MASTR® II RF POWER AMPLIFIER POWER SUPPLY 19D402530G1,G2 TRANSFORMER CHASSIS #### **SPECIFICATIONS** * Used With Power Input Power Output Tubes Duty Cycle Temperature Range Dimensions (H x W x D) Main Chassis Transformer Chassis Weight Main Chassis Transformer Chassis Power Amplifiers EF-4-A (25-50 MHz) EF-5-A (144-174 MHz) 19D423414G1, G2 (406-512 MHz) 117 VAC $\pm 20\%$, 50/60 Hz 2000 VDC @ 250 mA for PA Plate 300 VDC @ 25 mA for PA Screen 6 VDC @ 3 amperes for Filaments 140 VDC for Antenna Relay (1) 6680/12AU7 (clamper circuit) Continuous -30° C to $+60^{\circ}$ C (-22° F to $+140^{\circ}$ F) 8-3/4" x 19" x 14-1/2" 7" x 19" x 8-1/2" 31 pounds 57 pounds ^{*}These specifications are intended primarily for the use of the serviceman. Refer to the appropriate Specification Sheet for the complete specifications. #### TABLE OF CONTENTS | SPECIFICATIONS | Cover | |---|------------------| | DESCRIPTION | 1 | | CIRCUIT ANALYSIS | 1 | | ADJUSTMENT | 6 | | MAINTENANCE | 6 | | TROUBLESHOOTING PROCEDURE | 7 | | OUTLINE DIAGRAM | 8 | | WIRING DIAGRAM | 9 | | PARTS LIST | 10 | | PRODUCTION CHANGES | 10 | | | | | ILLUSTRATIONS | | | Figure 1 - Filament Supply | 2
3
3
4 | | Figure 6 - Plate Relay and Antenna Relay Supply | 5 | — WARNING — No one should be permitted to handle any portion of the equipment that is supplied with high voltage; or to connect any external apparatus to the units while the units are supplied with power. KEEP AWAY FROM LIVE CIRCUITS. #### DESCRIPTION General Electric Power Supply 19D402530G1, G2 supplies the filament, grid, antenna relay and high voltage to Power Amplifier Models 4EF4A1-3, 4EF5A1 and 19D423414G1, G2. The power supply consists of a main chassis and a transformer chassis, mounted separately in the station cabinet. The overall height of the two panels is 15-3/4". Voltages provided by the power supply are: - 2000 VDC -- B+ to PA - 300 VDC -- PA screen grid - 6 VDC -- Filaments and relays - 140 VDC -- Antenna relay - 8 VDC -- Drive relay (K454) on power supply chassis. The high voltage output (2000 VDC) is taken from C451-1 and connected to PO#2 on the power amplifier through the station harness. The remaining voltages are fed to the power amplifier through a 4-wire cable (part of the PA) which connects to the power supply at J451. Jacks are provided on the main chassis front panel to meter the grid current and filament voltage. The high B+ voltage is metered through the plate voltage meter located on the cabinet metering panel. Voltages are not exposed on the front side of the power supply panels. The rear cabinet door is interlocked for protection against exposure to high voltages. The high voltage indicator lamp illuminates when the high voltage supply is ON. The lamps turns off when the cabinet rear door is opened and the high voltage at C451-1 is discharged to ground by shorting bar S4. The blower (BM451) is used to cool the PA tube and is mounted on the front of the power supply. The main power supply chassis contains all circuit components with the following exceptions: Power transformer T452 cabinet blower thermostat K455, filament choke L451, fuse F452, resistors R457, R469, R1 through R32, capacitors C455, C456, C458, C459 and high-voltage supply rectifiers CR33 through CR36. These components are mounted on the transformer chassis. #### CIRCUIT ANALYSIS The high side of the 117-VAC input to the Power Supply is connected to TB451-9 and 10, and the neutral side is connected to TB451-7 and -8. Switch S452 is the control voltage ON-OFF switch with fuse F451 (1 amp) in series with the line. S451 is the supply switch to the plate transformer and blower BM451. #### Filament Supply (Figure 1 and Figure 2) The filament power circuit supplies a regulated ($\pm 5\%$) 6 VDC to the EF-4-A and EF-5-A PA tube filaments. With the Control Switch (S452) in the ON position, power is supplied to the primary of the filament voltage transformer T451. The output across the two brown secondary wires of T451 is rectified by a Figure 1 - Filament Supply Figure 2 - 6-Volt Regulator full-wave rectifier circuit, CR453 and CR454. The output at the center tap of T451 is filtered by choke input filter L452 and capacitors C452 and C461. The filter circuit output is applied through voltage dropping rectifier CR455 to the emitters of Q453 and Q451. If the output of Q453 and Q451 attempts to rise, the base of Q1 (located on the 6-volt Regulator board A451) is made more positive. This decreases the positive voltage at the base of driver transistor Q452. Q452 will then conduct more heavily, causing a greater voltage drop across R455. The bases of Q451 and Q453 will become more positive, thereby reducing the conduction of Q451 and Q453 and keeping the voltage at the output terminal at a ±5% regulated voltage level. If the output of Q453 and Q451 drops, Q1 conducts less, decreasing the forward bias on Q452 and reducing the voltage drop across R455. This will cause Q451 and Q453 to conduct more heavily and hold the output voltage within the $\pm 5\%$ regulated level. Filament measuring jacks (J1 and J2) are provided on the A451 board as an aid to servicing the equipment and are accessible