

INSTRUCTIONS

FOR

AUDIO BOARDS 19A129924GI-G3

	- TABLE OF CONTENTS -
DESCRIPTION	
CIRCUIT ANALYSIS	
OUTLINE DIAGRAM	4
SCHEMATIC DIAGRAM (REPEATER AUI	DIO BOARD 19A129924G1)5
PARTS LIST	
SCHEMATIC DIAGRAM (REMOTE AUDIO	D BOARDS 19A129924G2 & G3 7
PARTS LIST	8

DESCRIPTION

The 19A129924G1 Audio Board is used in MASTR® II Repeater and Local/Repeater Base Stations. The 19A129924G2 Audio Board is used in MASTR II Remote/Repeater Base Stations. The 19A129924G3 Audio Board is used in MASTR II Remote Control Base Stations. The repeater circuits consist of a high-pass filter, audio amplifiers, a de-emphasis network, a repeater audio switch and receiver unsquelch sensor (RUS) switch. The remote circuits consist of a high-pass filter, audio amplifiers, a de-emphasis network, a line driver for feeding receive audio to the telephone line, a compressor amplifier for controlling the line audio level fed to the transmitter, and audio and RUS switches for controlling the transmit and receive audio paths.

CIRCUIT ANALYSIS

Audio Board 19A129924G1

Audio from the station receiver is coupled to emitter follower Q1 through the high-pass filter consisting of C2-C3 and R1-R2. This filter attenuates 60 and 120 Hz to reduce the hum and noise. The output of the emitter follower is passed through a de-emphasis network C5 and R6. This network provides a 6 dB/octave rolloff. The signal is then amplified by Q2 and fed to another emitter follower Q3. The TX MOD control R14 is connected in the emitter circuit of Q3 and allows feeding the transmitter modulator input at a maximum level of 200 millivolts.

The receiver Unsquelched Sensor Operating Switch (RUSOS) lead is at a positive

potential when the receiver is squelched. CR4 is forward biased, allowing Q5 to conduct. This grounds the collector of Q2 at audio frequencies, preventing the audio signal from passing to Q3. Q12 is normally conducting, grounding the gate of FET Q13 and blocking the audio from the transmitter. When the receiver is unsquelched, the RUS lead D12 goes high, turning on Q11. This grounds the RUSOS lead and turns off Q5 and Q12. The audio signal is now allowed to pass through Q3 and Q13 to the transmitter modulator.

Audio Board 19A129924G2

The 19A129924G2 Audio Board is used in remote/repeat station combinations. The receiver audio amplifiers, de-emphasis network and repeater audio switch operate in the same manner as described for the 19A129924G1 Board. A separate emitter follower (Q4) is connected to the emitter of Q3 for repeater applications. The REPEATER TX LEVEL control (R15) is connected in the emitter circuit of Q4. R14 (in the emitter circuit of Q3) now serves as the LINE OUT level control.

The audio from the station receiver is connected to the Remote Control/Repeat Audio Board at VOL/SQ HI lead Bll. The audio signal is amplified by Q1-Q4; the level is adjusted by means of REPEATER TX LEVEL Control R15 and passed to the TX AUDIO HI lead B14.

The emitter-follower Q3 output is coupled by means of C10 to the RCVR NOTCH FILTER OUTPUT lead D14 and connected to the Transmitter Control Board where the 2175 Hz Secur-it tone components are notched out of the received audio. Resistor R16 and the jumper between H7 and H8 are removed in tone control systems.

When the audio is returned from the Transmitter Control Board, via RCVR NOTCH FILTER INPUT lead D13, the signal is connected to amplifiers Q6 and Q8. Q7 serves as an audio gate controlled by the RUS input circuit. As long as the RUS input is active Q7 passes the signal to the audio output transistor Q9 which, in turn, couples the signal to T1 and the audio path.

Line audio is coupled from the primary of T1 to LINE AUDIO lead A8. The signal is connected to the Secur-it Tone Board and the Transmitter Control Board. The TX NOTCH FILTER removes the 2175 Hz tone from the audio and the signal is returned to the COMP INPUT FROM TONE CONTROL lead A9. The compressor amplifier functions in the same manner as described for the Remote Audio Board.

Audio Board 19A129924G3

Audio from the station receiver discriminator is coupled to emitter follower Ql through the high-pass filter consisting of C2-C3 and R1-R2. This filter attenuates 60 and 120 Hertz to reduce the hum and noise. The output of the emitter follower is passed through a de-emphasis network C5 and R6. This network provides a 6 dB/octave rolloff. The signal is then amplified by Q2 and fed to another emitter follower Q3. The LINE OUT Control R14 is connected in the emitter circuit of Q3 and allows feeding the audio to the line driver at the proper level.

The audio is coupled through C10 to the RX NOTCH FILTER OUTPUT lead D14. This lead is connected to the Transmitter Control Board where the 2175 Hz tone components are notched out of the receiver audio. Resistor R16 and the jumper between H7 and H8 are removed in tone control systems.

When the audio is returned from the Transmitter Control Board via RCVR NOTCH FILTER INPUT lead D13, the signal is coupled to the line driver. Q6 and Q8 amplify the signal. Q7 serves as an audio switch controlled by the RUS circuit. As long as the RUS switch (Q11) is turned off (receiver squelched), CR5 is forward biased allowing Q7 to conduct. Conduction of Q7 grounds the audio path between Q6 and Q8, preventing the audio from being passed to the line. When the receiver unsquelches, the RUS lead goes high. This turns Q11 on, turning off CR5 and Q7. The audio is now allowed to pass to the output amplifier Q9 and to the line transformer T1. CR2, CR3 and VR1 are provided for line surge protection.

Audio from the telephone pair is coupled to the input of the transmitter compressor amplifier which consists of

Q15-Q19. The proper audio level for the compressor amplifier is adjusted by LINE INPUT control R39. R41 and the AC impedance of transistor Q15 act as a voltage divider for the AC input signal. The output of Q15 is amplified by a four stage, direct-coupled amplifier (Q16-Q19). Both AC and DC feedback in the amplifier circuit provides for stable operation.

One portion of the amplified output is fed through R50 (REM TX LEVEL) to the XMTR AUDIO HI lead to modulate the transmitter. The remaining portion of the signal is rectified by detector CR6-CR7, filtered by C29, and amplified by DC current amplifier Q20. This DC output is fed back to the base of gain control transistor Q15.

The amount of DC feedback to Q15 determines the AC impedance of this transistor. When the input level rises, the AC amplifier output starts to increase. The output is detected, amplified and fed back to the base of Q15. The increase in feedback reduces the AC impedance of Q15 which decreases the audio voltage to the AC amplifiers, keeping the output constant.

