm{in}}$	dBm	
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (VCC $=15 \mathrm{Vdc}$ (MHL9125), 28 Vdc (MHL9128); $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C} ; 50 \Omega$ System, unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current	IDC	400	-	440	mA
Power Gain (1) (f = 900 MHz)	$\mathrm{PG}_{\mathrm{G}}$	19	20	21	dB
Absolute Phase Variation (1) ( $\mathrm{f}=900 \mathrm{MHz}$ )	$\Delta \phi$		$\pm 8$	$\pm 18$	Deg.
Gain Flatness $\quad(\mathrm{f}=800-960 \mathrm{MHz})$	GF	-	0.5	0.75	dB
Power Output @ 1 dB Comp. $\quad(\mathrm{f}=900 \mathrm{MHz}$ )	Pout 1 dB	30	31	-	dBm
Input VSWR $(\mathrm{f}=800-920 \mathrm{MHz})$    $(\mathrm{f}=920-960 \mathrm{MHz})$	VSWR in	-	$\begin{aligned} & \hline 1.25: 1 \\ & 1.50: 1 \end{aligned}$	$\begin{aligned} & 1.5: 1 \\ & 1.9: 1 \end{aligned}$	
Output VSWR ( $\mathrm{f}=800-960 \mathrm{MHz}$ )	$\mathrm{VSWR}_{\text {out }}$	-	1.2:1	1.5:1	
Third Order Intercept (f1 = 879 MHz, f2 = 884 MHz)	ITO	42	43	-	dBm
Noise Figure ( $\mathrm{f}=960 \mathrm{MHz}$ )	NF	-	7.5	9.5	dB

(1) Consult factory for tighter gain and/or phase windows.


Figure 1. MHL9128 External Connections
(Case 448-02, Style 1)

## UHF Silicon FET Power Amplifier

Designed specifically for the Pan European digital 8.0 watt, GSM mobile radio. The MHW913 is capable of wide power range control, operates from a 12.5 volt supply and requires less than 100 mW of RF input power.

- Specified 12.5 V Characteristics

RF Input Power $\leq 100 \mathrm{~mW}(20 \mathrm{dBm})$
RF Output Power = 14 W
Minimum Gain $=21.5 \mathrm{~dB}$
Minimum Efficiency $=35 \%$

- $50 \Omega$ Input/Output Impedance
- Guaranteed Stability and Ruggedness
- Epoxy Glass Substrate Eliminates Possibility of Substrate Fracture
- Circuit board photomaster available upon request by contacting RF Tactical Marketing in Phoenix, AZ.

14 WATT
$880-915 \mathrm{MHz}$ RF POWER AMPLIFIER


CASE 301AB-02, STYLE 1

MAXIMUM RATINGS (Flange Temperature $=25^{\circ} \mathrm{C}$ )

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\text {bias }}$,	5.0	Volt
	$\mathrm{V}_{\mathrm{S} 2}, \mathrm{~V}_{\mathrm{S} 3}$	15.6	
RF Input Power	$\mathrm{P}_{\text {in }}$	200	mW
RF Output Power	$\mathrm{P}_{\text {out }}$	15	Watt
Storage Temperature	$\mathrm{T}_{\mathrm{C}}$	-30 to +100	${ }^{\circ} \mathrm{C}$
Operating Case Temperature	$\mathrm{T}_{\text {stg }}$	-30 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{S} 3}=12.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{bias}}=4.8 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 50 \Omega\right.$ system, unless otherwise noted $)$

Characteristic	Symbol	Min	Max	Unit
Frequency Range	BW	880	915	MHz
Efficiency (Pout = 14 W ) (1)	$\eta$	35	-	\%
Power Gain (Pout = 14 W ) (1)	$G_{p}$	21.5	-	dB
Harmonic Output (Pout $=14 \mathrm{~W}$ Reference) (1)	$\begin{aligned} & 2 \mathrm{fo}_{\mathrm{o}} \\ & 3 \mathrm{f}_{\mathrm{o}} \end{aligned}$	-	$\begin{aligned} & -30 \\ & -35 \end{aligned}$	dBc
Input VSWR ( $\mathrm{P}_{\text {out }}=14 \mathrm{~W}$ ) (1)	VSWR ${ }_{\text {in }}$	-	3:1	
Linearity - \% AM in Output $\mathrm{P}_{\text {out }}=0.02$ to $14 \mathrm{~W} ; 135 \mathrm{kHz}, 1.0 \%$ AM on Input (1)	-		6.0	\%
Output Power at Decreased Voltage $\left(\mathrm{P}_{\text {in }}=100 \mathrm{~mW}, \mathrm{~V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{S} 3}=10.8 \mathrm{Vdc}\right)(1)$	Pout	10	-	Watt

(1) Adjust $\mathrm{P}_{\text {in }}$ for specified $\mathrm{P}_{\text {out }}$.
(continued)

ELECTRICAL CHARACTERISTICS (continued) $\left(\mathrm{V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{S} 3}=12.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{bias}}=4.8 \mathrm{~V}, \mathrm{~T} \mathrm{C}=25^{\circ} \mathrm{C}, 50 \Omega\right.$ system, unless otherwise noted)

Load Mismatch Stress (V ${ }_{\text {supply }}=15.6 \mathrm{Vdc}, \mathrm{P}_{\text {out }}=15 \mathrm{~W}$; Load VSWR $=10: 1$, All Phase Angles) (1)	-	No degradation in output power		
$\begin{aligned} & \text { Stability }\left(V_{\text {Supply }}=10.8 \text { to } 16 \mathrm{Vdc} ; \mathrm{Pout}=0.03 \text { to } 14 \mathrm{~W}\right. \text {; } \\ & \text { Load VSWR }=6: 1 \text {, All Phase Angles })(1) \end{aligned}$	-	All spurious outputs more than 60 dB below desired signal		
Quiescent Current (With No RF Applied) $\left(\mathrm{V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{S} 3}=12.5 \mathrm{Vdc}, \mathrm{~V}_{\mathrm{bias}}=4.8 \mathrm{Vdc}\right)$	$\mathrm{I}_{\text {sq }}$	-	500	mA
Leakage Current ( $\left.\mathrm{P}_{\mathrm{in}}=0 \mathrm{~mW}, \mathrm{~V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{S} 3}=12.5 \mathrm{Vdc}, \mathrm{V}_{\mathrm{b}}=0 \mathrm{Vdc}\right)$	IL	-	0.6	mA
Bias Pin Current ( $\mathrm{P}_{\text {out }}=14 \mathrm{~W}$ ) (1)	Ibias	-	0.8	mA
Noise Power ( In 30 kHz Bandwidth, 20 MHz above $\mathrm{f}_{\mathrm{O}}$ ) $\left(P_{\text {out }}=0.03 \text { to } 14 \mathrm{~W}, \mathrm{~V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{S} 3}=10.8 \text { to } 15.6 \mathrm{Vdc} ; \mathrm{V}_{\text {bias }}=4.8 \mathrm{Vdc}\right)(1)$	-	-	-70	dBm

(1) Adjust $\mathrm{P}_{\text {in }}$ for specified $\mathrm{P}_{\text {out- }}$


Figure 1. MHW913 Test Circuit Diagram

Typical Characteristics


Figure 2. Output Power versus Input Power


Figure 4. Output Power versus Supply Voltage


Figure 3. Output Power versus Frequency


Figure 5. Input Power versus Case Temperature for $P_{\text {out }}=14 \mathrm{~W}$


Figure 6. Output Power versus Case Temperature for Maximum Input Power

## The RF Line UHF Silicon FET Power Amplifier

Designed specifically for the European Digital Extended Group Special Mobile (GSM) Base Station applications in the 925-960 MHz frequency range. MHW916 operates from a 26 Volt supply and requires 15.5 dBm of RF input power.

- Specified 26 Volt Characteristics

RF Input Power: 15.5 dBm Max
RF Output Power: 16 Watts at 1.0 dB Compression Point
Minimum Gain: 26.5 dB
Harmonics: -35 dBc Max at 2Fo

- $50 \Omega$ Input/Output System
- Meet GSM Linearity Specification for Base Station up to 12.5 Watts



CASE 301AB-02, STYLE 1


Figure 1. MHW916 Test Circuit Diagram


Figure 2. Power Gain and Input VSWR versus Frequency


Figure 4. Output Power and Efficiency versus Input Power


Figure 6. Output Power at 1 dB Compression versus Temperature


Figure 3. Power Gain and Efficiency versus Frequency


Figure 5. Power Gain versus Frequency


Figure 7. Output Power at 1dB Compression versus Supply Voltage

## The RF Line UHF Silicon FET Power Amplifier

Designed specifically for the Pan European Digital Extended EGSM base station applications at $925-960 \mathrm{MHz}$. The MHW930 operates from a 26 volt supply and requires 60 mW of RF input power.

- Specified 26 Volt and $25^{\circ} \mathrm{C}$ Characteristics:

RF Input Power: 60 mW Max
RF Power Gain: 27 dB Min at 30 W Output Power
RF Output: 30 Watts Min at 1.0 dB Compression Point Efficiency: 44\% Min at 30 Watts Output Power

- 50 Ohm Input/Output Impedances


CASE 301AB-02, STYLE 1

## MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{S}}$	28	Vdc
DC Bias Voltage	$\mathrm{V}_{\mathrm{B}}$	28	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	22	dBm
RF Output Power	$\mathrm{P}_{\text {out }}$	50	W
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-10 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-30 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{S}}=26 \mathrm{Vdc} ; \mathrm{V}_{\mathrm{BIAS}}=26 \mathrm{Vdc} ; \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} ; 50 \Omega\right.$ system $)$

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	925	-	960	MHz
$\mathrm{V}_{\mathrm{S} 1}$ Quiescent Current ( $\mathrm{P}_{\text {in }}=0 \mathrm{~mW}$ )	Iqs1	-	65	-	mA
$\mathrm{V}_{\text {S2 }}$ Quiescent Current ( $\mathrm{P}_{\text {in }}=0 \mathrm{~mW}$ )	Iqs2	-	130	-	mA
Power Gain ( $\mathrm{P}_{\text {out }}=30 \mathrm{~W}$ ) (1)	$\mathrm{G}_{\mathrm{p}}$	27	-	31	dB
Output Power at 1 dB Compression	P1dB	30	35	-	Watts
EFficiency ( $\mathrm{P}_{\text {out }}=30 \mathrm{~W}$ ) (1)	$\eta$	44	49	-	\%
Input VSWR	VSWRIN	-	-	2:1	
Harmonic $2 \mathrm{f}_{\mathrm{O}}\left(\mathrm{P}_{\text {out }}=30 \mathrm{~W}\right)$ (1)	$\mathrm{H}_{2}$	-	-	-35	dBc
Harmonic $3 \mathrm{f}_{\mathrm{O}}\left(\mathrm{P}_{\text {out }}=30 \mathrm{~W}\right)$ (1)	$\mathrm{H}_{3}$	-	-	-45	dBc
$\begin{aligned} & \text { Reverse Intermodulation Distortion ( } P_{\text {carrier }}=30 \mathrm{~W} \text {; Pinterferer at }-70 \mathrm{dBc} \text {; fi } \\ & =\mathrm{fc} \pm 600 \mathrm{kHz} \text { ) (1) } \end{aligned}$	IMR	-	-	-80	dBc
$\begin{aligned} & \text { Load Mismatch Stress } \\ & \quad\left(\mathrm{P}_{\text {out }}=30 \mathrm{~W} \text {; Load VSWR = 10:1; All Phase Angles }\right) \end{aligned}$	$\psi$	No Degradation in Output Power			
```Stability (Pout = 10 mW - 30 W; Load VSWR = 3:1; All Phase Angles; TC}=-1\mp@subsup{0}{}{\circ}\textrm{C}\mathrm{ to }8\mp@subsup{5}{}{\circ}\textrm{C}\mathrm{ )```		All Spurious Outputs More than 70 dB Below Desired Signal			

(1) Adjust $P_{\text {in }}$ for specified $P_{\text {out }}$.

Figure 1. MHW930 Internal Diagram

The RF Line
 Microwave Bipolar Power Amplifier

- Specified 26 Volt Characteristics:

RF Output Power: 15 Watts
RF Power Gain: 32 dB Typ Efficiency: 25\% Min

- 50 Ohm Input/Output System

MHW1815

CASE 301AK-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	V_{S}	28	Vdc
DC Bias Voltage	V_{B}	5.5	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	17	dBm
RF Output Power	$\mathrm{P}_{\text {out }}$	23	W
Operating Case Temperature Range	T_{C}	-30 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-30 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C} ; \mathrm{V}_{\mathrm{S}}=26 \mathrm{Vdc} ; \mathrm{V}_{\mathrm{BIAS}}=5 \mathrm{Vdc} ; 50 \Omega\right.$ system $)$

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	1805	-	1880	MHz
Total Quiescent Current ($\mathrm{P}_{\text {in }}=0 \mathrm{~mW}$)	I_{q}	-	300	-	mA
Power Gain (Pout = 15 W) (1)	G_{p}	30	32	-	dB
Output Power at 1 dB Compression	P1dB	15	-	-	Watts
Efficiency (1 dB Compression Power)	η	25	-	-	\%
Input VSWR ($\mathrm{P}_{\text {out }}=15 \mathrm{~W}$)	VSWRIN	-	-	2:1	-
Ripple ($\mathrm{P}_{\text {out }}=15 \mathrm{~W}$)	Rp	-	1	-	dB
Load Mismatch Stress ($\mathrm{P}_{\text {out }}=15 \mathrm{~W}$; Load VSWR $=3: 1$; at All Phase Angles)	ψ	No Degradation in Output Power			
Stability (Pout $=1 \mathrm{~mW}-15 \mathrm{~W}$; Load VSWR $=2: 1$; at All Phase Angles except Harmonics)	-	All Spurious Outputs More than 60 dB Below Desired Signal			
Stability $\text { (Pout }=1 \mathrm{~mW}-15 \mathrm{~W} \text {; Load VSWR }=2: 1 ; \mathrm{f}=1805-1880 \mathrm{MHz} \text {; at All }$ Phase Angles)	-	All Spurious Typically Lower than - 36 dBm			

(1) Adjust $P_{\text {in }}$ for specified $P_{\text {out }}$.

Figure 1. Internal Diagram

The RF Line
 Microwave Bipolar Power Amplifier

MHW1915

- Specified 26 Volt Characteristics:

RF Output Power: 15 Watts
RF Power Gain: 31 dB Typ
Efficiency: 25\% Min

- 50 Ohm Input/Output System

15 W
 1930-1990 MHz RF POWER AMPLIFIER

CASE 301AK-01, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	V_{S}	28	Vdc
DC Bias Voltage	V_{B}	5.5	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	17	dBm
RF Output Power	$\mathrm{P}_{\text {out }}$	23	W
Operating Case Temperature Range	T_{C}	-30 to +85	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-30 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS (VS $=26 \mathrm{Vdc} ; \mathrm{V}_{\mathrm{BIAS}}=5 \mathrm{Vdc} ; \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} ; 50 \Omega$ system $)$

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	1930	-	1990	MHz
Total Quiescent Current ($\mathrm{P}_{\text {in }}=0 \mathrm{~mW}$)	I_{q}	-	300	-	mA
Power Gain (Pout $=15 \mathrm{~W}$) (1)	G_{p}	29	31	-	dB
Output Power at 1 dB Compression	P1dB	15	-	-	Watts
Efficiency (1 dB Compression Power)	η	25	-	-	\%
Input VSWR ($\mathrm{P}_{\text {out }}=15 \mathrm{~W}$)	VSWRIN	-	-	2:1	-
Ripple ($\mathrm{P}_{\text {out }}=15 \mathrm{~W}$)	Rp	-	1	-	dB
Load Mismatch Stress ($P_{\text {out }}=15$ W; Load VSWR $=2: 1$; at All Phase Angles)	ψ	No Degradation in Output Power			
Stability ($P_{\text {out }}=1 \mathrm{~mW}-15 \mathrm{~W}$; Load VSWR $=2: 1$; at All Phase Angles except Harmonics)	-	All Spurious Outputs More than 60 dB Below Desired Signal			
Stability $\text { (Pout }=1 \mathrm{~mW}-15 \mathrm{~W} \text {; Load VSWR }=2: 1 ; \mathrm{f}=1930-1990 \mathrm{MHz} \text {; at All }$ Phase Angles)	-	All Spurious Outputs Typically Lower than $-36 \mathrm{dBm}$			

(1) Adjust $\mathrm{P}_{\text {in }}$ for specified $\mathrm{P}_{\text {out }}$.

Figure 1. Internal Diagram

The RF Line
 Microwave Bipolar Power Amplifier

MHW1916

- Specified 26 Volt Characteristics:

RF Output Power: 15 Watts
RF Power Gain: 34 dB Typ
Efficiency: 24\% Min

15 W
 1930-1990 MHz RF POWER AMPLIFIER

- 50 Ohm Input/Output Impedances

CASE 301AK-01, STYLE 1

MAXIMUM RATINGS (Flange Temperature $=25^{\circ} \mathrm{C}$)

Rating	Symbol	Value	Unit
DC Supply Voltage	V_{S}	28	Vdc
DC Bias Voltage	V_{B}	5.5	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	17	dBm
RF Output Power	$\mathrm{P}_{\text {out }}$	23	W
Operating Case Temperature Range	T_{C}	-30 to +95	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-30 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{S}}=26 \mathrm{Vdc} ; \mathrm{V}_{\mathrm{BIAS}}=5 \mathrm{Vdc} ; \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C} ; 50 \Omega\right.$ system $)$

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	1930	-	1990	MHz
Total Quiescent Current ($\mathrm{P}_{\text {in }}=0 \mathrm{~mW}$)	I_{9}	-	300	-	mA
Power Gain ($\mathrm{P}_{\text {out }}=15 \mathrm{~W}$) (1)	G_{p}	31	34	38	dB
Output Power at 1 dB Compression	P1dB	15	-	-	Watts
Efficiency (1 dB Compression Power)	η	24	27	-	\%
Input VSWR (Pout = 15 W)	VSWRIN	-	-	2:1	
Ripple ($\mathrm{P}_{\text {out }}=15 \mathrm{~W}$)	Rp	-	1	2	dB
Gain Variation at any given Frequency over Output Power $\left(1 \mathrm{~mW} \leq \mathrm{P}_{\text {out }} \leq 15 \mathrm{~W}\right)$	$\Delta \mathrm{G}_{\mathrm{p}}$	-	1	2.4	dB
Load Mismatch Stress ($\mathrm{P}_{\text {out }}=15$ W; Load VSWR $=3: 1$; at All Phase Angles)	ψ	No Degradation in Output Power			
Stability (Pout $=1 \mathrm{~mW}-15 \mathrm{~W}$; Load VSWR $=2: 1$; at All Phase Angles except Harmonics)		All Spurious Outputs More than 60 dB BelowDesired Signal			
Stability $\text { (Pout = } 1 \mathrm{~mW}-15 \mathrm{~W} \text {; Load VSWR = 2:1; } \mathrm{f}=1930-1990 \mathrm{MHz} \text {; at All }$ Phase Angles)		All Spurious Outputs Typically Lower than $-36 \mathrm{dBm}$			

(1) Adjust $P_{\text {in }}$ for specified $P_{\text {out }}$.

Figure 1. Internal Diagram

The RF Line UHF Silicon FET Power Amplifiers

Designed for 12.5 volt UHF power amplifier applications in industrial and commercial FM equipment operating from 806 to 950 MHz .

- Specified 12.5 Volt Characteristics:

RF Input Power: $\leq 250 \mathrm{~mW}$ (MHW2821-1)

$$
\text { s } 300 \text { mW (MHW2821-2) }
$$

RF Output Power: 20 W (MHW2821-1)

$$
18 \text { W (MHW2821-2) }
$$

- LDMOS FET Technology
- Epoxy Glass Substrate Eliminates Possibility of Substrate Fracture
- 50Ω Input/Output Impedance
- Guaranteed Stability and Ruggedness
- Cost Effective

MHW2821-1
 MHW2821-2

-1: $20 \mathrm{~W}, 806-870 \mathrm{MHz}$
-2: 18 W, 890-950 MHz RF POWER AMPLIFIER

CASE 301AB-02, STYLE 1

MAXIMUM RATINGS (Flange Temperature $=25^{\circ} \mathrm{C}$)

Rating	Symbol	Value	Unit
DC Supply Voltages	$V_{\text {bias }}$ $V_{\text {S2 }}, V_{S 3}$	12.5 16	Vdc
RF Input Power	$\mathrm{P}_{\text {in }}$	400	mW
RF Output Power	$\mathrm{P}_{\text {out }}$	23	W
Operating Case Temperature Range	T_{C}	-30 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-30 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{S} 3}=12.5 \mathrm{Vdc} ; \mathrm{V}_{\text {bias }}=12.5 \mathrm{Vdc} ; \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, 50 \Omega\right.$ system, unless otherwise noted $)$

Characteristic		Symbol	Min	Max	Unit
Frequency Range	$\begin{aligned} & \hline \text { MHW2821-1 } \\ & \text { MHW2821-2 } \end{aligned}$	BW	$\begin{aligned} & 806 \\ & 890 \end{aligned}$	$\begin{aligned} & \hline 870 \\ & 950 \end{aligned}$	MHz
$\begin{array}{r} \hline \text { Input Power }(\text { Pout }=20 \mathrm{~W})(1) \\ \left(\mathrm{P}_{\text {out }}=18 \mathrm{~W}\right)(1) \end{array}$	$\begin{aligned} & \hline \text { MHW2821-1 } \\ & \text { MHW2821-2 } \end{aligned}$	$\mathrm{P}_{\text {in }}$		$\begin{aligned} & 250 \\ & 300 \end{aligned}$	mW
$\begin{array}{r} \text { Power Gain }\left(\text { Pout }_{\text {o }}=20 \mathrm{~W}\right)(1) \\ \left(\mathrm{P}_{\text {out }}=18 \mathrm{~W}\right)(1) \end{array}$	$\begin{aligned} & \text { MHW2821-1 } \\ & \text { MHW2821-2 } \end{aligned}$	Gp	$\begin{gathered} \hline 19 \\ 17.9 \end{gathered}$		dB
Efficiency (Rated $\mathrm{P}_{\text {out }}$)		η	35	-	\%
Harmonics (Rated Pout Reference) (1)		$\begin{aligned} & 2 \mathrm{f}_{\mathrm{o}} \\ & 3 \mathrm{f}_{\mathrm{o}} \end{aligned}$		$\begin{aligned} & -40 \\ & -45 \end{aligned}$	dBc
Input VSWR (Rated $\mathrm{P}_{\text {out }}$) (1)		VSWR in	-	3:1	dB

(1) Adjust $\mathrm{P}_{\text {in }}$ for specified $\mathrm{P}_{\text {out }}$.
(continued)

ELECTRICAL CHARACTERISTICS (continued) $\left(\mathrm{V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{S} 3}=12.5 \mathrm{Vdc}, \mathrm{V}_{\text {bias }}=12.5 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+25^{\circ} \mathrm{C}, 50 \Omega\right.$ system, unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
Load Mismatch Stress $\left(V_{\text {supply }}=16 \mathrm{Vdc} ; \text { Pout }=20 \mathrm{~W} \text { for MHW2821-1; Pout }=18 \mathrm{~W}\right. \text { for MHW2821-2; }$ $\text { Load VSWR }=20: 1 \text {, All Phase Angles at Frequency of Test) (1) }$	ψ	No Degradation in Output Power Before and After Test		
$\begin{aligned} & \text { Stability (V V supply }=10.8 \text { to } 16 \mathrm{Vdc} ; \mathrm{Pin}_{\text {in }}=0 \text { to } 250 \mathrm{~mW} \text { for MHW2821-1; } \\ & \text { Pin }=0 \text { to } 300 \mathrm{~mW} \text { for MHW2821-2; Load VSWR }=4: 1 \text {, } \\ & \text { All Phase Angles at Frequency of Test } \end{aligned}$	-	All Spurious Outputs More than 60 dB Below Desired Signal		
Quiescent Current (With No RF Applied) $\left(\mathrm{V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{S} 3}=12.5 \mathrm{Vdc} ; \mathrm{V}_{\mathrm{bias}}=12.5 \mathrm{Vdc}\right)$	$\mathrm{I}_{\text {sq }}$	-	500	mA
Leakage Current (With No RF Applied) $\left(\mathrm{V}_{\mathrm{S} 2}=\mathrm{V}_{\mathrm{S} 3}=12.5 \mathrm{Vdc} ; \mathrm{V}_{\mathrm{bias}}=0 \mathrm{Vdc}\right)$	IL	-	0.6	mA
Bias Pin Current (Rated $\mathrm{P}_{\text {out }}$) (1)	Ibias	-	3	mA

(1) Adjust $\mathrm{P}_{\text {in }}$ for specified $\mathrm{P}_{\text {out }}$.

Figure 1. Test Circuit Diagram

TYPICAL CHARACTERISTICS (MHW2821-1)

Figure 2. Input Power, Efficiency and VSWR versus Frequency

Figure 4. Output Power versus Supply Voltage

Figure 6. Output Power versus Supply Voltage to First Stage ($\mathrm{V}_{\mathbf{s} 1}$)

Figure 3. Output Power versus Input Power

Figure 5. Efficiency versus Supply Voltage

Figure 7. Input Power versus Case Temperature

Figure 8. $\mathrm{P}_{\text {in }}$ VSWR, and Efficiency versus Frequency

Figure 10. Pout versus Supply Voltage

Figure 9. Output Power versus Input Power

Figure 11. Efficiency versus Supply Voltage

Chapter Six RF CATV Distribution Amplifiers

Section One
6.1-0
RF CATV Distribution Amplifiers -
Selector Guide
Section Two 6.2-0
RF CATV Distribution Amplifiers Data Sheets

Section One Selector Guide

Motorola RF CATV Distribution Amplifiers

Motorola Hybrids are manufactured using the latest generation technology which has set new standards for CATV system performance and reliability. These hybrids have been optimized to provide premium performance in all CATV systems up to 152 channels.

Table of Contents

Page

RF CATV Distribution Amplifiers 6.1-1
Forward Amplifiers . 6.1-2
Reverse Amplifiers
6.1-5

Motorola RF CATV Distribution Amplifiers

Motorola Hybrids are manufactured using the latest generation technology which has set new standards for CATV system performance and reliability. These hybrids have been optimized to provide premium performance in all CATV systems up to 152 channels.

Forward Amplifiers

40-1000 MHz Hybrids, VCC = $\mathbf{2 4}$ Vdc, Class A

Device	Hybrid Gain (Nom.) dB	Channel Loading Capacity	Maximum Distortion Specifications				Noise Figure 860 MHz dB Max	Package/ Style
			Output Level dBmV	2nd Order Test dB	Composite Triple Beat dB	Cross Modulation dB		
					152 CH	152 CH		
MHW9182	18	152	+38	-59(40)	-59	-59	8.0	714Y/1
MHW9242	24	152	+38	-59(40)	-58	-59	8	714Y/1

40-860 MHz Hybrids

Device	Gain dB Typ	Frequency MHz	v_{Cc} Volts	2nd Order IMD $@ \mathrm{~V}_{\text {out }}=\underset{\text { Max }}{50 \mathrm{dBmV} / \mathrm{ch}}$	DIN45004B @ $=860 \mathrm{MHz}$ dB $\mu \mathrm{V}$ Min	Noise Figure @ 860 MHz dB Max	Package/ Style
CA901	17	40-860	24	-60	120	8	714P/2
CA901A	17	40-860	24	-64	120	8	714P/2

Power Doubling Hybrids

CA912	17	$40-860$	15	-63	123	9.5	$714 \mathrm{P} / 3$
CA922	17	$40-860$	24	-63	123	9.5	$714 \mathrm{P} / 2$
CA922A	17	$40-860$	24	-67	123	$714 \mathrm{P} / 2$	

Hybrid Jumper

CATHRU	0	$1-1000$	75 Ohm Broadband Hybrid Jumper	714 V

40-860 MHz Hybrids, VCC = $\mathbf{2 4}$ Vdc, Class A

Device	Hybrid Gain (Nom.)	Channel Loading Capacity	Maximum Distortion Specifications				Noise Figure @ 860 MHz dB Max	Package/ Style
			Output Level dBmV	2nd Order Test dB	Composite Triple Beat dB	Cross Modulation $\begin{gathered} \mathrm{FM}=55.25 \mathrm{MHz} \\ \mathrm{~dB} \end{gathered}$		
					128 CH	128 CH		
MHW8182	18	128	+38	-60(40)	-60	-60	7	714Y/1
MHW8182A *	18.3	128	+38	-63(40)	-62	-64	8.0	714Y/1
MHW8222	22	128	+38	-60(40)	-60	-60	7.5	714Y/1
MHW8242	24	128	+38	-60(40)	-60	-60	7.5	714Y/1
MHW8242Aぇ	24	128	+38	-62(40)	-64	-62	7.5	714Y/1
MHW8272	27	128	+38	-60(40)	-60	-60	7.0	714Y/1
MHW8272A ${ }^{\text {® }}$	27.2	128	+38	-64(40)	-64	-62	7.0	714Y/1
MHW8292	29	128	+38	$-56(40)$	-60	-60	7.0	714Y/1

(40)Composite 2nd Order; $\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$
*New Product

40-860 MHz Hybrids, VCC = $\mathbf{2 4}$ Vdc, Class A (continued)

Device	Hybrid Gain (Nom.)	Channel Loading Capacity	Maximum Distortion Specifications				Noise Figure @ 860 MHz dB	Package/ Style
			Output LeveldBmV	2nd Order Test	Composite Triple Beat dB	Cross Modulation $\begin{gathered} \mathrm{FM}=55.25 \mathrm{MHz} \\ \mathrm{~dB} \end{gathered}$		
	dB			dB	128 CH	128 CH	Max	

Power Doubling Hybrids

MHW8185	18.8	128	+40	$-62(39)$	-64	-64	8.0	$714 \mathrm{Y} / 1$
MHW8185L(21,46b,52a)	18.9	128	+40	$-62(39)$	-63	-64	8.0	$714 \mathrm{Y} / 1$
MHW8185R $(14)_{\star}$	18.8	128	+40	$-62(39)$	-64	-64	8.0	$814 \mathrm{Y} / 2$
MHW8205	19.8	128	+40	$-60(39)$	-63	-64	$714 \mathrm{Y} / 1$	
MHW8205L(22,46b,52a)	19.8	128	+40	$-62(39)$	-63	-64	$714 \mathrm{Y} / 1$	

Feedforward Hybrids

MFF524B	24	128	+44	$-68(36)$	-66	-	13.0	$825 \mathrm{~A} / 2$

40-750 MHz Hybrids, VCC = 24 Vdc, Class A

Device	Hybrid Gain (Nom.) dB	Channel Loading Capacity	Maximum Distortion Specifications				Noise Figure 750 MHz dB Max	Package/ Style
			Output Level dBmV	2nd Order Test dB	Composite Triple Beat dB	Cross Modulation $\begin{gathered} \mathrm{FM}=55.25 \mathrm{MHz} \\ \mathrm{~dB} \end{gathered}$		
					110 CH	110 CH		
MHW7142	14	110	+40	-60(39)	-62	-66	8.0	714Y/1
MHW7182	18	110	+40	-62(39)	-62	-64	6.5	714Y/1
MHW7182A \star	18.3	110	+40	-62(39)	-62	-64	6.5	714Y/1
MHW7222	22	110	+40	-55(39)	-60	-60	7	714Y/1
MHW7222A	22	110	+40	-57(39)	-60	-60	7	714Y/1
MHW7242	24	110	+40	-60(39)	-60	-60	7	714Y/1
MHW7242A ${ }^{\text {® }}$	24	110	+40	-62(39)	-63	-61	7	714Y/1
MHW7272	27	110	+40	-60(39)	-60	-60	6.5	714Y/1
MHW7272A ${ }^{\text {® }}$	27.2	110	+40	-64(39)	-64	-60	6.5	714Y/1
MHW7292	29	110	+40	-60(39)	-60	-60	6.5	714Y/1

Power Doubling Hybrids

MHW7185C \star	18.8	110	+44	$-64(36)$	-62	-63	7.5	$714 \mathrm{Y} / 1$
MHW7185CR (15)	18.8	110	+44	$-64(36)$	-62	-63	7.5	
MHW7185L(23,46b,52a)	18.9	110	+44	$-64(36)$	-61	-63	7.5	
MHW7205C \star	19.8	110	+44	$-63(36)$	-61	-62	$714 \mathrm{Y} / 1$	
MHW7205L(24,46b,52a)	19.8	110	+44	$-63(36)$	-61	-62	$714 Y / 1$	
$714 Y / 1$								

Feedforward Hybrids

MFF424B	24	110	+44	$-70(36)$	-68	-	13	$825 \mathrm{~A} / 2$

(14)Forward Mirror Amplifier Version of MHW8185
(15) Forward Mirror Amplifier Version of MHW7185C
(21)Low DC Current Version of MHW8185
(22) Low DC Current Version of MHW8205
(23)Low DC Current Version of MHW7185C
(24)Low DC Current Version of MHW7205C
(36) Composite 2nd order; $\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch}$
(39) Composite 2nd order; $\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}$
${ }^{(46)}$ To be introduced: a) 1Q98; b) 2Q98
(52) Engineering samples available: a) 2Q98
*New Product

40-600 MHz Hybrids, VCC = 24 Vdc, Class A

Device	Hybrid Gain (Nom.) dB	Channel Loading Capacity	Maximum Distortion Specifications				Noise Figure 600 MHz dB Max	Package/ Style
			Output Level dBmV	2nd Order Test dB	Composite Triple Beat dB	Cross Modulation dB		
					87 CH	87 CH		
MHW6182-6	18	87	+44	-56(36)	-57	-55	6	714Y/1

Feedforward Hybrids

MFF324B	24	85	+44	$-86(38)$	-73	-68	12.5	$825 \mathrm{~A} / 2$

40-550 MHz Hybrids, VCC = 24 Vdc , Class A

Device	Hybrid Gain (Nom.)	Channel Loading Capacity	Maximum Distortion Specifications				Noise Figure 550 MHz dB Max	Package/ Style
			Output Level dBmV	2nd Order Test dB	Composite Triple Beat dB	Cross Modulation dB		
	dB				77 CH	77 CH		
MHW6142	14	77	+44	-72(35)	-59	-62	7.5	714Y/1
MHW6182	18	77	+44	-72(35)	-58	-62	7	714Y/1
MHW6222	22	77	+44	-66(35)	-57	-57	6	714Y/1
MHW6272	27	77	+44	-64(35)	-57	-57	6.5	714Y/1
MHW6342	34	77	+44	-64(35)	-57	-57	6.5	714Y/1
MHW6342T ${ }^{\text {® }}$	34	77	+44	-64(35)	-57	-57	6.5	714AA/1

Feedforward Hybrids

MFF224B	24	77	+44	$-86(35)$	-75	-70	11	$825 \mathrm{~A} / 2$

40-450 MHz Hybrids, VCC = 24 Vdc, Class A

Device	Hybrid Gain (Nom.) dB	Channel Loading Capacity	Maximum Distortion Specifications				Noise Figure 450 MHz dB Max	Package/ Style
			Output Level dBmV	2nd Order Test dB	Composite Triple Beat dB	Cross Modulation dB		
					60 CH	60 CH		
MHW5182A	18	60	+46	-72(31)	-61	-59	6.5	714Y/1
MHW5222A	22	60	+46	-72(31)	-60	-59	5.5	714Y/1
MHW5342A	34	60	+46	-68(31)	-59	-59	6.0	714Y/1
MHW5342T^	34	60	+46	-68(31)	-59	-59	6.0	714AA/1
MHW5382A	38	60	+46	-64(31)	-59	-59	5.0	714Y/1

Power Doubling Hybrids

MHW5185B	18	60	+46	$-67(32)$	-67	-67	7.0	$714 \mathrm{Y} / 1$

Feedforward Hybrids

MFF124B	24	60	+46	$-84(31)$	-79	-75	10	$825 A / 2$

[^43]
Reverse Amplifiers

5-200 MHz Hybrids, VCC = 24 Vdc, Class A

Device	Hybrid Gain (Nom.) dB	Channel Loading Capacity	Maximum Distortion Specifications						Noise Figure @ 175 MHz dB Max	Package/ Style
			Output Level dBmV	$\begin{gathered} \text { 2nd } \\ \text { Order } \\ \text { Test }(30) \\ \\ \text { dB } \end{gathered}$	Composite Triple Beat dB		Cross Modulation dB			
					22 CH	26 CH	22 CH	26 CH		
MHW1134	13	22	+50	-72	-73	-71(19)	-65	-65(19)	7	714Y/1
MHW1184	18	22	+50	-72	-70	-70(19)	-64	-64(19)	5.5	714Y/1
MHW1224	22	22	+50	-72	-69	-68.5(19)	-62	-62(19)	5.5	714Y/1
MHW1244	24	22	+50	-72	-68	-67.5(19)	-61	-61(19)	5	714Y/1

Low Current Amplifiers - 5-50 MHz Hybrids, VCC = 24 Vdc, Class A

					Maximum	ortion Speci	ons		
	$\begin{aligned} & \text { Hybrid } \\ & \text { Gain } \\ & \text { (Nom.) } \end{aligned}$	Channel Loading Capacity	IDC	Output Level		Composite Triple Beat dB	Cross Modulation dB	Figure @ 50 MHz dB	
Device	dB		Max	dBmV	dB	4 CH	4 CH	Max	Style
MHW1304L	30	4	135	+50	-70	-66	-57	4.5	714Y/1

(19) Typical
(30)Channels 2 and A @ 7

RF CATV Distribution Amplifiers

Section Two

Motorola RF CATV Distribution Amplifiers Data Sheets

Device Number	Page Number	Device Number	Page Number
CA901	6.2-3	MHW7142	6.2-40
CA901A	6.2-3	MHW7182	6.2-42
CA912	6.2-5	MHW7182A	6.2-44
CA922	6.2-7	MHW7185C	6.2-45
CA922A	6.2-7	MHW7185CR	6.2-46
MFF124B	6.2-9	MHW7205C	6.2-47
MFF224B	6.2-11	MHW7222	6.2-48
MFF324B	6.2-13	MHW7222A	6.2-50
MFF424B	6.2-15	MHW7242	6.2-52
MFF524B	6.2-17	MHW7242A	6.2-53
MHW1134	. . 6.2-19	MHW7272	6.2-54
MHW1184	6.2-19	MHW7272A	6.2-55
MHW1224	6.2-19	MHW7292	6.2-56
MHW1244.	6.2-19	MHW8142	6.2-40
MHW1304L	6.2-21	MHW8182	6.2-42
M MHW55182A	$6.2-22$ 6.24	MHW8182A	6.2-57
MHW5222A	6.2-26	MHW8185	6.2-58
MHW5342A	6.2-28	MHW8185R	6.2-59
MHW5342T	6.2-30	MHW8205	6.2-60
MHW5382A	6.2-31	MHW8222	6.2-48
MHW6142	6.2-33	MHW8242	6.2-61
MHW6182	6.2-34	MHW8242A	6.2-62
MHW6182-6	. 6.2-35	MHW8272	6.2-63
MHW6185B	6.2-24	MHW8272A	6.2-64
MHW6222	6.2-36	MHW8292	6.2-65
MHW6272	6.2-37	MHW9142	6.2-40
MHW6342	. 6.2-38	MHW9182	6.2-42
MHW6342T	6.2-39	MHW9242	6.2-66

The RF Line VHF/UHF CATV Amplifiers

. . designed for broadband applications requiring low-distortion amplification. Specifically intended for CATV/MATV market requirements. These amplifiers feature ion-implanted arsenic emitter transistors and an all gold metal system.

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$:

Frequency Range - 40 to 860 MHz
Power Gain - 17 dB Typ @ $\mathrm{f}=40 \mathrm{MHz}$
Noise Figure - 6.5 dB Typ @ f $=500 \mathrm{MHz}$
$120 \mathrm{~dB} \mu \mathrm{~V}$ DIN45004B @ 860 MHz

- All Gold Metallization for Improved Reliability
- Superior Gain, Return Loss and DC Current Stability with Temperature

CA901 CA901A

CASE 714P-03, STYLE 2
(CA)

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+14	dBm
Supply Voltage	V_{CC}	26	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	860	MHz
Power Gain ($\mathrm{f}=40 \mathrm{MHz}$)	PG_{G}	16.5	17	17.5	dB
Slope ($40-860 \mathrm{MHz}$)	S	0.2	0.8	1.5	dB
Gain Flatness	-	-	-	0.6	dB
Input/Output Return Loss$f=40-100 \mathrm{MHz}$ $\mathrm{f}=100-800 \mathrm{MHz}$ $\mathrm{f}=800-860 \mathrm{MHz}$	IRL/ORL	$\begin{gathered} \hline 20 \\ 15 \\ 10 / 15 \end{gathered}$	$\begin{gathered} \overline{17} \\ 12 / 18 \end{gathered}$	-	dB
Second Order Intermodulation Distortion CA901 $\left(\mathrm{V}_{\text {out }}=+50 \mathrm{dBmV}\right.$ per ch. $)$ CA901A	$1 \mathrm{MD}_{2}$	-	-	$\begin{aligned} & \hline-60 \\ & -64 \end{aligned}$	dB
$\begin{array}{ll} \text { DIN45004B (See Figure 1) } \begin{array}{l} f \\ f \\ f \end{array}=40-400-860 \mathrm{MHz} \\ \end{array}$	DIN	$\begin{aligned} & \hline 121 \\ & 120 \end{aligned}$	-	-	$\mathrm{dB} \mu \mathrm{V}$
Noise Figure $\begin{aligned} & f=500 \mathrm{MHz} \\ & \\ & f=860 \mathrm{MHz}\end{aligned}$	NF	-	$\begin{aligned} & \hline 6.5 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 8.0 \end{aligned}$	dB
Supply Current	IDC	-	235	255	mA

Figure 1. DIN45004B Test

Figure 2. External Connections

The RF Line VHF/UHF CATV Amplifier

...designed for broadband applications requiring low-distortion and high output capability. Specifically intended for CATV/MATV market requirements. These amplifiers feature ion-implanted arsenic emitter transistors and an all gold metal system.

- Specified Characteristics at $\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$; $\mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}$

Frequency Range - 40 to 860 MHz
Power Gain - 17 dB Typ @ $\mathrm{f}=40 \mathrm{MHz}$
Noise Figure - 7.0 dB Typ @ $\mathrm{f}=500 \mathrm{MHz}$
$123 \mathrm{~dB} \mu \mathrm{~V}$ DIN45004B @ 860 MHz

- All Gold Metallization for Improved Reliability
- Superior Gain, Return Loss and DC Current Stability with Temperature

CA912

CASE 714P-03, STYLES 2, 3

MAXIMUM RATINGS $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	18	V
RF Input Power Per Tone	$\mathrm{P}_{\text {in }}$	+17	dBm
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=15 \mathrm{~V}, 75\right.$ Ohm System)

Characteristic	Symbol	Min	Typ	Max	Unit
Supply Current	IDC	640	700	760	mA
Power Gain ($\mathrm{f}=40 \mathrm{MHz}$)	PG	16.5	17	17.5	dB
Bandwidth	BW	40	-	860	MHz
Slope (40-860 MHz)	S	0.2	0.8	1.5	dB
Gain Flatness	FL	-	-	1.0	dB
Input/Output Return Loss$f=40-100 \mathrm{MHz}$ $f=100-800 \mathrm{MHz}$ $\mathrm{f}=800-860 \mathrm{MHz}$	IRL/ORL	$\begin{aligned} & 20 \\ & 15 \\ & 10 \end{aligned}$	$\begin{aligned} & \overline{17} \\ & 12 \end{aligned}$	-	dB
Second Order Intermodulation Distortion $\left(\mathrm{V}_{\mathrm{O}}=+50 \mathrm{dBmV} / \mathrm{ch}\right.$.)	$1 \mathrm{MD}_{2}$	-	-	-67	dB
$\begin{array}{ll} \text { DIN45004B (See Figure 1) } \begin{array}{l} f \\ f \\ f=40-400 \mathrm{MHz} \\ \end{array}=460 \mathrm{MHz} \end{array}$	DIN	$\begin{aligned} & \hline 124 \\ & 123 \end{aligned}$	-	-	$\mathrm{dB} \mu \mathrm{V}$
Noise Figure $\begin{aligned} & f=500 \mathrm{MHz} \\ & \mathrm{f}=860 \mathrm{MHz}\end{aligned}$	NF	-	$\begin{aligned} & \hline 7.0 \\ & 8.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 8.5 \\ & 9.5 \end{aligned}$	dB

Figure 1. DIN45004B Test

$$
\mathrm{C} 1 \geq 0.01 \mu \mathrm{~F} \text { (chip) }
$$

Figure 2. External Connections Case 714P-03, Style 3

The RF Line VHF/UHF CATV Amplifiers

Designed for broadband applications requiring low-distortion and high output capability. Specifically intended for CATV/MATV market requirements. These amplifiers feature ion-implanted arsenic emitter transistors and an all gold metal system.

- Specified Characteristics at $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=25^{\circ} \mathrm{C}$

Frequency Range - 40 to 860 MHz
Power Gain - 17 dB Typ @ $\mathrm{f}=40 \mathrm{MHz}$
Noise Figure - 7.0 dB Typ @ f $=500 \mathrm{Mhz}$
$123 \mathrm{~dB} \mu \mathrm{~V}$ DIN45004B @ 860 MHz

- All Gold Metalization for Improved Reliability
- Superior Gain, Return Loss and DC Current Stability with Temperature
- Improved 2nd Order IMD Available (CA922A)

CASE 714P-03, STYLE 2

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	26	V
RF Input Power Per Tone	$\mathrm{P}_{\text {in }}$	+16	dBm
Storage Temperature	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 75\right.$ Ohm System $)$

Characteristic		Symbol	Min	Typ	Max	Unit
Supply Current		Idc	-	400	440	mA
Power Gain ($\mathrm{f}=40 \mathrm{MHz}$)		PG	16.5	17	17.5	dB
Bandwidth		BW	40	-	860	MHz
Slope ($40-860 \mathrm{MHz}$)		S	0.2	0.8	1.5	dB
Gain Flatness		FL	-	-	1.0	dB
Input/Output Return Loss $f=40-100 \mathrm{MHz}$ $f=100-800 \mathrm{MHz}$ $f=800-860 \mathrm{MHz}$		IRL/ORL	$\begin{gathered} \hline 20 \\ 15 \\ 10 / 13 \end{gathered}$	$\begin{gathered} \overline{17} \\ 12 / 15 \end{gathered}$	-	dB
Second Order Intermodulation Distortion $\left(\mathrm{V}_{\mathrm{O}}=+50 \mathrm{dBmV} / \mathrm{ch} .\right)$	$\begin{aligned} & \text { CA922 } \\ & \text { CA922A } \end{aligned}$	$1 \mathrm{MD}_{2}$	-	-	$\begin{aligned} & \hline-63 \\ & -67 \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
DIN45004B (See Figure 1) $\begin{aligned} f & =40-400 \mathrm{MHz} \\ \mathrm{f} & =400-860 \mathrm{MHz}\end{aligned}$		DIN	$\begin{aligned} & \hline 124 \\ & 123 \end{aligned}$	-	-	$\mathrm{dB} \mu \mathrm{V}$
Noise Figure $f=500 \mathrm{MHz}$ $f=860 \mathrm{MHz}$		NF	-	$\begin{aligned} & \hline 7.0 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 8.5 \\ & 9.5 \end{aligned}$	dB

Figure 1. DIN45004B Test

$\mathrm{C} 1,2 \geq 0.01 \mu \mathrm{~F}$ (chip) R = 65 Ohms, 2 Watts

Figure 2. External Connections

The RF Line

450 MHz CATV Feedforward Amplifier

Designed for broadband applications requiring low-distortion amplification. Specifically intended for CATV market requirements. Two hybrid amplifiers along with couplers and delay lines are packaged together to provide extremely low distortion products at conventional CATV amplifier output levels.

- Specifically Designed to Provide Improved Performance in 450 MHz CATV Applications
- Distortion Components Reduced more than 20 dB from Conventional CATV Hybrid Amplifiers
- Specified for 60-Channel Performance
- Fully Shielded Metal Package

