LBI-38641D

MAINTENANCE MANUAL FOR VHF RECEIVER SYNTHESIZER MODULE 19D902781G1 & G2

TABLE OF CONTENTS	
	<u>Page</u>
DESCRIPTION	Front Cove
GENERAL SPECIFICATIONS	1
CIRCUIT ANALYSIS VOLTAGE CONTROLLED OSCILLATOR BUFFER AMPLIFIERS REFERENCE OSCILLATOR AND BUFFER PRESCALER AND SYNTHESIZER LOOP FILTER DIGITAL CONTROL VOLTAGE REGULATORS	2 2 2 2 2 2 2 2 2 2
MAINTENANCE	3 3 3
ASSEMBLY DIAGRAM	4
OUTLINE DIAGRAM	5
SCHEMATIC DIAGRAM	6
PARTS LIST	12
PRODUCTION CHANGES	13
IC DATA	13

DESCRIPTION

The Receiver Synthesizer Module provides the local oscillator signal (LO) to the Receiver Front End Module of the MASTR III base station. The module also provides the reference oscillator signal to the transmitter synthesizer. Receiver Synthesizer Module 19D902781G1 (Group 1) generates an output injection signal in the 157 to 172 MHz range, and 19D902781G2 (Group 2) generates a signal in the 129 to 152 MHz Range.

The Receiver Synthesizer Module is a phase-locked loop (PLL) design, as shown in the block diagram (Figure 1). Its output is generated directly by the VCO Q1 and buffered by Monolithic Microwave Integrated Circuits (MMIC) U1 and U3.

The logic signals from controller (U10, 12, and 13) determine the synthesizer frequency. Frequency stabil-

ity is maintained by either using the internal reference oscillator Y1 or by applying a high precision reference signal to the EXT Reference Oscillator Port J4. The internal reference oscillator is a temperature controlled crystal oscillator (TCXO) operating at 12.8 MHz. The oscillator has a stability of ± 1.5 ppm over the temperature range of -30°C to +75°C. See the table containing General Specifications for the minimum external oscillator specifications.

The buffered VCO output is sampled by the resistive splitter and conditioned by buffer amplifier U2. It is then fed to the divide by 64/65 dual modulus prescaler U5. The divided output from the prescaler is connected to the F_{in} input of the PLL U6. Within the PLL the divided VCO input signal F_{in} is divided again. The PLL also divides down the 12.8 MHz reference signal. Three inputs from the controller; ENABLE, CLOCK, and serial DATA program the PLL divider circuits.

Ericsson Inc.
Private Radio Systems
Mountain View Road
Lynchburg, Virginia 24502
1-800-528-7711 (Outside USA, 804-528-7711)

The divided reference signal and the divided VCO signal are compared in the PLL phase detector. When the reference and VCO signals are identical the PLL phase detector generates a constant DC output voltage. This voltage is buffered by U8 and filtered by the loop filter circuit. It is then applied to Q1 setting the VCO on frequency.

If the compared frequencies (phases) differ, an error voltage is generated which adjusts the VCO frequency. During this out-of-lock condition, the PLL also sends a Lock Detect signal (LD) to the controller and lights the FAULT LED on the front panel of the module.

TABLE 1 - GENERAL SPECIFICATIONS	
ITEM	SPECIFICATION
FREQUENCY TUNING Output Injection Signal	157.4 MHz - 172.2 MHz (Group 1) 129.4 MHz - 152.6 MHz (Group 2)
Electrical Full Specifications Degraded Specifications Channel Spacing	2 MHz 3 MHz 5 kHz
FREQUENCY STABILITY	±1.5 ppm
LO POWER OUTPUT	1.5 dBm ±1.5 dBm
LO NOMINAL IMPEDANCE	50 OHMS
PHASE NOISE @ 25 kHz Offset @ 30 kHz Offset	-142 dBc/Hz -147 dBc/Hz
HUM AND NOISE Companion Receiver	-60 dB
HARMONICS @ LO PORT	<-30 dBc
SWITCHING SPEED	< 50 ms
CURRENT DRAIN +13.8V +12V	<200 mA <50 mA
REFERENCE OSCILLATOR Frequency Output Power Output Impedance	12.8 MHz ±1.5 ppm 0 dBm ±1.5 dBm 50 ohms
EXT. REFERENCE OSCILLATOR Frequency Output Power Output Impedance	5.00 MHz to 17.925 MHz (must be divisible by channel spacing) 10 dBm ±3 dBm into 50 ohms 50 ohms

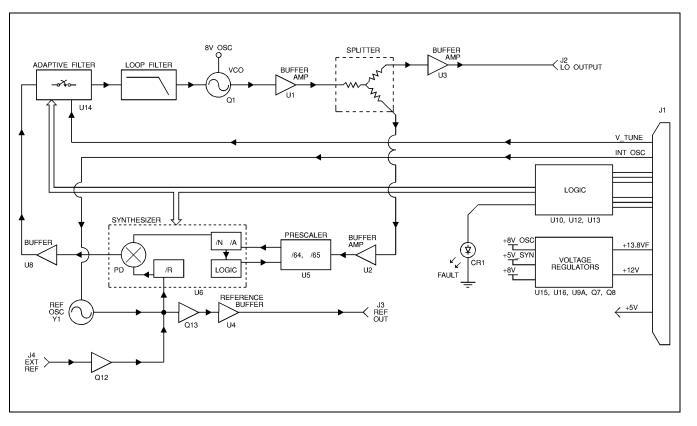


Figure 1 - Receiver Synthesizer Block Diagram

CIRCUIT ANALYSIS

The Receiver Synthesizer Module consists of the following circuits:

- Voltage Controlled Oscillator
- Buffer Amplifiers
- Reference Oscillator and Buffer
- Prescaler and Synthesizer
- Loop Filter
- Digital Control
- Voltage Regulators

VOLTAGE CONTROLLED OSCILLATOR

The free running Voltage Controlled Oscillator (VCO) is composed of a grounded-gate JFET (Q1) and associated circuitry. Inductor L10 and associated capacitors form the

resonant tank circuit. The circuit's use of high-Q components minimizes phase noise.

Frequency tuning of the VCO is done by changing the DC output voltage level from the loop filter U14. The Loop Filter Out signal from U14 is routed through L4 and R3 and applied to the two varicap diodes D4 and D5. The voltage level applied determines the diodes' capacitance and sets the resonant frequency of the oscillator. If the VCO drifts or the frequency is changed, the DC voltage level changes causing the VCO's resonant frequency to change. The output of the oscillator is then applied to a buffer amplifier. Course adjustment of frequency is done by adjusting trimmer capacitor C52 while applying a calibration voltage to the V_TUNE line connected to U14.4-11.

BUFFER AMPLIFIERS

The MMIC Buffer Amplifier stage is composed of three MMICs (U1, U2, and U3) and a resistive splitter. The amplifiers serve two purposes; amplifying the local oscillator signal (LO OUTPUT) for injection into the Receiver Front End assembly and providing a feedback signal to the synthesizer phase-locked Loop (PLL).

LBI-38641

Integrated circuits U1 and U3 provide amplification of the local oscillator signal. The output of U1 is fed to a resistive signal splitter composed of R13 through R18. One of the resistive signal splitter outputs drives amplifier U3. The U3 output signal is coupled by C17 to a low-pass filter network (C24 and C25, L6, L8, and L9) and a resistive pad (R25, R26 and R30) for isolation. The local oscillator signal is finally routed to J2, LO OUT, for connection to the Receiver Front End Assembly. The LO output level at BNC connector J2 is nominally 0 dBm.

