Maintenance Manual

Rockwell Modem Model R96FT (19A705178)

U.S. Robotics Courier Modem

Model 2400 (19A149786P1)

Model V.32 (19A149786P2)

CONT ON SHEET 3

SH NO. 2

REVISIONS

ROCKWELL MODEM TEST

TABLE OF CONTENTS

F. C. F. O.

SPECIFICATION/PURCHASE PART DRAWING CONT ON SHEET SH NO. FIRST MADE FOR

TITLE

SCOPE 1.0

2.0

REV NO.

2.1 **GETC SHELF**

DESCRIPTION

- 2.2 ROCKWELL MODEM BOARD
- 2.3 **TEST SOFTWARE**
- 3.0 **SPECIFICATIONS**
 - 3.1 POWER SUPPLY
 - 3.2 **DATA TRANSMISSION**
 - 3.3 APPLICABLE DRAWINGS
- 4.0 TEST EQUIPMENT
- 5.0 **TEST PROCEDURES**
 - 5.1 **TEST PREPARATION**
 - 5.2 ROCKWELL MODEM TEST
- 6.0 PART DRAWING

MADE BY

- 6.1 **VENDOR SPECIFICATION**
- 6.2 MODEM TECHNICAL SPECIFICATIONS

CAUTION

L30

PRINTS TO

MADE BY	K P Dotson 11-19-86	APPROVALS DCB
ISSUED	Nov. 19, 1986	11-18-86

APPROVALS

M. R. P. D.	DIV OR DEPT.

LYNCHBURG

LOCATION

ROCKWELL MODEM TEST

 $\mathop{\mathsf{CONT}}\nolimits\mathop{\mathsf{ON}}\nolimits\mathop{\mathsf{SHEET}}\nolimits 4$

SH NO. 3

REVISIONS

SPECIFICATION/PURCHASE PART DRAWING FIRST MADE FOR

TITLE

REV NO.

F. C. F. O.

This document describes how to test the Rockwell Modem (R96FT) to insure operation of the 9600 bps serial data transmission used in the Public Service Trunked System and Voice Guard® System.

Mechanical and Electrical specifications are also included mounting holes and overall dimensions are on Sh. 9 of this drawing.

L30

MADE BY	K P Dotson 11-19-86	APPROVALS DCB
ISSUED	Nov. 19, 1986	11-18-86

M. R. P. D.	DIV OR DEPT.
LYNCHBURG	LOCATION

CONT ON SHEET 5

SH NO. 4

REVISIONS

REV NO. TITLE

ROCKWELL MODEM TEST SPECIFICATION/PURCHASE PART DRAWING

CONT ON SHEET SH NO. FIRST MADE FOR

F. C. F. O.

2.0 DESCRIPTION

The Rockwell Modem (R96FT) is a purchased part from the Rockwell Corporation used in the GETC™ shelf. The Rockwell Modem is used to transmit and receive 9600 bps serial data to and from four-wire dedicated unconditioned telephone 1 ines under control of the GETC shelf.

2.1 GETC SHELF

The GETC shelf (19D901868) is used to test the Rockwell Modem as part of the shelf assembly.

2.2 PHONE MODEM BOARD (ROCKWELL R96FT)

The Rockwell R96FT is a board level synchronous serial 9600 bit per second modem. The GETC logic board contains phone line interface circuits (T1, T2 etc.) that couple the phone modem to the phone line.

2.3 TEST SOFTWARE

The GETC shelf is used as a test fixture for the test of the Rockwell Modem.

The GETC exercises the testing of the Rockwell Modem via the built in test software known as SIMON on the GETC.

L30

PRINTS TO

MADE BY	K P Dotson 11-19-86	DCB	M. R. P. D.	DIV OR DEPT.	19A705178	
ISSUED	Nov. 19, 1986	11-18-86	LYNCHBURG	LOCATION	CONT ON SHEET 5 SH NO. 4	

A DDD OVAL C

REV NO. TITLE ROCKWELL MODEM TEST

CONT ON SHEET 6

SH NO. 5

REVISIONS

CONT ON SHEET SH NO.

SPECIFICATION/PURCHASE PART DRAWING

FIRST MADE FOR

F. C. F. O.

3.0 SPECIFICATIONS

3.1 POWER SUPPLIES

13.8 volts nominal GETC power supply.

Refer to the GETC test specification (19A705179).

Modem Input Power +5 Volts +/-5% < 700 Ma

+12 Volts +/-5% < 20 Ma -12 Volts +1-5% < 80 Ma

3.2 DATA RATE

Data Rate 9600 +1 -1 Bit/Second Input Level Range - 43 dBm to 0 dBm

Output Level 0 dBm Train Time 30 msec

3.3 APPLICABLE DRAWINGS

DRAWING NO. DRAWING NAME

19D901868 GETC SHELF

19D901855 GETC LOGIC BOARD ASSEMBLY

19D901852 GETC LOGIC BOARD SCHEMATIC DIAGRAM

L30

PRINTS TO

| MADE BY | K P Dotson 11-19-86 | DCB | M. R. P. D. | DIV OR DEPT. | 19A705178 | | I1-18-86 | LYNCHBURG | LOCATION | CONT ON SHEET 6 | SH NO. 5

ROCKWELL MODEM TEST
SPECIFICATION/PURCHASE PART DRAWING
CONT ON SHEET SH NO. FIRST MADE FOR

CONT ON SHEET 7

SH NO. 6

REVISIONS

F. C. F. O.

4.0 RECOMMENDED TEST EQUIPMENT

REV NO.

Refer to the GETC test specification (19A705179).

TITLE

The test equipment necessary to set up the GETC for the Rockwell Modem test is listed blow. This setup is performed once on the specified GETC.

QTY EQUIPMENT TYPE

- 1 6286A DC SUPPLY WITH CURRENT LIMIT (OR EQUIVALENT.)
- 1 OSCILLOSCOPE MEDIUM BANDWIDTH NON-STORAGE
- 1 FREQUENCY METER CAPABLE OF MEASURING 12 MHz
- 1 STANDARD TERMINAL
- 1 TRIPLETT AC VOLT OHMMETER MODEL 630-PL TYPE 5 or DVM
- 1 19D901868 GETC shelf
- PROM with SIMON software (standard Application software)

The equipment necessary to test the Rockwell Modem is a GETC shelf (19D901868).

The GETC is used as a test fixture.

L30

MADE BY	K P Dotson 11-19-86	APPROVALS DCB	M. R. P. D.	DIV OR DEPT.	19A705178
ISSUED	Nov. 19, 1986	11-18-86	LYNCHBURG	LOCATION	CONT ON SHEET 7 SH NO 6

REV NO. TITLE ROCKWELL MODEM TEST

CONT ON SHEET 8

sh no. 7

REVISIONS

CONT ON SHEET SH NO.

SPECIFICATION/PURCHASE PART DRAWING
FIRST MADE FOR

F. C. F. O.

5.0 TEST PROCEDURES

5.1 PREPARATION FOR TEST

Refer to the GETC test specification for certain alignment procedures prior to testing of the Rockwell Modem. Set up terminal with 19.2 KBaud rate, odd parity, full duplex, and all upper case letters. Connect the terminal to the master communication link as follows:

SIGNAL	GETC LOGIC BOARD	TERMINAL (D-TYPE CONNECTOR)
TXD	J8-1	PIN 3	
RXD	J8-2	PIN 2	
GND	J8-3	PIN 7	

SIMON is used to test the Rockwell Modem.

L30

MADE BY	K P Dotson 11-19-86	DCB	M. R. P. D.	DIV OR DEPT.	19A705178	
ISSUED	Nov. 19, 1986	11-18-86	LYNCHBURG	LOCATION	CONT ON SHEET 8	sh no. 7

CONT ON SHEET 9

SH NO. 8

REVISIONS

ROCKWELL MODEM TEST
SPECIFICATION/PURCHASE PART DRAWING
FIRST MADE FOR

TITLE

F. C. F. O.

5.2 ROCKWELL MODEM TEST

REV NO.

The GETC shelf setup procedures to configure it as the test fixture for the Rockwell Modem follows. These procedures need to be implemented only once on the specified GETC shelf to be used as the Rockwell Modem test fixture.

- 1) Plug the Rockwell Modem into J3 on the GETC test fixture.
- 2) Install P11 between J11-1 and J11-2 on the GETC logic board.
- 3) Connect a jumper between J6-7 and J6-9 on the GETC.
- 4) Connect a jumper between J6-6 and J6-8 on the GETC.
- 5) Install a 680 ohm resistor (1/4 watt) between J6-8 and J6-9.
- 6) Adjust R1 to about half range on the GETC.
- 7) Adjust R2 to about half range on the GETC.

The procedures to test the Rockwell Modem follows:

- 1) Plug the Rockwell Modem into the test fixture.
- 2) Apply power (13.8 volts) to the GETC shelf and the SIMON welcome message is displayed on the terminal. The GETC is DTP switch configured for SIMON operation prior to power up. See 19A701179 for dip switch set-up.
- 3) Type "TIM 19" on the terminal to set the time delay from RTS to beginning of data to 250 milliseconds.
- 4) Execute the SIMON command "MDS 1" to select the phone modem for subsequent BER command.
- 5) Execute the SIMON command "BER DE-00=10". This command transmits data and simultaneously checks to see that data is being received. The terminal should respond with the following: Error Count = 0000 Receive Checksum = 00188123

If the terminal does not respond with the above data, the Rockwell Modem has failed the test and needs to be returned to the vendor.

The test continually runs, outputting data to the terminal in 10 second intervals.

After four consecutive test periods (10 seconds per test period) with data outputted to the terminal, the test can be terminated by pressing a CTRL Z or the ESC key on the terminal.

<u>L30</u>

MADE BY	K P Dotson 11-19-86	DCB	M. R. P. D.	DIV OR DEPT.	19A705178	
ISSUED	Nov. 19, 1986	11-18-86	LYNCHBURG	LOCATION	CONT ON SHEET 9 SH NO. 8	

GENERAL 88 ELECTRIC

REV NO.		TITLE	CONT ON SHEET 10	SH NO. 9
		ROCKWELL MODEM TEST		
		SPECIFICATION/PURCHASE PART DRAWING		
CONT ON SHEET	SH NO.	FIRST MADE FOR	FCFO	

6.0 PART DRAWING

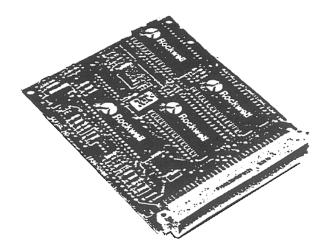
INTRODUCTION

The Rockwell R96FT is a synchronous serial 9600 bps modem designed for multipoint and networking applications. The R96FT allows full-duplex operation over 4-wire dedicated unconditioned lines. or half-duplex operation over the general switched telephone network.

Proprietary fast train configurations provide training times of 23 ms for V.29FT/9600/7200/4800, 22 ms for V.27FT/4800. and 30 ms for V.27FT/2400. A 2400/4800 bps Gearshift configuration provides a training time of 10 ms. For applications requiring operation with international standards, fallback configurations compatible with CCITT recommendations V.29 and V.27 bis/ter are provided. A 300 bps FSK configuration, compatible with CCITT V.21 Channel 2, is also provided.

The small size and low power consumption of the R96FT offer the user flexibility in formulating a 9600 bps modem design customized for specific packaging and functional requirements.

This data sheet corresponds to assembly number TR96D400-061 and subsequent revisions.


FEATURES

- Proprietary Fast Train
- 2400/4800 bps Gearshift
- User Compatibility
 - CCITT V.29, V.27 bis/ter and V.21 Channel 2

19A705178

REVISIONS

- Train on Data
- Full-Duplex (4-Wire)
- Half-Duplex (2-Wire)
- Programmable Tone Generation
- Dynamic Range -43 dBm to 0 dBm
- Diagnostic Capability
- Equalization:
 - Automatic Adaptive
 - Compromise Cable (Selectable)
 - Compromise Link (Selectable)
- DTE Interface:
 - Microprocessor Bus
 - CCITT V.24 (RS-232-C Compatible)
- Loopbacks
 - Local Analog (V.54 Loop 3)
 - Remote Analog (Locally Activated)
 - Remote Digital (Locally ActivatedV.54 Loop 2)
- Small Size
 - 100 mm x 120 mm (4.0 in. x 4.8 in.)
- Low Power Consumption
 - 3 watts, typical
- Programmable Transmit Output Level
- TTL and CMOS Compatible

| Nov. 19, 1986 | Nov. 19, 1986 | Nov. 19, 1986 | M. R. P. D. | DIV OR DEPT. | 19A705178 | LYNCHBURG | LOCATION | CONT ON SHEET 10 | SH NO. 9

L30

CONT ON SHEET 11

TITLE

ROCKWELL MODEM TEST
SPECIFICATION/PURCHASE PART DRAWING

CONT ON SHEET

REV NO.

SH NO.

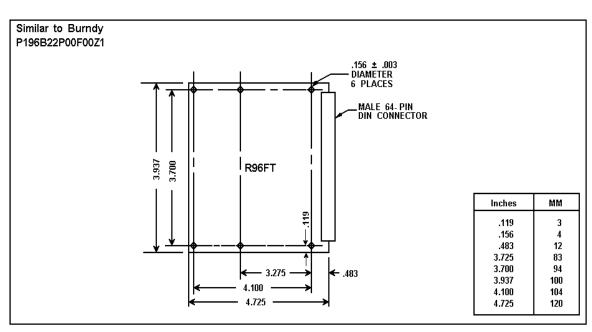
 $\begin{tabular}{ll} SPECIFICATION/PURCHASE\ PART\ DRAWING \\ {\it FIRST\ MADE\ FOR} \end{tabular}$

F. C. F. O.

GENERAL SPECIFICATIONS

POWER

Voltage	Tolerance	Current (Max.)			
+5 Vdc +12 Vdc -12 Vdc	±5% ±5%	<700 mA <30 mA <80 mA			
12 Vac ±5% COUNTA					


Note: All voltages must have ripple ≤0.1 volts peak-to-peak.

ENVIRONMENTAL

Parameter	Specification
Temperature Operating Storage	0°C to + 60°C (32 to 140°F) -40°C to +80°C (-40 to 176°F) Stored in heat sealed antistatic bag and shipping container
Relative Humidity	Up to 90% noncondensing, or a wet bulb temperature up to 35°C, whichever is less.

