LBI-38915A

Maintenance Manual

MDXTM 896 -941 MHz MOBILE RADIO

TABLE OF CONTENTS

RF Board	LBI-3854
System Board	LBI-3884
Audio / Logic Board	LBI-3890
Audio Amplifier Board	LBI-3884
Front Cap Assembly	LBI-3885
PA Board	LBI-3854
Service Section	LBI-3891

Ericsson Inc.
Private Radio Systems
Mountain View Road
Lynchburg, Virginia 24502
1-800-528-7711 (Outside USA, 804-528-7711)

TABLE OF CONTENTS

	<u>Page</u>
SPECIFICATIONS	1
GENERAL DESCRIPTION	2
RF BOARD	2
Synthesizer Circuit	
Transmit Circuit	2
Receiver Circuit	
POWER AMPLIFIER BOARD	2
AUDIO/LOGIC BOARD	2
SYSTEM BOARD	2
FRONT CAP ASSEMBLY	2
ACCESSORIES AND OPTIONS	2
PC PROGRAMMER OPTIONS	2
PC PROGRAMMED OPTIONS	2
Carrier Control Timer (CCT)	2
Channel Guard	2
Squelch Tail Elimination (STE)	3
HARDWARE AND HARDWARE OPTIONS	3
OPTION CABLE	3
NOISE SUPPRESSION KIT OPTION	
POWER CABLE OPTION	3
EXTERNAL SPEAKER OPTION	3
EXTERNAL ALARM	
SYSTEM DESCRIPTION	3
EDACS	3
CONVENTIONAL MODE	4
RADIO OPERATION	4
USER INTERFACE	4
Turning the Radio ON/OFF	4
ALERT TONES	4
EDACS APPLICATIONS	
REPLACEMENT OF KEYCAPS	
PARTS LIST	
ASSEMBLY DIAGRAMS	
INTERCONNECT DIAGRAMS	9
	-

NOTICE!

This manual covers Ericsson and General Electric products manufactured and sold by Ericsson Inc.

NOTE

Repairs to this equipment should be made only by an authorized service technician or facility designated by the supplier. Any repairs, alterations or substitution of recommended parts made by the user to this equipment not approved by the manufacturer could void the user's authority to operate the equipment in addition to the manufacturer's warranty.

— NOTICE! —

The software contained in this device is copyrighted by the Ericsson Inc. Unpublished rights are reserved under the copyright laws of the United States.

This manual is published by Ericsson Inc., without any warranty. Improvements and changes to this manual necessitated by typographical errors, inaccuracies of current information, or improvements to programs and/or equipment, may be made by Ericsson Inc., at any time and without notice. Such changes will be incorporated into new editions of this manual. No part of this manual may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose, without the express written permission of Ericsson Inc.

SDECIEICATIONS*

SPE	CCIFICATIONS*
GENERAL	
Regulatory Data	
FCC	AXATR-321-A2
DOC	TR-321
Operating Voltage	$13.6 \text{ Volts } \pm 10\%$
Battery Drain	
Receiver (13.8 Vdc)	
Off	0.01 Amperes (maximum)
Squelched	0.80 Amperes (maximum)
Unsquelched	4.0 Amperes (maximum at 10 Watts audio, External Speaker)
Transmitter (13.8 Vdc)	12.0 Amperes (maximum at 25 Watts RF)
Channel Spacing	12.5 kHz
Frequency Stability	±1.5 PPM (±0.00015%)
Temperature Range	-30° to $+60^{\circ}$ C (-22° F to $+140^{\circ}$ F)
Dimensions (H x W x D)	
(Less Accessories)	
Height	5.3 cm (2.1 inches)
Width	18.2 cm (7.2 inches)
Depth	24.0 cm (9.5 inches)
Weight	3.0 kg (6.6 pounds)
Antenna Impedance	50 Ohms
TRANSMITTER	
Frequency Range	
Trunked Conventional Repeater	896-902 MHz
Talkaround	935-941 MHz
Output Power	12.5-25 Watts (Intermittent duty cycle; EIA 20%)
Audio Sensitivity	90-120 mVrms (minimum)
Spurious and Harmonics	<-16 dBm
Audio Distortion	≤5% maximum
Modulation Limiting	±2.5 kHz maximum
FM Noise	-40 dB
Audio Frequency Response Per TIA/EIA Standards	Within +1, -3 dB of a 6 dB/octave pre-emphasis curve from 300-2300 Hz with additional 6dB/octave 2300-2700 and 12dB/octave from2700-3000 Hz
RECEIVER	
Frequency Range	935-941 MHz
Acceptable Frequency Displacement	±2.5 kHz minimum
Sensitivity (12 dB SINAD)	-113 dBm minimum
Spurious Pajaction	70 dR minimum

Spurious Rejection 70 dB minimum

Adjacent Channel Selectivity 68 dB minimum at ±25.0 kHz Intermodulation Distortion 65 dB minimum (measurement per SP-2218)

Within +1, -3dB of a 6 dB/octave de-emphasis curve Audio Frequency Response

from 500-2500 Hz

10 Watts (External Speaker); 4 Watts (Internal Speaker) Audio Output

Audio Distortion 5% maximum at 1 kHz Hum and Noise -45dB (unsquelched)

^{*} These specifications are intended primarily for use by service personnel. Refer to the appropriate Specification Sheet for complete specifications.

GENERAL DESCRIPTION

The 900 MHz MDXTM Mobile Radio is a synthesized, wideband radio that uses integrated circuits and microcomputer technology to provide high performance trunked operation. This radio operates in the Enhanced Digital Access Communications System (EDACS) environment, and in conventional communication systems. The radio provides 25 Watts of RF power output in the 396-902 MHz and 935-941 MHz bands. The receiver operates in the 935-941 MHz band.