from the rear of the supply. Use a DC voltmeter to measure the filament voltage at J1 and J2. R4 seldom requires adjustment. It is adjusted to 6 VDC for use with power amplifier type EF-4-A and EF-5-A at the factory for the proper $\pm 5\%$ regulation required from the A451 circuit. #### High Voltage Plate Supply (Figure 3) The high voltage supply provides 2000 volts for the PA tube plate circuit. The full-wave bridge rectifier circuit consists of eight silicon rectifiers in each leg of the bridge (32 rectifiers total). The bridge circuit is connected across the secondary of power transformer T452. The rectified output is filtered by choke L451 and capacitor C451. R457, R469, C458, and C459 form a ringing suppression circuit. The high voltage output is taken off at terminal 1 of C451 and is connected to the power amplifier through the station harness. #### Screen Voltage Supply (Figure 4) The screen voltage supply provides 300 VDC for the PA tube screen grids. Screen voltage is obtained for the PA tube by use of a voltage divider in the plate supply circuit of the high voltage power supply. The voltage divider network (R462, R460, and R461) also serves as a bleeder. The screen voltage may be varied by adjusting the screen control R461 located on the front of the power supply chassis. Resistors R465, R466, and R467 are the voltage dividers for the metering terminal TB451-2. The screen voltage supply maintains a constant power output, limiting screen current. #### Overload and Overload Hold Circuit (Figure 5) Silicon controlled rectifier (SCR1) is driven by excessive current in the secondary of the high voltage supply. When SCR1 fires, it shunts the drive to trigger transistor Q1. SCR1 operates until the drive is removed from the PA. Figure 3 - High Voltage Supply Figure 4 - Screen Voltage Supply #### Grid Drive Circuit (Figure 5) Ql keys grid drive relay K454, when driven by the self-developed grid bias from the PA tube. Indicator lamp DS453 becomes illuminated as soon as the drive relay becomes energized. Grid current can be measured at grid jack J452 located on the front of the power supply chassis. #### Drive Relay K454 (Figure 5) Drive relay K454 is energized only when adequate current exists in the grid circuit. When K454 is energized, it causes (1) the Grid current indicator lamp to light; (2) the filament voltage dropping resistor to be shorted out; (3) the PA screen to become ungrounded; (4) a set of contacts to close in series with the plate relay coil K453 so that the antenna relay becomes energized. #### Opto-Coupler Ul (Figure 5) Opto-Coupler U1 and Q2 with associated circuitry on the A452 board provides addi- tional protection by unkeying the grid drive relay K454 when the PTT lead goes open (unkeyed). Opto-Coupler Ul is turned off when the PTT line is open (ungrounded) since TB451-6 is connected to 13.8 Volts and TB451-12 is connected to PTT in the system. With Ul turned off, Q2 is turned on, grounding the base of Q1 turning it off. The grid drive relay K454 unkeys shutting down the RF Power Amplifier. When the PTT lead is grounded (keyed) U1 is turned on, turning off Q2. With Q2 turned off, Q1 is now under the influence of SCR1 overload protection. #### Drive Relay Supply (Figure 5) The drive relay supply is a half-wave rectifier circuit (CR452, C454, and R452) across the yellow-yellow secondary leads of T451 to provide a 8 VDC keyed voltage to grid drive relay K454. Figure 5 - Overload Hold and Drive Relay Circuit #### Screen Clamping Circuit The V451 clamper tube (6680) is connected to the PA screen to hold the PA screen in a safe level when the self-developed bias on the PA tube is shut off. With no grid drive present, the clamper conducts, lowering its own plate voltage and the PA screen voltage. This action holds the PA plate current at a safe level. With grid drive present, the clamper cuts off and allows the circuit to rise to its normal level. #### - CAUTION - K454 and V451 are connected in paralled to protect the power amplifier tube when the transmitter is unkeyed. If V451 goes bad, pins 9 and 10 of K454 may weld together. If relay K454 is replaced, check V451. #### External Interlock (Figure 6) The external interlock switch is mounted on the rear of the equipment cabinet and is connected to TB451-4 and -5 on the power supply chassis. Opening the rear door opens the interlock switch, causing K454 to deenergize. This opens the primary of the plate supply and turns OFF the Plate indicator light DS451. A shorting bar shorts the high voltage terminal on C451 to ground when the cabinet rear door is opened. #### Air Flow Switch K451 (Figure 6) Air Flow switch K451 (thermostat) with resistor R453 is located in the air duct of the blower