MECHANICAL

Parameter	Specification
Board Structure	Single PC board with single right angle header with 64 pins. Burndy P196B32R00A00Z1 or equivalent mating connector.
Dimensions	Width - 3.94 in. (100 mm) Length - 4.72 in. (120 mm) Height - 0.4 in. (10.2 mm)
Weight	Less than 3.6 oz (100g)

R Sager	DCB	M. R. P. D.	DIV OR DEPT.	19A705178	
Nov. 19, 1986	11-18-86	LYNCHBURG	LOCATION	CONT ON SHEET 11	sh no. 10

REVISIONS

 ${\rm SH\,NO.\,}10$

L30

TITLE

CONT ON SHEET 12

19A705178

SH NO. 11

REVISIONS

ROCKWELL MODEM TEST SPECIFICATION/PURCHASE PART DRAWING

CONT ON SHEET SH NO. FIRST MADE FOR F. C. F. O.

TECHNICAL SPECIFICATIONS

Transmitter Carrier Frequencies

REV NO.

Function	Frequency (Hz ±0.01%)
V27 bis/ter Carrier	1800
V27FT Carrier	1800
2400/4800 bps Gearshift	1800
V29 Carrier	1700
V29FT Carrier	1700/1800*
V21 Channel 2:	
Mark	1650
Space	1650
*Selectable carrier frequer	ncy

Tone Generation

Under control of the host processor. the R96FT can generate voice band tones up to 4800 Hz with a resolution of 0.15 Hz and an accuracy of 0.01%. Tones over 3000 Hz are attenuated.

Signaling And Data Rates

Parameter	Specification
Signaling Rate:	2400 baud
Data Rate:	9600 bps
	7200 bps
	4800 bps
Signaling Rate:	1600 baud
Data Rate:	4800 bps
Signaling Rate:	1200 baud
Data Rate:	2400 bps
Gearshift Data Rate:	2400/4800 bps
Signaling Rate:	300 baud
Data Rate:	300 bps

Data Encoding

At 2400 baud, the data stream is encoded per CCITT V.29. At 9600 bps, the data stream is divided in groups of fourbits (quadbits) forming a 16-point structure. At 7200 bps, the data stream is divided into three bits (tribits) forming an 8-point structure. At 4800 bps, the data stream is divided into two bits (dibits) forming a 4-point structure.

At 1600 baud, the 4800 bps data stream is encoded into tribits per CCITT V.27 bis/ter.

At 1200 baud, the 2400 bps data stream encoded into dibits per CCITT V.27 bis/ter.

For the Gearshift configuration, the signaling rate is 1200 baud. The 2400 bps data stream is encoded into dibits forming a 4 point structure, and the 4800 bps data stream is encoded into quadbits forming a 16-point structure. The first 32 bauds of data are transmitted at 2400 bps and the remaining message is transmitted at 4800 bps.

At 300 baud, the 300 bps data stream is encoded per CCITT V.21 Channel 2 into a mark frequency of I650 Hz and a space frequency of 1850 Hz

Equalizers

The R96FT provides equalization functions that improve performance when operating over low quality lines.

Cable Equalizers - Selectable compromise cable equalizers in the receiver and transmitter are provided to optimize performance over different lengths of non-loaded cable of 0.4 mm diameter.

Link Equalizers - Selectable compromise link cable equalizers in the receiver optimize performance over channels exhibiting severe amplitude and delay distortion. Two standards are provided: U.S. survey long and Japanese 3-link.

Automatic Adaptive Equalizer - An automatic adaptive T equalizer is provided in the receiver circuit

Transmitted Data Spectrum

If the cable equalizer is no enabled the transmitter spectrum is shaped by the following raised cosine filter functions:

1. 1200 Baud. Square root of 90 percent
 2. 1600 Baud. Square root of 50 percent
 3. 2400 Baud. Square root of 20 percent

The out-of-band transmitter power limitations meet those specified by Part 68 of the FCC's rules, and typically exceed the requirements of foreign telephone regulatory bodies.

PRINTS TO

L30

MADE BY	R Sager	APPROVALS DCB	M. R. P. D.	DIV OR DEPT.	19A705178	
ISSUED	Nov. 19, 1986	11-18-86	LYNCHBURG	LOCATION	CONT ON SHEET 12	SH NO. 11

FRΔI	GE)	ELECTRIC	19A70517
-11/7-	(00)		

ROCKWELL MODEM TEST SPECIFICATION/PURCHASE PART DRAWING CONT ON SHEET SH NO. FIRST MADE FOR

CONT ON SHEET 13

SH NO 12

REVISIONS

F. C. F. O.

Scrambler/Descrambler

REV NO.

The R96FT incorporates a self-synchronizing scrambler/ descrambler. This facility is in accordance with either V.27 bis/ter or V.29 depending on the selected configuration.

TITI F

The scrambler/descrambler facilities for Gearshift can be selected to be in accordance with either V.27 bis/ter or V.29. The scrambler/descrambler selection is made by writing the appropriate configuration codes into the transmitter and receiver.

Received Signal Frequency Tolerance

The receiver circuit of the R96FT can adapt to received frequency error of up to ±10 Hz with less than 0.2 dB degradation in BER performance.

During fast train polling, frequency offset must be less than ±2 Hz for successful training.

Receive Level

The receiver circuit of the modem satisfies all specific performance requirements for received line signal levels from 0 dBm to -43 dBm. The received line signal level is measured at the receiver analog input (RXA).

Receive Timing

The R96FT provides a data derived Receive Data Clock (RDCLK) output in the form of a squarewave. The low-tohigh transitions of this output coincide with the centers of received data bits. For the Gearshift configuration, the first 32 bauds of data are at 2400 bps followed by 4800 bps data for the remaining message. The timing recovery circuit is capable of racking a ±0.01% frequency error in the transmit timing source. \overline{RDCLK} duty cycle is 50.% ± 1 %.

Transmit Level

The transmitter output level is accurate to ± 1.0 dB and is programmable from -1.0 dBm to -15.0 dBm in 2dB steps.

Transmit Timing

The R96FT provides a Transmit Data Clock (TDCLK) output with the following characteristics:

- 1. Frequency. Selected data rate of 9600,7200.4800,2400 or 300 Hz (±0.01%). For the Gearshift configuration, TDCLK is a 2400 Hz clock for the first 32 bauds of data and a 4800 Hz clock for the remaining message.
- 2. *Duty Cycle*. 50% ±1%

Input data presented on TXD is sampled by the R96FT at the low-to-high transition of TDCLK. Data on TXD must be stable for at least one microsecond prior to the rising edge of TDCLK and remain stable for at least one microsecond after the rising edge of TDCLK.

External Transmit Clock

The transmitter Data clock (TDCLK) can be phase locked to a signal on input XTCLK. This input signal must equal the desired data rate ± 0.01 with a duty cycle of 50% ± 20 %.

Train On Data

When train on data is enabled (by setting a bit in the interface memory), the modem monitors the EOM signal. If EOM indicates a loss of equalization (i.e., BER approximately 10⁻³ for 0.5 seconds) the modem attempts to retrain on the data stream. The time for retrain is typically 3 to 15 seconds.

Turn-On Sequence

A total of 20 selectable turn-on sequences can be generated as defined in the following table:

L30

PRINTS TO

MADE BY APPROVALS R Sager DCB ISSUED 11-18-86 Nov. 19, 1986

M. R. P. D. LYNCHBURG LOCATION 19A705178

CONT ON SHEET 13

 $\mathsf{SH}\,\mathsf{NO}.\,\,12$

CI	ΕN	IF	RΛ		<i>H</i>	FI	F	СТЕ	216
J	CIV		nμ	١L	(00)	ᄄᆫ		СІГ	าเบ

Response

	GENERAL	%	ELECTRIC
TITLE			

CONT ON SHEET 14

19A705178

sh no. 13

REVISIONS

ROCKWELL MODEM TEST SPECIFICATION/PURCHASE PART DRAWING

CONT ON SHEET SH NO FIRST MADE FOR

F. C. F. O.

Receive Line Signal Detector (RLSD)

No.	V.29 (bps)	V.27 bis/ter (bps)	Gearshift (bps)	RTS-CTS Response Time (milliseconds)	Comments
1 2 3 4 5	FT/9600 FT/7200 FT/4800	FT/4800 FT/2400		23 24 23 22 30	Proprietary Fast Train
6 7 8 9 10 11 12 13	9600 7200 4800	4800 long 2400 long 4800 short	2400 short	253 253 253 708 943 50 152 67	
14 15 16 17 18 19 20	9600 7200 4800	4800 long 2400 long 4800 short 2400 short		438 438 438 913 1148 255 272	Preceded by Echo Protector Tone for lines using echo suppressers

- For short echo protector tone, subtract I55 ms from values of RTS-CTS response time
- V.21 (300 bps FSK). RTS-CTS, response time is <35 ms.

Turn-Off Sequence

REV NO.

For V.27 bis/ter, V.27FT and 2400/4800 bps Gearshift configurations, the turn-off sequence consists of approximately 10 ms of remaining data and scrambled ones followed by a 20 ms period of no transmitted energy (V.27 bis/ter only). For V.29 and V.29FT, the turn-off sequence consists of approximately 8 ms of remaining data and scrambled ones.

Clamping

Received Data (RXD) is clamped to a constant mark (one) when the Received Line Signal Detector (RLSD) is off.

Response Times Of Clear To Send (\overline{CTS})

The time between the off-to-on transition of Request To Send (RTS) and the off-to-on transition of Clear to Send (CTS) is dictated by the length of the training sequence and the echo protector tone. if used. These times are given in the Turn-on Sequences table. If training is not enabled. RTS/CTS delay is less than 2 baud times.

The time between the on-to-off transition of \overline{RTS} and the on-to-off transition of \overline{CTS} in the data state is a maximum below the actual \overline{RLSD} off threshold. of 2 baud times for all configurations.

For Fast Train and Gearshift configurations, the receiver enters the training state upon detecting a significant increase in the received signal power. If the received line signal power is greater than the selected threshold level at the end of the training state, the receiver enters the Data state and RLSD is activated. If the received line signal power is less than the selected threshold level at the end of the training state, the receiver returns to the idle state and RLSD is not activated.

Also, in Fast Train and Gearshift configurations, the receiver initiates the turn-off delay upon detecting a significant decrease in the received signal power. If the received signal power is less than the selected threshold at the end of the turn-off delay, the receiver enters the idle state and RLSD is deactivated. If the received signal power were greater than the selected threshold at the end of the turn-off delay, the receiver returns to the data state and RLSD is left active.

For CCITT configurations, the receiver enters the training detection state when the received line sign power crosses the selected threshold level. RLSD is activated at the end of the training sequence. For V.21 Channel, a separate received line signal detector (FRLSD) is provided. FRLSD is activate when energy above -43 dB is present at the receiver's audio input (RXA). The FRLSD off-to-on response time is 15 ± 1.5 ms and the on-to-off response time is 25 ±1.5ms.

The $\overline{\text{RLSD}}$ on-to-off response times are:

Configuration	RLSD On-To-Off Response Time (ms)
V.29 Fast Train	6.5 ±1
V.27 Fast Train	8 ±1
Gearshift	6 ±1
V.29	30 ±9
V.27 bis/ter	10 ± 5

RLSD response times are measured with a signal at least 3 dB above the actual RLSD on threshold or at least 5 dB

PRINTS TO

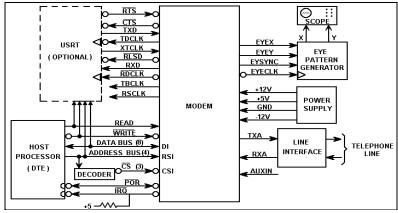
L30

MADE BY	R Sager	APPROVALS DCB	M. R. P. D.	DIV OR DEPT.	19A705178	
ISSUED	Nov. 19, 1986	11-18-86	LYNCHBURG	LOCATION	CONT ON SHEET 14	SH NO. 13

CONT ON SHEET 15

 $\mathsf{SH}\,\mathsf{NO}.\,14$

REVISIONS


REV NO. TITLE

ROCKWELL MODEM TEST SPECIFICATION/PURCHASE PART DRAWING

CONT ON SHEET SH NO

FIRST MADE FOR

F. C. F. O.

R96FT Functional Interconnect Diagram

Threshold Options

Four threshold options are provided:

- 1. Greater than -43 dBm (RLSD on) Less than -48 dBm (RLSD off)
- 2. Greater than -33 dBm (RLSD on) Less than -38 dBm (RLSD off)
- 3: Greater than -26 dBm (RLSD on) Less than -31 dBm (RLSD off)
- 4. Greater than -16 $dBm(\overline{RLSD} \text{ on})$ Less than -21 $dBm(\overline{RLSD} \text{ off})$

NOTE

Performance may be at a reduced level when the received signal is less than -43 dBm.

For CCITT configurations. a minimum hysteresis action of 2dB exists between the actual off-to-on and on-to-off transition levels. The threshold levels and hysteresis action are measured with unmodulated 2100 Hz tone applied to the receiver's audio signal input (RXA)

MODES OF OPERATION

The R96FT capable of being operated in either a serial or a parallel mode of operation.

Serial Mode

The serial mode uses standard V.24 (RS-232-C compatible) signals to transfer channel data. An optional USRT device (shown in the Functional Interconnect Diagram) illustrates this capability.

Parallel Mode

The R96FT has the capability of transferring channel Data (up to eight bits at a time) via the microprocessor bus.

Mode Selection

For the transmitter, a control bit determines whether the source of transmitted data is the V.24 interface (serial mode) or the parallel transmitter data register (parallel mode). The transmitter automatically defaults to three serial mode at power-on.

The receiver simultaneously outputs received data via the V.24 interface and he parallel receiver data register.

In either parallel or serial mode, the R96FT is configured by the host processor via the microprocessor bus.

INTERFACE CRITERIA

The modem interface comprises both hardware and software circuits. Hardware circuits are assigned to specific pins in a 64-pin DIN connector. Software circuits are assigned to specific bits in a 48-byte interface memory.

Hardware Circuits

Signal names and descriptions of the hardware circuits, including the microprocessor interface, are listed in the R96FT Hardware Circuits table. In the table, the column titled "Type" refers to designations found in the Hardware Circuit Characteristics. The microprocessor interface is designed to be directly compatible with an 8080 microprocessor. With the addition of a few external logic gates, it can be made compatible with 6500, 6800 or 68000 microprocessors.

L30

MADE BY	R Sager	APPROVALS DCB	M. R. P. D.	DIV OR DEPT.	19A705178	
ISSUED	Nov. 19, 1986	11-18-86	LYNCHBURG	LOCATION	CONT ON SHEET 15	sh no. 14

GENERAL 8 ELECTRIC

19A705178

CONT ON SHEET 16

ROCKWELL MODEM TEST SPECIFICATION/PURCHASE PART DRAWING

SPECIFICATION/PURCHASE PART DRAWING
CONT ON SHEET SH NO. FIRST MADE FOR

TITLE

F. C. F. O.

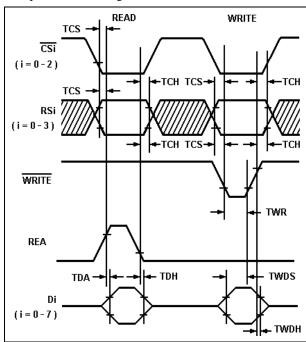
R96FT Hardware Circuits

REV NO.

