Scanned by ADØJA

Shown with optiona! FTT-15 installed

YAESU MUSEN CO., LTD.
1-2()-2 Shimomaruko, Ota-Ku, Tokyo, 146, Japan
YAESU U.S.A.
17210 Edwards Rd., Cerritos, CA 90703, L.S.A.
YAESU INTERNATIONAL SALES, (Caribbean, Central \& So. America)
7270 NW 12th St., Suite 320, Miami, FL 33126, L.S.A.

YAESU EUROPE B.V.

Snipweg 3, 1118DN Schiphol, The Netherlands

YAESU UK LTD.

Unit 2, Maple Grove Business Centre,
Lawrence Rd., Hounslow, Middlesex, TW4 6DR, U.K.
YAESU GERMANY GmbH
Am Kronberger Han 2, D-65824 Schwalbach, Germany

YAESU HK LTD.

11th Floor Tsim Sha Tsui Centre, 66 Mody Rd.,
Tsim Sha Tsui East, Kowloon, Hong Kong

Contents

1, General
Introduction 1-1
Chip Component Information 1-2
Operating Manual Reprint 1-5
Transceiver Disassembly 1-13
Exploded View \& Miscellaneous Parts 1-15
Circuit Description 1-17
Block Diagram 1-23
2, Servicing Alignment 2-1
Component Applications 2-5
IC Data 2-7
3, Board Unit (Schematics, Layouts \& Parts)
RF Unit 3A-1
CNTL Unit 3B-1
VR Unit 3C-1
FTT-14 Keypad 3D-1
FTT-15 16-Button DTMF Paging Keypad w/Voice Encryption 3E-1

Shown with optional FTT-15 installed

The Yaesu VX-10 is a compact hand portable transceiver for the VHF land mobile bands that offers the convenience of small size, light weight, and simple operation. The VX-10 can be simply programmed by your Yaesu Dealer with up to 40 (FTT-14) or 102 (FTT-15) channels for both single and split frequency operation. The VX-10 provides up to 5 watts of RF output power and includes a flexible quick-connect antenna.

The transceiver and Ni-Cd battery packs are constructed of thick high impact polycarbonate plastic, with special attention paid by the designers to tight sealing and ruggedness, assuring years of reliable operation even in harsh environments.

The following pages describe the operation, features and accessories of the VX-10. With proper care and operation, the transceiver will provide many years of reliable communications.

Chip Component Information

The diagrams below indicate some of the distinguishing features of common chip components .

Capacitors

(Unit: mm)

Type	L	W	H
2125	2.0	1.25	$0.35 \sim 0.5$
1608	1.6	0.8	$0.65 \sim 0.95$
1005	1.0	0.5	$0.45 \sim 0.55$

Tantalum Capacitors

(Unit: mm)			
Type	L	W	H
P	2.0	1.25	1.2
A	3.2	1.6	1.6
B	3.4	2.8	1.9
C	5.8	3.2	2.3

Resistors

Indicated Letters
$1234557: 9$
(Unit: mm)

Type	L	W	H
$1 / 10$	2.0	1.25	0.5
$1 / 16$	1.6	0.8	0.45
$1 / 16 \mathrm{~S}$	1.0	0.5	0.35

Marking* 100, 222, 473...

Chip Component Information

Replacing Chip Components

Chip components are installed at the factory by a series of robots. The first one places a small spot of adhesive resin at the location where each part is to be installed, and later robots handle and place parts using vacuum suction.

For single sided boards, solder paste is applied and the board is then baked to harden the resin and flow the solder. For double sided boards, no solder paste is applied, but the board is baked (or exposed to ultra-violet light) to cure the resin before dip soldering.

In our laboratories and service shops, small quantities of chip components are mounted manually by applying a spot of resin, placing with tweezers, and then soldering by very small dual streams of hot air (without physical contact during soldering). We remove parts by first removing solder using a vacuum suction iron, which applies a light steady vacuum at the iron tip, and then breaking the adhesive with tweezers.

The special vacuum/desoldering equipment is recommended if you expect to do a lot of chip replacements. Otherwise, it is usually possible to remove and replace chip components with only a tapered, temperature-controlled soldering iron, a set of tweezers and braided copper solder wick. Soldering iron temperature should be below $280^{\circ} \mathrm{C}\left(536^{\circ} \mathrm{F}\right)$.

Precautions for Chip Replacement

O Do not disconnect a chip forcefully, or the foil pattern may peel off the board.
O Never re-use a chip component. Dispose of all removed chip components immediately to avoid mixing with new parts.
O Limit soldering time to 3 seconds or less to avoid damaging the component and board.

Removing Chip Components

\square Remove the solder at each joint, one joint at a time, using solder wick whetted with nonacidic fluxes as shown below. Avoid applying pressure, and do not attempt to remove tinning from the chip's electrode.

\square Grasp the chip on both sides with tweezers, and gently twist the tweezers back and forth (to break the adhesive bond) while alternately heating each electrode. Be careful to avoid peeling the foil traces from the board. Dispose of the chip when removed.
\square After removing the chip, use the copper braid and soldering iron to wick away any excess solder and smooth the land for installation of the replacement part.

Chip Component Information

Installing a Replacement Chip

As the value of some chip components is not indicated on the body of the chip, be careful to get the right part for replacement.
\square Apply a small amount of solder to the land on one side where the chip is to be installed.
Avoid too much solder, which may cause bridging (shorting to other parts).

Hold the chip with tweezers in the desired position, and apply the soldering iron with a motion line as indicated by the arrow in the diagram below. Do not apply heat for more than 3 seconds.

\square Remove the tweezers and solder the elec trode on the other side in the manner just described.

Operating Manual Reprint

Controls \mathcal{E} Connectors

Before You Begin

Battery Installation and Removal

Refer to the illustration below showing the rear panel of the VX-10 and its battery pack.
\square Lay the battery pack loosely onto the rear panel of the transceiver, and carefully mate the four small alignment tabs on the battery with their corresponding insertion slots on the transceiver case. Proper alignment occurs with the battery pack offset about $1 / 2^{\prime \prime}$ from the top of the case.

\square Guide the pack into the slots with a slight inward pressure, then slide the battery pack upward, until it locks in place with a "Click".
\square To remove the battery, turn the radio off and remove any protective cases. Press in the Battery Release button (behind the Antenna jack) while sliding the battery down $1 / 2^{\prime \prime}$. Then lift the battery away.

Do not attempt to open any of the rechargeable Ni-Cd packs, as they could explode if accidentally short-circuited.

Low Battery Indication

\square As the battery discharges during use, the voltage gradually becomes lower. When the battery voltage reaches 6.0 Volts, the battery pack should be recharged and another battery should be installed in its place. The " $\boldsymbol{\square}$ " icon will blink in the display when battery voltage is low.

Operating Manual Reprint

\square Avoid recharging $\mathrm{Ni}-\mathrm{Cd}$ batteries often with little use between charges, as this can degrade the charge capacity. Yaesu recommends that you carry an extra, fully-charged pack with you so the operational battery may be utilized until depletion (this "Deep Cycling" promotes better long-term battery capacity).

Operation

Before You Begin

\square Install a charged battery pack onto the transceiver, as described previously.
\square Screw the supplied antenna onto the Antenna jack. Never operate this transceiver without an antenna connected.
\square If you have a Speaker/Mic, we recommend that it not be connected until you are familiar with the basic operation of the VX-10.

Operating the VX-10
\square To turn the radio on, push and hold in the orange [PWR] button for $1 / 2$ second.

\square Turn the top panel Channel Selector to choose the desired operating channel. A channel number or channel name
 will appear on the LCD.
\square Rotate the lower, outer ring of the Channel Selector knob to set the Volume level. If no signals are being received, you can preset the Volume level on background noise by the following proce-
 dure.
(1) Press the Monitor button (the middle but-
 icon, then press and hold in the Monitor Button for one second to open the Squelch manually.
(2) Rotate the Volume control for a comfortable Volume level on the noise.
(3) Press the Monitor button once again to reactivate the Squelch.
\square To transmit, press and hold in the $[\mathrm{PTT}]$ switch.
Speak into the microphone area of the front panel grille (lower right-hand corner) in a normal voice. To return to the Receive mode, release the [PTT] switch.

\square If a Speaker/Mic is available, it may be plugged into its jack on the right side of the transceiver. Hold the speaker grille up next to your ear in the Receive mode. To transmit,

Operating Manual Reprint

press the Speaker/Mic's [PTT] switch, just as you would on the main transceiver body.
\square Press one of the "Soft Keys" ("A" or "B" in the Two-Key transceiver version, or " A " \sim " D " on the 16 -Key version), or press downward momentarily on the Channel Selector knob, to activate one of the "Pre-Programmed Functions" which may have been provided at the time of programming by the Dealer. See the "Appendix" for a listing of available features.

Appendix

A. Pre-Programmed Functions

One or more of the following functions may have been activated by your Dealer at the time of programming of the radio. The functions will have been assigned to the " A " and " B " keys in the Two-Channel transceiver version, the " A " through " D " keys on the Four-Channel version, and/or the Channel Selector Knob (hereafter referred to as "The Knob").

- Scanning \ll This section subject to changere USR SCAN>>
Scanning rapidly steps through each of your assigned channels, looking for incoming calls. If a call is detected, Scanning stops on that channel, then resumes a few seconds after the incoming transmission ends.
Two Scanning modes are available: "User" Scan and "Dealer" Scan. The "USR SCAN" display means that the User can edit the channel scan list, while "DLR SCAN" means that only the Dealer can edit the scan list.
To start Scanning, momentarily press the assigned button (A, B, C, or D) or the Knob. To cancel Scanning, press the same button.

- Dual Watch

Dual Watch automatically checks for activity on a priority channel, while operating on another channel ("Priority" is assigned to the first channel of the currently-selected Group). A small "DW" is displayed at the top of the LCD when Dual Watch is active.
To start Dual Watch operation, press the Deal-er-designated button (A, B, C, or D) or the Knob momentarily. About every $11 / 2$ seconds, the receiver will briefly check the Priority channel, looking for an incoming call.
When a signal is received on the Priority channel, Dual Watch will pause and the channel number or name tag for the Priority channel will be displayed. Dual Watch will resume after the station on the Priority channel stops transmitting.
To cancel Dual Watch, press the Dealer-designated button (A, B, C, or D) or the Knob momentarily again.

- LOW Transmit Power

Pressing the Dealer-designated button switches the radio's transmitter to a "Low Power" mode, thus allowing greater battery life.

- Talk Around

In duplex channel systems (separate receive and transmit frequencies, utilizing a "repeater" station), Talk-Around allows you to bypass the repeater station and talk directly to a station that is nearby. This feature has no effect when operating on "simplex" channels, where the receive and transmit frequencies are the same).

Operating Manual Reprint

- Channel Group Selection

The VX-10 is capable of separating its 102 memory channels into any of nine groups. There is no limit to the number of channels in each group.
Pressing the assigned button (A, B, C, or D) or the Knob allows the operator to toggle between the available groups. Channels within the selected group may then be selected using the Channel Selector Knob.

- TX Save Off

This feature, if selected, disables the Transmit Battery Saver, which reduces transmit power when a very strong signal from an apparently nearby station is being received.
Press the assigned button (A, B, C, or D) or the Knob to disable the Transmit Battery Saver, if you are operating in a location where high power is almost always needed.

- Set Function (Menu)

The "Set Function" allows the user to customize certain performance parameters as needed.

- Squelch Call (16-Key Pad Type Only)

This feature allows the user to change the 3digit Squelch Call code, used to call other sim-ilarly-equipped stations.
Press the assigned button (A, B, C, or D) or the Knob, followed by the three digits of the Squelch Call code of the station you wish to call. Three tones will be heard after the last key
is pressed (the code will now be transmitted). The receiver squelch of the other station will be opened, and you can commence talking.

B. Set Function (Menu)

The user-accessible "Set Function" allows the operator to customize certain performance features of the VX-10.

Two methods of activating the Set Function are available:
(1) If the Dealer has assigned "Set Function Access" to one of the "Pre-Programmed Function" keys, pressing the assigned key (A, B, C, or D) will activate the feature.
(2) If the Dealer has assigned "Set Function Access" to the Channel Selector Knob, pressing downward on the Knob will activate the Set Function.
Once the Set Function is active, the following procedure is used to recall the desired Menu item for editing:
\square One the Set Function is activated, rotate the Channel Selector Knob to step through each of the available 16 functions; once the desired function is found (see the Table below), push the [A] button to view the current setting of that function.
\square Rotate the Channel Selector Knob to select a different setting (or to enable/disable it), then press the $[B]$ button to save the new setting.
\square Press the assigned button (A, B, C, or D) or the Channel Selector Knob to exit the Set Function mode.

Operating Manual Reprint

Knob/Button [A] button	Function		Set Function List				
	Dual Watch	The table below outlines the various functions					
	Low Transmit Power Talk Around	that are available for user editing via the Set Func-					
	Channel Group						
	Code Squelch Call	Display	Description	Selections			
	TX Save Off	S01 SQL	Squelch Level	Level 0* ~ 12			
	Set-Function			* $0=$ SQL open			
[B] button	Scanning	502 LIST	Scan Mode	Dealer/User			
		S03 BEEP	Keypad Beeper	On/Off			
	Dual Watch	S 04 BELL	CTCSS/DCS Bell	On/Off			
	Low Transmit Power Talk Around	S05 LITE	TX/BUSY LED	On/Off			
		S06 LOCK	Locks Controls	Key, PTT, or Knob			
	Channel Group	S07 TAG	Channel Name Tag	On/Off			
	Code Squelch CallTX Save Off	S08 GRP	Channel Groups	Groups 1 ~ 9			
		S09 SCAN	Scan Mode	On/Off			
	Set-Function	S10 DW	Dual Watch	On/Off			
[C] button (on 16-key version)	Scanning	S11 TXPO	Transmitter Power	High/Low			
		S12 TA	Talk Around	On/Off			
	Dual Watch	S13 ENCR Display	Encryption	On/Off			
	Low Transmit Power Talk Around		Description	Selections			
		S14 TEL	Telephone Number				
	Channel Group		Memory Recall	Channel 1 ~ 10, Off			
	Code Squelch Call	$\begin{aligned} & \text { S15 TSAV } \\ & \text { S16 DTMF } \end{aligned}$	Transmit Battery Saver	On/Off			
	TX Save Off		DTMF Code				
	Set-Function		Memory Select	Channel 1 ~ 10			
[D] button (on 16-key version)	Scanning						
	Dual Watch	C. ARTS (Auto Range Transpond System)					
	Low Transmit Power Talk Around	This system is designed to inform you when					
		you and another ARTS-equipped station are within					
	Channel Group	communication range. If you move out of range					
	Code Squelch Call						
		for more than two minutes, your radio senses that					
	Set-Function	no signal has been received, a ringing beeper sounds, and " Q " appears on the LCD. If you					
Knob	Scanning	subsequently move back into range, as soon as					
	Dual Watch	the other station transmits, your radio's beeper					
	Low Transmit Power Talk Around	will sound, and " \odot " will appear.					
	Channel Group	During ARTS operation, your radio automat-					
	Code Squelch CallTX Save Off	ically transmits for about 1 second every 25 sec onds (the interval is programmed by the Dealer)					
	Set-Function	in an attempt to "shake hands" with the other station.					

Operating Manual Reprint

D. DTMF ANI System

This system is a standard ANI (Automatic Numeric Identification) sequence that may be programmed, by the Dealer, to be sent whenever the PTT switch is pressed or released.