The other output of the resistive signal splitter drives U2. The amplified output from U2, PRESCALER BUFFER OUT, is coupled to the 50 ohm input of the prescaler U5 via capacitors C16 and C45.

REFERENCE OSCILLATOR AND BUFFER

The reference oscillator section provides a reference signal to the PLL section. The circuit design allows using either an external or internal oscillator.

When using an external oscillator, the internal oscillator is disabled by placing a logic low on the INT OSC line from the T/R Shelf Interface Board. A high precision external oscillator may then be connected to the module through the external reference oscillator connector J4, EXT REF IN. J4 has a 50 ohm input impedance and is coupled to the base of Q12. Buffer Q12 conditions the signal and applies it to the synthesizer U6 via coupling capacitor C10.

The internal reference oscillator, Y1, provides a 12.8 MHz signal with a stability of ± 1.5 ppm. It is enabled by applying a logic high signal on the INT OSC line. This signal turns on Q2, allowing it to conduct and apply +5 volts to pin 1 of the oscillator Y1. The 12.8 MHz output signal (Y1 pin 2) is then sent to the synthesizer via coupling capacitor C9.

The reference oscillator signal, either external or internal, is also routed to Q13 via coupling capacitor C54. The output taken from the emitter of Q13 is applied through C11 to the input of Buffer Amplifier U4. The buffered signal is coupled through C12 to a low pass filter network (C32,C33,C34, and L7) and a resistive pad (R27, R28, and R31) for isolation. The output from the resistive pad is then connected to J3, REF OUT, making the reference oscillator signal available for external use.

PRESCALER AND SYNTHESIZER IC

The integrated circuit U6 is the heart of the synthesizer. It contains the necessary frequency dividers and control circuitry to synthesize output frequencies by the technique

of dual modulus prescaling. U6 also contains an analog sample and hold phase detector and a lock detector circuit.

Within the U6 are three programmable dividers which are serially loaded using the CLOCK, DATA, and ENABLE inputs (pins 11, 12, and 13 respectively). A serial data stream (DATA) on pin 12 is shifted into the internal shift registers by low to high transitions on the clock input (CLOCK) at pin 11. A logic high (ENABLE) on pin 13 then transfers the program information from the shift registers to the divider latches. The serial data determines the VCO frequency by setting the internal R. A. and N dividers.

The 12.8 MHz reference oscillator signal OSCIN is internally routed to the "R" divider. The "R" divider divides down the 12.8 MHz reference signal to a lower frequency, F_r , as directed by the input data and applies the signal to the internal analog phase and lock detectors.

The "A" and "N" dividers process the loop feedback signal from the VCO (by way of the dual modulus prescaler U5). The output of the "N" divider, F_v , is a divided down version of the VCO output frequency. This signal is also applied to the internal phase detector. The ramp and hold constants are determined by C26, R37, C31, and R36.

The analog phase detector output voltage (PD OUT) is proportional to the phase difference between F_{ν} and F_{r} . This output serves as the loop error signal. When operating on the correct frequency, the inputs to the phase detector are identical and the output voltage of the analog phase detector is constant. If the compared frequencies (phases) differ, the analog phase detector increases or decreases the DC output voltage (PD OUT). This error signal voltage tunes the VCO to whatever frequency is required to keep F_{ν} and F_{r} locked (in phase).

The lock detector furnishes the Fault circuit in U13 with the lock detect (LD) signal. When F_{ν} and F_{r} are in phase, the lock detector output sends a logic high on the LD line to the fault circuit U13. If the VCO is not locked onto the correct frequency, the resulting out-of-phase condition causes the output from the lock detector to be a logic low.

LOOP FILTER

The error signal, ANOUT, is applied to the loop filter at U8.2-5 and U8.1-3. U8.2 acts as a buffer amplifier with gain. The output signal from the amplifier is applied to a loop filter consisting of R42, R43, R44, C35 and C36 via the bilateral switch U14. The filter removes noise and sampling frequencies from the error voltage. The switch, U14, selects the proper filter configuration for operation in the narrow band, wide band or tuning mode. The control signals (OPEN_LOOP, ENABLE_NOT, and TUNE_CTRL) for

U14 are derived from the digital control circuits U10, U12, and U13. U8.1 provides a buffered output for testing at the DIN connector on the rear of the module.

DIGITAL CONTROL

Logic control circuits (other than those inside the synthesizer IC - U6) consist of the following:

- Digital Control Circuit (U10, U12, & U13)
- Level Shifters
- Fault Circuit

The Digital Control Circuits U10, U12, & U13 serve as an interface between the controller and the synthesizer IC.

As an address decoder, U10 enables the input gates when the A0, A1, and A2 input lines (pins 4, 3, and 2) receive the correct address code from the controller. For the Receiver synthesizer the enable address is 010 on A0, A1, and A2 respectively. After receiving the proper logic code, the input gate U12 is enabled. This allows the ENABLE, CLOCK, and serial DATA information to pass on to the synthesizer via the level shifters.

The Level Shifters Q3, Q4, and Q5 convert the five (5) volt logic level to the eight (8) volt logic level required by the synthesizer.

The Fault circuit, U13, monitors the lock detect signal from the PLL synthesizer. Under normal (locked) condition, the PLL sends a logic high signal to U13. U13 processes the signal and providing a logic high output which saturates Q6. With Q6 saturated, the FAULT LED (CR1) turns off. U13 also sends a logic high signal, FLAG 2, (U13.3-8) to the controller indicating the VCO's frequency is correct.

When the VCO is not on the correct frequency, the synthesizer sends a logic low signal to U13. This causes U13 to cutoff Q6 which turns on the FAULT LED. U13 also sends a logic low signal to the controller indicating the VCO's frequency is incorrect.

VOLTAGE REGULATORS

Voltage regulators U15 and U16 reduce the +13.8~VF line to +5~Vdc and +8~Vdc respectively. The output from U15 ($+5V_SYN$) is used by both the synthesizer and logic circuitry while the 8~Vdc output from U16 is used for the op-amps, level shifters, and the discrete +8V~OSC regulator circuit.

The discrete +8V OSC regulator circuit is a linear regulator consisting of U9A, Q7, Q8, and associated circuitry. The error amplifier U9A controls Q7 and pass element Q8. The +8V OSC is used as the power source for the VCO circuit, where additional filtering is provided to keep noise to a minimum

MAINTENANCE

RECOMMENDED TEST EQUIPMENT

The following test equipment is required to test the Synthesizer Module:

- 1. Modulation Analyzer; HP 8901A, or equivalent
- 2. Power Supply; 12.0 Vdc @ 500 mA
- 3. Frequency Counter; 10 MHz 250 MHz
- 4. Power Meter; -20 dBm to +10 dBm
- 5. Spectrum Analyzer; 0 1 GHz

TEST AND ALIGNMENT

Initialization

Apply +12 Vdc to the test fixture.

Current consumption

Measure the current through pins 15A,15B,15C,16A,16B,AND 16C.

Verify the current is less than 250 mA. Total current is the +13.8 VF current and +12 Vdc current combined.

Reference Oscillator

Adjust Y1 for an output frequency of 12.8 MHz ± 5 Hz. Measure the output power of the reference oscillator output (J3).

Verify the output power is 0 dBm ±1.5 dBm.

Oscillator Alignment

Ground the ENABLE TEST line (pin 22A). Apply +5 Vdc to the V_TUNE line (pin 26A). Measure the frequency of the free running oscillator at the LO OUT port (J2).