All radio functions are stored in a programmable Electrically Erasable **PROM** (**EEPROM**). The radio is field programmable using an IBM compatible personal computer with the following equipment:

•	Serial	Programn	ning	Interface	Module	TQ3370
---	--------	----------	------	-----------	--------	--------

• Programming Cable (19B801417P10) TQ3372

• MDX Series Programming Software (EDACS)

TQ3365

With the interface equipment and software, the computer can be used to program (or re-program) customer systemfrequencies, Channel Guard tones and options. Selection of options is done during radio initialization using the PC programmer.

The 900 MHz MDXTM Mobile Radio assembly contains the following circuit boards and assemblies:

 Power Amplifier Board 	19D902944Gxx
• RF Board	19D902123Gxx
• System Board	19D901891Gxx
Audio/Logic Board	19D903963Gxx
Audio Amplifier Board	19D904025Gxx
• Front Cap Assembly	19D904151Gxx

The circuit boards are all mounted on a main casting to provide easy access for servicing. Interconnect plugs are used to connect the boards to eliminate pinched wires or other wiring problems.

RF BOARD

The RF Board includes the programmable frequency synthesizer, transmitter exciter, receiver front end and IF circuitry.

Synthesizer

The synthesizer circuit generates all transmit and receive RF frequencies. The synthesizer frequency is controlled by the microprocessor located on the Audio/Logic Board. Frequency stability is maintained by a temperature compensated reference oscillator module. Transmit audio is processed on the Audio/Logic Board and applied to the synthesizer to modulate the VCO and TCXO. The buffered VCO output drives both the transmitter exciter and the receiver mixer.

Transmitter

The transmitter consists of a fixed-tuned exciter module, a PA module and a power control circuit. The PA module provides RF output to drive the antenna. The power control circuit controls the PA module to maintain a constant output power across the band. The RF output level is internally adjustable for rated power. Thermistors in the control circuit protect the PA from overheating by reducing the power output level.

Receiver

The dual conversion receiver circuit consists of a front end section, 39.5 MHz first IF, a 455 kHz second IF, and FM detector. All audio processing and squelch functions are accomplished on the Audio Board.

POWER AMPLIFIER BOARD

The PA board amplifies the RF board output then connects it back to the RF board where it is coupled through a PIN diode antenna switch, the low-pass filter and the directional coupler to provide 25 watts of power output at the antenna connector.

AUDIO/LOGIC BOARD

The Audio/Logic Board provides all audio and digital processing of the receive and transmit audio for digital processing by the Logic Board. The board also contains audio filtering, conventional analog tone processing, and the receiver squelch. The Audio/Logic Board controls the operation of the radio and digitally processes the receive and transmit audio. The board contains a microprocessor and associated memory circuits including an EPROM for controlling the processor and a programmable "personality" memory (an Electrically Erasable PROM - EEPROM) to store customer frequencies, tones and options. The microprocessor provides control data to the Audio Signal Processor (ASP), conventional tone generation and detection, frequency data for the synthesizer, and sends and receives data to another microprocessor on the Display Board for the LCD.

SYSTEM BOARD

The system board controls the main input power to the radio. An IGNITION SENSE input lead provides the necessary signals to the MOSFET switching circuit. The board also interfaces all option connections from the internal boards in the radio with the optional items outside of the radio. All external options for the radio interconnect to the System Board through the back of the radio using an optional cable.

FRONT CAPASSEMBLY

The Front Cap Assembly contains the Audio Amplifier Board. This board provides compression of the microphone audio. It also provides audio compression for the received audio in the discriminator and internal/external speaker audio paths. A 10-watt power amplifier is provided on the board to drive a 4-ohm internal/external speaker.

ACCESSORIES AND OPTIONS

PC PROGRAMMER OPTIONS

The radio is programmed using an IBM compatible personal computer equipped with a RS-232 port. Option TQ3370 provides the RS-232 serial interface unit and the cable between the PC and the unit. An auxiliary power supply for the unit is also included but is not needed to program the radio.

Option TQ3372 provides the radio programming cable between the PC interface unit and the radio microphone jack. MDX PC programming software Option TQ3373 (EDACS) is provided on 3.5 inch diskettes.

PC PROGRAMMED OPTIONS

Carrier Control Timer (CCT)

The Carrier Control Timer turns off the transmitter after the microphone push-to-talk (PTT) switch has been keyed for a pre-programmed time period. A pulsing alert tone warns the operator to unkey and then rekey the PTT to continue the transmission. The timer can be programmed, using the PC programmer. Any time periods between 30 seconds and 7.5 minutes can be programmed in 30 second increments. The timer can be enabled or disabled for each channel.

Channel Guard

Channel Guard provides a means of restricting calls to specific radios through the use of a Continuous Tone Coded Squelch System (CTCSS), or a Continuous Digital Coded Squelch System (CDCSS). Tone frequencies range from 67.0 Hz to 210.7 Hz in 0.1 steps. There are eighty three standard PC programmable digital codes. The Channel Guard tone frequencies and codes are listed in Table 1 - Channel Guard Tone Frequencies and Table 2 - Digital Channel Guard Codes (see below).

NOTE -

To reverse the polarity of the digital Channel Guard codes, in the PC programmer, type I (inverted) before the code number, i.e. I023.)