```
24 dB 40-450 MHz 60-CHANNEL CATV FEEDFORWARD AMPLIFIER
```


CASE 825A-03, STYLE 2

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=50^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	550	MHz
Power Gain - 50 MHz	Gp	23.4	24	24.6	dB
Slope	S	+0.2	-	+1.4	dB
Gain Flatness	-	-	-	± 0.2	dB
Return Loss - Input $\quad(\mathrm{f}=40-450 \mathrm{MHz})$	IRL	18	-	-	dB
Return Loss - Output ($\mathrm{f}=40-450 \mathrm{MHz}$)	ORL	18	-	-	dB
Second Order Intermodulation Distortion ($\mathrm{V}_{\text {out }}=+50 \mathrm{dBmV}$ per ch., ch. A, H2, H22)	IMD	-	-	-80	dB
$\begin{aligned} & \text { Cross Modulation Distortion } \\ & \quad\left(V_{\text {out }}=46 \mathrm{dBmV}\right. \text { per ch., ch. 2, 60-channels) } \\ & \text { (Vout }=46 \mathrm{dBmV} \text { per ch., ch. } 2,- \text { H22) } \end{aligned}$	XMD 60	-	-80	$\overline{-75}$	dB
$\begin{aligned} & \text { Composite Triple Beat } \\ & \text { (Vout }=46 \mathrm{dBmV} \text { per ch., ch. 2, 60-channels) } \\ & \left(V_{\text {out }}=46 \mathrm{dBmV} \text { per ch., ch. } 2,-\right. \text { H22) } \end{aligned}$	CTB	-	-85	$\overline{-79}$	dB
Noise Figure $(f=50 \mathrm{MHz})$ $(f=450 \mathrm{MHz})$	NF	-	-	$\begin{gathered} 9 \\ 10 \end{gathered}$	dB
DC Current	IDC	-	660	725	mA

PERFORMANCE DERATE versus TEMPERATURE (TYP)

Symbol	Characteristics	Test Conditions	$\mathbf{- 2 0 + 8 0} \mathbf{} \mathbf{C}$	$\mathbf{- 2 0 + 1 0 0 ^ { \circ }} \mathbf{C}$
G	Gain	50 MHz	$\pm 0.5 \mathrm{~dB}$	$\pm 0.6 \mathrm{~dB}$

Motorola test fixture: P/N FF124BTF is necessary for accurate measurement.

The RF Line 550 MHz CATV Feedforward Amplifier

Designed for broadband applications requiring low-distortion amplification. Specifically intended for CATV market requirements. Two hybrid amplifiers along with couplers and delay lines are packaged together to provide extremely low distortion products at conventional CATV amplifier output levels.

- Specifically Designed to Provide Improved Performance in 550 MHz CATV Applications
- Distortion Components Reduced more than 20 dB from Conventional CATV Hybrid Amplifiers
- Specified for 77-Channel Performance
- Fully Shielded Metal Package

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=50^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	550	MHz
Power Gain - 50 MHz	Gp	23.4	24	24.6	dB
Slope	S	+0.2	-	+1.8	dB
Gain Flatness	-	-	-	± 0.25	dB
Return Loss - Input ($f=40-550 \mathrm{MHz}$)	IRL	18	-	-	dB
Return Loss - Output ($f=40-550 \mathrm{MHz}$)	ORL	18	-	-	dB
Second Order Intermodulation Distortion $\text { (V }{ }_{\text {out }}=+50 \mathrm{dBmV} \text { per ch., ch. A, H2, H22) }$	IMD	-	-	-80	dB
Cross Modulation Distortion ($V_{\text {out }}=44 \mathrm{dBmV}$ per ch., ch. 2, 77-channels) ($\mathrm{V}_{\text {out }}=44 \mathrm{dBmV}$ per ch., ch. 2, —, H39)	XMD77	-	-80	-70	dB
$\begin{aligned} & \text { Composite Triple Beat } \\ & \left(V_{\text {out }}=44 \mathrm{dBmV}\right. \text { per ch., ch. 2, 77-channels) } \\ & \left(V_{\text {out }}=44 \mathrm{dBmV} \text { per ch., ch. 2, }-, \mathrm{H} 39\right) \end{aligned}$	СТВ	-	-85	-75	dB
$\begin{array}{ll}\text { Noise Figure } & (f=50 \mathrm{MHz}) \\ & (f=550 \mathrm{MHz})\end{array}$	NF	-		$\begin{gathered} \hline 9 \\ 11 \end{gathered}$	dB
DC Current	IDC	-	660	725	mA

PERFORMANCE DERATE versus TEMPERATURE (TYP)

Symbol	Characteristics	Test Conditions	$\mathbf{- 2 0 + 8 0} \mathbf{C}$	$\mathbf{- 2 0 + 1 0 0 ^ { \circ }} \mathbf{C}$
G	Gain	50 MHz	$\pm 0.5 \mathrm{~dB}$	$\pm 0.6 \mathrm{~dB}$

PERFORMANCE MEASUREMENT
Motorola test fixture: P/N FF124BTF is necessary for accurate measurement.

The RF Line 600 MHz CATV Feedforward Amplifier

Designed for broadband applications requiring low-distortion amplification. Specifically intended for CATV market requirements. Two hybrid amplifiers along with couplers and delay lines are packaged together to provide extremely low distortion products at conventional CATV amplifier output levels.

- Specifically Designed to Provide Improved Performance in 600 MHz CATV Applications
- Distortion Components Reduced more than 20 dB from Conventional CATV Hybrid Amplifiers
- Specified for 85-Channel Performance
- Fully Shielded Metal Package

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	28	V
RF Input Power	$\mathrm{P}_{\text {in }}$	+55	dBmV
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=50^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 75 \Omega\right.$ System)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	600	MHz
Power Gain - 50 MHz	G_{p}	23.4	24	24.6	dB
Slope	S	+0.4	-	+2.0	dB
Gain Flatness	-	-	-	± 0.25	dB
Return Loss - Input	IRL	18	-	-	dB
Return Loss - Output	ORL	18	-	-	dB
Cross Modulation Distortion ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}$ per ch., ch. $2,-$, H47)	XMD85	-	-	-68	dB
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}$ per ch., ch. $2,-$, H47)	CTB85	-	-	-73	dB
	NF	-	-	$\begin{gathered} 9.0 \\ 12.5 \end{gathered}$	dB
DC Current	IDC	-	660	725	mA

PERFORMANCE DERATE versus TEMPERATURE (TYP)

Symbol	Characteristics	Test Conditions	$\mathbf{- 2 0}+\mathbf{8 0} \mathbf{}{ }^{\circ} \mathbf{C}$	$\mathbf{- 2 0 + 1 0 0}{ }^{\circ} \mathbf{C}$
ΔG_{p}	Change in Gain w/Temp.	50 MHz	$\pm 0.5 \mathrm{~dB}$	$\pm 0.6 \mathrm{~dB}$

Motorola test fixture: P/N FF124BTF is necessary for accurate measurement.
Figure 1. Block Diagram of Circuit

The RF Line
 750 MHz CATV Feedforward Amplifier

Designed for broadband applications requiring low-distortion amplification. Specifically intended for CATV market requirements. Two hybrid amplifiers along with couplers and delay lines are packaged together to provide extremely low distortion products at conventional CATV amplifier output levels.

- Specifically Designed to Provide Improved Performance in 750 MHz CATV Applications
- Distortion Components Reduced more than 20 dB from Conventional CATV Hybrid Amplifiers
- Specified for 110 Channel Performance
- Fully Shielded Metal Package

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	28	V
RF Input Power	$\mathrm{P}_{\text {in }}$	+55	dBmV
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=50^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 75 \Omega\right.$ System)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	750	MHz
Power Gain - 50 MHz	G_{p}	23.4	24	24.6	dB
Slope	S	+0.4	+0.9	+1.4	dB
Gain Flatness	-	-	-	± 0.3	dB
Return Loss - Input	IRL	18	-	-	dB
Return Loss - Output	ORL	18	-	-	dB
$\begin{aligned} & \text { Composite Triple Beat } \\ & \text { (Vout }=+44 \mathrm{dBmV} \text { at ch. } 2 \text { to } \mathrm{ch} . \mathrm{M} 73 \text {) } \\ & \left(9 \mathrm{~dB} \text { Up slope, } \mathrm{V}_{\text {out }}=+46 \mathrm{dBmV} \text { at } \mathrm{ch} . \mathrm{M} 73\right. \text {) } \end{aligned}$	$\begin{aligned} & \text { CTB }_{110} \text { flat } \\ & \text { CTB }_{110} \text { slope } \end{aligned}$	-	$\overline{-70}$	-68	dB
Composite Second Order Beat ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}$ at ch. 2 to ch. M73) (9 dB Up slope, $\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ at ch. M 73)	$\begin{aligned} & \mathrm{CSO}_{110} \text { flat } \\ & \mathrm{CSO}_{110} \text { slope } \end{aligned}$	-	$\overline{-72}$	-70	dB
$\begin{aligned} \text { Noise Figure }\left(\begin{array}{rl} (f) & =50 \mathrm{MHz}) \\ (\mathrm{f} & =750 \mathrm{MHz}) \end{array}\right. \end{aligned}$	NF	-	-	$\begin{gathered} \hline 9.0 \\ 13.0 \end{gathered}$	dB
DC Current	IDC	-	660	725	mA

PERFORMANCE DERATE versus TEMPERATURE (TYP)

Symbol	Characteristic	Test Conditions	$\mathbf{- 2 0}+\mathbf{8 0}{ }^{\circ} \mathbf{C}$	$\mathbf{- 2 0 + 1 0 0 ^ { \circ }} \mathbf{C}$
ΔG_{p}	Change in Gain w/Temp.	50 MHz	$\pm 0.5 \mathrm{~dB}$	$\pm 0.6 \mathrm{~dB}$

PERFORMANCE MEASUREMENT
Motorola test fixture: P/N FF124BTF is necessary for accurate measurement.

Figure 1. Block Diagram of Circuit

The RF Line 860 MHz CATV Feedforward Amplifier

Designed for broadband applications requiring low-distortion amplification. Specifically intended for CATV market requirements. Two hybrid amplifiers along with couplers and delay lines are packaged together to provide extremely low distortion products at conventional CATV amplifier output levels.

- Specifically Designed to Provide Improved Performance in 860 MHz CATV Applications
- Distortion Components Reduced more than 20 dB from Conventional CATV Hybrid Amplifiers
- Specified for 128 Channel Performance
- Fully Shielded Metal Package

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Supply Voltage	V_{CC}	28	V
RF Input Power	P_{in}	+55	dBmV
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-40 to +100	${ }^{\circ} \mathrm{C}$
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(T_{C}=50^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=24 \mathrm{~V}, 75 \Omega\right.$ System)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	860	MHz
Power Gain - 50 MHz	G_{p}	23.4	24	24.6	dB
Slope	S	+0.4	+1	+1.6	dB
Gain Flatness	-	-	-	± 0.3	dB
$\begin{array}{ll}\text { Return Loss - Input } & \mathrm{f}=50-750 \mathrm{MHz} \\ \mathrm{f}=750-860 \mathrm{MHz}\end{array}$	IRL	$\begin{aligned} & \hline 18 \\ & 16 \end{aligned}$	-	-	dB
Return Loss - Output $\quad \begin{array}{ll}\mathrm{f}=50-750 \mathrm{MHz} \\ \mathrm{f}=750-860 \mathrm{MHz}\end{array}$	ORL	$\begin{aligned} & \hline 18 \\ & 16 \end{aligned}$	-	-	dB
Composite Triple Beat (1) ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}$ at ch. 2, 55.25 MHz to ch. M90, 853.25 MHz)	CTB128 flat	-	-70	-66	dB
Composite Second Order Beat (1) ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}$ at ch. 2, 55.25 MHz to ch. M90, 853.25 MHz)	CSO_{128} flat	-	-73	-68	dB
DIN45004B (See Figure 2)	DIN	-	130	-	dB $\mu \mathrm{V}$
$\begin{aligned} \text { Noise Figure } & (\mathrm{f}=50 \mathrm{MHz}) \\ & (\mathrm{f}=860 \mathrm{MHz}) \end{aligned}$	NF	-	-	$\begin{gathered} 9.0 \\ 13.0 \end{gathered}$	dB
DC Current	IDC	-	660	725	mA

PERFORMANCE DERATE versus TEMPERATURE (TYP)

Symbol	Characteristic	Test Conditions	$\mathbf{- 2 0}+\mathbf{8 0} \mathbf{}{ }^{\circ} \mathbf{C}$	$\mathbf{- 2 0 + 1 0 0}{ }^{\circ} \mathbf{C}$
ΔG_{p}	Change in Gain w/Temp.	50 MHz	$\pm 0.5 \mathrm{~dB}$	$\pm 0.6 \mathrm{~dB}$

PERFORMANCE MEASUREMENT
Motorola test fixture: P/N FF124BTF is necessary for accurate measurement.
Figure 1. Block Diagram of Circuit

Figure 2. DIN45004B Test

The RF Line
 Low Distortion Wideband Amplifiers

. . . designed specifically for broadband applications requiring low distortion characteristics. Specified for use as return amplifiers for mid-split and high-split 2-way cable TV systems. Features all gold metallization system.

- Guaranteed Broadband Power Gain @ $f=5.0-200 \mathrm{MHz}$
- Guaranteed Broadband Noise Figure @ f $=5.0-175 \mathrm{MHz}$
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- All Ion-Implanted Arsenic Emitter Transistor Chips with 6.0 GHz f \dagger 's
- Circuit Design Optimized for Good RF Stability Under High VSWR Load Conditions

- Transformers Designed to Insure Good Low Frequency Gain Stability versus Temperature

CASE 714Y-03, STYLE 1

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+65	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega$ system $)$

Characteristic	Symbol	MHW1134	MHW1184	MHW1224	MHW1244	Units
Power Gain @ 10 MHz	Gp	13.0 ± 0.5	18.5 ± 0.5	22.0 ± 0.5	24.0 ± 0.5	dB
Frequency Range (Response/Return Loss) Note 1	BW	5.0-200				MHz
Cable Slope Equivalent ($5.0-200 \mathrm{MHz}$)	S	-0.2 Min/+0.8 Max				dB
Gain Flatness ($5.0-200 \mathrm{MHz}$)	F	$\pm 0.2 \mathrm{Max}$				dB
Input/Output Return Loss (5.0-200 MHz) Note 1	IRL/ORL	18.0 Min				dB
```Cross Modulation Distortion @ +50 dBmV per ch. 12-Channel FLAT (5.0-120 MHz) 22-Channel FLAT (5.0-175 MHz) (2) (3) 26-Channel FLAT (5.0-200 MHz)```	$\begin{aligned} & \mathrm{XM}_{12} \\ & \mathrm{XM} \mathrm{M}_{22} \\ & \mathrm{XM} 26 \end{aligned}$	$\begin{aligned} & \text { - } 70 \text { Тур } \\ & \text {-65 Мах } \\ & \text {-65 Тур } \end{aligned}$	-68 Typ -64 Max -64 Typ	-67 Typ -62 Max -62 Typ	$\begin{aligned} & \text {-66 Тyp } \\ & \text {-61 Max } \\ & \text {-61 Тyp } \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$

## NOTES:

1. Response and return loss characteristics are tested and guaranteed for the full $5.0-200 \mathrm{MHz}$ frequency range.
2. Motorola $100 \%$ distortion and noise figure testing is performed over the $5.0-175 \mathrm{MHz}$ frequency range. Cross modulation and composite triple beat testing are with 22-channel loading; Video carriers used are:

T7-T13	$7.0-43.0 \mathrm{MHz}$	7-Channels
$2-6$	$55.25-83.25 \mathrm{MHz}$	5-Channels
A-7	$121.25-175.25 \mathrm{MHz}$	10-Channels

3. Video carriers used for 12-Channel typical performances are T7-6; For 26-Channel typical performance, Channels 8, 9, 10 and 11 are added to the 22-Channel carriers listed above.

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega$ system $)$

Characteristic	Symbol	MHW1134	MHW1184	MHW1224	MHW1244	Units
Composite Triple Beat Distortion @ +50 dBmV per ch. 22-Channel FLAT (5.0-175 MHz) 26-Channel FLAT ( $5.0-200 \mathrm{MHz}$ )   Notes 2 and 3	$\begin{aligned} & \text { CTB }_{22} \\ & \text { CTB }_{26} \end{aligned}$	$\begin{aligned} & \text {-73 Max } \\ & \text {-71 Typ } \end{aligned}$	$\begin{aligned} & \text { - } 72 \mathrm{Max} \\ & \text {-70 Typ } \end{aligned}$	$\begin{aligned} & \text {-69 Max } \\ & \text {-68.5 Typ } \end{aligned}$	$\begin{aligned} & \text {-68 Max } \\ & \text {-67.5 Typ } \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Individual Triple Beat Distortion @ +50 dBmV per ch.   Mid-Split ( $5.0-120 \mathrm{MHz}$ ) T11, T12 and CH2 @ 123.25 MHz   High-Split (5.0-175 MHz) T13, CH2 and CH5 @ 175.5 MHz	$\begin{aligned} & \mathrm{TB}_{3} \\ & \mathrm{~TB} 3 \end{aligned}$	$\begin{aligned} & \text {-90 Typ } \\ & \text {-87 Typ } \end{aligned}$	$\begin{aligned} & \text {-88 Тур } \\ & \text {-85 Тур } \end{aligned}$	$\begin{aligned} & \text {-88 Typ } \\ & \text {-85 Typ } \end{aligned}$	$\begin{aligned} & \text {-87 Тур } \\ & \text {-84 Тур } \end{aligned}$	$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \end{aligned}$
Second Order Distortion @ + 50 dBmV per ch. High-Split (5.0-175 MHz) CH2, CHA @ 176.5 MHz	IMD	-72 Max	-72 Max	-72 Max	-72 Max	dB
Noise Figure High-Split (5.0-175 MHz) Note 2	NF	7.0 Max	5.5 Max	5.5 Max	5.0 Max	dB
DC Current	IDC	210 Typ/240 Max				mAdc

## NOTES:

1. Response and return loss characteristics are tested and guaranteed for the full $5.0-200 \mathrm{MHz}$ frequency range.
2. Motorola $100 \%$ distortion and noise figure testing is performed over the $5.0-175 \mathrm{MHz}$ frequency range. Cross modulation and composite triple beat testing are with 22-channel loading; Video carriers used are:

T7-T13	7.0-43.0 MHz	7-Channels
$2-6$	$55.25-83.25 \mathrm{MHz}$	5-Channels
A-7	$121.25-175.25 \mathrm{MHz}$	10-Channels

3. Video carriers used for 12-Channel typical performances are T7-6; For 26-Channel typical performance, Channels 8, 9, 10 and 11 are added to the 22-Channel carriers listed above.

## The RF Line <br> Low Distortion Wideband Reverse Amplifier Modules

Designed specifically for broadband applications requiring low distortion characteristics. Specified for use as return amplifiers for low-split 2-way cable TV systems. Features all gold metallization system.