MADE BY

ISSUED

R Sager


Nov. 19, 1986

Name	Туре	Pin No.	Description
A. OVERHE	AD:		
Ground (A) Ground (D) +5 volts +12 volts -12 volts POR	AGND DGND PWR PWR PWR I/OB	31C, 32C 3C, 8C, 5A, 10A 19C, 23C, 26C, 30C 15A 12A 13C	Analog Ground Return Digital Ground Return +5 Vdc Supply +12 Vdc Supply -12 Vdc Supply Power-on-reset
	l	R INTERFACE:	
D7 D6 D5 D4 D3 D2 D1 D0 RS3 RS2	I/OA I/OA I/OA I/OA I/OA I/OA I/OA I/OA	1C 1A 2C CA 3A 4C 4A 5C 6C	Data Bus (8 Bits)
RS1 RS0	IA IA	7C 7A	Register Select (4 Bits)
CS0 CS1	IA IA	10C 9C	Chip Select - Transmitter Device Chip Select - Receiver Sample Rate Device
CS2	IA	9A	Chip Select - Receiver Baud Rate Device
READ WRITE IRQ	IA IA OB	12C 11A 11C	Read Enable Write Enable Interrupt Request
C. V.24 INTE	RFACE:		•
RDCLK TDCLK XTCLK RTS CTS TXD RXD RLSD	OC OC IB IB OC IB OC	21A 23A 22A 25A 25C 24C 22C 24A	Receive Data Clock Transmit Data Clock External Transmit Clock Request to Send Clear to Send Transmitter Data Receiver Data Received Line Signal Detector
D. ANCILLA	RY CIRCL	JITS:	
RBCLK TBCLK FRXD FRLSD	OC OC OD	26A 27C 16A 17C	Receiver Baud Clock Transmitter Baud Clock FSK Receiver Data (inverted data) FSK Received Line Signal Detector
E. ANALOG	SIGNALS	:	0
TXA RXA AUXIN	AA AB AC	31A 32A 30A	Transmitter Analog Output Receiver Analog Input Auxiliary Analog Input
F. DIAGNOS EYEX EYEY EYECLK EYESYNC	OC OC OA OA	15C 14A 14C 13A	Eye Pattern Data - X Axis Eye Pattern Data - Y Axis Eye Pattern Data Eye Pattern Synchronizing Signal

Eye Pattern Generation

The four hardware diagnostic circuits, identified in the following table, allow the user to generate and display an eye pattern. Circuits EYEX and EYEY serially present eye pattern data for the horizontal and vertical display inputs respectively. The 8 bit data words are shifted out most Significant bit first, clocked by the rising edge of the EYECLK output. The EYESYNC output is provided for word synchronization. The falling edge of EYESYNC may be used to transfer the 8-bit word from the shift register to a holding register. Digital to analog conversion can then be performed for driving the X and Y inputs of an oscilloscope.

Microprocessor Timing

Microprocessor Interface Timing Diagram
Critical Timing Requirements

Characteristic	Symbol	Min	Max.	Units
CSi, RSi setup time prior to Read or Write	TCS	30	_	nsec
Data access time after Read	TDA	_	140	nsec
Data hold time after Read CSi, RSi hold time after	TDH	10	50	nsec
Read or Write	TCH	10	_	nsec
Write data setup time	TWDS	75	_	nsec
Write data hold time	TWDH	10	_	nsec
Write strobe pulse width	TWR	75	_	nsec

DCB	M. R. P. D.	DIV OR DEPT.	19A705178		
11-18-86	LYNCHBURG	LOCATION	CONT ON SHEET 16	sh no. 15	

REVISIONS

SH NO. 15

L30

PRINTS TO

PRINTS

REV NO. TITLE CONT ON SHEET 17

ROCKWELL MODEM TEST SPECIFICATION/PURCHASE PART DRAWING

CONT ON SHEET SH NO. FIRST MADE FOR F. C. F. O.

REVISIONS

SH NO. 16

Digital Interface Characteristics

Digital Interface Characteristics

			Input/Output Type								
Symbol	Parameter	Units	IA	IB	IC	OA	OB	ОС	OD	I/O A	I/O B
V_{IH}	Input Voltage, High	V	2.0 Min.	2.0 Min.	2.0 Min.					2.0 Min.	5.25 Max.
											2.0 Min.
V_{IL}	Input Voltage, Low	V	0.8 Max.	0.8 Max.	0.8 Max.				_	0.8 Max.	0.8 Max.
V_{OH}	Output Voltage, High	V				2.4 Min. ¹	_		2.2 Min. ⁶	2.4 Min. ¹	2.4 Min. ³
V_{OL}	Output Voltage, Low	V				0.4 Max. 2	0.4 Max. ²	0.4 Max. ²	0.6 Max. ⁷	0.4 Max. ²	0.4 Max. ⁵
I _{IN}	Input Current,	μΑ	±2.5 Max.							±2.5 Max.4	
	Leakage										
I _{OH}	Output Current, High	mA				-0.1 Max.					
I _{OL}	Output Current, Low	mA				1.6 Max.	1.6 Max.	1.6 Max.			
ΙL	Output, Current,	μΑ					±10 Max.				
	Leakage										
I_{PU}	Pull-up Current	μΑ		-240 Max.	-240 Max.			-240 Max.			-260 Max.
	(Short Circuit)			-10 Min.	-10 Min.			-10 Min.			-100 Min.
C_L	Capacitive Load	pF	5	5	20					10	40
C _D	Capacitive Drive	pF				100	100	100		100	100
	Circuit type		TTL	TTL	TTL	TTL	Open-Drain	Open-Drain	TTL	3-State	Open-Drain
				w/Pull-up	w/Pull-up		opo Diam	w/Pull-up		Transceiver	w/Pull-up
Notes	1. I Load = -100 μA		3. I Load = -40 μA				5. I Load = 0.36 mA 7. I Load = 2.0 mA				
	I Load = 1.6 mA		4. V _{IN} =	0.4 to 2.4 Vo	$dc, V_{CC} = 5.25$	5 Vdc	6. I Load = -	-400 μA			

Analog Interface Characteristics

Analog Interface Characteristics

Name	Туре	Characteristics
TXA	AA	The transmitter output impedance is 604 ohms $\pm 1\%$.
RXA	AB	The receiver input impedance is 60K ohms $\pm 23\%$.
AUXIN	AC	The auxiliary analog input allows access to the transmitter for the purpose of interacting with user provided equipment. Because this is a sampled data input, any signal above 4800 Hz will cause aliasing errors. The input impedance is 1K ohms, and the gain to transmitter output is TLVL setting +0.6 dB -1.4 dB. If unused, this input must be grounded near the modem connector. If used, it must be driven from a low impedance source.

Software Circuits

The R96FT comprises three signal processor chips. Each of these chips contains 16 registers to which an external (host) microprocessor has access. Although these registers are within the modem, they may be addressed as part of the processor's memory space. The host may read data out of or write data into these registers. The registers are referred to as interface memory. Registers in chip 1 update at half the modem sample rate (4800 bps). Registers in chip 0 and 2 update at the selected baud rate.

When information in these registers is being discussed, the format Y:Z:Q is used. The chip is specified by Y(0-2), the register by Z(0-F), and the bit by Q(0-7, 0 = LSB).

Status Control Bits

The operation of the F96FT is affected by a number of software control inputs These inputs are written into registers within the interface memory via the host microprocessor bus. Modem operation is monitored by various software flags that are read from interface memory via the host microprocessor bus. All status and control bits are defined in the Interface Memory table. Bits, designated by a dash (—) are reserved for modem use only and must not be changed by the host.

RAM Data Access

The R96FT provides the user with access to much of the data stored in the modem's memories. This data is useful for performing certain diagnostic functions

Two RAM access registers in chip 2 allow user access to RAM locations via the X word registers (2:2 and 2:2) and the Y word register (2:1 and 2:0). The access code stored in RAM ACCESS X (2:5) selects the source of data for RAM DATA XM and RAM DATA XL (2:3 and 2:2). Similarly, the access code stored in RAM ACCESS Y (2:4) selects the source of data for RAM DATA Y and RAM DATA YL(2:1 and 2:0).

L30

MADE BY	R Sager	APPROVALS DCB	M. R. P. D.	DIV OR DEPT.	19A705178	•
ISSUED	Nov. 19, 1986	11-18-86	LYNCHBURG	LOCATION	CONT ON SHEET 17	sh no. 16

GENERAL 🚳	ELECTRIC
-----------	----------

19A705178

REVISIONS

REV NO. TITLE CONT ON SHEET 18 SH NO. 17

ROCKWELL MODEM TEST SPECIFICATION/PURCHASE PART DRAWING

CONT ON SHEET SH NO. FIRST MADE FOR F. C. F. O.

Reading of diagnostic RAM data is performed by storing the necessary access codes in 2:5 and 2:4, reading 2:0 to reset the associated data available bit (2:E:0), then waiting for the data available bit to return to a one. Data is now valid and may be read from 2:3 through 2:0.

An additional diagnostic is supplied by the sample rate processor (chip 1). Registers 1:2 and 1:3 supply a 16 bit AGC Gain Word. These two diagnostic data registers are updated at the sample rate during the data state and may be read by the host processor asynchronously.

RAM Access Codes

The RAM access codes defined in the following table allow the host processor to read diagnostic information within the modem.

Baud Rate Processor (Chip 2) RAM Access Codes

No.	Function	X Access	Y Access	Register
1	Equalizer Input	C0	40	0,1,2,3
2	Equalizer Tap Coefficients	81-A0	01-20	0,1,2,3
3	Unrotated Equalizer Output	E1	61	0,1,2,3
4	Rotated Equalizer Output	E2	62	0,1,2,3
5	Decision Points (Ideal Data Points)	E8	68	0,1,2,3
6	Error Vector	E5	65	0,1,2,3
7	Rotation Angle	A7	Not Used	2,3
8	Frequency Correction	A5	Not Used	2,3
9	Eye Quality Monitor (EQM)	AC	Not Used	2,3

Receiver Interface Memory Chip 1 (CS1)

Bit Register	7	6	5	4	3	2	1	0
F		_	_	_	_	_	_	_
Е	RIA	_	_	_	RSB	RIE	_	RDA
D		_	_	_	_	_	_	
С				_	_		_	l
В					_			-
Α	_	_ _ _ _ _ _ _						
9	_	FED	_	_	_	CDET	_	_
8				_	P2DET		_	l
7	R	RTH DDIS — RCF RDIS -						
6	TOD		RE	CEIVER	CONFIG	URATIO	N	
5	_	_	_	_	_	_	_	_
4	_	_	_	_	_	_	_	_
3			AGC	GAIN W	ORD (M	SB)		
2			AGC	GAIN W	ORD (LS	SB)		
1					_	-		-
0			R	ECEIVE	R DATA			
Register Bit	7	6	5	4	3	2	1	0
NOTE: (-	—) indica	ites resei	rved for r	nodem u	se only.			

Transmitter Interface Memory Chip 0 ($\overline{CS0}$)									
Bit Register	7	6	5	4	3	2	1	0	
F	_	_	_	_	_	_	_	_	
Е	TIA	_	_	_	TSB	TIE	_	TBA	
D	_	_	_	_	_	_	_	_	
С	_	_	_	_	_	_	_	_	
В								_	
Α									
9	FSKT	ASCR		1	TCF	DDEE			
8	_	_	_	_	_	_	_	_	
7	RTS	TTDIS	SDIS	MHLD	EPT	TPDM	XCEN	SEPT	
6		Т	RANSM	ITTER C	ONFIGL	IRATION	l		
5			CE	Q	LAEN	LDEN	A3L	D3L	
4	L3ACT	L4ACT	L4HG		TLVL		L2ACT	LCEN	
3				FRE	QM				
2				FRE	QL				
1	_	_		_	-	_	_	_	
0			TR	ANSMIT	TER DA	TA			
Register Bit	7	6	5	4	3	2	1	0	
NOTE: (-	–) indica	tes reser	ved for r	nodem u	se only.	•	•		

Receiver Interface Memory Chip 2 (CS2)

Bit	7	6	5	4	3	2	1	0
Register	,	b	o	4	3	2	ı	U
F	l			_	_	_	_	_
Е	RBIA		l	_	_	RBIE	_	RBDA
D				_			_	_
С				_			_	_
В		-					-	_
Α				_				_
9	_	_	_	_	_	_	_	_
8				_			_	_
7				_			_	_
6				_			_	_
5				RAM AC	CESS X			
4				RAM AC	CESS Y			
3				RAM DA	MX ATA			
2				RAM D	ATA XL			
1		•		RAM DA	MY ATA	•		
0		•		RAM D	ATA YL	•		
Register Bit	7	6	5	4	3	2	1	0

NOTE: (—) indicates reserved for modem use only.

L30

PRINTS TO

R Sager DCB

Nov. 19, 1986

APPROVALS DCB

11-18-86

M. R. P. D. DIV OR DEPT.

LYNCHBURG LOCATION

19A705178

cont on sheet $18\,$ sh no. $17\,$

F. C. F. O.

REVISIONS

PRINTS TO

REV NO. TITLE $\mathsf{SH}\,\mathsf{NO}.\,18$ CONT ON SHEET 19ROCKWELL MODEM TEST SPECIFICATION/PURCHASE PART DRAWING

CONT ON SHEET

FSKT

FSK Transmitter

Configuration

0:9:7

SH NO.