mounted on the main power supply chassis. If the air fails and the thermostat temperature exceeds 200°F K451-1 and -2 will open, causing plate relay, K453 to de-energize and open the primary of the plate supply. #### Antenna Relay Supply (Figure 6) The 140 VDC is supplied to the antenna relay located on the left rear of the power amplifier chassis. The 140 VDC is a keyed voltage derived from a half-wave rectifier circuit consisting of CR451 and C453 across the 117 VAC line. The output is measured from TB452-7 and -8. #### Plate Relay (Figure 6) When plate relay K453 is energized, 117 VAC is supplied to plate transformer T452. Plate relay K453 is connected in series with the grid drive relay (K454) to allow the proper grid current to develop before the 117 VAC is applied to the T452 primary. #### * Cabinet Blower Thermostat K455 (Figure 6) Thermostat for optional cabinet blower (K455) is located on the transformer chassis. A lead from the thermostat is brought out to TB451-6 for connection to the cabinet blower. The high side of the thermostat connects to the line through fuse F452. Whenever the temperature inside the cabinet exceeds 120°F, the thermostat cuts in, allowing the blower to operate. When the temperature in the cabinet drops to 100°F, the thermostat cuts off, causing the blower to stop. #### * Removed by Rev. E to 19D402530G2 #### Time Delay Relay K456 (Figure 6) The thermal time delay relay K456 is actuated by the 6-volt filament circuit. It provides a 45-second time delay before closing a set of contacts in the primary circuit of the plate supply. This delay allows sufficient time for PA tube filament to warm up before plate voltage is applied to the PA tube. #### INDICATORS #### Plate (DS451) Plate indicator lamp (red) on the main chassis front panel becomes illuminated when the PA plate high voltage is turned ON. #### Time Delay (DS452) Time Delay lamp (amber) on the main chassis front panel becomes illuminated when the time delay (K456) is energized. #### Grid (DS453) Gride lamp (amber) on the main chassis front panel becomes illuminated when the proper grid bias is present at the PA tube grid. Figure 6 - Plate Relay and Antenna Relay Supply #### Plate (DS454) Plate lamp (red) on the rear of the main chassis becomes illuminated when the PA plate high voltage is turned ON. #### METERING #### PA Plate Voltage The PA plate voltage meter M904 is mounted on the cabinet meter panel and is connected to TB451-1 and -2 on the power supply chassis. R467 is the plate voltage metering resistor. #### PA Plate Current The PA Plate Current Meter is mounted on the cabinet meter panel and is connected as shown in Figure 5. Note that both the PA screen current (approximately 25 mA) and PA plate current pass through the meter. To obtain actual plate current, subtract 25 mA from the meter reading. #### Grid To measure grid voltage, insert the probe from one of the tuning meters on the cabinet meter panel into grid jack J452 on the power supply chassis. R10 is the metering resistor for J452. #### Filament The filament metering jacks (J1 & J2) are located on the 6-VDC regulator board (A451). #### **ADJUSTMENT** The following adjustments have been made at the factory. They should be checked and adjusted only during periodic maintenance checks and when troubleshooting. #### FILAMENT Measure output at test points J1 and J2 on 6-VDC regulator board A451. Adjust R4 for 6 VDC. #### SCREEN Refer to "Alignment Procedure" in Power Amplifier Maintenance Manual for adjustment of screen control R461. #### PLATE OVERLOAD Plate Overload potentiometer Rl on the A452 board has been set at the factory to maintain plate current at 350 mA. A plate current of 375 mA turns on SCR1, causing the plate voltage to drop out. #### **MAINTENANCE** To obtain optimum performance from the equipment, a program of regular preventive maintenance should be followed. This preventive maintenance should include the following: - 1. A mechanical inspection of the unit for loose, broken or damaged components. - 2. A check of the input voltage. - 3. Measurement of PA PLATE voltage, PLATE current, GRID current (J452), and FIL-AMENT (J1 and J2). A log should be kept of these readings when the equipment is first installed so that tube or component failures can be anticipated and the defect corrected before trouble becomes serious. - 4. Check clamper tube V451. - 5. Blower and relay maintenance as described in the sections below: #### BLOWER The blower which is installed on the Power Supply and used for cooling the PA tube on the Power Amplifier should be cleaned periodically to maintain its efficiency. The motor bearings should be repacked with Cherron Type BRB-2 grease every thrity-six months. #### RELAYS The relays in these units require little care. However, they should be inspected periodically to assure maximum operating efficiency. If the contacts become pitted, they should be cleaned with a burnishing tool to smooth out any metallic deposits. When relay contacts carry little or no current, the contacts do not clean themselves and an insulating coating is apt to form. This coating may be removed by cleaning the contacts with a burnishing tool. Do not oil the relay bearings. When relays are in dusty locations, lubricated bearings will collect dust and grit and will wear more rapidly than non-lubricated bearings. Some of the relays used are of the multiplecontact type and, in the unenergized position, should have contact spacings of approximately 0.1625 to 0.125 inch. More important, the contact spacings on any multiplecontact relay should be equal so that