When the input decreases, the output of the AC amplifier starts to decrease, reducing the feedback to Q15. This raises the AC impedance of Q15 and increases the audio voltage to the AC amplifier, keeping the output constant.

The compressor amplifier resets when switching from the receive to transmit mode. Resetting the compressor amplifier prevents losing the first portion of a weak line signal due to the compressor release time. When the RUS lead returns to ground, Q11 is turned off. This allows the Receiver Unsquelch Sensor Operating Switch (RUSOS) lead to go high. Transistor Q14 is turned on, grounding the base of Q20. This shorts capacitor C29 for approximately 10 milliseconds. This resets the compressor amplifier.

Transmit audio is coupled from the REM TX LEVEL control R50 to the source terminal of FET Q21. Q22 is normally conducting, grounding the gate terminal of Q21 and preventing the audio from passing through the FET. Applying ground to the REMOTE PTT terminal D3 forward biases CR10, turning Q22 off. Q21 is now allowed to conduct, passing the audio signal to the TRANSMITTER AUDIO HI lead D14 and to the station transmitter modulator.

When the Intercom Kit is used in the station, audio from the local microphone is connected from the Intercom Board via D9 to the base of Q8 and, after amplification, the local audio is fed to the line transformer.

Line audio, after passing through the compressor amplifier is connected via B10 to the Intercom Board. Receiver audio overrides the intercom audio. Instructions for the Intercom Kit are provided in the maintenance manual for Option 9508.

When Secur-it Tone is detected, +10 VDC is applied to the AUDIO MUTE lead D2 from

the Secur-it Tone Board. This turns Q10 on, grounding the base of Q11. Q7 is now allowed to conduct and prevent the receive audio from reaching the line and masking the function tone. The RX 1 MUTE lead turns the receiver off during transmit, causing the RUS lead to go low. This turns off the receiver audio to the line.

MOBILE RADIO DEPARTMENT
GENERAL ELECTRIC COMPANY • LYNCHBURG, VIRGINIA 24502

AUDIO COMPONENT BD (AI, A2, A3)

REQUESTRATE COMPONENT BD

THIS DIAGRAM IS INTENDED TO SHOW COMPONENT LOCATIONS FOR ALL GROUPS OF THE BOARD. REFER TO APPROPRIATE SCHEMATIC DIAGRAM OR PARTS LIST FOR COMPONENTS USED IN A SPECIFIC GROUP.

-SEE DETAIL"A"

(19D423136, Rev. 3) (19D417083, Sh. 2, Rev. 7) (19D417083, Sh. 3, Rev. 7)

LEAD IDENTIFICATION
FOR Q1,Q2,Q5-Q9,Q11
Q15 & Q20
FLAT
E
OR
OR
IN-LINE
TRIANGULAR

VIEW FROM LEAD END

LEAD IDENTIFICATION
FOR Q3, Q4, Q10, Q12, Q14,
Q16-Q19 & Q22
FLAT

E

B

E

C

OR

IN-LINE

TRIANGULAR

VIEW FROM LEAD END

NOTE: LEAD ARRANGEMENT, AND NOT CASE SHAPE, IS DETERMINING FACTOR FOR LEAD IDENTIFICATION.

8 9 IO II I2 I3 I4

7 6 5 4 3 2 I

SOLDER SIDE

DETAIL" A"

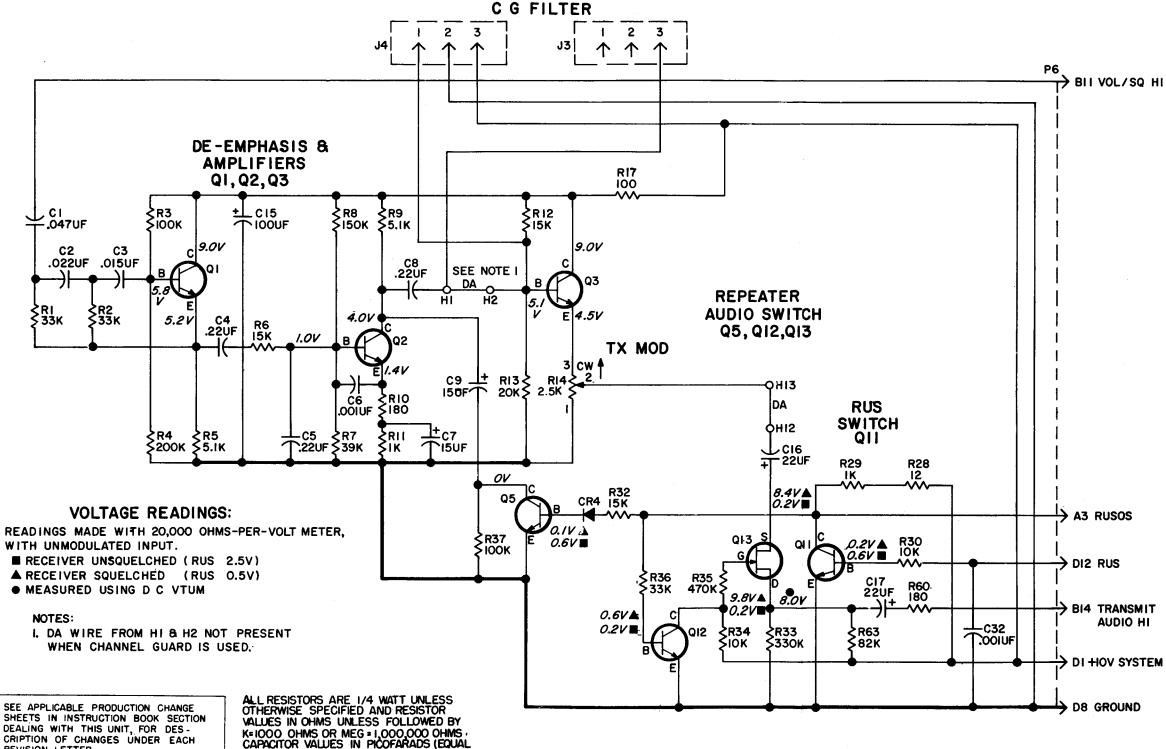
TYP. NUMBERING OF CONT.