			R96FT Interface N								
Mnemonic	Name	Memory Location				Descr	intion				
ASCR	Append Scrambled Ones	0:9:6	When control bit ASC FT training sequences			d of scran	nbled mark				
A3L	Amplitude 3-Link Select	0:5:1	See LAEN.						•		
CDET	Carrier Detector	1:9:2	When zero, status bit sequence is not in prothe end of the receive 2 baud times after RL	cess. CDI d signal. (ET goes to	a zero at	the start of	f the data	state, and	returns to	a one at
CEQ	Cable Equalizer	0:5:(4,5)	The CEQ Control fiel and receive paths. The								e transmit
				CEQ		C	able Lengt	th (0.4 mn	n diameter)	
				0 1 2 3				0.0 1.8 km 3.6 km 7.2 km			
DDEE	Digital Delay Equalizer Enable	0:9:2	When control bit DDI	EE is a on	e, a fourth	order dig	ital delay	equalizer	is inserted	in the tran	smit path.
DDIS	Descramble Disable	1:7:5	When control bit DDI	S is a one	, the recei	ver descra	mbler circ	uit is rem	oved from	the data p	ath.
D3L	Delay 3-Link Select	0:5:0	See LDEN.								
EPT	Echo Protector Tone	0:7:3	When control bit EPT followed by 20 ms of V.27 and V.29 config	no transn	nitted ener	gy at the s	tart of trar	nsmission.	This option	on is availa	able in the
FED	Fast Energy Detector	1:9:6	When status bit FED passband	is a zero,	it indicate	s that ener	gy above t	he receive	er threshol	d is presen	it in the
(None)	FREQL/FREQM	0:2:0-7	The host processor co							5-bit data v	
	l	0:3:0-7	TREQL and TREQM		in the mit	race men	iory space.	, as shown	below:		vord to the
		0:3:0-7	FREQM Register (0:3	_	in the inte	race men	ory space.	, as shown	below:		vord to the
		0:3:0-7		_	6	5	4	, as shown	below:	1	vord to the
		0:3:0-7	FREQM Register (0:3	3)			T -	T	ı	ı	
		0:3:0-7	FREQM Register (0::	7 2 ¹⁵	6	5	4	3	2	1	0
		0:3:0-7	FREQM Register (0:: Bit: Data Word:	7 2 ¹⁵	6	5	4	3	2	1	0
		0:3:0-7	FREQM Register (0:: Bit: Data Word: FREQL Register (0:2	7 2 ¹⁵	6 2 ¹⁴	5 2 ¹³	4 2 ¹²	3 211	2 2 ¹⁰	1 2 ⁹	0 2 ⁸
		0:3:0-7	FREQM Register (0:2 Bit: Data Word: FREQL Register (0:2 Bit:	7 2 ¹⁵) 7 2 ⁷ or (N) dete	6 2 ¹⁴ 6 2 ⁶ ermines the	5 2 ¹³ 5 2 ⁵	4 2 ¹² 4 2 ⁴	3 2 ¹¹ 3 2 ³	2 2 ¹⁰	1 2 ⁹	0 2 ⁸
		0:3:0-7	Bit: Data Word: FREQL Register (0:2 Bit: Data Word: The frequency number	$ \begin{array}{c} 7 \\ 2^{15} \end{array} $ $ \begin{array}{c} 7 \\ 2^{7} \end{array} $ $ \begin{array}{c} 7 \\ 2^{7} \end{array} $ or (N) detez z ±0.01%	6 2 ¹⁴ 6 2 ⁶ ermines the	5 2 ¹³ 5 2 ⁵ er frequence	4 2 ¹² 4 2 ⁴ y (F) as fo	3 2 ¹¹ 3 2 ³ ollows:	2 2 ¹⁰ 2 2 2 ²	1 2 ⁹ 1 2 ¹	0 2 ⁸ 0 2 ⁰
		0:3:0-7	Bit: Data Word: FREQL Register (0:2 Bit: Data Word: The frequency number F = (0.146486) (N) H Hexadecimal frequency	7 2 ¹⁵ 7 2 ⁷ 7 2 ⁷ 1 (N) dete z ±0.01% cry number number (H	6 2 ¹⁴ 6 2 ⁶ ermines the	5 2 ¹³ 5 2 ⁵ e frequence L, FREQN	4 2 ¹² 4 2 ⁴ y (F) as fo	3 2 ¹¹ 3 2 ³ bllows:	2 2 2 2 2 2 erated ton	1 2 ⁹ 1 2 ¹	0 2 ⁸ 0 2 ⁰
		0:3:0-7	Bit: Data Word: FREQL Register (0:2 Bit: Data Word: The frequency number F = (0.146486) (N) H Hexadecimal frequency	7 2 ¹⁵ 7 2 ⁷ r (N) detez z ±0.01% czy numbe. quency (H	6 2 ¹⁴ 6 2 ⁶ ermines the	5 2 ¹³ 5 2 ⁵ e frequence L, FREQN FREQ OC	4 2 ¹² 4 2 ⁴ y (F) as fo	3 2 ¹¹ 3 2 ³ bllows:	2 2 2 2 2 2 erated ton	1 2 ⁹ 1 2 ¹	0 2 ⁸ 0 2 ⁰
		0:3:0-7	Bit: Data Word: FREQL Register (0:2 Bit: Data Word: The frequency number F = (0.146486) (N) H Hexadecimal frequency	7 2 ¹⁵ 7 2 ⁷ 7 2 ⁷ 1 (N) dete z ±0.01% cry number number (H	6 2 ¹⁴ 6 2 ⁶ ermines the	5 2 ¹³ 5 2 ⁵ e frequence L, FREQN	4 2 ¹² 4 2 ⁴ y (F) as fo	3 2 ¹¹ 3 2 ³ ollows:	2 2 2 2 2 2 erated ton	1 2 ⁹ 1 2 ¹	0 2 ⁸ 0 2 ⁰

MADE BY	K P Dotson 11-19-86	APPROVALS DCB	M. R. P. D.	DIV OR DEPT.	19A705178	
ISSUED	Nov. 19, 1986	11-18-86	LYNCHBURG	LOCATION	CONT ON SHEET 19	sh no. 18

serial mode (see TPDM).

The V.21 Channel 2 (300 bps synchronous FSK) transmitter configuration is selected by setting the FSKT control bit to a one (see TSB). While set to a one, this control bit overrides the configuration

selected by the control code in register 0:6. The FSK data may be transmitted in parallel mode or in

	19A705178
--	-----------

REV NO. TITLE ROCKWELL MODEM TEST

CONT ON SHEET 20

 $\mathsf{SH}\,\mathsf{NO}.\,19$

REVISIONS

CONT ON SHEET SH NO.

SPECIFICATION/PURCHASE PART DRAWING FIRST MADE FOR

F. C. F. O.

R96FT Interface Memory Definitions (Continued)

Mnemonic	Name	Memory Location		Description		
LAEN	Link Amplitude Equalizer Enable	0:5:3	The link amplitude equalizer enable ar receive path according to the following	nd select bits control an	amplitude compromise equalizer in the	
			LAEN	A3L	Curve Matched	
			0 1 1	X 0 1	No Equalizer U.S. Survey Long Japanese 3-Link	
LCEN	Loop Clock Enable	0:4:0	When control bit LCEN is a one, the t	ransmitter clock tracks t	he receiver clock.	
LDEN	Link Delay Equalizer Enable	0:5:2	The link delay equalizer enable and se path according to the following table:	lect bits control a delay	compromise equalizer in the receiver	
			LDEN	D3L	Curve Matched	
			0 1 1	X 0 1	No Equalizer U.S. Survey Long Japanese 3-Link	
L2ACT	Remote Digital Loopback Activate	0:4:1	When control bit L2ACT is a one, the input in accordance with CCITT Reco	receiver digital output i	s connected to the transmitter digital	
L3ACT	Local Analog Loop- back Activate	0:4:7	When control bit L3ACT is a one, the through an attenuator in accordance w		ut is coupled to the receiver analog input ation V.54 loop 3.	
L4ACT	Remote Analog Loopback Activate	0:4:6	When control bit L4ACT is a one, the output through a variable gain amplific		connected to the transmitter analog o CCITT Recommendation V.54 loop 4.	
L4HG	Loop 4 High Gain	0:4:5	When control bit L4HG is a one, the lette gain is zero dB.	oop 4 variable gain amp	lifier is set for +16 dB, and when at zero	
MHLD	Mark Hold	0:7:4	When control bit MHLD is a one, the	transmitter input data st	ream is forced to all marks (ones).	
P2DET	Period 2 Detector	1:8:3	When status bit P2DET is a zero, it into a one at the start of the period N secbis/ter configurations.		equence has been detected. This bit sets significant for CCITT V.29 and V.27	
(None)	RAM Access X	2:5:0-7	Contains the RAM access code used in	n reading chip 2 RAM l	ocations via word X (2:3 and 2:2)	
(None)	RAM Access Y	2:5:0-7	Contains the RAM access code used in	n reading chip 2 RAM l	ocations via word Y (2:3 and 2:2)	
(None)	RAM Data XL	2:2:0-7	Least significant byte of 16-bit word Σ	X used in reading RAM	locations in chip 2.	
(None)	RAM Data XM	2:3:0-7	Most significant byte of 16-bit word X	used in reading RAM	locations in chip 2.	
(None)	RAM Data YL	2:0:0-7	Least significant byte of 16-bit word Y	used in reading RAM	locations in chip 2.	
(None)	RAM Data YM	2:1:0-7	Most significant byte of 16-bit word Y	used in reading RAM	locations in chip 2.	
RBDA	Receiver Baud Data Available	2:E:0	Status bit RBDA goes to a one when the when the host processor reads data from		nto register 2:0. The bit goes to a zero	
RBIA	Receiver Baud Interrupt Active	2:E:7	This status bit is a one whenever the re	eceiver baud rate device	is driving \overline{IRQ} low.	
RBIE	Receiver Baud Interrupt Enable	2:E:2	When the host processor writes a one idriven to zero when status bit RBDA i		the \overline{IRQ} line of the hardware interface is	
RCR	Receiver Carrier Frequency	1:7:2	Control bit RCF selects the demodulat RCF		V.29FT configurations as follows: tor Carrier Frequency	L3
			0		1700 Hz 1800 Hz	

MADE BY	K P Dotson 11-19-86	DCB	M. R. P. D.	DIV OR DEPT.	19A705178	
ISSUED	Nov. 19, 1986	11-18-86	LYNCHBURG	LOCATION	CONT ON SHEET 20	sh no. 19

F. C. F. O.

REVISIONS

		<u> </u>		
REV NO.		TITLE	CONT ON SHEET 21	SH NO. 20
		ROCKWELL MODEM TEST		
CONT ON SHEET	SH NO.	SPECIFICATION/PURCHASE PART DRAWING FIRST MADE FOR	FCFO	

CONT ON SHEET

		R96F	T Interface Memory Definition	s (Continued)		
Mnemonic	Name	Memory Location		Description]
(None)	Receiver Configuration	1:6:0-6	The host processor configures the re field in the interface memory space (code into the receiver configuration	
			Note: The receiver must be disabled	prior to changing configur	ations. See RDIS.	
			Receiver Configuration Control Cod			
			Control codes for the modem receive			
			V.29	vation V.27 bis/ter	Configuration Code (Hex)	
			FT/9600 FT/7200 FT/4800	FT/4800 FT/2400	1C 1A 19 0A 09	
			9600 7200 4800	4800 long 2400 long 4800 short	14 12 11 22 21 02	
			2400/4800 bps Gearshift/V.29 d	2400 short escrambler	01 61 ¹	
			2400/4800 bps Gearshift/V.27 b V.21 Cha		41 ¹ See Note 2	
			hex 44) when the receiver transi 2. The FSK receiver is active at all supplied for FSK message receiver.	tions from the 2400 bps data times. <u>Two a</u> ncillary hardwar otion. FRLSD is described ur s inverted FSK received data	nder the Received Line Signal a. Timing extraction must be performed	
(None)	Receiver Data	1:0:0-7	-		e parallel data mode by reading a data d boundaries as is the transmitter data.	
RDA	Receiver Data Available	1:E:0	Status bit RDA goes to a one when t the host processor reads data from re		egister 1:0. RDA goes to a zero when	
RDIS	Receiver Disable	1:7:1	When control bit RDIS is a one, the all marks. This bit can be used to squ wires. This bit must be set to a one p	ielch the receiver during ha		
RIA	Receiver Interrupt Active	1:E:7	This status bit is a one whenever the	receiver sample rate device	e is driving \overline{IRQ} to zero.	
RIE	Receiver Interrupt Enable	1:E:2	When the host processor writes a on driven to zero when status bit RDA		\overline{IRQ} line of the hardware interface is	
RSB	Receiver Setup Bit	1:E:3	When the host processor changes the write a one in the RSB control bit. R		the RTH field, the host processor must thanges become effective	
RTH	Receiver Threshold Field	1:7:6,7	The receiver energy detector threshold RSB):	ld is set by the RTH field a	ccording to the following codes (see	
			RTH	RLSD On	RLSD Off	
			0	≥ 43 dBm	≥ 48 dBm	L30
			1 2	≥ 33 dBm ≥ 26 dBm	≥ 38 dBm ≥ 31 dBm	
			3	≥ 16 dBm	≥ 21 dBm	
RTS	Request-to-Send	0:7:7	When control bit RTS goes to a one, until RTS is reset to zero, and the turn operation of the hardware RTS control.	n-off sequence has been co		PRINTS TO

MADE BY	K P Dotson 11-19-86	APPROVALS DCB	M. R. P. D.	DIV OR DEPT.	19A705178	
ISSUED	Nov. 19, 1986	11-18-86	LYNCHBURG	LOCATION	CONT ON SHEET 21	sh no. 20

	GENERAL 🐉	ELECTRIC		
TITLE			CONT ON SHEET 22	${\rm SHNO.}21$

Description

When control bit SDIS is a one, the transmitter scrambler circuit is removed from the data path.

ROCKWELL MODEM TEST SPECIFICATION/PURCHASE PART DRAWING FIRST MADE FOR

F. C. F. O.

REVISIONS

PRINTS TO

19A705178

R96FT Interface Memory Definitions (Continued)

REV NO.

CONT ON SHEET

Mnemonic

SDIS

SH NO.