E. DTMF Paging System

This system allows paging and selective calling, using transmitted DTMF (Dual Tone, MultiFrequency) sequences. Your receiver remains silent until it receives DTMF digits that match those stored in a special "DTMF Code" memory in your transceiver. The squelch then opens so the caller is heard, and an alert ringer sounds.

When a "DTMF Paging" call opens your radio's squelch, you can begin your operation as usual. DTMF Paging "hangs" open for about three seconds after the received carrier drops, to give you time to respond; thereafter, it resets the system.

Each time you transmit, you will hear DTMF tones; remember to pause a moment before speaking, as the code is being sent on your signal at the beginning of each transmission. You will
not hear the other station's DTMF tones the first time you receive a call, as your squelch does not open until after the tones are decoded. Afterwards, however, you will hear the DTMF tones so long as your radio's squelch remains open.

F. Alpha-Numeric Channel Names ("Channel Nametags")

The Dealer may program Alpha-Numeric designators to each channel, to aid in the user's recognition of each channel. These "Channel Nametags" may be activated, in lieu of the standard "CHAN 1 " type display.

To enable or disable the Channel Nametags:
\square Enter the Set Function, and select Menu item S07 ("TAG").
\square Push the $[\mathbf{A}]$ button momentarily to view the current selection.
\square Now rotate the Channel Selector knob to change the setting to the desired state (Tags On or Off).
\square Press the [B] button to save the new setting, then press downward on the Channel Selector knob momentarily to exit the Set Function.

Operating Manual Reprint

 Specifications
General

Frequency range:	$134 \sim 160,148 \sim 174 \mathrm{MHz}$
Number of channels:	$40($ FTT-14) or 102 (FTT-15)
Channel spacing:	$12.5 / 25 / 30 \mathrm{kHz}$
Battery voltage:	7.2 V DC
Temperature range:	$-30^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Case size (WHD):	$57 \times 99 \times 46 \mathrm{~mm}(\mathrm{~W} / \mathrm{FNB}-\mathrm{V} 47)$
Weight (approx.):	380 grams with FNB-V47, antenna, belt clip

Receiver

Circuit type:	Double-conversion superheterodyne
IFs:	$17.70 \mathrm{MHz} \& 450 \mathrm{kHz}$
12-dB SINAD Sensitivity:	$<0.2 \mu \mathrm{~V}$
Squelch Sensitivity:	$<0.25 \mu \mathrm{~V}$
Selectivity:	$<60 \mathrm{~dB}(12.5 \mathrm{kHz}),<70 \mathrm{~dB}(25 / 30 \mathrm{kHz})$
Intermodulation:	$>70 \mathrm{~dB}$
Spurious rejection:	$>70 \mathrm{~dB}$
Image rejection:	$>70 \mathrm{~dB}$
Channel frequency spread:	26 MHz
AF output:	$0.5 \mathrm{~W} @ 4 \Omega(\pm 5 \% \mathrm{THD})$

Transmitter

Power output:	$5.0 / 2.5 / 1.0 / 0.1 \mathrm{~W}$ (Selectable, 0.1 W to 5.0 W Adjustable)
Frequency stability:	better than $\pm 5 \mathrm{ppm}$
Modulation system:	Direct FM
Maximum deviation:	$(\pm 2.5 \mathrm{kHz}$ or) $\pm 5 \mathrm{kHz}$
FM Noise (@ 1 kHz):	better than -40 dB
Spurious emissions:	$>65 \mathrm{~dB}$ below carrier
AF distortion (@ 1 kHz):	$<5 \%$
Microphone type:	$2-\mathrm{k} \Omega$ condenser

Operating Manual Reprint

Notes:

Transceiver Disassembly

The VX-10 must be partially disassembled to perform a complete alignment.

Case Removal

Before beginning, turn the radio off, remove the knob, and the battery pack.
\square Lay the transceiver on a flat surface covered with a soft cloth to protect the front case from marring, then remove the two rear-panel case screws (Fig. 1).

Figure 1.
\square Remove the keypad unit from the front panel by using your fingernails to grasp both side of the unit and lift it free (Fig. 2).

Figure 2.
\square Grasp the transceiver with both hands, then gently remove the internal assembly from the case using by pressing on it gently with even pressure from both thumbs, then sliding out from the case at an angle (Fig. 3).

Figure 3.
\square Remove the small silicone LED lens from the case by pressing on it from the inside.

This provides access to all user-serviceable adjustments, further disassembly is not recommended.

Refer repairs to your nearest Yaesu-authorized service center.
\square Reassemble the unit in reverse order. When re-inserting the internal unit and keypad into the case, ensure their rubber gaskets are not pinched, and rest firmly within the ridge encircling their frame and transceiver case.

Transceiver Disassembly

Notes:

REF	YAESU P/N	Description	Qty.
(1)	U9900063	TAPTITE SCREW $2 \times 3.3 \mathrm{Ni}$	2
(2)	U9900064	TAPTITE SCREW M2 $\times 10 \mathrm{Ni}$ GUIDE	2
(3)	$U 9900066$	TAPTITE SCREW M1.7 $\times 3 \mathrm{Ni} \# 1$	1
(4)	$U 44104002$	TAPTITE SCREW M2 $\times 4 \mathrm{Ni}$	3
(5)	U9900069	TAPTITE SCREW M2 $\times 9.5 \# 2$	1

Non-designated parts are available only as part of a designated assembly.

Exploded View \& Miscellaneous Parts
Notes:

Circuit Description

Receive Signal Path

Incoming RF from the antenna jack is delivered to the RF Unit and passes through a lowpass filter and high-pass filter consisting of coils L1006, L1007, L1008, L1010, L1011 \& L1012, capacitors C1033, C1034, C1046, C1047, C1048, C1049, C1050, C1064, C1076, C1077, C1081 \& C1082 and antenna switching diode D1008 (RLS135).

Signals within the frequency range of the transceiver are then amplified by Q1019 (2SC5226-4/5) and enter a varactor-tuned bandpass filter consisting of coils L1015, L1016 \& L1017, capacitors C1017, C1087, C1089, C1090, C1091, C1099, C1100, C1108, C1111, C1112, C1113, C1158, C1162 \& C1166, and diodes D1012, D1013 \& D1014 (all HVU350) before first mixing by Q1026 (SGM2016M).

Buffered output from the VCO is amplified by Q1001 (2SC5226-4/5) to providea pure first local signal between 116.3 and 156.3 MHz for injection to the first mixer Q1026 (SGM2016M). The 17.7 MHz first mixer product then passes through monolithic crystal filters XF1001, XF1002 (17T12B5, 7.5 kHz BW) to strip away all but the desired signal, which is then amplified by Q1028 (2SC4215Y).

The amplified first IF signal is applied to FM IF subsystem IC Q1020 (TA31136FN), which contains the second mixer, second local oscillator, limiter amplifier, noise amplifier, and S-meter amplifier.

A second local signal is generated by PLL reference/second local oscillator Q1018 (2SC2620QB) from the 17.25 MHz crystal X1001 to produce the 450 kHz second IF when mixed with the first IF signal within Q1020.

The second IF then passes through the ceram-
ic filter CF1001 to strip away unwanted mixer products, and is applied to the limiter amplifier in Q1020, which removes amplitude variations in the 450 kHz IF, before detection of the speech by the ceramic discriminator CD1001 (CDBM450C24T).

Detected audio from Q1020 is applied to one of the user selected Key Unit for de-emphasis and band-pass filtering (see the Key Unit Circuit Description), and then past the volume control to the audio power amplifier Q2021 (TDA7233D) on the CNTL Unit, providing up to 0.5 Watts to the optional headphone jack or $4-\Omega$ loudspeaker.

Squelch Control

The squelch circuitry consists of a noise amplifier \& band-pass filter within Q1020, and noise detector D1018 (DA221) on the CNTL Unit.

When no carrier is received, noise at the output of the detector stage in Q1020 is amplified and band-pass filtered by the noise amplifier section of Q1020 and the network between pins 7 and 8 , and then rectified by D1018.

The resulting DC squelch control voltage is passed to pin 96 of the microprocessor Q2001. If no carrier is received, this signal causes pins 43 and 55 of Q2001 to go low. Pin 43 signals Q2018 (IMD10A) and Q2020 (UMH3N) to disable the supply voltage to the audio amplifier Q2021, while pin 55 makes Q2008 (FMG2) hold the green (Busy) half of the LED off, when these pins are low.

Thus, the microprocessor blocks output from the audio amplifier, and silences the receiver while no signal is being received, and during transmission.

When a carrier appears at the discriminator,

Circuit Description

noise is removed from the output, causing pin 96 of Q2001 to go high and the microprocessor to turn onthe busy LED via Q2008.

The microprocessor then checks the CTCSS chip on the Key Unit, the DTMF decoder chip and the CDCSS code for CTCSS or CDCSS or DTMF code squelch information, if enabled, respectively. If not transmitting and tone squelch or CDCSS is not activated, or if the received tone or code matches that programmed, the microprocessor stops scanning, if active, and allows audio to pass through the audio amplifier Q2021 (TDA7233D) to the loudspeaker by enabling the supply voltage to it via Q2018 and Q2020.

Transmit Signal Path

Speech input from the microphone is delivered to the CNTL Unit, where itis amplified by Q2025-4 (NJM2902V), then applied to one of the user selected Key Unit for pre-emphasis (see the Key Unit Circuit Description).

The pre-emphasized audio then returns to the CNTL UNIT, to provide IDC (Instantaneous Deviation Control), and the splutter filter which filters the speech signal to remove any high frequency components that might result in overdeviation.

The processed audio is then mixed with a CTCSS tone generated by the microprocessor Q2001 and delivered to D1001 (1SS314) for frequency modulating the PLL carrier up to $\pm 5 \mathrm{kHz}$ from the unmodulated carrier at the transmitting frequency.

If an external microphone is used, PTT switching is controlled by Q2022 (UMZ2N), which signals the microprocessor when the impedance at the microphone jack drops.

If a CDCSS code is enabled for transmission,
the code is generated by the microprocessor Q2001 and delivered to D1017 (HVU202A) for CDCSS modulating.

If DTMF is enabled for transmission, the tone is generated by the microprocessor Q2001 and applied to the splutter filter section in place of speech audio. Also, the tone is amplified for monitoring in the loudspeaker.

The modulated signal from the VCO Q1002 (2SC5231C8/C9) is buffered by Q1003 (2SC5231C8/C9) and amplified by Q1001 (2SC5226-4/5). The low-level transmit signal is then applied to the PA module Q1005 for final amplification up to 5 watts output power.

The transmit signal then passes through the antenna switch D1006 (RLS135) and is low-pass filtered to suppress away harmonic spurious radiation before delivery to the antenna.

Automatic Transmit Power Control

RF power output from the final amplifier is sampled by C1026, C1027 and is rectified by D1004 (1SS321). The resulting DC is fed back through Q1004 (NJM2904V) to the PA module, and thus the power output.

The microprocessor selects either high or one of three low power levels.

Transmit Inhibit

When the transmit PLL is unlocked, pin 2 of PLL chip Q1015 goes to a logic low. The resulting $D C$ unlock control voltage is passed to pin 98 of the microprocessor Q2001. While the transmit PLL is unlocked, pin 47 of Q2001 remains low, which then turns off the Automatic Power Controller Q1014 and Q1004 (UMC5N, NJM2904V) to disable the supply voltage to the transmitter RF amplifier Q1005, disabling the transmitter.

Circuit Description

Spurious Suppression

Generation of spurious products by the transmitter is minimized by the fundamental carrier frequency being equal to the final transmitting frequency, modulated directly in the transmit VCO. Additional harmonic suppression is provided by a low-pass filter consisting of L1006, L1007 \& L1008 and C1033, C1034, C1046, C1048, C1049 \& C1050, resulting in more than 60 dB of harmonic suppression prior to delivery to the antenna.

PLL Frequency Synthesizer

PLL circuitry on the RF Unit consists of VCO Q1002 (2SC5231C8/C9) and VCO buffers Q1003 (2SC5231C8/C9), Q1006 (2SC4245); PLL subsystem IC Q1015 (MC145192F), which contains a reference divider, serial-to-parallel data latch, programmable divider, phase comparator, charge pump, and a power saver circuit.

Stability is maintained by a regulated 3 V supply via Q2014 (2SB1132Q) on the CNTL Unit to Q1018, temperature compensating thermistor and capacitors associated with the 17.25 MHz frequency reference crystal X1001.

While receiving, VCO Q1002 oscillates between 116.3 and 156.3 MHz accordingto the transceiver version and the programmed receiving frequency. The VCO output is buffered by Q1003, Q1006 and applied to the prescaler section of Q1015. There the VCO signal is divided by 64 or 65 , according to a control signal from the data latch section of Q1015, before being applied to the programmable divider section of Q1015.

The data latch section of Q1015 also receives serial dividing data from the microprocessor Q2001 on the CNTL Unit, which causes the pre-
divided VCO signal to be further divided in the programmable divider section, depending upon the desired receive frequency, so as to produce a 5 kHz or 6.25 kHz derivative of the current VCO frequency.

Meanwhile, the reference divider section of Q1015 divides the 17.25 MHz crystal reference from the reference oscillator Q1018, by 3450 (or 2760) to produce the 5 kHz (or 6.25 kHz) loop reference (respectively).

The 5 kHz (or 6.25 kHz) signal from the programmable divider (derived from the VCO) and that derived from the reference oscillator are applied to the phase detector section of Q1015, which produces a pulsed output with pulse duration depending on the phase difference between the input signals.

This pulse train is filtered to DC and returned to the varactor D1003 (HVU350). Changes in the level of the DC voltage applied to the varactor, affect the reactance in the tank circuit of the VCO , changing the oscillating frequency of the VCO according to the phase difference between the signals derived from the VCO and the crystal reference oscillator.

The VCO is thus phase-locked to the crystal reference oscillator. The output of the VCO Q1002, after buffering by Q1003 and amplification by Q1001, is applied to the first mixer, as described previously.

For transmission, the VCO Q1002 oscillates between 134 and 174 MHz according to the model version and programmed transmit frequency. The remainder of the PLL circuitry is shared with the receiver. However, the dividing data from the microprocessor is such that the VCO frequency is at the actual transmit frequency (rather than offset for IFs, as in the receiving case). Also, the

Circuit Description

VCO is modulated by the speech audio applied to D1001 (1SS314), asdescribed previously.

Receive and transmit buses select which VCO is made active by Q1008 (DTC143ZE).

FET Q1013 (2SK880GR) buffers the VCV line for application to the tracking band-pass filters in the receiver front end.

When the power saving feature is active, the microprocessor periodically signals the PLL IC to conserve power and shortens lock-up time.

Miscellaneous Circuits

Push-To-Talk Transmit Activation

The PTT switch on the microphone is connected to pin 100 of microprocessor Q2001, so that when the PTT switch is closed, pin 47 of Q2001 goes high. This signals the microprocessor to activate the TX/RX controller Q1022 (UMH5N), which then disables the receiver by disabling the 3 V supply bus at Q1021 (UN911H) to the frontend, FM IF subsystem IC Q1020 and receiver VCO circuitry.

At the same time, Q1016 (XP1501), Q1017 (2SB1132Q) activates the transmit 3 V supply line to enable the transmitter.