FINGERS

LEAD IDENTIFICATION FOR Q13 & Q21

TRIANGULAR VIEW FROM LEAD END

NOTE: LEAD ARRANGEMENT, AND NOT CASE SHAPE, IS DETERMINING FACTOR FOR LEAD IDENTIFICATION,


	4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	IG DIAGRAM WING CONNECTIO	N
FROM	то	WIRE	GROUP
н	H2	DA	G1,G2,G3
Н5	Н6	DA	G2, G3
H7	Н8	DA	G2,G3
H12	HI3	DA	GI
HI7	HI8	DA	G2, G3

RUNS ON SOLDER SIDE

RUNS ON BOTH SIDES

RUNS ON COMPONENT SIDE

OUTLINE DIAGRAM
AUDIO BOARD 19A129924

(19C320650, Rev. 5)

SHEETS IN INSTRUCTION BOOK SECTION DEALING WITH THIS UNIT, FOR DES-CRIPTION OF CHANGES UNDER EACH REVISION LETTER.

THIS ELEM DIAG APPLIES TO MODEL NO REV LETTER 19A12992461 19041721061 19D417210G2 Α 19D417210G3

K=1000 OHMS OR MEG=1,000,000 OHMS CAPACITOR VALUES IN PICOFARADS (EQUAL TO MICROMICROFARADS) UNLESS FOLLOWED BY UF = MICROFARADS. INDUCTANCE VALUES IN MICROHENRYS UNLESS FOLLOWED BY MH= MILLIHENRYS OR H=HENRYS.

IN ORDER TO RETAIN RATED EQUIPMENT PERFORMANCE, REPLACEMENT OF ANY SERVICE PART SHOULD BE MADE ONLY WITH A COMPONENT HAVING THE SPECIFICATIONS SHOWN ON THE PARTS LIST FOR THAT PART.