Name

Scrambler Disable

Memory

Location

0:7:5

5015	Scrambici Disabic	0.7.5	when control of 5D15 is a one, in	e transmitter scrambler effect is	removed from the data path.	
SEPT	Short Echo Protector Tone	0:7:0	When control bit SEPT is a one, the (See TSB)	ne echo protector disable tone is 3	30 ms long rather than 185 ms	
TBA	Transmitter Buffer Available	0:E:0	This status bit resets to zero when the transmitter empties register 0:0		transmitter data register 0:0. When	1
TCF	Transmitter Carrier	0:9:3	Control bit TCF selects the modula	ator carrier frequency for V.29FT	configurations as follows:	
	Frequency		TCF	Modular Carr	ier Frequency	
			0	1700 1800) Hz) Hz	
TIA	Transmitter Interrupt Active	0:E:7	This status bit is a one whenever the	ne transmitter is driving IRQ to a	zero.	
TIE	Transmitter Interrupt Enable	0:E:2	When the host processor writes a condriven to zero when status bit TBA		ne of the hardware interface is	
TLVL	Transmitter Level Field	0:4:2-4	The transmitter analog output leve TLVL	l is determined by eight TLVL co Transmitter A		
			0	-1 dBm	•	
			1	-3 dBm		
			2	-5 dBm		
			3	-7 dBm	± 1 dB	
			4	-9 dBm		
			5	-11 dBm		
			6	-13 dBm		
			7	-15 dBm		
			-	above is a 2 dB change ±0.2 dB		
TOD	Train-On-Data	1:6:7	When control bit TOD is a one, it is signal quality degrades sufficiently sequence and enters the force train on-data.	y. When TOD is a one, the moder	n still recognizes a training	
TPDM	Transmitter Parallel Data Mode	0:7:2	When control bit TPDM is a one, to data register (0:0) rather than the s		ansmission form the transmitter	
(None)	Transmitter Configuration	0:6:0-7	The host processor configures the configuration register in its interfactor Transmitter Configuration Control	ce memory space. (See TSB) Codes	yte into the transmitter	
			Control codes for the modem trans	smitter configurations are:		
				guration		
			V.29	V.27 bis/ter	Configuration Code (Hex)	
			FT/9600 FT/7200		1C 1A	
			FT/4800		19	
				FT/4800 FT/2400	0A 09	
			9600	1 1/2400	14	
			7200		12	
			4800	4800 long	11 22	L30
				2400 long	21	
				4800 short 2400 short	02 01	
			2400/4800 bps Gearshift/V.29		61 ¹	
			2400/4800 bps Gearshift/V.27		41 ¹	
			V.21 CI	hannel 2	See FSKT	
			Tone t	ransmit	80	DDINTO TO
			<u> </u>			IPRINTS T

APPROVALS MADE BY K P Dotson 11-19-86 19A705178 **DCB** M. R. P. D. DIV OR DEPT. ISSUED 11-18-86 Nov. 19, 1986 **LYNCHBURG** LOCATION sh no. 21 CONT ON SHEET 22

GENERAL 🍪	ELECTRIC
-----------	----------

REV NO.		TITLE	CONT ON SHEET 23	sh no. 22
		ROCKWELL MODEM TEST		
		SPECIFICATION/PURCHASE PART DRAWING		
CONT ON SHEET	SH NO.	FIRST MADE FOR	FCFO	

R96FT Interface Memory Definitions (Continued)

		Memory									
Mnemonic	Name	Location	Description								
(None)	Transmitter Data	0:0:0-7	The host processor conveys output data to the transmitter in the parallel mode by writing a data byte to the transmitter data register. The data is divided on baud boundaries, as follows:								
			Note: Data is transmitted bit	zero firs	i .						
							Bi	ts			
			Configuration	7	6	5	4	3	2	1	0
			V.29 9600 bps Baud 1 Baud 0								
			V.29 7200 bps Not Used Baud 1 Baud 0								
			V.29 4800 bps Baud 3 Baud 2 Baud 1		Ва	ud 0					
			V.27 4800 bps Not Used			Baud 1			Baud 0		
			V.27 2400 bps Baud 3		Baı	ud 2	Baı	ud 1	Ва	ud 0	
			2400 bps Gearshift Baud 3		Baı	ud 2	Baı	ud 1	Ва	ud 0	
			4800 bps Gearshift		Bai	ud 1			Ва	ud 0	
TSB	Transmitter Setup	0:E:3	When the host processor changes the transmitter configuration, the SEPT bit or the FSKT bit, the host must write a one in this control bit. TSB goes to a zero when the change becomes effective. Worst case setup time is 2 baud + turnoff sequence + training (if applicable).								
TTDIS	Transmitter Train Disable	0:7:6	When control bit TTDIS is a one, the transmitter does not generate a training sequence at the start of transmission. With training disabled, RTS/CTS delay is less than two baud times.								
XCEN	External Clock Enable	0:7:1	When control bit XCEN is a at the hardware input XTCL			er timing	is establi	ished by	the exter	nal clock	supplied

POWER-ON INITIALIZATION

When power is applied to the R96FT, a period of 50 to 350 ms is required for power supply settling. The power-onreset signal (POR) remains low during this period. Approximately 10 ms after the low to high transition of POR, the modem is ready to be configured, and RTS may be activated. If the 5 Vdc power supply drops below 3.5 Vdc for more than 30 msec, the POR cycle is generated.

At POR time the modem defaults to the following configuration: fast train, V.29, 9600 bps, no echo protector tone, 1700 Hz carrier frequency, scrambled ones segment disabled, serial data mode, internal clock, cable equalizers disabled, transmitter digital delay equalizer disabled, transmitter output level set to -1 dBm ± 1 dB, interrupts disabled, receiver threshold set to -43 dBm, and train-ondata enabled.

POR can be connected to a user supplied power-on-reset signal in a wire-or configuration. A low active pulse of 3 usec or more applied to the POR pin causes the modem to reset. The modem is ready to be configured 10 msec after POR is removed.

PERFORMANCE

Whether functioning in V.27, V.29 or the proprietary fast train configurations, the R96FT provides the user with high performance.

19A705178

F. C. F. O.

REVISIONS

Polling Success

In the 9600 bps fast train configuration the modem approaches a 98% success rate over unconditioned 3002 lines for a signal-to-noise ratio of 26 dB, with a received signal level of -20 dBm.

Bit Error Rates

The Bit Error Rate (BER) performance of the modem is specified for a test configuration conforming to that specified in CCITT Recommendation V.56. Bit error rates are measured at a received line signal level of -20 dBm as illustrated.

Phase Jitter

At 2400 bps, the modem exhibits a bit error rate of 10⁻⁶ or less with a signal-to-noise ratio of 12.5 dB in the presence

PRINTS TO

L30

MADE BY	K P Dotson 11-19-86	APPROVALS DCB	M. R. P. D.	DIV OR DEPT.	19A705178	
ISSUED	Nov. 19, 1986	11-18-86	LYNCHBURG	LOCATION	CONT ON SHEET 23	SH NO. 22

CLIVELIAL (CO) LLLCIIIIC	GENERAL	H	ELECTRIC
--------------------------	---------	----------	-----------------

CONT ON SHEET 24

19A705178

 $\mathsf{SH}\,\mathsf{NO}.\,23$

REVISIONS

L30

PRINTS TO

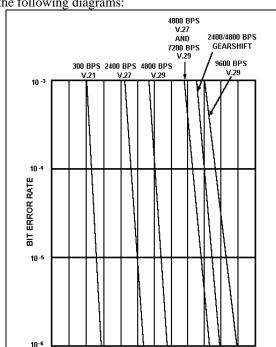
ROCKWELL MODEM TEST

TITLE

CONT ON SHEET SH NO

REV NO.

SPECIFICATION/PURCHASE PART DRAWING FIRST MADE FOR

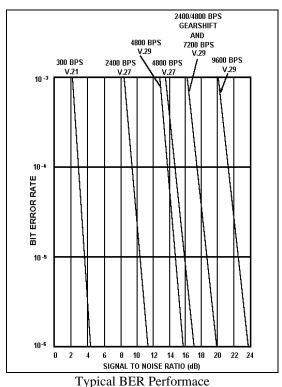

F. C. F. O.

of 15° peak-to-peak phase jitter at 150 Hz, or with a signalto-noise ratio of 15 dB in the presence of 30° peak-to-peak phase jitter at 120 Hz (scrambler inserted).

At 4800 bps (V.27 bis/ter), the modem exhibits a bit error rate of 10⁻⁶ or less with a signal-to-noise ratio of 19 dB in the presence of 15° peak-to-peak phase jitter at 60 Hz.

An example of the BER performance capabilities is given

in the following diagrams:

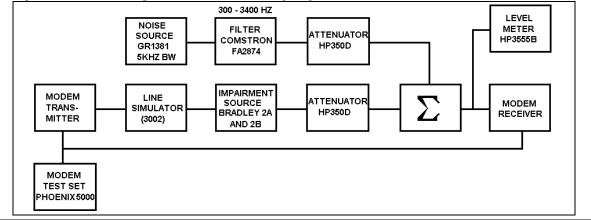


Typical BER Performace Back-to-Back, -20 dBm Receive Signal Level

8 10 12 14

SIGNAL TO NOISE RATIO (dB)

At 9600 bps, the modem exhibits a bit error rate of 10⁻⁶ or less with a signal-to-noise ratio of 23 dB in the presence of 10° peak-to-peak phase jitter at 60 Hz. The modem exhibits a bit error rate of 10⁻⁵ or less with a signal-to-noise ration of 23 dB in the presence of 20° peak-to-peak phase jitter at 30 Hz.



3002 Unconditioned Line, -20 dBm Receive Signal Level

The BER performance test set-up is shown in the following diagram:

18

16

MADE BY APPROVALS R. Sager 19A705178 DCB M. R. P. D. DIV OR DEPT. ISSUED 11-18-86 Nov. 19, 1986 LYNCHBURG LOCATION CONT ON SHEET 24 ${\rm SH\,NO.}~23$

TITLE REV NO. CONT ON SHEET 25sh no. 24

ROCKWELL MODEM TEST SPECIFICATION/PURCHASE PART DRAWING

CONT ON SHEET SH NO. FIRST MADE FOR F. C. F. O.

REVISIONS

INTRODUCTION

The R96FAX, R96DP, R48DP, AND R96FT modems include integrated analog devices using switched capacitor filters to perform the functions of receiver input bandpass filtering, transmitter output lowpass filtering, and compromise equalization. Differences in performance result form half-duplex (HDX) or full-duplex (FDX) versions of the integrated analog device.

R96 FILTERS

The following tables illustrate the response of the receiver input bandpass and transmitter output low pass filters without compromise equalization.

A. Receiver Input Bandpass Filter

Parameter	Value
Test signal range	0 dBm to -45 dBm
Passband	400 Hz - 3000 Hz
Passband ripple	0.5 dB max.
Loss below 60 Hz	40 dB min.
Loss above 6000 Hz	40 dB min.
Passband gain	0.0 dB ± 1.0 dB
Delay distortion 400 Hz - 1800 Hz	Less than 1000 usec
Delay distortion 1800 Hz - 3000 Hz	Less than 150 usec

B. Transmitter Output Lowpass Filter

Parameter	Value
Test signal	0 dBm to -16 dBm
Passband	400 Hz - 3000 Hz
Passband Gain	-1 dB ± 1 dB
Passband ripple	0.5 dB max.
Loss at 3600 Hz	5.5 dB min.
Loss at 7800 Hz	32 dB min.
Loss at 11400 Hz	33.5 dB min.
Loss at 12000 Hz	41 dB min.
Loss above 17400 Hz	45 dB min.
Delay distortion 400 Hz - 3000 Hz	Less than 300 usec

The following tables illustrate the change in filter response caused by enabling each of the compromise equalizers independently.

A. Receiver

1. Link Amplitude Equalizer HDX and FDX.

Frequency	Gain dB Relative to 1700 Hz			
Hz	US Long	Japanese 3 Link		
1000	-0.27	-0.13		
1400	-0.16	-0.08		
2000	+0.33	+0.16		
2400	+1.54	+0.73		
2800	+5.98	+2.61		
3000	+8.65	+3.43		

2. Link Delay Equalizer FDX Only.

Frequency	Delay Microseconds Relative to 1700 Hz		
Hz	US Long	Japanese 3 Link	
800	-498.1	-653.1	
1200	-188.3	-398.5	
1600	-15.1	-30.0	
1700	+0.0	+0.0	
2000	-39.8	+11.7	
2400	-423.1	-117.1	
2800	-672.4	-546.3	

3. Cable amplitude HDX and FDX.

a. Code 1

Frequency	Gain dB Relative to 1700 Hz		
Hz	HDX	FDX	
700	-0.99	-0.94	
1500	-0.20	-0.24	
2000	+0.15	+0.31	
3000	+1.43	+1.49	

L30

PRINTS TO

MADE BY APPROVALS R. Sager DCB ISSUED 11-18-86 Nov. 19, 1986

M. R. P. D. LYNCHBURG LOCATION 19A705178

CONT ON SHEET 25SH NO. 24

REV NO. TITLE

ROCKWELL MODEM TEST

CONT ON SHEET $\,Final\,$ SH NO. 25

REVISIONS

CONT ON SHEET

SH NO.

SPECIFICATION/PURCHASE PART DRAWING FIRST MADE FOR

F. C. F. O.

b. CODE 2

Frequency	Gain dB Re	lative to 1700 Hz
Hz	HDX	FDX
700	-2.39	-2.67
1500	-0.65	-0.74
2000	+0.87	+1.02
3000	+3.06	+3.17

2. Cable Amplitude HDX and FDX.

a. CODE 1

Frequency Hz	Gain dB Relative to 1700 Hz
700	-0.99
1500	-0.20
2000	+0.15
3000	+1.43

c. CODE 3

Frequency	Gain dB Relative to 1700 Hz			
Hz	HDX	FDX		
700	-3.93	-3.98		
1500	-1.22	-1.20		
2000	+1.90	+1.81		
3000	+4.58	+4.38		

b. CODE 2

Frequency Hz	Gain dB Relative to 1700 Hz
700	-2.39
1500	-0.65
2000	+0.87
3000	+3.06

B. Transmitter

1. Link Amplitude Equalizer HDX Only.

Frequency	Gain dB	Relative to 1700 Hz
Hz	US Long	Japanese 3 Link
1000	-0.27	-0.13
1400	-0.16	-0.08
2000	+0.33	+0.16
2400	+1.54	+0.73
2800	+5.98	+2.61
3000	+8.65	+3.43

c. CODE 3

Frequency Hz	Gain dB Relative to 1700 Hz						
700	-3.93						
1500	-1.22						
2000	+1.90						
3000	+4.58						

L30

PRINTS TO

APPROVALS MADE BY R Sager DCB ISSUED 11-18-86 Nov. 19, 1986

M. R. P. D.	DIV OR DEPT.
LYNCHBURG	LOCATION

19A705178 cont on sheet Final

 $\mathsf{SH}\,\mathsf{NO}.\,\,25$

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 1 **of** 33

Documentation Tools: Microsoft Word 6.0 using template file WW60RR01.DOT

Made File: 19A149786.DOC Start Date: 12-OCT-1989 Made By: E. Gaddy

Rev.	Description	Date	Approved By		
0	First Release issued by: E. Gaddy	16 Oct 89	J.S.H.		
1	Rec - ADD PT 3, 4 & 5	5 May 91	Jim Eldin		
1 A	Rec - ADD PT 6 - 14	20 Dec 94	Rene Gomez		

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM FCFO: 19A149786 Sheet 2 of 33

SECTION 1 MODEMS NAMES & PART NUMBERS

PART NUMBER, NAME AND DESCRIPTION

P1: Courier 2400 - 2400 baud modem

P2: Courier V.32 - 9600 2-wire audio modem

P3: (1) **Courier V32** 9600 baud modem.

(1) 220 V Euro Adapter Pt No. 15-332 (installed)

Note -

Same as P2 except for 220 v operation Vendor USRobotics

Vollage Gertageties

P4: USRobotics Rackmount 32 Chassis Pt No. 0111

Comes with 1 power supply and no (zero) modem modules Rack accepts P5 modem modules

P5: USRobotics Rackmount V.32 bis Modem Module Pt NO. 0072

Represents single (qty 1) modem module to be installed in P4 rack

P6: ZYXEL Desktop Modem U-1496 +

Note.-

For 2-wire or 4-wire (leased line) applications

P7: ZyXEL Desktop Modem U-1496+

Note.-

For 2-wire or 4-wire (leased line) applications Same as P6, except for 220V operation Purchasing must specify 220V when ordering (same model number)

P8: ZyXEL 16 Modem Rack RS-1602

Note.