SERVICE NOTES

The following service information applies when aligning, testing, or troubleshooting the RX Synthesizer:

• Logic Levels:

Logic 1 = high = 4.5 to 5.5 Vdc Logic 0 = Low = 0 to 0.5 Vdc

- Receiver Synthesizer Address = A0 A1 A2 = 010
- Synthesizer data input stream is as follows:

14-bit "R" divider most significant bit (MSB) = R13 through "R" divider least significant bit (LSB) = R0

10-bit "N" divider MSB = N9 through "N" divider LSB = N0

7-bit "A" divider MSB = A6 through "A" divider LSB = A0

Single high Control bit (last bit)

Latched When Control Bit = 1

DATA ENTRY FORMAT

Latched When Control Bit = 1

- Control Bit
- Synthesizer lock is indicated by the extinguishing of the front panel LED indicator and a logic high on the fault FLAG 2 line (J1 pin 12C).
- Always verify synthesizer lock after each new data loading.

Synthesizer Loading

Unground the ENABLE TEST line (pin 22A). Load the synthesizer IC Group 1 - 170 MHz.

Group 2 - 150 MHz.

Verify the lock indicator (CR1) is off or the FLAG 2 line is high.

Hum and Noise

Initialize the HP 8901A for 300 Hz - 3 kHz, 750 us deemphasis, average FM deviation, and 0.44 dB reference for the deviation.

Verify the hum and noise (J2) is less than -55 dB.

Output Power and Harmonic Content

Verify the output power (J2) at the fundamental frequency is:

 $0 \text{ dBm } \pm 2.0 \text{ dB}$

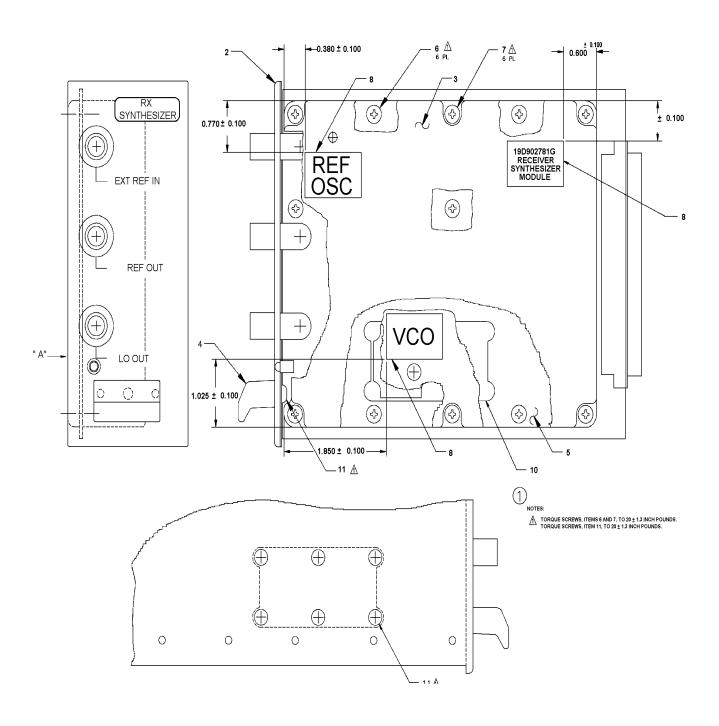
Verify the harmonic content is less than -30dBc.

TROUBLESHOOTING CHART

SYMPTOM	AREAS TO CHECK	INDICATIONS
I. Loop Fails To Lock	1. Check for: +8 Vdc at U16-3, +5 Vdc at U15-3 +8 Vdc at Q8-C.	Bad Regulation circuitry. Troubleshoot using standard procedures.
	2. Check for 12.8 MHz reference at U6-2, and U6-3.Typical Levels: 500 mVpp @ U6-2 2.5 Vpp @ U6-3	Reference Osc. Module defective or supply not present or low. Proceed to reference oscillator section II.
	3. Check for LO output @ J2. F _{LO} ±5 MHz,0dBm nominal.	LO tuning incorrect, or buffer amplifier bad. Proceed to LO tuning and power section III.
	 Check Prescaler output @ U5-4. Typically: 2-4 MHz square wave @ 1.25 Vpp. 	If LO power is good, Check for 3.2 Vdc @ U2-3. Replace U2, then U5 if necessary.
	5. Check for CLOCK, DATA, and ENABLE signals are reaching U6 pins 11,12, and 13 respectively. (0, 8V logic levels)	Bad digital control circuitry. Troubleshoot using standard procedures. Ensure all programming signals are present at J1. (CLOCK,DATA,ENABLE,A0,A1 and A2)
	6. Check Ramp Signal @ U6-15. It should be 5 kHz nominal.	If reference oscillator and programming signals are present for proper programming information. Last resort - replace Synthesizer IC U6.
II. Reference OSC. not present or low power.	Check for 4.3 Vdc supply at junction of R5 and C41.	Bad supply switch Q2 or wrong Control Signal Internal Osc. Troubleshoot using standard procedures. Replace Y1 as last resort
	 Check 12.8 MHz signal @ Q13-E. Should be approx. 350 mVpp. 	Bad buffer amplifier Q13. Troubleshoot using standard procedures.

Continued

Adjust the trimmer capacitor C52 to the correct frequency:

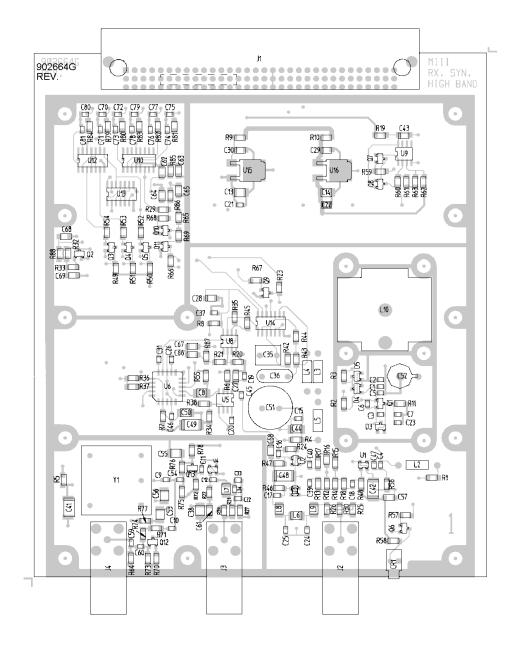

Group 1 - 170 MHz ±100 kHz.

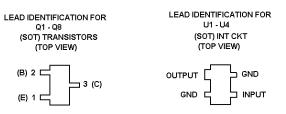
Group 2 - 150 MHz ±100 kHz.