- Guaranteed Broadband Power Gain
- Guaranteed Broadband Noise Figure
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- Circuit Design Optimized for Good RF Stability Under High VSWR Load Conditions
- Transformers Designed to Insure Good Low Frequency Gain Stability versus Temperature


CASE 714Y-03, STYLE 1

## MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	+28	$\mathrm{Vdc}^{\prime}$
RF Input Voltage (Single Tone)	$\mathrm{V}_{\mathrm{IN}}$	+70	dBmV
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=30^{\circ} \mathrm{C}, 75\right.$ ohm system, unless otherwise noted)

	Characteristic	Symbol	Min	Max	Unit
Bandwidth	All	BW	5.0	50	MHz
Power Gain	$(\mathrm{f}=5.0 \mathrm{MHz})$	Gp	29.2	30.8	dB
Return Loss	$(@ \mathrm{f}=5.0-50 \mathrm{MHz})$	RL	18	-	dB
Second Order Distortion	$\left(\mathrm{V}_{\text {out }}=+50 \mathrm{dBmV} / \mathrm{ch}\right)$	IMD	-	-70	dBc
Cross Modulation	$\left(\mathrm{V}_{\text {out }}=+50 \mathrm{dBmV} / \mathrm{ch}\right)$	$\mathrm{XMD}_{4}$	-	-57	dBc
Triple Beat Distortion	$\left(\mathrm{V}_{\text {out }}=+50 \mathrm{dBmV} / \mathrm{ch}\right)$	$\mathrm{TB}_{3}$	-	-66	dBc
Noise Figure	$(\mathrm{f}=50 \mathrm{MHz})$	NF	-	4.5	dB
DC Current		IDC	100	135	mA

## The RF Line 450 MHz CATV Amplifier

. . . designed specifically for 450 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 7.0 GHz f 个 and an all gold metallization system.

- Specified for 53- and 60-Channel Performance
- Broadband Power Gain — @ f = 40-450 MHz
$\mathrm{G}_{\mathrm{p}}=18.2 \mathrm{~dB}$ (Typ) @ 50 MHz 19.0 dB (Typ) @ 450 MHz
- Broadband Noise Figure

18 dB GAIN 450 MHz 60-CHANNEL CATV INPUT/OUTPUT TRUNK AMPLIFIER $\mathrm{NF}=6.5 \mathrm{~dB}$ (Max)

- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz Ion-Implanted Transistors

Value	
CASE 714Y-03, STYLE $\mathbf{1}$	
+28	Unit
-20 to +100	${ }^{\circ} \mathrm{C}$
-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	450	MHz
Power Gain - 50 MHz		$G_{p}$	17.8	18.2	18.8	dB
Power Gain - 450 MHz		$G_{p}$	18.5	19	20	dB
Slope		S	0.3	-	1.5	dB
Gain Flatness (Peak To Valley)		-	-	0.2	0.4	dB
$\begin{aligned} & \text { Return Loss — Input/Output } \\ & \left(\mathrm{Z}_{\mathrm{O}}=75\right. \text { Ohms) } \end{aligned}$	$40-450 \mathrm{MHz}$	IRL/ORL	18	-	-	dB
$\begin{aligned} & \text { Second Order Intermodulation Distortion } \\ & \left(V_{\text {out }}=+46 \mathrm{dBmV}\right. \text { per ch., Ch 2, M6, M15) } \\ & \left(V_{\text {out }}=+46 \mathrm{dBmV}\right. \text { per ch., Ch 2, M13, M22) } \end{aligned}$		IMD	-	$\begin{aligned} & -85 \\ & -80 \end{aligned}$	$\overline{-72}$	dB
Cross Modulation Distortion ( $\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ per ch.)	53-Channel FLAT   60-Channel FLAT	$\begin{aligned} & \mathrm{XMD}_{53} \\ & \text { XMD }_{60} \end{aligned}$	-	$\begin{aligned} & -62 \\ & -61 \end{aligned}$	$\overline{-59}$	dB
Composite Triple Beat ( $\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ per ch.)	53-Channel FLAT   60-Channel FLAT	$\begin{aligned} & \text { CTB53 } \\ & \text { CTB }_{60} \end{aligned}$	-	$\begin{aligned} & \hline-64 \\ & -62 \end{aligned}$	$\overline{-61}$	dB
$\begin{aligned} & \text { DIN (European Applications Only)* } \\ & 300 \mathrm{MHz} \text { - (CH V + Q - P @ W) } \\ & 400 \mathrm{MHz} \text { (CH M8 + M15 - M9 @ M14) } \\ & 450 \mathrm{MHz} \text { - (CH M20 + M23-M22 @ M21) } \end{aligned}$		DIN1   DIN2   DIN3	-	$\begin{aligned} & 126 \\ & 126 \\ & 125 \end{aligned}$	-	$\mathrm{dB} \mu \mathrm{V}$ **
Noise Figure ( $\mathrm{f}=450 \mathrm{MHz}$ )		NF	-	5.5	6.5	dB
DC Current		IDC	-	210	240	mA

REV 1
*DIN (European Applications Only)

NCTA Channel   Designation	Frequency   (MHz)	DIN Output Level   $(\mathbf{d B m V})^{\star *}($ Typ $)$	DIN Beat Level   dB Relative to Ref. Ch.
P	253.25	+60	
Q	259.25	+60	$\leqslant-60$
V	289.25	+66	
W (Ref.)	295.25	+66	
M8	361.25	+60	$\leqslant-60$
M9	367.25	+66	
M14 (Ref.)	397.25	+66	$\leqslant-60$
M15	403.25	+65	
M20	433.25	+65	
M21 (Ref.)	439.25	+59	
M22	445.25	+59	
M23	451.25		

** DIN $(\mathrm{dB} \mu \mathrm{V})=$ Reference Channel Level $(\mathrm{dBmV})+60 \mathrm{~dB}$

## The RF Line <br> High Output Doubler 450/550 MHz CATV Amplifier Modules

The MHW5185B and MHW6185B are designed specifically for 450/550 MHz CATV applications. Features ion-implanted arsenic emitter transistors and an all gold metallization system.

- 5th Generation Die Technology
- Specified for 60/77-Channel Performance
- Broadband Power Gain — @ f $=40-550 \mathrm{MHz}$
$G_{p}=18.5 \mathrm{~dB}$ Typ @ 50 MHz
19.2 dB Typ @ 450 MHz 19.5 dB Typ @ 550 MHz
- Broadband Noise Figure
$\mathrm{NF}=4.5 \mathrm{~dB}$ Typ @ 50 MHz
- Improvement in Distortion Over Conventional Hybrids
- Allows Higher Output Level Operation

MHW5185B MHW6185B


CASE 714Y-03, STYLE 1

## ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+70	dBmV
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	+28	Vdc
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic			Symbol	Min	Typ	Max	Unit
Frequency Range		MHW5185B   MHW6185B	BW	$\begin{aligned} & 40 \\ & 40 \end{aligned}$	-	$\begin{aligned} & \hline 450 \\ & 550 \end{aligned}$	MHz
Power Gain	50 MHz 450 MHz 550 MHz	All   MHW5185B   MHW6185B	$G_{p}$	$\begin{gathered} \hline 18 \\ 18.5 \\ 18.8 \end{gathered}$	$\begin{aligned} & 18.5 \\ & 19.2 \\ & 19.5 \end{aligned}$	$\begin{gathered} \hline 19 \\ 20 \\ 20.5 \end{gathered}$	dB
Slope	$\begin{aligned} & 40-450 \mathrm{MHz} \\ & 40-550 \mathrm{MHz} \end{aligned}$	MHW5185B   MHW6185B	S	$\begin{aligned} & 0.3 \\ & 0.3 \end{aligned}$		$\begin{aligned} & 1.8 \\ & 2.0 \end{aligned}$	dB
Gain Flatness (Peak To Valley)		MHW5185B MHW6185B	-			$\begin{aligned} & \hline 0.4 \\ & 0.5 \end{aligned}$	dB
Return Loss - Input/Output ( $\mathrm{Z}_{\mathrm{O}}=75$ Ohms)	$\begin{aligned} & 40-450 \mathrm{MHz} \\ & 40-550 \mathrm{MHz} \end{aligned}$	MHW5185B MHW6185B	IRL/ORL	$\begin{aligned} & \hline 18 \\ & 18 \end{aligned}$			dB
$\begin{aligned} & \text { Composite Second Order } \\ & 60 \mathrm{ch},\left(\mathrm{~V}_{\text {out }}=+46 \mathrm{dBmV}\right) \\ & 77 \mathrm{ch},\left(\mathrm{~V}_{\text {out }}=+44 \mathrm{dBmV}\right) \end{aligned}$		MHW5185B   MHW6185B	CSO60/77	-	$\begin{aligned} & -70 \\ & -68 \end{aligned}$	$\begin{aligned} & -67 \\ & -65 \end{aligned}$	dB

(continued)

ELECTRICAL CHARACTERISTICS - continued ( $\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Cross Modulation Distortion   ( $60 \mathrm{ch}, \mathrm{V}_{\text {out }}=+46 \mathrm{dBmV} @ \mathrm{Fm}=55 \mathrm{MHz}$ )   ( $77 \mathrm{ch}, \mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} @ \mathrm{Fm}=55 \mathrm{MHz}$ )	MHW5185B   MHW6185B	XMD60/77	-	$\begin{aligned} & -70 \\ & -78 \end{aligned}$	$\begin{aligned} & -67 \\ & -68 \end{aligned}$	dB
Signal-to-Triple Beat Noise $\left(60 \mathrm{ch}, \mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}\right.$ )   ( $77 \mathrm{ch}, \mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}$ )	MHW5185B   MHW6185B	CTB60/77	-	$\begin{aligned} & -68 \\ & -66 \end{aligned}$	$\begin{aligned} & -67 \\ & -65 \end{aligned}$	dB
$\begin{array}{ll}\text { Noise Figure } & 450 \mathrm{MHz} \\ & 550 \mathrm{MHz}\end{array}$	MHW5185B   MHW6185B	NF	-	$\begin{aligned} & 5.5 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 7.5 \end{aligned}$	dB
DC Current ( $\left.\mathrm{V}_{\mathrm{DC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=30^{\circ} \mathrm{C}\right)$		IDC	380	415	440	mA

## The RF Line 450 MHz CATV Amplifier

... designed for broadband applications requiring low distortion characteristics. Specifically intended for CATV market requirements. Features ion-implanted arsenic emitter transistors with 7.0 GHz f , and an all gold metallization system.


- Broadband Power Gain — @ f=40-450 MHz

$$
G_{p}=22 \mathrm{~dB}(\text { Typ) }
$$

- Broadband Noise Figure- @ f $=40-450 \mathrm{MHz}$

$$
\mathrm{NF}=4.5 \mathrm{~dB} \text { (Typ) }
$$

- Superior Gain, Return Loss and DC Current Stability with Temperature

- All Gold Metallization
- 7.0 GHz Ion-Implanted Transistors


## ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+70	dBmV
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	+28	Vdc
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$



ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	450	MHz
Power Gain - 50 MHz		$G_{p}$	21.4	22	22.6	dB
Power Gain - 450 MHz		$G_{p}$	22.0	22.9	23.5	dB
Slope		S	0.2	0.5	1.5	dB
Gain Flatness (Peak To Valley)		-	-	0.2	0.4	dB
$\begin{aligned} & \text { Return Loss — Input/Output } \\ & \left(Z_{0}=75 \text { Ohms }\right) \end{aligned}$	$40-450 \mathrm{MHz}$	IRL/ORL	18	-	-	dB
$\begin{gathered} \text { Second Order Intermodulation Distortion } \\ \left(V_{\text {out }}=+46 \mathrm{dBmV}\right. \text {, Ch 2, M6, M15) } \\ \left(V_{\text {out }}=+44 \mathrm{dBmV}\right. \text {, Ch 2, M13, M22) } \end{gathered}$		IMD		$\begin{aligned} & -80 \\ & -78 \end{aligned}$	$\overline{-72}$	dB
Cross Modulation Distortion $\left(\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}\right)$	53-Channel FLAT   60-Channel FLAT	$\begin{aligned} & \mathrm{XMD}_{53} \\ & \mathrm{XMD}_{60} \end{aligned}$	-	$\begin{aligned} & \hline-60 \\ & -60 \end{aligned}$	$\overline{-59}$	dB
Composite Triple Beat $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right)$	53-Channel FLAT   60-Channel FLAT	$\begin{aligned} & \text { CTB }_{53} \\ & \text { CTB }_{60} \end{aligned}$		$\begin{aligned} & \hline-63 \\ & -61 \end{aligned}$	$-\overline{60}$	dB
$\begin{aligned} & \text { DIN (European Applications Only) } \\ & 300 \mathrm{MHz} \text { - (CH V + Q - P @ W) } \\ & 400 \mathrm{MHz} \text { - (CH M8 + M15 - M9 @ M14) } \\ & 450 \mathrm{MHz} \text { - (CH M20 + M23 - M22 @ M21) } \end{aligned}$		$\begin{aligned} & \text { DIN1 } \\ & \text { DIN2 } \\ & \text { DIN3 } \end{aligned}$	-	$\begin{gathered} 125.5 \\ 125 \\ 124 \end{gathered}$	-	$\mathrm{dB} \mu \mathrm{V}$
Noise Figure$(\mathrm{f}=450 \mathrm{MHz})$		NF	-	4.5	5.0	dB
DC Current		IDC	-	210	240	mA

REV 1
*DIN (European Applications Only)

NCTA Channel   Designation	Frequency   (MHz)	DIN Output Level   (dBmV)*(Typ)	DIN Beat Level   dB Relative to Ref. Ch.
P	253.25	+59.5	
Q	259.25	+59.5	$\leqslant-60$
V (Ref.)	289.25	+65.5	
M8	295.25	+65.5	$\leqslant-60$
M9	361.25	+59	
M14 (Ref.)	367.25	+65	
M15	397.25	+65	$\leqslant-60$
M20	403.25	+64	
M21 (Ref.)	433.25	+58	
M22	439.25	+58	
M23	445.25		

**DIN ( $\mathrm{dB} \mathrm{\mu} \mathrm{~V}$ ) $)=$ Reference Channel Level $(\mathrm{dBmV})+60 \mathrm{~dB}$

## The RF Line 450 MHz CATV Amplifier

. . . designed specifically for 450 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 7.0 GHz f 个 and an all gold metallization system.

- Specified for 53- and 60-Channel Performance
- Broadband Power Gain — @ $\mathrm{f}=40-450 \mathrm{MHz}$

$$
\mathrm{Gp}=34.5 \mathrm{~dB} \text { Typ @ } 50 \mathrm{MHz}
$$

35.5 dB Typ @ 450 MHz

- Broadband Noise Figure

$$
\mathrm{NF}=5.0 \mathrm{~dB} \text { (Typ) }
$$

- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz Ion-Implanted Transistors


## ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	+28	Vdc
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$



ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	450	MHz
Power Gain - 50 MHz		$G_{p}$	33.5	34.5	35.5	dB
Power Gain - 450 MHz		$G_{p}$	34.5	35.5	37	dB
Slope		S	0	+1.0	+2.5	dB
Gain Flatness (Peak To Valley)		-	-	0.3	0.6	dB
$\begin{aligned} & \text { Return Loss - Input/Output } \\ & \left(\mathrm{Z}_{\mathrm{O}}=75 \mathrm{Ohms}\right) \end{aligned}$	$40-450 \mathrm{MHz}$	IRL/ORL	18	-	-	dB
Second Order Intermodulation Distortion ( $\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ per ch., Ch 2, M6, M15)   ( $\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ per ch., Ch 2, M13, M22		IMD	-	$\begin{aligned} & -78 \\ & -74 \end{aligned}$	$\overline{-68}$	dB
Cross Modulation Distortion $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right)$	53-Channel FLAT   60-Channel FLAT	$\begin{aligned} & \hline \mathrm{XMD}_{53} \\ & \text { XMD }_{60} \end{aligned}$	-	$\begin{aligned} & \hline-63 \\ & -63 \end{aligned}$	$-59$	dB
Composite Triple Beat $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right)$	53-Channel FLAT   60-Channel FLAT	$\begin{aligned} & \text { CTB }_{53} \\ & \text { CTB }_{60} \end{aligned}$		$\begin{aligned} & \hline-63 \\ & -62 \end{aligned}$	$\overline{-59}$	dB
$\begin{aligned} & \text { DIN (European Applications Only) } \\ & 300 \mathrm{MHz}-(\mathrm{CH} \mathrm{~V}+\mathrm{Q}-\mathrm{P} \text { @ W) } \\ & 400 \mathrm{MHz}-(\mathrm{CH} \mathrm{M8}+\mathrm{M} 15-\mathrm{M} 9 @ \mathrm{M} 14) \\ & 450 \mathrm{MHz}-(\mathrm{CH} \mathrm{M} 20+\mathrm{M} 23-\mathrm{M} 22 @ \mathrm{M} 21) \end{aligned}$		DIN1   DIN2   DIN3	-	$\begin{aligned} & 126 \\ & 125 \\ & 124 \end{aligned}$	-	$\mathrm{dB} \mu \mathrm{V}$
Noise Figure $(f=450 \mathrm{MHz})$		NF	-	5.0	6.0	dB
DC Current		IDC	-	310	340	mA

REV 7
*DIN (European Applications Only)

NCTA Channel   Designation	Frequency   (MHz)	DIN Output Level   (dBmV)*(Typ)	DIN Beat Level   dB Relative to Ref. Ch.
P	253.25	+60	
Q	259.25	+60	$\leqslant-60$
V (Ref.)	289.25	+66	
M8	295.25	+66	$\leqslant-60$
M9	361.25	+59	
M14 (Ref.)	367.25	+65	
M15	397.25	+65	$\leqslant-60$
M20	403.25	+64	
M21 (Ref.)	433.25	+58	
M22	439.25	+58	
M23	445.25		

**DIN ( $\mathrm{dB} \mathrm{\mu} \mathrm{~V}$ ) $)=$ Reference Channel Level $(\mathrm{dBmV})+60 \mathrm{~dB}$

## The RF Line 450 MHz CATV Amplifier

Designed specifically for 450 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 7.0 GHz f ד and an all gold metallization system.

- Specified for 60-Channel Performance
- Broadband Power Gain — @ f=40-450 MHz
$G p=34.5 \mathrm{~dB}$ Typ @ 50 MHz
35.2 dB Typ @ 450 MHz
- Broadband Noise Figure

$$
\mathrm{NF}=5.0 \mathrm{~dB} \text { (Typ) }
$$

- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz Ion-Implanted Transistors

MHW5342T

34 dB GAIN
450 MHz
60-CHANNEL
CATV LINE EXTENDER
AMPLIFIER



CASE 714AA-01, STYLE 1

## ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	+28	$\mathrm{Vdc}^{\circ}$
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	450	MHz
Power Gain - 50 MHz	$G_{p}$	33.5	34.5	35.5	dB
Power Gain - 450 MHz	$G_{p}$	34.5	35.2	37	dB
Slope	S	0	0.7	2	dB
Gain Flatness (Peak To Valley)	-	-	0.3	0.6	dB
	IRL/ORL	18	-	-	dB
Second Order Intermodulation Distortion ( $V_{\text {out }}=+46 \mathrm{dBmV}$ per ch., Ch 2, M13, M22)	IMD	-	-80	-	dB
Cross Modulation Distortion   ( $\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ ) 60-Channel FLAT	XMD 60	-	-62	-59	dB
Composite Triple Beat   $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right)$   60-Channel FLAT	CTB60		-64	$-\overline{-59}$	dB
Composite Second Order   ( $\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV} / \mathrm{ch}, 60-$ Channel FLAT)	$\mathrm{CSO}_{60}$	-	-70	-59	dB
Noise Figure $(f=450 \mathrm{MHz})$	NF	-	5.0	6.0	dB
DC Current	IDC	-	310	340	mA

## The RF Line 450 MHz CATV AMPLIFIER

. . . designed specifically for 450 MHz CATV applications. Features ion-implanted arsenic emitter transistors with $7.0 \mathrm{GHz} \mathrm{f} \top$ and an all gold metallization system.

- Specified for 53- and 60-Channel Performance
- Broadband Power Gain — @ f $=40-450 \mathrm{MHz}$ $\mathrm{G}_{\mathrm{p}}=38 \mathrm{~dB}$ (Typ)
- Broadband Noise Figure

$$
\mathrm{NF}=4.0 \mathrm{~dB} \text { (Тур) }
$$

- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz Ion-Implanted Transistors


## ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	+28	Vdc
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$



ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	450	MHz
Power Gain - 50 MHz	$\mathrm{G}_{\mathrm{p}}$	37	38	39.5	dB
Power Gain - 450 MHz	$\mathrm{G}_{\mathrm{p}}$	38	39	40	dB
Slope	S	0	+1.0	+2.5	dB
Gain Flatness (Peak To Valley)	-	-	0.3	0.6	dB
Return Loss — Input/Output   $\left(Z_{0}=75\right.$ Ohms $)$$\quad 40-450 \mathrm{MHz}$	IRL/ORL	18	-	-	dB
$\begin{aligned} & \text { Second Order Intermodulation Distortion } \\ & \left(V_{\text {out }}=+46 \mathrm{dBmV}\right. \text { per ch., Ch 2, M6, M15) } \\ & \left(V_{\text {out }}=+46 \mathrm{dBmV}\right. \text { per ch., Ch 2, M13, M22) } \end{aligned}$	IMD	-	$\begin{aligned} & -78 \\ & -72 \end{aligned}$	$-\overline{-64}$	dB
Cross Modulation Distortion 53-Channel FLAT   $\left(\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}\right)$ 60-Channel FLAT	$\begin{aligned} & \mathrm{XMD}_{53} \\ & \mathrm{XMD}_{60} \end{aligned}$	-	$\begin{aligned} & \hline-63 \\ & -61 \end{aligned}$	$\overline{-59}$	dB
Composite Triple Beat 53-Channel FLAT   $\left(\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}\right)$ 60-Channel FLAT	$\begin{aligned} & \text { CTB }_{53} \\ & \text { CTB }_{60} \end{aligned}$	-	$\begin{aligned} & \hline-63 \\ & -60 \end{aligned}$	$\overline{-59}$	dB
$\begin{aligned} & \text { DIN (European Applications Only) } \\ & 300 \mathrm{MHz}-(\mathrm{CH} \text { V + Q - P @ W) } \\ & 400 \mathrm{MHz}-(\mathrm{CH} \text { M8 + M15 - M9 @ M14) } \\ & 450 \mathrm{MHz} \text { - (CH M20 + M23 - M22 @ M21) } \end{aligned}$	DIN1   DIN2   DIN3	-	$\begin{aligned} & 125 \\ & 124 \\ & 123 \end{aligned}$	-	$\mathrm{dB} \mu \mathrm{V}$
Noise Figure $(\mathrm{f}=450 \mathrm{MHz})$	NF	-	4.0	5.0	dB
DC Current	IDC	-	310	340	mA

*DIN (European Applications Only)

NCTA Channel   Designation	Frequency   (MHz)	DIN Output Level   (dBmV)*(Typ)	DIN Beat Level   dB Relative to Ref. Ch.
P	253.25	+59	
Q	259.25	+59	$\leqslant-60$
V (Ref.)	289.25	+65	
M8	295.25	+65	$\leqslant-68$
M9	361.25	+58	
M14 (Ref.)	367.25	+64	
M15	397.25	+64	$\leqslant-60$
M20	403.25	+57	
M21 (Ref.)	433.25	+63	
M22	439.25	+63	
M23	445.25		

**DIN ( $\mathrm{dB} \mathrm{\mu} \mathrm{~V}$ ) $)=$ Reference Channel Level $(\mathrm{dBmV})+60 \mathrm{~dB}$

## The RF Line <br> 550 MHz CATV Amplifier

. . . designed specifically for 550 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 7.0 GHz f 个 and an all gold metallization system.

- Specified for 77 Channel Performance
- Broadband Power Gain — @ f = 40-550 MHz

$$
\mathrm{G}_{\mathrm{p}}=14 \mathrm{~dB}(\mathrm{Typ}) @ 50 \mathrm{MHz}
$$

$14.5 \mathrm{~dB}(\mathrm{Min}) @ 550 \mathrm{MHz}$

- Broadband Noise Figure

$$
\mathrm{NF}=7.5 \mathrm{~dB}(\mathrm{Max})
$$

- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz Ion-Implanted Transistors