the contact pressures will be equal when the relay is energized. The back pressure of the antenna relay should be at least 15 grams. Low back pressure will shorten the life of contacts, due to excessive arcing, and may also cause noise in the receiver, due to chatter of the antenna relay contact. # TROUBLESHOOTING PROCEDURES QUICK CHECKS | SYMPTOM | CHECK THE FOLLOWING | | | | | |---|--|--|--|--|--| | No power supply output | 1. Fuses F451, F452, and F453. | | | | | | voltages when unit is keyed. | 2. TB451-8-9 for 117 VAC unregulated if used. | | | | | | | 3. TB451-8-10 for 117 VAC unregulated, if used. | | | | | | | 4. TB452-1-2 for 117 VAC. | | | | | | | 5. TB453-1-2 for 117 VAC. | | | | | | | 6. K454 should become energized, when RF is applied to the PA. | | | | | | | 7. S452, T451, CR451, C453, and K456 for opens or shorts. | | | | | | No 2000 VDC reading on PA
Plate Voltmeter (M904). | 1. C451, R469, R457, C458, C459, and BM451 for opens or shorts. | | | | | | | 2. CR33 through CR36 on rectifier board (A453). | | | | | | | 3. T452, C455, and C456 for opens or shorts. | | | | | | No Grid Voltage at J452. | R461, C460, K454 for opens or shorts. | | | | | | No 140 VDC at TB452-7-8. | C453 and CR451 for opens or shorts. | | | | | | No 6 VDC at J1 & J2. | Q1, R4, C1, Q452, Q453, Q451, CR455, and R455 for opens or shorts. Open F453. | | | | | | No 8 VDC at TB3-1. | 1. CR452, C454, R452 for opens or shorts. | | | | | | | 2. Check for 8 VDC across T451 yellow-yellow leads. | | | | | | No screen current reading on PA plate current meter (M904). | 1. 2000 VDC must be operating properly, then check R460, R461, R462, and C460 for opens or shorts. | | | | | | | 2. Check 12AU7. | | | | | | Blower does not operate. | K462, K455, K451, and R453 for opens or shorts. Open F452. | | | | | GENERAL ELECTRIC COMPANY+ MOBILE COMMUNICATIONS DIVISION WORLD HEADQUARTERS+LYNCHBURG, VIRGINIA 24502 U.S.A. TRANSFORMER CHASSIS - REAR VIEW ### **OUTLINE DIAGRAM** POWER SUPPLY MODEL 19D402530G1, G2 #### PTT, OVERLOAD & RF SENSING # 6-VDC REGULATOR LEAD IDENTIFICATION FOR Q1 AND Q2 IN-LINE TRIANGULAR TOP VIEW NOTE: LEAD ARRANGEMENT, AND NOT CASE SHAPE, IS DETERMINING FACTOR FOR LEAD IDENTIFICATION. ALL MEASUREMENTS MADE WITH A METER RANGE THAT GIVES ONE-THIRD TO FULL SCALE DEFLECTION OF THE METER. ALL DC VOLTAGES ARE POSITIVE WITH RESPECT TO CHASSIS, UNLESS MARKED "—" FOR NEGATIVE. A- WHERE TWO VOLTAGES ARE GIVEN FOR ONE POINT (I.E. O 6.0 V) FIRST READING IS FOR "STANDBY" AND SECOND IS FOR "TRANSMIT" VOLTAGE & RESISTANCE READINGS ALL MEASUREMENTS MADE FROM INDICATED POINT TO CHASSIS WITH ALL CABLES DISCONNECTED FROM UNIT. VOLTAGES ARE TYPICAL READINGS ON A 20,000 OHM-PER-VOLT DC METER. UNLESS OTHERWISE NOTEJ. 5. RESISTANCE ARE TYPICAL READINGS WITH ALL VOLTAGES REMOVED. | NUMBER | VOLTAGE ± 10 | RESISTANCE ± 20% | FUNCTION | |---|---|-----------------------------|--| | TB45 I - I - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 9 - 10 - 110 | 0
0
117 VAC
117 VAC
117 VAC **
117 VAC NEUTRAL
117 VAC HIGH
117 VAC HIGH | 0
430K

 | GROUND PLATE VOLTAGE | | - 12 TB452- I -2 -3 -4 -5 -6 -7 -8 | 117 VAC NEUTRAL 117 VAC HIGH 0 117 VAC HIGH 117 VAC HIGH 117 VAC NEUTRAL 140 VDC | 0 | T452 PRIMARY T452 PRIMARY T452 CENTER TAP T451 PRIMARY ANTENNA RELAY ANTENNA RELAY | | J452-I
-2
-3
-4 | 0
5.5 TO 6 VDC
-35 TO -125 VDC
150 TO 300 VDC ** | 0
0
5100
5K TO 50K | GROUND
•FILAMENT
GRID
SCREEN | | C451-1 | 2000 VDC *** | 85K TO 135K | HIGH VOLTAGE | * OPERATE ABOVE 50°C CONDITIONS OF MEASUREMENT: - ** DETERMINED BY THE SETTING OF R461 (SCREEN ADJUSTMENT) - *** MEASURED ON METER M904. #### POWER SUPPLY OUTPUT READINGS | STAGE | TEST POINT | OUTPUT | | | | |------------------|---------------------|---|--|--|--| | FILAMENT | JI & J2 | 6 VDC | | | | | GRID | J452 & GROUND | 2.5 VDC (0.7 TO 2.5 VDC FOR EF-6-A POWER AMPLIFIER) | | | | | SCREEN * | ADJUST R461 | 250 MA | | |
| | PA PLATE ** | M904 METER | 2000 VDC | | | | | ANTENNA RELAY | TB3-4(+) & TB4-3(-) | 140 VDC | | | | | GRID DRIVE RELAY | TB3-I(+) & 1B4-I(-) | 8 VDC | | | | - * SCREEN IS ADJUSTED BY RHG1 TO OBTAIN 250 MA MAX. ON PLATE CURRENT METER. - ** WITH METER SWITCH IN PLATE VOLTAGE POSITION, CHECK VOLTAGE READING ON PLATE VOLTAGE METER. VIEW"E" (PARTIAL) VIEW "F" Issue 5 #### PARTS LIST LBI4932D RF POWER AMPLIFIER *COMPONENTS ADDED, DELETED OR CHANGED BY PRODUCTION CHANGES | ART NO. 7P7 T 5P2 J 65P1 J 6123P1 S 621J C 681J C 681J C | DESCRIPTION MAIN CHASSIS 19D402530G1 COMPONENT BOARD ASSEMBLY 19C303760G1 | A | R5 R6 R7 and R8 R9 R10 R11 R12 R13 R14 SCR1 U1 | 3R77P103K 3R77P203J 3R79P302J 3R78P243J 3R77P511J 3R77P102J 19A116278P277 3R77P101J 19A116278P201 19A115198P1 19A116908P1 4036887P5 | Composition: 10K ohms ±10%, 1, Composition: 20K ohms ±5%, 1/2 Composition: 3K ohms ±5%, 2 w Composition: 24K ohms ±5%, 1/2 Composition: 510 ohms ±5%, 1/2 Composition: 1K ohms ±5%, 1/2 Metal film: 6.19K ohms ±2%, 1, Composition: 100 ohms ±2%, 1/2 | |--|---|--|--|---|--| | 7P7 T T 5P2 J C 5P1 J C 123P1 S 121J C 101J C 181J C | MAIN CHASSIS 19D402530G1 COMPONENT BOARD ASSEMBLY 19C303760G1 | A | R7 and R8 R9 R10 R11 R12 R13 R14 SCR1 U1 | 3R79P302J 3R78P243J 3R77P511J 3R77P102J 19A116278P277 3R77P101J 19A116278P201 19A115198P1 19A116908P1 | Composition: 3K ohms ±5%, 2 w Composition: 24K ohms ±5%, 1 v Composition: 510 ohms ±5%, 1/2 Metal film: 6.19K ohms ±2%, 1/2 Metal film: 1K ohms ±2%, 1/2 | | 7P7 T T 5P2 J C 5P1 J C 123P1 S 121J C 101J C 181J C | MAIN CHASSIS 19D402530G1 COMPONENT BOARD ASSEMBLY 19C303760G1 | A | and R8 R9 R10 R11 R12 R13 R14 SCR1 U1 | 3R78P243J 3R77P511J 3R77P102J 19A116278P277 3R77P101J 19A116278P201 19A115198P1 19A116908P1 | Composition: 24K ohms ±5%, 1 /2 Composition: 510 ohms ±5%, 1 /2 Composition: 1K ohms ±5%, 1 /2 Metal film: 6.19K ohms ±2%, 1 Composition: 100 ohms ±5%, 1 /2 Metal film: 1K ohms ±2%, 1 /2 | | 5P2 J