KEY Unit

2CE-Key Unit
The 2CE-Key Unit circuit consists of de-emphasis, pre-emphasis, band-pass filter, CTCSS decoder within Q3101 (AK2341) and EEPROM Q3103 (S-29430AFE).

While receiving, detected audio from Q1020 is de-emphasized by the Q3101 de-emphasis section and then band-pass filtered by the Q3101 band-pass filter section.

The processed receiver audio is then delivered to the CNTL Unit.

Detected audio from Q1020 is also delivered to the CTCSS decoder within Q3101. The microprocessor checks the CTCSS chip Q3101 for CTCSS squelch information.

For transmission, speech audio from Q2025-4 is delivered to the Q3101 pre-emphasis section for pre-emphasis.

The processed speech audio is then delivered to the CNTL Unit.

EEPROM Q3103 extends the memory channels from 40 to 102.

16CEP-Key Unit

The 16CEP-Key Unit circuit consists of de-emphasis, pre-emphasis, band-passfilter, voice band inverter, CTCSS decoder within Q3201 (AK2342A) and EEPROM Q3203 (S-29430AFE).

While receiving, detected audio from Q1020 is de-emphasized and amplified by the Q3201 de-emphasis amplifier section, and then bandpass filtered by the Q3201 band-pass filter section. If the audio is scrambled by inverting the voice band, it then passes through the voice band inverter section within Q3201 to recover clear speech.

The processed receiver audio is then delivered to the CNTL Unit.

Detected audio from Q1020 is also delivered to the CTCSS decoder within Q3201. The microprocessor checks the CTCSS chip Q3201 for CTCSS squelch information.

For transmission, speech audio from Q2025-4 is delivered to the Q3201 pre-emphasis amplifier section for pre-emphasis and amplification. If privacy during communications is desired, it then passes through the voice band inverter section within Q3201 for voice scrambling.

The processed speech audio is then delivered

Circuit Description

to the CNTL Unit.
EEPROM Q3203 extends the memory channels from 40 to 102.

16CDEV-Key Unit
The 16CDEV-Key Unit circuit consists of deemphasis, pre-emphasis, band-pass filter, voice band inverter, CTCSS decoder within Q3301 (AK2342A), sub-CPU Q3304 (M38802M2), EEPROM Q3303 (S-29430AFE) and voice memory Q3307 (ISD1020AGL).

While receiving, detected audio from Q1020 is de-emphasized and amplified by the Q3301 de-emphasis amplifier section, and then bandpass filtered by the Q3301 band-pass filter section. If the audio is scrambled by inverting the voice band, it then passes through the voice band inverter section within Q3301 to recover clear speech.

The processed receiver audio is then delivered to the CNTL Unit.

Detected audio from Q1020 is also delivered to the CTCSS decoder within Q3301 and voice memory Q3307. The microprocessor checks the CTCSS chip Q3301 for CTCSS squelch information.

For transmission, speech audio from Q2025-4 is delivered to the Q3301 pre-emphasis amplifier section for pre-emphasis and amplification. If privacy during communications is desired, it then passes through the voice band inverter section within Q3301 for voice scrambling.

The processed speech audio is then delivered to the CNTL Unit.

The voice memory chip Q3307 memorizes speech audio or receive audio from the CNTL Unit, which controlled by the sub-CPU.

EEPROM Q3303 extends the memory channels from 40 to 102.

Circuit Description

Notes:

Block Diagram
Notes:

The VX-10 is carefully aligned at the factory for the specified performance across the frequency range specified for each version. Realignment should therefore not be necessary except in the event of a component failure, or altering version type. All component replacement and service should be performed only by an authorized Yaesu representative, or the warranty policy may be void.

The following procedures cover the sometimes critical and tedious adjustments that are not normally required once the transceiver has left the factory. However, if damage occurs and some parts subsequently are replaced, realignment may be required. If a sudden problem occurs during normal operation, it is likely due to component failure; realignment should not be done until after the faulty component has been replaced.

We recommend that servicing be performed only by authorized Yaesu service technicians who are experienced with the circuitry and fully equipped for repair and alignment. Therefore, if a fault is suspected, contact the dealer from whom the transceiver was purchased for instructions regarding repair. Authorized Yaesu service technicians realign all circuits and make complete performance checks to ensure compliance with factory specifications after replacing any faulty components.

Those who do undertake any of the following alignments are cautioned to proceed at their own risk. Problems caused by unauthorized attempts at realignment are not covered by the warranty policy. Also, Yaesu reserves the right to change circuits and alignment procedures in the interest of improved performance, without notifying owners.

Under no circumstances should any alignment be attempted unless the normal function and
operation of the transceiver are clearly understood, the cause of the malfunction has been clearly pinpointed and any faulty components replaced, and realignment determined to be absolutely necessary.

The following test equipment (and thorough familiarity with its correct use) is necessary for complete realignment. Correction of problems caused by misalignment resulting from use of improper test equipment is not covered under the warranty policy. While most steps do not require all of the equipment listed, the interactions of some adjustments may require that more complex adjustments be performed afterwards.

Do not attempt to perform only a single step unless it is clearly isolated electrically from all other steps. Have all test equipment ready before beginning, and follow all of the steps in a section in the order presented.

Required Test Equipment

\square RF Signal Generator with calibrated output level at 200 MHz
\square Deviation Meter (linear detector)
\square In-line Wattmeter with 5% accuracy at 200 MHz
$\square 50-\Omega$ RF Dummy Load with power rating 10 W at 200 MHz
$\square 4-\Omega$ AF Dummy Load
\square Regulated DC Power Supply adjustable from 3 to $15 \mathrm{VDC}, 2 \mathrm{~A}$
\square Frequency Counter with 0.2 ppm accuracy at 200 MHz
\square AF Signal Generator
\square AC Voltmeter
\square DC Voltmeter (high impedance)
\square VHF Sampling Coupler
\square SINAD Meter

Alignment

Alignment Preparation \& Precautions

A $50-\Omega$ RF dummy load and in-line wattmeter must be connected to the main antenna jack in all procedures that call for transmission, except where specified otherwise. Correct alignment is not possible with an antenna.

After completing one step, read the following step to determine whether thesame test equipment will be required. If not, remove the test equipment (except dummy load and wattmeter, if connected) before proceeding.

Correct alignment requires that the ambient temperature be the same as thatof the transceiver and test equipment, and that this temperature be held constant between 20 and $30^{\circ} \mathrm{C}(68 \sim 86$ ${ }^{\circ} \mathrm{F}$). When the transceiver is brought into the shop from hot or cold air, it should be allowed time to come to room temperature before alignment.

Whenever possible, alignments should be made with oscillator shields and circuit boards firmly affixed in place.

Also, the test equipment must be thoroughly warmed up before beginning.

Note: Signal levels in dB referred to in the alignment procedure are based on $0 \mathrm{~dB} \mu=0.5 \mu \mathrm{~V}$.
Set up the test equipment as shown for transceiver alignment, apply 7.5 VDC power to the transceiver. Refer to the drawings above for Alignment Points.

PLL Reference Frequency

1 With the wattmeter, dummy load and frequency counter connected to the antenna jack, and while tuned to the center of the band, key the transmitterand adjust TC1001 on the RF UNIT, if necessary, so the counter frequency is within 100 Hz of the displayed frequency on the VX-10.

Internal System Alignment Routine

The remainder of the alignment uses a routine programmed in the transceiver.

This routine simplifies many previously complex discrete component settings and adjustments with digitally-controlled settings via front panel buttons and LCD indications.

Transceiver adjustments include:
Squelch Hysteresis Adjustment O Squelch Threshold \& Tight Adjustment O RSSI Squelch Tight \& TX Save Adjustment O Power Output Adjustment (Hi / L3 / L2 / L1) O TXDeviation Adjustment (MAX / CTCSS / DCS)

To begin, set the transceiver to the band center, then turn the transceiver off. Next, short the jumper between CLN line and GND on the SPKR/MIC jack (shown above), and press and hold the DIAL knob, PTT and LAMP together while powering the radio again. The display now shows the first setting. Note that the first two settings are not adjustable and are left as set fromthe factory.

In the alignment, each adjustment is selected by rotating the DIAL knob.

Alignment is performed by pressing the \mathbf{A} key, then injecting a signal of the required frequency and level.

Pressing the \mathbf{B} key after a level setting or adjustment is made stores the entry. To exit the
alignment routine, press the DIAL knob. After performing the system alignment in its entirety, individual settings can be returned to and adjusted should the need arise.

Squelch Hysteresis (HSSQ)

\square Select the squelch hysteresis level by the DIAL, then press the \mathbf{B} key to save the entry and rotate the DIAL for the next setting.

Squelch Preset Threshold (THSQ)

\square Inject a - $13 \mathrm{~dB} \mu \mathrm{~V}$ RF signal (Standard MOD.), then press the \mathbf{B} key to save the squelch threshold level and rotate the DIAL for the next setting.

Squelch Preset Tight (TISQ)

\square Inject a $-3 \mathrm{~dB} \mu \mathrm{~V}$ RF signal (Standard MOD.), then press the \mathbf{B} key to save the squelch tight level and rotate the DIAL for the next setting.

Squelch Tight RSSI (TIRS)

\square Inject a $0 \mathrm{~dB} \mu \mathrm{~V}$ RF signal (Standard MOD.), then press the \mathbf{B} key to save the squelch tight RSSI level and rotate the DIAL for the next setting.

TX Save RSSI (TSRS)

\square Inject a $15 \mathrm{~dB} \mu \mathrm{~V}$ RF signal (Standard MOD.), then press the \mathbf{B} key to save the TX save RSSI level and rotate the DIAL for the next setting.

High TX Power (HIPO)

\square Transmit and adjust the output power level for 5 W by the DIAL. After transmitting stops, press the \mathbf{B} key to save the entry and move on.

Alignment

L3 TX Power (L3PO)

\square Transmit and adjust the output power level for 2.5 W by the DIAL. After transmitting stops, press the \mathbf{B} key to save the entry and move on.

L2 TX Power (L2PO)

\square Transmit and adjust the output power level for 1 W by the DIAL. After transmitting stops, press the \mathbf{B} key to save the entry and move on.

L1 TX Power (L1PO)

\square Transmit and adjust the output power level for 0.1 W by the DIAL. After transmitting stops, press the \mathbf{B} key to save the entry and move on.

MAX Deviation (MAX)

\square Inject a $1 \mathrm{kHz}, 80 \mathrm{mV} \mathrm{rms}_{\mathrm{rms}}$ tone to the MIC jack. Then, transmit and adjust the MAX deviation level for $\pm 3.9 \mathrm{kHz} \sim \pm 4.2 \mathrm{kHz}$ (for 25 kHz separation) or $\pm 1.8 \mathrm{kHz} \sim \pm 2.1 \mathrm{kHz}$ (for 12.5 kHz separation) by the DIAL. After transmitting stops, press the \mathbf{B} key to save the entry and move on.

CTCSS Deviation (TONE)

\square Exit the alignment routine, next select CTCSS programmed channel. Then, press and hold the DIAL knob, PTT and LAMP together while powering the radio again. Transmit and adjust the CTCSS deviation level for $\pm 0.4 \mathrm{kHz} \sim$ $\pm 0.8 \mathrm{kHz}$ (for 25 kHz separation) or $\pm 0.2 \mathrm{kHz}$ $\sim \pm 0.6 \mathrm{kHz}$ (for 12.5 kHz separation) by the DIAL. After transmitting stops, press the \mathbf{B} key to save the entry and move on.

DCS Deviation (DCS)

\square Exit the alignment routine, next select DCS programmed channel. Then, press and hold the DIAL knob, PTT and LAMP together while powering the radio again. Transmit and adjust the DCS deviation level for $\pm 0.6 \mathrm{kHz}$ ~ $\pm 1.0 \mathrm{kHz}$ (for 25 kHz separation) or $\pm 0.3 \mathrm{kHz}$ $\sim \pm 0.7 \mathrm{kHz}$ (for 12.5 kHz separation) by the DIAL. After transmitting stops, press the \mathbf{B} key to save the entry and move on.

This completes the internal alignment routine, to save all settings and exit, press the DIAL knob.

Resetting the CPU

If you are unable to gain control of the transceiver (or if you want to clear all memories and settings to their factory defaults), press down and hold both the knob, and the center MON button while also holding the PWR button for $1 / 2$ second to turn the transceiver on.

Component Applications

Location	Parts Type	Nomenclature	Application
Q1001	Transistor	2SC5226-4/5	BUFF
Q1002	Transistor	2SC5231C8/C9	VCO
Q1003	Transistor	2SC5231C8/C9	VCO
Q1004	Dual OP-AMP	NJM2904V	APC
Q1005	Hybrid RF Module	$\begin{array}{\|l\|} \hline \text { PF0313 (TYP A) } \\ \text { PF0134 (TYP C) } \\ \hline \end{array}$	PA
Q1006	Transistor	2SC4245	BUFF
Q1007	Transistor	UN9212	TX/RX SW
Q1008	Transistor	DTC143ZE	TX/RX SW
Q1009	Transistor	DTC143ZE	TX/RX SW
Q1010	Transistor	DTC143ZE	TX/RX SW
Q1011	Transistor	2SC4116GR	TX/RX SW
Q1012	Transistor	UN911F	SAVE
Q1013	FET	2SK880GR	LPF TUNE
Q1014	Dual Transistor	UMC5N	TX/RX SW
Q1015	IC	MC145192	PLLIC
Q1016	Dual Transistor	XP1501	TX/RX SW
Q1017	Transistor	2SB1132Q	TX/RX SW
Q1018	Transistor	2SC2620QBTR	REF OSC
Q1019	Transistor	2SC5226-4/5	RX AMP
Q1020	IC	TA31136FN	FM DET
Q1021	Transistor	UN911H	TX/RX SW
Q1022	Dual Transistor	UMH5N	TX/RX SW
Q1023	IC	TK11250MTR	REG
Q1024	Dual Transistor	UMA5N	TX/RX SW
Q1025	Not Used	-	-
Q1026	FET	SGM2016M	MIX
Q1027	Not Used	-	-
Q1028	Transistor	2SC4215Y	BUFF
Q1029	Transistor	2SC4116GR	NOISE AMP
D1001	Diode	$1 \mathrm{SS314}$	REG
D1002	Dual Diode	1SS321	TX/RX SW
D1003	Varactor Diode	HVU350	MOD
D1004	Dual Diode	1SS321	APC DET
D1005	Diode	HSU277	VCO
D1006	Diode	RLS135	ANT SW
D1007	Zener Diode	RD6.8UMB21B	REG
D1008	Diode	RLS135	ANT SW
D1009	Dual Diode	MA111	DELAY
D1010	Dual Diode	1 SS302	ANT SW
D1011	Diode	1 SS353	DELAY
D1012	Varactor Diode	HVU350	LPF TUNE
D1013	Varactor Diode	HVU350	LPF TUNE
D1014	Varactor Diode	HVU350	LPF TUNE
D1015	Diode	1SS353	TEMP CNTL
D1016	Varactor Diode	HVU350	REG
D1017	Diode	HVU202A	REG
D1018	Dual Diode	DA221	SQL SENS
D1019	Dual Diode	DA221	SQL SENS
D1020	Not Used	-	-
D1021	Zener Diode	DAM3MA15	REG
D1022	Not Used	-	-
D1023	Not Used	-	-
D1024	Dual Diode	1SS302	REG