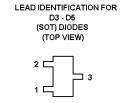
LBI-38641 ASSEMBLY DIAGRAM

TROUBLESHOOTING CHART (Continued)

SYMPTOM	AREAS TO CHECK	INDICATIONS
III. LO power low or tuned out of band.	Check tuning with 6 Vdc applied using test procedure. F _{LO} ±5 MHz	LO tuning incorrect. Retune following test procedure.
	2. Check DC bias at Buffer Amplifiers U1, U2, & U3 pin 3 Typ. 3.2 Vdc.	Bad Buffer Amplifier. Replace bad part.
IV. LO signal not present. (i.e. Q1 does not oscillate)	1. Check DC bias at Q1 drain. (Typ. +8Vdc)	Replace Q1.
	2. Check DC bias at Q1 source. (Typ. +0.9 Vdc)	

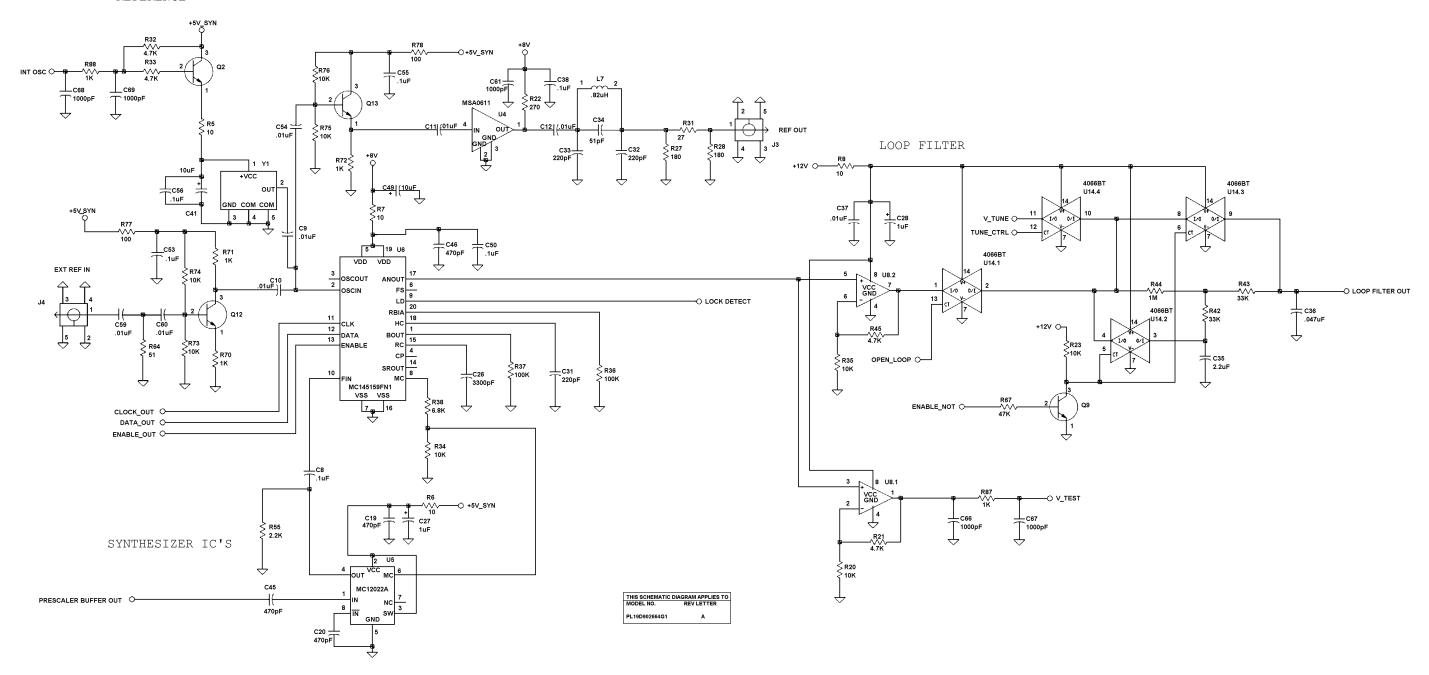



RECEIVER SYNTHESIZER MODULE 19D902781G1 & G2


(19D902781, Sh1, Rev. 5)