Table 1 - Standard Tone Frequencies (Hz)

67.0	71.9	74.4	77.0	79.7	82.5	85.4	88.5	91.5	94.8	97.4
100.0	103.5	107.2	110.9	114.8	118.8	123.0	127.3	131.8	136.5	141.3
146.2	151.4	156.7	162.2	167.9	173.8	179.9	186.2	192.8	203.5	210.7

- 1. Do not use 179.9 Hz or 118.8 Hz in areas served by 60 Hz power distribution systems (or 100.0 Hz or 151.4 Hz in areas supplied with 50Hz power). Hum modulation of co-channel stations may "false" Channel Guard decoders.
- 2. Do not use adjacent Channel Guard tone frequencies in systems employing multiple Channel Guard tones. Avoid same-areas co-channel use of adjacent Channel Guard tones whenever possible. As stated in EIA Standard RS-220, there is a possibility of decoder falsing.
- 3. To minimize receiver turn-on time delay, especially in system using Channel Guard repeaters or receiver voting, choose the highest usable Channel Guardtone frequency. Do not use tones below 100 Hz when it is necessary to meet the receiver response time requirements of EIA Standard RS-220.

Table 2 - Digital Channel Guard Codes

PRIMARY	EQUIVALENT	PRIMARY	_	PRIMARY	EQUIVALENT
CODE	CODE	CODE	CODE	CODE	CODE
023	340 766	251	236 704 742	632	123 657
025		261	227 567	565	307 362
026	566	263	213 736	654	163 460 607
031	374 643	265	171 426	662	363 436 443 444
032		271	427 510 762	664	344 471 715
043	355	306	147 303 761	703	150 256
047	375 707	311	330 456 561	712	136 502
051	520 771	315	321 673	723	235 611 671
054	405 675	331	372 507	731	447 473 474 744
065	301	343	324 570	732	164 207
071	603 717 746	346	616 635 724	734	066
072	470 701	351	353 435	743	312 515 663
073	640	364	130 641	754	076 203
074	360 721	365	107	036	137
114	327 615	371	217 453 530	053	
115	534 674	411	117 756	122	535
116	060 737	412	127 441 711	145	525
125	173	413	133 620	212	253
131	572 702	423	234 563 621 713	225	536
132	605 634 714	431	262 316 730	246	542 653
134	273	432	276 326	252	661
143	333	445	222 457 575	255	425
152	366 415	464	237 642 772	266	655
155	233 660	465	056 656	274	652
156	517 741	466	144 666	325	550 626
162	416 553	503	157 322	332	433 552
165	354	506	224 313 574	356	521
172	057	516	067 720	446	467 511 672
174	142 270	532	161 345	452	524 765
205	135 610	546	317 614 751	454	513 545 564
223	350 475 750	606	153 630	455	533 551
226	104 557	612	254 314 706	462	472 623 725
243	267 342	624	075 501	523	647 726
244	176 417	627	037 560	526	562 645
245	370 554	631	231 504 636 745		

NOTE:

Primary codes in bold are unique Ericsson codes.

Squelch Tail Elimination (STE)

STE is used with tone and digital Channel Guard to eliminate squelch tails. The STE burst is transmitted when the microphone PTT is released. The receiving radio decodes the burst and mutes the receiver audio for 250ms. This mute time allows the transmission to end and to mute the squelch tail. The radio looks for STE on the received signal when the mi-

crophone is either on or off-hook. The STE is enabled for transmit and/or receive by PC programming the radio's personality.

HARDWARE AND HARDWARE OPTIONS

The location and placement of system hardware options are shown on Sheet 4 of the 900 MHz MDX Mobile Interconnect Diagrams.

OPTION CABLE

Option Cable Option PMCD7Z (19C851585P18) is used to bring all option connections from the System Board through the back of the radio to the outside. This cable is required with all external options.

NOISE SUPPRESSION KIT OPTION

Noise Suppression Kit Option PMPD1A (consisting of Filter 19A148539G1 and Installation Manual LBI-31363) is available for installations where excessive alternator or electrical noises, present on the power cable, do not permit the radio to operate properly. Refer to the interconnect diagram for the radio and options.

POWER CABLE OPTION

18-foot Power Cable Option PMCD9A, (19B801358P17), is available for installations requiring more than the standard 9-foot cable.

EXTERNAL SPEAKER OPTION

External Speaker and Cable Option PMZM1T, provides the user with a five-inch waterproof speaker in a LEXAN housing. PMCC9M is an 18 inch interconnecting cable for the speaker. The radio's 10-watt amplifier drives the speaker's 4-ohm impedance. The speaker leads are connected to pins 2 and 9 of Option Cable Option PMCD7Z (19C851585P18), using External Speaker Cable Option PMCC9M (19A149590P8)(18 inches) included in the PMZM5T kit. A 16-foot cable, Option PMCD1W (19A149590P10) is also available.

EXTERNAL ALARM

External Alarm Horn Relay Option PMSU1C (19A705499P1) can sound the vehicle horn when a call is received. The option connects to pin 13 of Option Cable Option PMCD7Z (19C851585P18) and is controlled by a front panel option switch.

SYSTEM DESCRIPTION

EDACS

The 900 MHz MDX Mobile Radio operates in EDACS (digital) mode providing opportunities to increase RF channel utilization through faster channel access and the privacy inherent with selective signalling.

The EDACS system uses 4800 baud, high speed, digital signalling to identify individual units, user groups, fleets, and agencies. Agencies contain multiple fleets and fleets contain multiple user groups (sub-fleets). By using this addressing scheme large user groups can be accessed simultaneously all the way down to individual users. The programming to determine transmit encoded groups and decoded received groups is contained in the personality EEPROM of the mobile radio. This information is individually programmed to suit each user's needs via the PC programmer for the radio.