Component Applications

Location	Parts Type	Nomenclature	Application
Q2001	IC	HD6473877UX	CPU
Q2002	IC	BU4053BCFV	SW
Q2003	IC	TC35305F	DTMF DET
Q2004	IC	S-29430AFE	EEPROM
Q2005	IC	BU2090FS	D/A
Q2006	IC	BU4094BCFV	D/A
Q2007	Transistor	DTC144EU	LED SW
Q2008	Transistor	UMG2N	LED SW
Q2009	Transistor	DTC124TU	SW
Q2010	IC	S-80730SN	REG
Q2011	Transistor	2SC4116GR	SHIFT
Q2012	IC	S-81230PG	REG
Q2013	Transistor	FMW1	REG SW
Q2014	Transistor	2SB1132Q	SW
Q2015	Transistor	DTC144EU	SW
Q2016	Transistor	2SA1586Y	SW
Q2017	Not Used	IMD10A	-
Q2018	Transistor	AF SW	
Q2019	Not Used	UMH3N	
Q2020	Transistor	TDA7233D	AF SW
Q2021	IC	UMZ2N	RESET
Q2022	Transistor	DTC144EU	PTT
Q2023	Transistor	DTA144EU	POW DOWN
Q2024	Transistor	NJM2902V	SW
Q2025	IC	NJM2902V	MIC AMP
Q2026	IC		MIC AMP
		CL-155UR/G	LUMP
D2001	LED	LUB1006D	LUMP
D2002	LED	DA204U	REG
D2003	Diode	MA721(TX)	REG
D2004	Diode	HZU4ALL	REG
D2005	Diode	DA204U	DET
D2006	Diode	DA204U	FEED BACK
D2007	Diode		

Location	Parts Type	Nomenclature	Application
Q3101	IC	AK2341	CTCSS
Q3102	Transistor	2SC4116GR	CLOCK SHIFT
D3101	Diode	IMN10	SW

Location	Parts Type	Nomenclature	Application
Q3201	IC	AK2342A	CTCSS
Q3202	Transistor	2SC4116GR	CLOCK SHIFT
Q3203	IC	S-29430AFE	EEPROM
D3201	Diode	IMN10	SW
D3202	Diode	IMN10	SW
D3203	Diode	1SS353	SW

NJM2904V Dual Single-Supply Operational Amplifier

Pin 1: A Output Pin 5: B + Input Pin 2: A -Input Pin 6: B -Input Pin 3: A +Input Pin 7: B Output Pin 4: GND Pin 8: V^{+}

PIN ASSIGNMENT
MAXIMUM RATINGS

Rating, Symbol	Value
DC Supply Voltage, V^{+}	$32 \mathrm{~V}(\mathrm{~V}+\mathrm{V}+16 \mathrm{~V})$
Input Voltage, V_{IC}	-0.3 V to +32 V
Power Dissipation, PD	300 mW
Operating Temperature, $\mathrm{T}_{\text {opr }}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\text {stg }}$	$-50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

PF0313 (TYP A)
PF0314 (TYP C) RF Unit (Q1005)

MAXIMUM RATINGS

Rating, Symbol	Value
Supply Voltage, V_{dd}	17 V
Supply Current, I_{dd}	3 A
PC Voltage, V_{pc}	7 V
Input Power, P_{in}	100 mW
Operating Case Temp., $\mathrm{T}_{\mathrm{c} 100}$	$-30^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\text {stg }}$	$-40^{\circ} \mathrm{C}$ to $+110^{\circ} \mathrm{C}$

CIRCUIT DIAGRAM

MC145192FR 1.1 GHz PLL Frequency Synthesizer (include $64 / 65$ prescaler)
RF Unit (Q1015)

Pin 1: REF $_{\text {out }}$ Pin 11: $\mathrm{f}_{\text {in }}$
Pin 2: LD Pin 12: VCC
Pin 3: $\phi \mathrm{R}$ Pin 13: TEST 2
Pin 4: $\phi \mathrm{V} \quad$ Pin 14: VDD
Pin 5: VPD Pin 15: OUTPUT B
Pin 6: PD ${ }_{\text {out }}$ Pin 16: OUTPUT A
Pin 7: GND Pin 17: ENABLE
Pin 8: Rx Pin 18: CLOCK
Pin 9: TEST 1 Pin 19: DATA IN
Pin 10: $\bar{f}_{\text {in }}$ Pin 20: REF in
PIN ASSIGNMENT
MAXIMUM RATINGS

Rating, Symbol	Value
DC Supply Voltage, Vcc, VDD	-0.5 V to +6.0 V
DC Supply Voltage, VPD	$\mathrm{V}_{\mathrm{DD}}-0.5 \mathrm{~V}$ to +6.0 V
DC Input Voltage, $\mathrm{V}_{\text {in }}$	-0.5 V to $\mathrm{V}_{\mathrm{DD}}+6.0 \mathrm{~V}$
DC Output Voltage, expect Output B, PD ${ }_{\text {out, }} \phi R, \phi V$ Output B, $\mathrm{PD}_{\text {out }}, \phi \mathrm{R}, \phi \mathrm{V}$	$\begin{aligned} & -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V} \\ & -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{PD}}+0.5 \mathrm{~V} \end{aligned}$
DC Input Current, per Pin (Includes V_{PD}), $\mathrm{I}_{\text {in }}$, $\mathrm{IPD}^{\text {P }}$	$\pm 10 \mathrm{~mA}$
DC Output Current, per Pin, Iout	$\pm 20 \mathrm{~mA}$
DC Supply Current, V ${ }_{\text {DD }}$ and GND Pins, IDD	$\pm 30 \mathrm{~mA}$
Power Dissipation, per Packing, P_{D}	300 mW
Storage Temperature, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

BLOCK DIAGRAM

IC Data

TA31136FN FM Detector IC
 RF Unit (Q1020)

Pin 1: OSC IN Pin 9: AF OUT
Pin 2: OSC OUT Pin 10: QUAD Pin 3: MIX OUT Pin 11: IF OUT
Pin 4: Vcc Pin 12: RSSI
Pin 5: IF IN Pin 13: N-DET
$\begin{array}{ll}\text { Pin 6: DEC } & \text { Pin 14: N-REC } \\ \text { Pin 7: FIL OUT } & \text { Pin 15: GND }\end{array}$
Pin 7: FIL OUT Pin 15: GND
Pin 8: FIL IN Pin 16: MIX IN
PIN ASSIGNMENT

MAXIMUM RATINGS

Rating, Symbol	Value
DC Supply Voltage, V_{cc}	7 V
Power Dissipation, PD_{D}	560 mW
Operating Temperature, T_{OP}	$-30^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\mathrm{stg}}$	$-50^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

TK11250MTR Voltage Detector IC

 RF Unit (Q1023)

MAXIMUM RATINGS

Rating, Symbol	Value
Maximum DC Supply Voltage, VCC MAX	16 V
Operating DC Supply Voltage, VOP	1.8 V to 15 V
Supply Current, Iomax	300 mW
Power Dissipation, PD_{D}	7 V
Operating Temperature, Top	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\text {stg }}$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

TDA7233D 1-W Audio Amplifier with Mute

 CNTL Unit (Q2021)

Pin 1: GND Pin 2: MUTE
Pin 3: GND
Pin $4:+V S$
Pin 5: OUTPUT
Pin 6: SVR
Pin 7: - INPUT
Pin 8: + INPUT

MAXIMUM RATINGS

Rating, Symbol	Value
DC Supply Voltage, V^{+}	$32 \mathrm{~V}\left(\mathrm{~V}^{+} / \mathrm{V} \pm 16 \mathrm{~V}\right)$
Input Voltage, V_{IC}	-0.3 V to +32 V
Power Dissipation, Po	300 mW
Operating Temperature, $\mathrm{T}_{\text {opr }}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\text {stg }}$	$-50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

BLOCK DIAGRAM

PIN ASSIGNMENT

HD6473877UX Microprocessor CNTL Unit (Q2001)

PIN ASSIGNMENT

MAXIMUM RATINGS

Rating, Symbol	Value
DC Supply Voltage, $\mathrm{V}_{\text {cc }}$	-0.3 V to +7.0 V
DC Supply Voltage, AVcc	-0.3 V to +7.0 V
$\mathrm{AV}_{\text {ref }}$	-0.3V to $\mathrm{AV}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Reference Level DC Voltage, $\mathrm{VT}_{\text {ref }}$	-0.3 V to $\mathrm{V}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Program DC Voltage, VPP	-0.3 V to +13.0 V
DC Input Voltage, VIN (without B port)	-0.3 V to $\mathrm{Vcc}+0.3 \mathrm{~V}$
$\mathrm{AV}_{\text {IN }}$ (only B port)	-0.3 V to $\mathrm{AV}_{\mathrm{cc}}+0.3 \mathrm{~V}$
Operating Temperature Range, Topr	$-20^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature Range, $\mathrm{T}_{\text {stg }}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

BU4053BCFV Analog Multiplexers/Demultiplexers CNTL Unit (Q2002)

Pin 1: $\mathrm{Y} 1 \quad \operatorname{Pin} 5: \mathrm{Z0}$ Pin 9: $\mathrm{C} \quad$ Pin 13: X 1
Pin 2: Y0 Pin 6: INH Pin 10: B Pin 14: X Pin 3: Z1 Pin 7: Vee Pin 11: A Pin 15: Y Pin 4: Z Pin 8: $V_{S S}$ Pin 12: X0 Pin 16: VDD

PIN ASSIGNMENT
MAXIMUM RATINGS

Rating, Symbol	Value
DC Supply Voltage, V_{DD}	18 V
Input Voltage, V_{VI}	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Power Dissipation, Pd	350 mW
Operating Temperature, $\mathrm{T}_{\mathrm{opr}}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\mathrm{stg}}$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

TRUTH TABLE				
INH	A	B	C	ONSWITCH
L	L	L	L	XO YO ZO
L	H	L	L	X1 Y0 Z0
L	L	H	L	X0 Y1 Z0
L	H	H	L	X1 Y1 Z0
L	L	L	H	X0 Y0 Z1
L	H	L	H	X1 Y0 Z1
L	L	H	H	X0 Y1 Z1
L	H	H	H	X1 Y1 Z1
H	\times	\times	\times	NONE

TC35305F DTMF Receiver CNTL Unit (Q2003)

Pin 1: D2 Pin 8: $\mathrm{V}_{\text {ss }}$
Pin 2: D1 Pin 9: XOUT
Pin 3: OE Pin 10: XIN
Pin 4: VDD Pin 11: CLK
Pin 5: -PD Pin 12: DV
Pin 6: OSCE Pin 13: D4
Pin 7: SIGIN Pin 14: D3
PIN ASSIGNMENT

MAXIMUM RATINGS

Rating, Symbol	Value
DC Supply Voltage, VDD	$\mathrm{V}_{\text {ss }} 0.5 \mathrm{~V}$ to $\mathrm{V}_{\text {ss }}+7.0 \mathrm{~V}$
Input Voltage, $\mathrm{V}_{\text {IN }}$	$\mathrm{V}_{\mathrm{ss}}-0.5 \mathrm{~V}$ to $\mathrm{V}_{5 s}+0.5 \mathrm{~V}$
$\mathrm{V}_{\text {sin }}{ }^{\circ}$	$\mathrm{V}_{\mathrm{SS}}-10.0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Output Voltage, Vout	$\mathrm{V}_{\text {Ss }}-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.5 \mathrm{~V}$
Input Current, IIN	-10 mA to +10 mA
Power Dissipation, P_{D}	180 mW
Operating Temperature, $\mathrm{T}_{\text {opr }}$	$-20^{\circ} \mathrm{C}$ to $+60^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\text {stg }}$	$-60^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

DTMF BYNARY CODE TABLE

FL	FH	Digit	OE	DV	(Binary Code)			
					D4	D3	D2	D1
697	1209	1	H	H	L	L	L	H
697	1336	2	H	H	L	L	H	L
697	1477	3	H	H	L	L	H	H
770	1209	4	H	H	L	H	L	L
770	1336	5	H	H	L	H	L	H
770	1477	6	H	H	L	H	H	L
852	1209	7	H	H	L	H	H	H
852	1336	8	H	H	H	L	L	L
852	1477	9	H	H	H	L	L	H
941	1336	0	H	H	H	L	H	L
941	1209	$*$	H	H	H	L	H	H
941	1477	\#	H	H	H	H	L	L
697	1633	A	H	H	H	H	L	H
770	1633	B	H	H	H	H	H	L
852	1633	C	H	H	H	H	H	H
941	1633	D	H	H	H	L	L	L
-	-	-	H	L	L	L	L	L
-	-	Any	L	-	Z	Z	Z	Z

S-29430AFE CMOS Serial E2PROM

CNTL Unit (Q2004)

FTT-15 (Q3203)

PIN ASSIGNMENT	
MAXIMUM RATINGS	
Rating, Symbol	Value
$\overline{\text { DC Supply Voltage, } \mathrm{V}_{\text {CC }} \text { }}$	-0.3 V to +7.0 V
Input Voltage, $\mathrm{V}_{\text {IN }}$	-0.3 V to $\mathrm{V} \mathrm{cc}+0.3 \mathrm{~V}$
Output Voltage, Vout	-0.3 V to VCc
Operating Temperature, $\mathrm{T}_{\text {bins }}$	$-50^{\circ} \mathrm{C}$ to $+95^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\text {stg }}$	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

BLOCK DIAGRAM

BU2090FS 12-Bit Serial In/Parallel Out Driver

 CNTL Unit (Q2005)

Pin 1: VSS	Pin 9: Q5
Pin 2: DATA	Pin 10: Q6
Pin 3: CLOCK	Pin 11: Q7
Pin 4. Q0	Pin 12: Q8
Pin 5: Q1	Pin 13: Q9
Pin 6: Q2	Pin 14: Q10
Pin 7: Q3	Pin 15: Q11
Pin 8: Q4	Pin 16: VD

PIN ASSIGNMENT

MAXIMUM RATINGS	
Rating, Symbol	Value
DC Supply Voltage, V_{DD}	-0.3 V to +7.0 V
Input Voltage, V_{IN}	$\mathrm{V}_{\mathrm{s}-0.0} \mathrm{3}$ to $\mathrm{V}_{\text {DD }}+0.3 \mathrm{~V}$
Output Voltage, V_{0}	$\mathrm{V}_{\text {ss }}$ to +25.0 V
Operating Temperature, Topr $^{\text {or }}$	$-25^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\text {stg }}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

BLOCK DIAGRAM

BU4094BCFV 8-Bit Bus-Compatible Shift/Store Register CNTL Unit (Q2006)

$\begin{array}{llll}\text { Pin 1: STROBE } & \operatorname{Pin} \text { 5: } Q_{2} & \operatorname{Pin} 9: Q_{s}, & \operatorname{Pin} 13: Q_{6} \\ \text { Pin 2: SERIAL IN } \\ \operatorname{Pin} 6: \mathrm{O}_{3} & \operatorname{Pin} 10: O_{s}^{\prime} & \operatorname{Pin} 14: \mathrm{O}_{5}\end{array}$
Pin 2: SERIAL IN
Pin 3: CLOCK
$\operatorname{Pin} 7: Q_{4} \operatorname{Pin} 11: Q_{8}$ Pin 15: OUTPUT ENABLE Pin 8: $V_{5 S}$ Pin 12: Q_{7} Pin 16: $V_{D D}$