CASE 714Y-03, STYLE 1

## ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+70	dBmV
DC Supply Voltage	$\mathrm{V}_{\mathrm{CC}}$	+28	Vdc
Operating Case Temperature Range	$\mathrm{T}_{\mathrm{C}}$	-20 to +100	
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	550	MHz
Power Gain - 50 MHz		$G_{p}$	13.5	14	14.5	dB
Power Gain - 550 MHz		$G_{p}$	14.5	-	-	dB
Slope		S	0.2	-	1.5	dB
Gain Flatness (Peak To Valley)		-	-	0.2	0.5	dB
Return Loss - Input/Output $\text { ( } \mathrm{Z}_{\mathrm{O}}=75 \text { Ohms) }$	$40-550 \mathrm{MHz}$	IRL/ORL	18	-	-	dB
```Second Order Intermodulation Distortion ( \(V_{\text {out }}=+46 \mathrm{dBmV}\) per ch., Ch 2, M13, M22) ( \(V_{\text {out }}=+44 \mathrm{dBmV}\) per ch., Ch 2, M30, M39)```		IMD	-	$\begin{aligned} & -78 \\ & -75 \end{aligned}$	$\overline{-72}$	dB
Cross Modulation Distortion ($\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ per ch.) ($V_{\text {out }}=+44 \mathrm{dBmV}$ per ch.)	60-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \mathrm{XMD}_{60} \\ & \mathrm{XMD}_{77} \end{aligned}$	-	$\begin{aligned} & -64 \\ & -65 \end{aligned}$	$-\overline{-62}$	dB
$\begin{aligned} & \text { Composite Triple Beat } \\ & \left(\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}\right. \text { per ch.) } \\ & \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}\right. \text { per ch.) } \end{aligned}$	60-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \text { CTB }_{60} \\ & \text { CTB }_{77} \end{aligned}$	-	$\begin{aligned} & -62 \\ & -65 \end{aligned}$	$\overline{-59}$	dB
Noise Figure $(f=550 \mathrm{MHz})$		NF	-	6.5	7.5	dB
DC Current		IDC	-	210	240	mA

The RF Line
 550 MHz CATV Amplifier

. . . designed specifically for 550 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 7.0 GHz f 个 and an all gold metallization system.

- Specified for 77 Channel Performance
- Broadband Power Gain — @ f=40-550 MHz
$\mathrm{G}_{\mathrm{p}}=18.2 \mathrm{~dB}$ (Typ) @ 50 MHz 18.8 dB (Min) @ 550 MHz
- Broadband Noise Figure @ 550 MHz

$$
\mathrm{NF}=7.0 \mathrm{~dB}(\mathrm{Max})
$$

- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz Ion-Implanted Transistors

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+70	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc°
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	550	MHz
Power Gain - 50 MHz		G_{p}	17.7	18.2	18.7	dB
Power Gain - 550 MHz		G_{p}	18.8	19.2	20	dB
Slope		S	0.5	-	2.5	dB
Gain Flatness (Peak To Valley)		-	-	0.2	0.5	dB
$\begin{aligned} & \text { Return Loss - Input/Output } \\ & \left(\mathrm{Z}_{\mathrm{O}}=75 \text { Ohms }\right) \end{aligned}$	$40-550 \mathrm{MHz}$	IRL/ORL	18	-	-	dB
$\begin{aligned} & \text { Second Order Intermodulation Distortion } \\ & \left(V_{\text {out }}=+46 \mathrm{dBmV}\right. \text { per ch., Ch 2, M13, M22) } \\ & \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}\right. \text { per ch., Ch 2, M30, M39) } \end{aligned}$		IMD	-	$\begin{aligned} & -85 \\ & -80 \end{aligned}$	$\overline{-72}$	dB
Cross Modulation Distortion $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right.$ per ch. $)$ $\left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}\right.$ per ch.)	60-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \mathrm{XMD}_{60} \\ & \mathrm{XMD}_{77} \end{aligned}$	-	$\begin{aligned} & -61 \\ & -64 \end{aligned}$	$\overline{-62}$	dB
$\begin{aligned} & \text { Composite Triple Beat } \\ & \left(V_{\text {out }}=+46 \mathrm{dBmV}\right. \text { per ch.) } \\ & \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}\right. \text { per ch.) } \end{aligned}$	60-Channel FLAT 77-Channel FLAT	CTB $_{60}$ CTB77	-	$\begin{aligned} & -62 \\ & -60 \end{aligned}$	$\overline{-58}$	dB
$\begin{aligned} & \text { Noise Figure } \\ & \quad(\mathrm{f}=550 \mathrm{MHz}) \end{aligned}$		NF	-	-	7.0	dB
DC Current		IDC	-	210	240	mA

REV 7

The RF Line 600 MHz CATV Amplifier Module

This module is designed specifically for 600 MHz CATV applications. Features ion-implanted arsenic emitter transistors with $7 \mathrm{GHz} \uparrow \uparrow$ and an all gold metallization system.

- Specified for 87-Channel Performance
- Broadband Power Gain — @ f=40-600 MHz
$\mathrm{G}_{\mathrm{p}}=17.6 \mathrm{~dB}(\mathrm{Min}) @ 50 \mathrm{MHz}$
18.2 dB (Min) @ 600 MHz
- Broadband Noise Figure @ 600 MHz
$\mathrm{NF}=6 \mathrm{~dB}$ (Max)
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7 GHz Ion-Implanted Transistors

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input	$\mathrm{V}_{\text {in }}$	+60	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V} C \mathrm{C}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	600	MHz
Power Gain	$\mathrm{f}=50 \mathrm{MHz}$	G_{p}	17.6	18.2	18.8	dB
Power Gain	$\mathrm{f}=600 \mathrm{MHz}$	G_{p}	18.2	19.2	20	dB
Slope	$\mathrm{f}=40-600 \mathrm{MHz}$	S	0	-	1.8	dB
Gain Flatness (Peak to Valley)	$\mathrm{f}=40-600 \mathrm{MHz}$	-	-	0.2	0.6	dB
$\begin{aligned} & \text { Return Loss — Input/Output } \\ & \left(Z_{0}=75 \text { Ohms }\right) \end{aligned}$	$\mathrm{f}=40-600 \mathrm{MHz}$	IRL/ORL	18	-	-	dB
Composite Second Order ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{Ch}$)	87-Channel FLAT	CSO87	-	-	-56	dB
Cross Modulation Distortion ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{Ch}, \mathrm{Fm}=55 \mathrm{MHz}$)	87-Channel FLAT	XMD87	-	-	-55	dB
Composite Triple Beat $\left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{Ch}\right)$	87-Channel FLAT	CTB87	-	-	-57	dB
Noise Figure	$\begin{aligned} & \mathrm{f}=50 \mathrm{MHz} \\ & \mathrm{f}=600 \mathrm{MHz} \end{aligned}$	NF	-	-	$\begin{aligned} & \hline 5 \\ & 6 \end{aligned}$	dB
$\begin{aligned} & \text { DC Current } \\ & \left(\mathrm{V}_{\mathrm{DC}}=24 \mathrm{Vdc}, \mathrm{~T}_{\mathrm{C}}=30^{\circ} \mathrm{C}\right) \end{aligned}$		IDC	180	210	240	mA

The RF Line
 550 MHz CATV Amplifier

MHW6222

. . . designed specifically for 550 MHz CATV applications. Features ion-implanted arsenic emitter transistors with $7.0 \mathrm{GHz} \mathrm{f} \top$ and an all gold metallization system.

- Specified for 77-Channel Performance
- Broadband Power Gain — @ f=40-550 MHz

$$
\mathrm{Gp}=22 \mathrm{~dB}(\mathrm{Typ}) @ 50 \mathrm{MHz}
$$

22 dB (Min) @ 550 MHz

- Broadband Noise Figure @ 550 MHz

$$
\mathrm{NF}=6.0 \mathrm{~dB}(\mathrm{Max})
$$

- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7.0 GHz Ion-Implanted Transistors

CASE 714Y-03, STYLE 1

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+60	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	550	MHz
Power Gain - 50 MHz	G_{p}	21.4	22	22.6	dB
Power Gain - 550 MHz	G_{p}	22	-	-	dB
Slope	S	0.2	-	1.5	dB
Gain Flatness (Peak To Valley)	-	-	0.2	0.4	dB
Return Loss - Input/Output $\left(Z_{0}=75\right.$ Ohms $)$ $40-550 \mathrm{MHz}$	IRL/ORL	18	-	-	dB
$\begin{aligned} & \text { Second Order Intermodulation Distortion } \\ & \left(V_{\text {out }}=+46 \mathrm{dBmV}\right. \text { per ch., Ch 2, M13, M22) } \\ & \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}\right. \text { per ch., Ch 2, M30, M39) } \end{aligned}$	IMD	-	$\begin{aligned} & -80 \\ & -72 \end{aligned}$	$\overline{-66}$	dB
Cross Modulation Distortion $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right.$ per ch.) 60-Channel FLAT (Vout $=+44 \mathrm{dBmV}$ per ch.) 77-Channel FLAT	$\begin{aligned} & \mathrm{XMD}_{60} \\ & \mathrm{XMD}_{77} \end{aligned}$	-	$\begin{aligned} & -60 \\ & -60 \end{aligned}$	$\overline{-57}$	dB
$\begin{array}{ll} \text { Composite Triple Beat } \\ \begin{aligned} \left(V_{\text {out }}=+46 \mathrm{dBmV}\right. \text { per ch.) } & \text { 60-Channel FLAT } \\ \left(V_{\text {out }}=+44 \mathrm{dBmV}\right. \text { per ch.) } & \text { 77-Channel FLAT } \end{aligned} \end{array}$	$\begin{aligned} & \text { CTB }_{60} \\ & \text { CTB }_{77} \end{aligned}$		$\begin{aligned} & -61 \\ & -59 \end{aligned}$	$\overline{-57}$	dB
Noise Figure $(\mathrm{f}=550 \mathrm{MHz})$	NF	-	5.0	6.0	dB
DC Current	IDC	-	210	240	mA

REV 7

The RF Line
 77-Channel (550 MHz) CATV Line Extender Amplifier

- Specified for 60- and 77-Channel Performance
- Broadband Power Gain — @ f $=40-550 \mathrm{MHz}$
$G_{p}=27 \mathrm{~dB}$ (Typ)
- Broadband Noise Figure
$\mathrm{NF}=6 \mathrm{~dB}$ (Typ) @ 550 MHz
- Superior Gain, Return Loss and DC Current Stability with Temperature

27 dB GAIN
550 MHz
77-CHANNEL
CATV AMPLIFIER

- All Gold Metallization
- 7 GHz f T Ion-Implanted Transistors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	550	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 550 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} \hline 26.2 \\ 27 \end{gathered}$		$\begin{aligned} & \hline 27.8 \\ & 29.2 \end{aligned}$	dB
Slope		S	0	1	2	dB
Gain Flatness (Peak To Valley)		-	-	0.4	0.8	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms)	$\begin{aligned} & 40-450 \mathrm{MHz} \\ & 450-550 \mathrm{MHz} \end{aligned}$	IRL/ORL	$\begin{aligned} & \hline 18 \\ & 16 \end{aligned}$	-	-	dB
Second Order Intermodulation Distortion ($V_{\text {out }}=+48 \mathrm{dBmV}$ per ch., Ch 2, 13, R) ($\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}$ per ch., Ch 2, M6, M15) $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right.$ per ch., Ch 2, M13, M22) ($V_{\text {out }}=+44 \mathrm{dBmV}$ per ch., Ch 2, M30, M39)		IMD	-	$\begin{aligned} & -80 \\ & -78 \\ & -76 \\ & -69 \end{aligned}$	$\begin{aligned} & - \\ & - \\ & -64 \end{aligned}$	dB
$\begin{aligned} & \text { Cross Modulation Distortion @ Ch } 2 \\ & \left(V_{\text {out }}=+46 \mathrm{dBmV} \text { per ch. }\right) \\ & \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} \text { per ch. }\right) \end{aligned}$	53-Channel FLAT 60-Channel FLAT 70-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \text { XMD }_{53} \\ & \text { XMD }_{60} \\ & \text { XMD70 } \\ & \text { XMD77 } \end{aligned}$	-	$\begin{aligned} & -63 \\ & -62 \\ & -61 \\ & -59 \end{aligned}$	$\begin{gathered} - \\ - \\ -57 \end{gathered}$	dB
$\begin{aligned} & \text { Composite Triple Beat } \\ & \left(\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV} \text { per ch. }\right) \\ & \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} \text { per ch. }\right) \end{aligned}$	53-Channel FLAT 60-Channel FLAT 70-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \text { TB }_{53} \\ & \text { TB }_{60} \\ & \text { TB70 }_{70} \\ & \text { TB }_{77} \end{aligned}$	-	$\begin{aligned} & -63 \\ & -62 \\ & -61 \\ & -59 \end{aligned}$	$\begin{gathered} - \\ -57 \\ -5 \end{gathered}$	dB
Noise Figure	550 MHz	NF	-	6.0	6.5	dB
DC Current		IDC	-	310	340	mA

The RF Line
 77-Channel (550 MHz) CATV Amplifier

. . . designed specifically for 550 MHz CATV applications. Features ion-implanted arsenic emitter transistors with 7 GHz f \top and an all gold metallization system.

- Specified for 77-Channel Performance
- Broadband Power Gain — @ f $=40-550 \mathrm{MHz}$

$$
\begin{aligned}
\mathrm{G}_{\mathrm{p}}= & 34.5 \mathrm{~dB}(\mathrm{Typ}) @ 50 \mathrm{MHz} \\
& 35 \mathrm{~dB}(\mathrm{Min}) @ 550 \mathrm{MHz}
\end{aligned}
$$

- Broadband Noise Figure @ 550 MHz
$\mathrm{NF}=5.5 \mathrm{~dB}$ (Typ)
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7 GHz Ion-Implanted Transistors

CASE 714Y-03, STYLE 1

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc^{\prime}
Operating Case Temperature Range	T_{C}	-20 to +100	
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	550	MHz
Power Gain	50 MHz	G_{p}	33.5	34.5	35.5	dB
Power Gain	550 MHz	G_{p}	34.5	-	-	dB
Slope		S	0	1	2	dB
Gain Flatness (Peak To Valley)		-	-	0.4	0.8	dB
Return Loss - Input/Output $\text { (} \mathrm{Z}_{\mathrm{O}}=75 \text { Ohms) }$	$\begin{array}{r} 40-550 \mathrm{MHz} \\ 450-550 \mathrm{MHz} \end{array}$	IRL/ORL	$\begin{aligned} & \hline 18 \\ & 16 \end{aligned}$	-	-	dB
$\begin{aligned} & \text { Second Order Intermodulation Distortion } \\ & \left(V_{\text {out }}=+46 \mathrm{dBmV}\right. \text { per ch., Ch 2, M13, M22) } \\ & \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}\right. \text { per ch., Ch 2, M30, M39) } \end{aligned}$		IMD	-	$\begin{aligned} & -75 \\ & -70 \end{aligned}$	$\overline{-64}$	dB
Cross Modulation Distortion $\left(V_{\text {out }}=+46 \mathrm{dBmV}\right.$ per ch. $)$ $\left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}\right.$ per ch. $)$	60-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \mathrm{XMD}_{60} \\ & \mathrm{XMD}_{77} \end{aligned}$	-	$\begin{aligned} & -61 \\ & -59 \end{aligned}$	$\overline{-57}$	dB
$\begin{aligned} & \text { Composite Triple Beat } \\ & \left(\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV}\right. \text { per ch.) } \\ & \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}\right. \text { per ch.) } \end{aligned}$	60-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \text { CTB }_{60} \\ & \text { CTB }_{77} \end{aligned}$		$\begin{aligned} & -60 \\ & -58 \end{aligned}$	$\overline{-57}$	dB
Noise Figure	550 MHz	NF	-	5.5	6.5	dB
DC Current		IDC	-	310	340	mA

REV 7

The RF Line
 77-Channel (550 MHz) CATV Amplifier

Designed specifically for 550 MHz CATV applications. Features ion-implanted arsenic emitter transistors with $7 \mathrm{GHz} \mathrm{f} \top$ and an all gold metallization system.

- Specified for 77-Channel Performance
- Broadband Power Gain — @ f $=40-550 \mathrm{MHz}$

$$
\begin{aligned}
\mathrm{G}_{\mathrm{p}}= & 34.5 \mathrm{~dB}(\text { Typ }) @ 50 \mathrm{MHz} \\
& 35.2 \mathrm{~dB}(\text { Typ }) @ 550 \mathrm{MHz}
\end{aligned}
$$

- Broadband Noise Figure @ 550 MHz
$\mathrm{NF}=5.5 \mathrm{~dB}$ (Typ)
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7 GHz Ion-Implanted Transistors

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	
Storage Temperature Range	$\mathrm{T}_{\text {Stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	550	MHz
Power Gain	50 MHz	G_{p}	33.5	34.5	35.5	dB
Power Gain	550 MHz	G_{p}	34.5	35.2	-	dB
Slope		S	0	0.7	2	dB
Gain Flatness (Peak To Valley)		-	-	0.3	0.8	dB
$\begin{aligned} & \text { Return Loss — Input/Output } \\ & \left(Z_{0}=75 \text { Ohms }\right) \end{aligned}$	$\begin{array}{r} 40-550 \mathrm{MHz} \\ 450-550 \mathrm{MHz} \end{array}$	IRL/ORL	18	-	-	dB
$\begin{aligned} & \text { Second Order Intermodulation Distortion } \\ & \left(V_{\text {out }}=+46 \mathrm{dBmV}\right. \text { per ch., Ch 2, M13, M22) } \\ & \left(V_{\text {out }}=+44 \mathrm{dBmV}\right. \text { per ch., Ch 2, M30, M39) } \end{aligned}$		IMD	-	$\begin{aligned} & -80 \\ & -74 \end{aligned}$	-	dB
Cross Modulation Distortion ($V_{\text {out }}=+46 \mathrm{dBmV}$ per ch.) ($V_{\text {out }}=+44 \mathrm{dBmV}$ per ch.)	60-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \mathrm{XMD}_{60} \\ & \text { XMD }_{77} \end{aligned}$	-	$\begin{aligned} & -62 \\ & -63 \end{aligned}$	-57	dB
$\begin{aligned} & \text { Composite Triple Beat } \\ & \left(V_{\text {out }}=+46 \mathrm{dBmV} \text { per ch. }\right) \\ & \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV}\right. \text { per ch.) } \end{aligned}$	60-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \text { CTB }_{60} \\ & \text { CTB }_{77} \end{aligned}$	-	$\begin{aligned} & -64 \\ & -63 \end{aligned}$	$\overline{-57}$	dB
$\begin{aligned} & \text { Composite Second Order } \\ & \left(V_{\text {out }}=+46 \mathrm{dBmV} / \mathrm{ch}, 60-\text { Channel FLAT }\right) \\ & \left(V_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch}, 77-\text { Channel FLAT }\right) \end{aligned}$		$\begin{aligned} & \mathrm{CSO}_{60} \\ & \mathrm{CSO}_{77} \end{aligned}$	-	$\begin{aligned} & -70 \\ & -65 \end{aligned}$	$-\overline{-57}$	dB
Noise Figure	550 MHz	NF	-	5.5	6.5	dB
DC Current		IDC	-	310	340	mA

The RF Line
 750/860/1000 MHz CATV Conventional Hybrid Amplifiers

Designed specifically for 750/860/1000 MHz CATV applications. Features ion-implanted arsenic emitter transistors with an all gold metallization system.

- Supply Voltage = 24 Vdc
- 5th Generation Die Technology
- Specified for 110/128/152 Channel Performance
- Power Gain $=14.5 \mathrm{~dB}$ max $@ f=50 \mathrm{MHz}$
- Superior Gain, Return Loss and DC Current Stability
- All Gold Metallization

MHW7142
 MHW8142
 MHW9142

```
24 Vdc
    750/860/1000 MHz
110/128/152 - CHANNEL
    CATV AMPLIFIERS
```


CASE 714Y-03, STYLE 1

MAXIMUM RATINGS

Parameter	Symbol	Value	Unit
DC Supply Voltage	V_{CC}	+28	Vdc
RF Input Voltage (Single Tone)	$\mathrm{V}_{\text {IN }}$	+70	dBmV
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}\right.$, 75 ohm system, unless otherwise noted)

Characteristic			Symbol	Min	Max	Unit
Frequency		MHW7142 MHW8142 MHW9142	BW	$\begin{aligned} & 40 \\ & 40 \\ & 40 \end{aligned}$	$\begin{gathered} 750 \\ 860 \\ 1000 \end{gathered}$	MHz
Power Gain	($\mathrm{f}=50 \mathrm{MHz}$)	All	Gp1	13.5	14.5	dB
Power Gain	$\begin{aligned} & (\mathrm{f}=750 \mathrm{MHz}) \\ & (\mathrm{f}=860 \mathrm{MHz}) \\ & (\mathrm{f}=1000 \mathrm{MHz}) \end{aligned}$	MHW7142 MHW8142 MHW9142	Gp2	$\begin{aligned} & 14.2 \\ & 14.2 \\ & 14.2 \end{aligned}$	$\begin{aligned} & 15.2 \\ & 15.5 \\ & 15.7 \end{aligned}$	dB
Slope	$\begin{aligned} & (\mathrm{f}=40-750 \mathrm{MHz}) \\ & (\mathrm{f}=40-860 \mathrm{MHz}) \\ & (\mathrm{f}=40-1000 \mathrm{MHz}) \end{aligned}$	MHW7142 MHW8142 MHW9142	S	$\begin{aligned} & 0.3 \\ & 0.3 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.8 \\ & 2.0 \end{aligned}$	dB
Gain Flatness	($\mathrm{f}=40-750 \mathrm{MHz}$, Peak to Valley) ($f=40-860 \mathrm{MHz}$, Peak to Valley) ($\mathrm{f}=40-1000 \mathrm{MHz}$, Peak to Valley)	MHW7142 MHW8142 MHW9142	G_{f}	-	$\begin{aligned} & 0.6 \\ & 0.6 \\ & 0.8 \end{aligned}$	dB
Return Loss	(@f= 40 MHz)	All	RL	20	-	dB
Return Loss Derate	(@f> 40 MHz)	MHW7142 MHW8142 MHW9142	RLD	-	$\begin{aligned} & .006 \\ & .007 \\ & .008 \end{aligned}$	$\mathrm{dB} / \mathrm{MHz}$
Composite Second Order	$\left(\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}\right)$ ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$) $\left(\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}\right)$	MHW7142 MHW8142 MHW9142	$\begin{aligned} & \hline \mathrm{CSO}_{110} \\ & \mathrm{CSO}_{128} \\ & \mathrm{CSO}_{152} \end{aligned}$	-	$\begin{aligned} & \hline-60 \\ & -60 \\ & -59 \end{aligned}$	dBc

ELECTRICAL CHARACTERISTICS - continued ($\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=25^{\circ} \mathrm{C}, 75$ ohm system, unless otherwise noted)

Characteristic			Symbol	Min	Max	Unit
Cross Modulation	$\left(\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}, \mathrm{FM}=55.25 \mathrm{MHz}\right)$ $\left(\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}, \mathrm{FM}=55.25 \mathrm{MHz}\right)$ $\left(\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}, \mathrm{FM}=55.25 \mathrm{MHz}\right)$	MHW7142 MHW8142 MHW9142	$\begin{aligned} & \mathrm{XMD}_{110} \\ & \mathrm{XMD}_{128} \\ & \mathrm{XMD}_{152} \end{aligned}$	Z	$\begin{aligned} & \hline-66 \\ & -66 \\ & -63 \end{aligned}$	dBc
Composite Triple Beat	($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}$) ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$) ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$)	MHW7142 MHW8142 MHW9142	$\begin{aligned} & \hline \text { CTB }_{110} \\ & \text { CTB }_{128} \\ & \text { CTB }_{152} \end{aligned}$	-	$\begin{aligned} & \hline-62 \\ & -61 \\ & -59 \end{aligned}$	dBc
Noise Figure	($\mathrm{f}=50 \mathrm{MHz}$)	All	NF_{1}	-	6.0	dB
Noise Figure	$\begin{aligned} & (\mathrm{f}=750 \mathrm{MHz}) \\ & (\mathrm{f}=860 \mathrm{MHz}) \\ & (\mathrm{f}=1000 \mathrm{MHz}) \end{aligned}$	MHW7142 MHW8142 MHW9142	NF_{2}	-	$\begin{aligned} & \hline 7.5 \\ & 8.0 \\ & 8.5 \end{aligned}$	dB
DC Current		All	IDC	180	240	mA

The RF Line

110-Channel (750 MHz), 128-Channel (860 MHz) \& 152-Channel (1000 MHz) CATV Amplifiers

MHW7182 MHW8182 MHW9182

The MHW7182, MHW8182, and MHW9182 are designed specifically for up to 1000 MHz CATV systems as output amplifiers in trunk and line extender applications. These amplifiers feature ion-implanted, arsenic emitter transistors and an all gold metallization system.

- Specified for 110/128/152-Channel Performance
- Broadband Power Gain — @ f=40-1000 MHz
$G_{p}=18.2 \mathrm{~dB}$ Min @ 750, 860 \& 1000 MHz
- Broadband Noise Figure

$$
\begin{aligned}
\text { NF = } & 5.5 \mathrm{~dB} \text { Typ — MHW7182 } \\
& 6.0 \mathrm{~dB} \text { Typ — MHW8182 } \\
& 6.5 \mathrm{~dB} \text { Typ — MHW9182 }
\end{aligned}
$$

- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization

18 dB GAIN 750/860/1000 MHz 110/128/152 CHANNEL CATV AMPLIFIERS

CASE 714Y-03, STYLE 1

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	V_{CC}	+28	$\mathrm{Vdc}^{(28)}$
RF Input Voltage (Single Tone)	$\mathrm{V}_{\text {in }}$	+70	dBmV
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc} ; \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75$ ohm system, unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range	MHW7182 MHW8182 MHW9182	BW	$\begin{aligned} & 40 \\ & 40 \\ & 40 \end{aligned}$	-	$\begin{aligned} & \hline 750 \\ & 860 \\ & 1000 \end{aligned}$	MHz
Power Gain 50 MHz 750 MHz 860 MHz 1000 MHz	All MHW7182 MHW8182 MHW9182	G_{p}	$\begin{aligned} & 17.6 \\ & 18.2 \\ & 18.2 \\ & 18.2 \end{aligned}$	$\begin{aligned} & \hline 18.2 \\ & 18.9 \\ & 19.0 \\ & 19.2 \end{aligned}$	$\begin{aligned} & 18.8 \\ & 20.5 \\ & 20.5 \\ & 20.7 \end{aligned}$	dB
Slope	MHW7182, MHW8182, MHW9182	S	0	1.0	2.5	-
Gain Flatness (Peak To Valley)	MHW7182, MHW8182 MHW9182	G_{f}		$\begin{aligned} & 0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & 0.6 \\ & 0.8 \end{aligned}$	-
Input/Output Return Loss @ f $=40 \mathrm{MHz}$	MHW7182, MHW8182, MHW9182	IRL/ORL	20	24	-	dB
Derate Return Loss @ f $>40 \mathrm{MHz}$ $\text { (Ref = } 20 \mathrm{~dB} @ 40 \mathrm{MHz})$	MHW7182 MHW8182 MHW9182	RLD	-	-	$\begin{aligned} & 0.007 \\ & 0.008 \\ & 0.009 \end{aligned}$	$\mathrm{dB} / \mathrm{MHz}$
Composite Second Order (Vout $=+40 \mathrm{dBmV} / \mathrm{ch}$; 110 Channels) (Vout $=+38 \mathrm{dBmV} / \mathrm{ch} ; 128$ Channels) (Vout $=+38 \mathrm{dBmV} / \mathrm{ch}$; 152 Channels)	MHW7182 MHW8182 MHW9182	$\begin{aligned} & \mathrm{CSO}_{110} \\ & \mathrm{CSO}_{128} \\ & \mathrm{CSO}_{152} \end{aligned}$	-	$\begin{aligned} & -67 \\ & -67 \\ & -67 \end{aligned}$	$\begin{aligned} & -62 \\ & -60 \\ & -59 \end{aligned}$	dB

(continued)

ELECTRICAL CHARACTERISTICS — continued ($\mathrm{VCC}_{\mathrm{CC}}=24 \mathrm{Vdc} ; \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75$ ohm system, unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Cross Modulation Distortion ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}, 110$-Channel @ Fm $=55.25 \mathrm{MHz}$) ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$, 128-Channel @ Fm $=55.25 \mathrm{MHz}$) ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$, 152-Channel @ Fm $=55.25 \mathrm{MHz}$)	MHW7182 MHW8182 MHW9182	XMD110 XMD128 XMD $_{152}$	-	$\begin{aligned} & -68 \\ & -68 \\ & -68 \end{aligned}$	$\begin{aligned} & -64 \\ & -60 \\ & -59 \end{aligned}$	dBc
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} /$ ch, 110-Channels, Worst Case) ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} /$ ch, 128-Channels, Worst Case) ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}, 152$-Channels, Worst Case)	MHW7182 MHW8182 MHW9182	$\begin{aligned} & \text { CTB }_{110} \\ & \text { CTB }_{128} \\ & \text { CTB }_{152} \end{aligned}$	-	$\begin{aligned} & -64 \\ & -62 \\ & -61 \end{aligned}$	$\begin{aligned} & -62 \\ & -60 \\ & -59 \end{aligned}$	dBc
Noise Figure$f=50 \mathrm{MHz}$ $f=750 \mathrm{MHz}$ $f=860 \mathrm{MHz}$ $f=1000 \mathrm{MHz}$	MHW7182 MHW8182 MHW9182	NF	-	$\begin{aligned} & \hline 3.6 \\ & 5.5 \\ & 6.0 \\ & 6.5 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 6.5 \\ & 7.0 \\ & 8.0 \end{aligned}$	dB
DC Current		IDC	180	210	240	mA

The RF Line
 110-Channel 750 MHz CATV Amplifier

- Specified for 77 and 110-Channel Performance
- Broadband Power Gain — @ f=750 MHz
$G_{p}=18.8 \mathrm{~dB}$ (Typ)
- Broadband Noise Figure
$\mathrm{NF}=5.0 \mathrm{~dB}$ (Typ) @ 750 MHz
- All Gold Metallization
- 7 GHz f T Ion-Implanted Transistors
- Improved Ruggedness

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+70	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

CASE 714Y-03, STYLE 1

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	750	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 750 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{aligned} & 17.6 \\ & 18.2 \end{aligned}$	$\begin{aligned} & 18.3 \\ & 18.8 \end{aligned}$	$\begin{aligned} & 18.8 \\ & 20.5 \end{aligned}$	dB
Slope	$40-750 \mathrm{MHz}$	S	0	0.6	2.5	dB
Gain Flatness ($40-750 \mathrm{MHz}$, Peak to Valley)		-	-	0.3	0.6	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms) @ 40 MHz @ f $>40 \mathrm{MHz}$ (Derate)		IRL/ORL	20		$0 . \overline{-}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} / \mathrm{MHz} \end{gathered}$
$\begin{array}{ll} \hline \text { Composite Second Order } \\ \left(V_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch} .,\right. \text {, Worst Case) } & \text { 110-Channel FLAT } \\ \left(\text { V out }^{2}+44 \mathrm{dBmV} / \mathrm{ch} .,\right. \text { Worst Case) } & \text { 77-Channel FLAT } \end{array}$		$\begin{aligned} & \mathrm{CSO}_{110} \\ & \mathrm{CSO}_{77} \end{aligned}$	-	$\begin{aligned} & -70 \\ & -70 \end{aligned}$	-62	dBc
$\begin{array}{ll} \hline \text { Cross Modulation Distortion @ Ch } 2 & \\ \left(V_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch} ., \mathrm{FM}=55 \mathrm{MHz}\right) & \text { 110-Channel FLAT } \\ \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch} ., \mathrm{FM}=55 \mathrm{MHz}\right) & \text { 77-Channel FLAT } \end{array}$		$\begin{aligned} & \mathrm{XMD}_{110} \\ & \mathrm{XMD}_{77} \end{aligned}$	-	$\begin{aligned} & -66 \\ & -61 \end{aligned}$	-64	dBc
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}$., Worst Case) ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	110-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \text { CTB }_{110} \\ & \text { CTB }_{77} \end{aligned}$	-	$\begin{aligned} & -64 \\ & -63 \end{aligned}$	-62	dBc
Noise Figure	$\begin{aligned} & 50 \mathrm{MHz} \\ & 550 \mathrm{MHz} \\ & 750 \mathrm{MHz} \end{aligned}$	NF	-	$\begin{aligned} & \hline 4.0 \\ & 4.5 \\ & 5.0 \end{aligned}$	$\frac{5.0}{6.5}$	dB
DC Current ($\left.\mathrm{V}_{\mathrm{DC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=30^{\circ} \mathrm{C}\right)$		IDC	180	235	240	mA

REV 1

The RF Line
 High Output Power Doubler 750 MHz CATV Amplifier

- Specified for 77 and 110-Channel Performance
- Broadband Power Gain — @ f $=40-750 \mathrm{MHz}$
$G_{p}=19.4 \mathrm{~dB}$ (Typ)
- Broadband Noise Figure
$\mathrm{NF}=6.2 \mathrm{~dB}$ (Typ) @ 750 MHz
- Superior Gain, Return Loss and DC Current Stability with Temperature