For 2-wire or 4-wire (leased line) applications Recommend to use P9, P10 and P11 with this part

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 3 **of** 33

P9: ZyXEL Redundant Power Supply RDS-PS

Note.-

For use with P8 One for each P8

P10: ZyXEL RS Modular Jack Interface

Note.-

For use with P8 One for each P8

P11: ZyXEL Centronics (Telco) Interface

Note.-

For use with P8 One for each P8

P12: ZyXEL 16 Modem Rack RS-1602 220V

Note.-

For 2-wire or 4-wire (leased line) applications Recommend to use P9, P10 and P11 with this part Same as P8, except for 220V operation Purchasing must specify 220V when ordering (same model number)

P13: ZyXEL Rackmount Modem U1496R+

Note.-

For 2-wire or 4-wire (leased line) applications Rackmodem for use with P8 Up to 16 modems P13 for each P8 (Modem Rack)

P14: ZyXEL Rackmount Modem U1496R+

Note -

Same as P13, except for 220V operation Purchasing must specify 220V when ordering (same model number)

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 4 **of** 33

SECTION 2 US ROBOTICS V.32. CONFIGURATION INFORMATION

Preliminary Information

The following document will cover the programming procedures for the U.S. Robotics Courier V.32 modem when used for the named applications below:

- Dialup System Manager to Site Controller Connection Both Modems
- Dedicated Line System Manager to Site Controller Connection Site Controller Modem
 System Manager Modem
- Dialup System Manager Terminal Connection System Manager Modem Remote Terminal Modem

U.S. Robotics Courier V.32 Modem Configuration Guide

Dialup System Manager to Site Controller Connection:

Both modems are configured as follows:

1) Set modem DIP switches (located on back of modem) as shown:

DUAL	1	2	3	4	5	6	7	8	9	10
U	D	U	D	U	U	U	D	D	D	D

- 2) Attach a terminal or PC to the modem using a straight-through (modem) cable. This may be a full ribbon cable or a DEC BC22E. Set the terminal to 9600 baud, 8-bit, no parity ONLY. Failure to do so will cause unreliable behavior from the modem once it is installed.
- 3) Apply power to the modem. You should be able to type the two letters "AT" followed by a carriage return and receive an "OK" response. If the modem does not respond, check the cable and steps 1-2 above.

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 5 **of** 33

4) Type the following commands in the order shown, following each with a carriage return:

ATS15 = 32(treat DELETE as BACKSPACE) ATS13 = 1(reset on falling DTR) AT&MO (no error control) AT&K0 (no data compression) AT&B1 (fixed DTE rate) AT&N6 (fixed link rate, 9600 baud) (default to tone dialing) ATT ATX6 (fast dial, extended responses) (save in NRAM) AT&W

5) Power off the modem and set the DIP switches as shown:

DUAL	1	2	3	4	5	6	7	8	9	10
U	U	U	U	D	J	J	D	D	D	U

U.S. Robotics Courier V.32 Modem Configuration Guide

Dedicated Line System Manager to Site Controller Connection:

Site Controller modem:

1) Set modem DIP switches (located on back of modem) as shown:

DUAL	1	2	3	4	5	6	7	8	9	10
U	D	U	D	U	D	U	D	D	D	D

- 2) Attach a terminal or PC to the modem using a straight-through (modem) cable. This may be a full ribbon cable or a DEC BC22E. Set the terminal to 9600 baud, 8-bit, no parity ONLY. Failure to do so will cause unreliable behavior from the modem once it is installed.
- 3) Apply power to the modem. You should be able to type the two letters "AT" followed by a carriage return and receive an "OK" response. If the modem does not respond, check the cable and steps 1-2 above.

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM FCFO: 19A149786 Sheet 6 of 33

4) Type the following commands in the order shown, following each with a carriage return:

(treat DELETE as BACKSPACE) ATS15 = 32ATS7 = 255(no carrier detect timeout) AT&MO (no error control) AT&K0 (no data compression) (fixed DTE rate) AT&B1 AT&N6 (fixed link rate, 9600 baud) (leased line mode) AT&L1 AT&S2 (CTS follows DCD) AT&W (save in NRAM)

5) Power off the modem and set the DIP switches as shown:

DUAL	1	2	3	4	5	6	7	8	9	10
U	D	U	U	D	D	U	D	U	D	U

U.S. Robotics Courier V.32 Modem Configuration Guide

Dedicated Line System Manager to Site Controller Connection:

System Manager modem:

1) Set modem DIP switches (located on back of modem) as shown:

DUAL	1	2	3	4	5	6	7	8	9	10
U	D	U	D	U	U	U	D	D	D	D

- 2) Attach a terminal or PC to the modem using a straight-through (modem) cable. This may be a full ribbon cable or a DEC BC22E. Set the terminal to 9600 baud, 8-bit, no parity ONLY. Failure to do so will cause unreliable behavior from the modem once it is installed.
- 3) Apply power to the modem. You should be able to type the two letters "AT" followed by a carriage return and receive an "OK" response. If the modem does not respond, check the cable and steps 1-2 above.

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 7 **of** 33

4) Type the following commands in the order shown, following each with a carriage return:

ATS15 = 32(treat DELETE as BACKSPACE) ATS7 = 255(no carrier detect timeout) ATS13 = 1(reset on falling DTR) AT&MO (no error control) AT&KO (no data compression) (fixed DTE rate) AT&B1 AT&N6 (fixed link rate, 9600 baud) (leased line mode) AT&L1 AT&S2 (CTS follows DCD) AT&W (save in NRAM)

5) Power off the modem and set the DIP switches as shown:

DUAL	1	2	3	4	5	6	7	8	9	10
U	D	U	U	D	U	U	D	U	D	U

NOTE: If the modems lose sync for a long enough time, the System Manager modem will go on-hook and stop trying to re-sync. To force it to re-sync, power if off and back on.

U.S. Robotics Courier V.32 Modem Configuration Guide

Dialup System Manager Terminal Connection:

System Manager Modem:

1) Set modem DIP switches (located on back of modem) as shown:

DUAL	1	2	3	4	5	6	7	8	9	10
U	D	U	D	U	U	U	D	D	D	D

2) Attach a terminal or PC to the modem using a straight-through (modem) cable. This may be a full ribbon cable or a DEC BC22E. Set the terminal to 9600 baud, 8-bit, no parity ONLY. Failure to do so will cause unreliable behavior from the modem once it is installed.

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 8 **of** 33

3) Apply power to the modem. You should be able to type the two letters "AT" followed by a carriage return and receive an "OK" response. If the modem does not respond, check the cable and steps 1-2 above.

4) Type the following commands in the order shown, following each with a carriage return:

ATS15 = 32 (treat DELETE as BACKSPACE)

ATS13 = 1 (reset on falling DTR)

AT&H2 (XON/XOFF flow control on transmit)

AT&B1 (fixed DTE rate)

ATT (default to tone dialing)

ATX6 (fast dial, extended responses)

AT&W (save in NRAM)

5) Power off the modem and set the DIP switches as shown:

DUAL	1	2	3	4	5	6	7	8	9	10
U	U	U	D	U	U	U	D	D	D	U

NOTE: Modem port should be set for 9600 baud, remote, no autobaud.

U.S. Robotics Courier V.32 Modem Configuration Guide

Dialup System Manager Terminal Connection:

Remote Terminal Modem:

1) Set modem DIP switches (located on back of modem) as shown:

DUAL	1	2	3	4	5	6	7	8	9	10
U	D	U	D	U	U	U	D	D	D	D

2) Attach a terminal or PC to the modem using a straight-through (modem) cable. This may be a full ribbon cable or a DEC BC22E. Set the terminal to 9600 baud, 8-bit, no parity ONLY. Failure to do so will cause unreliable behavior from the modem once it is installed.

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM FCFO: 19A149786 Sheet 9 of 33

3) Apply power to the modem. You should be able to type the two letters "AT" followed by a carriage return and receive an "OK" response. If the modem does not respond, check the cable and steps 1-2 above.

4) Type the following commands in the order shown, following each with a carriage return:

ATS15 = 32 (treat DELETE as BACKSPACE)

AT&H2 (XON/XOFF flow control on transmit)

AT&B1 (fixed DTE rate)

ATT (default to tone dialing)

ATX6 (fast dial, extended responses)

AT&W (save in NRAM)

5) Power off the modem and set the DIP switches as shown:

DUAL	1	2	3	4	5	6	7	8	9	10
U	D	U	D	U	U	U	D	D	D	U

NOTE: Terminal should be set for 9600 baud, data leads only (no modem control), XON/XOFF recognition (default for all DEC VT1xx/VT2xx/VT3xx terminals).

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 10 **of** 33

SECTION 3 ZYXEL MODEM CONFIGURATION INFORMATION

Preliminary Information

The following document will cover the programming procedures for the ZyXEL U-1496 + modem when used for the named applications below:

- Site Controller 4 Wire Leased Parameters (to system manager)
- Site Controller 2 Wire Dialup Parameters (to system manager)
- System Manager 4 Wire Leased Parameters (to site)
- System Manager 2 Wire Dialup Parameters (to site)
- System Manager 4 Wire Leased Parameters (to remote terminal)
- System Manager 2 Wire Dialup Parameters (to remote terminal)
- C3 Maestro Console 4 Wire Leased Parameters (to IMC)
- IMC 4 Wire Leased Parameters (to C3 Maestro Console)

It is recommended that the installer become familiar with the modem being installed by reading the modem manual. All configurations are based upon the modem being initially reset to the factory default.

Site Controller 4 Wire Leased Parameters (to system manager)

The ZyXEL U-1496 modem is either desk or rack style. Also, front panel buttons allow programming to be performed without the use of a terminal.

Reset the modem to factory defaults.

From here on, the configuration steps are in point form. Press the MENU, ENTER, \Rightarrow or \Leftarrow buttons to get the following 4 wire, leased configuration (see the menu flow chart in the modem manual if required).

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 11 of 33

Terminal Options

DATA FORMAT ASYNC

CHARACTER LENGTH 10
COMMAND SET AT

DTR RATE OPTIONS FIXED AT DTE RATE

DTR OPTIONS 108.2 + RST

DCD OPTIONS TRACKS CARRIER

RTS OPTIONS IGNORED

DSR OPTIONS DATA SET READY

COMMAND ECHO DISABLED RESULT CODE DISABLED

DATA ASYNC SPEED 9600

Modem Options

LINK OPTIONS MULTIAUTO

QUALITY ACTION ADAPTIVE RATE

DEFAULT DIAL PHO

DIAL BACKUP DISABLED
GUARD TONE NONE
RDL REQUEST GRANT

LLINE TX POWER 0 DBM (-15 if line loss is 0)

PHONE JACK SINGLE RJ11,

MAKE/BREAK RATIO 39%/61%

SECONDARY CHANNEL DISABLED

SYNC CLOCK INTERNAL

AUTO HANDSHAKE ANSWER

LINE TYPE 4W LEASED

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 12 **of** 33

Error Control

CONTROL LEVEL NONE

FLOW CONTROL DISABLED

NEGOTIA FALLBACK STAYS ON-LINE

BREAK HANDLING EXPEDITED

Audio Options

SPEAKER CONTROL ON UNTIL CONNECT

SPEAKER VOLUME 7
RING VOLUME 7

S Registers

Only those registers which are to be changed will be listed. The remaining are left as default.

S23 = 00	Numeric X	0 result	codes v	vith no	command	echo
----------	-----------	----------	---------	---------	---------	------

S35 = 22 Disable abort during handshaking

S38 = 08 Assert CD before initiating CONNECT result

Configuration Save

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 13 **of** 33

Site Controller 2 Wire Dialup Parameters (to system manager)

The ZyXEL U-1496 modem is either desk or rack style. Also, front panel buttons allow programming to be performed without the use of a terminal.

Reset the modem to factory defaults.

From here on, the configuration steps are in point form. Press the MENU, ENTER, \Rightarrow or \Leftarrow buttons to get the following 2 wire, dialup configuration (see the menu flow chart in the modern manual if required).

Terminal Options

DATA FORMAT ASYNC

CHARACTER LENGTH 10
COMMAND SET AT

DTE RATE OPTIONS FIXED AT DTE RATE

DTR OPTIONS 108.2 + RST

DCD OPTIONS TRACKS CARRIER

RTS OPTIONS IGNORED

DSR OPTIONS DATA SET READY

COMMAND ECHO DISABLED RESULT CODES DISABLED

DTE ASYNC SPEED 9600

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 14 of 33

Modem Options

LINK OPTIONS MULTIAUTO
QUALITY ACTION ADAPTIVE

DEFAULT DIAL PHO

DIAL BACKUP DISABLED
GUARD TONE NONE
RDL REQUEST GRANT
LLINE TX POWER O DBM

PHONE JACK SINGLE RJ11,
MAKE/BREAK RATIO 39%/61%
SECONDARY CHANNEL DISABLED
SYNC CLOCK INTERNAL
AUTO HANDSHAKE ANSWER
LINE TYPE DIAL UP

Error Control

CONTROL LEVEL NONE

FLOW CONTROL DISABLED

NEGOTIA FALLBACK STAYS ON-LINE

BREAK HANDLING EXPEDITED

Audio Options

SPEAKER CONTROL ON UNTIL CONNECT

SPEAKER VOLUME 7
RING VOLUME 7

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 15 **of** 33

S Registers

Only those registers which are to be changed will be listed. The remaining are left as default.

S01 = 01	Answer on first ring
S23 = 80	No result codes with no command echo
S35 = 22	Disable abort during handshaking

Configuration Save

Save this configuration in PROFILE 0 under SAVE TO = PROFILE 0. Then set RESET = PROFILE 0 to recall from profile 0 whenever the modem is powered up or reset via DTR.

System Manager 4 Wire Leased Parameters (to site)

The ZyXEL U-1496 modem is either desk or rack style. Also, front panel buttons allow programming to be performed without the use of a terminal.

Reset the modem to factory defaults.

From here on, the configuration steps are in point form. Press the MENU, ENTER, \Rightarrow or \Leftarrow buttons to get the following 4 wire, leased configuration (see the menu flow chart in the modem manual if required).