PIN ASSIGNMENT
MAXIMUM RATINGS

Rating, Symbol	Value
DC Supply Voltage, $V_{D D}$	-0.3 V to +18 V
Input Voltage, V_{IC}	-0.3 V to V DD +0.3 V
Power Dissipation, Pd	500 mW
Operating Temperature, $\mathrm{T}_{\text {opt }}-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature, $\mathrm{T}_{\text {stg }}$	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

IC Data

S-80730SN Voltage Detector IC
 CNTL Unit (Q2010)

MAXIMUM RATINGS	
Rating, Symbol	Value
DC Supply Voltage, $\mathrm{V}_{\text {DD }}-\mathrm{V}_{\text {SS }}$	18 V
Input Voltage, $\mathrm{V}^{\text {IN }}$	$\mathrm{V}_{\mathrm{ss}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Output Voltage, Vout	$\mathrm{V}_{55}-0.3 \mathrm{~V}$ to 18V
Output Current, Iout	50 mA
Power Dissipation, Pd	500 mW
Operating Temperature, $\mathrm{T}_{\text {opr }}$	$-30^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\text {stg }}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

CIRCUIT DIAGRAM

S-81230PG Voltage Detector IC CNTL Unit (Q2012)

MAXIMUM RATINGS

Rating, Symbol	Value
Input Voltage, $\mathrm{V}_{\text {IN }}, V_{\text {out }} \leq 2.6 \mathrm{~V}$	12 V
$V_{\text {our }} \geq 2.7 \mathrm{~V}$	18 V
Output Voltage, Vout	$\mathrm{V}_{\text {IN }}-0.3 \mathrm{~V} \sim \mathrm{~V}_{\text {Ss }}-0.3 \mathrm{~V}$
Output Current, Iout	100 mA
Power Dissipation, Pd_{d}	400 mW
Operating Temperature, $\mathrm{T}_{\text {opr }}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\text {stg }}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

CIRCUIT DIAGRAM

NJM2902V Quad Single-Supply Operational Amplifier CNTL Unit (Q2025,Q2026)

Pin 1: A Output Pin 5: B + Input Pin 2: A -Input Pin 6: B -Input Pin 3: A + Input Pin 7: B Output Pin 4: GND Pin 8: V^{+}

PIN ASSIGNMENT
MAXIMUM RATINGS

Rating, Symbol	Value
DC Supply Voltage, V^{+}	$32 \mathrm{~V}\left(\mathrm{~V}^{+} / \mathrm{V} \pm 16 \mathrm{~V}\right)$
Input Voltage, $\mathrm{V}_{\text {IC }}$	-0.3 V to +32 V
Power Dissipation, PD_{D}	300 mW
Operating Temperature, $\mathrm{T}_{\text {opr }}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature, $\mathrm{T}_{\text {stg }}$	$-50^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

AK2341 CTCSS Encoder/Decoder

 FTT-14 (Q3101)

Pin 1: RXIN
Pin 2: RXINO
Pin 3: TXINO
Pin 4: TXIN
Pin 5: RXOUT
Pin 6: TXOUT

Pin 7: $V_{\mathrm{DD}} \quad$ Pin 13: DCS
Pin 8: XIN
Pin 9: XOUT
Pin 10: STB
Pin 14: DETOUT
Pin 15: Vss
Pin 16: DREF
Pin 11: SDATA Pin 17: TLINP
Pin 12: SCLK Pin 18: TLINN
PIN ASSIGNMENT

MAXIMUM RATINGS	
Rating, Symbol	Value
	-0.3 V to 7.0 V
Input Current, In	-10 mA to +10 mA
Analog Input Voltage, $\mathrm{V}_{\text {AIN }}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Input Voltage, Vin	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{V}_{\text {din }}{ }^{\circ}$	-0.3 V to 7.0 V
Storage Temperature, $\mathrm{T}_{\text {stg }}$	$-55^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$

Programming Table

Address		Data						$\begin{gathered} \text { Tone Frequency } \\ (\mathrm{Hz}) \end{gathered}$	$\begin{gathered} \text { TSQ BPF } \\ Q \\ \hline \end{gathered}$
SA1	SAO	SD5	SD4	SD3	SD2	SD1	SDO		
1	1	0	0	0	0	0	1	67.0	L
		0	0	0	0	1	0	71.9	L
		0	0	0	0	1	1	77.0	L
		0	0	0	1	0	0	82.5	L
		0	0	0	1	0	1	88.5	L
		0	0	0	1	1	0	94.8	H
		0	0	0	1	1	1	100.0	H
		0	0	1	0	0	0	1035	H
		0	0	1	0	0	1	107.2	H
		0	0	1	0	1	0	110.9	H
		0	0	1	0	1	1	114.8	H
		0	0	1	1	0	0	118.8	H
		0	0	1	1	0	1	123.0	H
		0	0	1	1	1	0	127.3	H
		0	0	1	1	1	1	131.8	H
		0	1	0	0	0	0	136.5	H
		0	1	0	0	0	1	141.3	H
		0	1	0	0	1	0	146.2	H
		0	1	0	0	1	1	151.4	H
		0	1	0	1	0	0	156.7	H
		0	1	0	1	0	1	162.2	H
		0	1	0	1	1	0	167.9	H
		0	1	0	1	1	1	173.8	H
		0	1	1	0	0	0	179.9	H
		0	1	1	0	0	1	186.2	H
		0	1	1	0	1	0	192.8	H
		0	1	1	0	1	1	203.5	H
		0	1	1	1	0	0	210.7	H
		0	1	1	1	0	1	218.1	H
		0	1	1	1	1	0	225.7	H
		0	1	1	1	1	1	233.6	H
		1	0	0	0	0	0	241.8	H
		1	0	0	0	0	1	250.3	H
		1	0	0	0	1	0	67.0	H
		1	0	0	0	1	1	71.9	H
		1	0	0	1	0	0	74.4	H
		1	0	0	1	0	1	77.0	H
		1	0	0	1	1	0	79.7	H
		1	0	0	1	1	1	82.5	H
		1	0	1	0	0	0	85.4	H
		1	0	1	0	0	1	88.5	H
		1	0	1	0	1	0	91.5	H
		1	0	1	0	1	1	97.4	H
		1	0	1	1	0	0	69.4	H
		1	0	1	1	0	1	159.8	H
		1	0	1	1	1	0	165.5	H
		1	0	1	1	1	1	1713	H
		1	1	0	0	0	0	1773	H
		1	1	0	0	0	1	183.5	H
		1	1	0	0	1	0	189.9	H
		1	1	0	0	1	1	1966	H
		1	1	0	1	0	0	199.5	H
		1	1	0	1	0	1	206.5	H
		1	1	0	1	1	0	229.1	H
		1	1	0	1	1	1	254.1	H
		1	1	1	0	0	0	only DCS TX	-

Pin 1: TXINO
Pin 2: TXIN
Pin 3: AMPP
Pin 4: AMPN
Pin 5: AMPO
Pin 6: SPOUT
Pin 7: MODIN
Pin 8: MOD
Pin 9: AVSS
Pin 10: DEOUT
Pin 11: RXAFFIN

Pin 13: DVDD	Pin 25: COMPN	Pin 37: AGNDIN
Pin 14: RSTN	Pin 26: COMPP	Pin 38: BIAS
Pin 15: STB	Pin 27: AVDD	Pin 39: AGND
Pin 16: SCLK	Pin 28: TSBPFO	Pin 40 RXIN
Pin 17: SDATA	Pin 29: DREF	Pin 41: RXINO
Pin 18: XIN	Pin 30: TLINO	Pin 42: LIMINO
Pin 19: XOUT	Pin 3: TLIN	Pin 43: LIMIN
Pin 20: TOUUT1	Pin 32: RXTONE	Pin 44: TXOUT
Pin 21: TOUT2	Pin 33: TXTONE	Pin 45 LIMLV
Pin 22: DETOUT	Pin 34: DCSINO	Pin 46: LIMBS
Pin 23: COMPO	Pin 35: DCSIN	Pin 47: DBMIN
Pin 24: DVSS	Pin 36: TAGND	Pin 48: BPFOUT

PIN ASSIGNMENT
MAXIMUM RATINGS

Rating, Symbol	Value
DC Supply Voltage, V_{DD}	-0.3 V to 7.0 V
Input Current, I_{IN}	-10 mA to +10 mA
Analog Input Voltage, $\mathrm{V}_{\text {AIN }}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Digital Input Voltage, $\mathrm{V}_{\mathrm{DIN}}$	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{DNO}}$	-0.3 V to 7.0 V
Storage Temperature, $\mathrm{T}_{\mathrm{stg}}$	$-55^{\circ} \mathrm{C}$ to $+130^{\circ} \mathrm{C}$

* only DETOUT and COMPO pins

Programming Table

Address		Data						$\begin{aligned} & \text { Tone Frequency } \\ & (\mathrm{Hz}) \end{aligned}$	$\begin{gathered} \text { TSQ BPF } \\ Q \\ \hline \end{gathered}$
SA1	SAO	SD5	SD4	SD3	SD2	SD1	SDO		
1	1	0	0	0	0	0	1	67.0	L
		0	0	0	0	1	0	71.9	L
		0	0	0	0	1	1	77.0	L
		0	0	0	1	0	0	82.5	L
		0	0	0	1	0	1	88.5	L
		0	0	0	1	1	0	948	H
		0	0	0	1	1	1	100.0	H
		0	0	1	0	0	0	103.5	H
		0	0	1	0	0	1	107.2	H
		0	0	1	0	1	0	110.9	H
		0	0	1	0	1	1	114.8	H
		0	0	1	1	0	0	1188	H
		0	0	1	1	0	1	123.0	H
		0	0	1	1	1	0	127.3	H
		0	0	1	1	1	1	131.8	H
		0	1	0	0	0	0	136.5	H
		0	1	0	0	0	1	141.3	H
		0	1	0	0	1	0	146.2	H
		0	1	0	0	1	1	151.4	H
		0	1	0	1	0	0	156.7	H
		0	1	0	1	0	1	162.2	H
		0	1	0	1	1	0	167.9	H
		0	1	0	1	1	1	173.8	H
		0	1	1	0	0	0	179.9	H
		0	1	1	0	0	1	186.2	H
		0	1	1	0	1	0	192.8	H
		0	1	1	0	1	1	203.5	H
		0	1	1	1	0	0	210.7	H
		0	1	1	1	0	1	218.1	H
		0	1	1	1	1	0	2257	H
		0	1	1	1	1	1	233.6	H
		1	0	0	0	0	0	241.8	H
		1	0	0	0	0	1	250.3	H
		1	0	0	0	1	0	67.0	H
		1	0	0	0	1	1	719	H
		1	0	0	1	0	0	74.4	H
		1	0	0	1	0	1	77.0	H
		1	0	0	1	1	0	79.7	H
		1	0	0	1	1	1	82.5	H
		1	0	1	0	0	0	85.4	H
		1	0	1	0	0	1	88.5	H
		1	0	1	0	1	0	91.5	H
		1	0	1	0	1	1	97.4	H
		1	0	1	1	0	0	69.4	H
		1	0	1	1	0	1	159.8	H
		1	0	1	1	1	0	165.5	H
		1	0	1	1	1	1	171.3	H
		1	1	0	0	0	0	177.3	H
		1	1	0	0	0	1	183.5	H
		1	1	0	0	1	0	189.9	H
		1	1	0	0	1	1	196.6	H
		1	1	0	1	0	0	199.5	H
		1	1	0	1	0	1	206.5	H
		1	1	0	1	1	0	229.1	H
		1	1	0	1	1	1	254.1	H
		1	1	1	0	0	0	only DCS TX	-
Reset		1	1	1	1	1	1	OFF	-

Circuit Diagram

Parts Layout

Component Side

RF Unit (Lot. 5~)

Notes:

Parts Layout

Component Side

RF Unit (Lot. 5~)