SCHEMATIC DIAGRAM

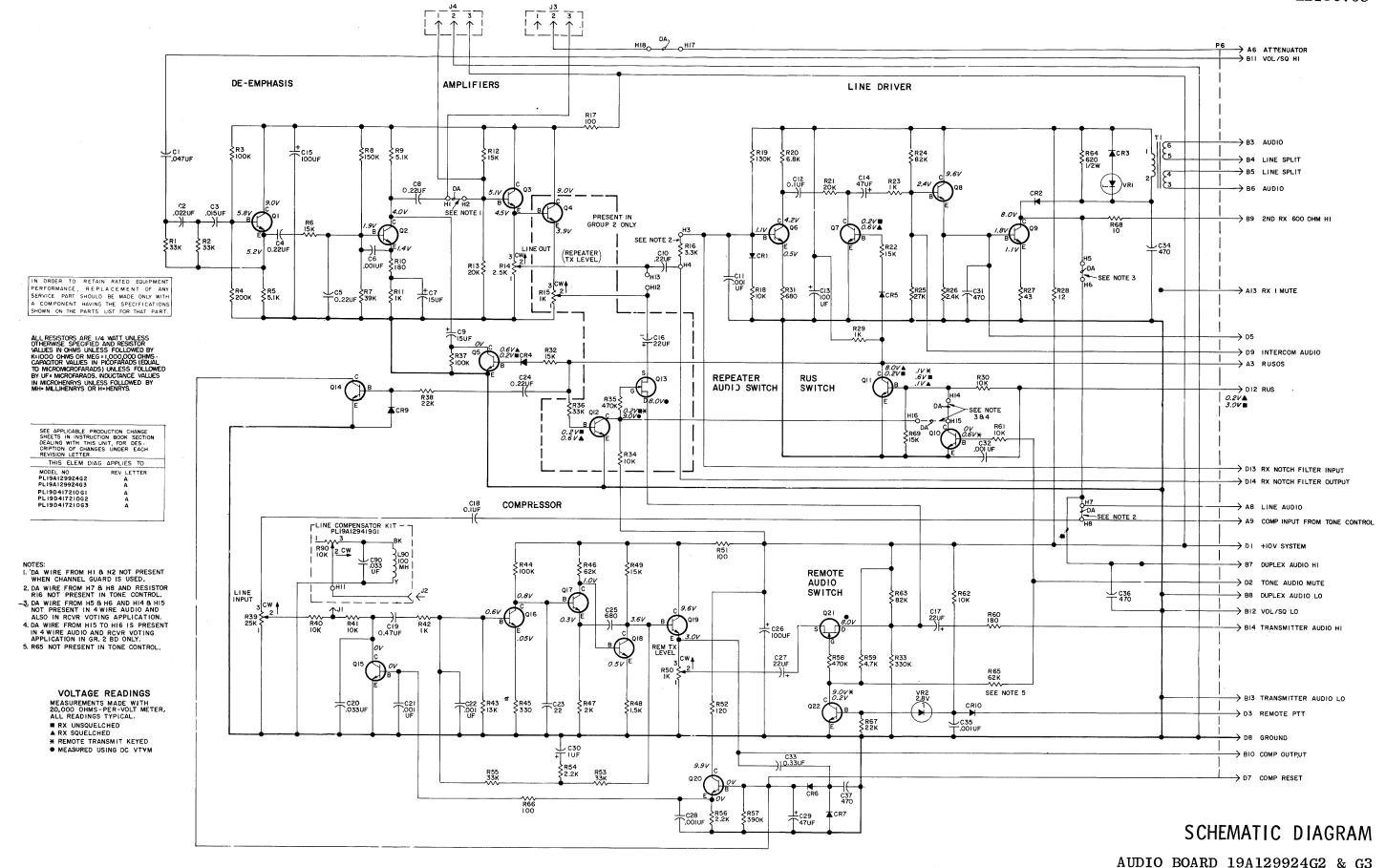
REPEATER AUDIO BOARD 19A129924G1

Issue 1

PARTS LIST

LB14803A

REPEATER AUDIO BOARD 19A129924G1


SYMBOL	GE PART NO.	DESCRIPTION
11		COMPONENT BOARD 19D417210G1
Cl	19A116080P105	Polyester: 0.047 µf ±10%, 50 VDCW.
C2	19A116080P103	Polyester: 0.022 µf ±10%, 50 VDCw.
СЗ	19A116080P102	Polyester: 0.015 µf ±10%, 50 VDCW.
C4 and C5	19All6080P109	Polyester: 0.22 µf ±10%, 50 YDCW.
C6	5494481P111	Ceramic disc: 1000 pf ±20%, 1000 VDCW; sim to RMC Type JF Discap.
C7	5496267P14	Tantalum: 15 μ f $\pm 20\%$, 20 VDCw; sim to Sprague Type 150D.
C8	19A116080P109	Polyester: 0.22 µf ±10%, 50 VDCW.
C9	5496267P14	Tantalum: 15 μ f $\pm 20\%$, 20 VDCw; sim to Sprague Type 150D.
C15	19A115680P7	Electrolytic: 100 µf +150% -10%, 15 VDCw; sim to Mallory Type TT.
C16 and C17	5496267P10	Tantalum: 22 µf ±20%, 15 VDCW; sim to Sprague Type 150D.
C32	5494481P111	Ceramic disc: 1000 pf ±20%, 1000 VDCW; sim to RMC Type JF Discap.
		DIODES AND RECTIFIERS
CR4	19A115250P1	Silicon, fast recovery, 225 mA, 50 PIV.
J3 and J4	19A116779P1	Contact, electrical: sim to Molex 08-54-0404. (Quantity 3 each connector).
		PLUGS
P 6		Connector. (Part of printed board 19D417083P1).
Q1 and Q2	19All6774Pl	Silicon, NPN; sim to Type 2N5210.
Q3	19A115889P1	Silicon, NPN.
Q5	19A129184P1	Silicon, NPN.
Q11	19A115910P1	Silicon, NPN; sim to Type 2N3904.
Q12	19A115889P1	Silicon, NPN.
Q13	19A134137P1	N Type, field effect; sim to Type 2N3458.
		RESISTORS
R1 and R2	3R152P333J	Composition: 33K ohms ±5%, 1/4 w.
R3	3R152P104J	Composition: 0.10 megohm ±5%, 1/4 w.
R4	3R152P204J	Composition: 0.20 megohm ±5%, 1/4 w.
R 5	3R152P512K	Composition: 5.1K ohms ±10%, 1/4 w.
R6	3R152P153K	Composition: 15K ohms ±10%, 1/4 w.
R7	3R152P393J	Composition: 39K ohms ±5%, 1/4 w.
R8	3R152P154J	Composition: 0.15 megohm ±5%, 1/4 w.