5P1 J
5P1 J
6123P1 S
6123P1 C
601J C
681J C | MAIN CHASSIS 19D402530G1 COMPONENT BOARD ASSEMBLY 19C303760G1 | A | R10 R11 R12 R13 R14 SCR1 U1 | 3R77P511J
3R77P102J
19A116278P277
3R77P101J
19A116278P201
19A115198P1 | Composition: 510 ohms ±5%, 1/2 Composition: 1K ohms ±5%, 1/2 Metal film: 6.19K ohms ±2%, 1. Composition: 100 ohms ±5%, 1/2 Metal film: 1K ohms ±2%, 1/2 | | 5P2 J
5P1 J
5P1 J
6123P1 S
6123P1 C
601J C
681J C | 19D402530G1 COMPONENT BOARD ASSEMBLY 19C303760G1 | A | R11 R12 R13 R14 SCR1 U1 | 3R77P102J
19A116278P277
3R77P101J
19A116278P201
19A115198P1 | Composition: 1K ohms ±5%, 1/2 Metal film: 6.19K ohms ±2%, 1. Composition: 100 ohms ±5%, 1/2 Metal film: 1K ohms ±2%, 1/2 | | 5P2 J
5P1 J
5P1 J
6123P1 S
6123P1 C
601J C
681J C | 19D402530G1 COMPONENT BOARD ASSEMBLY 19C303760G1 | A | R12
R13
R14
SCR1
U1 | 19A116278P277
3R77P101J
19A116278P201
19A115198P1
19A116908P1 | Metal film: 6.19K ohms ±2%, 1. Composition: 100 ohms ±5%, 1/ Metal film: 1K ohms ±2%, 1/2 | | 5P2 J
5P1 J
5P1 J
6123P1 S
6123P1 C
601J C
681J C | COMPONENT BOARD ASSEMBLY 19C303760G1 | A | R13 R14 SCR1 U1 VR1 and | 3R77P101J
19A116278P201
19A115198P1
19A116908P1 | Composition: 100 ohms ±5%, 1/2 Metal film: 1K ohms ±2%, 1/2 Thyristor, switch: silicon control 3N81. Thyristor INTEGRATED CIR Optoelectronic coupler: Dual Dip Package; sim to TI TILL12. | | 5P2 J
5P1 J
5P1 J
6123P1 S
6221J C
601J C
681J V
t | 19C303760G1 | A | R14 SCR1 U1 VR1 and | 19A116278P201
19A115198P1
19A116908P1 | Metal film: lK ohms ±2%, 1/2 THYRISTORS Thyristor, switch: silicon co Type 3N81. INTEGRATED CIR Optoelectronic coupler: Dual Dip Package; sim to TI T1L112. | | 5P2 J
5P1 J
5P1 J
6123P1 S
6221J C
601J C
681J V
t | antalum: 100 µf ±20%, 10 VDCW; sim to Sprague ype 150D. | A | SCR1
U1
VR1
and | 19A115198P1
19A116908P1 | Thyristor, switch: silicon co
Type 3N81. | | 5P2 J
5P1 J
5P1 J
6123P1 S
6221J C
601J C
681J V
t | antalum: 100 µf ±20%, 10 VDCW; sim to Sprague ppe 150D. JACKS AND RECEPTACLES ack, tip, stake-in: red plastic body; sim to omponent Mfg Service A-1128. ack, tip, stake-in: black plastic body; sim to omponent Mfg Service A-1128. | A | U1
VR1
and | 19A116908P1 | Thyristor, switch: silicon co
Type 3N81. | | 5P2 J
5P1 J
5P1 J
6123P1 S
6221J C
601J C
681J V
t | ype 150D. JACKS AND RECEPTACLES ack, tip, stake-in: red plastic body; sim to omponent Mfg Service A-1128. ack, tip, stake-in: black plastic body; sim to omponent Mfg Service A-1128. TRANSISTORS ilicon, NPN. RESISTORS omposition: 220 ohms ±5%, 1/2 w. omposition: 300 ohms ±5%, 1/2 w. omposition: 680 ohms ±5%, 1/2 w. | A | U1
VR1
and | 19A116908P1 | Thyristor, switch: silicon co
Type 3N81. | | 5P2 J C C C C C C C C C C C C C C C C C C | ack, tip, stake-in: red plastic body; sim to omponent Mfg Service A-1128. ack, tip, stake-in: black plastic body; sim to omponent Mfg Service A-1128. | A | VR1
and | | Optoelectronic coupler: Dual
Dip Package; sim to TI T1L112. | | .123P1 S .123P1 C .123P1 C .123P1 C .121J .1 | omponent Mrg Service A-1128. ack, tip, stake-in: black plastic body; sim to omponent Mrg Service A-1128. | A | VR1
and | | Optoelectronic coupler: Dual
Dip Package; sim to TI T1L112. | | .123P1 S | omponent Mfg Service A-1128. | A | and | 4036887P5 | VOLTAGE REGULA | | S S S S S S S S S S S S S S S S S S S | ilicon, NPN. RESISTORS omposition: 220 ohms ±5%, 1/2 w. omposition: 300 ohms ±5%, 1/2 w. omposition: 680 ohms ±5%, 1/2 w. | A | and | 4036887P5 | Zener: 500 mW, 5.4 v. nominal | | | RESISTORS composition: 220 ohms ±5%, 1/2 w. composition: 300 ohms ±5%, 1/2 w. composition: 680 ohms ±5%, 1/2 w. | A | | | 1 | | 221J C
301J C
381J C
3133P1 V | omposition: 220 ohms ±5%, 1/2 w. omposition: 300 ohms ±5%, 1/2 w. omposition: 680 ohms ±5%, 1/2 w. | A | | | | | 001J C
081J C
0113P1 V | omposition: 300 ohms ±5%, 1/2 w. omposition: 680 ohms ±5%, 1/2 w. | | 452* | | COMPONENT BOARD A | | 581J C
0113P1 V
t | omposition: 680 ohms ±5%, 1/2 w. | 11 | | | (Deleted in 19D402530 | | 0113P1 V | | Ш | | | CAPACITORS | | ŀ | ariable, wirewound: 250 ohms ±20%, 2.5 w; sim o CTS Series 110. | | Cl
| 7489483P20 | Electrolytic: 200 µf +75% -10
Sprague 30D. | | 1 0 | omposition: 100 ohms ±5%, 1/2 w. | | C2 | 19A115028P16 | Polyester: 0.22 µf ±20%, 200 | | | | | C3* | 19A116080P107 | Polyester: 0.1 µf ±10%, 50 V | | - | | 11 | | | DECENDED AND DECEMBER | | 28P17 | isc: 40 ohms $\pm 10\%$, color code black, 1.25 wax; sim to Carborundum Type Cl $605J$ -1. | | CR1 | 4037822Pl | DIODES AND RECT | | - | | | | | TRANSISTORS | | 37 P3 Z | ener: 500 mW, 3.8 v. nominal. | | Q1 | 19A115300P2 | Silicon, NPN; sim to Type 2N3 | | | COMPONENT BOARD