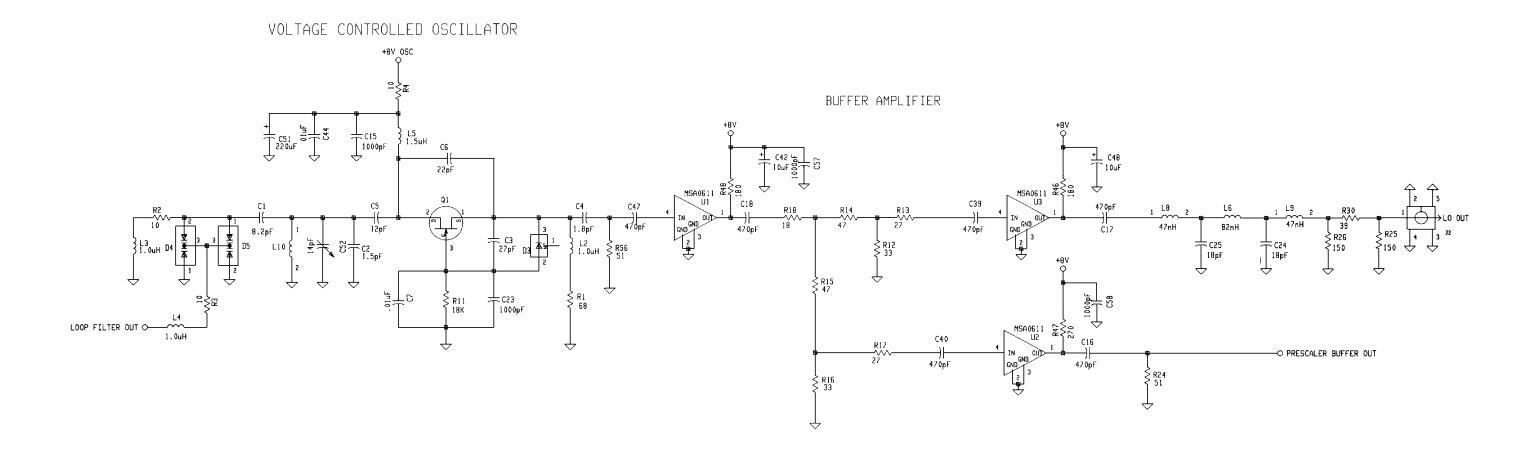
OUTLINE DIAGRAM LBI-38641

COMPONENT SIDE

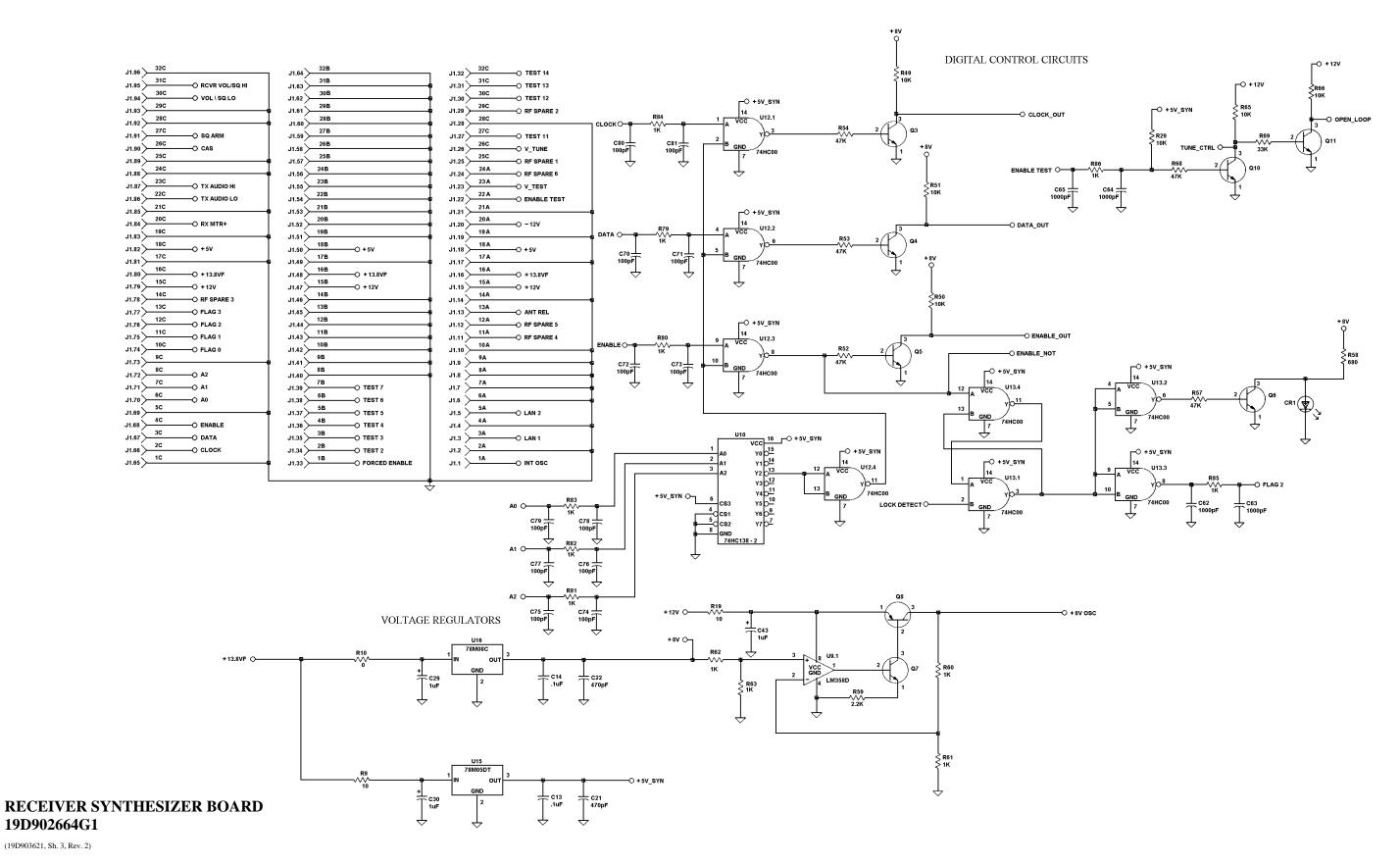


RECEIVER SYNTHESIZER BOARD 19D902664G1 & G2

(19D902664, Sh. 1, Rev. 3) (19D902665, Component Side, Rev. 1)

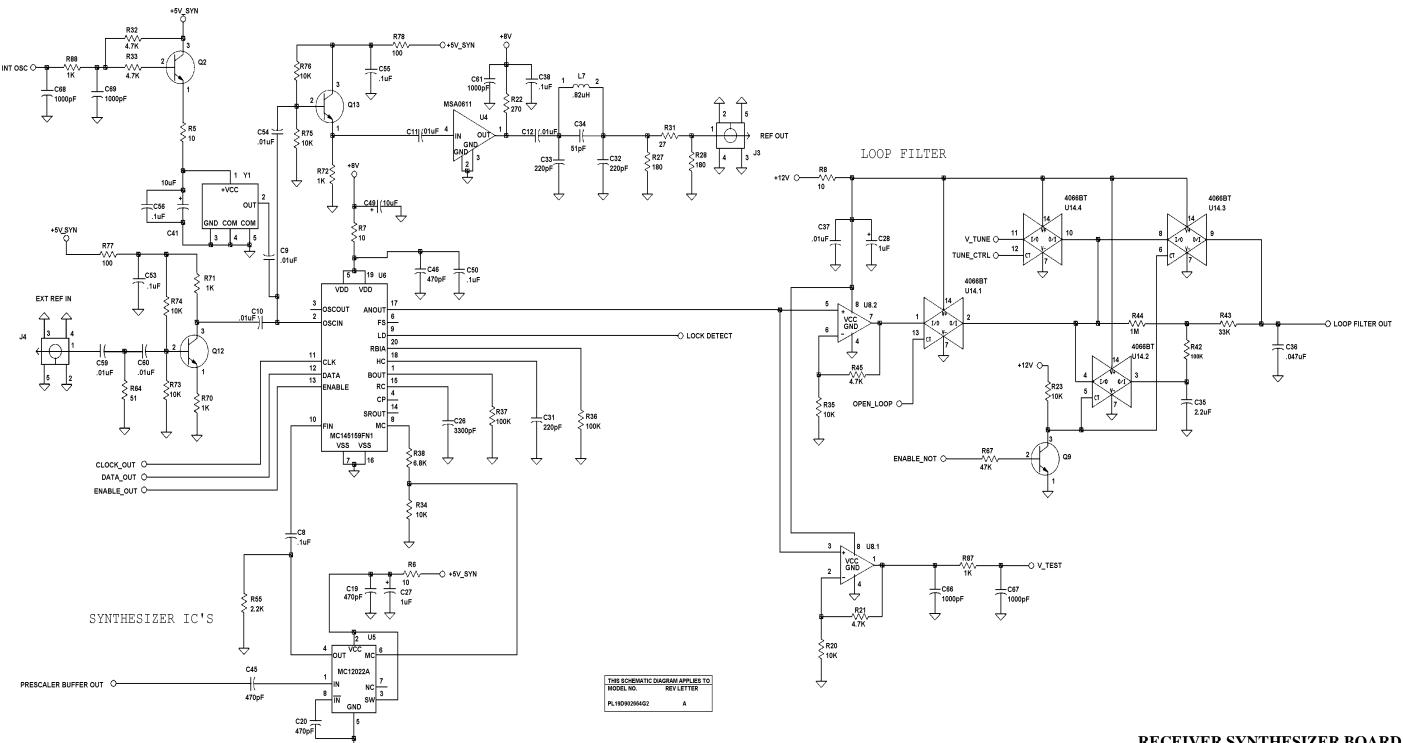

REFERENCE OSCILLATOR & BUFFER

RECEIVER SYNTHESIZER BOARD 19D902664G1

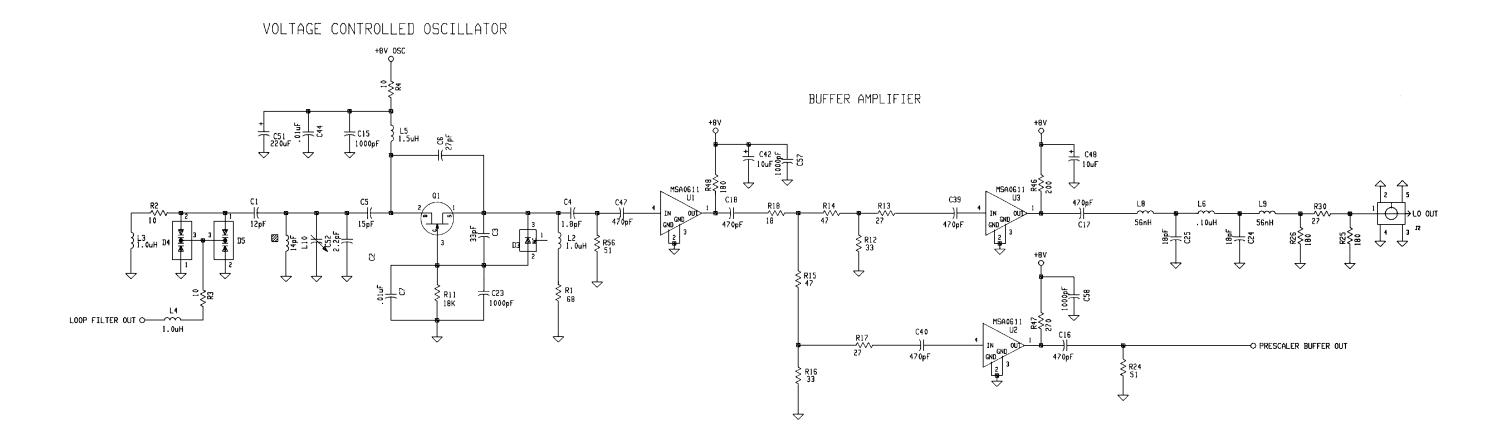

(19D903621, Sh. 1, Rev. 2)