```
19.4 dB GAIN 750 MHz 110-CHANNEL CATV AMPLIFIER
```

- All Gold Metallization
- 7 GHz f \uparrow Ion-Implanted Transistors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+70	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	750	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 750 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} 18.3 \\ 19 \end{gathered}$	$\begin{aligned} & 18.8 \\ & 19.4 \end{aligned}$	$\begin{gathered} 19.3 \\ 20 \end{gathered}$	dB
Slope	$40-750 \mathrm{MHz}$	S	0	0.4	1.0	dB
Gain Flatness ($40-750 \mathrm{MHz}$, Peak to Valley)		-	-	0.3	0.6	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms) @ 40 MHz @ f $>40 \mathrm{MHz}$ (Derate)		IRL/ORL	19		$0 . \overline{0}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} / \mathrm{MHz} \end{gathered}$
Composite Second Order ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	110-Channel FLAT 77-Channel FLAT	$\begin{gathered} \mathrm{CSO}_{110} \\ \mathrm{CSO}_{77} \end{gathered}$	-	$\begin{aligned} & -72 \\ & -80 \end{aligned}$	$\begin{aligned} & -64 \\ & -68 \end{aligned}$	dBc
Cross Modulation Distortion @ Ch 2 ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} /$ ch., $\mathrm{FM}=55 \mathrm{MHz}$)	110-Channel FLAT 77-Channel FLAT	$\begin{gathered} \mathrm{XMD}_{110} \\ \mathrm{XMD}_{77} \end{gathered}$	-	$\begin{aligned} & -66 \\ & -70 \end{aligned}$	$\begin{aligned} & -63 \\ & -68 \end{aligned}$	dBc
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / c h$., Worst Case)	110-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \text { CTB }_{110} \\ & \text { CTB }_{77} \end{aligned}$	-	$\begin{aligned} & -64 \\ & -71 \end{aligned}$	$\begin{aligned} & -62 \\ & -69 \end{aligned}$	dBc
Noise Figure	50 MHz 550 MHz 750 MHz	NF	-	$\begin{aligned} & 5.0 \\ & 5.8 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 6.0 \\ & \hline 7.5 \end{aligned}$	dB
DC Current ($\left.\mathrm{V}_{\mathrm{DC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=30^{\circ} \mathrm{C}\right)$		IDC	365	400	435	mA

The RF Line High Output Mirror Power Doubler 750 MHz CATV Amplifier

- Specified for 77 and 110-Channel Performance
- Broadband Power Gain — @ f=750 MHz
$G_{p}=19.4 \mathrm{~dB}$ (Typ)
- Broadband Noise Figure
$\mathrm{NF}=6.2 \mathrm{~dB}$ (Typ) @ 750 MHz
19.4 dB GAIN 750 MHz
110-CHANNEL CATV AMPLIFIER
- Pin Configuration Mirrors that of MHW7185C
- Typical CTB @ 750 MHz under 110-Channel FLAT Loading $=-64 \mathrm{dBc}$

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+70	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	750	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 750 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} 18.3 \\ 19 \end{gathered}$	$\begin{aligned} & 18.8 \\ & 19.4 \end{aligned}$	$\begin{gathered} 19.3 \\ 20 \end{gathered}$	dB
Slope	$40-750 \mathrm{MHz}$	S	0	. 5	1.0	dB
Gain Flatness ($40-750 \mathrm{MHz}$, Peak to Valley)		-	-	0.3	0.6	dB
Return Loss — Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms)$\begin{aligned} & @ 40 \mathrm{MHz} \\ & @ \mathrm{f}>40 \mathrm{MHz} \text { (Derate) } \end{aligned}$		IRL/ORL	19	-	$0 . \overline{-}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} / \mathrm{MHz} \end{gathered}$
Composite Second Order ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	110-Channel FLAT 77-Channel FLAT	$\begin{gathered} \mathrm{CSO}_{110} \\ \mathrm{CSO}_{77} \end{gathered}$	-	$\begin{aligned} & -72 \\ & -80 \end{aligned}$	$\begin{aligned} & -64 \\ & -68 \end{aligned}$	dBc
Cross Modulation Distortion @ Ch 2 ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} /$ ch., $\mathrm{FM}=55 \mathrm{MHz}$)	110-Channel FLAT 77-Channel FLAT	$\begin{gathered} \mathrm{XMD}_{110} \\ \mathrm{XMD}_{77} \end{gathered}$	-	$\begin{aligned} & -66 \\ & -70 \end{aligned}$	$\begin{aligned} & -63 \\ & -68 \end{aligned}$	dBc
Composite Triple Beat (Vout $=+44 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	110-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \text { CTB }_{110} \\ & \text { CTB77 } \end{aligned}$	-	$\begin{aligned} & -64 \\ & -71 \end{aligned}$	$\begin{aligned} & -62 \\ & -69 \end{aligned}$	dBc
Noise Figure	50 MHz 550 MHz 750 MHz	NF	-	$\begin{aligned} & \hline 5.0 \\ & 5.3 \\ & 6.2 \end{aligned}$	$\frac{6.0}{7.5}$	dB
DC Current ($\left.\mathrm{V}_{\mathrm{DC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=30^{\circ} \mathrm{C}\right)$		IDC	365	400	435	mA

The RF Line
 High Output Power Doubler 750 MHz CATV Amplifier

- Specified for 77 and 110-Channel Performance
- Broadband Power Gain — @ $f=40-750 \mathrm{MHz}$
$G_{p}=20.2 \mathrm{~dB}$ (Typ)
- Broadband Noise Figure
$\mathrm{NF}=6.2 \mathrm{~dB}$ (Typ) @ 750 MHz
- All Gold Metallization
- 7 GHz f † Ion-Implanted Transistors
- Composite Triple Beat - @ 110-Channel Loading

CTB $=-63 \mathrm{~dB}($ Typ $)$

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	V_{in}	+70	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	750	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 750 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} 19.3 \\ 20 \end{gathered}$	$\begin{aligned} & 19.8 \\ & 20.2 \end{aligned}$	$\begin{gathered} 20.3 \\ 21 \end{gathered}$	dB
Slope	$40-750 \mathrm{MHz}$	S	0	0.4	1.0	dB
Gain Flatness ($40-750 \mathrm{MHz}$, Peak to Valley)		-	-	0.3	0.6	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms) @ 40 MHz @ f $>40 \mathrm{MHz}$ (Derate)		IRL/ORL	19	-	$0 . \overline{0}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} / \mathrm{MHz} \end{gathered}$
Composite Second Order (Vout $=+44 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	110-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \mathrm{CSO}_{110} \\ & \mathrm{CSO}_{77} \end{aligned}$		$\begin{aligned} & -70 \\ & -80 \end{aligned}$	$\begin{aligned} & -63 \\ & -68 \end{aligned}$	dBc
$\begin{aligned} & \text { Cross Modulation Distortion @ Ch } 2 \\ & \quad\left(V_{\text {Out }}=+44 \mathrm{dBmV} / \text { ch., FM }=55 \mathrm{MHz}\right) \end{aligned}$	110-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \mathrm{XMD}_{110} \\ & \mathrm{XMD}_{77} \end{aligned}$		$\begin{aligned} & -67 \\ & -70 \end{aligned}$	$\begin{aligned} & -62 \\ & -68 \end{aligned}$	dBc
Composite Triple Beat (Vout $=+44 \mathrm{dBmV} / c h$., Worst Case)	110-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \text { CTB }_{110} \\ & \text { CTB }_{77} \end{aligned}$	-	$\begin{aligned} & -63 \\ & -71 \end{aligned}$	$\begin{aligned} & -61 \\ & -69 \end{aligned}$	dBc
Noise Figure	50 MHz 550 MHz 750 MHz	NF	-	$\begin{aligned} & \hline 5.0 \\ & 5.8 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 6.0 \\ & \frac{-}{7.5} \end{aligned}$	dB
DC Current ($\left.\mathrm{V}_{\mathrm{DC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=30^{\circ} \mathrm{C}\right)$		IDC	365	400	435	mA

The RF Line
 110-Channel (750 MHz) and 128-Channel (860 MHz) CATV Amplifiers

The MHW7222 and MHW8222 are designed specifically for up to 860 MHz CATV systems as amplifiers in trunk and line extender applications. These amplifiers feature ion-implanted, arsenic emitter transistors and an all gold metallization system.

- Specified for 110/128-Channel Performance
- Broadband Power Gain - @ f=40-860 MHz

Gp = 22 dB Typ @ 750 and 860 MHz

- Broadband Noise Figure

NF $=5.5 \mathrm{~dB}$ Typ - MHW7222
6.4 dB Typ - MHW8222

- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization

MHW7222 MHW8222

CASE 714Y-03, STYLE 1

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	V_{CC}	+28	Vdc
RF Input Voltage (Single Tone)	$\mathrm{V}_{\text {in }}$	+70	dBmV
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

\left.| Characteristic | Symbol | Min | Typ | Max | Unit | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| Frequency Range | MHW7222 | BW | 40 | - | 750 | MHz |
| | | | | 40 | - | 860 |$\right]$

ELECTRICAL CHARACTERISTICS - continued

Characteristic		Symbol	Min	Typ	Max	Unit
Cross Modulation Distortion ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}, 110-$ Channel @ Fm $=55.25 \mathrm{MHz}$) ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}, 128-$ Channel @ $\mathrm{Fm}=55.25 \mathrm{MHz}$)	MHW7222 MHW8222	$\begin{aligned} & \mathrm{XMD}_{110} \\ & \text { XMD }_{128} \end{aligned}$		$\begin{aligned} & -64 \\ & -68 \end{aligned}$	$\begin{aligned} & -60 \\ & -60 \end{aligned}$	dBc
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}, 110-$ Channels, Worst Case) ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} /$ ch, 128-Channels, Worst Case)	MHW7222 MHW8222	$\begin{aligned} & \text { CTB }_{110} \\ & \text { CTB }_{128} \end{aligned}$		$\begin{aligned} & -62 \\ & -62 \end{aligned}$	$\begin{aligned} & -60 \\ & -60 \end{aligned}$	dBc
Noise Figure$f=50 \mathrm{MHz}$ $f=750 \mathrm{MHz}$ $\mathrm{f}=860 \mathrm{MHz}$	All MHW7222 MHW8222	NF	-	$\begin{aligned} & 3.6 \\ & 5.5 \\ & 6.4 \end{aligned}$	$\begin{gathered} \hline 5 \\ 7 \\ 7.5 \end{gathered}$	dB
DC Current		IDC	180	220	240	mA

The RF Line
 110-Channel (750 MHz) CATV Amplifier

The MHW7222A is designed specifically for up to 750 MHz CATV systems as amplifiers in trunk and line extender applications. This amplifier features ion-implanted, arsenic emitter transistors, an all gold metallization system and offers improved ruggedness and distortion performance.

- Specified for 110-Channel Performance
- Broadband Power Gain — @ f $=40-750 \mathrm{MHz}$
$\mathrm{G}_{\mathrm{p}}=22.3 \mathrm{~dB}$ Typ @ 750 MHz
- Broadband Noise Figure
$\mathrm{NF}=5.5 \mathrm{~dB}$ Typ
- All Gold Metallization

CASE 714Y-03, STYLE 1

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
DC Supply Voltage	V_{CC}	+28	Vdc
RF Input Voltage (Single Tone)	$\mathrm{V}_{\text {in }}$	+70	dBmV
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS ($\mathrm{V} \mathrm{CC}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega$ system unless otherwise noted)

Characteristic	Symbol	Min	Typ	Max	Unit
Frequency Range	BW	40	-	750	MHz
$\begin{array}{ll}\text { Power Gain } & f=50 \mathrm{MHz} \\ & f=750 \mathrm{MH}\end{array}$	G_{p}	$\begin{gathered} \hline 20.8 \\ 22 \end{gathered}$	$\begin{aligned} & \hline 21.5 \\ & 22.3 \end{aligned}$	$\begin{gathered} \hline 22.2 \\ 24 \end{gathered}$	dB
Slope ($\mathrm{f}=40-750 \mathrm{MHz}$)	S	0	1	2	-
Gain Flatness (Peak To Valley) (f = 40-750 MHz)	G_{f}	-	0.4	0.6	-
Input/Output Return Loss @ f = 40 MHz	IRL/ORL	20	24	-	dB
Derate Return Loss @ f > 40 MHz	RLD	-	-	0.008	dB/MHz
$\begin{aligned} & \text { Composite Second Order } \\ & \text { (V }{ }_{\text {Out }}=+40 \mathrm{dBmV} / \mathrm{ch} ; 110 \text { Channels) } \\ & \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch} ; 77 \text { Channels }\right) \end{aligned}$	$\begin{aligned} & \mathrm{CSO}_{110} \\ & \mathrm{CSO}_{77} \end{aligned}$		$\begin{aligned} & -65 \\ & -65 \end{aligned}$	-57	dB

(continued)

ELECTRICAL CHARACTERISTICS - continued

Characteristic	Symbol	Min	Typ	Max	Unit
Cross Modulation Distortion ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}, 110-$ Channel @ Fm $=55.25 \mathrm{MHz}$) ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch}, 77-$ Channel @ $\mathrm{Fm}=55.25 \mathrm{MHz}$)	$\begin{aligned} & \mathrm{XMD}_{110} \\ & \mathrm{XMD}_{77} \end{aligned}$		$\begin{aligned} & -64 \\ & -60 \end{aligned}$	-60	dBc
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}, 110$-Channels, Worst Case) ($V_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch}, 77-$ Channels, Worst Case)	$\begin{aligned} & \text { CTB }_{110} \\ & \text { CTB }_{77} \end{aligned}$	-	$\begin{aligned} & -63 \\ & -62 \end{aligned}$	-60	dBc
Noise Figure $\begin{aligned} & f=50 \mathrm{MHz} \\ & \mathrm{f}=750 \mathrm{MHz} \end{aligned}$	NF		$\begin{aligned} & 3.6 \\ & 5.5 \end{aligned}$	5	dB
DC Current	IDC	180	220	240	mA

The RF Line
 110-Channel (750 MHz) CATV Line Extender Amplifier

- Specified for 110-Channel Performance
- Broadband Power Gain — @ f=40-750 MHz

$$
\mathrm{G}_{\mathrm{p}}=24 \mathrm{~dB}(\text { Typ) }
$$

- Broadband Noise Figure
$\mathrm{NF}=7 \mathrm{~dB}$ (Max) @ 750 MHz
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization

- 7 GHz f丁 Ion-Implanted Transistors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	750	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 750 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} 23.2 \\ 24 \end{gathered}$	$\begin{gathered} \hline 24 \\ 24.7 \end{gathered}$	$\begin{gathered} \hline 24.8 \\ 26 \end{gathered}$	dB
Slope	$40-750 \mathrm{MHz}$	S	0	0.7	2	dB
Gain Flatness (40-750 MHz, Peak To Valley)		-	-	0.4	0.8	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms)	@ 40 MHz @ f $>40 \mathrm{MHz}$ (Derate)	IRL/ORL	20	-	$0 . \overline{-}$	dB $\mathrm{dB} / \mathrm{MHz}$
Composite Second Order (Vout $=+40 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)		CSO_{110}	-	-65	-60	dBc
Cross Modulation Distortion @ Ch 2 ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch} ., \mathrm{FM}=55 \mathrm{MHz}$)	110-Channel FLAT	XMD 110	-	-63	-60	dBc
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	110-Channel FLAT	CTB 110	-	-63	-60	dBc
Noise Figure	$\begin{aligned} & 50 \mathrm{MHz} \\ & 750 \mathrm{MHz} \end{aligned}$	NF	-	-	$\begin{gathered} 5.5 \\ 7 \end{gathered}$	dB
DC Current		IDC	280	-	350	mA

The RF Line
 110-Channel (750 MHz) CATV Line Extender Amplifier

- Specified for 110-Channel Performance
- Broadband Power Gain — @ f = 40-750 MHz

$$
\mathrm{G}_{\mathrm{p}}=24 \mathrm{~dB}(\mathrm{Typ})
$$

- Broadband Noise Figure
$\mathrm{NF}=7 \mathrm{~dB}$ (Max) @ 750 MHz
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization

- 7 GHz f丁 Ion-Implanted Transistors
- Improved CTB Performance

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	750	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 750 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} \hline 23.2 \\ 24 \end{gathered}$	$\begin{gathered} \hline 24 \\ 24.7 \end{gathered}$	$\begin{gathered} \hline 24.8 \\ 26 \end{gathered}$	dB
Slope	$40-750 \mathrm{MHz}$	S	0	0.6	1.5	dB
Gain Flatness ($40-750 \mathrm{MHz}$, Peak To Valley)		-	-	0.4	0.6	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms)	$\begin{aligned} & @ 40 \mathrm{MHz} \\ & @ \mathrm{f}>40 \mathrm{MHz} \text { (Derate) } \end{aligned}$	IRL/ORL	20		$0 . \overline{007}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} / \mathrm{MHz} \end{gathered}$
Composite Second Order ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}$., Worst Case) ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / c h$., Worst Case)	110-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \mathrm{CSO}_{110} \\ & \mathrm{CSO}_{77} \end{aligned}$		$\begin{aligned} & -69 \\ & -78 \end{aligned}$	$\begin{aligned} & -62 \\ & - \end{aligned}$	dBc
$\begin{aligned} & \text { Cross Modulation Distortion @ Ch } 2 \\ & \left(V_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch} ., \mathrm{FM}=55 \mathrm{MHz}\right) \\ & \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch} ., \mathrm{FM}=55 \mathrm{MHz}\right) \end{aligned}$	110-Channel FLAT 77-Channel FLAT	$\begin{gathered} \mathrm{XMD}_{110} \\ \mathrm{XMD}_{77} \end{gathered}$	-	$\begin{aligned} & -63 \\ & -58 \end{aligned}$	-61	dBc
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}$., Worst Case) (Vout $=+44 \mathrm{dBmV} / c h$., Worst Case)	110-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \text { CTB }_{110} \\ & \text { CTB }_{77} \end{aligned}$	-	$\begin{aligned} & -67 \\ & -64 \end{aligned}$	$\begin{gathered} -63 \\ - \end{gathered}$	dBc
Noise Figure	$\begin{aligned} & 50 \mathrm{MHz} \\ & 750 \mathrm{MHz} \end{aligned}$	NF	-	$\begin{aligned} & 4.8 \\ & 5.5 \end{aligned}$	$\begin{gathered} 5.5 \\ 7 \end{gathered}$	dB
DC Current		IDC	280	318	350	mA

The RF Line
 110-Channel (750 MHz) CATV
 Line Extender Amplifier

- 24 V Supply Voltage
- Specified for 110-Channel Performance
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7 GHz f I Ion-Implanted Transistors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V} C \mathrm{C}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	750	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 750 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} 26.2 \\ 27 \end{gathered}$	$\begin{gathered} \hline 27 \\ 27.8 \end{gathered}$	$\begin{gathered} \hline 27.8 \\ 29 \end{gathered}$	dB
Slope	$40-750 \mathrm{MHz}$	S	0	0.7	2	dB
Gain Flatness ($40-750 \mathrm{MHz}$, Peak to Valley)		-	-	0.4	0.8	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms)	@ 40 MHz @ f $>40 \mathrm{MHz}$ (Derate)	IRL/ORL	20	-	$0 . \overline{007}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} / \mathrm{MHz} \end{gathered}$
Composite Second Order ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	110-Channel FLAT	CSO_{110}	-	-70	-60	dBc
Cross Modulation Distortion @ Ch 2 ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}$., FM $=55 \mathrm{MHz}$)	110-Channel FLAT	XMD 110	-	-63	-60	dBc
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	110-Channel FLAT	CTB 110	-	-63	-60	dBc
Noise Figure	$\begin{aligned} & \hline 50 \mathrm{MHz} \\ & 750 \mathrm{MHz} \end{aligned}$	NF	-	$\overline{5.5}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	dB
DC Current ($\left.\mathrm{V}_{\mathrm{DC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=30^{\circ} \mathrm{C}\right)$		IDC	280	310	350	mA

The RF Line
 110-Channel (750 MHz) CATV Line Extender Amplifier

- 24 V Supply Voltage
- Specified for 110-Channel Performance
- Typical Noise Figure
$\mathrm{NF}=5.5 \mathrm{~dB} @ 750 \mathrm{MHz}$
- All Gold Metallization
- Improved CTB Performance over Previous Versions

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	750	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 750 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} 26.2 \\ 27 \end{gathered}$	$\begin{aligned} & \hline 27.2 \\ & 27.7 \end{aligned}$	$\begin{gathered} 27.8 \\ 29 \end{gathered}$	dB
Slope	$40-750 \mathrm{MHz}$	S	0	0.7	1.5	dB
Gain Flatness ($40-750 \mathrm{MHz}$, Peak to Valley)		-	-	0.4	0.8	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms)	@ 40 MHz @ f $>40 \mathrm{MHz}$ (Derate)	IRL/ORL	20	-	$0 . \overline{0} 7$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} / \mathrm{MHz} \end{gathered}$
Composite Second Order ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	110-Channel FLAT	CSO_{110}	-	-70	-64	dBc
Cross Modulation Distortion @ Ch 2 ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}$., $\mathrm{FM}=55 \mathrm{MHz}$)	110-Channel FLAT	XMD 110	-	-63	-60	dBc
Composite Triple Beat (Vout $=+40 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	110-Channel FLAT	CTB 110	-	-68	-64	dBc
Noise Figure	$\begin{aligned} & 50 \mathrm{MHz} \\ & 750 \mathrm{MHz} \end{aligned}$	NF	-	$\overline{5.5}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	dB
DC Current ($\left.\mathrm{V}_{\mathrm{DC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=30^{\circ} \mathrm{C}\right)$		IDC	280	310	350	mA

The RF Line
 110-Channel (750 MHz) CATV
 Line Extender Amplifier

- 24 V Supply Voltage
- Specified for 110-Channel Performance
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7 GHz f I Ion-Implanted Transistors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	750	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 750 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} 28.2 \\ 29 \end{gathered}$	$\begin{gathered} \hline 29 \\ 29.8 \end{gathered}$	$\begin{gathered} \hline 29.8 \\ 31 \end{gathered}$	dB
Slope	$40-750 \mathrm{MHz}$	S	0	0.7	2	dB
Gain Flatness ($40-750 \mathrm{MHz}$, Peak to Valley)		-	-	0.4	0.8	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms)	@ 40 MHz @ f $>40 \mathrm{MHz}$ (Derate)	IRL/ORL	20	-	$\overline{0.007}$	dB $\mathrm{dB} / \mathrm{MHz}$
Composite Second Order ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	110-Channel FLAT	CSO_{110}	-	-70	-60	dBc
Cross Modulation Distortion @ Ch 2 ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch} ., \mathrm{FM}=55 \mathrm{MHz}$)	110-Channel FLAT	XMD ${ }_{110}$	-	-62	-60	dBc
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	110-Channel FLAT	CTB 110	-	-62	-60	dBc
Noise Figure	$\begin{aligned} & 50 \mathrm{MHz} \\ & 750 \mathrm{MHz} \end{aligned}$	NF	$-$	$\overline{5.5}$	$\begin{aligned} & 5.5 \\ & 6.5 \end{aligned}$	dB
DC Current ($\left.\mathrm{V}_{\mathrm{DC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=30^{\circ} \mathrm{C}\right)$		IDC	280	310	350	mA

The RF Line

128-Channel 860 MHz CATV Amplifier

- Specified for 77 and 128-Channel Performance
- Broadband Power Gain — @ f=860 MHz
$G_{p}=18.9 \mathrm{~dB}$ (Typ)
- Broadband Noise Figure
$\mathrm{NF}=5.5 \mathrm{~dB}$ (Typ) @ 860 MHz
- All Gold Metallization
- 7 GHz f † Ion-Implanted Transistors
- Improved Ruggedness

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+70	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

CASE 714Y-03, STYLE 1

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	860	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{aligned} & 17.6 \\ & 18.2 \end{aligned}$	$\begin{aligned} & 18.3 \\ & 18.9 \end{aligned}$	$\begin{aligned} & 18.8 \\ & 20.5 \end{aligned}$	dB
Slope	$40-860 \mathrm{MHz}$	S	0	0.7	2.5	dB
Gain Flatness ($40-860 \mathrm{MHz}$, Peak to Valley)		-	-	0.3	0.6	dB
Return Loss — Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms) @ 40 MHz @ f $>40 \mathrm{MHz}$ (Derate)		IRL/ORL	20		$0 . \overline{-}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} / \mathrm{MHz} \end{gathered}$
Composite Second Order $\left(V_{\text {out }}=+38 \mathrm{dBmV} /\right.$ ch., Worst Case $)$ 128-Channel FLAT $\left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} /\right.$ ch., Worst Case $)$ 77-Channel FLAT		$\begin{aligned} & \mathrm{CSO}_{128} \\ & \mathrm{CSO}_{77} \end{aligned}$	-	$\begin{aligned} & -73 \\ & -70 \end{aligned}$	-63	dBc
$\begin{array}{ll} \hline \text { Cross Modulation Distortion @ Ch } 2 & \\ \left(V_{\text {out }}=+38 \mathrm{dBmV} / \text { ch., FM }=55 \mathrm{MHz}\right) & \text { 128-Channel FLAT } \\ \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \text { ch., FM }=55 \mathrm{MHz}\right) & \text { 77-Channel FLAT } \end{array}$		$\begin{aligned} & \mathrm{XMD}_{128} \\ & \mathrm{XMD}_{77} \end{aligned}$	-	$\begin{aligned} & -68 \\ & -61 \end{aligned}$	-64	dBc
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$., Worst Case) ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	128-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \text { CTB }_{128} \\ & \text { CTB }_{77} \end{aligned}$		$\begin{aligned} & -66 \\ & -63 \end{aligned}$	-62	dBc
Noise Figure	$\begin{aligned} & 50 \mathrm{MHz} \\ & 550 \mathrm{MHz} \\ & 750 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	NF	-	$\begin{aligned} & \hline 4.0 \\ & 4.5 \\ & 5.0 \\ & 5.5 \end{aligned}$	5.0 - 8.0	dB
DC Current ($\left.\mathrm{V}_{\mathrm{DC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=30^{\circ} \mathrm{C}\right)$		IDC	180	235	240	mA

The RF Line
 High Output Power Doubler 860 MHz CATV Amplifier

- Specified for 77, 110 and 128-Channel Performance
- Broadband Power Gain — @ f $=40-860 \mathrm{MHz}$
$G_{p}=19.4 \mathrm{~dB}$ (Typ)
- Broadband Noise Figure
$\mathrm{NF}=7 \mathrm{~dB}$ (Typ) @ 860 MHz
- Superior Gain, Return Loss and DC Current Stability with Temperature