19C327493G1 | | | | RESISTORS | | | (Added to 19D402530G1 by REV S) | | Rl | 19B209113P4 | Variable, wirewound: 15 ohms to CTS Series 110. | | | | 11 | R2 | 19A116310P23 | Composition: 10 ohms ±5%, 2 | | 1 | o Mallory Type TTX. | 11 | R3 | 3R77P511J | Composition: 510 ohms ±5%, 1 | | 6080P109 I | Polyester: 0.22 µf ±10%, 50 VDCW. | | R4 | 3R77P202J | Composition: 2K ohms ±5%, 1/ | | 5080P107 I | Polyester: 0.1 µf ±10%, 50 VDCW. | | R6 | 3R77P203J | Composition: 20K ohms ±5%, 1 | | 1 | | | R7
and
R8 | 3R79P302J | Composition: 3K ohms ±5%, 2 | | ŀ | | | R9 | 3R78P243J | Composition: 24K ohms ±5%, 1 | | | | | R10 | 3R77P511J | Composition: 510 ohms ±5%, 1 | | | • | | Rll | 3R77P102J | Composition: 1K ohms ±5%, 1/ | | 5250P1 S | dilicon, fast recovery, 225 mA, 50 PIV. | | | | SWITCHES | | 1 | | | SCR1 | 19A115198Pl | Silicon controlled; sim to Ty | | | | | | | VOLTAGE REGUL | | | | | VR1
and | 4036887P5 | Zener: 500 mW, 5.4 v. nomina | | 9113P4 | Variable, wirewound: 15 ohms ±10%, 2.5 w; sim | | VR2 | | | | | | | | | | | | \$080P109 F \$080P107 F \$1202P5 T \$22P2 \$ \$22P1 \$ \$5250P1 \$ \$5300P2 \$ \$6755P1 \$ \$9113P4 \$ \$6310P23 \$ \$ | Electrolytic: 200 µf +150% -10%, 18 VDCW; sim to Mallory Type TTX. Polyester: 0.22 µf ±10%, 50 VDCW. Polyester: 0.1 µf ±10%, 50 VDCW. Tantalum: 3.3 µf ±20%, 15 VDCW. DIODES AND RECTIFIERS 22P2 Silicon, 1000 mA, 600 PIV. Silicon, 1000 mA, 400 PIV. Silicon, fast recovery, 225 mA, 50 PIV. TRANSISTORS 3300P2 Silicon, NPN; sim to Type 2N3053. Silicon, NPN; sim to Type 2N3947. RESISTORS Variable, wirewound: 15 ohms ±10%, 2.5 w; sim to CTS Series 110. | Electrolytic: 200 µf +150% -10%, 18 VDCW; sim to Mallory Type TTX. Polyester: 0.22 µf ±10%, 50 VDCW. Polyester: 0.1 µf ±10%, 50 VDCW. Tantalum: 3.3 µf ±20%, 15 VDCW. DIODES AND RECTIFIERS Silicon, 1000 mA, 600 PIV. Silicon, 1000 mA, 400 PIV. Silicon, fast recovery, 225 mA, 50 PIV. TRANSISTORS Silicon, NPN; sim to Type 2N3053. Silicon, NPN; sim to Type 2N3947. RESISTORS Poll3P4 Variable, wirewound: 15 ohms ±10%, 2.5 w; sim to CTS Series 110. Composition: 10 ohms ±5%, 2.0 w; sim to Allen- | Electrolytic: 200 µf +150% -10%, 18 VDCW; sim to Mallory Type TTX. R3 R3 R4 R6 R8 R9 R9 R10 R9 R10 R10 R10 R10 R | Electrolytic: 200 | | DESCRIPTION | | |---|----------------------------| | | | | 510 ohms ±5%, 1/2 w. | | | 2K ohms ±5%, 1/2 w. | | | 10K ohms ±10%, 1/2 w. | | | 20K ohms ±5%, 1/2 w. | | | 3K ohms ±5%, 2 w. | | | 24K ohms ±5%, 1 w. | | | 510 ohms ±5%, 1/2 w. | | | 1K ohms ±5%, 1/2 w. | SEE | | .19K ohms ±2%, 1/2 w. | SHE
DEA | | 100 ohms ±5%, 1/2 w. | CRI
REV | | K ohms ±2%, 1/2 w. | MOD | | THYRISTORS | 190 | | tch: silicon controlled; sim to | I 9D | | - INTEGRATED CIRCUITS | | | coupler: Dual In Line 6 Pin Mini im to TI T1L112. | | | IM CO II IIDIIZ. | ADD JUMPI
4EF6AI PO | | - VOLTAGE REGULATORS | ■ FOR CONT | | , 5.4 v. nominal. | | | | ▲ FOR KEYE | | | REMOVE JI
USED WITI | | COMPONENT BOARD ASSEMBLY
19B205029G1 | NOTES: | | ted in 19D402530G1 by REV S) | I. TERM
C455 | | CAPACITORS | 2. TERM | | 200 μ f +75% -10%, 15 VDCW; sim to | | | | 3. ALL
ARE | | 22 µf ±20%, 200 VDCW. | 4. #20
DIRE | | 1 μ f \pm 10%, 50 VDCW. Added by REV R. | ONE | | DIODES AND RECTIFIERS | 5. TERM
AWG | | mA, 400 PIV. | l | | TRANSISTORS | 1 | | sim to Type 2N3053. | ALL RE | | RESISTORS | OTHER\
VALUES
K=1000 | | ewound: 15 ohms ±10%, 2.5 w; sim | CAPACI
TO MIC | | 110.
10 ohms ±5%, 2 w. | BY UF= | | 510 ohms ±5%, 1/2 w. | MH= MI | | 2K ohms ±5%, 1/2 w. | | | 20K ohms ±5%, 1/2 w. | Ì | | 3K ohms ±5%, 2 w. | | | • | IN O | | 24K ohms ±5%, 1 w. | PERF
SERV! | | 510 ohms ±5%, 1/2 w. | A CO | | 1K ohms ±5%, 1/2 w. | SHOW | | SWITCHES | | | olled; sim to Type 3N81. | | | - VOLTAGE REGULATORS | | | W, 5.4 v. nominal. | 1 | | TERMINATE WITH A7491823P7 #16 BK TERMINATE WITH A7144718 PI TB452-70 SEE APPLICABLE PRODUCTION CHANGE SHEETS IN INSTRUCTION BOOK SECTION DEALING WITH THIS UNIT, FOR DES. CRIPTION OF CHANGES UNDER EACH REVISION LETTER. THIS ELEM DIAG APPLIES TO MODEL NO REV LETTER 190402530G1 190402530G2 E DS453 GRID TB2-4 DS453 TB2-7 ADD JUMPER WHEN POWER SUPPLY IS USED WITH THE 4EFGAI POWER AMPLIFIER. FOR CONTINUOUS BLOWER OPER. FOR KEYED BLOWER OPER. FOR KEYED BLOWER OPER. REMOVE JUMPER ONLY WHEN POWER SUPPLY IS USED WITH THE 4EFGA POWER AMPLIFIER NOTES: 1. TERMINATE WITES AT T452, S451-1, S451-2, | TB451-8 | CONTROL 2004 V20-Y V20-B V20-Y V20-B V20-Y V20-B V20-Y V20-B V20-Y V20-B V2 | # 22 HV R-G # 22 HV R-G # 22 HV R-Y 20 HV-W # 22 HV R-Y # 20 HV-W 3000 VDC | |---|--|--