Parts List

REF.	DESCRIPTION	VALUE	WV	TOL.	MFGR'S DESIG	YAESU P/N	VERS.	LOT.	LAY ADR
C 1067	TANTALUM CHIP CAP.	10uF		6.3 V	TEMSVAOJ106M-8R	K78080027			
C 1068	CHIP CAP.	0.001 uF	B	50 V	GRM39B102M50PT	K22174809			
C 1069	CHIP CAP.	0.001 uF	B	50 V	GRM39B102M50PT	K22174809			
C 1070	CHIP CAP	0.01 uF	B	25 V	GRM39B103K25PT	K22144803			
C 1071	CHIP CAP.	0.001uF	B	50 V	GRM39B102M50PT	K22174809			
C 1072	CHIP CAP.	0.033 uF	R	16 V	GRM39R333K16PT	K22124801			
C 1073	CHIP CAP.	0.14 uF	B	25 V	GRM40B104M25PT	K22140811			
C 1074	TANTALUM CHIP CAP.	2.2 uF		6.3 V	TESVAOJ225M1-8R	K78080009			
C 1075	CHIP CAP.	0.1 uF	B	25 V	GRM40B104M25PT	K22140811			
C 1076	CHIP CAP.	18 pF	CH	50 V	GRM39CH180J50PT	K22174217			
C 1076	CHIP CAP.	0.001 uF	B	50 V	GRM39B102M50PT	K22174809		2-	
C 1077	CHIP CAP.	15 pF	CH	50 V	GRM39CH150J50PT	K22174215			
C 1077	CHIP CAP.	18 pF	CH	50 V	GRM39CH180J50PT	K22174217		2 -	
C 1078	CHIP CAP.	0.1uF	B	25 V	GRM40B104M25PT	K22140811			
C 1079	CHIP CAP.	0.01uF	B	25 V	GRM39B103K25PT	K22144803			
C 1080	CHIP CAP.	0.01uF	B	25 V	GRM39B103K25P'	K22144803			
C 1081	CHIP CAP.	180pF	CH	50 V	GRM39CH181J50PT	K22174241			
C 1081	CHIP CAP.	150pF	CH	50 V	GRM39CH151J50PT	K22174239		$2-$	
C 1082	CHIP CAP.	47pF	CH	50 V	GRM39CH470J50PT	K22174227			
C 1082	CHIP CAP.	39pF	CH	50 V	GRM39CH390J50PT	K22174225		2 -	
C 1083	CHIP CAP.	0.1 uF	B	25 V	GRM40B104M25PT	K22140811			
C 1084	CHIP CAP	0.001 uF	B	50 V	GRM39B102M50PT	K22174809			
C 1085	CHIP CAP.	0.001 uF	B	50 V	GRM39B102M50PT	K22174809			
C 1086	CHIP CAP.	0.001 UF	B	50 V	GRM39B102M50PT	K22174809			
C 1087	CHIP CAP.	0.5pF	CK	50 V	GRM39CK0R5C50PT	K22174201			
C 1088	CHIP CAP.	0.01 uF	B	25 V	GRM398103K25PT	K22144803			
C 1089	CHIP CAP.	0.5pF	CK	50 V	GRM39CK0R5C50PT	K22174201			
C 1090	CHIP CAP.	0.5 pF	CK	50 V	GRM39CK0R5C50PT	K22174201			
C 1091	CHIP CAP.	4 pF	CH	50 V	GRM39CH040C50PT	K22174205	TYP A		
C 1091	CHIP CAP.	2pF	CK	50 V	GRM39CK020C50PT	K22174203	TYP C		
C 1092	CHIP CAP.	22pF	CH	50 V	GRM39CH220J50PT	K22174219	TYP		
C 1093	CHIP CAP.	0.14 F	B	25 V	GRM40B104M25PT	K22140811			
C 1094	CHIP CAP.	0.001 uF	B	50 V	GRM39B102M50PT	K22174809			
C 1095	CHIP CAP.	100pF	CH	50 V	GRM39CH101J50PT	K22174235			
C 1096	CHIP CAP.	47pF	CH	50 V	GRM39CH470J50PT	K22174227			
C 1097	CHIP CAP.	100pF	CH	50 V	GRM39CH101J50PT	K22174235			
C 1098	CHIP CAP.	100pF	CH	50 V	GRM39CH101J50PT	K22174235			
C 1099	CHIP CAP.	5 pF	CH	50 V	GRM39CH050C50PT	K22174206			
C 1099	CHIP CAP.	5 pF	CH	50 V	GRM39CH050C50PT	K22174206	TYP A	$2-$	
C 1099	CHIP CAP.	3 pF	CJ	50 V	GRM39CJ030C50PT	K22174204	TYP C	2	
C 1100	CHIP CAP.	6 pF	CH	50 V	GRM39CH060D50PT	K22174207			
C 1100	CHIP CAP.	5 pF	CH	50 V	GRM39CH050C50PT	K22174206	TYP A	$2-$	
C 1100	CHIP CAP. CHIP CAP.	2pF	CK	50 V	GRM39CK020C50PT	K22174203	TYP C	$2-$	
C 1101	CHIP CAP. CHIP CAP.	0.01uF	$\stackrel{\mathrm{B}}{\mathrm{C}}$	25 V	GRM39B103K25PT	K22144803			
C 1103	CHIP CAP.	100 pF 0.01 uF	${ }_{\mathrm{B}}^{\mathrm{CH}}$	50 V 25 V	GRM39CH101J50PT GRM398103K25PT	K22174235			
C 1104	CHIP CAP.	0.001 uF	B	50 V	GRM39B102M50PT	K22174809			
C 1105	CHIP CAP.	56 pF	CH	50 V	GRM39CH560J50PT	K22174229			
C 1106	CHIP CAP.	100pF	CH	50 V	GRM39CH101J50PT	K22174235			
C 1107	CHIP CAP.	100 pF	CH	50 V	GRM39CH101J50PT	K22174235			
C 1108	CHIP CAP.	2pF	CK	50 V	GRM39CK020C50PT	K22174203			
C 1109	CHIP CAP. CHIP CAP.	1 lopF	CH	50 V	GRM39CH100D50PT	K22174211			
C 11111	CHIP CAP.	3 PF	CJ	5	GRM39CJ030C50PT GRM39CH330J50PT	K22174204			
C 1111	CHIP CAP.	33 pF	CH	50 V	GRM39CH330J50PT	K22174223	TYP A	2-	
C 1111	CHIP CAP.	15 pF	CH	50 V	GRM39CH150J50PT	K22174215	TYP C	2-	
C 1112	CHIP CAP.	22pF	CH	50 V	GRM39CH220J50PT	K22174219			
C 1113	CHIP CAP.	33pF	CH	50 V	GRM39CH330J50PT	K22174223			
C 1114	CHIP CAP.	0.001 uF	B	50 V	GRM39B102M50PT	K22174809			
C 1115	CHIP CAP.	0.1 uF	B	25 V	GRM40B104M25PT	K22140811			
C 1116	CHIP CAP.	0.047uF	B	50 V	GRM39B473K16PT	K22124804			
C 1116	CHIP CAP.	0.047uF	B	50 V	GRM40B473M50PT	K22170823		$2-$	
C 1116	CHIP CAP.	0.047 uF	B	50 V	GRM39B473K16PT	K22124804		5.	
C 1117	CHIP CAP.	0.01 uF	B	25 V	GRM39B103K25PT	K22144803			
C 1118	CHIP CAP.	18pF	CH	50 V	GRM39CH180J50PT	K22174217			
C 1120	CHIP CAP.	100pF	CH	50 V	GRM39CH101J50PT	K22174235			
C 1122	CHIP CAP.	0.0047uF	B	50 V	GRM39B472M50PT	K22174817			
C 1123	CHIP CAP.	0.001 uF	B	50 V	GRM39B102M50PT	K22174809			
C 1124	CHIP CAP.	0.001 uF	B	50 V	GRM39B102M50PT	K22174809			
C 1125	CHIP CAP.	0.01 uF	B	25 V	GRM39B103K25PT	K22144803			
C 1126	CHIP CAP.	82pF	CH	50 V	GRM39CH820J50PT	K22174233	SEP 12.5		
C 1126	CHIP CAP.	68pF	CH	50 V	GRM39CH680J50PT	K22174231	SEP 25		
C 1127	CHIP CAP.	0.01uF	B	25 V	GRM39B103K25PT	K22144803			

REF.	DESCRIPTION	VALUE	WV	TOL.	MFGR'S DESIG	YAESU P/N	VERS.	LOT.	LAY ADR
R 1003	CHIP RES.	1K	5\%	1/16W	RMC1/16 102JATP	J24185102			
R 1004	CHIP RES.	560	5\%	1/16W	RMC1/16 561JATP	J24185561			
R 1005	CHIP RES.	120	5\%	1/16W	RMC1/16 121JATP	J24185121			
R 1005	CHIP RES.	220	5\%	1/16W	RMC1/16 221JATP	J24185221		2-	
R 1006	CHIP RES.	4.7K	5\%	1/16W	RMC1/16 472JATP	J24185472			
R 1006	CHIP RES.	18K	5\%	1/16W	RMC1/16 183JATP	J24185183	TYP A	$3-$	
R 1006	CHIP RES.	4.7 K	5\%	1/16W	RMC1/16 472JATP	J24185472	TYP C	$3-$	
R 1007	CHIP RES.	3.3 K	5\%	1/16W	RMC1/16 332JATP	J24185332			
R 1008	CHIP RES.	10K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 7009	CHIP RES.	0	5\%	1/16W	RMC1/16 000JATP	J24185000			
R 1010	CHIP RES.	10 K	15\%	1/16W	RMC1/16 103JATP	J24185103			
R 1012	CHIP RES.	27 K	15\%	1/16W	RMC1/16 273JATP	J24185273			
R 1013	CHIP RES.	39 K	5\%	1/16W	RMC1/16 393JATP	J24185393			
R 1014	CHIP RES.	3.3 K	5\%	1/16W	RMC1/16 332JATP	J24185332			
R 1014	CHIP RES.	3.9 K	5\%	1/16W	RMC1/16 392JATP	J24185392		5	
R 1015	CHIP RES.	10	5\%	1/16W	RMC1/16 100JATP	J24185100			
R 1016	CHIP RES.	0	5\%	1/16W	RMC1/16 000JATP	J24185000			
R 1017	CHIP RES.	10	5\%	1/16W	RMC1/16 100JATP	J24185100			
R 1018	CHIP RES.	8.2 K	5\%	1/16W	RMC1/16 822JATP	J24185822			
R 1019	CHIP RES.	56	5\%	1/16W	RMC1/16 560JATP	J24185560			
R 1020	CHIP RES.	10K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 1021	CHIP RES.	33 K	5\%	1/16W	RMC1/16 333JATP	J24185333	TYP A		
R 1021	CHIP RES.	68 K	5\%	1/16W	RMC1/16 683JATP	J24185683	TYP C		
R 1022	CHIP RES.	47 K	, 5\%	1/16W	RMC1/16 473JATP	J24185473			
R 1023	CHIP RES.	220	5\%	1/16W	RMC1/16 221JATP	J24185221			
R 1024	CHIP RES.	390	:5\%	1/16W	RMC1/16 391JATP	J24185391			
R 1025	CHIP RES.	27K	5\%	1/16W	RMC1/16 273JATP	J24185273			
R 1025	CHIP RES.	150 K	5\%	1/16W	RMC1/16 154JATP	J24185154		$2-$	
R 1026	CHIP RES.	1 K	5\%	1/16W	RMC1/16 102JATP	J24185102			
R 1026	CHIP RES.	220	5\%	1/16W	RMC1/16 221JATP	J24185221		$2 \cdot$	
R 1027	CHIP RES.	10K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 1028	CHIP RES.	100 K	5\%	1/16W	RMC1/16 104JATP	J24185104		-4	
R 1029	CHIP RES.	100	5\%	1/16W	RMC1/16 101JATP	J24185101			
R 1030	CHIP RES.	1 K	5\%	1/16W	RMC1/16 102JATP	J24185102			
R 1031	CHIP RES.	100	5\%	1/16W	RMC1/16 101JATP	J24185101			
R 1032	CHIP RES.	150	5\%	1/10W	RMC1/10T 151J	J24205151			
R 1033	CHIP RES.	10K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 1034	CHIP RES.	10 K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 1035	CHIP RES.	22	5\%	1/16W	RMC1/16 220JATP	J24185220			
R 1036	CHIP RES.	1 K	5\%	1/16W	RMC1/16 102JATP	J24185102			
R 1037	CHIP RES.	22K	5\%	1/16W	RMC1/16 223JATP	J24185223			
R 1038	CHIP RES.	22	5\%	1/16W	RMC1/16 220JATP	J24185220			
R 1039	CHIP RES.	6.8 K	5\%	1/16W	RMC1/16 682JATP	J24185682			
R 1040	CHIP RES.	33K	15\%	1/16W	RMC1/16 333JATP	J24185333			
R 1041	CHIP RES.	1 M	5\%	1/16W	RMC1/16 105JATP	J24185105			
R 1042	CHIP RES.	100 K	5\%	1/16W	RMC1/16 104JATP	J24185104			
R 1043	CHIP RES.	1.8 K	15\%	1/16W	RMC1/16 182JATP	J24185182			
R 1044	CHIP RES.	22	5\%	1/16W	RMC1/16 220JATP	J24185220			
R 1045	CHIP RES.	10 K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 1046	CHIP RES.	22	5\%	1/16W	RMC1/16 220JATP	J24185220			
R 1047	CHIP RES.	10K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 1048	CHIP RES.	1 K	5\%	1/16W	RMC1/16 102JATP	J24185102			
R 1049	CHIP RES.	1 K	5\%	1/16W	RMC1/16 102JATP	J24185102			
R 1050	CHIP RES.	82	5\%	1/16W	RMC1/16 820JATP	J24185820			
R 1050	CHIP RES.	100	5\%	1/16W	RMC1/16 101JATP	J24185101		3-	
R 1051	CHIP RES.	100	5\%	1/16W	RMC1/16 101JATP	J24185101			
R 1052	CHIP RES.	47K	5\%	1/16W	RMC1/16 473JATP	J24185473			
R 1052	CHIP RES.	56 K	5\%	1/16W	RMC1/16 563JATP	J24185563		5-	
R 1053	CHIP RES.	2.2 K	5\%	1/16W	RMC1/16 222JATP	J24185222			
R 1054	CHIP RES.	56 K	5\%	1/16W	RMC1/16 563JATP	J24185563			
R 1055	CHIP RES.	1 M	5\%	1/16W	RMC1/16 105JATP	J24185105			
R 1056	CHIP RES.	10K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 1057	CHIP RES.	150K	5\%	1/16W	RMC1/16 154JATP	J24185154			
R 1058	CHIP RES.	5.6 K	5\%	1/16W	RMC1/16 562JATP	J24185562			
R 1058	CHIP RES.	120 K	! 5%	1/16W	RMC1/16 124JATP	J24185124		2 -	
R 1059	CHIP RES.	100 K	. 5%	1/16W	RMC1/16 104JATP	J24185104			
R 1060	CHIP RES.	560 K	5\%	1/16W	RMC1/16 564JATP	J24185564			
R 1061	CHIP RES.	1 K	5\%	1/16W	RMC1/16 102JATP	J24185102			
R 1061	CHIP RES.	270	5\%	1/16W	RMC1/16 271JATP	J24185271		2 -	
R 1062	CHIP RES.	4.7K	5\%	1/16W	RMC1/16 472JATP	J24185472			
R 1063	CHIP RES.	10K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 1064	CHIP RES.	4.7 K	5\%	1/16W	RMC1/16 472JATP	J24185472			
R 1065	CHIP RES.	150 K	5\%	1/16W	RMC1/16 154JATP	J24185154			

Circuit Diagram

CNTL Unit ${ }^{-}$
Notes:
Scanned by ADØJA

Parts Layout

LCD Segmentation

HD6473877UX (Q2001)

NJM2902V (Q2025,2026)

TC35305F (Q2003)

Pin 8

(Q2021)

2SB1132Q (BA)
(Q2014)

Emitter 1 Collector 2
Base 1
IMD10A (D10)
(Q2018)
Base 2
Collector $1 \downarrow$ Emitter 2

Emitter 1 Collector 2

Emitter Common

Collector	
Collector 1 Collector 2 2	

DTC124TU (05)
Base Emitter
2SC4116GR (LG)
(Q2011)

Anode 1 Cathode 2

Component Side

Circuit Diagram

CNTL Unit (Lot. 6~)
Notes:

Parts Layout

LCD Segmentation

CNTL Unit (Lot. 6~)

LCD Side

LCD Backplane Circuit Diagram

BU4053BCFV (Q2002) BU2090FS (Q2005)

S-29430AFE (Q2004)

DTC144EU (26) (Q2007,2015)

CL-155UR (D2001)

Component Side

CNTL Unit (Lot. 6r)

GND	DISC
KEY	RSSI
SQS	MOD
PC	GND
VU	DCSE
+B	PSTB
TRX	SCK
REG	SDO
GND	UL

To RF Unit J1002 (See Page 3A-3, 3A-7)