R9 3R152P312J Composition: 5.1k ohms ±5%, 1/4 w. R11 3R152P163J Composition: 180 ohms ±10%, 1/4 w. R12 3R152P163J Composition: 19K ohms ±5%, 1/4 w. R13 3R152P163J Composition: 19K ohms ±5%, 1/4 w. R14* 198209358P116 Variable, carbon film: approx 25 to 2.5k ohms ±10%, 0.2 w; sin to Stackpole R11-44442. Earlier than REV A: 198209358P103 Variable, carbon film: approx 50 to 1 k ohms ±10%, 0.2 w; sin to CTS Type K-201. R17 3R152P101J Composition: 100 ohms ±5%, 1/4 w. R29 3R152P103J Composition: 100 ohms ±5%, 1/4 w. R30 3R152P103J Composition: 10K ohms ±5%, 1/4 w. R31 3R152P33J Composition: 10K ohms ±5%, 1/4 w. R33 3R152P3473J Composition: 0.43 megohns ±5%, 1/4 w. R34 3R152P33J Composition: 0.47 megohns ±5%, 1/4 w. R35 3R152P3474J Composition: 0.47 megohns ±5%, 1/4 w. R36 3R152P33J Composition: 0.47 megohns ±5%, 1/4 w. R37 3R152P104K Composition: 33K ohms ±5%, 1/4 w. R38 3R152P33J Composition: 180 ohms ±10%, 1/4 w. R39 3R152P183J Composition: 180 ohms ±10%, 1/4 w. R39 3R152P183J Composition: 180 ohms ±5%, 1/4 w. R49 3R152P183J Composition: 180 ohms ±5%, 1/4 w. R40 3R152P184 Composition: 180 ohms ±5%, 1/4	SYMBOL	GE PART NO.	DESCRIPTION
R10 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R11 3R152P102K Composition: 1K ohms ±10%, 1/4 w. R12 3R152P153J Composition: 15K ohms ±5%, 1/4 w. R13 3R152P203J Composition: 20K ohms ±5%, 1/4 w. R14* 19B209358P116 Variable, carbon film: approx 25 to 2.5K ohms ±10%, 0.2 w; sim to Stackpole R11-44442. Earlier than REV A: 19B209358P103 Variable, carbon film: approx 50 to 1K ohms ±10%, 0.2 w; sim to CTS Type X-201. R17 3R152P101J Composition: 100 ohms ±5%, 1/4 w. R28 3R152P120J Composition: 12 ohms ±5%, 1/4 w. R29 3R152P103J Composition: 1K ohms ±5%, 1/4 w. R30 3R152P103J Composition: 10K ohms ±5%, 1/4 w. R31 3R152P13K Composition: 15K ohms ±10%, 1/4 w. R32 3R152P13J Composition: 0.33 megohms ±5%, 1/4 w. R33 3R152P334J Composition: 0.33 megohms ±5%, 1/4 w. R34 3R152P103J Composition: 0.47 megohms ±5%, 1/4 w. R35 3R152P333J Composition: 33K ohms ±5%, 1/4 w. R36 3R152P104K Composition: 0.10 megohms ±10%, 1/4 w. R60 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R60 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R60 3R152P13J Composition: 180 ohms ±5%, 1/4 w. R69 3R152P13J Composition: 15K ohms ±5%, 1/4 w. R69 3R152P13J Composition: 15K ohms ±5%, 1/4 w. R69 3R152P13J Composition: 15K ohms ±5%, 1/4 w.	R9	3R152P512J	Composition: 5.1K ohms +5%, 1/4 w.
R11 3R152P102K Composition: 1K ohms ±10%, 1/4 w. R12 3R152P153J Composition: 15K ohms ±5%, 1/4 w. R13 3R152P203J Composition: 20K ohms ±5%, 1/4 w. R14* 19B209358P116 Variable, carbon film: approx 25 to 2.5K ohms ±10%, 0.2 w; sim to Stackpole R11-44442. Earlier than REV A: 19B209358P103 Variable, carbon film: approx 50 to 1K ohms ±10%, 0.2 w; sim to CTS Type X-201. R17 3R152P101J Composition: 100 ohms ±5%, 1/4 w. R28 3R152P120J Composition: 12 ohms ±5%, 1/4 w. R29 3R152P102J Composition: 1K ohms ±5%, 1/4 w. R30 3R152P103J Composition: 10K ohms ±5%, 1/4 w. R31 3R152P334J Composition: 15K ohms ±10%, 1/4 w. R32 3R152P103J Composition: 0.33 megohms ±5%, 1/4 w. R33 3R152P334J Composition: 0.47 megohms ±5%, 1/4 w. R34 3R152P103J Composition: 0.47 megohms ±5%, 1/4 w. R35 3R152P333J Composition: 0.47 megohms ±5%, 1/4 w. R36 3R152P333J Composition: 0.10 megohms ±10%, 1/4 w. R60 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R60 3R152P183J Composition: 180 ohms ±5%, 1/4 w. R63 3R152P153J Composition: 15K ohms ±5%, 1/4 w. R69 3R152P153J Composition: 180 ohms ±10%, 1/4 w. R69 3R152P153J Composition: 15K ohms ±5%, 1/4 w.			1 .
R12 3R152P153J Composition: 15K ohms ±5%, 1/4 w. R13 3R152P203J Composition: 20K ohms ±5%, 1/4 w. 19B209358P103 Variable, carbon film: approx 25 to 2.5K ohms ±10%, 0.2 w; sim to Stackpole R11-44442. Earlier than REV A: 19B209358P103 Variable, carbon film: approx 50 to 1K ohms ±10%, 0.2 w; sim to CTS Type X-201. R17 3R152P101J Composition: 100 ohms ±5%, 1/4 w. R28 3R152P120J Composition: 12 ohms ±5%, 1/4 w. R29 3R152P102J Composition: 1K ohms ±5%, 1/4 w. R30 3R152P103J Composition: 10K ohms ±5%, 1/4 w. R32 3R152P153K Composition: 15K ohms ±10%, 1/4 w. R33 3R152P334J Composition: 0.33 megohms ±5%, 1/4 w. R34 3R152P103J Composition: 10K ohms ±5%, 1/4 w. R35 3R152P474J Composition: 0.47 megohms ±5%, 1/4 w. R36 3R152P333J Composition: 0.47 megohms ±5%, 1/4 w. R37 3R152P104K Composition: 0.10 megohms ±10%, 1/4 w. R60 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R63 3R152P823J Composition: 82K ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w. Composition: 180 ohms ±10%, 1/4 w. Composition: 180 ohms ±10%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w.			
R13 3R152P2O3J Composition: 20K ohms ±5%, 1/4 w. 198209358P16 Variable, carbon film: approx 25 to 2.5K ohms ±10%, 0.2 w; sim to Stackpole R11-44442. Earlier than REV A: 198209358P103 Variable, carbon film: approx 50 to 1k ohms ±10%, 0.2 w; sim to CTS Type X-201. R17 3R152P101J Composition: 100 ohms ±5%, 1/4 w. R28 3R152P120J Composition: 12 ohms ±5%, 1/4 w. R29 3R152P102J Composition: 1k ohms ±5%, 1/4 w. R30 3R152P103J Composition: 10K ohms ±5%, 1/4 w. R32 3R152P153K Composition: 15K ohms ±10%, 1/4 w. R33 3R152P334J Composition: 0.33 megohms ±5%, 1/4 w. R34 3R152P103J Composition: 0.47 megohms ±5%, 1/4 w. R35 3R152P474J Composition: 0.47 megohms ±5%, 1/4 w. R36 3R152P333J Composition: 0.10 megohms ±10%, 1/4 w. R60 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R63 3R152P823J Composition: 82K ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w. Composition: 180 ohms ±10%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w. 100 ohms ±10%, 1/4 w. 100 ohms ±5%, 1/4 w.			