```
19.4 dB GAIN 860 MHz 128-CHANNEL CATV AMPLIFIER
```

- All Gold Metallization
- 7 GHz f \uparrow Ion-Implanted Transistors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+70	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

CASE 714Y-03, STYLE 1

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	860	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} 18.3 \\ 19 \end{gathered}$	$\begin{aligned} & \hline 18.8 \\ & 19.4 \end{aligned}$	$\begin{aligned} & \hline 19.3 \\ & 20.5 \end{aligned}$	dB
Slope	$40-860 \mathrm{MHz}$	S	0	. 5	1.5	dB
Gain Flatness ($40-860 \mathrm{MHz}$, Peak to Valley)		-	-	0.3	1.0	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms) @ 40 MHz @ f $>40 \mathrm{MHz}$ (Derate)		IRL/ORL	19	-	$0 . \overline{006}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} / \mathrm{MHz} \end{gathered}$
$\begin{aligned} & \text { Composite Second Order } \\ & \begin{array}{l} \left(\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch} ., \text { Worst Case }\right) \\ \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch} ., \text { Worst Case }\right) \end{array} \end{aligned}$	128-Channel FLAT 110-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \mathrm{CSO}_{128} \\ & \mathrm{CSO}_{110} \\ & \mathrm{CSO}_{77} \end{aligned}$	-	$\begin{aligned} & -70 \\ & -72 \\ & -80 \end{aligned}$	$\begin{aligned} & -62 \\ & -64 \\ & -68 \end{aligned}$	dBc
$\begin{aligned} & \text { Cross Modulation Distortion @ Ch } 2 \\ & \left(V_{\text {out }}=+40 \mathrm{dBmV} / \text { ch., FM }=55 \mathrm{MHz}\right) \\ & \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \text { ch., FM }=55 \mathrm{MHz}\right) \end{aligned}$	128-Channel FLAT 110-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \text { XMD }_{128} \\ & \text { XMD }_{110} \\ & \text { XMD }_{77} \end{aligned}$	-	$\begin{aligned} & -72 \\ & -67 \\ & -70 \end{aligned}$	$\begin{aligned} & -64 \\ & -63 \\ & -68 \end{aligned}$	dBc
$\begin{aligned} & \text { Composite Triple Beat } \\ & \left(\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch} ., \text { Worst Case }\right) \\ & \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} \text { ch., Worst Case }\right) \end{aligned}$	128-Channel FLAT 110-Channel FLAT 77-Channel FLAT	CTB $_{128}$ CTB110 CTB77	-	$\begin{aligned} & -67 \\ & -64 \\ & -71 \end{aligned}$	$\begin{aligned} & -64 \\ & -62 \\ & -69 \end{aligned}$	dBc
Noise Figure	$\begin{aligned} & \hline 50 \mathrm{MHz} \\ & 550 \mathrm{MHz} \\ & 750 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	NF	-	$\begin{aligned} & \hline 5.0 \\ & 5.8 \\ & 6.2 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & - \\ & 8.0 \end{aligned}$	dB
DC Current ($\left.\mathrm{V}_{\mathrm{DC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=30^{\circ} \mathrm{C}\right)$		IDC	365	400	435	mA

REV 4

The RF Line High Output Mirror Power Doubler 860 MHz CATV Amplifier

- Specified for 77, 110 and 128-Channel Performance
- Broadband Power Gain — @ f=860 MHz
$G_{p}=19.4 \mathrm{~dB}$ (Typ)
- Broadband Noise Figure
$\mathrm{NF}=7 \mathrm{~dB}$ (Typ) @ 860 MHz
- Pin Configuration Mirrors that of MHW8185
- Typical CTB @ 860 MHz under 128-Channel FLAT Loading $=-67 \mathrm{dBc}$
- All Gold Metallization
- 7 GHz f I Ion-Implanted Transistors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+70	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

CASE 714Y-03, STYLE 2

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	860	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} 18.3 \\ 19 \end{gathered}$	$\begin{aligned} & 18.8 \\ & 19.4 \end{aligned}$	$\begin{aligned} & 19.3 \\ & 20.5 \end{aligned}$	dB
Slope	$40-860 \mathrm{MHz}$	S	0	. 5	1.5	dB
Gain Flatness ($40-860 \mathrm{MHz}$, Peak to Valley)		-	-	0.3	1.0	dB
Return Loss — Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms)$\begin{aligned} & @ 40 \mathrm{MHz} \\ & @ \mathrm{f}>40 \mathrm{MHz} \text { (Derate) } \end{aligned}$		IRL/ORL	19	-	$0 . \overline{0}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} / \mathrm{MHz} \end{gathered}$
Composite Second Order ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}$., Worst Case) (Vout $=+44 \mathrm{dBmV} / c h$. ., Worst Case)	128-Channel FLAT 110-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \mathrm{CSO}_{128} \\ & \mathrm{CSO}_{110} \\ & \mathrm{CSO}_{77} \end{aligned}$	-	$\begin{aligned} & -70 \\ & -72 \\ & -80 \end{aligned}$	$\begin{aligned} & -62 \\ & -64 \\ & -68 \end{aligned}$	dBc
$\begin{gathered} \hline \text { Cross Modulation Distortion @ Ch } 2 \\ \left(V_{\text {out }}=+40 \mathrm{dBmV} / \text { ch., FM }=55 \mathrm{MHz}\right) \\ \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch} ., \mathrm{FM}=55 \mathrm{MHz}\right) \end{gathered}$	128-Channel FLAT 110-Channel FLAT 77-Channel FLAT	XMD 128 XMD $_{110}$ XMD77	-	$\begin{aligned} & -72 \\ & -67 \\ & -70 \end{aligned}$	$\begin{aligned} & -64 \\ & -63 \\ & -68 \end{aligned}$	dBc
Composite Triple Beat (Vout $=+40 \mathrm{dBmV} / c h$., Worst Case) ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	128-Channel FLAT 110-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \text { CTB } 128 \\ & \text { CTB }_{110} \\ & \text { CTB }_{77} \end{aligned}$	-	$\begin{aligned} & -67 \\ & -64 \\ & -71 \end{aligned}$	$\begin{aligned} & -64 \\ & -62 \\ & -69 \end{aligned}$	dBc
Noise Figure	$\begin{aligned} & \hline 50 \mathrm{MHz} \\ & 550 \mathrm{MHz} \\ & 750 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	NF	-	$\begin{aligned} & \hline 5.0 \\ & 5.8 \\ & 6.2 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & - \\ & 8.0 \end{aligned}$	dB
DC Current ($\left.\mathrm{V}_{\mathrm{DC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=30^{\circ} \mathrm{C}\right)$		IDC	365	400	435	mA

The RF Line
 High Output Power Doubler 860 MHz CATV Amplifier

- Specified for 77, 110 and 128-Channel Performance
- Broadband Power Gain — @ f $=40-860 \mathrm{MHz}$
$G_{p}=20.2 \mathrm{~dB}$ (Typ)
- Broadband Noise Figure
$\mathrm{NF}=7 \mathrm{~dB}$ (Typ) @ 860 MHz
- All Gold Metallization
- 7 GHz f T Ion-Implanted Transistors
- Composite Triple Beat - @ 128-Channel Loading

CTB $=-66 \mathrm{~dB}($ Typ $)$

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	V_{in}	+70	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

CASE 714Y-03, STYLE 1

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	860	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} 19.3 \\ 20 \end{gathered}$	$\begin{aligned} & 19.8 \\ & 20.2 \end{aligned}$	$\begin{aligned} & \hline 20.3 \\ & 21.5 \end{aligned}$	dB
Slope	$40-860 \mathrm{MHz}$	S	0	4	1.5	dB
Gain Flatness ($40-860 \mathrm{MHz}$, Peak to Valley)		-	-	0.3	1.0	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms) @ 40 MHz @ f > 40 MHz (Derate)		IRL/ORL	19		$0 . \overline{0}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} / \mathrm{MHz} \end{gathered}$
Composite Second Order ($\mathrm{V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch}$., Worst Case) (Vout $=+44 \mathrm{dBmV} / c h$., Worst Case)	128-Channel FLAT 110-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \mathrm{CSO}_{128} \\ & \mathrm{CSO}_{110} \\ & \mathrm{CSO}_{77} \end{aligned}$	-	$\begin{aligned} & -69 \\ & -70 \\ & -80 \end{aligned}$	$\begin{aligned} & -60 \\ & -63 \\ & -68 \end{aligned}$	dBc
$\begin{gathered} \text { Cross Modulation Distortion @ Ch } 2 \\ \left(\mathrm{~V}_{\text {out }}=+40 \mathrm{dBmV} / \mathrm{ch} ., \mathrm{FM}=55 \mathrm{MHz}\right) \\ \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch} ., \mathrm{FM}=55 \mathrm{MHz}\right) \end{gathered}$	128-Channel FLAT 110-Channel FLAT 77-Channel FLAT	XMD $_{128}$ XMD 110 XMD77	-	$\begin{aligned} & -72 \\ & -67 \\ & -71 \end{aligned}$	$\begin{aligned} & -64 \\ & -62 \\ & -68 \end{aligned}$	dBc
Composite Triple Beat (Vout $=+40 \mathrm{dBmV} / \mathrm{ch}$., Worst Case) (Vout $=+44 \mathrm{dBmV} / \mathrm{ch}$. , Worst Case)	128-Channel FLAT 110-Channel FLAT 77-Channel FLAT	CTB 128 CTB 110 CTB77	-	$\begin{aligned} & -66 \\ & -63 \\ & -71 \end{aligned}$	$\begin{aligned} & -63 \\ & -61 \\ & -69 \end{aligned}$	dBc
Noise Figure	$\begin{aligned} & 50 \mathrm{MHz} \\ & 550 \mathrm{MHz} \\ & 750 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	NF	-	$\begin{aligned} & \hline 5.0 \\ & 5.8 \\ & 6.2 \\ & 7.0 \end{aligned}$	$\begin{aligned} & 6.0 \\ & - \\ & 8.0 \end{aligned}$	dB
DC Current ($\left.\mathrm{V}_{\mathrm{DC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=30^{\circ} \mathrm{C}\right)$		IDC	365	400	435	mA

REV 4

The RF Line
 128-Channel (860 MHz) CATV
 Line Extender Amplifier

- Specified for 128-Channel Performance
- Broadband Power Gain — @ f = 40-860 MHz

$$
\mathrm{G}_{\mathrm{p}}=24 \mathrm{~dB}(\mathrm{Typ})
$$

- Broadband Noise Figure
$\mathrm{NF}=7.5 \mathrm{~dB}$ (Max) @ 860 MHz
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization

- 7 GHz f丁 Ion-Implanted Transistors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	860	MHz
Power Gain	$\begin{aligned} & \hline 50 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} 23.2 \\ 24 \end{gathered}$	$\begin{aligned} & 24 \\ & 25 \end{aligned}$	$\begin{aligned} & \hline 24.8 \\ & 26.5 \end{aligned}$	dB
Slope	$40-860 \mathrm{MHz}$	S	0	1	2.5	dB
Gain Flatness (40-860 MHz, Peak To Valley)		-	-	0.4	0.8	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms)	@ 40 MHz @ f $>40 \mathrm{MHz}$ (Derate)	IRL/ORL	20	-	$0 . \overline{0}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} / \mathrm{MHz} \end{gathered}$
Composite Second Order (Vout $=+38 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)		CSO_{128}	-	-65	-60	dBc
Cross Modulation Distortion @ Ch 2 ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} /$ ch., $\mathrm{FM}=55 \mathrm{MHz}$)	128-Channel FLAT	XMD 128	-	-65	-60	dBc
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	128-Channel FLAT	CTB_{128}	-	-63	-60	dBc
Noise Figure	$\begin{aligned} & 50 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	NF	-	-	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$	dB
DC Current		IDC	280	-	350	mA

The RF Line
 128-Channel (860 MHz) CATV
 Line Extender Amplifier

- Specified for 128-Channel Performance
- Broadband Power Gain — @ f = 40-860 MHz

$$
\mathrm{G}_{\mathrm{p}}=24 \mathrm{~dB}(\text { Typ) }
$$

- Broadband Noise Figure
$\mathrm{NF}=7.5 \mathrm{~dB}$ (Max) @ 860 MHz
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7 GHz f丁 Ion-Implanted Transistors
- Improved CTB Performance

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	860	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} 23.2 \\ 24 \end{gathered}$	$\begin{aligned} & 24 \\ & 25 \end{aligned}$	$\begin{gathered} 24.8 \\ 26 \end{gathered}$	dB
Slope	$40-860 \mathrm{MHz}$	S	0	0.8	1.8	dB
Gain Flatness ($40-860 \mathrm{MHz}$, Peak To Valley)		-	-	0.4	0.8	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms)	@ 40 MHz @ f $>40 \mathrm{MHz}$ (Derate)	IRL/ORL	20		$0 . \overline{0} 7$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} / \mathrm{MHz} \end{gathered}$
Composite Second Order ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$., Worst Case) ($\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	128-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \mathrm{CSO}_{128} \\ & \mathrm{CSO}_{77} \end{aligned}$	-	$\begin{aligned} & -69 \\ & -78 \end{aligned}$	$\begin{aligned} & -62 \\ & - \end{aligned}$	dBc
$\begin{aligned} & \text { Cross Modulation Distortion @ Ch } 2 \\ & \left(V_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch} ., \mathrm{FM}=55 \mathrm{MHz}\right) \\ & \left(\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch} ., \mathrm{FM}=55 \mathrm{MHz}\right) \end{aligned}$	128-Channel FLAT 77-Channel FLAT	$\begin{gathered} \mathrm{XMD}_{128} \\ \mathrm{XMD}_{77} \end{gathered}$	-	$\begin{aligned} & -65 \\ & -58 \end{aligned}$	-62	dBc
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$., Worst Case) (Vout $=+44 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	128-Channel FLAT 77-Channel FLAT	$\begin{aligned} & \text { CTB }_{128} \\ & \text { CTB }_{77} \end{aligned}$	-	$\begin{aligned} & -68 \\ & -64 \end{aligned}$	-64	dBc
Noise Figure	$\begin{aligned} & 50 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	NF	-	$\begin{aligned} & 4.8 \\ & 5.8 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 7.5 \end{aligned}$	dB
DC Current		IDC	280	318	350	mA

The RF Line
 128-Channel (860 MHz) CATV
 Line Extender Amplifier

- Specified for 128-Channel Performance
- Broadband Power Gain — @ f $=40-860 \mathrm{MHz}$
$G_{p}=27 \mathrm{~dB}$ (Typ)
- Broadband Noise Figure
$\mathrm{NF}=6 \mathrm{~dB}$ (Typ) @ 860 MHz
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7 GHz f \uparrow Ion-Implanted Transistors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	860	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} \hline 26.2 \\ 27 \end{gathered}$		$\begin{aligned} & \hline 27.8 \\ & 29.5 \end{aligned}$	dB
Slope	$40-860 \mathrm{MHz}$	S	0	1.0	2.5	dB
Gain Flatness ($40-860 \mathrm{MHz}$, Peak to Valley)		-	-	0.4	0.8	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms) @ 40 MHz @ f $>40 \mathrm{MHz}$ (Derate)		IRL/ORL	20	-	$0 . \overline{0}$	dB $\mathrm{dB} / \mathrm{MHz}$
Composite Second Order ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	128-Channel FLAT	CSO_{128}	-	-	-58	dBc
Cross Modulation Distortion @ Ch 2 ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} /$ ch., $\mathrm{FM}=55 \mathrm{MHz}$)	128-Channel FLAT	XMD 128	-	-	-60	dBc
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	128-Channel FLAT	CTB128	-	-	-60	dBc
Noise Figure	$\begin{aligned} & 50 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	NF	-	6.0	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	dB
DC Current ($\left.\mathrm{V}_{\mathrm{DC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=30^{\circ} \mathrm{C}\right)$		IDC	280	310	350	mA

The RF Line
 128-Channel (860 MHz) CATV
 Line Extender Amplifier

- Specified for 128-Channel Performance
- Broadband Power Gain — @ f=50 MHz
$G_{p}=27.2 \mathrm{~dB}$ (Typ)
- Broadband Noise Figure
$\mathrm{NF}=6 \mathrm{~dB}$ (Typ) @ 860 MHz
- All Gold Metallization
- Improved CTB Performance over Previous Version

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\mathrm{stg}}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	860	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} \hline 26.2 \\ 27 \end{gathered}$	$\begin{aligned} & \hline 27.2 \\ & 27.7 \end{aligned}$	$\begin{aligned} & 27.8 \\ & 29.5 \end{aligned}$	dB
Slope	$40-860 \mathrm{MHz}$	S	0	0.6	2	dB
Gain Flatness ($40-860 \mathrm{MHz}$, Peak to Valley)		-	-	0.4	0.8	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms) @ 40 MHz @ f $>40 \mathrm{MHz}$ (Derate)		IRL/ORL	20	-	$0 . \overline{0}$	dB $\mathrm{dB} / \mathrm{MHz}$
Composite Second Order ($V_{\text {out }}=+38 \mathrm{dBmV} / c h$., Worst Case)	128-Channel FLAT	CSO_{128}	-	-69	-64	dBc
Cross Modulation Distortion @ Ch 2 ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} /$ ch., $\mathrm{FM}=55 \mathrm{MHz}$)	128-Channel FLAT	XMD 128	-	-65	-62	dBc
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	128-Channel FLAT	CTB_{128}	-	-69	-64	dBc
Noise Figure	$\begin{aligned} & 50 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	NF	-	$\overline{6.0}$	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	dB
DC Current ($\left.\mathrm{V}_{\mathrm{DC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=30^{\circ} \mathrm{C}\right)$		IDC	280	310	350	mA

The RF Line
 128-Channel (860 MHz) CATV
 Line Extender Amplifier

- Specified for 128-Channel Performance
- Broadband Power Gain — @ f $=40-860 \mathrm{MHz}$
$G_{p}=29 \mathrm{~dB}$ (Typ)
- Broadband Noise Figure
$\mathrm{NF}=6 \mathrm{~dB}$ (Typ) @ 860 MHz
- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7 GHz f \uparrow Ion-Implanted Transistors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	860	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} 28.2 \\ 29 \end{gathered}$	29	$\begin{aligned} & 29.8 \\ & 31.5 \end{aligned}$	dB
Slope	$40-860 \mathrm{MHz}$	S	0	1.0	2.5	dB
Gain Flatness ($40-860 \mathrm{MHz}$, Peak to Valley)		-	-	0.4	0.8	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms) @ 40 MHz @ f $>40 \mathrm{MHz}$ (Derate)		IRL/ORL	20	-	$0 . \overline{0}$	dB $\mathrm{dB} / \mathrm{MHz}$
Composite Second Order ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	128-Channel FLAT	CSO_{128}	-	-	-56	dBc
Cross Modulation Distortion @ Ch 2 ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} /$ ch., $\mathrm{FM}=55 \mathrm{MHz}$)	128-Channel FLAT	XMD 128	-	-	-60	dBc
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	128-Channel FLAT	CTB128	-	-	-60	dBc
Noise Figure	$\begin{aligned} & 50 \mathrm{MHz} \\ & 860 \mathrm{MHz} \end{aligned}$	NF	-	6.0	$\begin{aligned} & 5.5 \\ & 7.0 \end{aligned}$	dB
DC Current ($\left.\mathrm{V}_{\mathrm{DC}}=24 \mathrm{~V}, \mathrm{~T}_{\mathrm{C}}=30^{\circ} \mathrm{C}\right)$		IDC	280	310	350	mA

The RF Line 152-Channel (1000 MHz) CATV Line Extender Amplifier

- Specified for 152-Channel Performance
- Broadband Power Gain —@ $\mathrm{f}=40-1000 \mathrm{MHz}$

$$
\mathrm{G}_{\mathrm{p}}=24 \mathrm{~dB}(\text { Typ) }
$$

- Broadband Noise Figure

NF = 8 dB (Max) @ 1000 MHz

- Superior Gain, Return Loss and DC Current Stability with Temperature
- All Gold Metallization
- 7 GHz f丁 Ion-Implanted Transistors

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
RF Voltage Input (Single Tone)	$\mathrm{V}_{\text {in }}$	+55	dBmV
DC Supply Voltage	V_{CC}	+28	Vdc
Operating Case Temperature Range	T_{C}	-20 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	$\mathrm{T}_{\text {stg }}$	-40 to +100	${ }^{\circ} \mathrm{C}$

ELECTRICAL CHARACTERISTICS $\left(\mathrm{V}_{\mathrm{CC}}=24 \mathrm{Vdc}, \mathrm{T}_{\mathrm{C}}=+30^{\circ} \mathrm{C}, 75 \Omega\right.$ system unless otherwise noted)

Characteristic		Symbol	Min	Typ	Max	Unit
Frequency Range		BW	40	-	1000	MHz
Power Gain	$\begin{aligned} & 50 \mathrm{MHz} \\ & 1000 \mathrm{MHz} \end{aligned}$	G_{p}	$\begin{gathered} \hline 23.2 \\ 24 \end{gathered}$	$\begin{aligned} & 24 \\ & 25 \end{aligned}$	$\begin{gathered} \hline 24.8 \\ 27 \end{gathered}$	dB
Slope	$40-1000 \mathrm{MHz}$	S	0	1	2.5	dB
Gain Flatness ($40-1000 \mathrm{MHz}$, Peak-to-Valley)		-	-	0.5	1.0	dB
Return Loss - Input/Output ($\mathrm{Z}_{\mathrm{O}}=75$ Ohms)	@ 40 MHz @ f $>40 \mathrm{MHz}$ (Derate)	IRL/ORL	20	-	$\overline{0.01}$	$\begin{gathered} \mathrm{dB} \\ \mathrm{~dB} / \mathrm{MHz} \end{gathered}$
Composite Second Order ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)		CSO_{152}	-	-65	-59	dBc
Cross Modulation Distortion @ Ch 2 ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} /$ ch., $\mathrm{FM}=55 \mathrm{MHz}$)	152-Channel FLAT	XMD 152	-	-64	-59	dBc
Composite Triple Beat ($\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$., Worst Case)	152-Channel FLAT	CTB152	-	-61	-58	dBc
Noise Figure	$\begin{aligned} & 50 \mathrm{MHz} \\ & 1000 \mathrm{MHz} \end{aligned}$	NF	-	$\begin{aligned} & \hline-5.0 \\ & -7.0 \end{aligned}$	$\begin{aligned} & 5.5 \\ & 8.0 \end{aligned}$	dB
DC Current		${ }^{\text {IDC }}$	280	320	350	mA

Chapter Seven

Tape and Reel Specifications

Motorola offers the convenience of Tape and Reel packaging for our growing family of standard integrated circuit products. Reels are available to support the requirements of both first and second generation pick-and-place equipment. The packaging fully conforms to the latest EIA-481A specification. The antistatic embossed tape provides a secure cavity, sealed with a peel-back cover tape.

Table of Contents

Embossed Tape and Reel Ordering Information . 7.1-3
Embossed Tape and Reel Data for Discretes 7.1-4

Tape and Reel Specifications

Embossed Tape and Reel is used to facilitate automatic pick and place equipment feed requirements. The tape is used as the shipping container for various products and requires a minimum of handling. The antistatic/conductive tape provides a secure cavity for the product when sealed with the "peel-back" cover tape.

- Two Reel Sizes Available (7" and $13^{\prime \prime}$)
- Used for Automatic Pick and Place Feed Systems
- Minimizes Product Handling
- EIA 481, -1, -2
- SC-70/SOT-323, SC-70ML/SOT-363, SC-90/SC-75, SOT-23, SOT-143 in 8 mm Tape
- Micro-8, PLD-1, PLD-1.5, SO-8, SOT-89 in 12 mm Tape
- SO-16, TQFP-48, TSSOP-16 and TSSOP-20 in 16 mm Tape

Use the standard device title and add the required suffix as listed in the option table on the following page. Note that the individual reels have a finite number of devices depending on the type of product contained in the tape. Also note the minimum lot size is one full reel for each line item, and orders are required to be in increments of the single reel quantity.

EMBOSSED TAPE AND REEL ORDERING INFORMATION

Package	Tape Width (mm)	$\mathrm{mm} \quad \text { Pitch } \text { (inch) }$	$\begin{gathered} \text { Reel Size } \\ \mathrm{mm} \quad \text { (inch) } \end{gathered}$	Devices Per Reel and Minimum Order Quantity	Device Suffix
SC-70/SOT-323	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	4.0 ± 0.1 (.157 $\pm .004)$	178 (7) 330 (13)	$\begin{gathered} \hline 3,000 \\ 10,000 \end{gathered}$	$\begin{aligned} & \hline \text { T1 } \\ & \text { T3 } \end{aligned}$
SC-70ML/SOT-363	8	$4.0 \pm 0.1(.157 \pm .004)$	178 (7)	$\begin{aligned} & 3,000 \\ & 3,000 \end{aligned}$	$\begin{aligned} & \hline \text { T1 } \\ & \text { T2 } \end{aligned}$
SC-90/SC-75	8	$4.0 \pm 0.1(.157 \pm .004)$	178 (7)	3,000	T1
Micro-8	12	$8.0 \pm 0.1(.315 \pm .003)$	330 (13)	4,000	R2
PLD-1	12	$8.0 \pm 0.1(.315 \pm .004)$	178 (7)	1,000	T1
PLD-1.5	12	$8.0 \pm 0.1(.315 \pm .004)$	178 (7)	1,000	T1
SO-8	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	8.0 ± 0.1 (.315 $\pm .004)$	178 (7) 330 (13)	$\begin{gathered} \hline 500 \\ 2,500 \end{gathered}$	$\begin{aligned} & \hline \text { R1 } \\ & \text { R2 } \end{aligned}$
SOT-89	12	$8.0 \pm 0.1(.315 \pm .004)$	178 (7)	1,000	T1
SO-16	$\begin{aligned} & 16 \\ & 16 \end{aligned}$	8.0 ± 0.1 (.315 $\pm .004)$	178 (7) 330 (13)	$\begin{gathered} 500 \\ 2,500 \end{gathered}$	$\begin{aligned} & \text { R1 } \\ & \text { R2 } \end{aligned}$
SOT-23	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	4.0 ± 0.1 (.157 $\pm .004)$	178 (7) 330 (13)	$\begin{gathered} \hline 3,000 \\ 10,000 \end{gathered}$	$\begin{aligned} & \hline \mathrm{T} 1 \\ & \mathrm{~T} 2 \end{aligned}$
SOT-143	$\begin{aligned} & \hline 8 \\ & 8 \end{aligned}$	$4.0 \pm 0.1(.157 \pm .004)$	178 (7) 330 (13)	$\begin{gathered} \hline 3,000 \\ 10,000 \end{gathered}$	$\begin{aligned} & \hline \text { T1 } \\ & \text { T3 } \end{aligned}$
TQFP-48	16	$12.0 \pm 0.1(.471 \pm .004)$	330 (13)	1,500	R2
TSSOP-16	16	$8.0 \pm 0.1(.315 \pm .004)$	330 (13)	2,500	R2
TSSOP-20	16	$8.0 \pm 0.1(.315 \pm .004)$	330 (13)	2,000	R2
PFP-16	16	$12.0 \pm 0.1(.471 \pm .004)$	330 (13)	1,500	R2

EMBOSSED TAPE AND REEL DATA FOR DISCRETES
 CARRIER TAPE SPECIFICATIONS

DIMENSIONS

Tape Size	B_{1} Max	D	D_{1}	E	F	K	P_{0}	P_{2}	R Min	T Max	W Max
8 mm	$\begin{aligned} & 4.55 \mathrm{~mm} \\ & \left(.179^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 1.5+0.1 \mathrm{~mm} \\ -0.0 \\ \left(.059+.004^{\prime \prime}\right. \\ -0.0) \end{gathered}$	$\begin{aligned} & 1.0 \mathrm{Min} \\ & \left(.039^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 1.75 \pm 0.1 \mathrm{~mm} \\ & \left(.069 \pm .004^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 3.5 \pm 0.05 \mathrm{~mm} \\ & \left(.138 \pm .002^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 2.4 \mathrm{~mm} \text { Max } \\ & \left(.094^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 4.0 \pm 0.1 \mathrm{~mm} \\ & \left(.157 \pm .004^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 2.0 \pm 0.1 \mathrm{~mm} \\ & \left(.079 \pm .002^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 25 \mathrm{~mm} \\ \left(.98^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 0.6 \mathrm{~mm} \\ & \left(.024^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 8.3 \mathrm{~mm} \\ & \left(.327^{\prime \prime}\right) \end{aligned}$
12 mm	$\begin{aligned} & 8.2 \mathrm{~mm} \\ & \left(.323^{\prime \prime}\right) \end{aligned}$		$\begin{aligned} & 1.5 \mathrm{~mm} \operatorname{Min} \\ & \left(.060^{\prime \prime}\right) \end{aligned}$		$\begin{aligned} & 5.5 \pm 0.05 \mathrm{~mm} \\ & \left(.217 \pm .002^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 6.4 \text { mm Max } \\ \left(.252^{\prime \prime}\right) \end{gathered}$			$\begin{aligned} & 30 \mathrm{~mm} \\ & \left(1.18^{\prime \prime}\right) \end{aligned}$		$\begin{aligned} & 12 \pm .30 \mathrm{~mm} \\ & \left(.470 \pm .012^{\prime \prime}\right) \end{aligned}$
16 mm	12.1 mm (.476")				$\begin{aligned} & 7.5 \pm 0.10 \mathrm{~mm} \\ & \left(.295 \pm .004^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 7.9 \mathrm{~mm} \operatorname{Max} \\ \left(.311^{\prime \prime}\right) \end{gathered}$					$\begin{gathered} 16.3 \mathrm{~mm} \\ \left(.642^{\prime \prime}\right) \end{gathered}$

Metric dimensions govern - English are in parentheses for reference only.
NOTE 1: $\mathrm{A}_{0}, \mathrm{~B}_{0}$, and K_{0} are determined by component size. The clearance between the components and the cavity must be within .05 mm min. to .50 mm max., the component cannot rotate more than 10° within the determined cavity.
NOTE 2: If B_{1} exceeds $4.2 \mathrm{~mm}(.165)$ for 8 mm embossed tape, the tape may not feed through all tape feeders
NOTE 3: Pitch information is contained in the Embossed Tape and Reel Ordering Information on pg. 7.1-3.

Size	A Max	G	T Max
8 mm	330 mm $\left(12.992^{\prime \prime}\right)$	$8.4 \mathrm{~mm}+1.5 \mathrm{~mm},-0.0$ $\left(.33^{\prime \prime}+.059^{\prime \prime},-0.00\right)$	14.4 mm $\left(.56^{\prime \prime}\right)$
12 mm	330 mm $\left(12.992^{\prime \prime}\right)$	$12.4 \mathrm{~mm}+2.0 \mathrm{~mm},-0.0$ $\left(.49^{\prime \prime}+.079^{\prime \prime},-0.00\right)$	18.4 mm $\left(.72^{\prime \prime}\right)$
	360 mm $\left(14.173^{\prime \prime}\right)$	$16.4 \mathrm{~mm}+2.0 \mathrm{~mm},-0.0$ $\left(.646^{\prime \prime}+.078^{\prime \prime},-0.00\right)$	22.4 mm $\left(.882^{\prime \prime}\right)$

Reel Dimensions

Metric Dimensions Govern - English are in parentheses for reference only

Figure 1. Reel Packing

Figure 2. Component Spacing

Figure 3. Reel Dimensions

Chapter Eight

Surface Mount Information

In Brief . . .

Surface Mount Technology is now being utilized to offer answers to many problems that have been created in the use of insertion technology.

Limitations have been reached with insertion packages and PC board technology. Surface Mount Technology offers the opportunity to continue to advance the state-of-the-art designs that cannot be accomplished with Insertion Technology.

Surface Mount Packages allow more optimum device performancewiththesmallerSurfaceMountconfiguration. Internalleadlengths, parasiticcapacitanceandinductance that placed limitations on chip performance have been reduced.

The lower profile of Surface Mount Packages allows more boards to be utilized in a given amount of space. They are stacked closer together and utilize less total volume than insertion populated PC boards.

Printed circuit costs are lowered with the reduction of the number of board layers required. The elimination or reduction of the number of plated through holes in the board contribute significantly to lower PC board prices.

Surface Mount assembly does not require the preparation of components that is common on insertion technology lines. Surface Mount components are sent directly to the assembly line, eliminating an intermediate step.

Automatic placement equipment is available that can place Surface Mount components at the rate of a few thousand per hour to hundreds of thousands of components per hour.

Surface Mount Technology is cost effective, allowing the manufacturer the opportunity to produce smaller units and offer increased functions with the same size product.

Table of Contents

Page
Information for Using Surface Mount Packages 8.1-2
Footprints for Soldering . 8.1-4

INFORMATION FOR USING SURFACE MOUNT PACKAGES
 RECOMMENDED FOOTPRINTS FOR SURFACE MOUNTED APPLICATIONS

Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad
geometry, the packages will self align when subjected to a solder reflow process.

POWER DISSIPATION FOR A SURFACE MOUNT DEVICE

The power dissipation for a surface mount device is a function of the collector pad size. These can vary from the minimum pad size for soldering to a pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by $\mathrm{T}_{J(\max)}$, the maximum rated junction temperature of the die, $\mathrm{R}_{\theta \mathrm{JA}}$, the thermal resistance from the device junction to ambient, and the operating temperature, T_{A}. Using the values provided on the data sheet, PD_{D} can be calculated as follows:

$$
P_{D}=\frac{T_{J}(\max)-T_{A}}{R_{\theta J A}}
$$

The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature T_{A} of $25^{\circ} \mathrm{C}$, one can calculate the power dissipation of the device. For example, for an $\mathrm{SO}-8$ device, PD_{D} is calculated as follows.

$$
\mathrm{PD}=\frac{150^{\circ} \mathrm{C}-25^{\circ} \mathrm{C}}{100^{\circ} \mathrm{C} / \mathrm{W}}=1.25 \mathrm{Watts}
$$

The $100^{\circ} \mathrm{C} / \mathrm{W}$ for the SO-8 package assumes the use of the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 1.25 Watts. There are other alternatives to achieving higher power dissipation from the surface mount packages. One is to increase the area of the collector pad. By increasing the area of the collector pad, the power dissipation can be increased. Although the power dissipation can almost be doubled with this method, area is taken up on the printed circuit board which can defeat the purpose of using surface mount technology.

Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad ${ }^{\text {TM }}$. Using a board material such as Thermal Clad, an aluminum core board, the power dissipation can be doubled using the same footprint.

SOLDER STENCIL GUIDELINES

Prior to placing surface mount components onto a printed circuit board, solder paste must be applied to the pads. Solder stencils are used to screen the optimum amount. These stencils are typically 0.008 inches thick and may be made of
brass or stainless steel. For packages such as the SC-70/SOT-323, SOT-23, SOT-143 and the SO-8, the stencil opening should be the same as the pad size or a $1: 1$ registration.

SOLDERING PRECAUTIONS

The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected.

- Always preheat the device.
- The delta temperature between the preheat and soldering should be $100^{\circ} \mathrm{C}$ or less.*
- When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference should be a maximum of $10^{\circ} \mathrm{C}$.
- The soldering temperature and time should not exceed $260^{\circ} \mathrm{C}$ for more than 10 seconds.