The typical system configuration consists of at least 2 repeater stations (with a maximum number of 25), and the associated mobiles. One repeater always is a control channel dedicated to sending out continuous control data and also to receive channel request data from the mobiles. When a mobile is first turned on it scans the available list of frequencies programmed in the personality EEPROM for a control channel. When a control channel is found the mobile locks on to the frequency and monitors the data for a channel assignment (incoming call).

When receiving a channel assignment (incoming call), the monitoring mobile immediately switches over to the assigned voice channel and waits for a high speed data confirmation message. Upon receipt of this message the voice paths are unmuted and the user can hear the call.

While on the voice channel, the mobile also continuously monitors the low speed, 75 baud (subaudible) data and carrier noise squelch to ensure consistent operation. Upon loss of subaudible data reception (i.e., deep fade, or out-of-range), the mobile returns to the control channel frequency.

To initiate a call, the user keys the radio (which is locked to the control channel), and a high speed data slotted channel request is transmitted to the control channel receiver. The control channel processes the request from the mobile and transmits back a voice channel assignment on an unused channel.

When all available voice channels are in use, the control channel places the mobile into a queue, transmits a queue message back to the mobile, and gives a channel assignment to the requesting mobile as soon as a voice channel is free. If the system is busy and the station queue is filled to capacity,

a system busy message is returned to the requesting mobile and an alert signal is given to the user.

After the initiating mobile receives a channel assignment from the control station, it immediately switches frequency over to the assigned voice channel and sends a burst of 4800 baud dotting. The microphone voice paths are then unmuted and the transmission begins. The transmitting mobile also continuously sends out a subaudible tone (along with voice) for system reliability. If the station loses this signaling, the voice channel is muted and all receiving mobiles are sent back to the control channel.

In normal operation, the transmitting mobile sends a high speed data burst to indicate that the user has unkeyed, causing all listening mobiles to switch back to the control channel.

CONVENTIONAL MODE

In conventional mode (not trunked) the radio can operate either with tone Channel Guard, digital Channel Guard, or carrier squelch, depending on personality programming. Tone Channel Guard range is 67.0 to 210.7 Hz. Squelch Tail Elimination (STE) is used with Channel Guard to eliminate squelch tails at the receiving radio by phase shifting the transmitted Channel Guard tone when the PTT is released.

Direct mode works identically to conventional mode except that the transmit frequency band is changed to 935 to 941 MHz to permit direct mobile-to-mobile communications.

RADIO OPERATION

A complete set of operating instructions for the 900 MHz MDX Radio are given in LBI-38914. This manual is provided with each radio.

This radio is flexible in operation and can be used in either of two operating modes: Conventional radio system or Enhanced Digital Access Communications (EDACS) system.

In an EDACS trunked environment the user selects a communications system and group. In this mode, audio channel selection is transparent to the user and is controlled via digital communication with the system controller. This mode incorporates advanced programmable features and fast access to communication channels.

In Conventional mode, the user selects a channel and communicates on that channel. In this mode, a system refers to a set of channels and a channel is a transmit/receive radio frequency pair.

The exact operation of any radio depends upon the operating mode, the programming of the radio and the particular radio system. Most features described in these operating instructions can be enabled or disabled through programming. Both of these important factors must be considered when addressing the following instructions.

USER INTERFACE

Operating controls are located on the radio front panel and microphone.

The front panel LED provides radio status, and communication control information to the operator. The keypad is used for manual number entry for individual calls, access to a telephone interconnect system and activation of various EDACS, and conventional features.

Turning The Radio ON/OFF

The radio is turned ON/OFF by pressing the PWR button in the upper left corner of the front panel. A self diagnostic test is performed when the radio is first turned on if enabled through programming. To turn the radio OFF press the PWR button again.

ALERT TONES

The 900 MHz MDXTM radio generates a set of unique alert tones to indicate operating status. The following section identifies and describes the alert tones used in the 900 MHz MDXTM radio for Conventional and EDACS applications.

EDACS APPLICATIONS

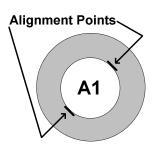
CALL ORIGINATE ALERT If programmed, a short tone is sounded whenever the Push-To-Talk key is pressed and the radio has acquired a channel. This tone indicates the user can begin communications

CALL QUEUED If one short, high-pitched tone sounds after the transmitter is keyed, this indicates that the system has placed the request in a queue. This tone sounds at both the transmitting unit and the receiving unit(s), indicating to the user on the receiving end that a call is being directed to them. If the PTT is unkeyed while in the queue, the radio autokeys (automatically keys) Push-To-Talk when a channel becomes available (see AUTOKEY).

AUTOKEY

When the PTT is keyed to place a call on the system, but the PTT is released before getting to the channel (e.g. a queued call), the radio automatically keys on the channel when it gets the assignment. The radio generates a long beep and holds the transmitter keyed for two seconds. Pressing the PTT button keeps the channel and sends the message before this two second time-out has expired.

SYSTEM BUSY If you press the PTT key and hear three short, medium-pitched tones, this indicates that the receiving party is already on the system or the system is busy and its queue is full. You must rekey later to access the system.


CALL DENIED A single, low-pitched beep sounds when the PTT key is pressed and the request is denied by the system. This happens if the unit is an invalid user or if the unit is requesting an unavailable service.