SCHEMATIC DIAGRAM LBI-38641

RECEIVER SYNTHESIZER BOARD 19D902664G1

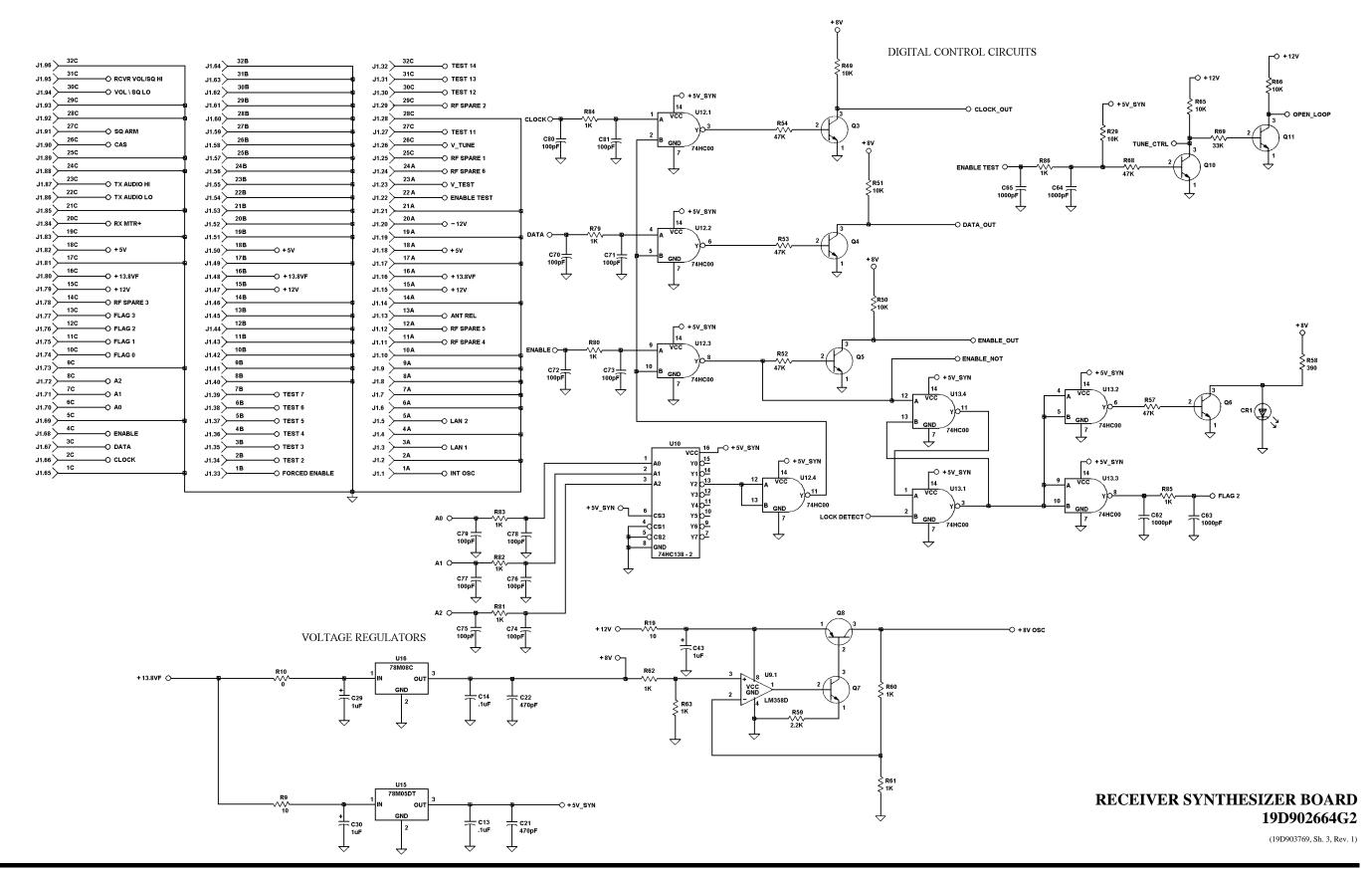

(19D903621, Sh. 2, Rev. 2)

(19D903621, Sh. 3, Rev. 2)


SCHEMATIC DIAGRAM LBI-38641

REFERENCE OSCILLATOR & BUFFER

RECEIVER SYNTHESIZER BOARD 19D902664G2


(19D903769, Sh. 1, Rev. 1)

RECEIVER SYNTHESIZER BOARD 19D902664G2

(19D903769, Sh. 2, Rev. 1)

SCHEMATIC DIAGRAM LBI-38641

LBI-38641 PARTS LIST

RECEIVER SYNTHESIZER MODULE 19D902781G1-G2 ISSUE 3

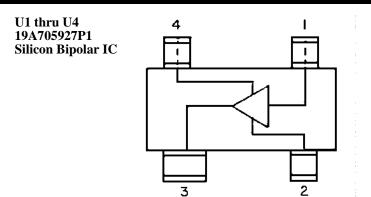
ISSUE 3		
SYMBOL	PART NO.	DESCRIPTION
		MISCELLANEOUS
2	19D902508P3	Chassis.
3	19D902509P3	Cover.
4	19D902555P1	Handle.
5	19D902664G1	Receiver Synthesizer Board, (Used in G1).
6	19A702381P506	Screw, thread forming: TORX, No. M3.5 - 0.6 X 6.
7	19A702381P513	Screw, thread forming: TORX, No. M3.5 - 0.6 X 13.
10	19D902824P1	RF Casting.
11	19A702381P508	Screw, thd. form: No. 3.5-0.6 x 8. (Used in G1, G2, G1 and G2).
17	19D902664G2	Receiver Synthesizer Board. (Used in G2).
		RECEIVER SYNTHESIZER BOARD 19D902664G1 - G2
		———— CAPACITORS ———
C1	19A702236P28	Ceramic: 12 pF ±5%, 50 VDCW, temp coef 0±30 PPM. (Used in G2).
C1	19A702236P23	Ceramic: 8.2 pF \pm .25 pF, 50 VDCW, temp coef 0 \pm 30 PPM. (Used in G1).
C2	19A702236P10	Ceramic: 2.2 pF \pm 2.5 pF, 50 VDCW, temp coef 0 \pm 30 PPM/°C. (Used in G2).
C2	19A702236P8	Ceramic: 1.5 pF \pm .25 pF, 50 VDCW. (Used in G1).
C3	19A702236P38	Ceramic: 33 pF \pm 5%, 50 VDCW, temp coef 0 \pm 30 PPM/°C. (Used in G2).
C3	19A702236P36	Ceramic: 27 pF ±5%, 50 VDCW, temp coef 0 ±30 PPM/°C. (Used in G1).
C4	19A702236P9	Ceramic: 1.8 pF \pm 0.25 pF, 50 VDCW, temp coef 0 \pm 30 PPM.
C5	19A702236P30	Ceramic: 15 pF \pm 5%, 50 VDCW, temp coef 0 \pm 30 PPM/°C. (Used in G2).
C5	19A702236P28	Ceramic: 12 pF \pm 5%, 50 VDCW, temp coef 0 \pm 30 PPM. (Used in G1).
C6	19A702236P36	Ceramic: 27 pF \pm 5%, 50 VDCW, temp coef 0 \pm 30 PPM/°C. (Used in G2).
C6	19A702236P34	Ceramic: 22 pF \pm 5%, 50 VDCW, temp coef 0 \pm 30 PPM. (Used in G1).
C7	19A702052P14	Ceramic: 0.01 μ F ±10%, 50 VDCW.
C8	19A702052P26	Ceramic: 0.1 μ F ±10%, 50 VDCW.
C9 thru C12	19A702052P14	Ceramic: 0.01 μF ±10%, 50 VDCW.
C13 and C14	19A702052P26	Ceramic: 0.1 μF ±10%, 50 VDCW.
C15	19A702052P5	Ceramic: 1000 pF ±10%, 50 VDCW.
C16 thru C22	19A702052P3	Ceramic: 470 pF ±10%, 50 VDCW.
C23	19A702052P5	Ceramic: 1000 pF ±10%, 50 VDCW.