R14* 19B209358Pl16 Variable, carbon film: approx 25 to 2.5K ohms ±10%, 0.2 w; sim to Stackpole R11-44442. Earlier than REV A: 19B209358Pl03 Variable, carbon film: approx 50 to 1K ohms ±10%, 0.2 w; sim to CTS Type X-201. R17 3R152Pl01J Composition: 100 ohms ±5%, 1/4 w. R28 3R152Pl02J Composition: 12 ohms ±5%, 1/4 w. R30 3R152Pl03J Composition: 10K ohms ±5%, 1/4 w. R32 3R152P13K Composition: 15K ohms ±10%, 1/4 w. R33 3R152P334J Composition: 0.33 megohms ±5%, 1/4 w. R34 3R152P103J Composition: 0.47 megohms ±5%, 1/4 w. R36 3R152P33J Composition: 0.47 megohms ±5%, 1/4 w. R37 3R152P104K Composition: 0.10 megohms ±10%, 1/4 w. R60 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R63 3R152P23J Composition: 82K ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w. Composition: 180 ohms ±10%, 1/4 w. Composition: 180 ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w.			
19B209358P103 Variable, carbon film: approx 50 to 1K ohms ±10%, 0.2 w; sim to CTS Type X-201. R17 3R152P101J Composition: 100 ohms ±5%, 1/4 w. R28 3R152P120J Composition: 12 ohms ±5%, 1/4 w. R29 3R152P102J Composition: 1K ohms ±5%, 1/4 w. R30 3R152P103J Composition: 10K ohms ±5%, 1/4 w. R32 3R152P153K Composition: 15K ohms ±10%, 1/4 w. R33 3R152P334J Composition: 0.33 megohms ±5%, 1/4 w. R34 3R152P103J Composition: 10K ohms ±5%, 1/4 w. R35 3R152P103J Composition: 0.47 megohms ±5%, 1/4 w. R36 3R152P333J Composition: 33K ohms ±5%, 1/4 w. R37 3R152P104K Composition: 0.10 megohms ±10%, 1/4 w. R60 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R63 3R152P23J Composition: 82K ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w.	R14*		Variable, carbon film: approx 25 to 2.5K ohms
#10%, 0.2 w; sim to CTS Type X-201. R17			Earlier than REV A:
R28 3R152P120J Composition: 12 ohms ±5%, 1/4 w. R29 3R152P102J Composition: 1K ohms ±5%, 1/4 w. R30 3R152P103J Composition: 10K ohms ±5%, 1/4 w. R32 3R152P153K Composition: 15K ohms ±10%, 1/4 w. R33 3R152P334J Composition: 0.33 megohms ±5%, 1/4 w. R34 3R152P103J Composition: 10K ohms ±5%, 1/4 w. R35 3R152P474J Composition: 0.47 megohms ±5%, 1/4 w. R36 3R152P333J Composition: 33K ohms ±5%, 1/4 w. R37 3R152P104K Composition: 0.10 megohms ±10%, 1/4 w. R60 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R63 3R152P823J Composition: 82K ohms ±5%, 1/4 w. R69 3R152P153J Composition: 15K ohms ±5%, 1/4 w.	:	19B209358P103	Variable, carbon film: approx 50 to 1K ohms ±10%, 0.2 w; sim to CTS Type X-201.
R29 3R152P102J Composition: 1K ohms ±5%, 1/4 w. R30 3R152P103J Composition: 10K ohms ±5%, 1/4 w. R32 3R152P153K Composition: 15K ohms ±10%, 1/4 w. R33 3R152P334J Composition: 0.33 megohms ±5%, 1/4 w. R34 3R152P103J Composition: 10K ohms ±5%, 1/4 w. R35 3R152P474J Composition: 0.47 megohms ±5%, 1/4 w. R36 3R152P333J Composition: 33K ohms ±5%, 1/4 w. Composition: 0.10 megohms ±10%, 1/4 w. R60 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R63 3R152P823J Composition: 82K ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w.	R17	3R152P101J	Composition: 100 ohms ±5%, 1/4 w.
R30 3R152P103J Composition: 10K ohms ±5%, 1/4 w. R32 3R152P334J Composition: 0.33 megohms ±5%, 1/4 w. R33 3R152P334J Composition: 0.33 megohms ±5%, 1/4 w. R34 3R152P103J Composition: 10K ohms ±5%, 1/4 w. R35 3R152P474J Composition: 0.47 megohms ±5%, 1/4 w. R36 3R152P333J Composition: 33K ohms ±5%, 1/4 w. R37 3R152P104K Composition: 0.10 megohms ±10%, 1/4 w. R60 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R63 3R152P823J Composition: 82K ohms ±5%, 1/4 w. R69 3R152P153J Composition: 15K ohms ±5%, 1/4 w.	R28		
R32 3R152P153K Composition: 15K ohms ±10%, 1/4 w. R33 3R152P334J Composition: 0.33 megohms ±5%, 1/4 w. R34 3R152P103J Composition: 10K ohms ±5%, 1/4 w. R35 3R152P474J Composition: 0.47 megohms ±5%, 1/4 w. R36 3R152P333J Composition: 33K ohms ±5%, 1/4 w. R37 3R152P104K Composition: 0.10 megohms ±10%, 1/4 w. R60 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R63 3R152P823J Composition: 82K ohms ±5%, 1/4 w. R69 3R152P153J Composition: 15K ohms ±5%, 1/4 w.	R29		
R33 3R152P334J Composition: 0.33 megohms ±5%, 1/4 w. R34 3R152P103J Composition: 10K ohms ±5%, 1/4 w. R35 3R152P474J Composition: 0.47 megohms ±5%, 1/4 w. R36 3R152P333J Composition: 33K ohms ±5%, 1/4 w. R37 3R152P104K Composition: 0.10 megohms ±10%, 1/4 w. R60 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R63 3R152P823J Composition: 82K ohms ±5%, 1/4 w. R69 3R152P153J Composition: 15K ohms ±5%, 1/4 w.	R30		
R34 3R152P103J Composition: 10K ohms ±5%, 1/4 w. R35 3R152P474J Composition: 0.47 megohms ±5%, 1/4 w. R36 3R152P333J Composition: 33K ohms ±5%, 1/4 w. R37 3R152P104K Composition: 0.10 megohms ±10%, 1/4 w. R60 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R63 3R152P823J Composition: 82K ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w.			1 '
R35 3R152P474J Composition: 0.47 megohms ±5%, 1/4 w. R36 3R152P333J Composition: 33K ohms ±5%, 1/4 w. R37 3R152P104K Composition: 0.10 megohms ±10%, 1/4 w. R60 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R63 3R152P823J Composition: 82K ohms ±5%, 1/4 w. R69 3R152P153J Composition: 15K ohms ±5%, 1/4 w.			
R36 3R152P333J Composition: 33K ohms ±5%, 1/4 w. R37 3R152P104K Composition: 0.10 megohms ±10%, 1/4 w. R60 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R63 3R152P823J Composition: 82K ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w.		!	
R37 3R152P104K Composition: 0.10 megohms ±10%, 1/4 w. R60 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R63 3R152P823J Composition: 82K ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w.		l	1 .
R60 3R152P181K Composition: 180 ohms ±10%, 1/4 w. R63 3R152P823J Composition: 82K ohms ±5%, 1/4 w. R69 3R152P153J Composition: 15K ohms ±5%, 1/4 w. MISCELLANEOUS			
R63 3R152P823J Composition: 82K ohms ±5%, 1/4 w. Composition: 15K ohms ±5%, 1/4 w. MISCELLANEOUS			
R69 3R152P153J Composition: 15K ohms ±5%, 1/4 w.			<u> </u>
MISCELLANEOUS		†	
	R69	3M125D1233	Composition: 15k onms 15%, 1/4 w.
19B219690G1 Handle Assembly.			MISCELLANEOUS
		19B219690G1	Handle Assembly.
		•	
	,		
			· ·
	. 1		
			<u>:</u>
]		
	ĺ		