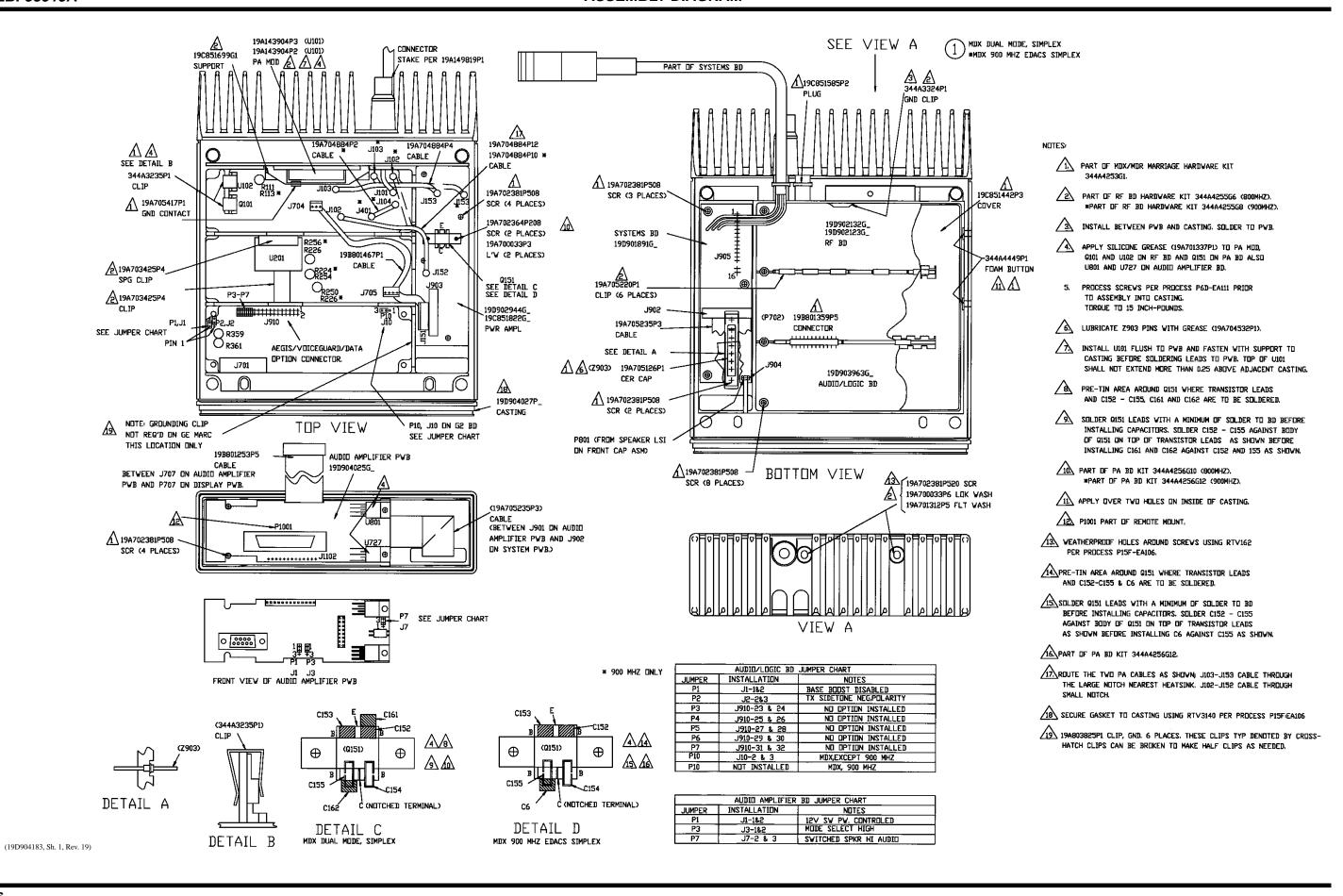
OUT-OF-RANGE/ SYSTEM INOPERATIVE A single, low-pitched tone sounds immediately after the PTT key is pressed indicating the radio is out of range of the repeater. The radio tries to place the call for a short period (3 seconds) after the initial attempt. The radio generates a second low-pitched tone when it gives up trying to place the call. These tones may also heard even when the radio is within calling range of the repeater if the system is off the air or the radio needs servicing.

REPLACEMENT OF KEYCAPS

The keycaps (SCN, A1, A2, MNU, SYS, CLR) can be replaced if damaged or if the function has changed by using the keycap kit 344A4254G2. Included in this kit is a keycap extractor tool 19C852344P1. This extractor tool must be used to remove keycaps to prevent damage to the key switches.