	I	
SYMBOL	PART NO.	DESCRIPTION
C24 and C25	19A702236P32	Ceramic: 18 pF ±5%, 50 VDCW, temp coef 0 ±30 PPM
C26	19A702052P8	Ceramic: 3300 pF ±10%, 50 VDCW.
C27 thru C30	19A705205P2	Tantalum: 1 μF, 16 VDCW; sim to Sprague 293D.
C31 thru C33	19A702052P1	Ceramic: 220 pF ±10%, 50 VDCW.
C34	19A702236P43	Ceramic: 51 pF ±5, 50 VDCW, ±30 PPM/°C.
C35	19A703684P3	Metallized polyester: $2.2\mu\text{F}$ ±10%, 50 VDCW.
C36	19A703902P3	Metal: 0.047 μF ±10%, 50 VDCW.
C37	19A702052P14	Ceramic: 0.01 μF ±10%, 50 VDCW.
C38	19A702052P26	Ceramic: 0.1 μF ±10%, 50 VDCW.
C39 and C40	19A702052P3	Ceramic: 470 pF ±10%, 50 VDCW.
C41 and C42	19A705205P6	Tantalum: 10 μF, 16 VDCW; sim to Sprague 293D.
C43	19A705205P2	Tantalum: 1 μ F, 16 VDCW; sim to Sprague 293D.
C44	19A702052P26	Ceramic: 0.1 μF ±10%, 50 VDCW.
C45 thru C47	19A702052P3	Ceramic: 470 pF ±10%, 50 VDCW.
C48 and C49	19A705205P6	Tantalum: 10 μF, 16 VDCW; sim to Sprague 293D.
C50	19A702052P26	Ceramic: 0.1 μF ±10%, 50 VDCW.
C51	19A701225P3	Electrolytic: 220 μF, -10+50%, 25 VDCW.
C52	19A134227P5	Variable: 1.5 to 14 pF, 100 VDCW.
C53	19A702052P26	Ceramic: 0.1 μF ±10%, 50 VDCW.
C54	19A702052P14	Ceramic: 0.01 μF ±10%, 50 VDCW.
C55 and C56	19A702052P26	Ceramic: 0.1 μF ±10%, 50 VDCW.
C57 and C58	19A702061P99	Ceramic: 1000 pF ±5%, 50 VDCW, temp coef 0 ±30 PPM/°C.
C59 and C60	19A702052P14	Ceramic: 0.01 μF ±10%, 50 VDCW.
C61 thru C69	19A702061P99	Ceramic: 1000 pF ±5%, 50 VDCW, temp coef 0 ±30 PPM/°C.
C70 thru C81	19A702061P61	Ceramic: 100 pF ±5%, 50 VDCW, temp coef 0 ±30 PPM.
		DIODES
CR1	19A703595P10	Diode, Optoelectric: Red; sim to HP HLMP-1301-010.
D3	19A705377P1	Silicon, Hot Carrier: sim to MMB0201.
D4 and D5	19A149674P1	Silicon, capacitive: sim to Toko KV1410.

SYMBOL	PART NO.	DESCRIPTION
J1	19B801587P7	Connector, DIN: 96 male contacts, right angle mounting; sim to AMP 650887-1.
J2 thru J4	19A115938P24	Connector, receptacle.
		INDUCTORS
L2 thru L4	19A700024P13	Coil, RF: 1.0 μH ±10%.
L5	19A700024P15	Coil, RF: 1.5 μH ±10%.
L6	19A705470P13	Coil: 0.10 μH ±20%. (Used in G2).
L6	19A705470P12	Coil, fixed. (Used in G1).
L7	19A705470P24	Coil, fixed: 1.5 μH ±10%.
L8	19A705470P10	Coil, fixed: 56 nH ±20%. (Used in G2).
L8	19A705470P9	Coil, Fixed: 47 nH; sim to Toko 380NB-47nM. (Used in G1).
L9	19A705470P10	Coil, fixed: 56 nH ±20%. (Used in G2).
L9	19A705470P9	Coil, Fixed: 47 nH; sim to Toko 380NB-47nM. (Used in G1).
L10	19C851001P3	Coil, RF: sim to Paul Smith SK-901-1. (Used in G2).
L10	19C851001P1	Coil, RF: sim to Paul Smith SK901-1. (Used in G1).
		TRANSISTORS
Q1	19A702524P2	N-Type, field effect; sim to MMBFU310.
Q2 thru Q7	19A700076P2	Silicon, NPN: sim to MMBT3904, low profile.
Q8	19A700059P2	Silicon, PNP: sim to MMBT3906, low profile.
Q9 thru Q13	19A700076P2	Silicon, NPN: sim to MMBT3904, low profile.
		RESISTORS
R1	19B800607P680	Metal film: 68 ohms ±5%, 1/8 w.
R2 thru R9	19B800607P100	Metal film: 10 ohms ±5%, 1/8 w.
*R10	19B800607P1	Metal film: 0 ohms . (Used with G1).
R11	19B800607P183	Metal film: 18K ohms ±5%, 1/8 w.
R12	19B800607P330	Metal film: 33 ohms ±5%, 1/8 w.
R13	19B800607P270	Metal film: 27 ohms ±5%, 1/8 w.
R14 and R15	19B800607P470	Metal film: 47 ohms ±5%, 1/8 w.
R16	19B800607P330	Metal film: 33 ohms ±5%, 1/8 w.
R17	19B800607P270	Metal film: 27 ohms ±5%, 1/8 w.
R18	19B800607P180	Metal film: 18 ohms ±5%, 1/8 w.
R19	19B800607P100	Metal film: 10 ohms ±5%, 1/8 w.
R20	19B800607P103	Metal film: 10K ohms ±5%, 1/8 w.
R21	19B800607P472	Metal film: 4.7K ohms ±5%, 1/8 w.
R22	19B800607P271	Metal film: 270 ohms ±5%, 1/8 w.
R23	19B800607P103	Metal film: 10K ohms ±5%, 1/8 w.
R24	19B800607P510	Metal film: 51 ohms ±5%, 1/8 w.