Parts List

REF.	DESCRIPTION	VALUE	wV	TOL.	MFGR'S DESIG	YAESU P/N	VERS.	LOT.	LAY ADR
		***NTL UN	IT ***						
	PCB with Components					CA1572001			
	PCB with Components					CA1572002	SEP 25	5-	
	PCB with Components					CA1572003	SEP 12.5	$5-$	
	Printed Circuit Board					F3592101			
	Printed Circuit Board					F3592101A		6.	
C 2001	CHIP CAP.	0.0047 F	B	50 V	GRM39B472M50PT	K22174817			
C 2002	CHIP CAP.	0.0022uF	B	50 V	GRM39B222M50PT	K22174813			
C 2003	CHIP CAP.	0.01 uF	B	50 V	GRM39B103M50PT	K22174823			
C 2004	CHIP CAP.	0.14 F	B	16 V	GRM39B104K16PT	K22124805			
C 2005	CHIP CAP.	0.01 uF	B	50 V	GRM398103M50PT	K22174823			
C 2006	CHIP CAP.	0.14 F	B	16 V	GRM39B104K16PT	K22124805			
C 2007	CHIP CAP.	330 pF	B	50 V	GRM39B33iM50PT	K22174803			
C 2007	CHIP SAP.	390pF	CH	50 V	GRM39CH391J50PT	K22174255		6-	
C 2008	CHIP CAP.	0.0033uF	B	50 V	ECUV1H332KBV	K22179620			
C 2009	CHIP CAP.	0.0018uF	B	50 V	ECUV1H182KBV	K22179617			
C 2010	CHIP CAP.	0.14 F	B	16 V	GRM39B104K16PT	K22124805			
C 2011	CHIP CAP.	39 pF	CH	50 V	GRM39CH390J50PT	K22174225			
C 2011	CHIP CAP.	390 pF	CH	50 V	GRM39CH391J50PT	K22174255		$2-$	
C 2012	CHP CAP.	22pF	CH	50 V	GRM39CH220J50PT	K22174219			
C 2013	TANTALUM CHIP CAP.	3.3uF		4 V	TEMSVA20G335M-8R	K78060015			
C 2014	CHIP CAP.	0.001 uF	B	50 V	GRM39B102M50PT	K22174809			
C 2015	CHIP CAP.	0.001 uF	${ }^{\text {B }}$	50 V	GRM39B102M50PT	K22174809			
C 2015	CHIP CAP.	100pF	CH	50 V	GRM39CH101J50PT	K22174235		3.	
C 2017	CHIP CAP.	0.001 uF	B	50 V	GRM39B102M50PT	K22174809			
C ${ }^{\text {C } 2018} \mathrm{C} 2019$	CHIP CAP.	0.001 uF	B	50 V	GRM39B102M50PT	K22174809			
C 2019	CHIP CAP.	0.001uF	B ${ }_{\text {B }}$	50 V 50 V	GRM39B102M50PT GRM39B102M50PT	K22174809			
C 2021	CHIP CAP.	0.001 uF	B	50 V	GRM39B102M50PT	K22174809			
C 2022	CHIP CAP.	0.14 F	B	16 V	GRM398104K16PT	K22124805			
C 2023	CHIP CAP.	100pF	CH	50 V	GRM39CH101J50PT	K22174235			
C 2023	CHIP CAP.	220pF	CH	50 V	GRM39CH221J50PT	K22174243		2-	
C 2024	CHIP CAP.	0.14 F	B	16 V	GRM39B104K16PT	K22124805			
C 2025	CHIP CAP.	0.001 uF	B	50 V	GRM39B102M50PT	K22174809			
C 2027	TANTALUM CHIP CAP.	0.001uF	B	${ }_{6}^{50 \mathrm{~V}} \mathrm{~V}$	GRM39B102M50PT	$\begin{aligned} & \mathrm{K} 22174809 \\ & \mathrm{~K} 78080017 \end{aligned}$			
C 2028	TANTALUM CHIP CAP.	4.7uF		6.3 V	TEMSVA0J475M-8R	K78080017			
C 2029	AL.ELECTRO.CAP.	220uF		10 V	CEDSM1A221M	K40109027			
C 2030	CHIP CAP.	0.001uF	B	50 V	GRM39B102M50PT	K22174809			
C 2031	CHIP CAP.	0.001 uF	B	50 V	GRM39B102M50PT	K22174809			
C 2032	CHIP CAP.	0.001 uF	${ }^{\text {B }}$	50 V	GRM39B102M50PT	K22174809			
C 2033	CHIP CAP.	100pF	CH	50 V	GRM39CH101J50PT	K22174235			
$\left\|\begin{array}{ll} \mathrm{c} & 2035 \\ \text { c } 2036 \end{array}\right\|$	TANTALUM CHIP CAP.	1uF		6.3 V	TESVSPOJ105M-8R	K78080028			
C 2038	CHIP CAP.	0.0022 uF	${ }_{B}^{B}$	50 V	GRM39B222K50PT	${ }_{\text {K22174822 }}$			
C 2040	CHIP CAP.	0.0018 uF	B	50 V	ECUV1H182KBV	K K 22179617			
C 2041	CHIP CAP.	0.001 uF	B	50 V	GRM39B102M50PT	K22174809			
C 2042	TANTALUM CHIP CAP.	33uF		6.3 V	TEMSVB20J336M-8R	K78080030			
C 2043	CHIP CAP.	0.047uF	B	16 V	GRM398473K16PT	K22124804			
C 2044	AL.ELECTRO.CAP.	100uF		16 V	RE3-16V101M	K40129063			
C 2047	CHIP CAP.	0.1uF	F	25 V	GRM39F104Z25PT	K22145001			
C 2047	CHIP CAP.	0.1uF	F	${ }^{16 \mathrm{~V}}$	GRM39B104K16PT	K22124805		5.	
C 2049	TANTALUM CHIP CAP.	4.7uF	B	6.3 V	TEMSVAOJ475M-8R	K78080017			
C 2050	CHIP CAP.	0.001uF	B	50 V	GRM39B102M50PT	K22174809			
C 2051	CHIP CAP.	10pF	CH	50 V	GRM39CH100C50PT	K22174248			
C 2052	CHIP CAP.	10 pF	CH	50 V	GRM39CH100C50PT	K22174248			
C 2053	CHIP CAP.	2 pF	CK	50 V	GRM39CK020C50PT	K22174203		-2	
C 2054	CHP CAP.	10pF	CH	50 V	GRM39CH100C50PT	K22174248			
C 2055	TANTALUM CHIP CAP.	1 LF		6.3 V	TESVSP0J105M-8R	K78080028			
C 2056	CHIP CAP.	0.001uF	B	50 V	GRM39B102M50PT	K22174809			
C 2058	CHIP CAP.	0.001 F	B	50 V	GRM39B102K50PT	K22174821			
C 2059	CANTALUM CHIP CAP.	4.7uF		6.3 V	TEMSVA0J475M-8R	K78080017			
C 2060	CHIP CAP.	390 pF	${ }_{\mathrm{C}}^{\mathrm{B}}$	50 V	GRM39B391M50PT	K22174804			
C 2061	CHIP CAP.	0.1 uF	${ }_{B}$	16 V	GRM39B104K16PT	K22174255 K22124805		6.	
C 2062	CHIP CAP.	0.0047uF	B	50 V	GRM39B472M50PT	K22174817			

REF.	DESCRIPTION	VALUE	WV	TOL.	MFGR'S DESIG	YAESU P/N	VERS.	LOT.	LAY ADR
C 2063	CHIP CAP.	0.001 uF	B	50 V	GRM39B102K50PT	K22174821			
C 2064	TANTALUM CHIP CAP.	4.7uF		6.3 V	TEMSVAOJ475M-8R	K78080017			
C 2064	TANTALUM CHIP CAP.	10uF		6.3 V	TEMSVA0J106M-8R	K78080027		$6-$	
C 2065	AL.ELECTRO.CAP.	100uF		10 V	UVR1A101MDA6CY	K40109033			
C 2066	CHIP CAP.	0.033uF	R	16 V	GRM39R333K16PT	K22124801			
C 2067	CHIP CAP.	0.001 uF	B	50 V	GRM39B102M50PT	K22174809			
C 2068	CHIP CAP.	0.0047 uF	B	50 V	GRM39B472M50PT	K22174817			
C 2069	CHIP CAP.	0.047uF	B	16 V	GRM39B473K16PT	K22124804			
C 2070	TANTALUM CHIP CAP.	10uF		6.3 V	TEMSVAOJ106M-8R	K78080027		$6-$	
C 2071	CHIP CAP.	0.001uF	B	50 V	GRM39B102M50PT	K22174809		6 -	
C 2075	CHIP CAP.	0.001uF	B	50 V	GRM39B102M50PT	K22174809		6 -	
D 2001	LED				CL-155UR/G-D-T	G2070278			
D 2002	LED				LUB1006D	G2090619			
D 2003	DIODE				DA204U T106	G2070242			
D 2004	DIODE				MA721(TX)	G2070298			
D 2005	DIIDE				HZU4ALL-TR	G2070428			
D 2006	DIODE				DA204U T106	G2070242			
D 2007	DIODE				DA204U T106 DA221	G2070242			
DS2001	L.CD				FSD-15396AC	G6090121			
J 2001	CONNECTOR				9820B-26Y700	P0091101			
J 2002	CONNECTOR				CPB8618-0551	P0091010			
J 2003	CONNECTOR				HSJ1594-010055	P1090896			
L 2001	M.RFC	180 uH			FLC32T-181J	11690230			
MC2001	MIC ELEMENT				EM-100PT	M3290029			
Q 2001	IC				HD6473876UA44X	G1092503			
Q 2002	IC				BU4053BCFV-E1	G1092064			
Q 2003	IC				TC35305F-11 TP2	G1091177			
Q 2004	${ }_{\text {IC }}^{\text {IC }}$				S-29430AFE-TF	G1092188			
Q 2006	IC				BU2090FS-E1	G1092187			
Q 2007	TRANSISTOR				BU4094BCFV-E1	G1092128			
Q 2008	TRANSISTOR				UMG2N TL	G3070088			
Q 2009	TRANSISTOR				DTC124TU T106	G3070065			
Q 2010	IC				S-80730SN-DT-T1	G1091875			
Q 2011	TRANSISTOR				2SC4116GR TE85R	G3341167G			
Q 2013	TRANSISTOR				S-81230PG-PB-T1	G1092045			
Q 2014	TRANSISTOR				FSB1132 T100 Q	G3070009			
Q 2015	TRANSISTOR				DTC144EU T107	G3070041			
Q 2016	TRANSISTOR				2SA1586Y TE85R	G3115867Y			
Q 2018	TRANSISTOR				IMD10A T108	G3070159			
Q 2020	TRANSISTOR				UMH3N TN	G3070101			
Q 2021	IC				TDA7233D-TR	G1091112			
Q 2022	TRANSISTOR				UMZ2N TR	G3070117			
Q 2023	TRANSISTOR				DTC144EU T107	G3070041			
Q 2024	TRANSISTOR				DTA144EU T106	G3070079			
Q 2025	1 I				NJM2902V-TE1	G1091679			
Q 2026	IC				NJM2902V-TE1	G1091679			
R 2001	CHIP RES.	0	5\%	1/16W	RMC1/16 000JATP	J24185000			
R 2002	CHIP RES.	10K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 2003	CHIP RES.	22K	5\%	1/16W	RMC1/16 223JATP	J24185223			
R 2003	CHIP RES.	20K	1\%	1/16W	RMC1/16 203FTP	J24183203		4	
R 2004	CHIP RES.	39 K	5\%	1/16W	RMC1/16 393JATP	J24185393			
R 2005	CHIP RES.	82K	5\%	1/16W	RMC1/16 823JATP	J24185823			
R 2006	CHIP RES.	150K	5\%	1/16W	RMC1/16 154JATP	J24185154			
R 2007	CHIP RES.	4.7 K	5\%	1/16W	RMC1/16 472JATP	J24185472			
R 2008	CHIP RES.	10K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 2009	CHIP RES.	330 K	5\%	1/16W	RMC1/16 334JATP	J24185334			
R 2010	CHIP RES.	150K	5\%	1/16W	RMC1/16 154JATP	J24185154			

REF.	DESCRIPTION	VALUE	WV	TOL.	MFGR'S DESIG	YAESU P/N	VERS.	LOT.	LAY ADR
R 2011	CHIP RES.	82 K	5\%	1/16W	RMC1.16 823JATP	J24185823			
R 2012	CHIP RES.	39 K	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 393JATP	J24185393			
R 2013	CHIP RES.	22K	5\%	1/16W	RMC1:16 223JATP	J24185923			
R 2013	CHIP RES.	20K	1\%	1/16W	RMC1/16 203FTP	J24183203		4-	
R 2014	CHIP RES.	10K	5\%	1/16W	RMC1/16 103JATP	J24185103		4-	
R 2015	CHIP RES.	22K	5\%	1/16W	:RMC1/16 223JATP	J24185223			
R 2015	CHIP RES.	20K	1\%	1/16W	RMC1/16 203FTP	J24183203		4-	
R 2016	CHIP RES.	39 K	5\%	1/16W	RMC1/16 393JATP	J24185393			
R 2017	CHIP RES.	680K	5\%	1/16W	RMC1/16 684JATP	J24185684			
R R 2018	CHIP RES. CHIP RES.	330 K	5\%	1/16W	, RMC1/16 334JATP	J24185334			
R 2019	CHIP RES.	150K	5\%	1/16W	\|RMC1/16 154JATP	J24185154			
R 2020	CHIP RES.	82K	5\%	1/16W	RMC1/16 823JATP	J24185823			
R 2022	CHIP RES.	150 150	5\%	$1 / 16 \mathrm{~W}$ $1 / 16 \mathrm{~W}$	\|RMC1/16 151JATP	J24185151			
R 2023	CHIP RES.	330	5\%	1/16W	RMC1/16 331JATP	J24185151			
R 2024	CHIP RES.	47K	5\%	1/16W	RMC1/16 473JATP	J24185473			
R 2025	CHIP RES.	180K	5\%	1/16W	RMC1/16 184JATP	J24185184			
R 2025	CHIP RES.	47K	5\%	1/16W	RMC1/16 473JATP	J24185473		4-	
R 2020	CHIP RES.	10K	5\%	3/16W	RMC1/16 103JATP	J24185103			
R 2028	CHIP RES.	47 K 220 K	5% 5%	1/16W	RMC1/16 473JATP	J24185473			
R 2029	CHIP RES.	0	5\%	1/16W	RMC1/16 224JATP	J24185224			
R 2029	CHIP RES.	470K	5\%	1/16W	RMC1/16 474JATP	J24185000		6 -	
R 2030	CHIP RES.	10K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 2031	CHIP RES.	47K	5\%	1/16W	RMC1/16 473JATP	J24185473			
R 2031	CHIP RES.	47K	5\%	1/16W	RMC1/16 473JATP	J24185473	SEP 25	5-	
R 2031	CHIP RES.	150K	5\%	1/16W	RMC1/16 154JATP	J24185154	SEP 12.5	5	
R 2032	CHIP RES.	1 K	5\%	1/16W	RMC1/16 102JATP	J24185102			
R 2033	CHIP RES.	2.7 K	5\%	1/16W	RMC1/16 272JATP	J24185272			
R 2034	CHIP RES.	5.6 K	5\%	1/16W	RMC1/16 562JATP	J24185562			
R 2037	CHIP RES.	180 K	5\%	1/16W	RMC1/16 184JATP	J24185184			
R 2037	CHIP RES.	15 K 15 K	5\%	$1 / 1 / 16 \mathrm{~W}$	RMC1/16 153JATP	J24185153			
R 2037	CHIP RES.	39 K	5\%	1/16W	RMC1/16 153JATP RMC1/16 393JATP	J24185153 J24185393	SEP 25 SEP 125	$5-$	
R 2038	CHIP RES.	39K	5\%	1/16W	RMC1/16 393JATP	J24185393			
R 2039	CHIP RES.	47K	5\%	1/16W	RMC1/16 473JATP	J24185473			
R 2040	CHIP RES.	39 K	5\%	1/16W	RMC1/16 393JATP	J24185393			
R 2041	CHIP RES.	2.2M	5\%	1/16W	RMC1/16 225JATP	J24185225			
R 2042	CHIP RES.	47K	5\%	1/16W	RMC1/16 473JATP	J24185473			
R 2043	CHIP RES.	3.3 K	5\%	1/16W	RMC1/16 332JATP	J24185332			
R 2044	CHIP RES.	10 K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 2045	CHIP RES.	10 K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 2046	CHIP RES.	470K	5\%	1/16W	RMC1/16 474JATP	J24185474			
R 2047	CHIP RES.	0	5\%	1/16W	RMC1/16 000JATP	J24185000			
R 2049	CHIP RES.	10K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 2050	CHIP RES.	10K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 2051	CHIP RES.	330K	5\%	1/16W	RMC1/16. 334JATP	J24185334			
R 2052	CHIP RES.	22K	5\%	1/16W	RMC1/16 223JATP	J24185223			
R 2053	CHIP RES.	22 K	5\%	1/16W	RMC1/16 223JATP	J24185223			
R 2054	CHIP RES.	2.2 K	5\%	1/16W	RMC1/16 222JATP	J24185222			
R 2055	CHIP RES.	1K	5\%	1/16W	RMC1/16 102JATP	J24185102			
R 2056	CHIP RES.	470	5\%	1/16W	RMC1/16 471JATP	J24185471			
R 2057	CHIP RES.	10K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 2058	CHIP RES.	100K	5\%	1/16W	RMC1/16 104JATP	J24185104			
R 2059	CHIP RES.	4.7K	5\%	1/16W	RMC1/16 472JATP	J24185472			
R 2061	CHIP RES.	10K	5\%	1/16W	RMC1/16 103JATP	$J 24185103$			
R 2062	CHIP RES.	150 K	5\%	1/16W	RMC1/16 154JATP	J24185154			
R 2063	CHIP RES.	56 K	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 100JATP	J24185100			
R 2064	CHIP RES.	10K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 2065	CHIP RES.	0	5\%	1/16W	RMC1/16 000JATP	J24185000		-5	
R 2066	CHIP RES.	0	5\%	1/16W	RMC1/16 000JATP	J24185000		-5	
R 2068	CHIP RES.		5\%	1/16W	RMC1/16 000JATP	J24185000			
R 2069	CHIP RES.	68 K	5\%	1/16W	RMC1/16 683JATP	J24185683			
R 2070	CHIP RES.	39K	5\%	1/16W	RMC1/16 393JATP	J24185393			
R 2071	CHIP RES.	33 K	5\%	1/16W	RMC1/16 333JATP	J24185333			
R 2072	CHIP RES.	47K	5\%	1/16W	RMC1/16 473JATP	J24185473			