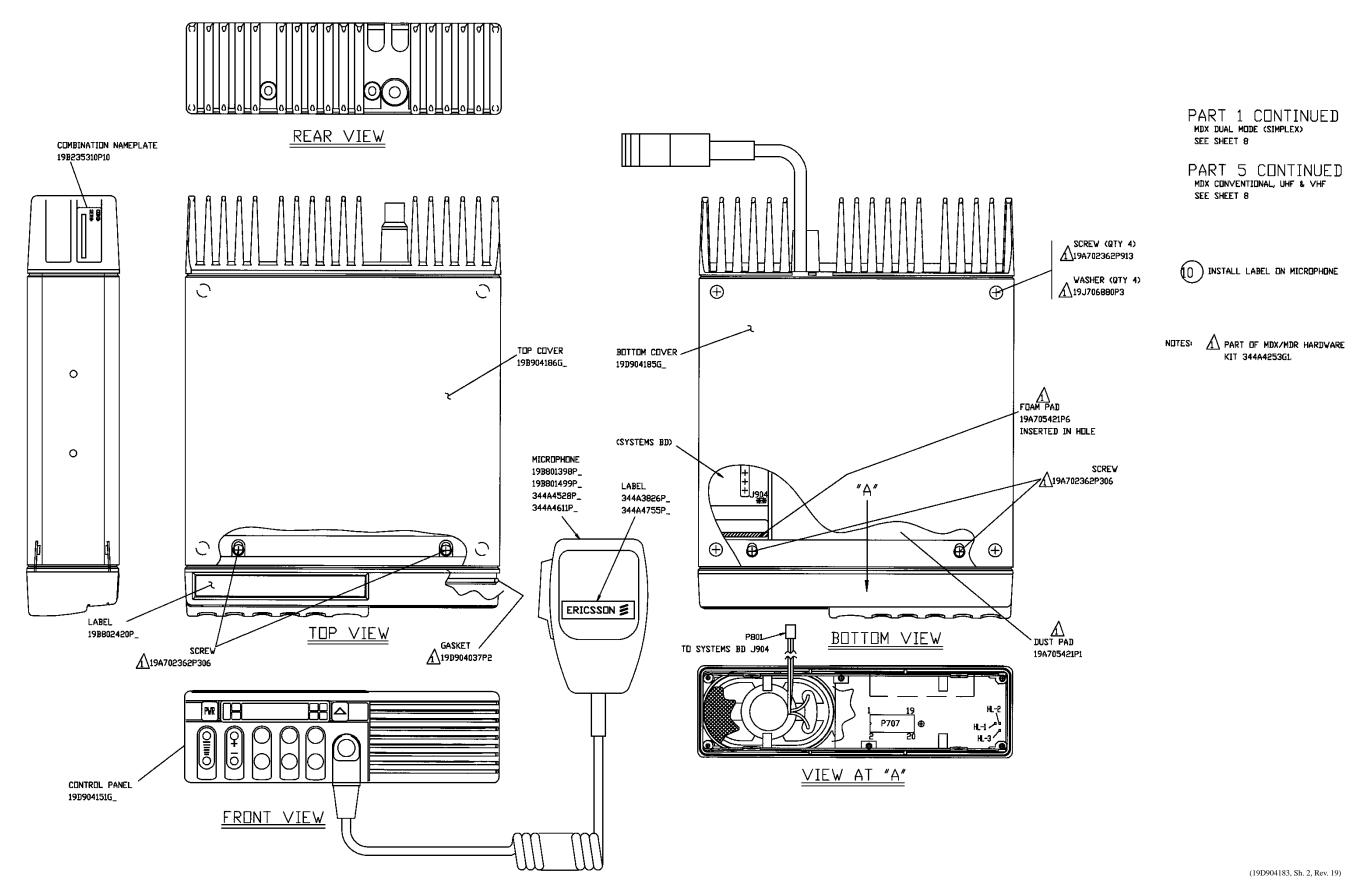
- Align the extractor tool over the selected keycap, observing the alignment points on the keycap, and slide over keycap until the tool is seated.
- 2. Squeeze the extractor tool to release the keycap from the switch shaft and gently pull outward.
- 3. To replace a keycap, observe the correct alignment of the keycap.
- 4. Push the keycap onto the switch shaft until it is seated.

PARTS LIST LBI-38915A

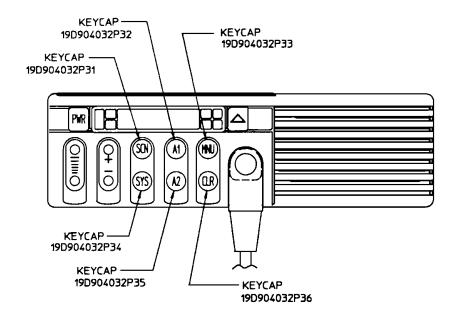

900 MHz MDX/ MOBILE RADIO ASSEMBLY

ISSUE 1

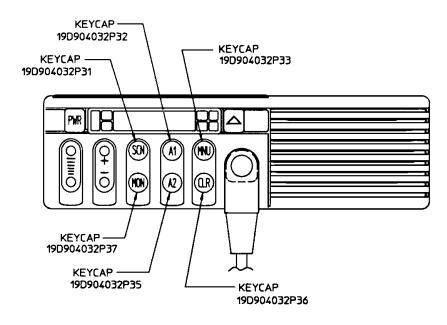
SYMBOL	PART NO.	DESCRIPTION
		APPLICATION ASSEMBLY 19D902944
		ASSEMBLIES
A1	19D902132G3	RF BOARD
A2	19D901891G3	SYSTEM BOARD
A3	19D904025G2	AUDIO AMPLIFIER BOARD
A4	19D903963G1	AUDIO/LOGIC BOARD
A5	19D902944G1	PA BOARD
A6	19D904151G1	FRONT CAP ASSEMBLY
		KITS
	344A4253G1	Hardware Kit (No. 1)
	344A4255G8	Hardware Kit (No. 2)
	344A4256G12	Hardware Kit (No. 3)
	344A4254G1	Key Cap Kit
		CABLES
	19A705301P6	Cable, Antenna (W1)
	19B801253P5	Cable, Ribbon (W4)
	19A705235P3	Cable, Ribbon, J901 on Audio Amplifier to J902 on System Board (W3)
	19A704884P10	Cable Assembly, RF (W23)
	19A704884P4	Cable Assembly, RF (W22)
	19B801467P1	Cable (W6)
	19A704884P2	Cable Assembly, RF
		MISCELLANEOUS
	19D904027P1	Casting
	19D904186G2	Cover, Radio Top
	19D904185G1	Cover, Radio Bottom
		Label, Microphone C9 Connector
	19B801398P5	Hanger, Microphone, Magnetic HSW LG
	19B801358P18	Cable, 9 Foot, Power
	19B802420P1	Nameplate, LOGO, EGE
	344A4528P1	Microphone
	344A4678P1	Hanger, Microphone (Used with Microphone 344A4528P1).
·		