Terminal Options

DATA FORMAT	ASYNC
CHARACTER LENGTH	10
COMMAND SET	AT

DTE RATE OPTIONS FIXED AT DTE RATE

DTR OPTIONS 108.2 + RST

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 16 of 33

DCD OPTIONS TRACKS CARRIER

RTS OPTIONS IGNORED

DSR OPTIONS DATA SET READY

COMMAND ECHO DISABLED RESULT CODE DISABLED

DTE ASYNC SPEED 9600

Modem Options

LINK OPTIONS MULTIAUTO
QUALITY ACTION ADAPTIVE

DEFAULT DIAL PHO

DIAL BACKUP DISABLED
GUARD TONE NONE
RDL REQUEST GRANT

LLINE TX POWER 0 DBM (-15 if line loss is 0)

PHONE JACK SINGLE RJ11,

MAKE/BREAK RATIO 39%/61%

SECONDARY CHANNEL DISABLED

SYNC CLOCK INTERNAL

AUTO HANDSHAKE ORIGINATE

LINE TYPE 4W LEASED

Error Control

CONTROL LEVEL NONE

FLOW CONTROL DISABLED

NEGOTIA FALLBACK STAYS ON-LINE

BREAK HANDLING EXPEDITED

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 17 **of** 33

Audio Options

SPEAKER CONTROL ON UNTIL CONNECT

SPEAKER VOLUME 7
RING VOLUME 7

S Registers

Only those registers which are to be changed will be listed. The remaining are left as default.

S23 = 00	Numeric X0 result codes with no command
	echo
S35 = 22	Disable abort during handshaking
S38 = 08	CD on before issuing CONNECT result

Configuration Save

Save this configuration in PROFILE 0 under SAVE TO = PROFILE 0. Then set RESET = PROFILE 0 to recall from profile 0 whenever the modem is powered up or reset via DTR.

System Manager 2 Wire Dialup Parameters (to site)

The ZyXEL U-1496 modem is either desk or rack style. Also, front panel buttons allow programming to be performed without the use of a terminal.

Reset the modem to factory defaults.

From here on, the configuration steps are in point form. Press the MENU, ENTER, \Rightarrow or \Leftarrow buttons to get the following 2 wire, dialup configuration (see the menu flow chart in the modern manual if required).

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 18 of 33

Terminal Options

DATA FORMAT ASYNC

CHARACTER LENGTH 10
COMMAND SET AT

DTE RATE OPTION FIXED AT DTE RATE

DTR OPTIONS 108.2 + RST

DCD OPTIONS TRACKS CARRIER

RTS OPTIONS IGNORED

DSR OPTIONS DATA SET READY

COMMAND ECHO DISABLED RESULT CODE DISABLED

DTE ASYNC SPEED 9600

Modem Options

LINE TYPE

LINK OPTIONS MULTIAUTO

QUALITY ACTION ADAPTIVE

DEFAULT DIAL PHO

DIAL BACKUP DISABLED

GUARD TONE NONE RDL REQUEST GRANT LLINE TX POWER O DBM

PHONE JACK SINGLE RJ11,

MAKE/BREAK RATIO 39%/61%
SECONDARY CHANNEL DISABLED
SYNC CLOCK INTERNAL
AUTO HANDSHAKE ORIGINATE

DIAL UP

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 19 **of** 33

Error Control

CONTROL LEVEL NONE

FLOW CONTROL DISABLED

NEGOTIA FALLBACK STAYS ON-LINE

BREAK HANDLING EXPEDITED

Audio Options

SPEAKER CONTROL ON UNTIL CONNECT

SPEAKER VOLUME 7
RING VOLUME 7

S Registers

Only those registers which are to be changed will be listed. The remaining are left as default.

S01 = 01	Answer on first ring
S23 = 00	Numeric X0 result codes with no command echo
S35 = 22	Disable abort during handshaking
S38 = 08	CD on before issuing CONNECT result

Configuration Save

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 20 **of** 33

System Manager 4 Wire Leased Parameters (to remote terminal)

The ZyXEL U-1496 modem is either desk or rack style. Also, front panel buttons allow programming to be performed without the use of a terminal.

Reset the modem to factory defaults.

From here on, the configuration steps are in point form. Press the MENU, ENTER, \Rightarrow or \Leftarrow buttons to get the following 4 wire, leased configuration (see the menu flow chart in the modem manual if required).

Terminal Options

DATA FORMAT ASYNC
CHARACTER LENGTH 10
COMMAND SET AT

DTR RATE OPTIONS FIXED AT DTE RATE

DTR OPTIONS 108.2 + RST

DCD OPTIONS TRACKS CARRIER

RTS OPTIONS IGNORED

DSR OPTIONS DATA SET READY

COMMAND ECHO DISABLED RESULT CODE DISABLED

DATA ASYNC SPEED 9600

Modem Options

LINK OPTIONS MULTIAUTO

QUALITY ACTION ADAPTIVE RATE

DEFAULT DIAL PHO

DIAL BACKUP DISABLED

GUARD TONE NONE RDL REQUEST GRANT

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 21 of 33

LLINE TX POWER 0 DBM (-15 if line loss is 0)

PHONE JACK SINGLE RJ11,
MAKE/BREAK RATIO 39%/61%
SECONDARY CHANNEL DISABLED
SYNC CLOCK INTERNAL
AUTO HANDSHAKE ANSWER
LINE TYPE 4W LEASED

Error Control

CONTROL LEVEL V.42 + V.42bis

FLOW CONTROL DISABLED

NEGOTIA FALLBACK STAYS ON-LINE

BREAK HANDLING EXPEDITED

Audio Options

SPEAKER CONTROL ON UNTIL CONNECT

SPEAKER VOLUME 7
RING VOLUME 7

S Registers

Only those registers which are to be changed will be listed. The remaining are left as default.

\$23 = 00	Numeric XO result codes with no command echo
S35 = 22	Disable abort during handshaking
S38 = 08	Assert CD before initiating CONNECT result

Configuration Save

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 22 **of** 33

System Manager 2 Wire Dialup Parameters (to remote terminal)

The ZyXEL U-1496 modem is either desk or rack style. Also, front panel buttons allow programming to be performed without the use of a terminal.

Reset the modem to factory defaults.

From here on, the configuration steps are in point form. Press the MENU, ENTER, \Rightarrow or \Leftarrow buttons to get the following 2 wire, dialup configuration (see the menu flow chart if required).

Terminal Options

DATA FORMAT ASYNC CHARACTER LENGTH 10

COMMAND SET AT

DTE RATE OPTIONS FIXED AT DTE RATE

DTR OPTIONS 108.2 + RST

DCD OPTIONS TRACKS CARRIER

RTS OPTIONS IGNORED

DSR OPTIONS DATA SET READY

COMMAND ECHO DISABLED RESULT CODE DISABLED

DTE ASYNC RATE 9600

Modem Options

LINK OPTIONS MULTIAUTO
QUALITY ACTION ADAPTIVE

DEFAULT DIAL PHO

DIAL BACKUP DISABLED

GUARD TONE NONE RDL REQUEST GRANT

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 23 **of** 33

LLINE TX POWER 0 DBM

PHONE JACK SINGLE RJ11,
MAKE/BREAK RATIO 39%/61%
SECONDARY CHANNEL DISABLED
SYNC CLOCK INTERNAL
AUTO HANDSHAKE ORIGINATE
LINE TYPE DIAL UP

Error Control

CONTROL LEVEL V.42 + V.42bis
FLOW CONTROL LOCAL XON/XOFF
NEGOTIA FALLBACK STAYS ON-LINE
BREAK HANDLING EXPEDITED

Audio Options

SPEAKER CONTROL ON UNTIL CONNECT

SPEAKER VOLUME 7
RING VOLUME 7

S Registers

Only those registers which are to be changed will be listed. The remaining are left as default.

S01 = 01 Answer on first ring

Configuration Save

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 24 of 33

C3 Maestro Console 4 Wire Leased Parameters (to IMC)

The ZyXEL U-1496 modem is either desk or rack style. Also, front panel buttons allow programming to be performed without the use of a terminal.

Reset the modem to factory defaults.

From here on, the configuration steps are in point form. Press the MENU, ENTER, \Rightarrow or \Leftarrow buttons to get the following 4 wire, leased configuration (see the menu flow chart in the modem manual if required).

Terminal Options

DATA FORMAT ASYNC
CHARACTER LENGTH 10
COMMAND SET AT

DTR RATE OPTIONS FIXED AT DTE RATE

DTR OPTIONS 108.2 + RST

DCD OPTIONS TRACKS CARRIER

RTS OPTIONS IGNORED

DSR OPTIONS DATA SET READY

COMMAND ECHO DISABLED RESULT CODE DISABLED

DATA ASYNC SPEED 9600

Modem Options

LINK OPTIONS MULTIAUTO

QUALITY ACTION ADAPTIVE RATE

DEFAULT DIAL PHO

DIAL BACKUP DISABLED

GUARD TONE NONE

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 25 of 33

RDL REQUEST GRANT

LLINE TX POWER 0 DBM (-15 if line loss is 0)

PHONE JACK SINGLE RJ11,
MAKE/BREAK RATIO 39%/61%
SECONDARY CHANNEL DISABLED
SYNC CLOCK INTERNAL
AUTO HANDSHAKE ORIGINATE

LINE TYPE 4W LEASED

Error Control

CONTROL LEVEL NONE

FLOW CONTROL DISABLED

NEGOTIA FALLBACK STAYS ON-LINE

BREAK HANDLING EXPEDITED

Audio Options

SPEAKER CONTROL ON UNTIL CONNECT

SPEAKER VOLUME 7
RING VOLUME 7

S Registers

All registers are left as default.

Configuration Save

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 26 of 33

IMC 4 Wire Leased Parameters (to C3 Maestro Console)

The ZyXEL U-1496 modem is either desk or rack style. Also, front panel buttons allow programming to be performed without the use of a terminal.

Reset the modem to factory defaults.

From here on, the configuration steps are in point form. Press the MENU, ENTER, \Rightarrow or \Leftarrow buttons to get the following 4 wire, leased configuration (see the menu flow chart in the modem manual if required).

Terminal Options

DATA FORMAT ASYNC CHARACTER LENGTH 10

COMMAND SET AT

DTR RATE OPTIONS FIXED AT DTE RATE

DTR OPTIONS 108.2 + RST

DCD OPTIONS TRACKS CARRIER

RTS OPTIONS IGNORED

DSR OPTIONS DATA SET READY

COMMAND ECHO DISABLED RESULT CODE DISABLED

DATA ASYNC SPEED 9600

Modem Options

LINK OPTIONS MULTIAUTO
QUALITY ACTION ADAPTIVE RATE

DEFAULT DIAL PHO

DIAL BACKUP DISABLED

GUARD TONE NONE RDL REQUEST GRANT

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 27 of 33

LLINE TX POWER 0 DBM (-15 if line loss is 0)

PHONE JACK SINGLE RJ11,
MAKE/BREAK RATIO 39%/61%
SECONDARY CHANNEL DISABLED
SYNC CLOCK INTERNAL
AUTO HANDSHAKE ANSWER

LINE TYPE 4W LEASED

Error Control

CONTROL LEVEL NONE

FLOW CONTROL DISABLED

NEGOTIA FALLBACK STAYS ON-LINE

BREAK HANDLING EXPEDITED

Audio Options

SPEAKER CONTROL ON UNTIL CONNECT

SPEAKER VOLUME 7
RING VOLUME 7

S Registers

All registers are left as default.

Configuration Save

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 28 **of** 33

SECTION 4 ZYXEL WORLDWIDE PTT APPROVALS AND OTHER SPECIFICATIONS

COUNTRY	MODEL #
AUSTRALIA	Е
CANADA	ALL MODELS
CROATIA	S+,E+,E,R+
DENMARK	ALL MODELS
FINLAND	S+,E+,E,B+,B
GERMANY	SG+,EG+.EG
HOLLAND	E+
HONG KONG	All Models
HUNGARY	E+,E
INDIA	S+,E+
INDONESIA	S
IRELAND	S+
ISRAEL	S+,E
JAPAN	E+, Rack Series
JORDAN	S+
MALAYSIA	S+,E+,R
MOROCCO	S+,E,B,R
NEW ZEALAND	S+,E+,E,B+,B
POLAND	S+,E
RUSSIA	S+,E+,E
SAUDI ARABIA	S+
SINGAPORE	All Models
SLOVAK	All Models
SOUTH AFRICA	S+,E+,E,R+,R
SWEDEN	S+,E+,E,R+
SWITZERLAND	All Models
THAILAND	S+
TURKEY	S+,E,B
UNITED STATES	All Models
YUGOSLAVIA	S+,E+,E

S+, S = U1496+ R+,R = U1496R+

Title: MODEMS Document: 19A149786

Rev. 1

FMF: PST SYSTEM **FCFO**: 19A149786 **Sheet** 29 **of** 33

Temperature:

- Safe Operating Range of 0 C to 70 C
- Safe Storage Range of 0 C to 70 C

Humidity:

• Safe Operating Level of 85% at 45 C

19A149786

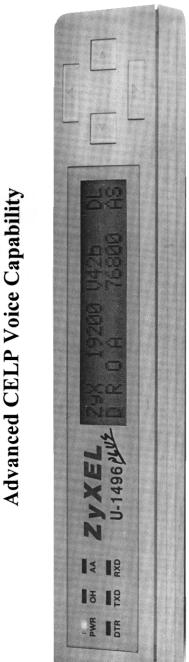
CONT ON SHEET A2

SH NO. A1

TITLE

CONT ON SHEET

REV NO.


SH NO.

FIRST MADE FOR PST SYSTEM

MODEMS

F. C. F. O. 19A149786

REVISIONS

V.32bis, V.32, V.22bis, V.22/BELL 212A, ZyXEL's 19.2Kbps. Ultra High Speed

76.8Kbps Maximum Data Throughput V.21/BELL 103

V.33, V.29, V.27ter

2/4 Wire Leased Line with Dial Backup

V.42bis and MNP®5 Data Compression

V.42 and MNP® 4/3 Error Correction

On-Screen Line Condition Monitoring Auto Dial-up Mode Speed Detection

V.25bis and Enhanced AT Command Set Advanced Digitized Voice Capability Caller ID and Distinctive Ring Remote Configuration

Friendly Menu Control

Line Probing

V.17-14.4Kbps, EIA Class 2, G3 Fax, S&R Full Duplex, async./sync. operation

Automatic Speed Fall-back and Fall-forward Call-Back Security and Password Protection

After the V.Fast standard is finalized, you will be able to upgrade your ZyXEL modem to V.Fast. This will be a trade-in offer, requiring users to send in their modems for an upgrade. Offer valid in USA and Canada only, **ZyXEL Offers The V.Fast Advantage**

L61

PRINTS TO

APPROVALS MADE BY 19 Dec. 1994 E. Gaddy Rene Gomez ISSUED 20 Dec. 94 E. G. 20 Dec. 1994

ZyXEL 19.2Kbps Ultra High Speed

14.4Kbps Data + 14.4Kbps Fax

ZyXEL U-1496 p_{μ}^{μ}

1	9	Α	1	49	7	86
1	J.	α	1	サフ	′ /	oo

CONT ON SHEET A3

SH NO. A2

REVISIONS

F. C. F. O. 19A149786

REV NO. TITLE

MODEMS

SH NO.