CNTL Unit

REF.	DESCRIPTION	VALUE	WV	TOL.	MFGR'S DESIG	YAESU P/N	VERS.	LOT.	LAY ADR
R 2073	CHIP RES.	0	5\%	1/8W	RMC1/8T 000 J	J24215000		-5	
R 2074	CHIP RES.	0	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 000JATP	J24185000			
R 2075	CARBON FILM RES.	470K	5\%	1/6W	RD16UJ474	J02225474		-5	
R 2076	CHIP RES.	0	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 000JATP	J24185000			
R 2077	CHIP RES.	1M	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 105JATP	324185105			
R 2078	CHIP RES.	33 K	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 333JATP	J24185333			
R 2079	CHIP RES.	2.2 M	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 225JATP	J24185225			
R 2080	CHIP RES.	100	5\%	1/16W	RMC1/16 101JATP	J24185101			
R 2081	CHIP RES.	0	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 000JATP	J24185000			
R 2082	CHIP RES.	470K	5\%	1/16W	RMC1/16 474JATP	J24185474			
R 2083	CHIP RES.	100K	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 104JATP	J24185104			
R 2084	CHIP RES.	33K	5\%	1/16W	RMC1/16 333JATP	J24185333			
R 2085	CHIP RES.	0	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 000JATP	J24185000		-5	
R 2086	CHIP RES.	8.2K	5\%	1/16W	RMC1/16 822JATP	J24185822			
R 2087	CHIP RES.	10 K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 2088	CHIP RES.	47K	5\%	1/16W	RMC1/16 473JATP	J24185473			
R 2089	CHIP RES.	3.3K	5\%	1/16W	RMC1/16 332JATP	J24185332			
R 2090	CHIP RES.	2.2K	5\%	1/16W	RMC1/16 222JATP	J24185222			
R 2091	CHIP RES.	330 K	5\%	1/16W	RMC1/16 334JATP	J24185334			
R 2091	CHIP RES.	330 K	1\%	1/16W	RMC1/16 334FTP	J24183334		$5-$	
R 2092	CHIP RES.	10 K	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 103JATP	J24185103			
R 2093	CHIP RES.	82K	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 823JATP	J24185823			
R 2093	CHIP RES.	82K	1\%	1/16W	RMC1/16 823FTP	J24183823		$5-$	
R 2094	CHIP RES.	47K	5\%	1/16W	RMC1/16 473JATP	J24185473			
R 2095	CHIP RES.	100K	5\%	1/16W	RMC1/16 104JATP	\|J24185104			
R 2096	CHIP RES.	10 K	5\%	1/16W	RMC1/16 103JATP	\|J24185103			
R 2097	CHIP RES.	47	5\%	1/16W	RMC1/16 470JATP	J24185470			
R 2098	CHIP RES.	10K	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 103JATP	J24185103			
R 2099	CHIP RES.	1 M	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 105JATP	$\mathrm{J} 24185105$			
R 2100	CHIP RES.	22K	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 223JATP	$J 24185223$			
R 2101	CHIP RES.	10K	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 103JATP	$\mathrm{J} 24185103$			
R 2102	CHIP RES.	4.7K	5\%	1/10W	RMC1/10T 472J	J24205472			
R 2103	CHIP RES.	47 K	5\%	1/16W	RMC1/16 473JATP	J24185473			
R 2104	CHIP RES.	150	5\%	1/16W	RMC1/16 151 JATP	J24185151			
R 2105	CHIP RES.	4.7 K	5\%	1/16W	RMC1/16 472JATP	J24185472			
R 2106	CHIP RES.	10 K	5\%	1/16W	RMC1/16 103JATP	J24185103			
R 2107	CHIP RES.	0	5\%	1/16W	RMC1/16 000JATP	J24185000			
R 2108	CHIP RES.	100 K	5\%	1/16W	RMC1/16 104JATP	J24185104			
R 2109	CHIP RES.	5.6 K	5\%	1/16W	RMC1/16 562JATP	J24185562			
R 2110	CHIP RES.	100K	5\%	1/16W	RMC1/16 104JATP	J24185104			
R 2111	CHIP RES.	100K	5\%	1/16W	RMC1/16 104JATP	J24185104			
R 2112	CHIP RES.	100K	5\%	1/16W	RMC1/16 104JATP	J24185104			
R 2113	CHIP RES.	100K	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 104JATP	J24185104			
R 2115	CHIP RES.	0	5\%	1/16W	RMC1/16 000JATP	J24185000			
R 2117	CARBON FILM RES.	47K	5\%	1/6W	RD16PT473	J01225473		-5	
R 2118	CHIP RES.	47K	5\%	1/16W	RMC1/16 473JATP	J24185473		$6-$	
R 2119	CHIP RES.	220	5\%	$1 / 16 \mathrm{~W}$	RMC1/16 221JATP	J24185221		$6-$	
R 2120	CHIP RES.	0	5\%	1/16W	RMC1/16 000JATP	J24185000		6 -	
R 2122	CHIP RES.	22K	5\%	1/16W	RMC1/16 223JATP	J24185223		$6-$	
S 2001	TACT SWITCH				JPM1990-0302	N5090093			
S 2002	TACT SWITCH				JPM1990-0302	N5090093			
S 2003	TACT SWITCH				JPM1990-0302	N5090093			
TH2001	THERMISTER				TBPS1R473K475H5Q	G9090068			
$\times 2001$	XTAL	3.579545 MHz				H0103127			
	$\begin{aligned} & \text { LCD HOLDER } \\ & \text { SHIELD SHEET } \\ & \text { SHIELD SHEET } \\ & \text { HOLDER RUBBER (MIC) } \\ & \text { STUD } \\ & \text { INTERCONNECTOR (LCD) } \end{aligned}$					R0521560C R0522980 R0522980A R3152460A R6153690 R7152400A		$6-$	

Circuit Diagram

Parts Layout

Parts List

REF.	DESCRIPTION	VALUE	WV	TOL.	MFGR'S DESIG	YAESU P/N	VERS.	LOT.	LAY ADR
*** VR UNIT ***									
PCB with Components						CA1594001			
Printed Circuit Board						F3540000			
VR2500	TARY CODE S.W.				TP96D96AE20	Q9000640			

VR Unit

Notes:

Circuit Diagram

Parts Layout

Keypad Side
 To CNTL Unit J2001
(See Page 3B-3)

Chip Side

AK2341

2SC4116GR (LG)

FTT-14 Keypad

Notes:

Circuit Diagram

Parts Layout

AK2341
(Q3101)

NJM2904V
(Q3104)

2SC4116GR (LG)
(Q3102)

FTT-14 Keypad $($ L.ot. $6 \cdots)$
Notes:

FTT-14 Keypad

Parts List

REF.	DESCRIPTION	VALUE	WV	TOL.	MFGR S DESIG	YAESU P/N	VERS.	LOT.	LAY ADR
*** FTT-14 ***									
	Printed Circuit Board Printed Circuit Board					$\begin{aligned} & \text { F3593101A } \\ & \text { F3593101B } \end{aligned}$		6-	
C 3102	CHIP CAP.	0.001 uF	50 V	B	GRM39B102M50PT	K22174809		-	
C 3102	CHIP CAP.	0.001 uF	50 V		ECUV1H102KBV	K22179614		$6-$	
C 3103	CHIP CAP.	220pF	50 V	CH	GRM39CH221J50PT	K22174243		6	
C 3103	CHIP CAP.	470 pF	50 V	CH	GRM39CH471J50PT	K22174249		2-	
C 3103	CHIP CAP.	560pF	50 V		ECUV1H561KBV	K22179611		6-	
C 3104	CHIP CAP.	0.0047 UF	50 V	B	GRM39B472M50PT	K22174817		-	
C 3104	CHIP CAP.	0.0047 UF	50 V		ECUV1H472KBV	K22179622		6-	
C 3105	CHIP CAP.	18 pF	50 V	CH	GRM39CH180J50PT	K22174217		6	
C 3105	CHIP CAP.	12pF	50 V	CH	GRM39CH120J50PT	K22174213		8-	
C 3106	CHIP CAP.	9 pF	50 V	CH	GRM39CH090D50PT	K22174210		8	
C 3106	CHIP CAP.	18 pF	50 V	CH	GRM39CH180J50PT	K22174217		2.	
C 3106	CHIP CAP.	9 pF	50 V	CH	GRM39CH090D50PT	K22174210		3 -	
C 3106	CHIP CAP.	12pF	50 V	CH	GRM39CH120J50PT	K22174213		8 -	
C 3108	CHIP CAP.	680pF	50 V	B	GRM39B681M50PT	K22174807			
C 3108	CHIP CAP.	680pF	50 V		ECUVH681KBV	K22179612		$6-$	
C 3109	TANTALUM CHIP CAP.	4.7uF	6.3 V		TEMSVA0J475M-8R	K78080017		0	
C 3109	TANTALUM CHIP CAP.	4.7 uF	6.3 V		TEMSVA21A475M-8R	K78100045		$6-$	
C 3110	TANTALUM CHIP CAP.	4.7uF	6.3 V		TEMSVAOJ475M-8R	K78080017			
C 3110	TANTALUM CHIP CAP.	4.7UF	6.3 V		TEMSVA21A475M-8R	K78100045		$6-$	
C 3111	CHIP CAP.	0.1uF	16 V	B	GRM39B104K16PT	K22124805			
C 3112	CHIP CAP.	0.001 uF	50 V	B	GRM39B102M50PT	K22174809			
C 3112	CHIP CAP.	0.001 uF	50 V		ECUV1H102KBV	K22179614		6-	
C 3113	TANTALUM CHIP CAP.	4.7uF	6.3 V		TEMSVA0J475M-8R	K78080017			
C 3113	TANTALUM CHIP CAP.	4.7uF	6.3 V		TEMSVA21A475M-8R	K78100045		$6-$	
C 3114	CHIP CAP.	0.1uF	16 V	B	GRM39B104K16PT	K22124805			
C 3115	CHIP CAP.	0.1 UF	16 V	B	GRM39B104K16PT	K22124805			
C 3116	CHIP CAP.	0.1 uF	16 V	B	GRM39B104K16PT	K22124805			
C 3117	CHIP CAP.	0.01uF	50 V		ECUV1H103KBV	K22179626		6-	
C 3118	CHIP CAP.	0.0047 uF	50 V		ECUV1H272KBV	K22179619		6 -	
C 3119	CHIP CAP.	0.0047 UF	50 V		ECUV1H272KBV	K22179619		$6-$	
C 3120	CHIP CAP.	0.0047 UF	50 V		ECUV1H272KBV	K22179619		6-	
C 3121	CHIP CAP.	0.0047 UF	50 V		ECUV1H272KBV	K22179619		$6-$	
C 3122	CHIP CAP.	0.0047 UF	50 V		ECUV1H272KBV	K22179619		$6-$	
C 3123	CHIP CAP.	0.001 uF	50 V		ECUV1H102KBV	K22179614		6 -	
D 3101	DIODE				IMN10 T108	G2070078		-5	
D 3102	DIODE				1SS353	G2070394		$6-$	
D 3103	DIODE				1SS353	G2070394		$6-$	
J 3101	CONNECTOR				9820S-26Y913	P1090931			
L 3101	M.RFC	220uH			FLC32T-221J	L1690231			
L 3101	M.RFC	180uH			FLC32T-181J	L1690230		2-7	
Q 3101	IC				AK2341	G1091716			
Q 3102	TRANSISTOR				2SC4116GR TE85R	G3341167G		-7	
Q 3104	IC				N3M2904V-TE1	G1091677		6 -	
R 3102	CHIP RES.	470K	1/16W	5\%	RMC1/16 474JATP	J24185474			
R 3103	CHIP RES.	68 K	1/16W	5\%	RMC1/16 683JATP	J24185683			
R 3104	CHIP RES.	3.9 K	1/16W	5\%	RMC1/16 392JATP	J24185392			
R 3105	CHIP RES.	56K	1/16W	5\%	RMC1/16 563JATP	J24185563			
R 3105	CHIP RES.	39 K	1/16W	5\%	RMC1/16 393JATP	J24185393		$6-$	
R 3106	CHIP RES.	1 M	1/16W	5\%	RMC1/16 105JATP	J24185105			
R 3107	CHIP RES.	22K	1/16W	5\%	RMC1/16 223JATP	J24185223		-7	
R 3108	CHIP RES.	180K	1/16W	5\%	RMC1/16 184JATP	J24185184			
R 3109	CHIP RES.	180K	1/16W	5\%	RMC1/16 184JATP	J24185184			
R 3110	CHIP RES.	47K	1/16W	5\%	RMC1/16 473JATP	J24185473			
R 3112	CHIP RES.	47K	1/16W	5\%	RMC1/16 473JATP	J 24185473			
R 3112	CHIP RES.	47K	1/10W	5\%	RMC1/10 473J	J24205473		$6-$	
R 3117	CHIP RES.	220K	1/16W	5\%	RMC1/16 224JATP	J24185224			
R 3118	CHIP RES.	10K	1/16W	5\%	RMC1/16 103JATP	J24185103			
R 3120	CHIP RES.	27K	1/16W	5\%	RMC1/16 273JATP	J24185273			
R 3121	CHIP RES.	5.6K	1/16W	5\%	RMC1/16 562JATP	J24185562			

FTT-14 Keypad

FTT-15 16-Button DTMF Paging Keypad w/Voice Encryption

Circuit Diagram

Parts Layout

Keypad Side

2SC4116GR (LG)
(Q3202)

FTT-15 16-Button DTMF Paging Keypad w/Voice Encryption

 Notes:
FTT-15 16-Button DTMF Paging Keypad w/Voice Encryption

Parts List

FTT-15 16-Button DTMF Paging Keypad w/Voice Encryption

 Notes:Scanned by ADØJA

Scanned by ADØJA

YAESU
 ..leading the way: ${ }^{\text {su }}$

Copyright (C) 1996
Yaesu Musen Co., Ltd.
All rights reserved