^{*} COMPONENTS ADDED, DELETED OR CHANGED BY PRODUCTION CHANGES

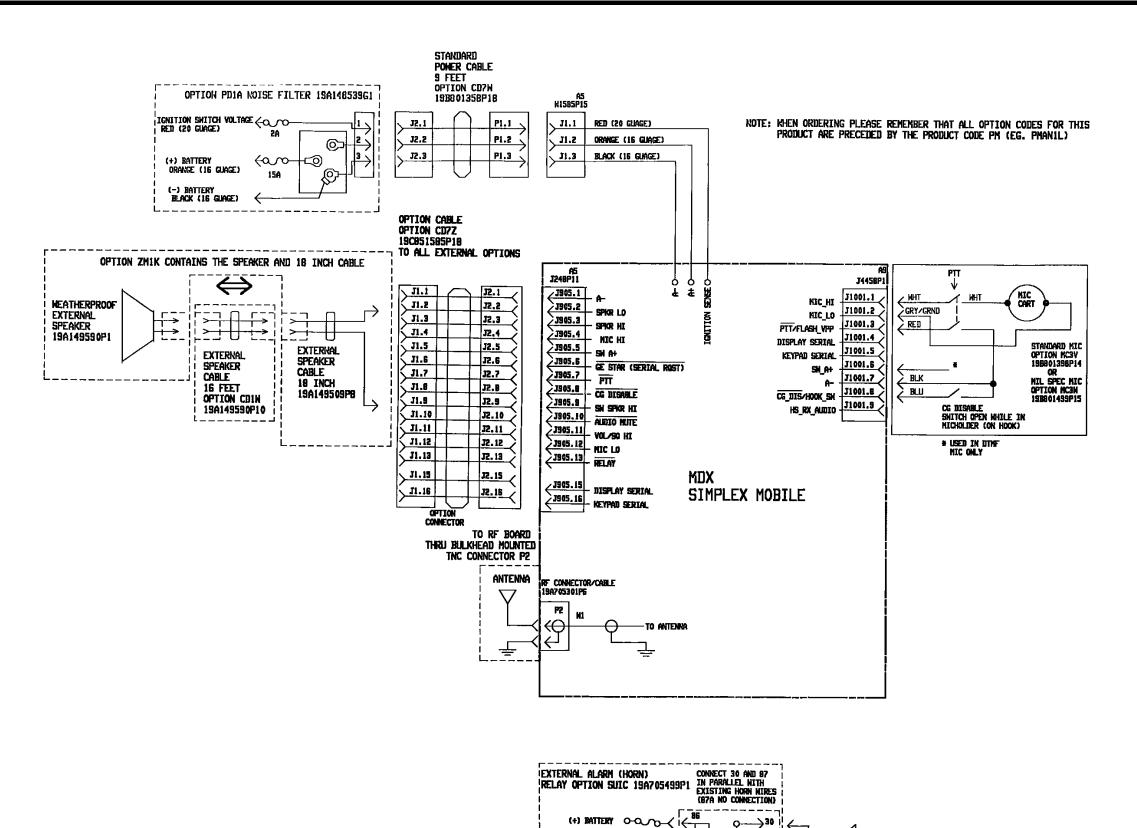
LBI-38915A ASSEMBLY DIAGRAM



6

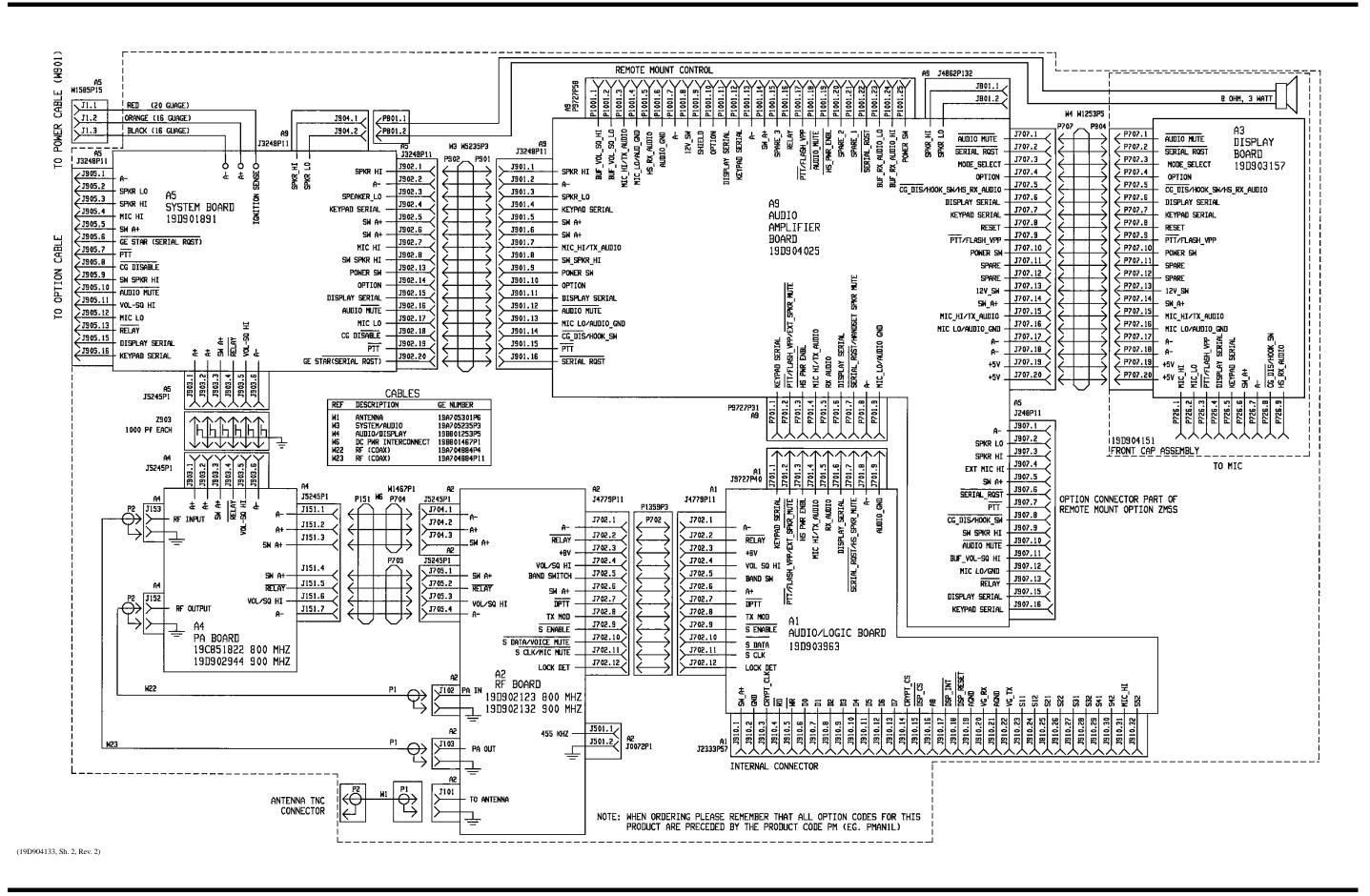

ASSEMBLY DIAGRAM LBI-38915A

LBI-38915A ASSEMBLY DIAGRAM

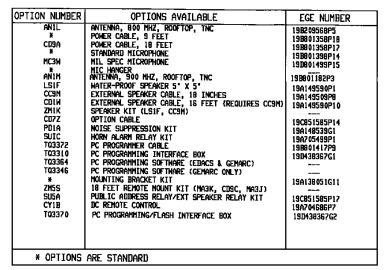

MDX 800 MHZ (SIMPLEX)
MDX 900 MHZ (SIMPLEX)

MDX CONVENTIONAL (SIMPLEX)

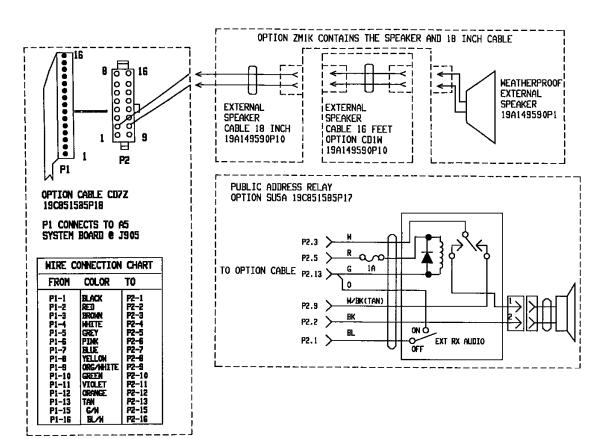
(19D904183, Sh. 5, Rev. 1)