--| | CA55 & C456 PER 7491823P7. 2. TERMINATE WIRES AT K452 PER 7491825P1. 3. ALL CONNECTIONS SHOWN BETWEEN TB452 & TB453 ARE PART OF W451. 4. %20 HV WIRE BETWEEN L451-1 & C451-1 WILL HANG DIRECTLY BETWEEN THESE COMPONENTS. TERMINATE ONE END OF %20 HV WIRE PER BY391823P9. 5. TERMINATE WIRES AT R454-1 WITH TERMINALS %16 AWG WITH 198209260P1 AND %22 AWG WITH 198209260P5. ALL RESISTORS ARE 1/2 WATT UNLESS OTHERWISE SPECIFIED AND RESISTOR VALUES IN OHMS UNLESS FOLLOWED BY K**1000 OHMS OR M66** 1,000,000 OHMS. CAPACITOR VALUES IN PICOFARADS (EQUAL TO MICROMICROFARADS) INDUCTANCE VALUES IN MICROHENRYS UNLESS FOLLOWED BY MH** MILLIHENRYS OR H**HENRYS. 12. ## | N22 BK HI T451 Y CR452 TB10-2 W TB9-2 V20 WB-Y TB9-2 V20 WB-Y TB9-2 V20 WB-Y V20 WB-Y V20-W-BR TB4-1 SW TB9-2 V20-Y BK TB8-3 CR453 R459 WB-Y V20-W-BR TB8-3 CR453 R459 WB-Y V20-Y BK TB8-3 CR453 R459 WB-Y V20-Y BK TB8-1 CR454 WB-Y TB9-3 TB9-1 TB8-1 CR454 WB-Y TB9-3 TB9-3 TB9-1 TB9 | H8 5 SF22-R OTB45I-6 SF22-G OTB45I-12 V20-R A451 H1 A452 452 452 A52 A52 A52 B N22-O 22 BK R1 22 OΩ R2 R2 300 Ω R2 300 Ω R3 680 Ω R4 R2 R2 R2 R2 R2 R2 R2 R2 R2 | C458 22 W R-G 20 W 22 HV W 22 HV R-G 20 W 22 W 22 W 22 W 22 W 22 HV R-G 20 W 22 | (19R620736, Rev. 27) ## **WIRING DIAGRAM** POWER SUPPLY MODEL 19D402530G1, G2 Issue 5 #### LBI4931 | SYMBOL | GE PART NO. | DESCRIPTION | |--------------------------------|-------------------------------------|---|---------------------|--|---|----------------------------|--------------------------|---|----------------------|-------------------------|--| | BM451 | 19A116674P1 | AC: 115 v ±20%, 50/60 Hz, 1/12 hp; cw rotation; sim to GE (FORT WAYNE) Model 5KCP19DG, DR-68-15- | Q451* | 19Al16760Pl | TRANSISTORS | TB451 | 19C301086P8 | Feed-thru, phen: 12 terminals rated at 15 amps at 1200 VRMS; sim to GE CR151D. | тв12 | 7775500 P 7 | TERMINAL BOARDS Phen: 3 terminals. | | | | 174. | Q452* | 19A115268P1
19A116760P1 | In REV T and earlier: Germanium, PNP. Silicon, PNP; sim to Type 2N5868. | TB452 | 19C301086P5 | Feed-thru, phen: 8 terminals rated at 15 amps at 1200 VRMS; sim to GE CR151D. Phen: 2 terminals. | and
TB13
TB453 | 19C301087P4 | Phen: 8 terminals; sim to GE CR151D. | | C451
C452 | 19A134605P3
5493132P1 | Paper-liquid: 10 µf ±10%, 3000 VDCW; sim to Sprague Type P52934A. Electrolytic: 1000 µf +250% -15%, 35 VDCW. | | 19A115376Pl | In REV T and earlier:
Germanium, PNP. | V451 | | | XF452* | 7141008P1 | Fuseholder: 5 amps at 125 v; sim to Littelfuse E-357001. Deleted by REV E. | | C453 | 7774786P22
7489483P20 | Electrolytic: 10 µf +100% -10%, 250 VDCW; sim to PR Mallory TC52. Electrolytic: 200 µf ±75% -10%, 15 VDCW; sim to Sprague Type 30D. | Q453* | 19A116760P1
19A115268P1 | Silicon, PNP; sim to Type 2N5868. In REV T and earlier: Germanium, PNP. | XDS451 | 7141855P5 | Light, indicator, incandescent: red plastic lens; sim to Dialight 95-0410-0951-102. | W451 | 19B205094G1 | | | C460
C461 | 19A134602P1
5493132P1 | Paper-liquid: 0.5 \(\mu f \pm 10\%, \) 600 VDCW; sim to Sprague Type 167P10. Electrolytic: 1000 \(\mu f \pm 250\% \) -15%, 35 VDCW; sim | R451 | 3R77P224K | | XF451
XF453 | 19B209005P1 | Fuseholder: 15 amps at 250 v; sim to Littelfuse 342012. Fuseholder: 15 amps at 250 v; sim to Littelfuse | | | 13-3/4 inches. HARNESS ASSEMBLY | | C462 | 19A134566P1 | to Sprague Type D70353. Paper-liquid: 5 \(\mu f \text{ \pm \text{tl0%}} \), 370 VDCW at 60 Hz; sim to GE 21L3005. | R452
R453 | 3R77P102K | Composition: lK ohms ±10%, 1/2 w. (Part of Thermal Relay Assembly K451). | XK454
XK456 | 5491595P5
7480532P3 | 342012. Relay: 16 contacts; sim to Allied Control 30054-2. Tube, mica-filled phen: 9 pins rated at 1 amp at 500 VRMS; sim to Elco 04-915-18. | | | (Includes CR457, J451, TB8-TB10, TB14, TB451, TB452, XQ451-XQ453). | | CR451 | 4037822P1 | DIODES AND RECTIFIERS | R454
R455 | 5496941P27 | Wirewound: 0.2 ohm ±10%, 15 w; sim to Tru-Ohm
Type MOR-15. Wirewound: 40 ohms ±5%, 15 w; sim to Tru-Ohm
Type MOR-15. | XV451
XQ451 | 7480532P8
5491888P1 | Tube, mica-filled phen: 9 pins rated at 1 amp at 500 VRMS; sim to Elco 04-903-84. Transistor, power, phen: sim to Cinch 133-92-10- | | | MECHANICAL PARTS | | CR452
CR453
and
CR454 | 4037898P2 | Silicon. | R456
R458 | 5496941P5
3R77P224K | Wirewound: 0.25 ohm ±10%, 15 w; sim to Tru-Ohm
Type MOR-15.
Composition: 220K ohms ±10%, 1/2 w. | thru
xQ453 | | 034. | | 5490323P1
7484137P3 | Blower housing: sim to Detroit Stamping Type 350. (Used in 19D402530G1). Fan impeller: centrifugal, cw rotation; sim to Torrington Type 326-128. (Used in 19D402530G1). | | CR455
CR456
CR457* | 4037898P1
4037822P1
4037822P1 | Silicon. Silicon, 1000 mA, 400 PIV. Silicon, 1000 mA, 400 PIV. Added by REV S. | R459
R460 | 5493035P16
2R19P120 | Wirewound: 0.2 ohms ±10%, 5 w; sim to Hamilton
Hall Type HR. Wirewound: 80K ohms ±5%, 110 w; sim to Ward
Leonard K41391-2. | | | TRANSFORMER CHASSIS
19D402530G2 | | 7487773P5
4038930P1 | Set screw knob: sim to Eastman Chemical 28739. (Used with R461 in 19D402530G1). Clip. (Used with R459, R468 in 19D402530G1). | | DS451 | 4029824P3 | INDICATING DEVICES Light, indicator, glow: red lens; sim to E-Lite | R461
R462 | 5490213P1
2R12P38 | Variable, wirewound: 50K ohms ±10%, 4 w; sim to Chicago Telephone Supply Type 25. Wirewound: 5K ohms ±5%, 10 w; sim to Ward | A453 | | RECTIFIER BOARD ASSEMBLY
19C303735G2 | | 7118719P6
4036899P4 | Spring tension clip: sim to Prestole E-50008-003. (Used with C452, C461 in 19D402530G1). Insulator, standoff, ceramic: sim to Centralab | | DS452
and
DS453 | 4029824P2 | Type 1B2 BG22-RC-NE-2E. Light, indicator, glow: amber lens; sim to E-Lite Type 1B2 BG22-AC-NE-2E. | R463
R465 | 3R77P224K
5496955P518 | Leonard K41382-1. Composition: 220K ohms ±10%, 1/2 w. Deposited carbon: 1.5 megohm ±1%, 2 w; sim to | CR33