PRODUCTION CHANGES

Changes in the equipment to improve performance or to simplify circuits are identified by a "Revision Letter", which is stamped after the model number of the unit. The revision stamped on the unit includes all previous revisions. Refer to the Parts List for descriptions of parts affected by these revisions.

REV. A - To help meet -20 dBm output level specification. Changed value of R14.

CHANNEL GUARD FILTER

*. ·

PARTS LIST

LBI4804D

REMOTE AUDIO BOARD

COMPONENT BOARD A2 19D417210G2 REMOTE/REPEAT AUDIO A3 19D417210G3 REMOTE AUDIO
Polyester: 0.047 μf ±10%, 50 VDCW. 19Al16080P103 Polyester: 0.022 μf ±10%, 50 VDCW. 19Al16080P102 Polyester: 0.015 μf ±10%, 50 VDCW. 19Al16080P109 Polyester: 0.22 μf ±10%, 50 VDCW. 55 5494481P111 Ceramic disc: 1000 pf ±20%, 1000 VDCW; sim to RMC Type JF Discap. 5496267P14 Tantalum: 15 μf ±20%, 20 VDCW; sim to Sprague Type 150D. 19Al16080P109 Polyester: 0.22 μf ±10%, 50 VDCW.
19A116080P103 Polyester: 0.022 μf ±10%, 50 VDCW. 19A116080P102 Polyester: 0.015 μf ±10%, 50 VDCW. 19A116080P109 Polyester: 0.22 μf ±10%, 50 VDCW. 19A116080P109 Polyester: 0.22 μf ±10%, 50 VDCW. 19A116080P109 Polyester: 1000 pf ±20%, 1000 VDCW; sim to RMC Type JF Discap. 19A116080P109 Polyester: 0.22 μf ±10%, 50 VDCW. 19A116080P109 Polyester: 0.22 μf ±10%, 50 VDCW. 19A116080P109 Polyester: 0.22 μf ±10%, 50 VDCW.
Polyester: 0.015 μf ±10%, 50 VDCW. 19Al16080P109 Polyester: 0.22 μf ±10%, 50 VDCW. 24 19Al16080P109 Polyester: 0.22 μf ±10%, 50 VDCW. 25 5494481P111 Ceramic disc: 1000 pf ±20%, 1000 VDCW; sim to RMC Type JF Discap. 27 5496267P14 Tantalum: 15 μf ±20%, 20 VDCW; sim to Sprague Type 150D. 28 19Al16080P109 Polyester: 0.22 μf ±10%, 50 VDCW.
Polyester: 0.22 μf ±10%, 50 VDCW. 19A116080P109 Polyester: 0.22 μf ±10%, 50 VDCW. 26 5494481P111 Ceramic disc: 1000 pf ±20%, 1000 VDCW; sim to RMC Type JF Discap. 27 5496267P14 Tantalum: 15 μf ±20%, 20 VDCW; sim to Sprague Type 150D. 28 19A116080P109 Polyester: 0.22 μf ±10%, 50 VDCW.
26 5494481P111 Ceramic disc: 1000 pf ±20%, 1000 VDCW; sim to RMC Type JF Discap. Tantalum: 15 µf ±20%, 20 VDCW; sim to Sprague Type 150D. 19A116080P109 Polyester: 0.22 µf ±10%, 50 VDCW.
RMC Type JF Discap. Tantalum: 15 \(\mu f \) ±20%, 20 VDCW; sim to Sprague Type 150D. 19Al16080P109 Polyester: 0.22 \(\mu f \) ±10%, 50 VDCW.
Type 150D. 19Al16080P109 Polyester: 0.22 μf ±10%, 50 VDCW.
Tantalum: 15 μ f $\pm 20\%$, 20 VDCW; sim to Sprague Type 150D.
210 19A116080P9 Polyester: 0.22 µf ±20%, 50 VDCW.
Ceramic disc: 1000 pf ±20%, 1000 VDCW; sim to RMC Type JF Discap.
Polyester: 0.1 μf ±20%, 50 VDCW.
19All5680P7 Electrolytic: 100 μf +150% -10%, 15 VDCW; sim to Mallory Type TTX.
Tantalum: 47 μ f $\pm 20\%$, 6 VDCW; sim to Sprague Type 150D.
19All5680P7 Electrolytic: 100 µf +150% -10%, 15 VDCW; sim to Mallory Type TTX.
Tantalum: 22 μf ±20%, 15 VDCW; sim to Sprague Type 150D.
Tantalum: 22 μf ±20%, 15 VDCW; sim to Sprague Type 150D.
Polyester: 0.1 μf ±20%, 50 VDCW.
19 19All6080Plll Polyester: 0.47 µf ±10%, 50 VDCW.
20* 19Al16080P104 Polyester: 0.33 μf ±10%, 50 VDCW. Change incorporated in original shipment.
19Al16080P105 Polyester: 0.047 μf ±10%, 50 VDCW.
221 5494481P111 Ceramic disc: 1000 pf ±20%, 1000 VDCW; sim to RMC Type JF Discap.
7489162Plll Silver mica: 22 pf ±10%, 500 VDCW; sim to Electro Motive Type DM-15.
24 19A116080P109 Polyester: 0.22 µf ±10%, 50 VDCW.
25 4029003Pl04 Silver mica: 680 pf ±10%, 500 VDCW; sim to Electro Motive Type DM-20.
26 19A115680P7 Electrolytic: 100 μf +150% -10%, 15 VDCW; sim to Mallory Type TTX.
27 5496267Pl0 Tantalum: 22 μf ±20%, 15 VDCW; sim to Sprague Type 150D.
28 5494481P111 Ceramic disc: 1000 pf ±20%, 1000 VDCW; sim to RMC Type JF Discap.
29 5496267P2 Tantalum: 47 μf ±20%, 6 VDCW; sim to Sprague Type 150D.
Tantalum: 1.0 μ f $\pm 20\%$, 35 VDCW; sim to Sprague Type 150D.
Ceramic disc: 470 pf ±23%, 1000 VDCW; sim to RMC Type JF Discap.
32 5494481P111 Ceramic disc: 1000 pf ±20%, 1000 VDCW; sim to RMC Type JF Discap.
33 19A116080P10 Polyester: 0.33 μf ±20%, 50 VDCW.

*COMPONENTS ADDED, DELETED OR CHANGED BY PRODUCTION CHANGES.