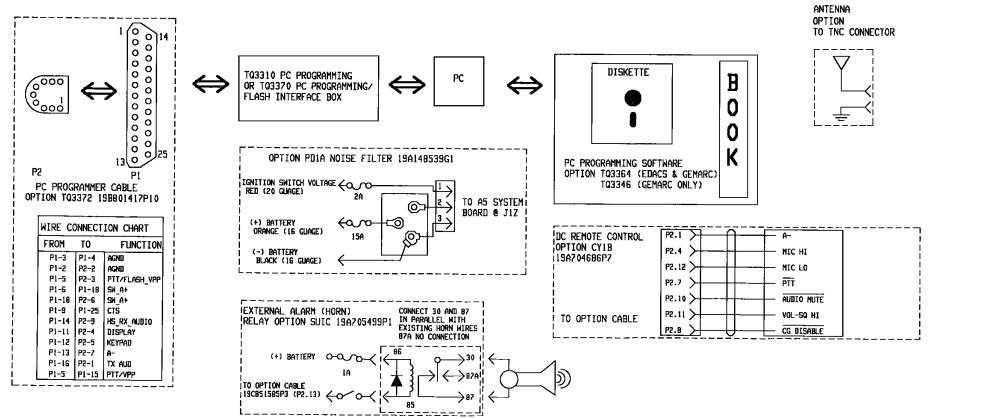

INTERCONNECT DIAGRAM LBI-38915A

TO OPTION CARLE


|190851585P14 (J1.13) (-0 0 - |

(19D904133, Sh. 1, Rev. 4)




10

INTERCONNECT DIAGRAM

NOTE: WHEN ORDERING PLEASE REMEMBER THAT ALL OPTION CODES FOR THIS PRODUCT ARE PRECEDED BY THE PRODUCT CODE PM (EG. PMANIL). FOR A COMPLETE LISTING OF OPTIONS SEE YOUR AUTHORIZED EGE DEALER.

(19D904133, Sh. 3, Rev. 4)