WR－494

RECEIVER MODULE

9R90A－0

Specifications：

Power requirements $1 W$ AF
Power requirements std．by
Frequency
Sensitivity
Selectivity EIA SINAD
Frequency stability
Intermodulation EIA SINAD
Spurious response
Audio output
Audio response
（low－level output）
Hum and noise
Physical dimensions

```
13.6 VDC at 270 mA. typ.
13.6 VDC at }95\textrm{mA. typ.
(60 mA. speaker sw. opt.)
406 to 5i2 MHz.
0.30 uV for 12 dB SINAD
75 dB at \pm25 KHz.
\pm0.0005%, - 30 to +60 '0}\textrm{C
65 dB
85 dB, `75 dB 470 to 512 MHz.)
1 watt (8 ohms) at less
than 5% THD
\pm2 dB from 6dB/octave
de-emphasis, 300 to 3000 Hz.
-50 dB from 3 KHz. deviation
at }1000\textrm{Hz}\mathrm{ .
260 mm x 60 mm x 108 mm
```


Description：

The WR－494 receiver is a single．．conversion frequency－ modulation receiver contained in a plug－in module．Power， control and audio connections are made through a rear－ mounted $15-\mathrm{pin}$ connector．The R．F．input is fed through a separate coaxial connector．A front－panel 14－pin metering receptacle is provided for test and alignment using a model M90 Test Set．

```
1 +13.6V
    +13.6 volt supply input.
2 +13.6V +13.6 volt supply input.
3 SW +9.5V +9.5V switched by the Line-Local
    channel selector switch, this output
    is used to enable line channel selection.
```

Functional Connections (by pin number) (cont.):
4 SPEAKER Speaker AF out.
5 COS Receiver squelch output.
8 RX MUTE Muting input. With +9.5 V applied to this pin, the receiver will be muted.

11 VOL. CONT. HIGH Low-level receiver audio output. This output is used by external facilities.

12 OSC $1 \quad$ Channel 1 oscillator control.
13 OSC 2 Channel 2 oscillator control.
14 GND Common ground.
15 GND Common ground.

Circuit Description:

1. Converter

The RF amplifier, Q1, amplifies the input signal to overcome the loss of the five helical resonators L1,2,4-6 and the noise level of the mixer, Q2. The mixer is a baseinjected bipolar transistor mixer which heterodynes the signal down to the 10.7 MHz . IF.

Q6 (Q7) is the oscillator for channel 1 (2). The crystals $Y 1$ and Y2 are third-overtone at a frequency of (channel-10.7 MHz.)/9. The channel switch Sl is installed in two-channel models. This switch has three positions and is located on the front-panel. In the center position, external channel selection is enabled through pin 3 of P 1.
2. IF Amplifier

Filter FL1 provides the prime selectivity of the receiver. IF Amplifier-1 (Q3) sets the IF noise figure. IF Amplifier-2 $(04,5)$ further amplifies the 10.7 MHz . signal for application to the Limiter, Ul.

FM demodulation is carried out with CR4,5 with R28 and C42 removing 10.7 MHz . components from the demodulator output. The IF amplifier stages are contained in shielded compartments to ensure stability and reduce unwanted pick-up of extraneous signals.

Circuit Description (cont.) :

3. Audio Amplifier

Audio Amplifier-1 (Q10,11) amplifies the low-level demodulator output for processing. C73,74 and CH11 form a 3 KHz . low-pass filter and R54, C75 form a de-emphasis network. Q12 is a buffer-amplifier whose output goes to the volume control, R59, as well as pin ll of Pl. After passing through the volume control, the signal is amplified by Audio Amplifier-2 (Q16,17). Q17 is the audio-driver. Q18,19 make up the final audio amplifier.

The speaker switch, $S 2$, is an option which allows the reduction of stand by current drain by disabling the audio power stages when speaker operation is not required.
4. Squelch

The output of Audio Amplifier-1 is fed to a high-pass filter C79,81 and CH12 which removes voice-band components in the demodulator output. Q13 amplifies the remaining noise for detector Q14. The SQ-KEY control, R58, sets the gain of the noise amplifier and thus the unmuting SINAD.

Q15 is a buffer for the detector output. Q15 is used to gate on Q17, the audio-driver. The output of Q15 is also connected to pin 5 of $P 1$ where it is available for external circuits that utilize a carrier-operated switch or COS. CR9,13 will mute the receiver and disable the channel oscillator when +9.5 V is applied to pin 8 of $P 1$, RX MUTE. This connection is used for simplex operation.
5. Power Supply

U2 generates the +9.5 volt supply which powers all circuits except the final audio amplifier. This amplifier is powered directly from the 13.6 volt input.

Adjustments:

1. Equipment

The following test equipment and tools are recommended for performing the various adjustments.

-RF signal generator	-127 dBm to -27 dBm
- AF distortion analyser	1000 Hz 8 ohm term.
- power supply	11 to 16 VDC at 0.5 A.
-IF marker generator	10.7 MHz crystal control
-test set	WR M90 Test Set
-tuning tools	insulated
-screw drivers	slot and phillips head

Adjustments (cont.):

2. Alignment

Set the power supply voltage to 13.6 volts. Connect the power supply and RF signal generator to the receiver module at P 1 and Jl respectively. Connect the speaker output, pin 4 of P1, to the AF distortion analyser. Plug the Test Set into the front-panel connector and follow the instructions of Table 1 :- Receiver Alignment.

Table 1 :- Receiver Alignment
Test Set Typical
Test Point Range $u A$ Reading $u A$
Align
Set to

1	50	20	L 16	Note 1
2	100	55	L 17	max.
3	50	12 Note 2	$C 2,3,5,8$, $9,13,64$	max.
			L8-11	max.
4	50	0	Note 3	

Note 1. Tune to a peak then decrease to 80% of the peak by increasing the inductance of L16. The final reading of the test point should be about 20 uA.

Note 2. 12 uA reading is for 20 uV at $J 1$ after alignment.
Note 3. -Before tuning L8-13, the crystal Y 1 (Y2) must be set on frequency.
-Set the RF generator exactly on frequency and to a level that does not saturate the IF.
-Couple the IF marker to the IF for a beat note.
-Set C44 (C51) to mid range, set coarse Ll4 (L15) and fine C44 (C51) controls for zero beat. Note, later tuning of Ll6 pulls frequency slightly.

Note 4. -Set the volume for 1 Vrms at the speaker for a $1 \mathrm{mV}, 3 \mathrm{KHz}$. deviation 1 KHz . tone signal at J 1 .
-Tune L12 for a peak at the speaker output.
-Tune L13 for a reading of 0 uA at test point 4.

WR-494 Receiver Module Block Diagram