- When shifting from preheating to soldering, the maximum temperature gradient shall be $5^{\circ} \mathrm{C}$ or less.
- After soldering has been completed, the device should be allowed to cool naturally for at least three minutes. Gradual cooling should be used since the use of forced cooling will increase the temperature gradient and will result in latent failure due to mechanical stress.
- Mechanical stress or shock should not be applied during cooling.
* Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device.

TYPICAL SOLDER HEATING PROFILE

For any given circuit board, there will be a group of control settings that will give the desired heat pattern. The operator must set temperatures for several heating zones and a figure for belt speed. Taken together, these control settings make up a heating "profile" for that particular circuit board. On machines controlled by a computer, the computer remembers these profiles from one operating session to the next. Figure 1 shows a typical heating profile for use when soldering a surface mount device to a printed circuit board. This profile will vary among soldering systems, but it is a good starting point. Factors that can affect the profile include the type of soldering system in use, density and types of components on the board, type of solder used, and the type of board or substrate material being used. This profile shows temperature versus time. The line on the graph shows the actual temperature that might be
experienced on the surface of a test board at or near a central solder joint. The two profiles are based on a high density and a low density board. The Vitronics SMD310 convection/infrared reflow soldering system was used to generate this profile. The type of solder used was 62/36/2 Tin Lead Silver with a melting point between $177-189^{\circ} \mathrm{C}$. When this type of furnace is used for solder reflow work, the circuit boards and solder joints tend to heat first. The components on the board are then heated by conduction. The circuit board, because it has a large surface area, absorbs the thermal energy more efficiently, then distributes this energy to the components. Because of this effect, the main body of a component may be up to 30 degrees cooler than the adjacent solder joints.

Figure 1. Typical Solder Heating Profile

Footprints for Soldering

Chapter Nine

Packaging Information

The packaging availability for each device type is indicated on the individual data sheets and in the Selector Guide. All of the outline dimensions for the packages are given in this section.

Table of Contents
Page
Case Dimensions
9.1-2

Case Dimensions

NOTES

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.370	0.385	9.40	9.78
B	0.320	0.330	8.13	8.38
C	0.670	0.790	17.02	20.07
D	0.215	0.235	5.46	5.97
E	0.070	-	1.78	-
J	0.003	0.007	0.08	0.18
K	0.490	-	12.45	-
L	0.055	0.070	1.40	1.78
M	45° NOM	45° NOM		
P	-	0.050	-	1.27
R	0.299	0.307	7.59	7.80
S	0.158	0.178	4.01	4.52
T	0.083	0.100	2.11	2.54
U	0.098	0.132	2.49	3.35

STYLE 1:
PIN 1. EMITTER
2. BASE
3. EMITTER
4. COLLECTOR

CASE 145A-09
ISSUE M
(.380" STUD)

NOTES

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.320	0.385	9.28	9.77
B	0.320	0.330	8.13	8.38
C	0.700	0.778	17.78	19.76
D	0.220	0.230	5.59	5.84
H	0.160	0.170	4.07	4.31
J	0.003	0.006	0.08	0.15
K	0.490	0.520	12.45	13.20
R	0.248	0.275	6.30	7.23
V	0.100	0.130	2.54	3.30
W	0.055	0.065	1.40	1.65

STYLE 1
PIN 1. EMITTER
2. BASE
3. EMITTER
4. COLLECTOR

CASE 145D-02
ISSUE A
(.380" SOE)

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.960	0.990	24.39	25.14
B	0.370	0.390	9.40	9.90
C	0.229	0.281	5.82	7.13
D	0.215	0.235	5.47	5.96
E	0.085	0.105	2.16	2.66
H	0.150	0.108	3.81	4.57
J	0.004	0.006	0.11	0.15
K	0.395	0.405	10.04	10.28
M	40°	50°	40°	50°
Q	0.113	0.130	2.88	3.30
R	0.245	0.255	6.23	6.47
S	0.790	0.810	20.07	20.57
U	0.720	0.730	18.29	18.54

STYLE 1:
PIN 1. EMITTER
2. BASE
3. EMITTER

STYLE 2:
3. EMITIER \quad 2. GATE
4. COLLECTOR 4 3. SOURCE

CASE 211-07
ISSUE N
(.380" FLANGE)

CASE 211-11
ISSUE N
(.500" FLANGE)

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	7.06	7.26	0.278	0.286
B	6.20	6.50	0.244	0.256
C	14.99	16.51	0.590	0.650
D	5.46	5.96	0.215	0.235
E	1.40	1.65	0.055	0.065
G	1.52	-	0.060	-
J	0.08	0.17	0.003	0.007
K	11.05	-	0.435	-
M	$45^{\circ} \mathrm{NOM}$		$45^{\circ} \mathrm{NOM}$	
P	-	1.27	-	0.050
S	3.00	3.25	0.118	0.128
T	1.40	1.77	0.055	0.070
U	2.92	3.68	0.115	0.145

STYLE 1:
PIN 1. EMITTER
3. EMITTER
4. COLLECTOR

CASE 244-04
ISSUE J
(.280" STUD)

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	7.06	7.26	0.278	0.286
B	6.20	6.50	0.244	0.256
C	15.24	16.51	0.600	0.650
D	0.66	0.86	0.026	0.034
E	1.40	1.65	0.055	0.065
F	1.52	-	0.060	-
J	0.10	0.15	0.004	0.006
K	11.17	-	0.440	
M	45°	NOM	45°	
NOM				
P	-	1.27	-	0.050
S	2.74	3.35	0.108	0.132
T	1.40	1.78	0.055	0.070
U	2.92	3.68	0.115	0.145

CASE 244A-01
ISSUE A

CASE 249-06
ISSUE H
(.280" PILL)

CASE DIMENSIONS (continued)

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH

DIM	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.200	0.220	5.08	5.59	
C	0.095	0.130	2.41	3.30	
D	0.055	0.065	1.40	1.65	
F	0.025	0.035	0.64	0.89	
H	0.040	0.050	1.02	1.27	
J	0.003	0.007	0.08	0.18	
K	0.435	-	11.05	-	
M	45° REF		45° REF		

STYLE 1:
STYLE 2:
PIN 1. EMITTER
2. BASE
2. BASE
4. COLLECTOR 4 3. SOURCE

CASE 305A-01
ISSUE A
(.204" PILL)

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.200	0.210	5.08	5.33
C	-	0.125	-	3.17
D	0.120	0.130	3.05	3.30
F	0.025	0.035	0.64	0.88
H	0.035	0.045	0.88	1.14
J	0.004	0.006	0.11	0.15
K	0.970	1.030	24.64	26.16

STYLE 1:
PIN 1. EMITTER
2. BASE
3. BASE
3. EMITTER
4. COLLECTOR

CASE 305C-02
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.200	0.220	5.08	5.59
C	0.095	0.130	2.41	3.30
D	0.055	0.065	1.40	1.65
E	0.040	0.050	1.02	1.27
F	0.025	0.035	0.64	0.89
J	0.003	0.007	0.08	0.18
K	0.235	0.265	5.97	6.73
M	45° NOM	45° NOM		

STYLE 1:
PIN 1. EMITTER
2. BASE
3. EMITTER
4. COLLECTOR

CASE 305D-01
ISSUE 0

NOTES:

1. FLANGE IS ISOLATED IN ALL STYLES.

			MILLI	TERS
DIM	MIN	MAX	MIN	MAX
A	24.38	25.14	0.960	0.990
B	12.45	12.95	0.490	0.510
C	5.97	7.62	0.235	0.300
D	5.33	5.58	0.210	0.220
E	2.16	3.04	0.085	0.120
F	5.08	5.33	0.200	0.210
H	18.29	18.54	0.720	0.730
J	0.10	0.15	0.004	0.006
K	10.29	11.17	0.405	0.440
L	3.81	4.06	0.150	0.160
N	3.81	4.31	0.150	0.170
Q	2.92	3.30	0.115	0.130
R	3.05	3.30	0.120	0.130
U	11.94	12.57	0.470	0.495
$\begin{array}{r} \text { STYL } \\ \text { PI } \end{array}$	1: EMITTER		STYLE 3:	
				N 1. S
	2. COLLECTOR			2. D
	3. EMITTER			3. S
	4. BASE			4. G

CASE 316-01
ISSUE D
(.500" CQ)

CASE 317-01
ISSUE E
(MACRO-X)

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH
3. LEAD DIMENSIONS UNCONTROLLED WITHIN
4. LEAD DIMENSIONS UN
DIMENSION N AND R.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.175	0.205	4.45	5.20
C	0.075	0.100	1.91	2.54
D	0.033	0.039	0.84	0.99
F	0.097	0.104	2.46	2.64
H	0.348	0.383	8.84	9.72
J	0.008	0.012	0.24	0.30
K	0.285	0.320	7.24	8.12
N	-	0.065	-	1.65
R	-	0.128	-	3.25
T	0.025	0.040	0.64	1.01

STYLE 2:
PIN 1. COLLECTOR
2. EMITTER
3. BASE
4. EMITTER

CASE 317D-02
ISSUE C
(POWER MACRO)

CASE DIMENSIONS (continued)

STYLE 6
PIN 1. BASE
2. EMITTER
3. COLLECTOR

SOT-23 FOOTPRINT

ES:

1. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. MAXIMUM LEAD THICKNESS INCLUDES LEAD

FINISH THICKNESS. MINIMUM LEAD THICKNESS
IS THE MINIMUM THICKNESS OF BASE MATERIAL.

CASE 318-08
ISSUE AF
(TO-236AB)

	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.1102	0.1197	2.80	3.04
B	0.0472	0.0551	1.20	1.40
C	0.0350	0.0440	0.89	1.11
D	0.0150	0.0200	0.37	0.50
G	0.0701	0.0807	1.78	2.04
H	0.0005	0.0040	0.013	0.100
J	0.0034	0.0070	0.085	0.177
L	0.0140	0.0285	0.35	0.69
S	0.0350	0.0801	0.89	1.02
V	0.0177	0.1039	2.10	2.64

STYLE 7:
PIN 1. SOURCE
2. GATE
2. GATE
3. DRAIN
4. SOURC

STYLE 11:
PIN 1. SOURCE
2. GATE
3. DRAIN
4. N/C

PIN 1. SOURCE
2. GATE
3. GATE 2

CASE 318A-05
ISSUE R

NOTES
4. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
5. CONTROLLING DIMENSION: MILLIMETER

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	2.80	3.04	0.110	0.120
B	1.20	1.39	0.047	0.055
C	0.84	1.14	0.033	0.045
D	0.39	0.50	0.015	0.020
F	0.79	0.93	0.031	0.037
G	1.78	2.03	0.070	0.080
H	0.013	0.10	0.0005	0.004
J	0.08	0.15	0.003	0.006
K	0.46	0.60	0.018	0.024
L	0.445	0.60	0.0175	0.024
R	0.72	0.83	0.028	0.033
S	2.11	2.48	0.083	0.098

CASE DIMENSIONS (continued)

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.355	0.365	9.02	9.27
B	0.225	0.235	5.72	5.96
C	0.110	0.125	2.80	3.17
D	0.115	0.125	2.93	3.17
F	0.075	0.085	1.91	2.15
H	0.035	0.045	0.89	1.14
J	0.004	0.006	0.11	0.15
K	0.090	0.110	2.29	2.79

STYLE 2:
PIN 1. EMITTER
2. BASE
3. EMITTER
4. EMITTER
5. COLLECTOR
6. EMITTER

CASE 319A-02
ISSUE B

NOTES:
NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M. 1982.
2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.795	0.805	20.20	20.45
B	0.245	0.255	6.23	6.47
C	0.145	0.170	3.69	4.31
D	0.115	0.125	2.93	3.17
E	0.055	0.065	1.40	1.65
F	0.045	0.055	1.15	1.39
G	0.562 BSC	14.27 BSC		
J	0.003	0.006	0.08	0.15
K	0.260	0.375	6.60	9.52
N	0.175	0.185	4.45	4.69
Q	0.120	0.135	3.05	3.42
R	0.225	0.235	5.72	5.97
S	0.120	0.130	3.05	3.30

$\begin{array}{cc}\text { STYLE 1: } & \text { STYLE 2: } \\ \text { 1. EMITTER } & \text { 1. BASE } \\ \text { 2. COLLECTOR } & \text { 2. COLLECTOR } \\ \text { 3. BASE } & \text { 3. EMITTER }\end{array}$

CASE 328A-03
ISSUE E

NOTES:
NOTES:

1. DIMENSION K APPLIES TWO PLACES.
2. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1973.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	6.86	7.62	0.270	0.300
B	6.10	6.60	0.240	0.260
C	16.26	16.76	0.640	0.660
D	4.95	5.21	0.195	0.205
E	1.40	1.65	0.055	0.065
F	2.67	4.32	0.105	0.170
H	1.40	1.65	0.055	0.065
J	0.08	0.18	0.003	0.007
K	15.24	-	0.600	-
L	2.41	2.67	0.095	0.105
M	45° NOM	45° NOM		
N	4.97	6.22	0.180	0.245
U	2.92	3.68	0.115	

CASE 332-04
ISSUE D
(.280" STUD)

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.270	0.290	6.86	7.36
C	0.115	0.135	2.93	3.42
D	0.195	0.205	4.96	5.20
F	0.095	0.105	2.42	2.66
H	0.050	0.070	1.27	1.77
J	0.003	0.007	0.08	0.17
K	0.600	-	15.24	-

STYLE 1: STYLE 2:
PIN 1. BASE
2. EMITTER
3. BASE
4. COLLECTOR

IN 1. EMITTER
2. BASE
3. EMITTER
4. COLLECTOR

CASE 332A-03
ISSUE D
(.280" PILL)

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
	0.790	0.810	20.07	20.57
B	0.253	0.267	6.43	6.78
C	0.144	0.160	3.66	4.06
D	0.093	0.107	2.37	2.71
E	0.074	0.080	1.88	2.03
F	0.002	0.006	0.06	0.15
G	0.560 BSC		14.22 BSC	
H	0.043	0.057	1.10	1.44
K	0.346	0.394	8.79	10.10
N	0.243	0.257	6.18	6.52
Q	0.125	0.135	3.18	3.42
U	0.117	0.128	2.98	3.25

STYLE 1:
STYLE 1:
PIN 1. COLLECTOR
PIN 1. COLLECTOR
2. EMITTER
2. EMITTER
3. BASE
3. BASE

CASE 336E-02
ISSUE B

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	4.40	4.60	0.174	0.181
B	2.29	2.60	0.091	0.102
C	1.40	1.60	0.056	0.062
D	0.36	0.48	0.015	0.018
E	1.62	1.80	0.064	0.070
F	0.44	0.55	0.018	0.021
G	1.50 BSC		0.059	
BSC				
J	0.35	0.44	0.014	0.017
K	0.89	1.20	0.035	0.047
L	3.00 BSC	0.118		BSC
N	2.14	2.28	0.084	0.089
P	3.94		4.25	0.156

CASE 345-03
ISSUE H
(SOT-89)

CASE 355C-02
ISSUE C

CASE 355E-01
ISSUE B

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.890	0.910	22.61	23.11
B	0.375	0.395	9.53	10.03
C	0.190	0.210	4.83	5.33
D	0.145	0.155	3.69	3.93
E	0.055	0.065	1.40	1.65
H	0.120	0.130	3.05	3.30
J	0.003	0.006	0.08	0.15
K	0.185	0.215	4.70	5.46
M	45° REF	45° REF		
N	0.490	0.510	12.45	12.95
Q	0.115	0.125	2.93	3.17
R	0.395	0.405	10.04	10.28
U	0.700 BSC		17.78 BSC	

STYLE 1 :
PIN 1. COLLECTOR
2. EMITTER 3. BASE

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

controlling dimension: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.790	0.810	20.07	20.57
B	0.220	0.240	5.59	6.09
C	0.125	0.175	3.18	4.45
D	0.205	0.225	5.21	5.71
E	0.050	0.070	1.27	1.77
F	0.004	0.006	0.11	
G	0.562 BSC		14.27	
BSC				
H	0.070	0.090	1.78	2.29
K	0.215	0.255	5.47	6.47
N	0.350	0.370	8.89	9.39
Q	0.120	0.140	3.05	3.55

STYLE 1:
PIN 1. DRAIN
2. GATE
3. SOURCE

CASE 360B-01
ISSUE 0

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.370	0.390	9.40	9.91
B	0.220	0.240	5.59	6.09
C	0.105	0.155	2.67	3.94
D	0.205	0.225	5.21	5.71
E	0.035	0.045	0.89	1.14
F	0.004	0.006	0.11	0.15
H	0.057	0.067	1.45	1.70
K	0.085	0.115	2.16	2.92
N	0.350	0.370	8.89	9.39

STYLE 1 :
PIN 1. DRAIN
2. GATE
3. SOURCE

CASE 360C-03
ISSUE B

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH

DIM	INCHES		MILLIMETERS			
	MIN	MAX	MIN	MAX		
A	1.490	1.510	37.85	38.35		
B	0.990	1.010	25.15	25.65		
C	0.330	0.365	8.38	9.27		
D	0.490	0.510	12.45	12.95		
E	0.195	0.205	4.95	5.21		
H	0.045	0.055	1.14	1.39		
J	0.004	0.006	0.10	0.15		
K	0.425	0.500	10.80	12.70		
N	0.890	0.910	22.87	23.11		
Q	0.120	0.130	3.05	3.30		
U	1.250 BSC	31.75 BSC				
V	0.750 BSC			19.05 BSC		

STYLE 2:
PIN 1. DRAIN
2. GATE
3. SOURCE

CASE 368-03
 ISSUE C
 (HOG PAC)

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	1.330	1.350	33.79	34.29
B	0.370	0.410	9.40	10.41
C	0.190	0.230	4.83	5.84
D	0.215	0.235	5.47	5.96
E	0.050	0.070	1.27	1.77
G	0.430	0.440	10.92	11.18
H	0.102	0.112	2.59	2.84
J	0.004	0.006	0.11	0.15
K	0.185	0.215	4.83	5.33
N	0.845	0.875	21.46	22.23
Q	0.060	0.070	1.52	1.78
R	0.390	0.410	9.91	10.41
U	1.100 BSC	27.94 BSC		

CASE 375-04
ISSUE D

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982
2. CONTROLLING DIMENSION: INCH

DIM	INCHES		MILLIMETERS			
	MIN	MAX	MIN	MAX		
A	1.330	1.350	33.79	34.29		
B	0.375	0.395	9.52	10.03		
C	0.180	0.205	4.57	5.21		
D	0.320	0.340	8.13	8.64		
E	0.060	0.070	1.52	1.77		
F	0.004	0.006	0.11			
G	1.100		BSC	27.94		
H	0.082		0.097	2.08		2.46
K	0.580		0.620	14.73		15.75
L	0.435		BSC	11.05		BSC
N	0.845	0.875	21.46	22.23		
Q	0.118	0.130	3.00			
R	0.390	0.410	9.91			

STYLE 1 :
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. BASE
5. EMITTER

CASE 375A-01
 ISSUE O

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI 1. DIMENSION
Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
A	1.330	1.350	33.79	34.29	
B	0.375	0.395	9.52	10.03	
C	0.180	0.210	4.57	5.33	
D	0.320	0.340	8.13	8.64	
E	0.060	0.070	1.52	1.77	
F	0.004	0.006	0.11		
G	1.100 BSC		27.94 BSC		
H	0.093	0.108	2.36		
K	0.085	0.115	2.16		
L	0.425		BSC	10.80	
N	0.845	0.875	21.46		
QSC	22.23				
R	0.118	0.130	3.00		

STYLE 2:
PIN 1. DRAIN
2. DRAIN
3. GATE
4. GATE
5. SOURCE

CASE 375B-02
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.890	0.910	22.61	23.11
B	0.370	0.400	9.40	10.16
C	0.145	0.160	3.69	4.06
D	0.140	0.160	3.56	4.06
E	0.055	0.065	1.40	1.65
F	0.003	0.006	0.08	0.15
G	0.650		BSC	16.51 BSC
H	0.110	0.130	2.80	
K	0.180	0.220	4.57	5.59
N	0.390	0.410	9.91	10.41
Q	0.115	0.135	2.93	3.42
R	0.390	0.140	9.91	10.41

STYLE 1:
PIN 1. COLLECTOR
3. EMITTER

CASE 376B-02
ISSUE B

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS		
	MIN	MAX	MIN	MAX	
A	0.895	0.905	22.73	22.99	
B	0.380	0.390	9.65	9.91	
C	0.172	0.208	4.37	5.28	
D	0.075	0.085	1.91	2.16	
E	0.055	0.065	1.40	1.65	
G	0.075	0.085	1.91	2.16	
H	0.115	0.125	2.92	3.18	
J	0.003	0.006	0.08	0.15	
N	0.393	0.403	9.98	10.24	
Q	0.123	0.133	3.13	3.38	
S	0.705	0.745	17.91	18.92	
U	0.650		BSC	16.51 BSC	
V	0.393	0.403	9.98		

STYIE 1 .
PIN 1. COLLECTOR
2. COLLECTOR
3. BASE
4. BASE
5. EMITTER

CASE 391-03

ISSUE C

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.795	0.805	20.19	20.45
B	0.255	0.265	6.48	6.73
C	0.156	0.176	3.96	4.47
D	0.055	0.065	1.40	1.65
E	0.057	0.063	1.45	1.60
H	0.081	0.089	1.98	2.34
J	0.002	0.006	0.05	0.15
N	0.316	0.326	8.03	8.28
Q	0.125	0.135	3.18	3.43
S	0.620	0.680	15.75	17.27
U	0.552	0.572	14.02	14.53

STYLE 1:
PIN 1. COLLECTOR
2. EMITTER
3. BASE

CASE 394-03

CASE 395B-01
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.739	0.750	18.77	19.05
B	0.240	0.260	6.10	6.60
C	0.165	0.198	4.19	5.03
D	0.215	0.225	5.46	5.72
E	0.060	0.070	1.52	1.78
H	0.084	0.096	2.13	2.44
J	0.004	0.006	0.10	0.15
K	0.178	0.208	4.52	5.28
N	0.315	0.330	8.00	8.38
Q	0.125	0.135	3.18	
U	0.560		BSC	3.42
W	0.035	0.045	0.89	

STYLE 1:
PIN 1. BASE
2. COLLECTOR
3. EMITTER

CASE 395D-03
ISSUE B

CASE 400-01
ISSUE B

CASE DIMENSIONS (continued)

CASE 419-02

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANS
2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS			
DIM	MIN	MAX	MIN	MAX		
A	0.071	0.087	1.80	2.20		
B	0.045	0.053	1.15	1.35		
C	0.035	0.049	0.90	1.25		
D	0.012	0.016	0.30	0.40		
G	0.047	0.055	1.20	1.40		
H	0.000	0.004	0.00	0.10		
J	0.004	0.010	0.10	0.25		
K	0.017 REF		0.425			
REF						
L	0.026 BSC		0.650 BSC			
N	0.028		REF	0.700		REF
R	0.031	0.039	0.80	1.00		
S	0.079	0.087	2.00	2.20		
V	0.012	0.016	0.30	0.40		

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
CONTROLLING DIMENSION: INCH

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.071	0.087	1.80	2.20
B	0.045	0.053	1.15	1.35
C	0.031	0.043	0.80	1.10
D	0.004	0.012	0.10	
G	0.026 BSC		0.65 BSC	
H	-	0.004	-	0.10
J	0.004	0.010	0.10	
K	0.004	0.012	0.10	
N	0.008 REF		0.20	
S	0.079	0.087	2.00	
V	0.012	0.016	2.20	

STYLE 17:
STYLE 16:
PIN 1. BASE 1

3. COLLECTOR 2
4. BASE 2
5. EMITTER 1
6. COLLECTOR 1
2. EMITTER 1
3. COLLECTOR 2
4. BASE 2
5. EMITTER 2
6. COLLECTOR 1

CASE 419B-01 ISSUE G

CASE DIMENSIONS (continued)

CASE DIMENSIONS (continued)

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER
3. DIMENSION AE (PACKAGE COPLANARITY): THE BOTTOM OF THE DEVICE LEADS AND THE BOTTOM OF THE DEVICE LEADS AND THE
REFERENCE PLANE -T- MUST BE COPLANAR REFERENCE PLANE -T-
WITHIN DIMENSION AE.
WITHIN DIMENSION AE.
4. REF INDICATES NON-CONTROLLED DIMENSION 4. REF INDICATES NON-CONTROIL
FOR REFERENCE USE ONLY.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	31.75	32.05	1.250	1.262
B	28.85	29.10	1.136	1.146
C	3.70	4.00	0.146	0.157
D	0.43	0.58	0.017	0.023
G	29.60 REF		1.165 REF	
H	24.51 BSC		0.965 BSC	
K	2.10	2.62	0.083	0.103
M	27.00 BSC		1.063 BSC	
N	19.51 BSC		0.768 BSC	
P	0.25 REF		0.010 REF	
Q	3.78 REF		0.149 REF	
R	13.15	13.45	0.518	0.530
S	8.00 REF		0.315 REF	
W	4.50 BSC		0.177 BSC	
Y	1.98 BSC		0.078 BSC	
AA	1.35	1.70	0.053	0.067
AC	10.50 REF		0.413 REF	
AD	0.81 REF		0.032 REF	
AE	+0.050	-0.076	+0.002	-0.003
AF	12.80 REF		0.504 REF	

$$
\begin{aligned}
& \text { STYLE 1: } \\
& \text { PIN 1. PIN } \\
& \text { 2. VCONT } \\
& \text { 3. VDD1 } \\
& \text { 4. VDD2 } \\
& \text { 5. POUT }
\end{aligned}
$$

CASE 420AC-01
ISSUE A

CASE DIMENSIONS (continued)

CASE DIMENSIONS (continued)

CASE 448-02
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.995	1.005	25.27	25.53
B	0.380	0.390	9.65	9.91
C	0.170	0.205	4.32	5.21
D	0.455	0.465	11.56	11.81
E	0.060	0.075	1.52	1.91
F	0.004	0.006	0.10	0.15
G	0.800		BSC	20.32 BSC
H	0.078	0.090	1.98	2.29
K	0.117	0.137	2.97	3.48
N	0.595	0.605	15.11	15.37
Q	0.120	0.130	3.05	3.30
R	0.395	0.410	10.03	10.41

STYLE 1:
PIN 1. COLLECTOR 2. BASE
3. EMITTER

CASE 451-04
ISSUE D

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.615	0.625	15.62	15.88
B	0.395	0.410	10.03	10.41
C	0.170	0.205	4.32	5.21
D	0.455	0.465	11.56	11.81
E	0.060	0.075	1.52	1.91
F	0.004	0.006	0.10	0.15
H	0.078	0.090	1.98	2.29
K	0.117	0.137	2.97	3.48
N	0.595	0.605	15.11	15.37

STYLE 1:
PIN 1. COLLECTOR

CASE 451A-01
ISSUE 0

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.197	0.203	5.00	5.16
B	0.157	0.163	3.99	4.14
C	0.085	0.110	2.16	2.79
D	0.047	0.053	1.19	1.35
E	0.006	0.010	0.15	0.25
H	0.025	0.031	0.64	0.79
J	0.006	0.010	0.15	0.25
K	0.060	0.100	1.52	2.54
L	0.177	0.183	4.50	4.65
N	0.175	0.183	4.45	4.65
P	0.135	0.143	3.43	3.63
R	0.147	0.153	3.73	3.89
U	0.000	0.005	0.00	0.13
V	0.030	0.040	0.76	1.02
W	0.017	0.023	0.43	0.58
Z	-	0.020	-	0.508

STYLE 1:
PIN 1. DRAIN
2. GATE
3. SOURCE

CASE 458-04
ISSUE D

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION-H- (PACKAGE COPLANARITY): THE BOTTOM OF THE LEADS AND REFERENCE PLANE-T-MUST BE COPLANAR WITHIN DIMENSION-H-.

DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	0.197	0.203	5.00	5.16
B	0.157	0.163	3.99	4.14
C	0.085	0.110	2.16	2.79
D	0.047	0.053	1.19	1.35
E	0.006	0.010	0.15	0.25
H	0.000	0.004	0.00	0.10
J	0.006	0.010	0.15	0.25
K	0.050	0.080	1.27	2.03
L	0.177	0.183	4.50	4.65
N	0.175	0.183	4.45	4.65
P	0.135	0.143	3.43	3.63
R	0.147	0.153	3.73	3.89
S	0.020	0.040	0.51	1.02
U	0.000	0.005	0.00	0.13
V	0.030	0.040	0.76	1.02
W	0.017	0.023	0.43	0.58
Y	0.030	0.040	0.76	1.02
Z	-	0.020	-	0.508
STYLE 1:				
2. GATE 3. SOURCE				

CASE 458A-02
ISSUE A

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INCHES	
DIM	MIN	MAX	MIN	MAX
A	0.70	0.80	0.028	0.031
B	1.40	1.80	0.055	0.071
C	0.60	0.90	0.024	0.035
D	0.15	0.30	0.006	0.012
G	1.00	BSC	0.039 BSC	
H	-	0.10	-	0.004
J	0.10	0.25	0.004	0.010
K	1.45	1.75	0.057	0.069
L	0.10	0.20	0.004	0.008
S	0.50			
BSC	0.020 BSC			

STYLE 1
PIN 1. BASE
2. EMITTER
3. COLLECTOR

CASE 463-01
ISSUE A
(SC-90/SC-75)

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	1.335	1.345	33.91	34.16
B	0.380	0.390	9.65	9.91
C	0.125	0.170	3.18	4.32
D	0.495	0.505	12.57	12.83
E	0.035	0.045	0.89	1.14
F	0.003	0.006	0.08	
G	1.100 BSC		27.94 BSC	
H	0.050	0.070	1.27	1.78
K	0.170	0.210	4.32	5.33
N	0.775	0.785	19.69	19.94
Q	0.118	0.138	3.00	3.51
R	0.365	0.375	9.27	9.53

STYLE 1:
PIN 1. DRAIN
2. GATE
3. SOURCE

CASE 465-01
ISSUE 0

CASE DIMENSIONS (continued)

NOTES:

1. DIMENSION LTO CENTER OF LEAD WHEN FORMED PARALLEL
2. PACKAGE CONTOUR OPTIONAL (ROUND OR SQUARE CORNERS
3. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

	MILLIMETERS			INCHES	
DIM	MIN	MAX	MIN	MAX	
A	9.40	10.16	0.370	0.400	
B	6.10	6.60	0.240	0.260	
C	3.94	4.45	0.155	0.175	
D	0.38	0.51	0.015	0.020	
F	1.02	1.78	0.040	0.070	
G	2.54 BSC	0.100		BSC	
H	0.76	1.27	0.030	0.050	
J	0.20	0.30	0.008	0.012	
K	2.92	3.43	0.115	0.135	
L	7.62 BSC	0.300	$0.3 S C$		
M	-	10°	-	10°	
N	0.76	1.01	0.030	0.040	

CASE 626-05
ISSUE K

CASE 646-06
ISSUE M

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: INCH.
3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.
5. ROUNDED CORNERS OPTIONAL.

	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	0.740	0.770	18.80	19.55
B	0.250	0.270	6.35	6.85
C	0.145	0.175	3.69	4.44
D	0.015	0.021	0.39	0.53
F	0.040	0.70	1.02	1.77
G	0.100 BSC		2.54 BSC	
H	0.050	BSC	1.27 BSC	
J	0.008	0.015	0.21	0.38
K	0.110	0.130	2.80	3.30
L	0.295	0.305	7.50	7.74
M	0°	10°	0°	10°
S	0.020	0.040	0.51	1.01

CASE 648-08
ISSUE R

NOTES:

1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	22.22	23.24	0.875	0.915
B	6.10	6.60	0.240	0.260
C	3.56	4.57	0.140	0.180
D	0.36	0.56	0.014	0.022
F	1.27	1.78	0.050	0.070
G	2.54 BSC		0.100 BSC	
H	1.02	1.52	0.040	0.060
J	0.20	0.30	0.008	0.012
K	2.92	3.43	0.115	0.135
L	7.62 BSC		0.300 BSC	
M	0°	15°	0°	15°
N	0.51	1.02	0.020	0.040

CASE 707-02 ISSUE C

OTES:

1. POSITIONAL TOLERANCE OF LEADS (D), SHALL BE WITHIN 0.25 (0.010) AT MAXIMUM MATERIAL CONDITION, IN RELATION TO SEATING PLANE AND EACH OTHER.
2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD FLASH.

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	36.45	37.21	1.435	1.465
B	13.72	14.22	0.540	0.560
C	3.94	5.08	0.155	0.200
D	0.36	0.56	0.014	0.022
F	1.02	1.52	0.040	0.060
G	2.54 BSC		0.100 BSC	
H	1.65	2.16	0.065	0.085
J	0.20	0.38	0.008	0.015
K	2.92	3.43	0.115	0.135
L	15.24 BSC		0.600 BSC	
M	0°	15°	0°	15°
N	0.51	1.02	0.020	0.040

CASE 710-02 ISSUE B

| ϕ | $0.25(0.010)$ | (1) | T |
| :--- | :--- | :--- | :--- | A (1)

NOTES: 1. CHAMFERED CONTOUR OPTIONAL. 2. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 3. DIMENSIONING AND TOLERANCING PER ANS Y14.5M, 1982. 4. CONTROLLING DIMENSION: INCH.				
DIM	INCHES		MILLIMETERS	
	MIN	MAX	MIN	MAX
A	1.230	1.265	31.25	32.13
B	0.250	0.270	6.35	6.85
C	0.145	0.175	3.69	4.44
D	0.015	0.020	0.38	0.51
E	0.050 BSC		1.27 BSC	
F	0.040	0.060	1.02	1.52
G	0.100 BSC		2.54 BSC	
J	0.007	0.012	0.18	0.30
K	0.110	0.140	2.80	3.55
L	0.300 BSC		7.62 BSC	
M	0°	15°	0°	15°
N	0.020	0.040	0.51	1.01

CASE 724-03
ISSUE D

CASE 738-03
 ISSUE E

CASE DIMENSIONS (continued)

NOTES:

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER. DIMENSIONS A AND B DO NOT INCLUDE MOLD PROTRUSION.
3. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE.
4. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION.

DIM	MILLIMETERS		INCHES			
	MIN		MAX	MIN		
A	9.80	10.00	0.386	0.393		
B	3.80	4.00	0.150	0.157		
C	1.35	1.75	0.054	0.068		
D	0.35	0.49	0.014	0.019		
F	0.40	1.25	0.016	0.049		
G	1.27		BSC	0.050		BSC
J	0.19	0.25	0.008	0.009		
K	0.10	0.25	0.004	0.009		
M	0°	7°	0°	7°		
P	5.80	6.20	0.229	0.244		
R	0.25	0.50	0.010	0.019		

CASE 751B-05
ISSUE J

CASE 751D-05
ISSUE F

CASE 751E-04
ISSUE E

CASE 751F-05
ISSUE F

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS.
2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994
3. DIMENSIONS D AND E DO NOT INLCUDE MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE
5. DIMENSION B DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION

DIM	MILLIMETERS	
	MIN	MAX
A	2.35	2.65
A1	0.10	0.25
B	0.35	0.49
C	0.23	0.32
D	10.15	10.45
E	7.40	7.60
e	1.27	

CASE 751G-03
ISSUE B

NOTES:
3. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.
4. CONTROLLING DIMENSION: MILLIMETER
5. DIMENSIONS A AND B DO NOT INCLUDE

MOLD PROTRUSION.
6. MAXIMUM MOLD PROTRUSION $0.15(0.008)$ PER SIDE
7. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.13 (0.006) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION

DIM	MILLIMETERS		INCHES	
	MIN	MAX	MIN	MAX
A	12.35	12.80	0.486	0.504
B	5.10	5.45	0.201	0.215
C	1.95	2.05	0.077	0.081
D	0.35	0.50	0.014	0.020
E	-	0.81	-	0.032
F	12.40^{*}	0.488^{*}		
G	1.15	1.39	0.045	0.055
H	0.59	0.81	0.023	0.032
J	0.18	0.27	0.007	0.011
K	1.10	1.50	0.043	0.059
L	0.05	0.20	0.001	0.008
M	0°	10°	0°	10°
N	0.50	0.85	0.020	0.033
S	7.40	8.20	0.291	0.323

CASE 803C-01
PRELIMINARY

CASE DIMENSIONS (continued)

DETAIL K

CASE 873C-01
ISSUE A

CASE DIMENSIONS (continued)

CASE DIMENSIONS (continued)

CASE DIMENSIONS (continued)

CASE DIMENSIONS (continued)

CASE 948F-01
ISSUE O

CASE DIMENSIONS (continued)

NOTES:

1. CONTROLIING DIMENSION:MILIMETER 2. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994.
2. DATUM PLANE -H- IS LOCATED AT BOTTOM OF LEAD AND IS COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.
3. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.250 PER SIDE. DIMENSIONS D AND E1 DO INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE -H-
4. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION IS 0.127 TOTAL IN EXCESS OF THE b DIMENSION AT MAXIMUM MATERIAL CONDITION.
5. DATUMS -A- AND -B- TO BE DETERMINED AT DATUM PLANE -H-

	MILLIMETERS	
DIM	MIN	MAX
A	2.000	2.350
A1	0.025	0.152
A2	1.950	2.100
D	6.950	7.100
D1	4.372	5.180
E	8.850	9.150
E1	6.950	7.100
E2	4.372	5.180
L	0.466	0.720
L1	0.250	BSC
b	0.300	0.432
b1	0.300	0.375
c	0.180	0.279
c1	0.180	0.230
e	0.800	
BSC	-	0.600
$\boldsymbol{\theta}$	0°	
aaa	0.200	
bbb	0.200	
ccc	0.100	

Chapter Ten

Applications and Product Literature

Motorola's Applications Literature provides guidance to the effective use of its semiconductor families across a broad range of practical applications. Many different topics are discussed in a way that is not possible in a device data sheet, from detailed circuit designs complete with PCB layouts, through matters to consider when embarking on a design, to complete overviews of product families and their design philosophies.

Information is presented in the form of Application Notes, Article Reprints and detailed Engineering Bulletins.

Table of Contents

	Page
Applications Literature	10.1-2
Product Literature	

Product Literature 10.1-3

Literature

Application Notes, Engineering Bulletins and Article Reprints of special interest to designers of RF and RF/IF equipment are listed below. This technical documentation is available on the Motorola Semiconductor Product Sector Web site or is available through the Motorola Literature Distribution Center. Phone and fax numbers for ordering literature are listed on the back cover of this book and in our Accessing Data On-line section. The majority of the documents are available in one book, titled RF Applications Report (order by HB215/D).

Application Notes

AN139A Understanding Transistor Response Parameters
AN211A Field Effect Transistors in Theory and Practice
AN215A RF Small-Signal Design Using Two-Port Parameters
AN238 Transistor Mixer Design Using 2-Port Parameters
AN267 Matching Network Designs with Computer Solutions
AN282A Systemizing RF Power Amplifier Design
AN419 UHF Amplifier Design Using Data Sheet Design Curves
AN423 Field Effect Transistor RF Amplifier Design Techniques
AN535 Phase-Locked-Loop Design Fundamentals
AN548A Microstrip Design Techniques for UHF Amplifiers
AN555 Mounting Stripline-Opposed-Emitter (SOE) Transistors
AN593 Broadband Linear Power Amplifiers Using Push-Pull Transistors
AN721 Impedance Matching Networks Applied to RF Power Transistors
AN749 Broadband Transformers and Power Combining Techniques for RF
AN758 A Two-Stage 1 kW Solid-State Linear Amplifier
AN762 Linear Amplifiers for Mobile Operation
AN779 Low-Distortion 1.6 to 30 MHz SSB Driver Designs
AN790 Thermal Rating of RF Power Transistors
AN791 A Simplified Approach to VHF Power Amplifier Design
AN827 The Technique of Direct Programming by Using a Two-Modulus Prescaler
AN860 Power MOSFETs versus Bipolar Transistors
AN878 VHF MOS Power Applications
AN923 800 MHz Test Fixture Design
AN938 Mounting Techniques for PowerMacro Transistor
AN955 A Cost Effective VHF Amplifier for Land Mobile Radios
AN980 VHF Narrowband FM Receiver Design Using the MC3362 and the MC3363 Dual Conversion Receivers
AN1016 Infrared Sensing and Data Transmission Fundamentals
AN1020 A High-Performance Video Amplifier for High Resolution CRT Applications
AN1021 A Hybrid Video Amplifier for High Resolution CRT Applications
AN1022 Mechanical and Thermal Considerations in Using RF Linear Hybrid Amplifiers
AN1023 Mounting Techniques for RF Hermetic Packages
AN1024 RF Linear Hybrid Amplifiers

AN1025 Reliability Considerations in Design and Use of RF Integrated Circuits
AN1026 Extending the Range of an Intermodulation Distortion Test
AN1027 Reliability/Performance Aspects of CATV Amplifier Design
AN1028 35/50 Watt Broadband ($160-240 \mathrm{MHz}$) Push-Pull TV Amplifier Band III
AN1029 TV Transposers Band IV and V $\mathrm{P}_{\mathrm{O}}=0.5 \mathrm{~W} / 1.0 \mathrm{~W}$
AN1030 1 W/2 W Broadband TV Amplifier Band IV and V
AN1032 How Load VSWR Affects Non-Linear Circuits
AN1033 Match Impedances in Microwave Amplifiers
AN1034 Three Balun Designs for Push-Pull Amplifiers
AN1037 Solid-State Power Amplifier - 300 Watt FM, $88-108 \mathrm{MHz}$
AN1038 1.2 V, $40-900 \mathrm{MHz}$ Broadband Amplifier with the TP3400 Transistor
AN1039 $470-860 \mathrm{MHz}$ - Broadband Amplifier - 5 W
AN1040 Mounting Considerations for Power Semiconductors
AN1041 Mounting Procedures for Very High Power RF Transistors
AN1061 Reflecting on Transmission Line Effects
AN1106 Considerations in Using the MHW801 and MHW851 Series RF Power Modules
AN1107 Understanding RF Data Sheet Parameters
AN1207 The MC145170 in Basic HF and VHF Oscillators
AN1253 An Improved PLL Design Method Without बn and ζ
AN1277 Offset Reference PLLs for Fine Resolution or Fast Hopping
AN1306 Thermal Distortion in Video Amplifiers