SYMBOL	GE PART NO.	DESCRIPTION	SYMBOL	GE PART NO.	DESCRIPTION
C35	5494481P11	Ceramic disc: 1000 pf ±20%, 1000 VDCW; sim to RMC Type JF Discap.	R12	3R152P153J	Composition: 15K ohms ±5%, 1/4 w.
C36 and C37	5494481P107	Ceramic disc: 470 pf ±20%, 1000 VDCW; sim to RMC Type JF Discap.	R13 R14*	3R152P203J 19B209358P116	Composition: 20K ohms ±5%, 1/4 w. Variable carbon film: approx 25 to 2.5K ohms
657		DIODES AND RECTIFIERS			±10%, 0.2 w; sim to Stackpole R11-44442. Earlier than REV A:
CR1	19A115250P1	Silicon, fast recovery, 225 mA, 50 PIV.		19B209358P103	Variable, carbon film: approx 50 to 1K ohms
CR2 and CR3	4037822P7	Silicon, 1000 mA, 800 PIV.	R15	19B209358P103	±10%, 0.2 w. sim to CTS Type X-201. Variable, carbon film: approx 50 to 1K ohms ±10%, 0.2 w; sim to CTS Type X-201.
CR4 thru	19A115250P1	Silicon, fast recovery, 225 mA, 50 PIV.	R16	3R152P332K	Composition: 3.3K ohms ±10%, 1/4 w.
CR7 CR9	19A115250P1	Silicon, fast recovery, 225 mA, 50 PIV.	R17	3R152P101J	Composition: 100 ohms $\pm 5\%$, $1/4$ w.
and CR10	10111020011	billion, fast recovery, 220 ma, 50 Fiv.	R18	3R152P103J	Composition: 10K ohms ±5%, 1/4 w.
		JACKS AND RECEPTACLES	R19	3R152P134J 3R152P682K	Composition: 0.13 megohm ±5%, 1/4 w. Composition: 6.8K ohms ±10%, 1/4 w.
J1	4033513P4	Contact, electrical: sim to Bead Chain L93-3.	R20 R21	3R152P002K	Composition: 6.8K ohms $\pm 10\%$, $1/4$ w. Composition: 20K ohms $\pm 10\%$, $1/4$ w.
and J2			R22	3R152P153J	Composition: 15K ohms ±5%, 1/4 w.
J3	19A116779P1	Contact, electrical: sim to Molex 08-54-0404.	R23	3R152P102K	Composition: 1K ohms ±10%, 1/4 w.
and J4		(Quantity 3 each connector).	R24	3R152P823J	Composition: 82K ohms ±5%, 1/4 w.
		DLUCS	R25	3R152P273J	Composition: 27K ohms ±5%, 1/4 w.
P6		Connector. (Part of printed board 19D417083P1).	R26	3R152P242J	Composition: 2.4K ohms ±5%, 1/4 w.
1 "		connector. (Fart of printed board 19541/085F1).	R27	3R152P430J	Composition: 43 ohms ±5%, 1/4 w.
		TRANSISTORS	R28	3R152P12OJ	Composition: 12 ohms ±5%, 1/4 w.
Q1 and	19Al16774Pl	Silicon, NPN; sim to Type 2N5210.	R29	3R152P102J	Composition: 1K ohms ±5%, 1/4 w.
Q2			R30	3R152P103J	Composition: 10K ohms ±5%, 1/4 w.
Q3 and	19A115889P1	Silicon, NPN.	R31	3R152P681J	Composition: 680 ohms ±5%, 1/4 w.
Q4			R32	3R152P153K	Composition: 15K ohms ±10%, 1/4 w.
Q5	19A129184P1	Silicon, NPN.	R33	3R152P334J	Composition: 0.33 megohm ±5%, 1/4 w.
Q6	19A116774P1	Silicon, NPN; sim to Type 2N5210.	R34	3R152P103J	Composition: 10K ohms ±5%, 1/4 w.
Q7	19A129184P1	Silicon, NPN.	R35	3R152P474J	Composition: 0.47 megohm ±5%, 1/4 w.
Q8 Q9	19A116774P1 19A115300P4	Silicon, NPN; sim to Type 2N5210. Silicon, NPN.	R36	3R152P333J	Composition: 33K ohms ±5%, 1/4 w.
Q10	19A115889P1	Silicon, NPN.	R37	3R152P104K	Composition: 0.10 megohm ±10%, 1/4 w.
Q11	19A115910P1	Silicon, NPN; sim to Type 2N3904.	R38	3R152P223K	Composition: 22K ohms ±10%, 1/4 w.
Q12	19A115889P1	Silicon, NPN.	R39	19B209358P107	Variable, carbon film: approx 800 to 25K ohms ±10%, 0.25 w; sim to CTS Type X-201.
Q13	19A134137P1	N Type, field effect; sim to Type 2N3458.	R40	3R152P103K	Composition: 10K ohms ±10%, 1/4 w.
Q14	19A115889P1	Silicon, NPN.	and R41		
Q15	19A115910P1	Silicon, NPN; sim to Type 2N3904.	R42	3R152P102J	Composition: 1K ohms ±5%, 1/4 w.
Q16	19A115889P1	Silicon, NPN.	R43	3R152P133J	Composition: 13K ohms ±5%, 1/4 w.
thru Q19			R44	3R152P104K	Composition: 0.10 megohm ±10%, 1/4 w.
Q20	19A116774P1	Silicon, NPN; sim to Type 2N5210.	R45	3R152P331K	Composition: 330 ohms $\pm 10\%$, $1/4$ w.
Q21	19A134137P1	N Type, field effect; sim to Type 2N3458.	R46	3R152P623J	Composition: 62K ohms ±5%, 1/4 w.
Q22	19A115889P1	Silicon, NPN.	R47	3R152P202J	Composition: 2K ohms ±5%, 1/4 w.
		RESISTORS	R48	3R152P152K	Composition: 1.5K ohms ±10%, 1/4 w.
R1 and	3R152P333J	Composition: 33K ohms ±5%, 1/4 w.	R49 R50	3R152P153K 19B209358P103	Composition: 15K ohms ±10%, 1/4 w. Variable, carbon film: approx 50 to 1K ohms ±10%, 0.2 w; sim to CTS Type X-201.
R2	2015201041	Composition: 0.10 magaba 45% 1/4 m	R51	3R152P101K	Composition: 100 ohms ±10%, 1/4 w.
R3 R4	3R152P104J 3R152P204J	Composition: 0.10 megohm ±5%, 1/4 w. Composition: 0.20 megohm ±5%, 1/4 w.	R52	3R152P121K	Composition: 120 ohms ±10%, 1/4 w.
R5	3R152P512K	Composition: 5.1 ohms ±10%, 1/4 w.	R53	3R152P333K	Composition: 33K ohms ±10%, 1/4 w.
R6	3R152P153K	Composition: 15K ohms ±10%, 1/4 w.	R54	3R152P222K	Composition: 2.2K ohms ±10%, 1/4 w.
R7	3R152P393J	Composition: 39K ohms ±5%, 1/4 w.	R55	3R152P333K	Composition: 33K ohms ±10%, 1/4 w.
R8	3R152P154J	Composition: 0.15 megohm ±5%, 1/4 w.	R56	3R152P222K	Composition: 2.2K ohms ±10%, 1/4 w.
R9	3R152P512J	Composition: 5.1K ohms ±5%, 1/4 w.	R57	3R152P394K	Composition: 0.39 megohm ±10%, 1/4 w.
R10	3R152P181K	Composition: 180 ohms ±10%, 1/4 w.	R58	3R152P474J	Composition: 0.47 megohm ±5%, 1/4 w.
Rll	3R152P102K	Composition: 1K ohms ±10%, 1/4 w.	R59	3R152P472J	Composition: 4.7K ohms ±5%, 1/4 w.
			R60	3R152P181K	Composition: 180 ohms ±10%, 1/4 w.
			R61	3R152P103J	Composition: 10K ohms ±5%, 1/4 w.
			R62	3R152P103K	Composition: 10K ohms ±10%, 1/4 w.
			R63	3R152P823J	Composition: 82K ohms ±5%, 1/4 w.
			l I	1	

SYMBOL	GE PART NO.	DESCRIPTION
R64	3R77P621J	Composition: 620 ohms ±5%, 1/2 w.
R65	3R152P623J	Composition: 62K ohms ±5%, 1/4 w.
R66	3R152P101J	Composition: 100 ohms ±5%, 1/4 w.
R67	3R152P223J	Composition: 22K ohms ±5%, 1/4 w.
R68	3R152P100J	Composition: 10 ohms ±5%, 1/4 w.
R69	3R152P153J	Composition: 15K ohms ±5%, 1/4 w.
T1	19Al16736P1	
VR1	19A116325P4	Silicon, Zener; sim to Type 1N5349.
VR2	4036887P2	Silicon, Zener.
	4036555Pl	Insulator, washer: nylon. (Used with Q9).
	1913219690G1	Handle Assembly.
	l l	

PRODUCTION CHANGES

Changes in the equipment to improve performance or to simplify circuits are identified by a "Revision Letter", which is stamped after the model number of the unit. The revision stamped on the unit includes all previous revisions. Refer to the Parts List for descriptions of parts affected by these revisions.

REV. A - To help meet -20 dBm output level specification. Changed value of R14,