SYMBOL	PART NO.	DESCRIPTION
STWIDUL	PART NO.	DESCRIPTION
R25	19B800607P151	Metal film: 150 ohms ±5%, 1/8 w. (Used in G1).
R26	19B800607P181	Metal film: 180 ohms ±5%, 1/8 w. (Used in G2).
R26	19B800607P151	Metal film: 150 ohms ±5%, 1/8 w. (Used in G1).
R27 and R28	19B800607P181	Metal film: 180 ohms ±5%, 1/8 w.
R29	19B800607P103	Metal film: 10K ohms ±5%, 1/8 w.
R30	19B800607P270	Metal film: 27 ohms ±5%, 1/8 w. (Used in G2).
R30	19B800607P390	Metal film: 39 ohms ±5%, 1/8 w. (Used in G1).
R31	19B800607P270	Metal film: 27 ohms ±5%, 1/8 w.
R32 and R33	19B800607P472	Metal film: 4.7K ohms ±5%, 1/8 w.
R34 and R35	19B800607P103	Metal film: 10K ohms ±5%, 1/8 w.
R36 and R37	19B800607P104	Metal film: 100K ohms ±5%, 1/8 w.
R38	19B800607P682	Metal film: 6.8K ohms ±5%, 1/8 w.
R42	19B800607P104	Metal film: 100K ohms ±5%, 1/8 w. (Used in G2).
R42	19B800607P333	Metal film: 33K ohms ±5%, 1/8 w. (Used in G1).
R43	19B800607P333	Metal film: 33K ohms ±5%, 1/8 w.
R44	19B800607P105	Metal film: 1M ohms ±5%, 1/8 w.
R45	19B800607P472	Metal film: 4.7K ohms ±5%, 1/8 w.
R46	19B800607P201	Metal film: 200 ohms ±5%, 1/8 w. (Used in G2).
R46	19B800607P181 (Used in G1).	Metal film: 180 ohms ±5%, 1/8 w.
R47	19B800607P271	Metal film: 270 ohms ±5%, 1/8 w.
R48	19B800607P181	Metal film: 180 ohms ±5%, 1/8 w.
R49 thru R51	19B800607P103	Metal film: 10K ohms ±5%, 1/8 w.
R52 thru R54	19B800607P473	Metal film: 47K ohms ±5%, 1/8 w.
R55	19B800607P222	Metal film: 2.2K ohms ±5%, 1/8 w.
R56	19B800607P510	Metal film: 51 ohms ±5%, 1/8 w.
R57	19B800607P473	Metal film: 47K ohms ±5%, 1/8 w.
R58	19B800607P681	Metal film: 680 ohms ±5%, 1/8 w.
R59	19B800607P222	Metal film: 2.2K ohms ±5%, 1/8 w.
R60 thru R63	19B800607P102	Metal film: 1K ohms ±5%, 1/8 w.
R64	19B800607P510	Metal film: 51 ohms ±5%, 1/8 w.
R65 and R66	19B800607P103	Metal film: 10K ohms ±5%, 1/8 w.
R67 and R68	19B800607P473	Metal film: 47K ohms ±5%, 1/8 w.
R69	19B800607P333	Metal film: 33K ohms ±5%, 1/8 w.

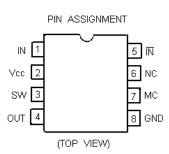
^{*}COMPONENTS, ADDED, DELETED OR CHANGED BY PRODUCTION CHANGES

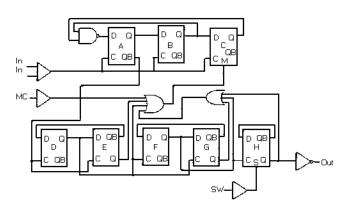

SYMBOL PART NO. DESCRIPTION 19B800607P102 Metal film: 1K ohms ±5%, 1/8 w. R72 R73 19B800607P103 Metal film: 10K ohms ±5%, 1/8 w. thru 19B800607P101 Metal film: 100 ohms ±5%, 1/8 w. R77 R78 R79 19B800607P102 Metal film: 1K ohms ±5%, 1/8 w. thru R88 — INTEGRATED CIRCUITS — — Silicon, bipolar: sim to Avantek MSA-0611. 19A705927P1 U1 thru U4 19A149944P201 Dual Modulus Prescaler: sim to U5 MC12022A. 19B800902P5 Synthesizer, custom: CMOS, serial U6 input. U8 19A702293P3 Linear: Dual Op Amp; sim to LM358D. and U9 U10 19A703471P320 Digital: 3-Line To 8-Line Decoder; sim to 74HC138. 19A703483P302 Digital: Quad 2-Input NAND Gate; U12 sim to 74HC00. and U13 Digital: Quad Analog Switch/ Multiplexer; sim to 4066BM. U14 19A702705P4 U15 19A704971P8 Voltage Regulator, Positive: sim to Motorola MC78M05CDT. 19A704971P10 Voltage Regulator, Positive: sim to Motorola MC78M08CDT. U16 ---- CRYSTALS ----Y1 19B801351P12 Crystal Oscillator; 14.850 MHz, emperature compensated.

PRODUCTION CHANGES

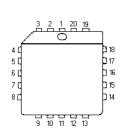
Changes in the equipment to improve or to simplify circuits are identified by a "Revision Letter", which is stamped after the model number of the unit. The revision stamped on the unit includes all previous revisions. Refer to the Parts List for descriptions of parts affected by these revisions.

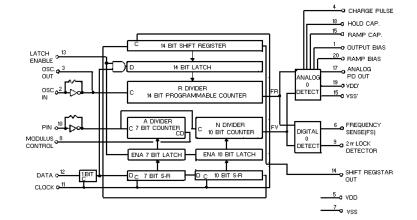
REV. A - RECEIVER SYNTHESIZER BOARD 19D902664G1 & G2

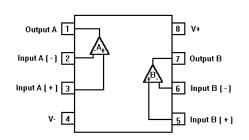

Prevent regulator from dropping out at low supply voltage. R10 was 10 ohms (19B800607P100).

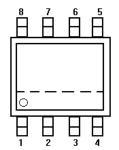


PIN I. RF INPUT 2. GROUND 3. RF OUTPUT AND BIAS 4. GROUND


U5 19A149944P201 Modulus Prescaler

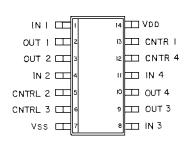

	FUNCTION	N TABLE
SW	MC	DIVIDE RATIO
I	Н	64
Н	L	65
L	Н	128
L	L	129
	/: H = Vcc : H = 2.0V L = GND	

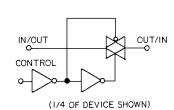

U6 19B800902P5 Synthesizer



IC DATA LBI-38641

U8 & U9 19A702293P2 **Dual Operational Amplifier**

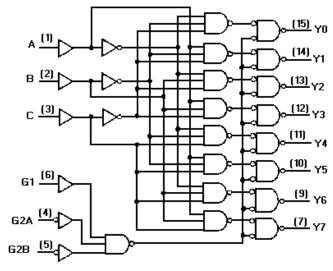


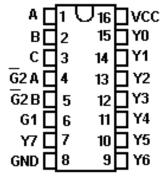


U14 19A702705P4 **Quad Analog Switch**

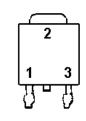
QUAD ANALOG SWITCH/MULTIPLEXER 19A702705P1,P4 (CMOS)

PIN CONFIGURATION

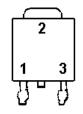



LOGIC DIAGRAM

CONTROL	SWITCH
0	OFF
1	ON


U10 19A703471P120 Decoder/Demux

U12 & U13 19A703483P302 Logic Gate/Inverter

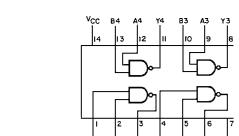


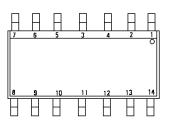
U16 19A70497P10 +8V Regulator

PIN	FUNCTION
1	INPUT
2	GROUND
3	ОИТРИТ

PIN	FUNCTION
1	INPUT
2	GROUND
3	OUTPUT

19B801351P12 **Crystal Oscillator**





PIN (CONNECTIONS
-------	-------------

- 1. +Vcc 2. OUTPUT

- 3. COMMON & CASE
 4. COMMON & CASE
 5. COMMON & CASE
 FIN 4 IS PERMISSIBLE BUT
 NOT NECESSARY FOR OPERATION.

LBI-38641

This page intentionally left blank