AN1526 RF Power Device Impedances: Practical Considerations
AN1527 Maximizing Performance of the MRFIC2000 Family of Devices
AN1528 Packaging Considerations for RF Transistors
AN1529 RF Power Circuit Concepts Using FETs and BJTs
AN1530 Motorola Advanced Amplifier Concept Package
AN1531 Parameter Extraction Techniques for RF Power Transistors Models
AN1532 Using the Motorola MRFIC1806/1807 Dual Demonstration Board
AN1539 An IF Communication Circuit Tutorial
AN1555 Reliable Mounting of RF Surface Mounted Devices
AN1575 Worldwide Cordless Telephone Frequencies
AN1580 Mounting and Soldering Recommendations for the Motorola Power Flat Pack Package
AN1599 Power Control with the MRFIC0913 GaAs Integrated Power Amplifier and MC33169 Support IC

AN1602	3.6 V and 4.8 V GSM/DCS1800 Dual Band PA Application with DECT Capability Using Standard Motorola RFIC's
AN1610	Using Motorola's MRFIC1502 in Global Positioning System Receivers
AN1617	Mounting Recommendations for Copper Tungsten Flanged Transistors
AN4005	Thermal Management and Mounting Method for the PLD 1.5 RF Power Surface Mount Package
Article Reprints	
AR141	Applying Power MOSFETs in Class D/E RF Power Amplifier Design
*AR164	Good RF Construction Practices and Techniques
AR165S	RF Power MOSFETs
AR176	New MOSFETs Simplify High Power RF Amplifier Design
AR254	Phase-Locked Loop Design Articles
*AR305	Building Push-Pull, Multioctave, VHF Power Amplifiers
*AR313	Wideband RF Power Amplifier
*AR346	RF Power FETs - Their Characteristics and Applications, Parts 1 \& 2
*AR347	A Compact 1-kW $2-50 \mathrm{MHz}$ Solid State Linear Amplifier
AR510	VSWR Protection of Solid State RF Power Amplifiers
*AR511	Biasing Solid State Amplifiers to Linear Operation
AR569	Low Voltage GaAs Power Amplifiers for Personal Communications at 1.9 GHz
AR571	Silicon MOSFET Technology for Wireless Communications
AR573	Modeling a New Generation for RF Devices: MOSFETs of L-Band Applications
AR578	RF Chip Set Targets 900 MHz Transceivers
AR579	CAD of a Broadband, Class-C 65 Watt UHF Power Amplifier
AR580	MOSFET RF Power: An Update Parts 1 and 2
AR581	Procedure Performs Thermal Measurements on Pulsed Devices
AR582	MIMP Analyzes Impedance Matching Networks
AR583	Power MOSFETs Handle Bipolar Amp Applications
AR586	Power MOSFETs versus Bipolar Transistors
AR589	QSPLOT Utility Displays S-Parameter Data

*AR594	GaAs RF ICs Target 2.4-GHz Frequency Band
AR595	Adding an Advanced GaAs MESFET Model to the Harmonic Balance Simulator LIBRA
*AR596	Design and Performance of a Low Voltage, Low Noise 900 MHz Amplifier
AR606	PCS and RF Components
AR612	Plastic Packages Hold Power RF MOSFETs
AR614	Advantages of LDMOS in High Power Linear Amplification
Engineering Bulletins	
EB8	How to Apply the MHW709/MHW710 UHF Power Modules
EB19	Controlled - Q RF Technology - What It Means, How It's Done
EB27A	Get 300 Watts PEP Linear Across 2 to 30 MHz from This Push-Pull Amplifier
EB37	Amplifier Gains 10 dB Over Nine Octaves
EB38	Measuring the Intermodulation Distortion of Linear Amplifiers
EB63	140 W (PEP) Amateur Radio Linear Amplifier $2-30 \mathrm{MHz}$
EB74	A 10 Watt, 225 - 400 MHz Amplifier MRF331
EB77	$\begin{aligned} & \text { A 60-Watt, } 225-400 \mathrm{MHz} \text { Amplifier — } \\ & \text { 2N6439 } \end{aligned}$
EB89	A 1-Watt, 2.3 GHz Amplifier
EB104	Get 600 Watts RF from Four Power FETs
EB105	A 30 Watt, 800 MHz Amplifier Design
EB107	Mounting Considerations for Motorola RF Power Modules
EB202	RF Transistor Design
EB203	Reliability and Quality Assurance
EB209	Mounting Method for RF Power Leadless Surface Mount Transistors

*Addendum: Updated Information to Article Reprints
Available in HB215/D

Product Literature

New: SG46/D	Wireless Semiconductor Solutions Selector Guide
New: CD301/DWireless Semiconductor Solutions CD-ROM	
SG73/D Motorola Semiconductor Master Selection Guide	
SG384/D Motorola LDMOS Product Family Selector Guide	

Chapter Eleven

Motorola Distributor \&

 Worldwide Sales Offices
MOTOROLA AUTHORIZED DISTRIBUTOR \& WORLDWIDE SALES OFFICES NORTH AMERICAN DISTRIBUTORS

UNITED STATES	
ALABAMA	
Huntsville	
Allied Electronics, Inc.	(205)721-3500
Arrow/Schweber Electronics	(205)837-6955
FAI	(205)837-9209
Future Electronics	(205)830-2322
Hamilton/Hallmark	(205)837-8700
Newark	(205)837-9091
Wyle Electronics	(205)830-1119
Mobile	
ARIZONA	
Phoenix	
Allied Electronics, Inc.	(602)831-2002
FAI	(602)731-4661
Future Electronics	(602)968-7140
Hamilton/Hallmark	(602)736-7000
Wyle Electronics	(602)804-7000
Tempe	
Arrow/Schweber Electronics	(602)431-0030
Newark	(602)966-6340
PENSTOCK	(602)967-1620
CALIFORNIA	
Agoura Hills	
Future Electronics	(818)865-0040
Calabassas	
Arrow/Schweber Electronics	(818)880-9686
Wyle Electronics	(818)880-9000
Culver City	
Hamilton/Hallm	(310)558-2000
Irvine	
Arrow/Schweber Electronics	(714)587-0404
FAI	(714)753-4778
Future Electronics	(714)453-1515
Hamilton/Hallmark	(714)789-4100
Wyle Laboratories Corporate	(714)753-9953
Wyle Electronics	(714)789-9953
Los Angeles	
Manhattan Beach	
Newberry Park	
Orange County	
Palo Alto	
Newark	(415)812-6300
Rancho Cordova	
Wyle Electronics .	(916)638-5282
Riverside	
Allied Electronics, Inc.	(909)980-6522
Newark	(909)980-2105
Rocklin	
Hamilton/Hallmark	(916)632-4500
Roseville	
Wyle Electronics	(916)783-9953
Sacramento	
Allied Electronics, Inc.	(916)632-3104
FAI	(916)782-7882
Newark	(916)565-1760
San Diego	
Allied Electronics, Inc.	(619)279-2550
Arrow/Schweber Electronics	(619)565-4800
FAI	(619)623-2888
Future Electronics	(619)625-2800
Hamilton/Hallmark	(619)571-7540
Newark	(619)453-8211
PENSTOCK	(619)623-9100
Wyle Electronics	(619)558-6600
San Fernando ValleyAllied Electronics, Inc. (818)598-0130	

CALIFORNIA - continued	
San Jose	
Allied Electronics, Inc.	(408)383-0366
Arrow/Schweber Electronics	(408)441-9700
Arrow/Schweber Electronics	(408)428-6400
FAI	(408)434-0369
Future Electronics	(408)434-1122
Santa Clara	
Wyle Electronics	(408)727-2500
Santa Fe Springs	
Newark	(310)929-9722
Sierra Madre	
Sunnyvale	
Hamilton/Hallmark	(408)435-3600
PENSTOCK	(408)730-0300
Thousand Oaks	
Newark	(805)449-1480
Woodland Hills	
Hamilton/Hallmark	(818)594-0404
COLORADO	
Lakewood	
	(303)237-1400
Future Electronics	(303)232-2008
Denver	
Allied Electronics, Inc.	(303)790-1664
Newark	(303)373-4540
Englewood	
Arrow/Schweber Electronics	(303)799-0258
Hamilton/Hallmark	(303)790-1662
PENSTOCK	(303)799-7845
Thornton	
Wyle Electronics	(303)457-9953
CONNECTICUT	
Bloomfield	
Newark	(203)243-1731
Cheshire	
Allied Electronics, Inc.	(203)272-7730
FAI	(203)250-1319
Future Electronics	(203)250-0083
Hamilton/Hallmark	(203)271-5700
Wallingford	
Arrow/Schweber Electronics	(203)265-7741
Wyle Electronics	(203)269-8077
FLORIDA	
Altamonte Springs	
Future Electronics .	(407)865-7900
Clearwater	
	(813)530-1665
Future Electronics	(813)530-1222
Deerfield Beach	
Arrow/Schweber Electronics	(305)429-8200
Wyle Electronics	(954)420-0500
Ft. Lauderdale	
FAI	(954)428-9494
Future Electronics	(954)426-4043
Hamilton/Hallmark	(954)677-3500
Newark	(954)486-1151
Jacksonville	
Allied Electronics, Inc.	(904)739-5920
Newark	(904)399-5041
Lake Mary	
Arrow/Schweber Electronics	(407)333-9300
Largo/Tampa/St. Petersburg	
Hamilton/Hallmark	(813)507-5000
Newark	(813)287-1578
Wyle Electronics	(813)576-3004
Miami	
Allied Electronics, Inc.	(305)558-2511
Maitland	
Wyle Electronics	(407)740-7450
Orlando	
Allied Electronics, Inc.	(407)539-0055
FAI	(407)865-9555
Newark	(407)896-8350

FLORIDA - continued Tallahassee	
FAI	(904)668-7772
Tampa	
Allied Electronics, Inc.	(813)579-4660
Newark	(813)287-1578
PENSTOCK	(813)247-7556
Winter Park	
Hamilton/Hallmark	(407)657-3300
PENSTOCK	(407)672-1114
GEORGIA	
Atlanta	
Allied Electronics, Inc.	(770)497-9544
FAI	(404)447-4767
Duluth	
Arrow/Schweber Electronics	(404)497-1300
Hamilton/Hallmark	(770)623-4400
Norcross	
Future Electronics	(770)441-7676
Newark	(770)448-1300
PENSTOCK	(770)734-9990
Wyle Electronics	(770)441-9045
IDAHO	
Boise	
Allied Electronics, Inc.	(208)331-1414
FAI	(208)376-8080
Newark	(208)342-4311
ILLINOIS	
Addison	
Wyle Laboratories	(708)620-0969
Arlington Heights	
Hamilton/Hallmark	(847)797-7300
Chicago	
Allied Electronics, Inc. (North)	(847)548-9330
Allied Electronics, Inc. (South)	(708)535-0038
FAI	(708)843-0034
Newark Electronics Corp.	(773)784-5100
Hoffman Estates	
Future Electronics	(708)882-1255
Itasca	
Arrow/Schweber Electronics	(708)250-0500
Lombard	
Newark	(630)317-1000
Palatine	
PENSTOCK	(708)934-3700
Rockford	
Allied Electronics, Inc.	(815)636-1010
Springfield	
Newark	(217)787-9972
Wood Dale	
Allied Electronics, Inc.	(630)860-0007
INDIANA	
Indianapolis	
Allied Electronics, Inc.	(317)571-1880
Arrow/Schweber Electronics	(317)299-2071
Hamilton/Hallmark	(317)575-3500
FAI .	(317)469-0441
Future Electronics	(317)469-0447
Newark	(317)844-0047
Wyle Electronics	(317)581-6152
Ft. Wayne	
Newark	(219)484-0766
PENSTOCK	(219)432-1277
IOWA	
Bettendorf	
Newark	(319)359-3711
Cedar Rapids	
Allied Electronics, Inc.	(319)390-5730
Newark	(319)393-3800
KANSAS	
Kansas City	
Allied Electronics, Inc.	(913)338-4372
FAI	(913)381-6800
Lenexa	
Arrow/Schweber Electronics	(913)541-9542

AUTHORIZED DISTRIBUTORS - continued

UNITED STATES - continued

KANSAS - continued	
PENSTOCK	(913)829-9330
Overland Park	
Future Electronics	(913)649-1531
Hamilton/Hallmark	(913)663-7900
Newark	(913)677-0727

KENTUCKY
Louisville
Allied Electronics, Inc. (502)452-2293
Newark . (502)423-0280
LOUISIANA
New Orleans
Allied Electronics, Inc. (504)466-7575
MARYLAND
Baltimore
Allied Electronics, Inc. (410)312-0810
FAI .
(410)312-0833

Columbia
Arrow/Schweber Electronics ... (301)596-7800
Future Electronics (410)290-0600
Hamilton/Hallmark (410)720-3400
PENSTOCK (410)290-3746
Wyle Electronics 410$) 312-4844$
Hanover
Newark (410)712-6922
MASSACHUSETTS
Bedford
Wyle Electronics (781)271-9953
Boston
Allied Electronics, Inc. (617)255-0361 Arrow/Schweber Electronics ... (508)658-0900 FAI . (508)779-3111
Newark
1-800-4NEWARK
Bolton
Future Corporate (508)779-3000
Burlington
PENSTOCK
Peabody
Allied Electronics, Inc. (508)538-2401
Hamilton/Hallmark (508)532-3701
Woburn
Newark
(617)935-8350

MICHIGAN
Detroit
Allied Electronics, Inc. (313)416-9300
FAI . (313)513-0015 Future Electronics (616)698-6800
Grand Rapids Allied Electronics, Inc. (616)365-9960 Newark
(616)954-6700

Livonia
Arrow/Schweber Electronics ... (810)455-0850
Future Electronics (313)261-5270
Hamilton/Hallmark (313)416-5800
Novi
Wyle Electronics (248)374-9953
Saginaw Newark
(517)799-0480

Troy
Newark . (248)583-2899
MINNESOTA
Bloomington
Wyle Electronics (612)853-2280
Burnsville PENSTOCK
(612)882-7630

Eden Prairie Arrow/Schweber Electronics ... (612)941-5280 FAI . (612) 947 -0909 Future Electronics (612)944-2200 Hamilton/Hallmark (612)881-2600
Minneapolis Allied Electronics, Inc. (612)938-5633 Newark
(612)331-6350

MISSISSIPPI
Jackson Newark
601)956-3834

MISSOURI

Earth City

Hamilton/Hallmark (314)770-6300

St. Louis

Allied Electronics, Inc. (314)240-9405
Arrow/Schweber Electronics . . . (314)567-6888
Future Electronics (314)469-6805
FAI . (314)542-9922
Newark . (314)453-9400
NEBRASKA

Omaha

Allied Electronics, Inc. (402)697-0038
Newark . (402) $592-2423$
NEVADA
Las Vegas
Allied Electronics, Inc. (702)258-1087
Wyle Electronics (702)765-7117
NEW JERSEY

Bridgewater

PENSTOCK (908)575-9490
East Brunswick
Allied Electronics, Inc. (908)613-0828
Newark . (908)937-6600
Fairfield
FAI . (201) (231-1133
Marlton
Arrow/Schweber Electronics . . . (609)596-8000
FAI . (609)988-1500
Future Electronics (609)596-4080
Mt. Laurel
Hamilton/Hallmark (609)222-6400
Wyle Electronics (609)439-9110
Oradell
Wyle Electronics (201)261-3200
Pinebrook
Arrow/Schweber Electronics ... (201)227-7880
Wyle Electronics (973)882-8358
Parsippany
Future Electronics (201)299-0400
Hamilton/Hallmark (201)515-1641

NEW MEXICO

Allied Electronics, Inc. (505)266-7565
Hamilton/Hallmark (505) 293-5119
Newark . (505) 828 -1878
NEW YORK
Albany
Newark . (518)783-0983
Buffalo
Newark . (716)631-2311

Great Neck

Allied Electronics, Inc. (516)487-5211
Hauppauge
Allied Electronics, Inc. (516)234-0485
Arrow/Schweber Electronics ... (516)231-1000
FAI . (516)348-3700

Future Electronics (516)234-4000
Hamilton/Hallmark (516)434-7400
Newark . (516)567-4200

PENSTOCK (516) 724 -9580
Wyle Electronics (516)231-7850

Henrietta
Wyle Electronics (716)334-5970
Hamilton/Hallmark (516)737-0600
Pittsford
Newark . (716)381-4244
Poughkeepsie
Allied Electronics, Inc. (914)452-1470
Newark .
(914)298-2810

Rochester
Allied Electronics, Inc. (716)292-1670
Arrow/Schweber Electronics . . . (716)427-0300
Future Electronics (716)387-9550
FAI . (716) $387-9600$

Hamilton/Hallmark (716)272-2740

NEW YORK - continued
Syracuse
Allied Electronics, Inc. (315)446-7411
FAI . (315)451-4405
Future Electronics (315)451-2371
Newark . (315)457-4873
NORTH CAROLINA
Charlotte
Allied Electronics, Inc. (704)525-0300
FAI . (704)548-9503
Future Electronics (704)547-1107
Newark . (704)535-5650
Greensboro
Newark
(910)294-2142

Morrisville
Wyle Electronics (919)469-1502
Raleigh
Allied Electronics, Inc. (919)876-5845
Arrow/Schweber Electronics . . . (919)876-3132
FAI . (919) 876 -0088
Future Electronics (919)790-7111
Hamilton/Hallmark (919)872-0712
OHIO
Centerville
Arrow/Schweber Electronics . . . (513)435-5563
Cincinnati
Allied Electronics, Inc. (513)771-6990
Newark . (513)772-8181
Cleveland
Allied Electronics, Inc. (216)831-4900
FAI . (216) 446 -0061
Newark
Columbus
Allied Electronics, Inc. (614)785-1270
Newark . (614)326-0352
Dayton
FAI . (513)427-6090
Future Electronics (513)426-0090
Hamilton/Hallmark
Newark (513)294-8980
Mayfield Heights
Future Electronics (216)449-6996
Miamisburg
Wyle Electronics (937)436-9953
Solon
Arrow/Schweber Electronics ... (216)248-3990
Hamilton/Hallmark (216)498-1100
Wyle Electronics (440) 248-9996
Toledo
Newark . (419)866-0404
Worthington
Hamilton/Hallmark (614)888-3313
OKLAHOMA
Oklahoma City
Newark
Tulsa
Allied Electronics, Inc. (918)250-4505
FAI . (918)492-1500
Hamilton/Hallmark (918)459-6000
OREGON
Beaverton
Arrow/Almac Electronics Corp. . (503)629-8090
Future Electronics (503)645-9454
Hamilton/Hallmark (503)526-6200
Portland
Allied Electronics, Inc. (503)626-9921
FAI . (503)297-5020
Newark . (503) 297-1984
PENSTOCK (503)646-1670
Wyle Electronics (503)598-9953

PENNSYLVANIA

Allentown
Newark....
Chadds Ford
Allied Electronics, Inc. (610)388-8455
Coatesville
PENSTOCK (610)383-9536
Ft. Washington
Newark
(215)654-1434

INTERNATIONAL DISTRIBUTORS

ARGENTINA	
Electrocomponentes .	(5-41) 375-3366
Elko	(5-41) 372-1101
AUSTRALIA	
Avnet VSI Electronics (Aust.)	(61)29878-1299
Farnell	(61)29645-8888
Veltek Australia Pty. Ltd.	(61)3 9574-9300
AUSTRIA	
EBV Elektron	(43) 189152-0
Farnell	(49) 8961393939
SEI/Elbatex GmbH	(43) 1866420
Spoerle Electronic	(43) 131872700
BELGIUM	
EBV Elektronik	(32) 27160010
Farnell	(32) 32273647
SEI/Belgium	(32) 24600560
Spoerle Electronic	(32) 27254660
BRAZIL	
Future	(019) 235-1511
Intertek	(011) 266-2922
Karimex	(011) 524-2366
Masktrade	(011) 3361-2766
Panamericana	. (011) 223-0222
Siletek	(011) 536-4401
Tec	(011) 5505-2046
Teleradio	(011) 574-0788
BULGARIA	
Macro Group	(359) 2708140
CHINA	
Future Advanced Electronics L	(852)2 305-3633
Avnet WKK Components Ltd.	(852)2 357-8888
China El. App. Corp. Beijing	(86)108188-1566
China El. App. Corp. Xiamen	(86)592-553-487
Nanco Electronics Supply Ltd	(852) 2765-3025
	or (852) 2 333-5121
Qing Cheng Enterprises Ltd.	(852) 2 493-4202
CZECH REPUBLIC	
EBV Elektronik	(420) 290022101
Spoerle Electronic	(420) 2731355
SEI/Elbatex	(420) 24763707
Macro Group	(420) 23412182
DENMARK	
Arrow Exatec	(45) 44927000
A/S Avnet EMG	(45) 44880800
EBV Elektronik - Soeborg	(45) 39690511
EBV Elektronik - Aabyhoej	(45) 86250660
Farnell	(45) 44536644
Future Electronics	(45) 96100961
ESTONIA	
Arrow Field Eesti	(372) 6503288
Avnet Baltronic	(372) 6397000
FINLAND	
Arrow Field OY	(358) 9777571
Avnet EMG OY	(358) 9613181
EBV Elektronik	(358) 98557730
Farnell.	(358) 93455400
Future Electronics	(358) 95259950
FRANCE	
Arrow Electronique	(33) 149784978
Avnet EMG	(33) 149652500
EBV Elektronik	(33) 140963000
Farnell	(33) 474659466
Future Electronics	(33) 169821111
Newark	(33) 130954060
SEI/Scaib	(33) 169198900
GERMANY	
Avnet EMG	(49) 894511001
EBV Elektronik GmbH	(49) 89 99114-0
Farnell	(49) 8961393939
Future Electronics GmbH	(49) 89-957270
SEI/Jermyn GmbH	(49) 6431-5080
Newark	(49)2154-70011
Sasco Semiconductor	. (49) 89-46110
Spoerle Electron	(49) 6103-304-0

GREECE
EBV Elektronik(30) 13414300

HONG KONG

Avnet WKK Components Ltd. (852)2 357-8888 Farnell . (65) 788-0200 Future Advanced Electronics Ltd. . . (852)2 305-3633 Nanco Electronics Supply Ltd. (852)2 333-5121 Qing Cheng Enterprises Ltd. . (852)2 493-4202 HUNGARY
Future Electronics (36) 12240510
Macro Group (36) 12030277
SEI/Elbatex (36) 11409194
Spoerle Electronic (36) 11294202

INDIA

Max India Ltd 0091 11 625-0250
INDONESIA
P.T. Ometraco (62) 21 619-6166

IRELAND
Arrow Electronics (353) 14595540
EBV Elektronik (353) 14564034
Farnel
(353) 18309277

Future Electronics (353) 6541330
Macro Group (353) 16766904
ISRAEL
Future Israel Ltd. (972) 99586555
ITALY
Avnet EMG SRL (39) 2381901
EBV Elektronik SRL (39) 266096290
Future Electronics (39) 2660941
Silverstar Ltd. SpA (39) 2661251
JAPAN
AMSC Co., Ltd. 81-422-54-6800
Fuji Electronics Co., Ltd. 81-3-3814-1411
Marubun Corporation 81-3-3639-8951
Nippon Motorola Micro Elec. . 81-3-3280-7300
OMRON Corporation 81-3-3779-9053
Tokyo Electron Ltd. 81-3-5561-7254

KOREA

Jung Kwang Semiconductors Ltd. .. 82-2-278-5333
Liteon Korea Ltd 82-2-650-9700
Nasco Co. Ltd 82-2-3772-6810
LATVIA
Avnet Baltronic Ltd. (371) 8821118
Macro Group (371) 7313195
LITHUANIA
Macro Group (370) 7764937
MALAYSIA
Farnell.
(60) 3 773-8000

Strong Electronics
(60) 4 656-3768

Ultro Technologies Pte. Ltd. (65) 545-7811
MEXICO
(3) 632-0182

Dicopel . (5) (505-7422
Future
(3) 122-0043

Semiconductores Profesionales (5) (558-6011
Steren . (5) 325-0925
NETHERLANDS
HOLLAND
EBV Elektronik (31) 346583010
Farnell . (31) 302412323
Future Electronics (31) 765444888
SEI/Benelux B.V. (31) 765722500
Spoerle Electronics Nieuwegen
(31) 306091234

Spoerle Electronics -
Veldhoven
(31) 402545430

NEW ZEALAND

Arrow Components NZ Ltd ... (64)4 570-2260
Avnet Pacific Ltd
(64)9 636-7801

Farnell
(64)9 357-0646

NORWAY	
Arrow Tahonic A/S	(47) 22378440
A/S Avnet EMG	(47) 66773600
EBV Elektronik	(47) 22671780
Future Electronics	(47) 22905800
PHILIPPINES	
Alexan Commercial	(63) 2241-9493
Ultro Technologies Pte. Ltd	(65) 545-7811
POLAND	
EBV Elektronik	(48) 713422944
Future Electronics	(48) 226189202
Macro Group	(48) 22224337
SEI/Elbatex	(48) 226254877
Spoerle Electronic	(48) 226060447
PORTUGAL	
Amitron Arrow	(35) 114714806
Farnell	(44) 1132890040
ROMANIA	
Macro Group	(401) 6343129
RUSSIA	
EBV Elektronik	(7) 0959763510
Macro Group - Moscow	(7) 09530600266
Macro Group - St. Petersburg	(7) 8125311476
SCOTLAND	
EBV Elektronik	(44) 1414202070
Future	(44) 1419413999
SINGAPORE	
Farnell	(65) 788-0200
Future Electronics	. (65) 479-1300
Strong Pte. Ltd	. (65) 276-3996
Uraco Technologies Pte Lt	(65) 545-7811
SLOVAKIA	
Macro Group	(42) 89634181
SEI/Elbatex	(42) 7722137
SLOVENIA	
EBV Elektronik	(386) 611330216
SEI/Elbatex	(386) 611957198
S. AFRICA	
Avnet-ASD	(27) 114442333
Reutech Components	(27) 113972992
SPAIN	
Amitron Arrow	(34) 13043040
EBV Elektronik	(34) 18043256
Farnell	(44) 1132310447
SEI/Selco S.A.	(34) 16371011
SWEDEN	
Arrow-Th:s	(46) 8362970
Avnet EMG AB	(46) 86291400
EBV Elektronik	(46) 40592100
Farnell	(46) 87305000
Future Electronics	(46) 84415470
SWITZERLAND	
EBV Elektronik	(41) 17456161
Farnell	(41) 12046464
SEI/Elbatex AG	(41) 564375111
Spoerle Electronic	(41) 18746262
TAIWAN	
Avnet-Mercuries Co., Ltd	(886)2 516-7303
Solomon Technology Corp.	(886)2 788-8989
Strong Electronics Co. Ltd.	(886)2 917-9917
THAILAND	
Sahapiphat Ltd.	(662) 237-9474
Ultro Technologies Pte. Ltd.	. . (65) 540-8328
TURKEY	
EBV Elektronik	(90) 2164631352
UNITED KINGDOM	
Arrow Electronics (UK) Ltd	(44) 1234270027
Avnet EMG	(44) 1462488500
EBV Elektronik	(44) 1628783688
Farnell	(44) 1132636311
Future Electronics Ltd.	(44) 1753763000
Macro Group	(44) 1628606000
Newark	(44) 1420543333

Arrow Tahonic A/S (47) (4) 22378440
A/S Avnet EMG (47) 66773600
(47) 22671780
(47) 22905800
(63) 2241-9493
(65) 545-7811

POLAND
EBV Elektronik (48) 713422944
Future Electronics (48) 226189202
Macro Group (48) 22224337
Spoerle Electronic (48) 226060447
PORTUGAL
Amitron Arrow (35) 114714806
Farnell (44) 1132890040
ROMANIA
Macro Group
USSIA
EBV Elektronik (7) 0959763510
Group - Moscow (7) 09530600266
Macro Group - St. Petersburg (7) 8125311476
EBV Elektronik (44) 1414202070
Future (44) 1419413999
Farnell . (65) 788-0200
Future Electronics (65) 479-1300
(65) 276-3996

Uraco Technologies Pte Ltd. (65) 545-781
SLOVAKIA
SEI/Elbatex (42) 7722137
SLOVENIA
EBV Elektronik (386) 611330216
S. AFRICA $\begin{aligned} & \text { Avnet-ASD (27) } 114442333\end{aligned}$

Reutech Components (27) 113972992
Amitron Arrow (34) 13043040
EBV Elektronik (34) 18043256
SEI/Selco S.A. (34) 16371011
SWEDEN
(46) 8362970

Avnet EMG AB (46) 86291400
EBV Elektronik
(46) 87305000

Future Electronics (46) 84415470
EBV Elektronik (41) 17456161
SEIEatex AG (41)
Spoerle Electronic (41) 18746262
Avnet-Mercuries Co., Ltd ... (886)2 516-7303 Solomon Technology Corp. .. (886)2 788-8989
Strong Electronics Co. Ltd. . . (886)2 917-9917
THAILAND
Ultro Technologies Pte Ltd (65) 540-8328
TURKEY
..... (90) 2164631352
Arrow Electronics (UK) Ltd . . (44) 1234270027
-
Farnell (44) 1132636311
Macro Group (44) 1628606000
Newark (44) 1420543333

MOTOROLA WORLDWIDE SALES OFFICES

UNITED STATES

MEXICO	
Chihuahua	. 52(14)39-3120
Mexico City	52(5)282-0230
Guadalajara	52(36)78-0750
Zapopan Jalisco	52(36)78-0750
Marketing	52(36)21-2023
Customer Service	52(36)669-9160
NETHERLANDS	
PHILIPPINES	
POLAND	
PUERTO RICO	
RUSSIA	(7) 0959299025
SCOTLAND East Kilbride	(44)1355 565447
SINGAPORE SPAIN	$(65) 4818188$
Madrid	. 34(1)457-8204
or	. 34(1)457-8254
SWEDEN	
Solna	46(8)734-8800
SWITZERLAND	
Geneva	$41(22) 7991111$
Zurich	. 41(1)730-4074
TAIWAN	
Taipei	886(2)717-7089
THAILAND	
Bangkok	66(2)254-4910
TURKEY	
UNITED KINGDOM	(90) 2122746648
Aylesbury	441 (296)395252

NORTH AMERICA

FULL LINE REPRESENTATIVES

ARIZONA, Tempe	
S\&S Technologies, Inc.	(602)414-1100
CALIFORNIA, Loomis Galena Technology Group	(916)652-0268
INDIANA, Indianapolis Bailey's Electronics	(317)848-9958
NEVADA, Clark County S\&S Technologies, Inc.	(602)414-1100
NEVADA, Reno Galena Tech. Group	(702)746-0642
NEW MEXICO, Albuquerque S\&S Technologies, Inc.	(505)414-1100
TEXAS, El Paso S\&S Technologies, Inc.	(915)833-5461
UTAH, Salt Lake City Utah Comp. Sales, Inc.	(801)572-4010
WASHINGTON, Spokane Doug Kenley	(509)924-2322
NORTH AMERICA	
HYBRID/MCM COMPONENT SUPPLIERS	
Chip Supply	(407)298-7100
Elmo Semiconductor (818)	(818)768-7400
Minco Technology Labs Inc. ... (5)	(512)834-2022
Semi Dice Inc.	(310)594-4631

NOTES

Mfax is a trademark of Motorols, Inc.

How to reach us:
USA/EUROPE/Locations Not Listed: Moterola Literature Distribution;
P.O. Box 5405, Denver, Colorsdo 80217. 303-675-2140 or 1-800-441-2447

Customer Focus Center: 1-800-521-6274
Mlax ${ }^{\text {T: }}$: RMFAX08emailsps.mot.com - TOUCHTONE 602-244-6609
Motorola Fax Back System
HOME PAGE: http/Imotorola.comisps/

- US \& Canada ONLY 1-800-774-1848
-httpi/spg.matorola.comimfax'

JAPAN: Nippon Motorola Ltd.; SPD, Strategic Planning Office, 141, 4-32-1, Nishi-Gotanda, Shagows-ku, Tokyd, Japan. 03-5497-8488

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 88 Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

[^0]: ${ }^{(18)}$ Tape and Reel Packaging Option Available by adding suffix: a) $\mathrm{R} 1=500$ units; b) $\mathrm{R} 2=2,500$ units; c) $T 1=3,000$ units; d) $\mathrm{T} 3=10,000$ units; e) $\mathrm{R} 2=1,500$ units;
 f) $T 1=1,000$ units; g) $2=4,000$ units; h) R1 $=1,000$ units.
 (46)To be introduced: a) 1Q98; b) 2Q98

 ڤNew Product

[^1]: (18) Tape and Reel Packaging Option Available by adding suffix: a) $\mathrm{R} 1=500$ units; b) $\mathrm{R} 2=2,500$ units; c) $\mathrm{T} 1=3,000$ units; d) T3 $=10,000$ units; e) $\mathrm{R} 2=1,500$ units;
 f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.
 (46)To be introduced: a) 1Q98; b) 2Q98
 (47) Negative supply required
 *New Product

[^2]: (18) Tape and Reel Packaging Option Available by adding suffix: a) $\mathrm{R} 1=500$ units; b) $\mathrm{R} 2=2,500$ units; c) $\mathrm{T} 1=3,000$ units; d) $\mathrm{T} 3=10,000$ units; e) $\mathrm{R} 2=1,500$ units; f) $T 1=1,000$ units; g) $R 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.
 ${ }^{(46)}$ To be introduced: a) 1 Q98; b) 2 Q98
 (47) Negative supply required
 ^New Product

[^3]: ${ }^{(18)}$ Tape and Reel Packaging Option Available by adding suffix: a) $R 1=500$ units; b) $R 2=2,500$ units; c) $T 1=3,000$ units; d) $T 3=10,000$ units; e) $R 2=1,500$ units;

[^4]: (3)Internal Impedance Matched Push-Pull Transistors
 (18)Tape and Reel Packaging Option Available by adding suffix: a) R1 $=500$ units; b) $R 2=2,500$ units; c) $T 1=3,000$ units; d) T3 $=10,000$ units; e) R2 $=1,500$ units; f) $\mathrm{T} 1=1,000$ units; g) R2 $=4,000$ units; h) $\mathrm{R} 1=1,000$ units.
 ${ }^{(25) T w o-t o n e ~ P e r f o r m a n c e, ~ P o w e r ~ i s ~ P E P ~}$
 ${ }^{(46)}$ To be introduced: a) 1 Q98; b) 2 Q98
 ^New Product

[^5]: (2)Internal Impedance Matched

[^6]: (40) Composite 2nd Order; $\mathrm{V}_{\text {out }}=+38 \mathrm{dBmV} / \mathrm{ch}$

 ڤNew Product

[^7]: (31)Channels 2 and M13 @ M22
 ${ }^{(32)}$ Composite 2nd order; $\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV} / \mathrm{ch}$
 ${ }^{(35)}$ Channels 2 and M30 @ M39
 ${ }^{(36)}$ Composite 2nd order; $\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch}$
 (38)Channels 2 and M39 @ M48
 *New Product

[^8]: ${ }^{(18)}$ Tape and Reel Packaging Option Available by adding suffix: a) $\mathrm{R} 1=500$ units; b) $\mathrm{R} 2=2,500$ units; c) $T 1=3,000$ units; d) $\mathrm{T} 3=10,000$ units; e) $\mathrm{R} 2=1,500$ units;
 f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.
 (46)To be introduced: a) 1Q98; b) 2Q98

 ڤNew Product

[^9]: (18) Tape and Reel Packaging Option Available by adding suffix: a) $\mathrm{R} 1=500$ units; b) $\mathrm{R} 2=2,500$ units; c) $\mathrm{T} 1=3,000$ units; d) T3 $=10,000$ units; e) $\mathrm{R} 2=1,500$ units;
 f) $\mathrm{T} 1=1,000$ units; g) $\mathrm{R} 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.
 (46)To be introduced: a) 1Q98; b) 2Q98
 (47) Negative supply required
 *New Product

[^10]: (18) Tape and Reel Packaging Option Available by adding suffix: a) $\mathrm{R} 1=500$ units; b) $\mathrm{R} 2=2,500$ units; c) $\mathrm{T} 1=3,000$ units; d) $\mathrm{T} 3=10,000$ units; e) $\mathrm{R} 2=1,500$ units; f) $T 1=1,000$ units; g) $R 2=4,000$ units; h) $\mathrm{R} 1=1,000$ units.
 ${ }^{(46)}$ To be introduced: a) 1 Q98; b) 2 Q98
 (47) Negative supply required
 ^New Product

[^11]: *A larger value for C 2 is required in the decoder circuit than in the encoder to adjust the level linearity with frequency. In Figure 19, $0.050 \mu \mathrm{~F}$ would work well.

[^12]: Termination resistors for MECL outputs are not shown, but are required except for the flip-flop driving the translator section.

[^13]: NOTE: ESD data available upon request.

[^14]: * See text under signal characteristics.

[^15]: NOTE: ESD data available upon request.

[^16]: NOTE: ESD data available upon request.

[^17]: * Figure 1 Test Circuit uses positive (V_{CC}) Ground.

[^18]: NOTE: Positive currents are out of the pins of the device.

[^19]: * With Data In Pin Low

[^20]: Attack Time $=$ Time to $0.57 \times$ V1 from input increase. Decay Time $=$ Time to $1.5 \times \mathrm{V} 2$ from input decrease. Test per EIA-553.

[^21]: Note: Shaded areas represent output bits to be read out.

[^22]: * Also see next Electrical Characteristics table for 2.5 V specifications.

[^23]: VSS
 Ground (PDIP — Pin 18, SOG — Pin 20)

[^24]: This document contains information on a new product. Specifications and information herein are subject to change without notice.

[^25]: * Use the circuit of Figure 8b to eliminate self-oscillation of the OSC in pin when the MC145170-2 has power applied with no external signal applied at $\mathrm{V}_{\text {in }}$. (Self-oscillation is not harmful to the MC145170-2 and does not damage the IC.)

[^26]: *At this point, the new data is transferred to the A register of Device \#2 and R register of Device \#1 and stored. No other registers are affected.

[^27]: *Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section.

[^28]: * The MC145220 is not available with Rev. 2.5 software.

[^29]: * Maximum Ratings are those values beyond which damage to the device may occur. Functional operation should be restricted to the limits in the Electrical Characteristics tables or Pin Descriptions section.

[^30]: * At the time the data sheet was printed, only the 100\% current mode was guaranteed. The reduced current modes were for experimentation only.

[^31]: * Power level at the input to the dc block.

[^32]: ${ }^{(18)}$ Tape and Reel Packaging Option Available by adding suffix: a) $R 1=500$ units; b) $R 2=2,500$ units; c) $T 1=3,000$ units; d) $T 3=10,000$ units; e) $R 2=1,500$ units;

[^33]: (3)Internal Impedance Matched Push-Pull Transistors
 (18)Tape and Reel Packaging Option Available by adding suffix: a) R1 $=500$ units; b) $R 2=2,500$ units; c) $T 1=3,000$ units; d) T3 $=10,000$ units; e) R2 $=1,500$ units; f) $\mathrm{T} 1=1,000$ units; g) R2 $=4,000$ units; h) $\mathrm{R} 1=1,000$ units.
 ${ }^{(25) T w o-t o n e ~ P e r f o r m a n c e, ~ P o w e r ~ i s ~ P E P ~}$
 ${ }^{(46)}$ To be introduced: a) 1 Q98; b) 2 Q98
 ^New Product

[^34]: (2)Internal Impedance Matched

[^35]: *Data shown applies to MRF136 and each half of MRF136Y.

[^36]: C1, C2, C3, C4, C5, C6-0.1 μ F Ceramic Chip or Equivalent
 C7-10 $\mu \mathrm{F}, 100 \mathrm{~V}$ Electrolytic
 C8 - 100 pF Dipped Mica
 L1 - VK200 20/4B Ferrite Choke or Equivalent ($3.0 \mu \mathrm{H}$)
 L2 — Ferrite Bead(s), $2.0 \mu \mathrm{H}$

[^37]: NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

[^38]: NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

[^39]: 1. These devices are designed for RF operation. The total device dissipation rating applies only when the device is operated as RF amplifiers.
 2. Thermal Resistance is determined under specified RF operating conditions by infrared measurement techniques.
[^40]: NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

[^41]: NOTE - CAUTION - MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

[^42]: ${ }^{(42)}$ Drop-in for bipolar MHW820
 ${ }^{(46)}$ To be introduced: a) 1Q98; b) 2 Q98
 *New Product

[^43]: (31)Channels 2 and M13 @ M22
 ${ }^{(32)}$ Composite 2nd order; $\mathrm{V}_{\text {out }}=+46 \mathrm{dBmV} / \mathrm{ch}$
 ${ }^{(35)}$ Channels 2 and M30 @ M39
 ${ }^{(36)}$ Composite 2nd order; $\mathrm{V}_{\text {out }}=+44 \mathrm{dBmV} / \mathrm{ch}$
 (38)Channels 2 and M39 @ M48
 *New Product