thru
CR36 | 19A115808P1 | DIODES AND RECTIFIERS Rectifier, silicon; sim to Type SCH7500. | | 4034401P1
7480532P7 | 3BX3778C. (Used with TB12, TB13 in A453, 19D402530G2). Insulator. (Used with L451 in 19D402530G2). Tube shield: sim to Elco 04-991-06. (Used with | | DS454 | 19C307037P3 | Lamp, incandescent: miniature, 14.40 v; sim to GE 53. | and
R466
R467 | 3R79P474K | Texas Instrument CD2R. Composition: 0.47 megohm ±10%, 2 w. | El
thru
E4 | 19A115070P2 | TERMINALS | | 19A134603P4 | Bracket, capacitor mounting: (Used with C460 in 19D402530G1). | | F451 | 7487942P5 | Slow blowing: 1 amp at 250 v; sim to Bussmann MDL-1. | R468 | 3R79P151J | Wirewound: 0.2 ohms ±10%, 5 w; sim to Hamilton Hall Type HR. Composition: 150 ohms 5%, 2 w. | C455 | 5490306P2 | | | 7142162P91
4036555P1 | Spacer. (Used in A451, A452, 19D402530G1). Insulator, washer: nylon. (Used with Q1 in A452, 19D402530G1). | | F453 | 5491272P7 | Meduim blowing: 4 amps at 125 v; sim to Bussman MDX-4. | R471* | 19A116310P15
19A137189G1 | Composition: 820 ohms ±5%, 1.0 w; sim to Allen-
Bradley Type GB. Added by REV S. Arrestor. Added by REV T. | and
C456
C458
and | 5490825P3 | Sprague Type 708C50. Ceramic disc: 10,000 pf +100% -20%, 2000 VDCW; sim to RMC JF Discap. | |
5491595P9
5491595P10 | Retainer: spring; sim to Allied Control 30040-2. (Used with K454). Clip, electrical: sim to Allied Control 30052-1. (Used with K454). | | J451
J452 | 7473192P4
7150763P4 | Connector, plug: 6 female contacts rated 10 amps at 730 VRMS; sim to HB Jones 261-32-06-010. Jack, tip, stake-in: green nylon body; sim to Alden Products 110BC1. | S451 | 5490331P2 | | C459
F452* | 7487942P5 | | | 4029974Pl | Insulator, plate. (Used with Q451-Q453). | | K4 51 | 19B216653G1 | RELAYS | S452 | 5491899P3 | Toggle: SPST, 6 amps at 125 VAC/VDC; sim to Cutler-Hammer 8383K3. | | | MDL-1. Deleted by REV E. | | | | | K45 3 | 19B209287P1 | Thermostat, disc type: temp range -200°F ±5% open, 175°F ± 10% close; rated 10 amps at 110 VAC, 60 Hz. Resistor, wirewound 1.7K ohms ±10%, 10 w. Mercury plunger: 117 VAC ±20%, 5 w operating, 1 form C contact, rated 30 amps at 110 VAC or | T451 | 1 | Power, step-down:
Pri: 117 VRMS, 50/60 Hz,
Sec 1: 10 VDC ±3%,
Sec 2: 8 VDC ±3%. | K455* | 5490221P1 | Thermostat, disc type: temp range -100°F ±5° open, 120°F closed; rated 10 amps at 120/240 VAC or 12 amps at 30 VDC; sim to Spencer-Klixon 20400F46-14/F120-2. Deleted by REV E. | | | | | K454 | 5491595P18 | 5 amps at 110 VDC; sim to Durakool BF-2376. Armature: 1.5 w max operating, 90 ohms ±15% coil res, 5 form A and 1 form B contacts, rated 1 amp | тві | 7775500P3 | TERMINAL BOARDS Phen: 4 terminals. | L451 | 5490244P1 | Choke: 10 h min, 100 ohms DC res max, 1400 v peak, 2000 VDC operating. | | | | | K456* | 5490322P13 | at 12 VDC; sim to Allied Control TL54-X-187. Thermal, time delay: 9-pin miniature base, SPST, NO, rated 3 amps at 115 VAC, 6.0 v heater, 45 sec ±25% time delay; sim to Amperite 5NO6OT. | TB2 TB3 and TB4 | 7775500P25
7775500P108 | Phen: 9 terminals. Phen: 4 terminals. | R457 | 3R79P433J | | | | | | | 5490322P12 | In REV M and earlier: Thermal, time delay: 9-pin miniature base, SPST, NO, rated 3 amps at 115 VAC, 6.3 v heater, 45 sec ±25% time delay; sim to Amperite 6NO45T. | TB7 | 19A121898G1
7775500P7 | Terminal board: 4 contacts. Phen: 3 terminals. Phen: 4 terminals. | R469 | 3R79P433J
19A115572P1 | Composition: 43K ohms ±5%, 2 w. TRANSFORMERS Power. step-up: | | | | | L452 | 19B209080P1 | Reactor: 12 mh min, 0.3 ohm DC res max, 150 v peak, 18 VDC operating. | TB9 TB10 TB11 TB14 | 7775500P6
7775500P4
7775500P7
7775500P4 | Phen: 4 terminals. Phen: 2 terminals. Phen: 2 terminals. Phen: 2 terminals. | | | Power, step-up:
Pri: 117 VRMS, 50/60 Hz,
Sec: 2000 VDC ±3%. | | | | | | | | | | | | | | | | | **PRODUCTION CHANGES** Changes in the equipment to improve performance or to simplify circuits are identified by a "Revision Letter", which is stamped after the model number of the unit. The revision stamped on the unit includes all previous revisions. Refer to the Parts List for descriptions of parts affected by these revisions. REV. M - 19D402530G1 REV. D - 19D402530G2 Incorporated into initial shipment. Main Chassis 19D402530G1 REV. N - To improve relay operation. Changed K456. REV. P - To make MASTR PRO & MASTR II supplies compatable. Added a N22 White-Blue-Orange wire between J452 and TB451-3. REV. R - To assure the station stays keyed when the PTT is first applied. Added C3. REV. S - To ensure that the High Power transmitter would unkey when the PTT was released and to eliminate spikes caused by the Antenna relay coil. Changed the A452 eyelet board 19B205029Gl to a printed circuit board 19C327493Gl. Also CR457 and R471 were added to the Power Supply. Jumpers were added between H45 and TB451-12 and between H46 and TB451-6. Jumpers were removed from between TB453-6 and TB452-6 and from between TB452-6 and TB451-6. WIRING DIAGRAM WAS: REV. T - To stop damage from AC Line Transients. Added RV451. REV. U - To replace germanium transistors with silicon devices. Changed Q451, Q452 and Q453. #### 19D402530G2 REV. E - To remove obsolete equipment. Deleted K455, F452 and XF452. 10