FIRST MADE FOR PST SYSTEM

COMPATIBILITYZyXEL's New VoiceFax Software Now available for only \$50

NeXT*, Amiga* computers and a wide range of connectivity ZyXEL U-1496 Plus is compatible with DOS, Windows^a

Operation Mode	Bit Rate (+/-0.01%) bos	Baud Rate (+/-0.01%) bps	Modulation
ZyXEL 19.2	19200	Proprietary	Proprietary
ZvXEL 16.8	16800	Proprietary	Proprietary
V.33	14000	2400	128-TCM
V.33	12000	2400	64-TCM
V.32bis	14400	2400	128-TCM
V.32bis	12000	2400	64-TCM
V.32bis	7200	2400	16-TCM
V.32	0096	2400	32-TCM
V.32	9600 uncoded	2400	16-QAM
V 32	4800	2400	4-DPSK
V.29	0096	2400	16-QAM
V 29	7200	2400	8-QAM
V.29	4800	2400	4-DPSK
V.27ter	4800	1600	ASY-8
V.27ter	2400	1200	4-DPSK
V.22bis	2400	009	16-QAM
V.22/BELL 212A	1200	900	4-DPSK
V.21 BELL 103	300	300	FSK
V.23	1200/75	1200/75	FSK
G3 FAX	Accordi	According to V.17, V.29 and V.27ter	I V.27ter

COMPATIBILITY & SPEED

	Security code protection	Operation Mode	Bit Rate	Baud Rate	Modulation
	*DOS Version Only		(+/-0.01%) bps	(+/-0.01%) bps	
1		ZvXEL 19.2	19200	Proprietary	Proprietary
		ZvXEL 16.8	16800	Proprietary	Proprietary
7	TECHNICAL SPECIFICATIONS	V.33	14000	2400	128-TCM
•		V 33	12000	2400	64-TCM
•	 Data Mode: Asynchronous or synchronous 	V.32bis	14400	2400	128-TCM
•	Asynchronous data format: 8, 9, 10 or 11-bit character	V.32bis	12000	2400	64-TCM
•	Operation Modes: Auto-dial/answer and Manual	V.32bis	7200	2400	16-TCM
•	Option Modes. And district and the second se	V.32	0096	2400	32-TCM
	Originate/answer	V.32	9600 uncoded	2400	16-QAM
•	DTE Interface: EIA-232D/V.24 up to /b.8k.pps	V 32	4800	2400	4-DPSK
•	Error Control: MNP® 4/3 and V.42	V.29	0096	2400	16-QAM
•	Data Compression: MNP5 and V.42bis	V 29	7200	2400	8-QAM
•	Flow Control: Software XON/XOFF or hardware CTS/RTS	V.29	4800	2400	4-DPSK
•	Command Set: Extended AT and V 25his command set.	V.27ter	4800	1600	8-PSK
•	Commission Set. LAtention Classes to make notice December signal	V.27ter	2400	1200	4-DPSK
•	Line Status Monitoring: Signal-to-noise ratio, receive signal	V 22bis	2400	009	16-QAM
	level, Frequency offset, Phase jitter, Ketrain log and Carrier	V.22/BELL 212A	1200	009	4-DPSK
	loss log	V.21 BELL 103	300	300	FSK
•	Diagnostic Modes: Modem full self test, Analog loopback	V.23	1200/75	1200/75	FSK
	(with selftest) Remote divital loopback (with selftest),	G3 FAX	Accordi	According to V.17, V.29 and V.27ter	V.27ter

HARDWARE & SOFTWARE

CONT ON SHEET

systems, and a host of popular communications and fax software on IBM*, PC's/compatibles, terminals with RS232, Macintosh Macintosh® and OS/2® environments and are fully compatible

packages.

Windows and Mac versions support up to 1000

Automatic attendant system

Forward voice/fax calls* fax/voice mailboxes

ZyXEL's 19.2Kbps, ultra high speed, modem/fax Fully compatible with CCITT V.32bis, V.32, V.22bis, V.22/BELL 212A, and V.21/BELL 103, V.23, V.33, V.29

FEATURES

DOS version supports up to 1000 data/fax/voice

Remotely retrieve fax and voice messages Call transfer and fax on demand*

TECHNICAL SPECIFICATIONS

On-line automatic speed fall-back and fall-forward with fast Speed range: 19.2Kbpps, 16.8Kbps, 14.4Kbps, 12Kbps, 9.6Kbps, 7.2Kbps, 4.8Kbps, 2.4Kbps, 1.2Kbps and 300bps

V.42bis data compression with up to 76.8Kbps throughput

rate renegotiation.

Caller ID decoding and Distinctive ring detection

Call-back security and password protection

14.4Kbps G3 FAX send and receive

Remote configuration with modem reset

Digitized voice capability with speech compression

Automatic Data/Fax call detection

EIA Class II Fax Command Set

Offers the ability to upgrade by FIRMWARE

Automatic dial back-up for leased lines

(with self test), Remote digital loopback (with self test), Digital loopback

programmable (with non-volatile memory storage, 4 user Configuration Settings: Software or LCD menu

• LED Status Indicator: PWR, AA, OH, DTR, TXD, RXD
• Line Interface: RJ11 and RJ45 2/4 wire dial-up or leased line Dialing Type: Tone/Pulse dialing

ADPCM Voice Digitization at 28.8Kbps and 19.2 Kbps

Simultaneaous DTMF Detection

Voice AT Command Set

Advanced Voice Digitization (CELP)

Call Progress Monitoring: Dial tone, busy and ring back Audio Monitor: Programmable volume control

Dimensions: 10.5" X 8.75" X 1.75"
US FCC & Canadian DOC approved
All trademarks are property of their respective owner
Specifications are subject to change without notice.

November 1992 ZyXEL U-1496E

The Intelligent Modem 4920 E. La Palma Ave, Anaheim, CA 92807 Tel:: 714-693-0808 Fax: 714-693-8811 BBS:714-693-07622

February 1993 ZyXEL U-1496E Plus

June 29, 1993 ZyXEL U-1496 Plus

June 1993 ZyXEL U-1496E

ZyXEL U-1496 Awarded 5 NeXTWORLD Cubes

BOARDWATCH

L61

PRINTS TO

MADE BY E. Gaddy 19 Dec. 1994

ZÀXEI

APPROVALS 20 Dec. 94

ERICSSON

19A149786

November 1992 ZyXEL U-1496 ZyXEL U-1496E

CONT ON SHEET A3SH NO. A2

E. G. 20 Dec. 1994

Rene Gomez

V.17-14.4Kbps G3 Fax, send and receive

FAX ATTRIBUTES

Line probing

V.27ter G3 Fax up to 4.8Kbps ZyXEL Fax AT commands

V.29 G3 Fax up to 9.6Kbps

EIA Class 2 Fax commands OICE ATTRIBUTES TITLE

CONT ON SHEET A4

sh no. **A**3

REVISIONS

CONT ON SHEET

REV NO.

MODEMS

FIRST MADE FOR PST SYSTEM

F. C. F. O. 19A149786

ZyXEL RS-1602 with the U-1496R

It's 16 to 1, and with **ZyXEL's** Rackmount System, the Odds of Reliable Communication are in Your Favor!

New Options for **ZyXEL's** Rackmount System!

RS Centronics® Interface

Can ZyXEL make it any easier? Absolutely! The Centronics Interface from ZyXEL provides four connector cable outlets for your phone lines. Each outlet is conveniently designated for telephone sets, dial-up, and leased lines.

RS Modular Jack Interface

Stop splitting wires and fumbling with that little screwdriver to connect your modems to your rack. With ZyXEL's New Modular Interface, it's as easy as plugging in the telephone's RJ-45 or RJ-11 phone cords to the back panel of your rack. The Modular Jack Interface comes with a Centronics Interface.

With ZyXEL's RS-1602 Rackmount System, you can control up to sixteen U-1496R modem cards from one central location. And with the high speed and reliability of ZyXEL's award-winning modems, the payoff is maximized with faster and higher connection rates. If you want to increase your odds, the optional Network Management System (NMS) lets you control up to 4096 U-1496R modem cards from a single PC.

ZyXEL U-1496R

The U-1496R is a rack-mountable version of the standalone U-1496 Plus 19.2Kbps ultra high speed modem/fax with voice. The U-1496R supports a wide range of ITU-T (formerly CCITT) standards including V.32 and V.32bis, and is compatible with virtually all low and high speed modems available on the market today.

The U-1496R supports asynchronous and synchronous operations on 2/4-wire leased or dial-up lines. Implementing both V.42bis and MNP*5 data compression protocols, the U-1496R's asynchronous, error-free communications throughput can reach as high as 76.8Kbps.

G3 Fax send and receive capabilities are built-in with the Class 2 Fax Command Set, including the ITU-T V.17-14.4Kbps fax transmission standard.

The U-1496R is the perfect network solution to centralize your high speed modem requirements. Fifteen LED status lights on every card's front panel give a complete monitoring of its operation.

ZyXEL Rack Chassis - RS-1602

Standard features of the RS-1602 include: a single power supply, a 20x4 LCD display menu control panel and four directional keys. The settings of all 16 modern cards can be viewed, changed and saved through the control panel. Dialing, going on/off hook, and performing tests can also be done from the rack's panel.

Network Management System

ZyXEL's NMS is an optional, Windows-based software that lets you manage up to 4096 remote and/or local ZyXEL U-1496Rs from one computer screen! The rack's control card stores each modem card's settings and will automatically configure any newly replaced card to those correct settings.

PRINTS TO

L61

MADE BY

E. Gaddy 19 Dec. 1994

ISSUE

E. G. 20 Dec. 1994

APPROVALS

Rene Gomez 20 Dec. 94

19A149786

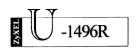
CONT ON SHEET A4

SH NO. A3

REV NO. TITLE

MODEMS

CONT ON SHEET


SH NO.

FIRST MADE FOR PST SYSTEM

F. C. F. O. 19A149786

CONT ON SHEET AFinal SH NO. A4

REVISIONS

TECHNICAL SPECIFICATIONS

Compatibility and Speed

♦V.33, V.32bis, V.32, V.29, V.27ter, V.22bis, V.22/Bell 212A, and V.21/Bell 103

LED Status Indicators

♦PWR, TST, ERR, TXD, RXD, CD, DTR. DSR, RTS, CTS, OH, HS, AA, SQ, and LL

Manual Switches

♦ Voice/Data Toggle and Answer/Originate Mode Setting

Transmit Level

- ◆ -9 or -10 dBm permissive for dial-up line
- ◆ 0 to -27 dBm for leased line

Dialing Type

◆Tone or Pulse

Intelligent Features

- ◆Hot Swap Capability
- ◆Call Progress Monitoring
- ◆Line Status Monitoring
- ◆Signal-to-Noise Ratio
- ◆Receive Signal Level
- ◆Frequency Offset
- ◆Phase Jitter
- ◆Retrain and Carrier Loss Logs

Receive Sensitivity

◆-43 dBm

Asynchronous Data Format

◆8, 9, 10, or 11-bit character

Operation Modes

- ◆Auto-Dial/Answer
- ◆Manual Originate/Answer

Error Control ♦MNP 4/3 & V.42

Data Compression

♦MNP 5 & V.42bis

Flow Control

◆XON/XOFF or RTS/CTS

Configuration Settings

- ◆Software or central panel LCD menu programmable
- ◆Non-volatile memory storage

Diagnostic Modes

- ◆Modem full self-test
- ◆Analog loopback (with self-test)
- ◆Remote digital loopback (with self-test)
- ◆Digital loopback

Command Set

◆Extended AT Command Set, V.25bis

Fax Features

- ◆G3 Fax send and receive
- ♦V.17 14.4Kbps transmission rate
- ◆EIA Class 2 Fax Command Set

DTE Interface

- ◆EIA-232D/V.24
- ◆Speed: 300bps to 76.8Kbps

Features

- ZyXEL's 19.2Kbps, ultra high speed modem/fax
- On-line automatic fall-back/ fall-forward with fast rate renegotiation
- V.42bis data compression with up to 76.8Kbps throughput
- Caller ID and Distinctive Ring
- Remote configuration
- Call-Back Security and Password Protection
- V.17 14.4Kbps G3 Fax send and receive
- EIA Class 2 Fax Command Set
- Automatic Data/Fax call detection
- Digitized Voice capability with Speech Compression
- Automatic dial back-up for leased lines
- Line probing techniques
- Upgradable by firmware

Width: 19 in. (483 mm) Height: 7 in. (178 mm) Depth: 12 in. (305 mm) Weight: Rack Chassis: 27 lbs. US FCC & Canadian DOC appro US FCC & Canadian DOC approved.

All trademarks are the property of their respective own
Specifications are subject to change without notice.

TECHNICAL SPECIFICATIONS

Capacity

♦1 to 16 U-1496R modem cards

Central Front Panel Control

- ♦20x4 character LCD display
- ♦4 kev menu control
- ♦Operation Control **♦**Line condition monitoring
- ◆Configuration setting and parameter checking

- ♦16 DB25s connectors for DTE connection
- ♦16 8-pole terminal blocks for 2/4-wire leased line, dial-up line, and phone connections
- ◆Two RJ-11 interface jacks on rear panel

Power Supply

- ♦50/60 Hz, 150 Watts
- ◆AC 110VAC or 220VAC input (+/- 15%)
- ◆ Redundant Power Supply (Optional)

Network Management System

- ◆Runs in the Windows 3.x environment
- ◆ Remote configuration/testing
- ◆Controls and monitors individual modems

BOARDWATCH

- ◆Collects system statistics
- Generates reports

ZyXEL's entire line of award-winning modems - the intelligent choice for high-speed, reliable data transmission. From ZyXEL's Rackmount System to its new portable, ZyXEL modems provide a total communications solution. They are compatible with DOS*, Windows*, Mac*,

solution for SysOps - the RS-1602E, with U-1496RE and U-1496RE

UNIX® and OS/2® environments. ZyXEL has a new rackmount that is an ideal, low cost

ZyXEL

The Intelligent Modem

PRINTS TO

L61

MADE BY

E. Gaddy 19 Dec. 1994 APPROVALS

20 Dec. 94

4920 E. La Palma Ave. Anaheim, CA 92807 Tel: 714-693-0808 Fax: 714-693-0705 BBS: 714-693-0762

19A149786

CONT ON SHEET AFIN al SH NO. A4

E. G. 20 Dec. 1994

Rene Gomez